
Instructions

Research current state-of-the-art techniques that are used for detection and segmentation tasks in

the medical imaging domain, and focus on X-Ray images. Implement your own prototype model that

will work on open COVID-19 datasets available online. Compare the performance of your architecture

with reference results from literature and existing models. Discuss their pros and cons. Publish your

prototype code and make sure your results are reproducible.

Electronically approved by Ing. Karel Klouda, Ph.D. on 10 February 2021 in Prague.

Assignment of bachelor’s thesis

Title: Detection of COVID-19 in X-Ray images using Neural Networks

Student: Dominik Chodounský

Supervisor: Ing. Jakub Žitný

Study program: Informatics

Branch / specialization: Knowledge Engineering

Department: Department of Applied Mathematics

Validity: until the end of summer semester 2022/2023

Bachelor’s thesis

Detection of COVID-19 in X-ray images
using Neural Networks

Dominik Chodounský

Department of Applied Mathematics
Supervisor: Ing. Jakub Žitný

May 13, 2021

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor,
Ing. Jakub Žitný, for his guidance, advice and positive attitude throughout
the process of writing this thesis. I would also like to extend my special thanks
to my family and friends, who supported me and patiently sat through my
lengthy lectures and remarks on the subject of this research — it is greatly
appreciated.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 13, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Dominik Chodounský. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Chodounský, Dominik. Detection of COVID-19 in X-ray images using Neural
Networks. Bachelor’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2021.

Abstract

The COVID-19 pandemic is a very pressing issue that continues to affect
the lives of people around the globe. To combat and overcome the disease, it
is necessary for infected patients to be quickly identified and isolated to pre-
vent the virus from spreading. The traditional detection techniques based
on molecular diagnosis, such as RT-PCR, are expensive, time-consuming, and
their reliability has been shown to fluctuate. In this thesis, we research the de-
tection of COVID-19 in chest X-ray images using convolutional neural net-
works. We use our findings to implement a prototype that performs binary
detection of the disease, evaluate its performance on a collection of open data
repositories available online, and compare its results to existing models. Our
proposed light-weight architecture called the BaseNet achieves an accuracy
of 95.50 % on the chosen test set, with a COVID-19 sensitivity of 93.00 %.
We further assemble an ensemble of the BaseNet along with several other fine-
tuned architectures, whose combined classification accuracy is 99.25 % with
a measured sensitivity of 98.50 %.

Keywords computer-aided diagnosis, chest radiography, COVID-19 detec-
tion, prototype implementation, convolutional neural networks, CNN archi-
tecture comparison, ensemble learning

vii

Abstrakt

Pandemie zp̊usobena nemoćı COVID-19 je velmi naléhavým problémem, který
nadále ovlivňuje životy lid́ı po celém světě. K překonáńı této nemoci je nutné
včas identifikovat a izolovat infikované pacienty, aby se zabránilo š́ı̌reńı viru.
Tradičńı detekčńı techniky založené na molekulárńı diagnostice, jako např́ıklad
RT-PCR, jsou nákladné, časově náročné a studie ukazuj́ı, že jejich spolehlivost
značně koĺısá. V této práci jsme zkoumali detekci nemoci COVID-19 v rent-
genových sńımćıch hrudńıku pomoćı konvolučńıch neuronových śıt́ı. Poznatky
z provedené rešerše dále využ́ıváme k implementaci prototypu pro prováděńı
binárńı detekce a jeho následnému vyhodnoceńı na souboru otevřených da-
tových repozitář̊u dostupných online. Tyto výsledky poté porovnáváme se stá-
vaj́ıćımi řešeńımi a modely. Naše navrhovaná jednoduchá architektura s názvem
BaseNet dosahuje na zvolené testovaćı sadě dat přesnosti 95.50 % a senziti-
vity 93.00 %. Zmı́něný BaseNet jsme dále spolu s několika daľśımi vyladěnými
architekturami spojili do souboru model̊u, jejichž kombinovaná klasifikačńı
přesnost je 99.50 % s naměřenou senzitivitou 98.50 %.

Kĺıčová slova poč́ıtačem podporovaná diagnóza, rentgenové sńımáńı hrud-
ńıku, detekce COVID-19, implementace prototypu, konvolučńı neuronové śıtě,
porovnáńı architektur CNN, ensemble learning

viii

Contents

Introduction 1
Motivation . 1
Objectives . 2

1 Detection of COVID-19 3
1.1 COVID-19 . 3
1.2 Chest X-rays . 4

2 Machine Learning 7
2.1 Supervised vs. Unsupervised Learning 7

2.1.1 Supervised Learning . 7
2.1.2 Unsupervised Learning 8

2.2 Evaluation Metrics . 9
2.2.1 Accuracy . 9
2.2.2 Predictive Values . 10
2.2.3 Area Under the ROC Curve 10
2.2.4 Cross-entropy Loss . 12
2.2.5 Bias-varince Tradeoff . 12

2.3 Training, Validation and Test Set 14
2.3.1 Cross-validation . 14
2.3.2 Overfitting and Underfitting 16

2.4 Hyperparameter Optimization 17
2.5 Ensemble Model . 18
2.6 Artificial Neural Networks . 19

2.6.1 Single-layer Perceptron 19
2.6.2 Multi-layer Perceptron 20
2.6.3 Cost Function . 22
2.6.4 Backpropagation and Gradient Descent 22
2.6.5 Optimizers . 24

ix

2.6.5.1 Stochastic Gradient Descent 24
2.6.5.2 AdaGrad . 25
2.6.5.3 RMSProp . 25
2.6.5.4 Adam . 25

2.6.6 Activation Functions . 26
2.6.7 Convolutional Neural Networks 29

2.6.7.1 Convolution 29
2.6.7.2 Pooling . 30

2.6.8 Regularization . 31
2.6.8.1 Data Augmentation 32
2.6.8.2 L1 and L2 Regularization 32
2.6.8.3 Dropout . 33
2.6.8.4 Early Stopping 33

3 Analysis 35
3.1 Medical Imaging . 35
3.2 Preprocessing Methods . 36

3.2.1 Image Resizing . 36
3.2.2 Data Transformation . 37
3.2.3 Noise Reduction . 38
3.2.4 Histogram Equalization 39
3.2.5 Image Segmentation . 41
3.2.6 Preprocessing Pipeline for COVID-19 Detection 41
3.2.7 Dimensionality Reduction 43

3.3 Imbalanced Datasets . 44
3.3.1 Cost Sensitive Learning 44
3.3.2 Undersampling . 44
3.3.3 Oversampling . 45
3.3.4 Data Augmentation and Synthetic Data Generation . . 45

3.3.4.1 Generative Adversarial Networks 45
3.4 Transfer Learning . 47

3.4.1 ImageNet . 47
3.4.2 ChestX-ray . 48
3.4.3 AlexNet . 48
3.4.4 VGG . 49
3.4.5 ResNet . 49
3.4.6 Inception . 50
3.4.7 DenseNet . 50

3.5 Research in COVID-19 Detection 51
3.5.1 COVID-Net . 51
3.5.2 Application of VGG16 and Image Preprocessing for COVID-

19 Detection . 54
3.5.3 Twice Transfer Learning for COVID-19 Detection 55

x

4 Design and Implementation 57
4.1 Requirements and Technologies 57

4.1.1 Python . 57
4.1.2 NumPy . 58
4.1.3 Scikit-learn . 58
4.1.4 OpenCV . 58
4.1.5 Matplotlib and Seaborn 58
4.1.6 TensorFlow and Keras 58
4.1.7 Jupyter Notebook and Google Colab 59

4.2 Dataset . 59
4.2.1 Data Exploration . 60
4.2.2 Data Separability in Lower-dimensional Spaces 63

4.3 Model Training and Evaluation 64

5 Experiments and Results 67
5.1 Evaluating COVID-Net Performance 67

5.1.1 COVID-Net CXR-2 . 67
5.1.2 COVID-Net CXR3-B 68

5.2 BaseNet Architecture and its Hyperparameter Optimization . . 70
5.3 Optimizer Selection . 73
5.4 Impact of Image Preprocessing Techniques 75

5.4.1 Min-max Normalization 75
5.4.2 Histogram Equalization 75
5.4.3 Contrast Limited Adaptive Histogram Equalization . . . 76
5.4.4 Diaphragm Segmentation 76
5.4.5 Results . 78

5.5 Data Augmentation and Generation 80
5.5.1 Oversampling and Augmentation 80
5.5.2 Generating Synthetic CXR Images with DCGAN 82

5.6 Transfer Learning and Fine-tuning 83
5.7 Ensemble Model . 87
5.8 Discussion . 89

Conclusion 91
Contribution . 92
Future Improvements . 92

Bibliography 95

A Acronyms 109

B Contents of Enclosed SD Card 111

C Network Architectures 113

xi

List of Figures

1.1 Serial radiological progression seen with COVID-19 pneumonia . . 4

2.1 An example of an ROC curve used to calculate the AUC metric . . 11
2.2 Comparison of bias and variance for different model complexities

and how they affect the total prediction error 13
2.3 Illustration of the composition of subsets used in training and test-

ing a model . 15
2.4 Illustration of k-fold cross-validation for k = 5 16
2.5 Example of underfitting, overfitting and a good-fitting model . . . 17
2.6 Architecture of the single-layer perceptron 20
2.7 Example of a multi-layer perceptron with 3 layers 22
2.8 Transformations of inner potentials into neuron activations by fre-

quently used activation functions 28
2.9 Illustration of a feautre map created by convolving a 3 × 3 kernel

across a zero-padded 5× 5 input image with a stride of 1 30
2.10 Illustration of down-sampling a single dimension of a feature map

using the max-pooling method with kernel size of 2× 2 and stride
of 2 . 31

3.1 A 3× 3 Gaussian filter used to blurr images when applied by con-
volution . 38

3.2 Comparison of techniques used to denoise images from the COVIDx
dataset . 40

3.3 A flow diagram that illustrates a suggested image preprocessing
pipeline for COVID-19 detection 42

3.4 Summary of the COVID-Net CXR-2 architecture for binary clas-
sification of COVID-19 CXR images 52

3.5 Summary of the COVID-Net CXR3-B architecture for categorical
classification of pulmonary diseases including COVID-19 in CXR
images . 54

xiii

3.6 Comparison of test accuracy of DenseNet architectures trained
with various configurations of transfer learning and output neu-
ron keeping . 56

4.1 Comparison of the directory tree of the original COVIDx8B dataset
and our preprocessed version . 61

4.2 Comaprison of the class distributions in the COVIDx8B training
and test set . 62

4.3 Examples of CXR images found in the COVIDx8 dataset 62
4.4 Examples of abnormalities found among the data samples 63
4.5 Visualization of UMAP projections of a sample from COVIDx8B

data onto a 2D and a 3D space . 64

5.1 Progression of validation set accuracy of the stratified 4-fold cross-
validation of our COVID-Net CXR3-B2 implementation 70

5.2 Illustration of the optimized BaseNet architecture prototype for
the detection of COVID-19 in medical CXR images 72

5.3 Progression of validation set accuracy of the stratified 4-fold cross-
validation of our BaseNet prototype 73

5.4 The confusion matrix and ROC curve that characterize the BaseNet’s
binary classification performance on the COVIDx8B test images . 73

5.5 Comparison of the performance of different optimizers and learning
rates used to train the BaseNet . 74

5.6 Results of applying histogram equalization and CLAHE with a clip
limit of 3 on a low-contrast CXR image 77

5.7 Demonstration of the steps of our implementation of the COVID-
19 preprocessing pipeline, which uses a convex hull to enclose the
contour of the high-intensity region 78

5.8 Demonstration of the steps of our implementation of the COVID-
19 preprocessing pipeline, which uses polygon approximation to
outline the contour of the high-intensity region 79

5.9 Synthetic CXR images generated by our implementation of the
DCGAN built for the generation of 256× 256 px colour images . . 83

5.10 Synthetic CXR images generated by our implementation of the
DCGAN built for the generation of 128× 128 px colour images . . 84

5.11 Progression of the training and validation binary accuracies during
the training of the DenseNet-121 architecture transferred from the
ImageNet and the ChestX-ray14 datasets 86

5.12 The confusion matrix and ROC curve that characterize our ensem-
ble model’s binary classification performance on the COVIDx8B
test images . 88

xiv

List of Tables

3.1 Comparison of the results of preprocessing techniques used in COVID-
19 detection from CXR images by the VGG16 architecture 55

5.1 Results of evaluating the performance of two of the COVID-Net
project models and our own implementation of their design 69

5.2 Comparison of the impact of various preprocessing techniques on
the evaluation metrics of COVID-19 detection with the BaseNet
prototype . 80

5.3 Comparison of the impact of various class balancing techniques on
the evaluation metrics of COVID-19 detection with the BaseNet
prototype . 81

5.4 Comparison of results achieved by various architectures in our
transfer learning and fine-tuning experiments 85

5.5 Evaluation of an ensemble model from several of the best perform-
ing base models discovered during previous experimentation 87

C.1 Summary of the Generator’s architecture in our implementation of
the DCGAN for generating 256× 256 px colour images 113

C.2 Summary of the Discriminators’s architecture in our implementa-
tion of the DCGAN for generating 256× 256 px colour images . . 114

C.3 Summary of our BaseNet prototype architecture 115

xv

Introduction

As the global pandemic caused by the SARS-CoV-2 virus continues to affect
the everyday lives of people around the world, we are presented with an op-
portunity to utilize the latest advances in the field of computer vision and
deep learning to ensure early detection and containment of the disease that it
causes. Not unlike other pulmonary diseases, COVID-19 may be detectable
in X-ray images of the lungs, where it forms specific lung markings, especially
in the more severe cases. Creating models that extract these specific features
and training them to classify whether the X-ray shows symptoms of COVID-
19 would provide an alternative diagnosis technique to the standard molecular
tests, which tend to be more expensive, time-consuming, and less accessible
in certain parts of the world. If found to be reliable, the trained models
could potentially be directly incorporated into the clinical diagnostic work-
flow in hospitals, where they would assist medical professionals in identifying
infected patients in a timely manner.

Motivation

Although the subject of computer-aided diagnosis of COVID-19 in X-ray im-
ages is still relatively new, there is already a number of works that have
attempted to approach it with varying degrees of success. Among the most
common models used to perform this task are convolutional neural networks,
which have been rapidly evolving over the past decade. The individual so-
lutions usually focus on a specific part of the model building process, such
as the architecture of the model itself, the preprocessing methods applied
to the X-ray images or finding solutions to problems that are commonly found
with medical datasets such as class imbalance and lack of variation. In this
thesis, we will take a comprehensive approach to thoroughly exploring all as-
pects and possibilities of utilizing deep neural networks in search of a reliable
method of diagnosing COVID-19. The collection of observations will hope-
fully provide a solid basis for prototyping models to be used in detecting this

1

Introduction

disease and possibly several others that affect the lungs. Such models could
potentially end up becoming a standard method of acquiring a second opinion
when performing patients’ diagnoses.

Objectives

The primary goals of this thesis are the following:

• Describe the COVID-19 disease and the virus that causes it, as well
as the methods currently used to perform its diagnosis,

• Provide the theoretical background of machine learning and neural net-
works needed to comprehend the research and experimentation related
to this subject,

• Research common approaches to dealing with medical datasets, pre-
processing of X-ray images, and building convolutional neural network
architectures for detection tasks,

• Analyze existing research specifically oriented towards the detection
of COVID-19 in X-ray images,

• Utilize the findings to implement a prototype that is able to perform
the detection of COVID-19 on open datasets available online, experi-
ment with different configurations of its parameters and training, and
compare its performance to existing models.

Our main focus will be on the automated binary detection of COVID-
19 in chest X-ray images using current state-of-the-art machine learning and
image preprocessing methods. To achieve this, we will employ the use of con-
volutional neural networks, which will be trained and evaluated on a collection
of publicly available datasets with a wide selection of patients from around
the world. We will utilize optimization, regularization, and preprocessing
techniques in an attempt to improve the accuracy of these models.

2

Chapter 1
Detection of COVID-19

This chapter introduces the COVID-19 disease and the standard methods used
to diagnose it, as well as their advantages and disadvantages. Furthermore, we
discuss how the disease manifests itself in chest X-ray images, which is relevant
to its automated detection, which is discussed in the latter part of this thesis.

1.1 COVID-19

Coronaviruses are a family of viruses that cause illnesses such as the com-
mon cold or, among the more serious, Severe Acute Respiratory Syndrome
(SARS). The coronavirus disease of 2019, also known as COVID-19, is an in-
fectious disease caused by the SARS-CoV-2 coronavirus, whose origin traces
back to an outbreak in Wuhan, China, in December 2019. Common symptoms
include fever, cough, shortness of breath, and in more severe cases, the infec-
tion can cause pneumonia, SARS, kidney failure, and even death. In March of
2020, The World Health Organization (WHO) declared the ongoing outbreak
a global pandemic. [1]

Since the distribution of the COVID-19 vaccine is still limited, early de-
tection of the disease and isolation of the patients is essential to containing
its spread. The primary method of detecting COVID-19 on a molecular level
is the reverse transcription-polymerase chain reaction (RT-PCR) [2]. How-
ever, studies have shown that this method alone may not suffice. While RT-
PCR produces very few false positives and its specificity is therefore high
(98-100 % [3, 4]), its sensitivity has been recorded to vary a lot from study to
study (77-95 % [3, 4, 5, 6]). Furthermore, obtaining results through RT-PCR
is costly, and it may take several hours or even a few days, depending on the
laboratory’s capacity. This suggests that using a secondary diagnostic such
as radiography may be of use. Examples of radiography imaging techniques
used to detect COVID-19 are computed tomography (CT) scans and chest
X-rays, which will be the main focus of the experimental part of this thesis.

3

1. Detection of COVID-19

1.2 Chest X-rays

The chest X-ray (CXR) is the most commonly performed diagnostic X-ray
examination [7]. It is a non-invasive test, which helps medical professionals
diagnose and treat a wide range of medical conditions. The imaging process
involves exposing a part of the body, in this case, the chest, to a small dose of
ionizing radiation to produce images of the inside of the body. The result is
acquired by taking the negative of this image, and the structures that blocked
the radiation appear bright, while the less dense structures let a portion of
the radiation pass through and therefore appear darker.

There is a distinction between several different types of projections based
on the different views of the chest that are obtained by changing the relative
orientation of the body and the direction of the X-ray beam. The projections
commonly used in diagnosing COVID-19 are the posterior-anterior (PA) and
anterior-posterior (AP) views. In PA view, the patient is positioned in a
manner where the beam first enters through their back and exits the chest
through the front, while AP is the other way around. It is recommended
that PA radiography be prioritized as it produces better images than its AP
counterpart. It does, however, increase the risk of cross-infection among the
patients. [8]

Figure 1.1: Serial radiological progression seen with COVID-19 pneumonia [8].

There are several indicators of COVID-19 pneumonia in the CXR images.
One example is the loss of black appearance in the lungs. The increased
whiteness gives the part of the lungs a ground-glass appearance, and it marks
an area of increased density. The disease can also take the form of coarse
horizontal linear opacities on the lungs, and in more severe cases, the opacities
can become denser and progress into consolidation with a complete loss of lung
markings. Figure 1.1 shows the serial progression of CXR images containing
the COVID-19 pneumonia. Image (a) is an AP chest radiograph of a woman
in her 70s on the first day of admission to the hospital with a confirmed case

4

1.2. Chest X-rays

of COVID-19. Image (b) shows the same patient’s radiograph after eight days.
The white arrows indicate ground-glass opacities present in both lungs, while
the black outlined arrows show areas where the opacities are progressing into
consolidations. [8]

In most cases, it is challenging to distinguish COVID-19 pneumonia from
other types of respiratory infections. However, it does have certain atypical
aspects like the fact that the radiographic appearances of ground-glass opacity
tend to be multifocal, meaning they affect multiple regions of the lungs [9].
Unfortunately, these findings on chest images are not COVID-19 specific; they
have substantial overlap with other more severe infections, such as influenza,
H1N1, SARS, or MERS. Another significant drawback of this diagnosis tech-
nique is that since most patients with COVID-19 only have a mild form
of the illness, they do not develop pneumonia, and the condition may therefore
not be detectable in the CXR images at all [10, 11].

5

Chapter 2
Machine Learning

Machine learning (ML) is a subset of artificial intelligence, which constructs
mathematical models and uses experience in order to improve their perfor-
mance. The experience generally refers to the past information available
to the learner, which is used to extract rules and features or discover un-
derlying relationships in the data. We usually call this past information
the training data. Learning takes the form of data-driven methods, which
combine fundamental concepts from computer science, statistics, probability,
and optimization in a manner that best satisfies the given criteria. [12, 13]

With the growing availability of online data and low-cost computational
resources, the variety of fields utilizing machine learning algorithms keeps ex-
panding. The application domains range from science and technology to manu-
facturing, marketing, commerce, and even health care.

This chapter introduces the fundamental machine learning concepts needed
to establish theoretical background knowledge about the problems and solu-
tions discussed in the latter part of the thesis.

2.1 Supervised vs. Unsupervised Learning

There are many different machine learning scenarios that differ in the nature
of the training data, the training itself, and the evaluation criteria. Each
approach is fit for a particular class of problems and has its unique advantages
and disadvantages. We will discuss the most common distinction of learning
approaches: supervised and unsupervised learning.

2.1.1 Supervised Learning

Supervised learning is a process where the training data is labelled with a cor-
responding class label or value. If we refer to X as the input variable and Y
as the output variable, our training data can be expressed as a set of n pairs:
(Xtrain, Ytrain) = {(x1, y1), . . . , (xn, yn)}. The learner receives this labelled

7

2. Machine Learning

data from the supervisor and attempts to approximate a mapping function
f : X → Y that predicts the correct labels for a given sample [13]. Such an
approximation should be not only able to predict the values given in the train-
ing data but also any other data that belongs to the same problem domain.

The learning process is usually iterative. The learner is first initialized
(e.g., with random parameters) and subsequently tested on the training data.
The supervisor provides the learner with outputs determined not by the pro-
cess of inference but rather by direct empirical evidence, otherwise known
as the ground truth. Knowing the ground truth, the learner proceeds to alter
its internal parameters to try and approximate the actual values in the train-
ing data. The learning stops when the algorithm reaches an acceptable level
of performance, measured by a formerly established metric.

Supervised learning problems can be further grouped into regression and
classification problems. In regression, we train the model to make continuous
predictions. Commonly used models for regression tasks are, for example,
linear regression or regression trees. On the other hand, classification aims to
categorize data into discrete classes. It attempts to understand and be able
to distinguish between the classes. An example of a classification problem is
the MNIST dataset1, where the supervisor provides images of handwritten
digits, and the learner attempts to classify these images by the digits they
represent. The classification itself typically happens on the basis of estimating
the probability of the examined item being in each class, and the class with
the highest probability is chosen as the prediction. Representatives of the
models used in classification are, for example, classification trees, support
vector machines, or logistic regression.

2.1.2 Unsupervised Learning

Unsupervised learning has a very different goal to supervised learning. In this
case, the input data Xtrain = {x1, . . . ,xn} has no corresponding output vari-
able, and the task of the learner is to find solutions on its own. The solution
is defined very loosely; it can take the form of patterns, structures, or some
other kind of underlying relationships in the unlabelled data. Since there
are generally no labelled examples available in the training data, quantifying
the learner’s performance may be difficult. The most common unsupervised
task in machine learning is clustering. This is the problem of partitioning
a set of points in the domain space into homogeneous subsets, called clusters,
which contain points more similar (in some sense) to each other than to those
in other clusters [12]. A common use case for clustering is market segmen-
tation in the e-commerce sector. Algorithms used to find these patterns and
perform clustering include hierarchical clustering or k-means.

1http://yann.lecun.com/exdb/mnist/

8

http://yann.lecun.com/exdb/mnist/

2.2. Evaluation Metrics

2.2 Evaluation Metrics

Model evaluation is a core part of the machine learning process. There are
many different metrics we can use to rate the model’s performance, depending
on the task at hand. Since this thesis mainly deals with supervised classifica-
tion tasks within the medical imaging domain, we will not delve into regression
metrics such as mean squared error, mean absolute error, etc.

2.2.1 Accuracy

The most basic classification metric is the classification accuracy. It merely
describes the portion of the predictions classified correctly by the evaluated
model as

Accuracy = Number of correct predictions
Total number of predictions .

The ratio is commonly expressed as a percentage, and it should come as no
surprise that we look for high accuracy in our models. In a case where there
are only two possible classes for the model to pick from, we refer to the metric
as binary accuracy and usually establish a positive and a negative class.

Under these circumstances, we can witness four different types of classifica-
tion results. The first case is when a sample from the positive class is classified
as positive; we call this a True Positive (TP). If this sample were to be classi-
fied wrongly as negative, then it would be a False Negative (FN). On the other
hand, a negative sample classified as negative is a True Negative (TN), and if
it were to be misclassified, it would be a False Positive (FP). ML researchers
will often visualize these metrics in the form of a confusion matrix [14]. Hav-
ing defined these terms, an alternative formula for calculating binary accuracy
may be

Binary Accuracy = TP + TN
TP + TN + FP + FN .

In the context of medical diagnosis, top-level accuracies are crucial, and
any mistakes may result in serious health implications for the patients. Med-
ical professionals should never solely rely on automated diagnosis techniques,
but having the models evaluated with a high accuracy score provides the doc-
tors with the possibility of taking these results into consideration as a second
opinion.

9

2. Machine Learning

2.2.2 Predictive Values

Having established the types of outcomes that classification can result in, we
further specify the following metrics:

• Positive Predictive Value

PPV = TP
TP + FP

• Negative Predictive Value

NPV = TN
TN + FN.

The PPV informs us about the probability that a positive result in the hypoth-
esis test indicates a real effect. We often use this metric to express the prob-
ability of the tested disease’s presence in a patient that tested positive for
it. Contrastingly, the NPV describes the probability of not having this dis-
ease considering that the patient tested negative. Both PPV and NPV are
highly influenced by the prevalence of the disease in the tested population.
Specifically, PPV increases with a higher prevalence of the disease, while NPV
decreases. [15]

2.2.3 Area Under the ROC Curve

Another extensively used metric in medical binary classification is the Area
Under the ROC Curve (AUC). To be able to define AUC, we must first in-
troduce the following terms:

• True Positive Rate (Sensitivity)

TPR = TP
TP + FN

• True Negative Rate (Specificity)

TNR = TN
TN + FP

as described by [14]. Sensitivity is a metric that helps us evaluate the potential
of the diagnostic technique to recognize patients with the disease. It is essen-
tially the probability of getting a positive test result in those that truly have
the disease. Highly sensitive tests are useful for ruling out certain diseases
if their tests come back as negative [15]. On the other hand, specificity tells

10

2.2. Evaluation Metrics

us the proportion of patients without the disease that have a negative result.
A highly specific test is most informative when it comes out as positive since
we can be quite certain that the patient does indeed have the disease [15].
The so-called false positive rate is closely related to specificity, as it can be
expressed as 1− specificity.

The receiver operating characteristic curve (ROC curve) is a graph where
true positive rates (sensitivity) and false positive rates are plotted against each
other at different classification thresholds in the interval [0; 1]; see Figure 2.1
for an example. By decreasing the classification threshold, we classify more
samples as positive, thus producing more true positives and false positives.
AUC measures the entire area underneath this ROC curve from the point
(0, 0) to (1, 1). A possible interpretation of the AUC score is the probability
that the model classifies a random positive sample as actually positive with
higher confidence than it would a random negative sample.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e

Receiver Operating Characteristic Curve

ROC (AUC = 0.887)

Figure 2.1: An example of an ROC curve with an AUC of 0.887 [14].

We generally look for a model with a high AUC, as an AUC of 1.0 means
that the model predicted 100 % of the items correctly, while an AUC of 0.0
means it got all the predictions wrong [16]. An AUC of 0.5 indicates that the
model cannot discriminate between the positive and the negative class.

Radiologists often use AUC to compare the overall performance of diag-
nostic tests and evaluate their discriminatory capacity [17]. It is important
to note that two tests with the same AUC may not have the same ROC. One
could have a better performance in the higher sensitivity range while the other
outperforms it in the lower sensitivity range.

11

2. Machine Learning

2.2.4 Cross-entropy Loss

Most machine learning algorithms approach the problem of training a model
as an optimization task. In mathematical optimization, a loss function L is a
function that maps a particular state onto a real number, which expresses some
sort of a penalty for failing to achieve the desired goal. In machine learning,
this loss function takes on the role of representing an error of the predictions
made by an examined model. We may write this as L : (Y, Ŷ) → R, where
Y is the actual data label and Ŷ is the model’s prediction of this label. We
commonly refer to the loss function’s average across the whole dataset as the
cost function.

Given a discrete classification task with c possible output classes, the fre-
quently used loss function is the categorical cross-entropy. If we mark the
estimated conditional probability of a specific x from the data belonging to
class i as p̂i = P̂(Y = i|X = x) and a vector of these probability estimates
for each possible class as p̂ = (p̂1, . . . , p̂c)T , then the calculation of categorical
cross-entropy for this point is

L(Y, p̂) = −
c∑
j=1

1Y=j log p̂j = − log p̂Y ,

where

1Y=j =
{

1 for Y = j,

0 otherwise.

If we simplify the task to a binary classification, we can use binary cross-entropy.
In this case, we denote the estimated conditional probability of a specific x
belonging to the positive class as p̂ = P̂(Y = 1|X = x) and get the following
expression for the loss function

L(Y, p̂) = −Y log p̂− (1− Y) log(1− p̂) .

The above-mentioned equations were derived from [18].

2.2.5 Bias-varince Tradeoff

We are able to split the error expressed by the loss function into three separate
parts. The first part is the inevitable randomness of the problem domain. It
is an irreducible error that cannot be explained by our model. Next, we have
the bias, which is the difference between the average predictions of the model
and the true values, which the model is trying to predict. Bias is caused by
the simplifying assumptions made by the model in order to make the target
mapping function easier to approximate. The last part of the error is the

12

2.2. Evaluation Metrics

variance of the predictions themselves. Variance expresses how much the
predictions vary for different sets of training data. [19, 20]

Mathematically, we can mark the irreducible error as σ2, the bias of the
model’s predictions Ŷ of the output variable Y as bias Ŷ , and their variance
as var Ŷ . This gives us the final decomposition of the model’s expected error

EL(Y, Ŷ) = σ2 + (bias Ŷ)2 + var Ŷ ,

as shown by [21].
The phenomenon called the bias-variance tradeoff describes the adversarial

relationship between bias and variance. Simple models with few internal pa-
rameters are characterized by having high bias and low variance. In contrast,
more complex models tend to form more complicated approximations leading
to high variance and low bias [19]. The goal of any supervised machine learn-
ing algorithm is to find a balance between bias and variance, which minimizes
the total error. An example of finding such an optimal model complexity can
be seen in Figure 2.2.

O
pt

im
al

M
od

el
Co

m
pl

ex
ity

Bias2

Variance

Total
Error

Model Complexity

Er
ro

r

Figure 2.2: Comparison of bias and variance for different model complexities
and how they affect the total prediction error [19].

13

2. Machine Learning

2.3 Training, Validation and Test Set

We have mentioned that machine learning models should be not only able
to predict the training data but also any other data that may come in the
future. Since we do not have access to future data at the time of training,
and not all domains can be characterized by a regular flow of new data, we
perform a so-called train-test split. We keep one random portion of the data
aside and train the model on the remaining portion. Thus, we are left with
a small subset of data which we call the test set. The model has never seen
this data before, and its training process was therefore not affected by it. We
can reliably evaluate the model by taking its predictions on the test set and
comparing them to the real values. In doing so, we get an idea of the model’s
ability to generalize.

Arguably, all machine learning models are parametrized in one way or
another. We call these the hyperparameters (HPs) of the model, and they are
set before the training process begins. Hyperparameters are not determined
by the learning algorithm but rather specified as its inputs. Determining these
hyperparameters is not straightforward, as different problems require different
approaches. If we were to adjust the hyperparameters according to the results
they lead to on the test set, then we can no longer claim that the model
was trained independently of this data. For this reason, we introduce the
validation set. The validation set is created by a random split of the training
set, and it contains a sample used to tune the hyperparameters of the learning
algorithm; see Figure 2.3. [12]

In practice, a so-called 80:20 split is often used for setting up the training
and test set. The training set is made up of a random selection of 80 % of
the data, while 20 % is used for the overall evaluation. To determine which
hyperparameters to use in training, each combination is evaluated on the
validation set, which could be randomly selected 15-20 % of the data from
the training set. The hyperparameters that led to the best scoring model on
the validation data are then used to train the final model. This model is then
evaluated on the test set, which has not been involved until this point.

2.3.1 Cross-validation

The aforementioned approach works well in most cases, but it dismisses one
problem. There are many possible combinations of train-test sets, and this
method experiments with only one. The data could have been randomly
split in a way, which is not representative of the whole sample. To by-
pass this problem, we introduce the concept of cross-validation, which is
not dependant on the way the data was split. Specifically, we will focus on
k-fold cross-validation.

We select a k of at least 2 and at most equal to the number of samples in the
training set. We subsequently split the training set into k almost equally large

14

2.3. Training, Validation and Test Set

Original Dataset

Training set Test set

Training set Validation set

Machine Learning
Algorithm

Train Tune HPs

Model

Final
performance
evaluation

Figure 2.3: Illustration of the composition of subsets used in training and
testing a model.

subsets, or folds, and label them as F1, F2, . . . , Fk. For each j = 1, 2, . . . , k,
we proceed to train the model with given hyperparameters on data from the
set defined as

(
k⋃
i=1

Fi) \ Fj

and test its performance on Fj . We save the result for each j and calculate
the model’s average performance on all k folds. This process is repeated for
every combination of hyperparameters. In the end, those that led to the best
average cross-validation performance are chosen to train the final model, which
is evaluated on the test set. Splitting the data into k folds is demonstrated in
Figure 2.4. [22]

In traditional k-fold cross-validation, we perform random sampling to split
the training data into k folds. This could lead to severe issues, especially if
the data is very imbalanced. To resolve this problem, we can use the so-called
stratified sampling, which captures the distribution of the data within each
fold. In stratified k-fold cross-validation, each fold is stratified so that it con-
tains approximately the same proportion of class labels as the original dataset.
This reduces variance among the estimates and stabilizes the algorithm. [23,
24]

15

2. Machine Learning

Leave-one-out cross-validation is an extreme case of cross-validation, where
k is equal to the number of instances in the dataset. The algorithm is applied
once for each instance, using all other instances as the training set and the
selected instance as a single-item test set. [25, 22]

Original Dataset

Training set Test set

Machine Learning
Algorithm

Model

Final
performance
evaluation

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 1

Training & HP tuning

Split 2

Split 3

Split 4

Split 5

Figure 2.4: Illustration of k-fold cross-validation for k = 5.

2.3.2 Overfitting and Underfitting

Common issues surrounding the training process of a model are overfitting and
underfitting. Overfitting happens when the mapping function is too closely fit
to accommodate for a limited set of data points in the training set. It usually
takes the form of creating an overly complex model, which does not capture
the real underlying relationships within the data. In reality, data will often
have some degree of noise caused either by the randomness of the problem
space, measuring errors, or anomalies (the previously mentioned irreducible
error). Attempting to conform too closely to imperfect data can increase the
variance and lead to substantial errors and reduced predictive power.

An overfitted model will fail to generalize well; in other words, its per-
formance on the training set will be significantly better than its performance
on the test set. We call this disparity the generalization gap, and it tells us
that the model failed to capture the information hidden within the training
data [26]. Instead, it took advantage of its high capacity to remember specific

16

2.4. Hyperparameter Optimization

details about the training data, which help it decrease the loss function but
do not actually capture the sought-after patterns. A model’s capacity roughly
corresponds to the number of trainable parameters it has [20].

If we look to the opposite side of the problem, we can also encounter
models with high bias and low ability to fit the training data. This issue is
referred to as underfitting, and it can be caused by a shortage of training
data, low-quality data, having classes with few distinct features, or simply a
model unable to extract those features [27]. We find that an underfitted model
usually oversimplifies the problem and performs poorly both on the training
set and the test set. See Figure 2.5 for examples of underfitting and overfitting.
We will discuss possible ways of dealing with the issues of overfitting and
underfitting in the context of artificial neural networks in Section 2.6.8.

Figure 2.5: Example of an underfitted high bias model on the left, a high
variance overfitted model on the right, and a good-fitting model that minimizes
the total prediction error in the middle [27].

2.4 Hyperparameter Optimization

In the previous section, we have described using the validation set to evaluate
the performance of a model with a given set of hyperparameters. The process
of searching for the optimal model configuration is called hyperparameter
optimization (HPO). This process may take on a different form depending on
the task and the characteristics of the model.

One of the most common and straightforward approaches is grid search,
also known as full factorial design. This method defines a finite space of
hyperparameter configurations, where each hyperparameter is represented by
a single dimension. Each dimension is reduced to a finite range of pre-selected
discrete values, and grid search evaluates the Cartesian product of all of the
sets of values. Such evaluation is often done by calculating the value of the
loss function for the model trained with the given set of hyperparameters.
The optimum is a point in the hyperparameter space that leads to the lowest
validation loss. As pointed out by [28], a significant drawback is that the

17

2. Machine Learning

required number of evaluations grows exponentially with the dimensionality
of the configuration space. This makes the method fit for use with relatively
simple models, where the training and evaluation are computationally cheap.

An alternative suggested by [28] is the random search method. It views
the hyperparameter space in the same manner as grid search, but instead of
an exhaustive search of all combinations, it only evaluates a fixed number
of random samples from the space. Random search has been shown to be
significantly more efficient than grid search, and in many cases, it achieves
comparable results [29].

Weighted random search is an attempt at optimizing the random search
algorithm by adding a probabilistic greedy heuristic. It assigns probabilities
of change to each of the hyperparameters, and values that have been found to
perform well will have this probability decreased, as described by [30].

There are many other elaborate optimization methods used in determining
hyperparameters of machine learning models, including convolutional neural
networks, such as simulated annealing [31], Bayesian optimization [32], evolu-
tionary algorithms [33], etc. These are mainly useful in cases where grid search
or random search will not suffice, such as problems with high dimensionality.

2.5 Ensemble Model

It is practically impossible to build a model that can generalize real-world
data perfectly. However, if we have several models that come to the same
conclusion, we are likely to have higher confidence in that prediction.

Ensemble models are a way to aggregate the predictions from several di-
verse base models. The collective prediction can be formed by taking the
average of the individual predictions in the case of regression, or in our clas-
sification case, it is simply the class predicted by the majority of the base
models. We may give each base model’s vote a different weight; for instance,
the votes of the model whose individual prediction accuracy was the highest
may be favoured in the final decision. The key aspect that often decreases
prediction error and improves the ensemble’s ability to generalize is diversity
and independence of the base models. This can be achieved by training the
models on different sets of data, setting different hyperparameters, or using
completely different modelling algorithms altogether.

While there is no guarantee that an ensemble will outperform individual
base models, many experimental studies in different areas have shown this to
be a widespread occurrence [34, 35, 36].

18

2.6. Artificial Neural Networks

2.6 Artificial Neural Networks

An artificial neural network (ANN) is a computational model inspired by net-
works of biological neurons found in the human brain. The biological neurons
are interconnected by synapses and perform a particular function when ac-
tivated by electrical impulses from other neighbouring nerve cells. A key
concept is that not all synaptic connections are equally weighted, and specific
neural pathways may be adjusted and strengthened over time [37]. Similarly,
the artificial neuron receives inputs and sends them as an impulse through the
network to produce some sort of output based on predefined activation func-
tions. To simulate learning, the weights of individual connections are adjusted
by an appropriate optimization algorithm.

The idea of ANNs has been around since 1943 when neurophysiologist
Warren McCulloch and mathematician Walter Pitts wrote a paper describing
how neurons may work, and to support their hypothesis, they used electrical
circuits to model a simple neural network. In the following decades, the topic
became progressively more popular, with the first simple perceptron model
appearing around the 1960s as a result of studies conducted by Frank Rosen-
blatt and his research group [38]. Soon after, researchers realized the potential
of using multi-layer perceptrons, and finally, in 1974, Paul Werbos published a
dissertation [39] describing an efficient algorithm for determining the synaptic
connection strengths known as the error backpropagation.

Nowadays, ANNs form the basis of countless academic and commercial
applications. We use them to make predictions, recognize patterns, and solve
all kinds of problems where other approaches fail to deliver satisfactory results.

2.6.1 Single-layer Perceptron

The single-layer perceptron is the simplest form of an ANN. As shown in
Figure 2.6, it consists only of one layer of connections, where the inputs are
directly fed into the output layer, which contains a single artificial neuron.
The activation of the output neuron is determined by a non-linear activation
function f , which takes the argument ξ, also known as the inner potential.
Denoting the inputs of the model as x = (x1, . . . , xn)T and the weights of
their corresponding connections to the output neuron as w = (w1, . . . , wn)T ,
we can calculate the value of the neuron’s inner potential as

ξ = w0 +
n∑
i=1

wixi = wTx+ w0 ,

where w0 is a so-called bias that enables the network to fit the data more
accurately by allowing for a linear shift of the inner potential [18]. We acquire
the perceptron’s prediction by applying the activation function to the value
of the inner potential as follows

19

2. Machine Learning

Ŷ = f(ξ) = f
(
wTx+ w0

)
.

In the case of a single-layer perceptron, the activation function is a step func-
tion defined as

f(ξ) =
{

1 for ξ ≥ 0,
0 for ξ < 0.

While the single-layer perceptron is capable of performing binary classification
tasks, its limitation comes when dealing with data that is not linearly separa-
ble. An example of such a problem is implementing an XOR function. [40]

1

x1

x2

xn

w0

w1

w2

wn

ξ = w0 +
n∑
i=1

wixi f(ξ) Ŷ

Inputs Weights Inner potential Activation
function

Output

Figure 2.6: Architecture of the single-layer perceptron.

2.6.2 Multi-layer Perceptron

The multi-layer perceptron (MLP) is an extension of the single-layer percep-
tron that introduces an architecture with additional hidden layers between
the inputs and the outputs. The layers are interconnected in such a manner
that the outputs of one layer, along with a specific bias term, form the inputs
to the next layer in line. As was the case with single-layer perceptrons, the
output of a neuron is acquired by applying an activation function f to its
weighted inputs. To obtain the whole network’s output, we must compute the
output of each neuron in each of the layers.

For our purposes, let l be the number of layers in the network and let each
layer have an arbitrary number of neurons expressed by numbers n1, . . . , nl.
The number of neurons in a layer is often referred to as its width. We further
consider n0 to be the width of the inputs. With this information, we can
model the output of j-th neuron in the i-th layer as function g(i)

j : Rni−1 → R,
where

20

2.6. Artificial Neural Networks

g
(i)
j = f

(
w

(i)
0,j +

ni−1∑
k=1

w
(i)
k,j g

(i−1)
k

)
for i = 2, 3, . . . , l ,

and w
(i)
k,j is the weight between the j-th neuron in the i-th layer and the k-th

neuron in the previous layer that acts as its input. The neuron’s bias term
is w(i)

0,j . As the first layer in the network does not receive its inputs from a
previous hidden layer but rather directly from the inputs, we consider this a
special case where

g
(1)
j = f

(
w

(1)
0,j +

n0∑
k=1

w
(1)
k,j xk

)
.

Since the neurons within one layer cooperate to form inputs for the following
layer, we can denote their collective output as a multivariable function, as
proposed by [41]. In consideration of the foregoing, the i-th layer of the
network can be described by function g(i) : Rni−1 → Rni , where

g(i) =

g

(i)
1

g
(i)
2
...
g

(i)
ni

 =

f
(
w

(i)
0,1 +∑ni−1

k=1 w
(i)
k,1 g

(i−1)
k

)
f
(
w

(i)
0,2 +∑ni−1

k=1 w
(i)
k,2 g

(i−1)
k

)
...

f
(
w

(i)
0,ni

+∑ni−1
k=1 w

(i)
k,ni

g
(i−1)
k

)

for i = 2, 3, . . . , l ,

and the first layer is modelled analogously with the exception of processing
direct inputs x rather than outputs from previous layers.

The most common MLPs are fully-connected feedforward networks, where
the information passes through the network in a forward direction and the
directed graph created by the connections between the neurons is acyclic [42].
The individual functions of the layers are chained together, creating a com-
position of functions

g = g(l) ◦ g(l−1) ◦ · · · ◦ g(2) ◦ g(1) .

For l = 3, the network’s function would be

g(x) = g(3)(g(2)(g(1)(x))) ,

where x are the inputs, g(1) and g(2) are the so-called hidden layers and g(3)

is the output layer [18]. An example of such an architecture can be seen in
Figure 2.7, where both hidden layers have a width of 5 and the output layer
has 3 neurons. The length of this chain of layers determines the model’s depth,
which is where the term deep learning originates from.

21

2. Machine Learning

1

x1

x2

xn0

1

g
(1)
1

g
(1)
2

g
(1)
3

g
(1)
4

g
(1)
5

w
(1)
0,1

w
(1)
n0,5

1

g
(2)
1

g
(2)
2

g
(2)
3

g
(2)
4

g
(2)
5

g
(3)
1

g
(3)
2

g
(3)
3

w
(3)
0,1

w
(3)
5,3

Layer width

Inputs Layer 1 Layer 2 Output layer

Figure 2.7: Example of a multi-layer perceptron with 3 layers.

2.6.3 Cost Function

As is the case with most machine learning models in supervised learning, the
goal of an artificial neural network is to approximate the function that maps
inputs in the training data to their labels as accurately as possible. To enable
the model to learn, we must first evaluate its performance. For this purpose,
we will use the cost function, which calculates the average loss across the
training set as

C(w) = 1
N

N∑
i=1

L(Yi, g(xi,w)) ,

where w are the internal parameters (weights) used in the ANN function g,
N is the number of samples in the training set, L is the cross-entropy loss
function previously defined in Section 2.2.4, and x are the inputs.

2.6.4 Backpropagation and Gradient Descent

The initial configuration of a neural network usually has randomly initialized
weights. Unsurprisingly, such a network will likely not be able to approximate

22

2.6. Artificial Neural Networks

the desired outputs very accurately. In training an ANN, our goal is to find
such a combination of weights that minimizes the cost function. We may
simplify this thought by taking a partial derivative ∂C

∂w
(i)
k,j

, which expresses

the effect of changing the weight w(i)
k,j on the overall cost value. We aim to

find this relationship for each weight and then iteratively update the weights
throughout the learning process in such a way that decreases the cost.

The vector of these partial derivatives of the cost function with respect to
each weight is called the gradient, and it is denoted as

∇wC =

 ∂C

∂w
(1)
0,1
,
∂C

∂w
(1)
0,2
, . . . ,

∂C

∂w
(l)
nl−1,nl−1

,
∂C

∂w
(l)
nl−1,nl

T .

A possible interpretation of the gradient vector is the direction and rate of the
fastest increase of function C [42]. The method used to calculate the gradient
is called backpropagation, and it uses the chain rule for finding derivatives of
composite functions.

Once we have the gradient, we can use the fact that it points in the direc-
tion of the steepest increase and go in the opposite direction to minimize the
cost function [43, 18]. The rate by which we step in the opposite direction is
called the learning rate, and it is a hyperparameter that affects how much the
weights get updated during every iteration of the learning process. Choosing
a learning rate that is too small may overly prolong the learning process, while
too large of a learning rate will cause unnecessarily large weight updates and
instability. We may also characterize the learning rate as having some kind
of a decay, which means its value gradually decreases over time. This is espe-
cially useful in cases where we want to start the learning process with larger
steps and decrease this step size as we approach the global optimum to make
for more precise weight updates.

This method of training ANNs is called the gradient descent, and it can
be summarized by the following steps:

1. Randomly initialize weights w.

2. Evaluate the cost function C(w) across the training data x.

3. Calculate the gradient ∇wC using backpropagation.

4. Update the weights as w ← w−α∇wC, where α is the specified learning
rate.

5. Repeat steps 2-4 until cost C(w) stops decreasing, or some other termi-
nation criteria are met. [18]

23

2. Machine Learning

When training deep neural networks with gradient descent, we may en-
counter several problems that negatively impact the model’s ability to learn.
One such obstacle is the vanishing gradient problem, which is characterized by
deep near-zero gradients with respect to parameters closer to the input layers.
It essentially means that early parameters have a minimal effect on the deeper
levels’ outputs, which leads to only minor weight updates and a potential in-
ability for the network to learn the parameters correctly. A significant factor
causing this problem is the choice of saturating activation functions [44, 45].
These functions map a wide range of input values onto a very narrow range
of outputs, meaning they often have small gradients, and the problem gets
increasingly worse as we propagate the gradients through multiple saturated
layers.

Contrastingly, we may also experience that as we propagate the gradient
backwards through the network, it grows exponentially and causes large weight
updates. We call this phenomenon the exploding gradient, and it may occur
when the derivatives of activation functions take on large values and gradually
get multiplied. [45]

2.6.5 Optimizers

The gradient descent method for optimizing ANN weights has many differ-
ent implementations that attempt to resolve some of its possible drawbacks,
such as vanishing and exploding gradients or getting trapped in local minima.
This section names a few relevant examples commonly used in training neural
networks for object detection in images.

2.6.5.1 Stochastic Gradient Descent

The standard gradient descent performs batch training, where the cost is cal-
culated across the whole training set. Since ANNs often require large amounts
of data, this may not always be feasible due to computational and storage
resource limitations. Stochastic gradient descent (SGD) aims to resolve this
issue by approximating the expected gradient. Using a smaller representative
sample of the training data called a mini-batch, it calculates the cost across
the mini-batch and performs gradient descent based on this estimate. As a
result, the model’s weights get updated more frequently, which may lead to
faster convergence. [44]

The hyperparameter determining the number of samples used for calculat-
ing the gradient is commonly referred to as the batch size, and in some cases,
only a single sample (batch size of 1) may be used. One cycle through the
complete training set is called an epoch.

SGD is often used in combination with the method of momentum, which
may accelerate convergence in some instances where the gradient has a consis-
tent direction but is otherwise small. The idea of momentum is to incorporate

24

2.6. Artificial Neural Networks

the previous updates in the current change by keeping an exponentially decay-
ing average of past negative gradients. We represent this as velocity v, which
is the direction and speed of the parameters’ movement through parameter
space. We also introduce the momentum parameter β ∈ [0; 1), which deter-
mines the exponential rate of decay for the past gradients. Having stated this
notation, we can describe the update to the velocity and the following weight
update as

v ← βv − α∇wC

w ← w + v .

The larger the momentum parameter is relative to the learning rate, the
greater influence the previous gradients have on the following weight up-
date. [46]

2.6.5.2 AdaGrad

AdaGrad is an optimizer that introduces the notion of having a vector of
learning rates for each trainable parameter. This allows for adapting the
learning rate automatically in different directions. The basic idea is that the
weight update is computed by scaling each parameter’s learning rate inversely
proportional to the square root of the cumulative sum of the squares of the
gradient’s previous magnitudes [46]. This means that parameters with large
partial derivatives will have their learning rate significantly decreased to allow
for the other parameters of sparser features to catch up.

Accumulating the squared gradients can often lead to an excessive decrease
of the learning rates, which means that the optimizer rapidly slows down and
often stops before reaching the global optimum [47].

2.6.5.3 RMSProp

The optimizer RMSProp attempts to improve upon the AdaGrad by altering
the gradient accumulation. It instead works with an exponentially decaying
moving average of the squares of past gradients, which may eliminate the prob-
lem of rapidly dropping learning rates [46]. Once again, the parameters that
have previously caused large oscillations in the estimate of the cost function
will be penalized within the current weight update. Another advantage of this
averaging approach is that new data points will not dramatically influence the
gradients [48].

2.6.5.4 Adam

Adam is one of the most widely used optimization algorithms in deep learn-
ing [46]. Its name is derived from adaptive moment estimation, and it com-
bines the ideas of having both momentum and adaptive learning rates. The

25

2. Machine Learning

momentum component takes the form of an exponentially decaying moving av-
erage of the gradient, or in other words, the estimate of the first-order moment
m (the mean of the gradient). On the other hand, the learning rate scaling
is accounted for by the exponentially decaying moving average of the squares
of the gradient, i.e., the estimate of the second-order moment u (uncentered
variance of the gradient). [46, 49]

Considering the aforementioned notation and that β1 and β2 mark the
exponential decay rates for m and u respectively, the moment estimates are
updated in each time step t as

mt ← β1mt−1 + (1− β1)∇wt−1C

ut ← β2ut−1 + (1− β2)
(
∇wt−1C

)2 .

However, the moment estimates are initialized as vectors of zeroes, which
means that they are biased towards zero [49] and have to be bias-corrected
thusly

m̂t ←
mt

1− βt1

ût ←
ut

1− βt2
.

Finally, we update the weight parameters as

wt ← wt−1 − α
m̂t√
ût + ε

,

where ε is a very small scalar to prevent division by zero.
A popular adaptation of the Adam algorithm is the Nadam, which uses

Nesterov’s accelerated gradient to modify the momentum component and try
to achieve faster convergence. It does so by stepping in the direction of the
previous accumulated gradients and measuring the gradient at the point where
it ends up, where it then makes a correction [50].

2.6.6 Activation Functions

Thus far, we have mentioned that single-layer perceptrons usually use a binary
step function as their activation function, but we have yet to address the
situation with MLPs. The first aspect to note is that the activation function
of an MPL must fulfil the requirement of being differentiable, or at least
differentiable in parts. This is due to the fact that the model’s learning process
involves calculating the gradient using partial derivatives. As was the case
with the step function used in single-layer perceptrons, the activation function
should be non-linear so as to expand the range of mapping functions that can

26

2.6. Artificial Neural Networks

be approximated. A wide range of activation functions may be utilized in
building a neural network, each with its own advantages and disadvantages.
Ultimately, the decision regarding which activation functions to use is a crucial
part of the hyperparameter optimization process.

The most frequently used activation function in the output layers is the
logistic sigmoid [51]. It transforms the input values to range from 0 to 1,
which makes it a good fit for binary classification where the result can be
represented as a probability. The logistic sigmoid may be defined as

f(ξ) = 1
1 + e−ξ = eξ

1 + eξ .

We interpret the result as the estimated probability of the given input be-
longing to the positive class, i.e., P̂(Y = 1|X = x). Aside from ANNs, the
logistic sigmoid is also a common tool in logistic regression. Due to it be-
ing a saturating function, it can potentially cause the problem of vanishing
gradients.

When dealing with multiclass classification, the outputs are generally trans-
formed by the softmax function. It is essentially a combination of multiple
sigmoids and it provides us with the probability of a given input belonging to
a specific class. The function’s definition for c classes can be expressed as

fi(ξ) = eξi∑c
k=1 eξk

for i = 1, . . . , c ,

where ξ = (ξ1, . . . , ξc)T is a vector of inner potentials of all c neurons in the
output layer and the value of the activation function fi(ξ) is interpreted as the
estimated probability of input x belonging to class i, i.e., P̂(Y = i|X = x).
The chosen prediction will be the class with the highest estimated probability
assigned to it. [18]

The sigmoid and softmax are very commonly found in the output layer,
however, the hidden layers tend to use other activation functions. One such
function is the hyperbolic tangent (tanh). It resembles the sigmoid, although
as shown in Figure 2.8, it has a steeper gradient and is symmetric around
the origin, which allows for variability in the signs of outputs from previous
layers. The transformed range is from -1 to 1, meaning that layers with this
activation function are susceptible to saturation. The function is defined as

f(ξ) = tanh(ξ) = eξ − e−ξ
eξ + e−ξ .

27

2. Machine Learning

The last noteworthy activation function is the so-called rectified linear unit
(ReLU). It is currently the most widely-used activation function due to its
efficiency and observed success [52]. It is simple to compute, as its standard
definition is

f(ξ) = max(0, ξ) =
{
ξ for ξ ≥ 0,
0 for ξ < 0.

Furthermore, this definition implies that the function is not saturated in its
positive direction, and the model is more resistant to the vanishing gradients
problem. However, the ReLU does allow for exploding gradients, which could
potentially lead to severe instability.

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0
Binary Step

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0
Logistic Sigmoid

4 2 0 2 4
1.0

0.5

0.0

0.5

1.0
Hyperbolic
Tangent

4 2 0 2 4

0

1

2

3

4

5
Parametrized ReLU
(alpha=0.1)

Leaky ReLU
(alpha=0.01)

Figure 2.8: Transformations of inner potentials into neuron activations by
frequently used activation functions.

Another issue is the so-called dying ReLU problem, which relates to hav-
ing the same output of 0 for all negative values of the inner potential. This
means that the gradient will be zero and the neuron will no longer be able
to update its weights during backpropagation [51]. To resolve this nega-
tive occurrence, we may use an improvised version of the function called
the Parametrized ReLU, which introduces the parameter α for the slope of
the negative part of the function. The function definition therefore changes
accordingly to

f(ξ) = max(0, ξ) =
{
ξ for ξ ≥ 0,
αξ for ξ < 0.

The slope α may be set to be trainable, in which case the optimization algo-
rithm considers it one of the learning parameters [51]. The alternative is to

28

2.6. Artificial Neural Networks

set the value of α as a hyperparameter before training begins. A common pre-
determined value for α is 0.01. We call this particular case the Leaky ReLU.

2.6.7 Convolutional Neural Networks

One of the most prominent deep multi-layer perceptron architectures of the
last decade is the convolutional neural network (CNN). It is a network specif-
ically designed to process data that comes in the form of multiple arrays,
for example, colour images composed of 2D arrays of pixels for each of the
three colour channels. The CNNs have found many use cases in the fields of
image classification, pattern recognition, segmentation, or natural language
processing [53].

The architecture is designed to automatically learn spatial hierarchies of
features within the grids of data, starting from low-level generic patterns in the
first layers to the complex patterns and details in the deeper layers [54]. An
example of this may be finding lines and edges and gradually combining them
to detect faces. The key aspect is that this detection and pattern recognition
must be shift-invariant, meaning that the outputs should not be dependent
on the exact location of the objects within the image. The advantage of
extracting features using the CNN architecture as opposed to classic ANNs
is the reduction of parameters and network complexity. An image contains
massive amounts of information, and without its proper preprocessing and
spatial analysis, it is difficult to train the network efficiently and effectively.

CNNs generally consist of several building blocks, which are the convolu-
tional layers, pooling layers, and fully connected layers. The typical approach
is to stack several convolutional and pooling layers, which perform feature
extraction and dimensionality reduction, and then the feature maps get fed
into the fully connected layers, which map them to the final outputs of the
network.

2.6.7.1 Convolution

The critical component of each convolutional layer is the mathematical op-
eration of linear convolution. Within the context of CNNs, convolution is
performed on the input data (the image) with the use of a smaller array of
weights called the kernel. A collection of kernels stacked in multiple dimen-
sions for inputs with more than one channel is called a filter. The kernel
moves across the width and height of the image, and the dot product of the
kernel and the part of the image within the area covered by the kernel is cal-
culated. As we convolve the image with the kernel, we produce an activation
map that gives the responses of that kernel at each spatial position within the
image [55]. We call this the feature map and the network gradually learns fil-
ters that activate when they come across specific visual features such as edges
or corners, and eventually whole objects. Sharing the kernel weights across

29

2. Machine Learning

all image positions has the advantage of letting the local feature extraction
be shift-invariant as well as reducing the overall number of trainable parame-
ters and therefore increasing the model efficiency [56]. The calculation of the
feature map is demonstrated in Figure 2.9.

A neuron in the convolutional layer has local connectivity to only a specific
part of the input image. The size of this region, often called the receptive field,
is given by the size of the kernel. This is one of the hyperparameters that we
set for each convolutional layer. Other hyperparameters include the number
of filters in the layer, or the stride, which represents the distance the kernels
move across the image in each step of convolution. The bigger the stride, the
smaller the produced feature maps.

Since convolution shrinks the original image, we may consider padding the
image in places where the kernel reaches out of bounds. Some of the common
strategies used are zero-padding, where the outer border of the image is filled
with zeroes, or simply using the value of the closest pixel with a defined value.
This prevents the image size from shrinking, but it may cause problems since
we are artificially adding information that was not present before. [56]

Figure 2.9: Illustration of a feautre map created by convolving a 3× 3 kernel
across a zero-padded 5× 5 input image with a stride of 1 [56].

2.6.7.2 Pooling

The idea behind pooling is to down-sample the feature map and reduce com-
plexity for the following layers. The dimensionality reduction is done by di-

30

2.6. Artificial Neural Networks

viding the feature map into rectangular subregions of predetermined size and
summarizing those regions by single values. One of the most common ap-
proaches is max-pooling, where the return value is the maximum of the inside
of the subregion. It is useful for the extraction of dominant features like edges.
Alternatively, we may use average-pooling where the subregion is character-
ized by its average. This method has a smoothening effect on the features
but maintains their representation in the further layers, while max-pooling
preserves only the most extreme features.

Pooling also helps to maintain invariance towards translational shifts by
collecting the features across the whole image. Pooling layers have no trainable
parameters, and they have similar hyperparameters as convolutional layers in
terms of kernel (subregion) size and strides. [54]

A special pooling operation is global average pooling which is an extreme
kind of down-sampling, where each feature map gets reduced to its average.
The output vector of these feature averages is then fed into the dense fully-
connected layers, which act as the classifier.

Figure 2.10: Illustration of down-sampling a single dimension of a feature map
using the max-pooling method with kernel size of 2× 2 and stride of 2 [55].

2.6.8 Regularization

Due to the substantial number of parameters in ANN models, it is often very
problematic to prevent overfitting. The most straightforward way to tackle
this issue is by reducing the model complexity. We may optimize those hy-
perparameters that affect the complexity and number of parameters in the
model to find a balance between fitting the data well and retaining its ability
to generalize. The problem is that reducing the capacity often causes un-
derfitting and lowers the performance on the training set as well. The goal

31

2. Machine Learning

of regularization is to reduce the variance of the model without significantly
increasing its bias [57].

2.6.8.1 Data Augmentation

ANNs are among those machine learning models that generally require a lot
of training data. Unfortunately, there are domains where gathering new data
may not always be an option, or there is a limited flow of new data. This
is often the case with datasets for training CNNs. One of the most common
techniques used to enhance image datasets for training CNNs is data aug-
mentation. By transforming and adjusting the data we have within certain
bounds, we can increase the training set size without too much additional
effort. These augmentations usually include affine transformations such as
horizontal and vertical shifts, scaling, rotation, shearing, and others such as
image mirroring, zooming or random intensity adjustments [58]. It is crucial
that the altered images remain realistic to their specific domain. Increasing
and diversifying the training set in such a way gives the network a better
opportunity to learn more generic patterns rather than focusing on the few
original samples and their exact structure.

2.6.8.2 L1 and L2 Regularization

The L1 and L2 regularizations are methods that put constraints on the op-
timization algorithm when minimizing the model’s cost function. The con-
straint is in penalizing the weights in hopes of simplifying the model. L1
regularization does this by adding a regularization term in the form of the
sum of absolute values of the weights to the cost function. This has the ef-
fect of feature selection, as features found to be not as important tend to be
given zero weight, and the model is therefore simplified [57]. Previously, we
have indexed each weight according to which neurons in which layers they
connect. In this example, we will simplify the notation by having a vector
w = (w1, . . . , wm) of all m weights in the whole network. This enables us to
define the L1-regularized cost function CL1 as

CL1(w) = 1
N

N∑
i=1

L(Yi, g(xi,w)) + λ

N

m∑
j=1
|wj | ,

where λ is the regularization parameter directly proportional to the applied
penalty [57]. The situation is slightly different with L2 regularization. Here,
the regularization term is added to reduce the sum of the squares of the
weights. This form of regularization is sometimes referred to as weight decay,
as its effect is not driving the weights to zero values, but rather reducing them
by a factor proportional to their magnitude at every iteration of the gradient
descent [26, 57]. The L2-regularized cost function may be expressed as

32

2.6. Artificial Neural Networks

CL2(w) = 1
N

N∑
i=1

L(Yi, g(xi,w)) + λ

2N

m∑
j=1

w2
j .

2.6.8.3 Dropout

Dropout is another approach to addressing the problem of overfitting the
training data. Its basic principle lies in randomly deactivating neurons along
with their connections during each update of the training phase. This reduces
the neurons’ co-adaptation and makes the network more robust. If we consider
a network with n neurons where each of them has a certain probability of being
randomly deactivated, then dropout is essentially sampling a thinned network
from the collection of all 2n possible thinned networks. Training a set of
thinned networks with extensive weight sharing has been shown to produce
optimistic results in terms of improving the generalization of ANNs. [59]

2.6.8.4 Early Stopping

We often encounter a situation where the training loss keeps steadily decreas-
ing over the whole span of the training, but the validation loss first decreases
and then starts to return to undesirable values. At that point, the model
is likely finding ways to overfit the training data, and it loses its predictive
ability on the validation set. Early stopping is a technique used to address
this issue and determine the point at which the validation loss converges to its
minimum. This is achieved by saving the trained weights after each epoch and
monitoring a particular evaluation metric, such as the validation loss. If the
loss has not been improving for a given number of epochs, early stopping ter-
minates the training and reverts the model to the point where it last achieved
its best validation loss. The number of epochs it waits before stopping is often
called the patience.

33

Chapter 3
Analysis

In this chapter, we will analyze the current state-of-the-art approaches to
acquiring automated diagnoses based on medical images. We will introduce
some of the standard methods of preparing data and dealing with medical
datasets, as well as the problems that they are burdened with. Finally, we
will present some of the existing work in performing COVID-19 detection with
CNNs trained on CXR images.

3.1 Medical Imaging

Medical imaging has been an integral part of diagnosing and treating pa-
tients for many decades. It is a non-invasive form of getting insight into the
structure of the inside of the body. Specifically, CXR imaging can be a very
useful diagnostic tool in detecting abnormalities in the chest cavity. It has
been successfully applied to diagnosing various conditions such as pneumonia,
tuberculosis, cancer, and other pulmonary diseases [7].

As analyzing the chest radiographs may often be tedious work, researchers
have been proposing many concepts of computer-aided diagnosis (CAD) sys-
tems since the 1960s [60]. The goal was not only to simplify and expedite
the process of diagnosis but also expand its reach to areas with a lack of
radiological expertise. The CAD systems based their feature extraction on
traditional image processing techniques, such as comparing subregions of the
images, texture analysis, histograms of gradients, intensity moments, or edge
and shape detection [61, 62, 63]. The features would then be handed over
as inputs to more traditional machine learning models such as support vector
machines or random forest classifiers. These methods generally require a pre-
cise image preprocessing pipeline, where several algorithms are stacked on top
of each other. Such a design is prone to instability if any of its components
fail to deliver decent results. Such a failure is not out of the ordinary, as it is
challenging to secure the same conditions in each of the testing facilities, and

35

3. Analysis

the algorithms would often require different settings and threshold values to
perform well.

In recent years, new advances made in the field of deep learning and com-
puter vision have allowed us to employ convolutional neural network models
to act as automated diagnostic tools that aid medical professionals. One of
their main advantages is their lesser need for complex image preprocessing
and the fact that they are generally able to localize important features with
shift-invariance [56]. Due to extensive weight sharing in the convolutional
layers and consequent parameter reduction, CNNs perform these tasks more
efficiently than traditional neural networks. A significant drawback is their
tendency to overfit and their large training data requirements, which tend to
be difficult to fulfil, especially in the medical domain. Nevertheless, their abil-
ity to perform unsupervised feature extraction and subsequent classification
has been rigorously assessed in tasks such as diabetic retinopathy screening
[64], skin lesion classification [65], lymph node metastasis detection [66], and
pneumonia detection, where the performance of the proposed model even ex-
ceeded practising radiologists [67].

Given that some cases of COVID-19 may manifest themselves as a kind
of pneumonia in the infected patients, we are presented with the opportunity
of using CNNs for detecting the disease in chest radiographs of the patients’
lungs. Performing the diagnosis with this technique could offer the medi-
cal professionals a faster and cheaper solution than the molecular RT-PCR
alternative [68].

3.2 Preprocessing Methods

As was already mentioned, CNNs generally require a less precise and extensive
preprocessing pipeline. Nonetheless, there are certain adjustments that we
may experiment with to try and make the process of extracting information
from the images more reliable.

3.2.1 Image Resizing

One form of altering the images that must be performed in most practical
scenarios is image resizing. The architecture of CNNs does not allow for
processing variable sized images; the input shape of the first layer has to be
specified and fixated before the model is compiled. The reason for that is
that the input shape affects all subsequent layers’ width and output size and
cannot be changed during training.

Considering that open datasets of medical images rarely come in the same
dimensions, it is common practice to resize all images to a fixed width and
height, which is specified by the smallest image in the training data. Unfor-
tunately, this results in a loss of precious information and down-sizing the

36

3.2. Preprocessing Methods

images too much could end up removing the necessary features needed to dis-
criminate between the classes. A possible solution to this problem could be
detecting the main region of interest within the image and cropping the rest
of the pixels so that only the useful section remains [69].

A second option for resizing images would be to pad the images to match
the dimensions of the largest one. However, we must decide what kind of
padding to use and whether artificially adding new information may have
a negative impact on the training of the model. Enlarging the images also
increases the number of parameters and significantly slows down the training.

3.2.2 Data Transformation

Transforming the pixel values in the images may sometimes lead to faster
convergence and better accuracy [70]. One of the commonly used methods for
transforming images that form inputs of CNNs is data normalization. This is
the process of adjusting the values to a common scale, and one of the most
straightforward approaches is min-max feature normalization to the interval
[0; 1]. If we assume that x is a pixel with one dimension per each colour
channel, the formula for calculating the normalized value x′i of its original
intensity xi in the channel i is

x′i = xi −minxi

maxxi −minxi

,

where minxi and maxxi are the minimal and maximal pixel intensities of
the channel i across all pixels x in the training data [22]. We often use the
maximum value of 255 and the minimum of 0 on 8-bits-per-channel images,
which means that rescaling the images to the desired range can be achieved
by dividing each pixel value by 255.

Another form of transforming the data may be centering, where we sub-
tract the mean of the specific feature (colour channel) of the training data.
This has the effect of centering the brightness around 0 with respect to each
dimension. The calculation of the new pixel intensity x′i in the channel i given
that x̄i is the sample mean of the corresponding colour channel across all
pixels in the training data is as follows

x′i = xi − x̄i .

Standardization extends the image centering further and also divides the
values by the standard deviation along each dimension. Standardizing the
channels in this fashion ensures a mean of 0 and a variance of 1. Having com-
parable data with a similar distribution is helpful in cases where we want the
learning rate to have proportional influence in all regions of the convolution,
where there is extensive weight sharing. This transformation can be denoted
as

37

3. Analysis

x′i = xi − x̄i
si

,

where si is a vector of the channel’s sample standard deviation across all pixels
in the training data. [70, 71]

The modern approach to standardization is incorporating it into the ar-
chitecture of the network itself. During the training, the distribution of each
layer’s inputs changes, which slows down the learning process. We refer to this
phenomenon as the internal covariate shift, and we counteract it by adding
a batch normalization layer, which standardizes the outputs of the previous
layer with regards to the current mini-batch. Not only does this accelerate
the convergence and allow us to use larger learning rates, but it has also been
shown to lower the need for using dropout; i.e., it acts as a form of regular-
ization. [72]

Transforming and scaling image values is not always guaranteed to improve
the final results, but it is a common step that several preprocessing pipelines
implement when working with X-ray images and it has been shown to yield
good results [67, 73, 56].

3.2.3 Noise Reduction

Noisy images are a frequent issue throughout all of computer vision, as any
type of sensor also detects noise caused by uncontrollable variables. X-ray
detectors are no exception; some of the causes of noise, in this case, are the
randomness of the quantum characteristics of the X-ray photons, photon colli-
sions, or the false signal caused by re-emission of X-rays absorbed in different
parts of the patient’s body [74].

Before training CNN models, it is a common practice to denoise the images
first. One of the ways this can be accomplished is by convolving the image
with a Gaussian filter, which has a slight blurring effect. The kernel replaces
its central pixel with the weighted average of its surroundings. The weights of
the pixels closer to the centre are larger than those farther away. An example
of a blurring filter of size 3× 3 may be seen in Figure 3.1.

1
16

2
16

1
16

2
16

4
16

2
16

1
16

2
16

1
16

Figure 3.1: A 3 × 3 Gaussian filter used to blurr images when applied by
convolution.

38

3.2. Preprocessing Methods

The issue with the Gaussian filter is that it also smooths edges and that
may be undesirable when detecting abnormalities and disease characteristics in
X-ray images. Hence, we can use the so-called median filter, which replaces the
central pixel with the median of its surroundings. This is especially effective
on salt and pepper noise, where random pixels are either saturated to the value
of 255 or deactivated on 0. The median filter generally preserves edges, but it
may also create new artificial edges, which could add features that resemble
image abnormalities, and the model may be trained on incorrect data. [75]

The bilateral filter is a method used to smooth the images while also pre-
serving their edges. Similarly to the Gaussian, it is defined as the weighted
average of its pixel neighbourhood, but it considers two parameters. These
signify the amount of filtering applied to the image; one represents the spatial
distance from the central position and the other the difference of the intensity
values of the weighted pixel and the central pixel. The rationale of bilateral
filtering is that two pixels are close to each other not only if they occupy
nearby spatial locations but also if they have similarity in their respective in-
tensities. Pixels that are farther away and have very different intensity values
will have a lower weight in the averaging operation. Edges are characterized
by having significantly different values than their neighbourhood which means
that during bilateral filtering, they are affected much less than by the typical
Gaussian blur. [76]

3.2.4 Histogram Equalization

Since features extracted by the convolutional kernels are generally derived
from varying pixel intensities within a certain region of the image, having a
high contrast can often be beneficial to our cause. Histogram equalization is a
technique used to enhance the global contrast of an image. A histogram holds
the information about the distribution of pixel intensities in a grayscale image.
Each intensity value is assigned a number according to the frequency of the
occurrence of that value among all the pixels. The algorithm then proceeds
to spread out the most frequent values towards the extremes in a way that
approximates a uniform distribution, thus enhancing the overall contrast. [78]

X-ray images tend to be acquired through continuous exposure, which
requires the exposure to be administered at a low-level, meaning that the
resulting contrast is also quite low [79]. It may be difficult to tell apart the
denser bone structures from the background, and it ultimately makes the
learning process difficult for CNNs. For that reason, many image preprocessing
pipelines of classification and segmentation tasks in the X-ray domain use some
form of histogram equalization [78, 79, 77].

One significant drawback of this technique is that it also increases the con-
trast of the noise in the image. As we have mentioned before, noisy images are
a common occurrence and highlighting the noise may negatively impact the
performance of the model. A popular solution to combat this issue in the med-

39

3. Analysis

Figure 3.2: Comparison of techniques used to denoise images from the
COVIDx dataset [77]. On the upper left is the original CXR image, then
to its right follows the image after being blurred with a Gaussian filter, the
bottom left is the result after applying the median filter and on the bottom
right is the bilateral filtering method. All filters use a 17×17 filer size in order
to highlight their effects for the purpose of this demonstration.

ical imaging domain is the contrast limited adaptive histogram equalization
(CLAHE). The method is based on dividing the image into non-overlapping
regions of almost equal sizes and calculating each individual region’s his-
togram. We also specify a parameter called the clip limit, which limits the
number of pixels with the same intensity during their redistribution and thus
mitigates the noise amplification. Each region’s histogram is then equalized
in a way where its height cannot go beyond the clip limit. The equalized
value of a pixel in the modified image is finally acquired by linearly combining
the results from the mappings of its four nearest regions. The combination
of the mappings is based on the distances of the pixel from the centres of
those nearest regions. The resulting image frequently contains clearer borders
between the objects it depicts, and the sought-after features tend to be more
distinguishable. [79]

40

3.2. Preprocessing Methods

3.2.5 Image Segmentation

Image segmentation is the process of classifying and partitioning objects cap-
tured in images. It works by assigning class labels to each pixel and finding
larger areas of pixels that belong to the same class. The goal is typically to
help analyze the image or locate certain objects. This can be very useful in
medical imaging, where we often want to concentrate on a specific part of the
body, such as an organ. When detecting COVID-19, we may find it helpful to
locate the lungs within CXR images, as that is the area that will be affected
by the disease. Not only will this enable us to crop the image to this region of
interest and reduce the dimensionality, but it can also filter out unnecessary
parts of the image that would otherwise interfere with and complicate the
learning process.

The current state-of-the-art image segmentation pipelines are usually built
with CNNs. The architectures for object detection generally include two parts
— bounding box proposals and semantic segmentation [80]. The purpose
of bounding boxes is to locate the object by enclosing it with a rectangu-
lar border, and semantic segmentation defines the specific area and shape of
the object by assigning class labels to each pixel. The issue with this deep
learning approach is that it requires manually labelling the images by adding
bounding boxes and marking the regions of interest, which is a tedious and
time-consuming process. That is part of the reason why there is a lack of
high-grade datasets for medical segmentation tasks. In spite of that, this area
of image preprocessing has given rise to several well-established CNN archi-
tectures such as the U-Net [81], or the Mask R-CNN [82].

The alternative approach that was more common in the early days of
CAD systems was using traditional rule-based segmentation techniques such
as thresholding, edge detection, region growing, and morphological opera-
tions [80]. These methods are mostly heuristic and not very robust, which is
why they are gradually being replaced in the deep learning era. Nonetheless,
they offer interesting insights into image segmentation and are certainly less
computationally expensive and data-hungry.

3.2.6 Preprocessing Pipeline for COVID-19 Detection

Since deep learning segmentation is often an expensive task on its own, it is
common to use some of the more traditional approaches when preprocessing
images for the task of detection with CNNs. In the case of COVID-19 detec-
tion, [83] proposes a preprocessing pipeline that smooths and equalizes the
images and also uses thresholding to segment the region of interest, i.e. the
lungs. The core idea is that the parts of the image with the highest intensity
tend to be less informative and could interfere with the regions that hold valu-
able information. A dominant feature in the CXR images that the method
detects and removes is the diaphragm.

41

3. Analysis

Figure 3.3: A flow diagram that illustrates a suggested image preprocessing
pipeline for COVID-19 detection. The original image is segmented in a way
that removes the high-intensity diaphragm region, a copy of it is denoised
with the bilateral filter, and another copy’s contrast is adjusted with histogram
equalization. The three images are then combined to form a final pseudocolour
image that can be used as an input to CNN models [83].

The algorithm starts by converting the RGB image into a single-channel
grayscale version. Then it finds the highest pixel intensity value in the im-
age Vmax and the lowest value Vmin, and uses them to calculate a threshold
value T = Vmin + 0.9× (Vmax− Vmin). The threshold is then used to perform
binary segmentation, which transforms the data so that any pixel values un-
der the threshold are clipped to value 0, and any values equal to or greater
than the threshold are saturated to 255. This marks several high-intensity re-
gions, and we must then select the largest one, which should correspond to the
diaphragm, fill in the holes in the binary mask and delete the other smaller re-
gions. The authors also suggest using morphological operators to smooth the
boundaries of the marked region. The detected diaphragm is then mapped to
the original image, and we remove the overlapping pixels in the corresponding
location on the original image. At this point, we are left with the segmented
image without its largest region of high intensity, which should hopefully ac-
complish the removal of the diaphragm. In the following step, the algorithm
passes a copy of the segmented image through a bilateral filter, which acts as
a denoising mechanism that manages to preserve textural information. The
original segmented image is copied once more, and histogram equalization is
applied to compensate for the differences in image contrast and brightness
caused by the variations in X-ray exposure. The equalization enhances lung
tissue patterns that may be associated with the COVID-19 infection.

42

3.2. Preprocessing Methods

The final step of the algorithm takes the three modified images (the seg-
mented, denoised, and equalized) and merges them into a three-channel pseu-
docolour image, which is ready to be fed into the training algorithm for the
CNN. The process is demonstrated in Figure 3.3. [83]

3.2.7 Dimensionality Reduction

Many machine learning models are inflicted with a phenomenon called the
curse of dimensionality. It refers to a set of problems that often arise when
dealing with data in high-dimensional spaces. The volume of such spaces
is typically very large, which makes the data points sparsely laid out. In
such cases, the training data could be a non-representative sample of the
whole space, making it more difficult to understand or capture its distri-
bution. To combat this issue, there are several techniques of reducing the
number of features that characterize the input data. We call this process
the dimensionality reduction, and it aims to simplify the feature space while
retaining the key properties of the original data.

A recently proposed approach to dimensionality reduction is the Uniform
Manifold Approximation and Projection (UMAP). In its core, UMAP con-
structs a high-dimensional representation of the data and then optimizes a
lower-dimensional representation to be as structurally similar as possible.
A key parameter used by the algorithm is the number of neighbours, which
is the number of nearby data points used to capture local structure within
different parts of the space. Using a lower neighbour count prioritizes lo-
cal structures and finer details, while larger counts focus more on the global
structure of the data. Another important metric is the minimal distance,
which limits how closely packed together the projected points in the lower-
dimensional representation may be. Lower values result in the formation of
clusters, which may be useful in analyzing closely related data points. The
measure of distance is also a parameter that may be specified; a common
metric is the Euclidean distance. [84]

The UMAP is not only useful for preprocessing data for machine learning
algorithms but also for projecting the data to lower-dimensional spaces, which
are easier to visualize and subsequently analyze. Another popular dimension-
ality reduction technique used for visualizations is the t-Distributed Stochas-
tic Neighbour Embedding (t-SNE). However, the UMAP has been found to
achieve superior run time performance and preservation of the global structure
of the original feature space [84].

43

3. Analysis

3.3 Imbalanced Datasets

Naturally, medical datasets tend to suffer from class imbalance. The pub-
licly available COVID-19 datasets are no exception, as the number of positive
images is usually heavily outweighed by those that are negative or show symp-
toms of other pulmonary diseases [85]. Another form of imbalance is in the
nature of the disease manifestation itself. The features that signify the pres-
ence of COVID-19 only cover a very small fraction of the overall image, so
the semantic interpretation of the pixel labels within a positive image is still
underrepresented. These factors can cause serious problems when training
CNNs, so it is good practice to try to address the issue.

3.3.1 Cost Sensitive Learning

When training the classifier, we may employ the use of cost sensitive learning
to adjust the importance of each class. This method assigns different costs
to the misclassification of samples from different classes, which weakens the
impact of class imbalance [86]. We can achieve this during training by mod-
ifying the loss function with different error penalties for each class, or more
commonly, by introducing class weights that are inversely proportional to the
prevalence of the classes in the training data [86]. The calculation of the
weight wi of class i is commonly defined as

wi = N

c× ni
,

where N is the total number of samples in the training data, c is the number
of distinct classes, and ni is the number of samples belonging to class i [87].

In addition to counteracting an imbalanced dataset, the usage of class
weights may also have a deeper meaning, especially in the context of medical
imaging and the detection of COVID-19. Higher penalization of the misclas-
sification of COVID-19 positive images is analogous to the concept that it is
worse not to detect the disease in a patient that has it, rather than to wrongly
classify a healthy patient as ill. Admittedly, if a medical professional tells a
healthy patient that they have COVID-19, it may cause them unnecessary
stress and other problems, but it is undoubtedly worse to leave the disease
undetected and therefore untreated in patients that truly have it.

3.3.2 Undersampling

One data level solution to balancing the occurrence of the class labels in
the training data itself is undersampling. Samples from the majority class
are randomly removed until both classes have the same number of individual
images. The major disadvantage of this approach is that it inevitably discards
a portion of the available data, which is usually not a recommended step

44

3.3. Imbalanced Datasets

in data-hungry methods such as deep learning. A somewhat more tolerable
alternative is being more deliberate with the removal of the majority class and
attempting to remove images that are less valuable in some sense. These can
be noisy images or images close to the boundary between the classes, where
it is difficult to classify them with certainty. [88]

3.3.3 Oversampling

Another technique that takes the opposite approach to solving class imbalance
is oversampling. Its most basic form is based on randomly sampling examples
from the minority class and re-adding them into the training data. This
ensures that the minority class is equally represented and the network is given
a higher chance of learning the necessary features. Oversampling has been
shown to be effective; however, since there is severe duplication in the data,
it is quite susceptible to overfitting. [88, 85]

3.3.4 Data Augmentation and Synthetic Data Generation

In hopes of reducing the likelihood of overfitting, we may perform data aug-
mentation as described in Section 2.6.8.1. One way of doing so is performing
oversampling where the re-added images are not exact duplicates but rather
augmented versions of images already present in the training data. Not only
does this balance the classes, but it also introduces more variation in the train-
ing data, meaning that the model has a better chance to learn to generalize.
Another approach could be to perform online data augmentation during the
training. In this case, the generated mini-batches have a certain chance of be-
ing augmented before they are fed into the network, which reduces the risk of
the weights being adjusted exactly according to specific inputs. When dealing
with medical images, it is recommended that simple data augmentation tech-
niques such as flipping or rotation are applied so as not to damage or remove
the information, which is often quite subtle [86]. While data augmentation
does provide more diversity, it is not able to introduce new features that are
not already present in the training set.

3.3.4.1 Generative Adversarial Networks

In machine learning, we differentiate between two basic types of models: dis-
criminative and generative. The discriminative models’ goal is to learn the
boundaries between the classes in the data, while the generative models at-
tempt to capture the actual distribution of the data in an unsupervised man-
ner [89]. Knowing the distribution can be very useful, as we can sample from
the distribution, thereby creating a synthetic data point. In tasks concerning
medical imaging, we could generate synthetic images of the underrepresented
class and use them to balance the data and mitigate overfitting without the
need for gathering new real-life samples.

45

3. Analysis

In 2014, Ian J. Goodfellow and his colleagues introduced the generative
adversarial network (GAN) architecture for generating synthetic data [89].
The idea behind it has roots in game theory, where the training corresponds
to a two-player min-max game between two networks — the discriminator D
and the generator G. The goal of the generator is to approximate the distri-
bution of the training data pdata and output artificial data points from that
distribution, while the discriminator learns to distinguish between real data
from the training set and synthetic data generated by G. The generator never
sees the actual training data; its inputs are samples z from a noise distribu-
tion pz. Considering the notation above and that D(x) is interpreted as the
discriminator’s estimate of the probability that the real sample x is, in fact,
real and D(G(z)) is its estimate of the probability that a synthetic sample is
real, Goodfellow defines the min-max GAN loss function as

L(D,G) = Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log(1−D(G(z)))] ,

where Ex∼pdata(x) is the expected value over all real data instances x following
the training data distribution, and Ez∼pz(z) is the expected value over all
random inputs z to the generator, which follow the noise distribution. The
learning process, or the game, is defined by the generator’s effort to minimize
the loss function while the discriminator is attempting to maximize it. We
can express this as

min
G

max
D

L(D,G) ,

which represents the generator’s tendency to trick the discriminator and in-
crease the probability of its estimates that a generated sample is real, while
the discriminator tries to lower this probability and simultaneously maximize
the probability of recognizing actual real samples. [89]

The original architecture of GANs uses fully-connected layers, but with the
evolution of CNNs, some of the layers were replaced by convolutional layers
and such design is referred to as the deep convolutional generative adversarial
network (DCGAN) [90]. GANs remain a very active area of research, where
improvements are still to be made. Learning of the models may sometimes
be quite unstable, and the generator and the discriminator have to be well
synchronized in order to find balance and converge [90]. Nonetheless, their
applications can be found all throughout machine learning, and balancing
medical datasets is an increasingly popular example of their use [91, 86].

46

3.4. Transfer Learning

3.4 Transfer Learning

We may combat the lack of reliably labelled medical data by leveraging the fact
that the generic features learned in the first convolutional layers of CNNs can
be shared among many seemingly disparate datasets [56]. Transfer learning is
a common strategy that utilizes this by pre-training a network on an extremely
large dataset and then optimizing the weights further on the smaller dataset
of the problem at hand.

One way of performing transfer learning is to use the pre-trained model
as a fixed feature extractor and build the classifier on top of it. In order to
do that, we must freeze the layers of the convolutional base by setting them
not to be trainable and using their output as the input to a trainable classifier
made of fully-connected dense layers that lead to the output layer. When the
term transfer learning is used, it generally refers to this approach. It makes
most sense if our dataset belongs to the same domain as the original dataset
that the feature extractor was built on, but this is not a very common scenario
in medical deep learning [56].

The alternative approach is called fine-tuning, and it involves pre-training
the model on the source dataset and then further tuning all of the weights on
the target dataset. Naturally, optimizing all the weights, including those in
the convolutional layers, means that the parameter space is much larger and
the training is more computationally expensive [92]. This can be somewhat
alleviated by freezing only the first few layers, which usually extract very
generic features and continue training from a certain depth, where the features
become progressively more domain-specific. In radiology, fine-tuning tends to
produce better results than transfer learning [56].

The following sections describe some of the popular source datasets used
in transfer learning as well as several specific CNN model architectures that
are pre-trained on them. Some of these models will be further experimented
with in the latter part of the thesis.

3.4.1 ImageNet

ImageNet [93] is a large-scale image database that has played a key role in ad-
vancing modern computer vision and deep learning research. It contains over
14 million hand-annotated images and over one million images with marked
bounding boxes. The class categories are based on the WordNet database2

of English words linked by semantic relationships. Similar words are grouped
together into a synonym set called a synset. ImageNet currently covers over
20 000 non-empty synsets, each with 500-1 000 images. [94]

Between 2010 and 2017, an annual computer vision contest was held to
test the current state-of-the-art solutions to image classification, object lo-
calization, and object detection. The contest was the ImageNet Large Scale

2https://wordnet.princeton.edu/

47

https://wordnet.princeton.edu/

3. Analysis

Visual Recognition Challenge (ILSVRC), and the training and testing were
done with the ImageNet database. The evaluation on the ImageNet test set
is usually in the form of top-1 and top-5 error rates, where top-1 examines
whether the highest-confidence output label matches the ground truth class
and top-5 examines whether the ground truth is included in the output labels
with the 5 highest confidence levels [94]. The challenge has given rise to many
advancements in deep learning with CNNs, and the ImageNet is one of the
most common source datasets used in transfer learning today. Many pub-
licly available CNN architectures have the option of being initialized with the
pre-trained ImageNet weights, which may help the feature extraction process
in cases where the target dataset is too small, as is the common case with
medical data.

3.4.2 ChestX-ray

Transferring ImageNet weights to the task of COVID-19 detection may not
prove to be very useful, as the two image domains are very distinct. Con-
sequently, some of the existing works in COVID-19 detection have used the
ChestX-ray dataset [95] as the source where they pre-train their models [96,
97, 98]. The dataset was created specifically to fulfil the purpose of providing
a substantial amount of data for training fully automated deep learning CAD
systems. The focus is not only on the lungs but also the whole chest cavity
that may contain a wide range of thoracic diseases. The latest version of the
dataset ChestX-ray14 is made up of over 100 000 X-ray images containing 14
diseases (COVID-19 not included), making it the largest publicly available
chest X-ray dataset to date [67].

3.4.3 AlexNet

AlexNet is the first CNN model which has had tremendous success on the
ImageNet dataset. Its lead author Alex Krizhevsky entered the network to
the ILSVRC-2012 and won first place, outperforming the previous state-of-
the-art by a significant amount. On the test data, AlexNet achieved a top-5
error rate of 15.3 %. The architecture comprises of 5 convolutional layers (with
kernel size of 11× 11), some of which are followed by max-pooling layers, and
3 fully-connected layers that act as the classifier with an output width of 1 000
neurons, which are activated by the softmax function. The design pattern of
stacking convolutional and pooling layers was inspired by the LeNet series of
convolutional networks that were proposed in the late '90s [99]. Krizhevsky
managed to make the network deeper than its predecessors by making use of
an efficient GPU implementation of the convolution operation in order to be
able to train the 60 million parameters of 650 000 neurons with relative speed.
To add non-linearity and prevent vanishing gradients, the network also uses

48

3.4. Transfer Learning

the ReLU activation function in the hidden layers, and the concept of dropout
was applied to act as a form of regularization. [100]

3.4.4 VGG

The VGG is a CNN architecture which improved upon AlexNet by going
deeper and using 13 convolutional layers with a much smaller kernel size of
3× 3. Along with the 3 fully-connected classifier layers, the depth raised the
number of VGG’s parameters to around 138 million, giving the network a
much larger capacity than AlexNet. This version of the model is called the
VGG16, and it also has a 19-layer implementation called the VGG19. In the
ILSVRC-2014, the VGG was the runner-up in the classification task with a
top-5 error rate of 7.3 %, only behind GoogLeNet with 6.7 %. [101]

Both of the VGG designs are commonly used to perform automated clas-
sification and detection tasks in modern computer vision, and VGG19 has
recently found use in COVID-19 detection as well [77]. One of the main dis-
advantages is that the large number of parameters takes much longer to train
and the network itself takes up a lot of memory.

3.4.5 ResNet

Although stacking convolutional layers led to a rapid increase of performance
in the evolution of CNNs, there is a point where the deep network starts
to converge, and by adding more layers, we saturate the accuracy and the
performance starts to degrade. In 2015, the Microsoft Research team came
up with a method of building extremely deep models without diminishing
their predictive potential. They suggested using residual connections between
layers, which essentially accomplish that outputs of one layer skip ahead and
are added to outputs of a layer that is deeper down the line. By adding
residual connections, features learned in the shallower part of the network
are identically mapped to a deeper part which ensures that the deeper model
should not produce a higher training error than its shallow counterpart. Not
only does this resolve the training accuracy degradation, but it also mitigates
the vanishing gradients problem and generally makes the networks easier to
optimize and achieve higher accuracies from considerable depths. Aside from
popularizing residual connections, the ResNet series was also among the first
to use batch normalization. [102]

Some of the more prominent models are the ResNet-50 or the extremely
deep 152-layer ResNet-152, which still manages to have only around 60 million
parameters, less than half of the VGG architectures [103]. Microsoft Research
entered an ensemble model of several ResNet networks into the ILSVRC-2015
and ended up having a 3.57 % top-5 error rate, securing the first place and
even outperforming the average human recognition ability with an error rate
of 5 % [104].

49

3. Analysis

3.4.6 Inception

We have mentioned that the winner of the classification task of ILSVRC-2014
was the GoogLeNet, which is also referred to as Inception-v1 and was de-
veloped by Google Inc. It is a 27-layer deep architecture (including pooling
layers without trainable weights) with just 5 million parameters, which is the
result of improved utilization of the computing resources inside the network.
The design uses a so-called ’Network-in-Network’ principle, where one layer is
replaced by a building block defined as a miniature network of several convo-
lutional and pooling layers. These blocks, or Inception modules, use pointwise
convolution (1 × 1 kernel size) to compress the pixel channel depth without
altering the feature map dimensions. This is useful for reducing dimensional-
ity before the more costly 3× 3 and 5× 5 convolutions are computed. Aside
from reducing computational bottlenecks, the authors also introduced parallel
branches which use differently sized convolution kernels and are then concate-
nated back together. Parallel branching helps with collecting a wider variety
of features that are then compressed by global average pooling. [105]

Over the years, several adaptations of the architecture design were made,
with the most notable addition to the Inception series being the Xception
model proposed in 2016. The authors took the Inception module to the ex-
treme by replacing the traditional convolution operation with a combination
of depthwise convolution and pointwise convolution, which has the effect of
lowering the number of multiplication operations and making the training
process more efficient [106]. The Xception architecture has 36 convolutional
layers structured into 14 modules, which all use linear residual connections
except for the first and the last [106]. This CNN was never entered into an
ILSVRC, but with a top-5 error rate of 5.5 %, it outperforms its predecessor
Inception-v3, which was the runner-up in ILSVRC-2015 [104].

3.4.7 DenseNet

DenseNets are a category of CNNs which take maximum advantage of the
residual connection design pattern. They are comprised of Dense Block mod-
ules, which directly connect all layers with matching feature map dimensions.
The inputs of each layer in the Dense Block are made up of all the preceding
layers’ feature maps, and the output is fed forward into all subsequent layers.
The layers between two adjacent Dense Blocks are referred to as transition
layers, and their purpose is to alter feature map dimensions via convolution
and pooling. This dense connectivity has several compelling advantages, such
as the fact that it improves information flow between layers and preserves
all features in the last layer of the module. The design also alleviates the
vanishing gradient problem, strengthens feature propagation and encourages
feature reuse by concatenating feature maps learned by a stack of layers in-
stead of adding them together as the ResNets do. Due to the large input

50

3.5. Research in COVID-19 Detection

connectivity, the convolutional layers may be very narrow (e.g., 12 filters per
layer), which means that they add only a small set of feature maps to the
collective knowledge of the network and require much fewer parameters than
other architectures, making their training more efficient. [107]

A popular model from this category is the DenseNet-121, which has 4
Dense Blocks interconnected by 3 transitional layers, totalling a depth of 121
layers with roughly 8 million trainable parameters [107, 103]. The authors
tested this architecture on the ImageNet validation set and achieved a top-5
error rate of 6.66 % [107].

A significant advantage of this network for our purposes is that aside from
ImageNet, it has also been pre-trained on the ChestX-ray dataset. This pre-
trained model is dubbed the CheXNet and has achieved excellent results, going
as far as to outperform practising radiologists in detecting pulmonary diseases
from CXR images [67].

3.5 Research in COVID-19 Detection

Considering the ongoing pandemic as of writing this thesis, it is safe to say
that the automated detection of COVID-19 is still a rapidly developing area
of research. This section will describe some of the work that has already been
done to combat this disease and provide alternatives to the typical medical
diagnoses. We focus on analyzing the novelty approaches to either data pre-
processing or architecture design and training, but there are numerous other
works that demonstrate the use of well-established techniques in deep learning
and computer vision and their application in the detection of COVID-19 [68,
73, 85, 91, 97, 108].

3.5.1 COVID-Net

One of the most prominent research efforts in this area has been the COVID-
Net project [77] conducted by researchers at the University of Waterloo. Since
the start of the pandemic in March 2020, they have been working on setting up
a comprehensive benchmark dataset of CXR images of COVID-19 and pneu-
monia and building deep learning classifiers to perform COVID-19 detection
on it. The dataset has undergone several updates, and its current version
named the COVIDx8 was published at the end of March 2021. The dataset is
a composition of CXR images from several publicly available sources, and it
has two versions — one for binary detection of COVID-19 positive and nega-
tive images and one for categorical classification of regular CXRs, COVID-19,
and non-COVID-19 pneumonia. The data is split into a training set and a
test set in order to provide a benchmark for comparison with other architec-
tures. To the best of the authors’ knowledge, the dataset has maintained the
largest number of publicly available COVID-19 positive samples throughout
its version history.

51

3. Analysis

The creators of COVIDx have used the data to train several models over
the past year, and they refer to the collection of networks as COVID-Net.
Their most recent model is called the COVID-Net CXR-2, which was released
along with the current dataset version COVIDx8 and performs binary classi-
fication. As of writing this, the model lacks extensive documentation. How-
ever, based on a published illustration seen in Figure 3.4, we can deduce that
the model is 88 layers deep and accepts 480 × 480 px RGB images as input.
The architecture uses some common concepts found in modern CNNs, such
as the use of modules as building blocks and residual connections to support
feature reuse. According to the authors’ report, the COVID-Net CXR-2 con-
tains 8.8 million parameters, and it achieved a binary accuracy of 96.30 % and
COVID-19 sensitivity of 95.50 % on the COVIDx8 test set [109].

Figure 3.4: Summary of the COVID-Net CXR-2 architecture for binary clas-
sification of COVID-19 CXR images [109].

Another significant contribution is the COVID-Net CXR3-B. It came
from a series of models built on the older COVIDx3 dataset and was pri-
marily built for categorical classification of normal images, COVID-19 im-
ages and images of non-COVID-19 pneumonia. The model is not explic-
itly named in the accompanying publication, but the release timeline and
reported evaluation results indicate that the COVID-Net design described by
[77] was then implemented under the alias CXR3-B. The architecture was cre-
ated with the strategy of human-machine collaborative design. The process
combines the human-driven principles and best practices in network design
with the machine-driven exploration strategy based on adjusting the macro-
architecture and micro-architecture of the network in order to fit the target
domain [77]. This was accomplished with the use of generative synthesis of
deep neural networks, where a generator-inquisitor pair works in tandem to

52

3.5. Research in COVID-19 Detection

generate a network prototype to satisfy given criteria. The goal of genera-
tive synthesis is to learn a generator that, given a set of seeds, can generate
a parametrized deep neural network that maximizes a universal performance
function, which is evaluated by the inquistior [110]. Such optimization en-
ables the network to flexibly explore various configurations at different levels
of granularity while still maintaining well-established techniques that ensure
efficiency and high performance [77]. Given the similarity of the two networks,
we assume that COVID-Net CXR-2 was also built by generative synthesis.

The generated COVID-Net CXR3-B can be seen in Figure 3.5; it is 87
layers deep and has 11.7 million parameters. The authors proposed an inter-
pretation of the architecture where the network makes heavy use of lightweight
residual projection-expansion-projection-extension (PEPX) design pattern,
which consists of the following phases:

• First-stage Projection: 1 × 1 convolutions for projecting input channels
into an output tensor with lower dimensionality,

• Expansion: 1×1 convolutions for expanding features to a higher dimen-
sionality,

• Depth-wise Representation: 3×3 depth-wise convolutions with different
filters for each expanded channel, which learns spatial characteristics to
minimize computational complexity,

• Second-stage Projection: 1 × 1 convolutions for projecting the features
into a lower dimension again, and

• Extension: 1× 1 convolutions for extending the channel dimensionality
and producing final features of the module.

The uniquely generated PEPX design is accompanied by the use of long-range
residual connectivity, which improves the representational capacity of the net-
work, but also increases the computational complexity and memory overhead.
Consequently, the connectivity has been selectively generated only to certain
layers within the network that act as hubs for optimal feature transfer. [77]

The COVID-Net CXR3-B was first pre-trained on the ImageNet dataset
and then trained for 22 epochs on COVIDx in batches of 64 images. The Adam
optimizer was used with a learning rate of 2×10−4, which decreased when the
learning stagnated for 5 epochs. During training, online data augmentation
in the form of translation, rotation, horizontal flips, zoom, and intensity shifts
was used and batches were re-balanced to maintain distribution of each class
type at batch level. The final model was evaluated on the test set and achieved
an accuracy of 93.30 % and COVID-19 sensitivity of 91.00 %. [77]

The authors of COVID-Net have published a wide range of other models,
some of which detect COVID-19 from CT scans [111], while others assess the
severity of the progression of the disease based on its geographic and opacity

53

3. Analysis

Figure 3.5: Summary of the COVID-Net CXR3-B architecture for categorical
classification of pulmonary diseases including COVID-19 in CXR images [77].

extent within the CXR images [112]. All of the aforementioned models, as well
as a guide on generating the COVIDx dataset, have been published through
a publicly available GitHub repository3.

3.5.2 Application of VGG16 and Image Preprocessing for
COVID-19 Detection

The preprocessing pipeline described in Section 3.2.6 was proposed by [83] and
further experimented with on a publicly available dataset of 8 474 posterior-
anterior view CXR images. The dataset was created for categorical classifica-
tion and contains 415 images depicting COVID-19 cases, 6 179 non-COVID-19
pneumonia cases and 2 880 normal healthy radiographs. The architecture used
was the VGG16 pre-trained on the ImageNet dataset and then further fine-
tuned on the target data. The fine-tuning was done in 200 epochs with a
batch size of 4 and the use of Adam optimizer with an initial learning rate
of 10−5, which was subjected to decay every 5 epochs by a factor of 0.8. In
order to increase the training set, common data augmentation techniques such
as shearing factors, intensity adjustments, zooming, translation and rotation
were used. Further class balancing was achieved with the use of class weights
and cost sensitive learning. The results presented in Table 3.1 indicate that
the absence of data augmentation causes the model’s ability to generalize on
the test set to drop significantly to around 82.00 %. Feeding the network with
the original unpreprocessed CXR images from a dataset expanded through
data augmentation yields significantly better results; however, by using de-

3https://github.com/lindawangg/COVID-Net

54

https://github.com/lindawangg/COVID-Net

3.5. Research in COVID-19 Detection

noising techniques and equalizing the image contrast, the authors improved
the accuracy even further by roughly 3 %. Furthermore, using the complete
preprocessing pipeline and removing the high-intensity region containing the
diaphragm increased the accuracy to 94.50 %, as well as having a very re-
spectable COVID-19 sensitivity and specificity of over 98.00 %. [83]

Table 3.1: Comparison of the results of preprocessing techniques used in
COVID-19 detection from CXR images by the VGG16 architecture in [83].
The Proposed model is the VGG16 with the complete preprocessing pipeline,
Filter-based model keeps the bilateral filtering and histogram equalization but
not the removal of the diaphragm region, Simple model contains no image
preprocessing, and the No-augmentation model is a model trained on a set
of images where no augmentation was applied at all. The listed metrics ei-
ther came directly from the authors’ report or were calculated based on the
confusion matrices published in [83].

Model configuration Accuracy TPR (Sensitivity) TNR (Specificity)

Proposed model 94.50 % 98.41 % 98.06 %
Filter-based model 91.20 % 93.65 % 97.39 %

Simple model 88.00 % 84.92 % 96.24 %
No-augmentation model 82.30 % 75.40 % 94.73 %

3.5.3 Twice Transfer Learning for COVID-19 Detection

Another relatively recent publication that makes some interesting advances in
this field was released in January 2021 by a team of researchers from the Uni-
versity of Campinas, Brazil [98]. They presented a COVID-19 classifier based
on the DenseNet architectures and used a process called the twice transfer
learning to combat the small size of their training data. Inspired by the
CheXNet (see Section 3.4.7) architecture, which was a DenseNet-121 trained
on the ChestX-ray14 dataset (see Section 3.4.2), they created a deeper densely
connected CNN called the DenseNet-201. This model was initially pre-trained
on the ImageNet dataset and then transferred to the CXR domain of ChestX-
ray14, fine-tuned, and then finally transferred again to the target COVID-19
data. The hypothesis was that expanding the sets of training data would re-
duce the curse of dimensionality tied to the sparsity of features within their
224 × 224 px input images. ImageNet was supposed to teach the network
to extract low-level generic features, and the ChestX-ray14 would focus on
adapting that feature extraction to chest radiographs. The COVID-19 data,
which was used to fine-tune the final version of the model, was comprised of
439 COVID-19 posterior-anterior view images, 1 255 pneumonia images and

55

3. Analysis

370 healthy images. Samples augmented through rotations, translations and
horizontal flipping were used for balancing both the training set and the vali-
dation set. The balanced data then contained 8 280 COVID-19 images, 8 640
pneumonia images and 8 640 normal images. [98]

In addition to twice transfer learning, the authors experimented with out-
put neuron keeping. Having two similar datasets like the ChestX-ray14 and
their COVID-19 collection, they were presented with an opportunity of re-
taining a common part of the network trained on more extensive and reliable
data. Due to the fact that the datasets share the classes of normal images and
pneumonia, they kept their respective original output neurons and combined
the rest of the CheXNet outputs into one, which was trainable for assessing
the probability of COVID-19 [98].

The authors trained 5 CNNs with different combinations of architecture
design, training specifics and output neuron keeping. The progression of the
individual training phases can be seen in Figure 3.6. There were 3 top-
performing configurations, which all managed to predict the test data with
100 % accuracy. One of the top models was the DenseNet-201 trained with
twice transfer learning and output neuron keeping, and the other two models
were both CheXNets with and without output neuron keeping. The remain-
ing two networks were the deeper DenseNet-201 models with single transfer
learning and with twice transfer learning, both without output neuron keep-
ing. While the latter 2 networks were only behind by around 2 % on the
accuracy, the authors concluded that the deeper architecture faced more is-
sues with overfitting than the simpler CheXNet, and output neuron keeping
has proved to be a useful technique for utilizing previous learning stages. [98]

20 40 60 80 100 120 140
Number of training epochs

90.0

91.0

92.0

93.0

94.0

95.0

96.0

97.0

98.0

99.0

100.0

Te
st

 a
cc

ur
ac

y
(%

)

Network A:
DenseNet-201 with
transfer learning

Network B:
DenseNet-201 with
twice transfer learning

Network C:
DenseNet-201 with
twice transfer learning
and output neuron
keeping

Network D: CheXNet

Network E:
CheXNet with
output neuron keeping

Figure 3.6: Comparison of test accuracy of DenseNet architectures trained
with various configurations of transfer learning and output neuron keep-
ing [98].

56

Chapter 4
Design and Implementation

This chapter describes the fundamental design and implementation specifics
that cover the scope of our experimentation.

4.1 Requirements and Technologies

Machine learning, in general, is a very algorithmic field and the pipeline of
training CNNs involves many complex steps that cover dataset preparation,
image preprocessing, model building, training, and evaluation. Fortunately,
many of these steps are implemented in modern-day programming languages
and their respective libraries and frameworks, enabling us to build on top of
previous work and speed up the development process. This section lists the
most relevant technologies that were used throughout our experimentation.

4.1.1 Python

The primary programming language of our choice was Python4, specifically
the version Python 3.7. It is an interpreted, high-level, general-purpose pro-
gramming language that is one of the most popular languages in machine
learning and data science [113]. Due to its large support community, it has
many libraries and tools that make the development process more efficient and
reliable. It also has good readability and is supported by several interactive
computing environments, making the language user-friendly and enabling de-
velopers to keep the codebase clean and well-organized.

4https://python.org

57

https://python.org

4. Design and Implementation

4.1.2 NumPy

A large portion of our numerical calculations and data transformations were
done with the use of the open-source library NumPy5. With its efficient
implementation of multi-dimensional array and matrix operations, it is very
useful for applications dealing with image data.

4.1.3 Scikit-learn

Scikit-learn6 is an open-source Python library that provides implementations
of many data analysis tools and machine learning models. We have used some
of the metrics offered by the library to evaluate our models and also utilized
its infrastructure for preparing datasets for cross-validation.

4.1.4 OpenCV

Our proposed image preprocessing methods were realized with the open-source
library OpenCV7. It provides a Python interface for optimized computer vision
tools and algorithms written in C/C++.

4.1.5 Matplotlib and Seaborn

In order to plot graphs or create visualizations of our data and training and
evaluation of individual models, we used the plotting libraries Matplotlib8 and
Seaborn9. Analyzing visual representations of the training process may give
us more insight into the quality of the models and improve the interpretability
of their results.

4.1.6 TensorFlow and Keras

TensorFlow10 is an open-source framework developed at Google for machine
learning applications. Its main focus is on defining the architecture and train-
ing of deep neural networks. It is highly optimized for the execution of low-
level tensor operations on CPU, GPU, or TPU. Most of our work was done us-
ing the current TensorFlow version 2.4, but we downgraded to TensorFlow 1.15
when testing the COVID-Net architecture [77] for compatibility purposes.

Keras11 is a high-level API that acts as an interface for the TensorFlow
framework. It enables faster prototyping of ANNs by providing abstractions

5https://numpy.org
6https://scikit-learn.org
7https://opencv.org
8https://matplotlib.org
9https://seaborn.pydata.org

10https://tensorflow.org
11https://keras.io

58

https://numpy.org
https://scikit-learn.org
https://opencv.org
https://matplotlib.org
https://seaborn.pydata.org
https://tensorflow.org
https://keras.io

4.2. Dataset

and building blocks for developing the models. It also provides the implemen-
tation of several popular CNN architectures along with their weights which
have been pre-trained on the ImageNet dataset, making transfer learning more
accessible. The simplest way of defining Keras models is by using the Sequen-
tial model API, which is essentially a linear stack of defined layers. The
alternative is adopting the Keras functional API, which allows for building
arbitrary graphs of layers with multiple inputs and outputs or using residual
skipping connections [103]. Most of our models have been implemented with
the functional API.

4.1.7 Jupyter Notebook and Google Colab

The Jupyter Notebook12 is an open-source web application that enables de-
velopers to create and share documents with live code, markdown text and
visualizations. The document is split up into cells which can be run in any or-
der, making the prototyping and visualizations very interactive and efficient.
A small subset of our experiments was conducted in a Jupyter Notebook run-
ning inside a Python virtual environment on a Lenovo ThinkPad X1 Extreme
(Gen2) with an Intel Core i7-9750H processor, 16 GB DDR4 RAM and an
NVIDIA GeForce GTX 1650 graphics card with 4 GB of VRAM.

In cases where the model or the training batch size was too large to be
handled by the physical machine, we utilized the Google Colab13 platform.
It is a cloud-based interactive computing environment that provides a very
similar document format to the Jupyter Notebooks along with access to a
virtual machine for executing the code cells. Most of our experiments were
performed on the Colab virtual machine with GPU hardware acceleration
on an NVIDIA Tesla T4 graphics card. The allocated resources of the free
version vary depending on the usage statistics of the given account, but we
were usually assigned roughly 16 GB of VRAM.

4.2 Dataset

The dataset we chose to work with is the COVIDx which originates from
the COVID-Net project (see Section 3.5.1). It is the largest publicly available
dataset for COVID-19 detection to our knowledge and it aggregates data from
6 different open acess data repositories:

• COVID-19 Image Data Collection [114],

• Figure 1 COVID-19 Chest X-ray Dataset Initiative [115],

• ActualMed COVID-19 Chest X-ray Dataset Initiative [116],
12https://jupyter.org
13https://colab.research.google.com

59

https://jupyter.org
https://colab.research.google.com

4. Design and Implementation

• RSNA Pneumonia Detection Challenge dataset [117],

• COVID-19 radiography database [118],

• RSNA International COVID-19 Open Radiology Database (RICORD)
[119].

As the task at hand is currently a very topical subject, the project keeps evolv-
ing, and new versions of the dataset are regularly being released. Each version
adds new COVID-19-positive cases to the data, which improves the potential
of capturing the critical features that discriminate between the classes. Dur-
ing our experimentation, the dataset has undergone several version updates,
with the newest one being the COVIDx8. The majority of our work is done
with this version, but some tests which will be described at a later point have
used some of the older versions as well.

The authors of COVIDx have published a guide on generating the dataset
on their public GitHub repository14. They also provide two Jupyter notebooks
that contain scripts for extracting the image data from the individual datasets
and aggregating them into a training set and a test set. One of the notebooks
is meant for creating a dataset for binary classification of positive/negative
COVID-19 CXRs, while the other prepares the data for categorical classifi-
cation of no pneumonia/non-COVID-19 pneumonia/COVID-19 pneumonia.
The labels of all images and the subset they belong to are also provided as
text files.

Our task is focused on the binary classification of COVID-19, so the first
of the two provided notebooks was adapted and used to set up the current
COVIDx8B version. Due to the amount of image data we were working with,
we had to continuously generate data in batches online during training, which
can be done using the Keras ImageDataGenerator class. The generator re-
quires the dataset to be organized according to its classes, so we prepared
a Python script to alter the directory structure so that it is ready to be fed
into the generator object. Figure 4.1a shows the data directory structure after
generating the COVIDx8B dataset according to instructions by the COVID-
Net project, while Figure 4.1b illustrates the changes we made to prepare the
dataset for training with the ImageDataGenerator.

4.2.1 Data Exploration

The COVIDx8B includes a mixture of posterior-anterior and anterior-posterior
views of 16 352 CXR images. The radiographs have been collected from case
studies of 15 346 different patients from at least 51 different countries [109].
The training set reflects the scarcity of COVID-19 case data available in the
public domain and therefore suffers from being very imbalanced, where the

14https://github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md

60

https://github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md

4.2. Dataset

COVIDx8B

labels

train COVIDx8B.txt

test COVIDx8B.txt

train

Image 1

Image 2
...

test

Image 1

Image 2
...

(a) Original COVIDx8B

COVIDx8B

train

negative

Image 1

Image 2
...

positive

Image 1

Image 2
...

test

negative

Image 1

Image 2
...

positive

Image 1

Image 2
...

(b) Preprocessed COVIDx8B

Figure 4.1: Comparison of the directory tree of the original COVIDx8B
dataset (a) as used by the COVID-Net project, and the preprocessed version
(b) which was used in our experiments for image generation during training.

COVID-19 positive class is heavily outweighed by the negative samples, as seen
in Figure 4.2a. It contains 13 794 images belonging to the negative class and
2 158 to the positive class, which is, however, a significant improvement on the
previous versions such as COVIDx3 from the first half of the year 2020, which
only had around 400 positive samples. Contrastingly to the training set, the
test set was designed to be balanced in order to prevent biased evaluations
of models that have overfitted to predicting the majority class. The class
distribution of the test set is shown in Figure 4.2b and contains 200 samples
from each class.

The images vary a lot in size, exposure and captured region of the body,
which could possibly have a detrimental effect on the training. The smallest
image in our data is 156 × 157 px while the largest is 3 480 × 4 248 px, but
the side length of the majority is in the range between 256-1 024 px. Since
CNN architectures accept a fixed input size, some images will have to be
downsampled and some upsampled to unify their dimensions. This inevitably

61

4. Design and Implementation

negative positive
Class

0

2500

5000

7500

10000

12500

Sa
m

pl
e

co
un

t

(a) Distribution of the training set

negative positive
Class

0

50

100

150

200

Sa
m

pl
e

co
un

t

(b) Distribution of the test set

Figure 4.2: Comaprison of the class distributions in the COVIDx8B training
and test set. The training set has a significant class imbalance, while the test
is balanced to avoid bias in model evaluation.

results in loss of information and quality, which has to be taken into account.
A few examples of the images found in COVIDx8B are shown in Figure 4.3.

The data also includes some abnormal samples which contain medical an-
notations, such as text describing the type of the radiograph, the type of view,
or even arrows that point to specific regions of interest within the image. An-
other source of anomalies are medical devices captured by the screening appa-
ratus, such as pacemakers or prostheses. Examples of such images are shown
in Figure 4.4. Since these abnormalities are only present in a small minority of
the samples, we did not feel the need to remove them, and we did not observe
any overfitting to specific annotations.

negative positive negative positive

negative positive negative positive

negative positive negative positive

negative positive negative positive

Figure 4.3: Examples of CXR images found in the COVIDx8B dataset and
the classes they are labelled with.

62

4.2. Dataset

(a) Medical equipment captured in a
CXR image

(b) Arrows marking the regions of
lungs with a suspicion of being infected

Figure 4.4: Examples of abnormalities found among the data samples. Im-
age (a) shows a piece of medical equipment captured in the CXR image and
image (b) contains annotations in the form of arrows which mark potentially
infected regions of the lungs.

4.2.2 Data Separability in Lower-dimensional Spaces

During data exploration, we applied the UMAP technique for dimensionality
reduction, described in Section 3.2.7. The goal was to visualize the dataset in
lower dimensions to gain insight into the distribution of the two classes. In or-
der to extract features from the images, we used the CheXNet model, which is
a DenseNet-121 architecture pre-trained on the ChestX-ray14 dataset. We de-
cided to use this model as it was previously applied to extracting features from
CXR images in pulmonary disease classification tasks; hence its weights are
adapted to the structure of the images in our domain as well. We performed
feature extraction on 500 positive and 500 negative random samples from the
training data of COVIDx8B and passed them on to the UMAP algorithm im-
plemented by its authors and provided as a Python package15. We used the
Euclidean distance as the metric of the algorithm, with a specified minimum
distance of 0.4 and the relatively low number of 50 neighbouring points to
capture the local structure of the space. As shown by Figure 4.5, two separate
projections were calculated: one into a two-dimensional feature space and the
other into a three-dimensional feature space. The COVID-19-positive sam-
ples are drawn in red, and the negative samples are blue. While neither of the
projections suggests that the encoded features are linearly separable in these
dimensions, we may notice a pattern where the negative samples are clustered
in the centre and the positive samples surround them. This observation leads
us to believe that a CNN trained on CXR images may be able to extract the

15https://umap-learn.readthedocs.io

63

https://umap-learn.readthedocs.io

4. Design and Implementation

necessary features for discriminating between the two classes. The separation
will likely be more apparent in a higher dimension and perhaps not linear.

2 4 6 8 10 12 1
2

3
4

5
6

7

13
14
15
16
17
18
19
20

2 0 2 4 6 8 10
4

6

8

10

12

14

16 positive
negative

Figure 4.5: Visualization of UMAP projections of extracted features from a
sample from COVIDx8B data onto a 2D feature space (on the left) and a 3D
feature space (on the right).

4.3 Model Training and Evaluation

As mentioned previously, we used the high-level Keras functional API for
defining our models. The specific configurations of each model will be dis-
cussed at a later point, along with the experiments in which they were involved.
Using the Keras API allowed us to create a training environment where the
compiled CNN architecture is continuously fed data from the previously men-
tioned ImageDataGenerator. The generator is given a preprocessing function
that is applied to each image and the paths to data sources used to feed the
images to the network in batches during training. Most of our experiments
were done with a batch size of 32 or 16, depending on the allocated GPU
memory that was available. We created 3 separate generators: a training gen-
erator, a validation generator, and a test generator. The training generator’s
source was set to 80 % of the training images, which it fed in batches to the
networks during their training. After each batch, the network’s weights were
updated through gradient descent. Once a whole epoch passed and all of the
data took part in the training, the validation generator provided the remain-
ing 20 % of the training images for evaluating the network’s performance with
the binary accuracy metric. Due to the heavy class imbalance present in the
data, we applied cost sensitive learning to prevent the model from degrading
to constant prediction of the majority class. The classification error of each
sample was weighed inversely proportionally to its class’s prevalence in the
training data. In the case of COVIDx8B, the weight of COVID-19-positive
samples was calculated to be 3.70 and the weight of negatives samples was
0.58.

64

4.3. Model Training and Evaluation

If not stated otherwise, our experiments were conducted using the Adam
optimizer with an initial learning rate of 10−4, exponential decay rate of 0.9
for the first moment estimate, and exponential decay rate of 0.999 for the
second moment estimate. Our research found that the Adam optimizer tends
to be the favoured optimization algorithm of choice in similar tasks, and we
achieved consistently good results with this configuration. Most of the ex-
plored architectures were trained for anywhere between 10-20 epochs until
their cost functions converged. Calculating the cost function was done by
taking the average of binary cross-entropy loss across the training data, as is
the conventional approach for binary classification tasks. During training, we
used the early stopping and checkpointing method of regularization, where
we maintained a saved version of the model configuration with the highest
validation accuracy. Once the training stopped, or the validation accuracy
did not improve for a certain number of epochs, the training was interrupted,
and the model was reverted to its configuration that performed best on the
validation set.

Certain experiments involving the training of a single architecture config-
uration were executed using k-fold cross-validation. More specifically, we used
the stratified k-fold cross-validation where the folds are constructed in a way
that captures the distribution of the classes in the whole training set. The
typical number of folds we used was 4, which means that roughly 75 % of the
training data was used to train each fold and 25 % was left for its validation.
Upon completion of the cross-validation process, we selected the best model
that was found throughout all folds and evaluated it on the test set. This
approach was not a viable option for every single experiment, as that would
consume too much time and resources. We used it specifically for the testing
of individual models, where a reliable evaluation was crucial.

The trained models were primarily evaluated by predicting images pro-
vided by the test generator. If the predicted probability of an image contain-
ing COVID-19 was greater than 50 %, the image was classified as positive;
otherwise, it was classified as negative. After classifying each image supplied
by the test generator, we calculated several metrics to rate the model’s perfor-
mance. Since our test set is balanced, our primary metric for evaluating and
comparing the models was binary accuracy (labelled as Test acc. in results).
In order to be able to detect potential overfitting, we also measured the binary
accuracy on the whole training set (Train acc.). Furthermore, we constructed
a confusion matrix and based on its information, we calculated the COVID-19
sensitivity (TPR) and specificity (TNR) on the test set. Finally, we plotted
the ROC curve and calculated its AUC metric to evaluate the classifier re-
gardless of the chosen probability classification threshold. Each of the metrics
and their interpretation within the medical field is described in Section 2.2 in
more detail.

65

Chapter 5
Experiments and Results

In this chapter, we will describe the experiments we conducted in researching
the topic of COVID-19 detection, as well as discuss their results and possible
interpretation. We will describe our proposed preprocessing techniques and
CNN architectures and compare their performance on the chosen COVIDx
dataset.

5.1 Evaluating COVID-Net Performance

5.1.1 COVID-Net CXR-2

To establish a benchmark for the comparison of our created models, we ini-
tially set out to perform some tests on the latest state-of-the-art COVID-Net
architecture proposed by [77]. It is the COVID-Net CXR-2 model described in
Section 3.5.1. We downloaded the model definition along with its fine-tuned
weights on the COVIDx8B training set and gathered the model’s predictions
on both of the subsets. As shown in Table 5.1, the classification accuracy
on the training set was 96.07 % and 96.25 % on the test set, which matches
the values reported by the original authors. The similarity of these results
suggests that the model has not overfitted the training data and is able to
generalize well out of sample.

To explore this theory further, we traced back the older version of the
dataset called COVIDx3 and performed the same experiments. The dataset
had to be adapted to make it fit for our binary detection task by removing non-
COVID-19 pneumonia images. Following this preprocessing step, the accuracy
on the COVIDx3 training set was 99.51 %, which is very high but does not
reflect the model’s ability to generalize. We calculated the overlap between
the COVIDx8B training set and COVIDx3 training set and found that around
55 % of the COVIDx3 training images have also taken part during the training
of the model on the new version of the dataset. Nevertheless, the classification
accuracy on the COVIDx3 test set was 93.99 %, which is still very respectable,

67

5. Experiments and Results

and none of this data was included in the training. Therefore, we can conclude
that the model predicts previously unseen data with remarkable consistency.

5.1.2 COVID-Net CXR3-B

As we have mentioned before, the COVID-Net CXR-2 lacks proper documen-
tation, and the actual model described by the COVID-Net publication is the
COVID-Net CXR3-B. Knowing a little more about its design and the fact
that it was created in the very early stages of the pandemic, we set out to
evaluate how it handles the data that we have available a year later after its
creation. We first evaluated it on the preprocessed COVIDx3, which was the
state-of-the-art dataset at the time of the model’s release. The observed accu-
racy on the training set was 96.07 %, and the test set accuracy was 96.17 %.
The values slightly deviate from those reported by the original authors, but
this is likely due to the fact that their evaluation considered categorical classi-
fication while we investigated binary classification. The model evidently had
enough capacity to function well on the data available at the time. However,
its performance on the new COVIDx8B dataset has significantly degraded, as
we measured a training accuracy of 61.66 % and a test accuracy of 71.50 %.
These results are not very surprising, considering that the number of COVID-
19-positive samples in the training set has increased by a factor of 5 since the
older version. The model probably did not have enough examples to properly
learn to extract the important features that separate the classes.

Following this discovery, we decided to train the CXR3-B on the new data
ourselves to see if the old architecture has enough capacity to fit the current
version of the dataset. Since the authors only provided the model as a Tensor-
Flow graph and we struggled to create a training setup in that environment,
we decided to re-implement the model using the Keras functional API. To
distinguish between the models, we will refer to our adaptation of the archi-
tecture as COVID-Net CXR3-B2. We initially followed CXR3-B’s description
and diagrams in the original publication and then made a few changes to suit
our use case better. The input layer was downsized from accepting 480×480 px
images to 224 × 224 px, and the output layer no longer used 3 neurons acti-
vated by the softmax function but was instead built for binary classification
with a single neuron and the sigmoid activation function. The reduced input
size was a measure we took to reduce the training complexity to a manageable
task given our resources and also to match the input dimensions of models
that we will discuss at a later point. The resulting network has almost 6.3
million trainable parameters and is a composition of 87 layers, most of which
are organized into the PEPX blocks described in Section 3.5.1.

We trained the COVID-Net CXR3-B2 on COVIDx8B with stratified 4-fold
cross-validation, where each fold ran for 15 epochs. As suggested by the ar-
chitecture’s authors, we used the Adam optimizer with an initial learning rate
of 2× 10−4. The progression of the training can be seen in Figure 5.1, where

68

5.1. Evaluating COVID-Net Performance

the model of each fold is evaluated after every epoch on the validation set. We
saved the best performing model per each fold, and their average validation
accuracy was 93.63 %. The best of these was the model trained in the fourth
fold, so we evaluated it similarly to the CXR-2 and CXR3-B. As the results
reported in Table 5.1 show, our implementation achieved quite consistent re-
sults without regard for the dataset version. Its classification accuracy on
the COVIDx8B training data was 95.21 % and 97.14 % for COVIDx3 train-
ing data, and 89.75 % and 85.79 % on the COVIDx8B and COVIDx3 test
sets, respectively. While this performance is relatively good, and our imple-
mentation certainly increases the consistency of the model’s out of sample
prediction accuracy, there is a significantly decreased ability to correctly clas-
sify samples in the older test set compared to the original implementation.
We suspect that this is either the result of the loss of information caused by
downsizing the input images, not pre-training the architecture on ImageNet
like the original version or, most likely, the fact that CXR3-B was trained on
a more informative dataset. Its purpose was to perform categorical classifica-
tion, which means that its training involved thousands of additional images
containing non-COVID-19 pneumonia. Consequently, the original implemen-
tation had access to more images with symptoms that belonged to or were
very similar to COVID-19, which gave it a better chance to learn the defin-
ing features of pulmonary diseases in general. When examining the model’s
binary prediction, we simply chose the higher of the probability estimates of
COVID-19 pneumonia and non-COVID-19 pneumonia, which likely gave the
model a significant advantage over our CXR3-B2 which only saw the binary
samples during training. This explanation is also supported by the fact that
we measured the CXR3-B’s COVID-19 sensitivity to be 97.59 %, which is a
lot higher in comparison to the 91.00 % reported in the categorical study by
the model’s authors.

Table 5.1: Results of evaluating the performance of the COVID-Net CXR-
2 and the COVID-Net CXR3-B on two separate versions of the COVIDx
dataset, as well as the performance of our own implementation of the proposed
architecture, which we call the COVID-Net CXR3-B2.

Model Dataset version Train acc. Test acc. TPR TNR AUC

CXR-2
COVIDx8B 96.07 % 96.25 % 95.50 % 97.00 % 0.994
COVIDx3 99.51 % 93.99 % 87.95 % 99.00 % 0.991

CXR3-B
COVIDx8B 61.44 % 71.50 % 93.00 % 50.00 % 0.826
COVIDx3 96.07 % 96.17 % 97.59 % 95.00 % 0.993

CXR3-B2
COVIDx8B 95.21 % 89.75 % 85.50 % 94.00 % 0.957
COVIDx3 97.14 % 85.79 % 78.31 % 92.00 % 0.931

69

5. Experiments and Results

0 2 4 6 8 10 12 14
Epoch

0.5

0.6

0.7

0.8

0.9

1.0
Va

lid
at

io
n

ac
cu

ra
cy

Fold 1
Fold 2
Fold 3
Fold 4

Figure 5.1: Progression of validation set accuracy of the stratified 4-fold cross-
validation of our COVID-Net CXR3-B2 implementation.

5.2 BaseNet Architecture and its Hyperparameter
Optimization

The following experiment we conducted was creating our own prototype CNN
architecture called the BaseNet and testing how it performs on the current
COVIDx8B dataset in comparison to the COVID-Net designs produced by
generative synthesis. We built a fairly simple feature extraction base that
accepts 224×224 px coloured images. It includes 15 convolutional layers, 6 of
which have a max-pooling layer, and the final layer is fed into a global average
pooling operation which flattens all feature maps by characterizing them with
their maximum values. These values are then passed on to a fully-connected
dense layer and the final output layer, which contains one neuron activated by
the logistic sigmoid function. Each of the max-pooling layers and the dense
classifier have a dropout rate to act as a form of regularization and prevent
overfitting.

In order to explore different combinations of the network’s hyperparame-
ters, we used the Keras Tuner16, which is a package specifically designed for
optimizing the hyperparameters of models defined by the Keras API. It allows
for modelling parts of the network as variables and specifying their possible
configurations. The parametrized definition is then passed on to one of the
provided tuner classes, which attempts to find the optimal hyperparameters by
performing short training phases. The hyperparameters we chose to optimize
were:

16https://keras-team.github.io/keras-tuner/

70

https://keras-team.github.io/keras-tuner/

5.2. BaseNet Architecture and its Hyperparameter Optimization

• Dropout rates of neurons in the wide fully-connected dense layer and
the max-pooling layers that follow each set of convolutions (values 0.2,
0.3, or 0.5),

• Activation function used in the hidden layers (ReLU, parametrized ReLU
with α = 0.1, or the hyperbolic tangent),

• Usage of a residual skipping connection that feeds the max-pooled out-
put of the 5th convolutional layer into the 13th convolutional layer where
it gets convolved in a parallel branch and added to the standard previ-
ous inputs (boolean value to indicate whether the residual features are
added or not),

• Width of the fully-connected dense layer in the classification part of the
network (128, 256, or 512 neurons).

To perform the search, we used the provided implementation of the Hyperband
Tuner. It uses a state-of-the-art hyperparameter optimization algorithm that
is partly based on the random search approach that we defined in Section 2.4,
but it utilizes adaptive resource allocation and early stopping to make the ex-
ploration strategy more efficient. See the original Hyperband publication [120]
for further details.

Following the hyperparameter optimization results, our final BaseNet ar-
chitecture uses a dropout rate of 0.2, the neurons in its hidden layers are
activated by the ReLU function, and the fully-connected dense layer that
processes the extracted features is 512 neurons wide. We also found that
branching the network and using the residual skipping connection improves
performance, which could either be due to encouraging feature reuse or reduc-
ing the impact of the vanishing gradients problem. This final configuration of
our BaseNet design is characterized by 8.5 million trainable parameters and
is illustrated in Figure 5.2. See Table C.3 for a more detailed description of
the network and its parameters.

To reliably evaluate our prototype, we used the stratified 4-fold cross-
validation pipeline once again. The BaseNet was trained with the Adam
optimizer with an initial learning rate of 10−4 for 15 epochs in each fold.
The progress of the model’s performance on the validation set throughout
each fold is presented in Figure 5.3. We kept track of the best performing
models, and the overall highest achieved validation accuracy was during the
first fold after all 15 epochs of training. We loaded the BaseNet with the
weights from this checkpoint and tested it on the whole training set and the
test set. The training accuracy of the classifications was 97.45 %, and the
test accuracy was 95.50 %. These results are very impressive considering that
the current state-of-the-art COVID-Net CXR-2 only had a slightly higher test
accuracy of 96.25 % and its training accuracy was actually lower. Both of
the models achieve comparable results, and neither is prone to overfitting the

71

5. Experiments and Results

64 64

224

224

Conv1

128 128 128

112

Conv2

256 256

56

Conv3

256 256

28

Conv4

128 128 128

14

Conv5

128 128 128

7

Conv6

128

56

Conv2 Residual

+

Add

1

128

GlobalAvgPooling

1

512

Dense FC

1 1

Output

Figure 5.2: Illustration of the optimized BaseNet architecture prototype for
the detection of COVID-19 in medical CXR images. The illustration was
created with the use of source codes from the PlotNeuralNet tool17.

training data because the test accuracy does not significantly deviate from the
training accuracy. The advantage that our BaseNet architecture has over its
COVID-Net counterpart is that it is much simpler to define and understand,
it reached similar results within a shorter training duration (faster by about
7 epochs), and it did not require pre-training on the ImageNet dataset. Its
weights were randomly initialized, and as the graph in Figure 5.3 shows, the
random initialization did not affect the final convergence; each of the models
in different folds reached similar results despite their large difference in the
initial epochs. Our model is also slightly more light-weight, as it only has 8.5
million trainable parameters in comparison to the CXR-2’s 8.8 million, but
this is by no means a significant difference.

Aside from the binary accuracy metric, which we used to compare our
prototype to the state-of-the-art, we also explored other evaluation criteria
to analyze its performance further. We assembled a confusion matrix for the
binary classification on the COVIDx8B test set and used it to calculate a
COVID-19 sensitivity of 93.00 % and a specificity of 98.00 %. The high sensi-
tivity indicates that our method of diagnosing COVID-19 using the BaseNet
predictions has a high potential to recognize patients with the disease. The
specificity is even higher, which would mean that a patient whose CXR scan
was classified as positive by our BaseNet model is very likely to indeed have
a COVID-19-induced pulmonary infection. Furthermore, we plotted an ROC
curve and calculated its AUC metric, which equalled 0.987. The collection
of these outcomes leaves us fairly confident that our model has substantial
capacity to discriminate between the positive and the negative class.

72

5.3. Optimizer Selection

0 2 4 6 8 10 12 14
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Va

lid
at

io
n

ac
cu

ra
cy

Fold 1
Fold 2
Fold 3
Fold 4

Figure 5.3: Progression of validation set accuracy of the stratified 4-fold cross-
validation of our BaseNet prototype.

negative positive

Predicted labels

ne
ga

tiv
e

po
si

tiv
eTr

ue
 la

be
ls

196 4

14 186

0

25

50

75

100

125

150

175

200

(a) Confusion matrix

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e

ROC (AUC = 0.987)

(b) ROC curve

Figure 5.4: The confusion matrix and ROC curve that characterize the
BaseNet’s binary classification performance on the COVIDx8B test images.

5.3 Optimizer Selection

The early stages of our experimentation were all done with the use of the Adam
optimizer with an initial learning rate of 10−4. Although this configuration
has performed well in training our implementation of the COVID-Net and in
determining the hyperparameters of our BaseNet model, our next step was to
compare this optimizer with a selection of other very popular alternatives. We
performed a manual hyperparameter grid search over 4 chosen optimizers and
4 learning rate settings that were applied during the training of the BaseNet
model on COVIDx8B data. The optimizers were SGD without a momentum

73

5. Experiments and Results

term, RMSprop, Adam and Nadam. The examined learning rates were the
values 10−2, 10−3, 10−4, and 10−5. Our aim was to test how well the optimizers
can train the weights to minimize the cost function and how quickly they can
converge. For this reason, we only trained each model for 10 epochs to make
the conditions more difficult and get a better idea about the performance of
each optimizer. The resulting accuracies of each configuration on the training
set and the test set can be seen in Figure 5.5.

The immediate observation that can be drawn from the results of this
experiment is that higher learning rates tend to make rapid weight updates
and cause the cost function to converge early to a suboptimal solution. When
the values 10−2 and 10−3 were used, all of the optimizers found that the best
solution is to take advantage of the class imbalance in the data and simply
predict the majority negative class under all circumstances. This resulted in a
training accuracy of 86.47 % and 50.0 % on the balanced test set. This is also
a good demonstration of why it is helpful to keep a balanced test set when
dealing with medical data, which often suffers from being imbalanced.

0.01 0.001 0.0001 1e-05

SGD

RMSprop

Adam

Nadam

86.47 86.47 59.84 86.47

86.47 86.47 96.80 90.61

86.47 86.47 95.19 93.10

86.47 86.47 95.39 90.93
84%

86%

88%

90%

92%

94%

96%

(a) Accuracy on the training set

0.01 0.001 0.0001 1e-05

SGD

RMSprop

Adam

Nadam

50.00 50.00 56.25 50.00

50.00 50.00 90.25 78.75

50.00 50.00 93.75 86.75

50.00 50.00 89.00 85.25 50%

60%

70%

80%

90%

(b) Accuracy on the test set

Figure 5.5: Comparison of the performance of different optimizers and learn-
ing rates used to train the BaseNet prototype. The trained model’s binary
accuracies are shown separately for the COVIDx8B training set (a) and for
the COVIDx8B test set (b).

As we moved to the lower learning rates, the results drastically improved.
For the value of 10−4, the RMSprop, Adam, and Nadam were able to fit the
training data very well and still maintain good generalization on the test data.
As for the SGD, we can see that it no longer used the strategy of predicting
the majority class, but it was still unable to converge to a reasonable point.
Without the use of an accumulating momentum, this optimizer probably con-
verges too slowly and would need more epochs to show improvement. The
lowest attempted learning rate of 10−5 also gave us relatively good results.
Once again, RMSprop, Adam, and Nadam were able to discriminate between
the classes both in the training set and the test set, but the accuracy did de-
crease in comparison to the previous learning rate. We suspect that the weight
updates with this learning rate become too small, and the convergence takes

74

5.4. Impact of Image Preprocessing Techniques

longer, so the model would probably reach comparable results to those with
the value of 10−4, but it would need to be trained for more epochs. The same
can be said for SGD, which once again stagnated on predicting the majority
class.

Based on these results, we conclude that the choice of the Adam optimizer
with an initial learning rate of 10−4 was indeed a wise choice, as also suggested
by our research and analysis of the related works. The RMSprop with this
learning rate achieved a higher training accuracy of 96.80 % in comparison
to Adam’s 95.19 %, but this difference is not very significant, and our pri-
mary evaluation criterion is the binary accuracy on the test set, where Adam
outperformed the other optimizers by a significant amount with a result of
93.75 %.

5.4 Impact of Image Preprocessing Techniques

While deep learning famously requires very little to no preprocessing of the
input data, our research of related studies in COVID-19 detection has shown
that preprocessing the images before feeding them into the network may prove
to be beneficial in some instances. In order to explore this possibility, we
designed several different preprocessing functions that we separately initialized
the image generators with. We then trained our BaseNet prototype for 20
epochs with each setting and observed the impact of the various methods on
the evaluation metrics.

5.4.1 Min-max Normalization

The benchmark we set for comparing the various preprocessing approaches
is the use of min-max normalization. This technique does not remove any
information from the image and does not alter its intensity distribution in
any way; it simply rescales the values to range from 0 to 1 by dividing each
pixel value by 255. Doing so transforms the data to have comparable scales
and reduced variation, which frequently leads to better results in many deep
learning scenarios. At the very least, this technique should not hinder the
model’s performance, making it a suitable candidate for being a constant when
optimizing other hyperparameters. Hence, we used min-max normalization
when performing all the previously described experiments.

Since the BaseNet architecture is built to accept image sizes of 224×224 px,
each image was also resized to fit these dimensions. This is true for all the
preprocessing techniques that we will discuss.

5.4.2 Histogram Equalization

The first more complex preprocessing technique that we designed uses the
histogram equalization described in Section 3.2.4. The images in our dataset

75

5. Experiments and Results

are not limited to grayscale values; they are a composition of three colour
channels. Consequently, performing standard histogram equalization in the
default RGB colour space would redistribute the channels separately, and the
colour components would be incorrect. To resolve this issue, we first converted
the image into a colour space that separates the pixel intensity values from
the colour components. The standard colour space used in this scenario is
the YCbCr, which uses the Y component to represent the pixels’ luminance
and Cr and Cb are their chromatic components. After converting the image
to YCbCr, we equalized the distribution of the whole Y channel and then
converted the image back to the RGB colour space.

Due to the fact that histogram equalization has a tendency to highlight
noise in the images, we attempted to denoise them first by using bilateral
filtering. As described during our analysis in Section 3.2.3, bilateral filtering
removes noise while preserving edges, which is crucial to our CXR domain
where the COVID-19 may be indicated by linear opacities along the lungs.
After denoising, the intensity equalization was performed, and the image was
resized.

5.4.3 Contrast Limited Adaptive Histogram Equalization

To further combat noise amplification when increasing image contrast, we
designed an alternative preprocessing method that uses CLAHE instead of the
global histogram equalization. This may also be helpful in situations where
the image does not have a similar contrast level throughout all its regions,
so redistributing the intensities locally may improve the overall separation of
structures and patterns within the image. As was the case in the previous
approach, we first applied bilateral filtering and then converted the colour
space to YCbCr and performed CLAHE on the pixels’ luminance. The default
clip limit of 40 was used initially, but because we found the resulting images
to be damaged and overly contrasting, we also tested a clip limit of 3. After
increasing the local contrasts, the image was resized and normalized. The
effect of applying this technique is shown in Figure 5.6 along with the output
of standard histogram equalization for comparison.

5.4.4 Diaphragm Segmentation

The last attempted technique used in training our prototype was the prepro-
cessing pipeline specifically proposed for COVID-19 detection by [83], which
aims to remove the diaphragm in the CXR image based on the assumption
that it forms a large high-intensity region that interferes with analyzing the
actual region of interest — the lungs. We recreated the preprocessing steps as
accurately as the level of detail in the original publication allowed; therefore,
we will describe the steps specific to our implementation and the rest of the
details are described in Section 3.2.6 of our analysis.

76

5.4. Impact of Image Preprocessing Techniques

Original CXR image Histogram equalization CLAHE

Figure 5.6: Results of applying histogram equalization and CLAHE with a clip
limit of 3 on a low-contrast CXR image. We can see how the global histogram
equalization increases overall contrast, but the localized CLAHE method is
able to bring out individual bones and lung markings more clearly.

Each image was converted to a grayscale single-channel version, which was
resized to 224 × 224 px, and a threshold was calculated based on the recom-
mended formula T = Vmin+ t×(Vmax−Vmin). The authors used the value 0.9
for the cutoff, which we denote as t; however, we found that this value leads to
the removal of only very small areas in our images. We empirically determined
that the optimal value for the cutoff t on our data is 0.8, as it removes larger
areas of the high-intensity regions. Next, we used the threshold T to perform
binary thresholding and traced the contour of the largest remaining object.
Considering that the thresholding operation creates very rough and jagged
edges, we first had to smoothen the contour to better match the shape of the
diaphragm, which we are trying to remove. We attempted this with two dif-
ferent methods. The first involved enclosing the contour with a convex hull,
which is the smallest convex set of points that contains the whole contour.
The other method approximated the shape of the contour with a polygon to
reduce the number of vertices. The outputs of both of these methods were
further smoothened using a combination of morphological operators, and the
resulting contour of the diaphragm was removed from the original image. In
accordance with the proposed pipeline, we then proceeded to take an identity
of this segmented image, its filtered version, and its equalized version and
combine them into a three-channel pseudocolour image ready to be used in
training. The resulting preprocessed images with the use of convex hull en-
closing are shown in Figure 5.7, and the ones with polygon approximation in
Figure 5.8. It is clear that the convex hull leads to suboptimal results, where
it sometimes removes a very large portion of the image, including the lungs.
For that reason, we opted for the polygon approximation when finally using
the method to train the BaseNet model.

77

5. Experiments and Results

(a)

Original
CXR image

Binary mask
(segmentation)

Contour
outline

Removed
diaphragm

Histogram
equalization

Bilateral
filtering

Final
pseudocolour

(b)

(c)

(d)

(e)

Figure 5.7: Demonstration of the steps of our implementation of the COVID-
19 preprocessing pipeline, which uses a convex hull to enclose the contour of
the high-intensity region. The convex nature of the final contour causes it
to often overlap areas that were not segmented by the calculated threshold.
Specifically, in images (b) and (d), this causes significant problems where the
majority of the image is removed, leaving very little or no useful information.

5.4.5 Results

To our surprise, we found that the model is able to generalize best when no
transformative preprocessing is used — simply using min-max normalization,
which is a very standard step in most deep learning pipelines, yields impressive
results. The test accuracy of the model trained with this preprocessing tech-
nique was 92.75 %, and we know that the potential is even higher, as all of the
previous BaseNet models have been trained with the same technique and even
reached higher accuracies (cross-validation discovered a configuration that led
to 95.50 % test accuracy). We suspect that the reason why the model reached
slightly better results in the previous experiments was that they were only run
for 10-15 epochs, whilst our preprocessing experiment ran for 20 epochs, which
led to overfitting. This hypothesis is supported by the fact that the training
accuracy of this preprocessing experiment was 98.33 %, which is higher than
any previously encountered results. Its specificity is high, which has been a
common occurrence throughout all model configurations, and the sensitivity
has slightly dropped to a still respectable 87.00 %.

Analyzing the results in Table 5.2 further, enhancing local contrast with
CLAHE proved to be a better approach than using global histogram equaliza-
tion, where the main effect was to usually highlight the lung region, but not

78

5.4. Impact of Image Preprocessing Techniques

(a)

Original
CXR image

Binary mask
(segmentation)

Contour
outline

Removed
diaphragm

Histogram
equalization

Bilateral
filtering

Final
pseudocolour

(b)

(c)

(d)

(e)

Figure 5.8: Demonstration of the steps of our implementation of the COVID-
19 preprocessing pipeline, which uses polygon approximation to outline the
contour of the high-intensity region. The computed threshold seems to work
well in most images, where it successfully removes the diaphragm region and
leaves the lungs undamaged. Image (d) has a relatively low contrast, which
leads to a large portion of the image being removed, including a small part of
the right lung, which is an undesired outcome.

the individual lung markings. As suspected based on our prior visual assess-
ment of the images, using a clip limit of 3 led to slightly better results than the
standard clip limit of 40, which often created several high-intensity artefacts
that could have interfered with the natural features. Finally, we discovered
that using CLAHE with a clip limit of 3 had very comparable results to the
diaphragm segmentation pipeline. This is interesting because the pipeline in-
volves a global histogram equalization step, which leads us to the assumption
that removing the high-intensity region from the image improved the ability
to focus on the lung area, where the local contrast had a more significant
impact as a result.

The root cause behind the more extensive preprocessing methods not be-
ing able to outperform the standard min-max normalization is likely the non-
homogeneity of the data. The CXR scans all have very different dimensions
and levels of exposure and initial contrast, which means that the unified pre-
processing steps may only work well with a subset of the data. It is possible
that building a pipeline that utilizes more adaptive thresholds and other vari-
ables would perhaps lead to better results. We also draw this conclusion based
on the fact that during our analysis of other works, the COVID-19 detection
pipelines that used complex preprocessing steps were often done on a much

79

5. Experiments and Results

smaller dataset with only one source. Our data comes from 6 different reposi-
tories, and the solutions proposed by the COVID-Net team that worked with
the same dataset have also used only relatively basic preprocessing steps.

Table 5.2: Comparison of the impact of various preprocessing techniques on
the evaluation metrics of COVID-19 detection with the BaseNet prototype.

Preprocessing technique Train acc. Test acc. TPR TNR AUC

Normalization 98.33 % 92.75 % 87.00 % 98.50 % 0.982
Histogram equalization 98.09 % 85.50 % 72.00 % 99.00 % 0.968

CLAHE (clip = 40) 98.40 % 88.50 % 78.50 % 98.50 % 0.978
CLAHE (clip = 3) 98.13 % 89.75 % 82.00 % 97.50 % 0.976

Diaphragm segmentation 98.12 % 89.75 % 83.00 % 96.50 % 0.969

5.5 Data Augmentation and Generation

Our primary means of dealing with class imbalance in the training data was
using cost sensitive learning and assigning each class with a weight inversely
proportional to the class’s prevalence in the training data. During this experi-
ment, we explored other methods of either increasing the pool of the minority
positive class with oversampling and image generation or augmenting the ex-
isting images to increase variation within the training set in an attempt to
improve generalization.

5.5.1 Oversampling and Augmentation

We set up two primary ways of increasing the size of our underrepresented
class in the training data — randomly sampling images from the COVID-19
positive class and re-inserting them as duplicates into the training set, and
doing the same oversampling, but instead of directly duplicating the images,
we first augmented them. Both approaches were repeated until the classes in
the training data were balanced. The possible augmentations that we defined
and randomly applied to each image were up to 10-degree rotations in both
directions, up to 5 % horizontal and 3 % vertical shifts, up to 10 % increase or
decrease of brightness, and up to 10 % zooming in and out. Vertical flipping
certainly makes no sense in the case of CXR images, and we found that using
horizontal flipping has also led to worse results. This is likely due to the fact
that the chest cavity is not symmetrical, and although the dataset description
does not specify this, the majority of images seem to be of the posterior-
anterior view, making the horizontally inverted version much less common.

80

5.5. Data Augmentation and Generation

For comparison, we also experimented with using online augmentation of
batches of images during the training, where the positive class was not over-
sampled but merely modified to artificially pose as new data. Our hypothesis
was that this would increase variation in the training set, making it harder
to fit the data, but also decrease overfitting. Since this alone does not per-
form class balancing, we paired it with the use of class weights. Given the
larger variation in the data, we trained each configuration for 30 epochs. As a
control, we also trained the standard class weights balancing solution without
any augmentation for the same duration in order to have direct comparability
with the other techniques. The evaluation of the models that achieved the
highest validation accuracy during those 30 epochs is shown in Table 5.3.

Table 5.3: Comparison of the impact of various class balancing techniques on
the evaluation metrics of COVID-19 detection with the BaseNet prototype.

Balancing technique Train acc. Test acc. TPR TNR AUC

Class weights 98.31 % 92.75 % 87.00 % 98.50 % 0.977
Oversampling 99.46 % 91.25 % 83.50 % 99.00 % 0.986

Oversampling with augmentation 95.61 % 80.00 % 60.50 % 99.50 % 0.942
Online augmentation 97.29 % 94.00 % 88.50 % 99.50 % 0.986

The first observation we make is that using online data augmentation seems
to lead to better results in the long run. Using this technique, we reached a
test accuracy of 94.00 %, whereas the class weights balancing with no aug-
mentation achieved 92.75 %. We know that higher accuracy is possible with
this configuration because we used this method without augmentation when
cross-validating our original BaseNet prototype, which managed to have a test
accuracy of 95.50 % in 15 epochs of training. This suggests that using on-
line data augmentation is especially useful in cases where we train the model
for more extended periods of time because the increased variation mitigates
overfitting. This is consistent with our findings from the analysis of existing
research, as the results described in Section 3.5.2 presented by [83] show that
not using data augmentation during their 200 epochs of training had a hugely
negative impact on their tested models. Our standard oversampling approach
had only a slightly lower test accuracy than class weights with no augmenta-
tion. This and the fact that its training accuracy was especially high probably
means that duplicating the images led to more severe overfitting, and the gen-
eralization ability was reduced. The final technique which augmented the
duplicates was substantially worse than its alternatives. With a test accuracy
of 80.00 % and training accuracy also being the lowest of the techniques, we
suspect that there was too much variation in the positive class, so the model
learned to properly fit the more stable negative class. This hypothesis is also
supported by the very low true positive rate of 60.50 %.

81

5. Experiments and Results

5.5.2 Generating Synthetic CXR Images with DCGAN

One of the latest trends in deep learning is using GANs for generating brand
new data based on the distribution of the existing training set. Our research
has not uncovered many successful applications of these generative models
in balancing the medical datasets for COVID-19 detection, so we attempted
to explore this technique and test whether it is a viable option for our data.
Inspired by common insights and recommendations in related literature, we
built a simple DCGAN architecture where a generator and a discriminator are
optimized together in an adversarial manner, as described in Section 3.3.4.1
in more detail. The generator uses transposed convolutional layers to perform
trainable upsampling of a random noise vector from the latent space. As the
original DCGAN publication [90] suggests, we used a 100-dimensional hyper-
sphere to generate the input vector, where each feature is drawn from the
Gaussian distribution with a mean of 0 and a standard deviation of 1. The
input of the generator is fed into a wide fully-connected dense layer and then
upsampled with 4 transposed convolutional layers with the ReLU activation
function, and finally into the convolutional output layer activated by the hy-
perbolic tangent. This outputs a 256 × 256 px colour image representing a
synthetic sample, which imitates a real CXR image. On the other hand, the
discriminator uses 5 convolutional layers with parametrized ReLU (α = 0.2)
as the activation function, and the flattened features are classified by a single
neuron and the logistic sigmoid. The discriminator’s output represents the
probability that the input image is real and not supplied by the generator.

As per further recommendations by the DCGAN authors, we performed
the training of the combined architecture on COVID-19-positive images with
the Adam optimizer with an initial learning rate of 2 × 10−4 and a lowered
exponential decay rate for the first moment estimate of 0.5 [90]. Contrary to
the typical conventions in defining DCGANs, we did not use batch normaliza-
tion as we found it to produce worse results. The summarized generator and
discriminator architectures are shown in Table C.1 and Table C.2 respectively.

Figure 5.9 shows a range of synthetic images generated by our generator
after 75 epochs of training. We can see that the model managed to capture the
information that the images contain a high-intensity separation in the form of
the spine, and we also notice that an attempt to form the two lungs has been
made. However, the images are not very clear and certainly not anatomically
correct enough to be used in balancing our real data. We observed a significant
progression over the course of the training, which leads us to believe that
better quality could be achieved with enough computational resources and
time. Unfortunately, we were unable to secure these conditions in the Google
Colab environment.

Following these findings, we experimented with lowering the computational
complexity of the training to explore the potential of the generative models
further. We did so by removing one of the upsampling transposed convolu-

82

5.6. Transfer Learning and Fine-tuning

tional layers in the generator, which meant that the synthetic images were
only 128 × 128 px in size. Our intention was not to use these during the
training of our classifiers because we had serious doubts regarding the level of
detail signifying the disease that could be captured within these dimensions.
The resulting samples generated by our smaller DCGAN are presented in Fig-
ure 5.10, and they seem much more hopeful. Firstly, the lungs and the spine
are quite clear in each of the images, and there is a much finer level of detail
where we can even see ribs and some lung markings. Secondly, the model even
managed to capture some of the other organs found in the chest cavity, such
as the diaphragm and the heart. Some images are distorted and the anatomy
is definitely not perfect, but this experiment indicates that there may be po-
tential in utilizing this method given more computational resources. For our
purposes, we decided not to use the images in training, as the likelihood that
they contain accurate markings that indicate the presence of a COVID-19
infection is very low.

Figure 5.9: Synthetic CXR images generated by our implementation of the
DCGAN built for the generation of 256× 256 px colour images.

5.6 Transfer Learning and Fine-tuning

Our analysis of the related works in COVID-19 detection revealed that the
most common approach to this task is utilizing some of the CNN architectures
that have performed well in the ILSVRC competitions over the last several
years. The Keras framework includes some of these CNNs already built-in and
even enables pre-loading them with their weights pre-trained on the ImageNet

83

5. Experiments and Results

Figure 5.10: Synthetic CXR images generated by our implementation of the
DCGAN built for the generation of 128× 128 px colour images.

dataset. The specific architectures that we decided to experiment with are
the following: VGG16, VGG19, ResNet-50, DenseNet-121, and Xception. We
have chosen this selection to include a substantial variety of layer depths,
connectivity, and density. The individual specifications and details of the
networks are described in Section 3.4.

Each architecture was first loaded with the ImageNet weights and the max-
pooling strategy for reducing feature map dimensions, as we suspected that
the most significant features within the CXR images would be those with the
highest intensities. We also set the input layer size to match the dimensions
of our BaseNet models (224×224×3). The part of the network that performs
classification was then replaced by its adaptation specific to our task. We
constructed the classifier by flattening the output of the convolutional base
and feeding it into a 256 neuron wide dense layer activated by the ReLU
function with a dropout rate of 0.2. This layer was then connected to the
final output layer, which contained a single neuron activated by the logistic
sigmoid. In the case of the DenseNet-121 architecture, we built two versions.
One has the standard ImageNet weights like the other CNNs, and the other is
the CheXNet model pre-trained on the ChestX-ray14 dataset. Although these
weights are not provided in the Keras framework, they are publicly available
for download on Kaggle18.

In order to make use of the pre-trained weights on the source datasets, we
started the training of each architecture with the standard transfer learning

18https://kaggle.com/theewok/chexnet-keras-weights

84

https://kaggle.com/theewok/chexnet-keras-weights

5.6. Transfer Learning and Fine-tuning

approach. The whole convolutional base was locked so that its weights were
untrainable, and the classifier was trained independently for 5 epochs. After-
wards, all of the weights in the network were unlocked, and we continued to
fine-tune them for 10 more epochs. The reason for this approach was firstly to
utilize the highly successful feature extraction from the source data and then
gradually try to adapt it to the features present in the COVIDx8B data by
delaying the weight updates of the convolutional layers.

The images used in the training of these models were not altered by any of
our own preprocessing algorithms but rather by those provided specifically for
each individual model. The models come equipped with their own functions
named preprocess input which usually apply some form of transformation
such as zero-centering or normalizing the pixel intensities with respect to the
ImageNet dataset.

Table 5.4: Comparison of results achieved by various architectures in our
transfer learning and fine-tuning experiments.

Model Params Source data Train acc. Test acc. TPR TNR AUC

VGG16 14.9 M ImageNet 98.82 % 97.50 % 95.00 % 100.0 % 0.998
VGG19 20.2 M ImageNet 98.65 % 96.25 % 92.50 % 100.0 % 0.998

ResNet-50 24.1 M ImageNet 99.08 % 95.75 % 92.00 % 99.50 % 0.997

DenseNet-121 7.2 M
ImageNet 99.32 % 95.75 % 91.50 % 100.0 % 1.000
ChestX-ray14 99.96 % 96.50 % 93.50 % 99.50 % 0.997

Xception 21.3 M ImageNet 99.35 % 95.50 % 91.00 % 100.0 % 1.000

Based on the results presented in Table 5.4, we see that almost all of the
transferred architectures have been able to outperform our BaseNet proto-
type, which was to be expected. Only the Xception model has reached an
equal test accuracy of 95.50 %, but its COVID-19 sensitivity is lower by 2 %,
and the network has almost three times as many trainable parameters as the
BaseNet, which leads us to believe that our prototype is superior based on
these results. To our surprise, the model that seems to have the highest abil-
ity to separate the classes is the VGG16. With a test accuracy of 97.50 %,
sensitivity of 95.50 % and specificity of 100 %, it surpassed all of the other
models and even the state-of-the-art COVID-Net CXR-2. This is an unex-
pected result as the VGG architecture is considered to be somewhat outdated
by the current standards, though perhaps its relative simplicity gives it the
necessary advantage. Being the shallowest CNN in the selection and not uti-
lizing any complex design patterns such as residual connectivity, it seems that
it had less overfitting on the training data and was subsequently forced to
learn the general patterns and features specific to each class. We also see that
the VGG architectures have the lowest training accuracies, which also hints at
a lower rate of overfitting. We observed a decrease in accuracy of the VGG19,

85

5. Experiments and Results

which has the same design pattern but has additional layers that add roughly
5 million parameters and complicate the training process.

We are unsure of the reason why the VGG16’s generalization outperforms
the DenseNet-121 and the COVID-Net CXR-2, because they both have signif-
icantly less trainable parameters (DenseNet-121 has 7.2 million and COVID-
Net CXR-2 has 8.8 million) and their very large depths are compensated by
high residual connectivity which should, in theory, mitigate problems with
vanishing gradients. Considering that the difference in their performance is
quite minuscule, we suspect it to be simply caused by a random factor in the
training process.

0 2 4 6 8 10 12 14
Epoch

0.75

0.80

0.85

0.90

0.95

1.00

B
in

ar
y

ac
cu

ra
cy

Training
Validation

(a) DenseNet-121 from ImageNet

0 2 4 6 8 10 12 14
Epoch

0.75

0.80

0.85

0.90

0.95

1.00

B
in

ar
y

ac
cu

ra
cy

Training
Validation

(b) DenseNet-121 from ChestX-ray14

Figure 5.11: Progression of the training and validation binary accuracies dur-
ing the training of the DenseNet-121 architecture transferred from the Ima-
geNet (a) and the ChestX-ray14 (b) datasets.

The model with the second-highest test accuracy of 96.50 % is the DenseNet-
121 pre-trained on the ChestX-ray14 dataset. Being the only model trans-
ferred from source data that belongs to the same image domain as the target
COVIDx8B data, we were not surprised that it achieved good results. Its 7.2
million trainable parameters also make it the most light-weight out of any
of the models except for our implementation of COVID-Net CXR3-B2, which
had 6.3 million parameters but led to significantly worse results. As illustrated
in Figure 5.11, pre-training the model on ChestX-ray14 instead of ImageNet
provided much better convergence, and the validation accuracy kept steadily
rising along with the training accuracy. In the case of the model from Ima-
geNet, we do not see much progression within the span of the 15 epochs, and
the generalization ability maintains a relatively constant distance from the
ability to fit the training data. Despite this, the ImageNet version was still
able to provide very good results, and with its specificity of 100 % (a value
shared by several of the models), it remains a useful tool, especially in cases
where we search for high confidence in COVID-19-positive diagnoses. Finally,
the graphs also show a noticeable drop in validation accuracy around the fifth
epoch, which is the point where the fine-tuning portion of the training began.

86

5.7. Ensemble Model

This is likely caused by the sudden increase in complexity, and we see that
the model from ChestX-ray14 was able to recover and fine-tune the weights
more successfully.

5.7 Ensemble Model

The last in our series of conducted experiments combines several of the pre-
viously described models into an ensemble and evaluates their collective pre-
dictive ability. We constructed the ensemble from the best BaseNet model
configuration found during its cross-validation described in Section 5.2 and all
of the fine-tuned models from Section 5.6 (for DenseNet-121, we used its more
successful version pre-trained on ChestX-ray14). To simulate their collective
classification, we gathered the predictions of each individual model for every
sample in the test data and then calculated the mean of the predicted proba-
bilities. The samples with a mean probability of COVID-19 of over 50 % were
classified as positive, the rest as negative.

Table 5.5: Evaluation of an ensemble model from several of the best perform-
ing base models discovered during previous experimentation. The evaluation
is firstly presented for the standard classification threshold of 0.5 and subse-
quently for a calculated optimal threshold of 0.22.

Dataset Threshold Train acc. Test acc. TPR TNR AUC

COVIDx8B
0.5

99.50 % 97.75 % 95.50 % 100.0 % 0.999
COVIDx3 99.77 % 82.51 % 61.45 % 100.0 % 0.997

COVIDx8B
0.22

98.87 % 99.25 % 98.50 % 100.0 % 0.999
COVIDx3 99.84 % 94.54 % 87.95 % 100.0 % 0.997

By constructing the ensemble this way, we measured a test accuracy of
97.75 % on the COVIDx8B test set, which is the best encountered result
yet. To further test its collective ability to generalize, we also performed the
experiment on the older COVIDx3 version. While the state-of-the-art COVID-
Net CXR-2 retained its good performance on both of the dataset versions, our
ensemble’s accuracy significantly dropped to 82.51 %. Admittedly, this result
does not seem so poor until we calculate the COVID-19 sensitivity, which was
only 61.45 %. Worse results were to be expected, but such a low sensitivity
was surprising given that the AUC remained high at 0.997. Considering the
fact that AUC is a metric independent of the chosen classification threshold
and the model had a large number of false negatives, we experimented with
lowering the threshold value. We did so not only for the mean probabilities
of the whole ensemble but also for probability estimates of every individual

87

5. Experiments and Results

base classifier because their individual performance also decreased on the older
dataset (for the chosen BaseNet model, its accuracy on COVIDx3 test set was
84.15 % with a sensitivity of 66.27 %).

Based on the assumption that the optimal threshold value will maximize
the true positive rate and minimize the false positive rate, we used the ROC
curve to find the value for which the expression TPR−FPR reaches its max-
imum. The optimal threshold was 0.32 for the COVIDx8B training data and
0.03 for the COVIDx3 training data. We combined the thresholds by calculat-
ing their weighted mean to find a value that works well across both datasets.
Since the COVIDx3 threshold is extremely low and the newer COVIDx8B
data is considerably more reliable, we weighted the average in a way where
the COVIDx8B threshold was assigned double the weight of the COVIDx3
threshold. The final combined optimal threshold was 0.22. Using this thresh-
old during the classification of each of the base models and the whole ensemble
increased the COVIDx3 test accuracy to 95.54 % with a sensitivity of 87.95 %,
and the metrics also improved for COVIDx8B, where the test accuracy even
reached 99.25 % as shown in Table 5.5. The evaluation of the ensemble on the
COVIDx8B test set is summarized in Figure 5.12 where we find that all of the
test images were classified correctly with the exception of 3 false negatives.

negative positive

Predicted labels

ne
ga

tiv
e

po
si

tiv
eTr

ue
 la

be
ls

200 0

3 197

0

25

50

75

100

125

150

175

200

(a) Confusion matrix

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e

Receiver Operating Characteristic Curve

ROC (AUC = 0.999)

(b) ROC curve

Figure 5.12: The confusion matrix and ROC curve that characterize our en-
semble model’s binary classification performance on the COVIDx8B test im-
ages.

88

5.8. Discussion

5.8 Discussion

Our findings from the described experiments and results lead us to the con-
clusion that our proposed BaseNet prototype is able to achieve comparable
performance to both the COVID-Net state-of-the-art model and other pop-
ular CNN architectures fine-tuned on our dataset. It is able to do so while
having a very simple network structure, whose randomly initialized training
stabilizes and begins to converge after only about 6 epochs. This is largely
due to the training being paired with the Adam optimizer, which has adaptive
learning rates for individual weights and uses a momentum term to speed up
the convergence and escape local minima. Based on the evaluations on older
COVIDx3 data, the COVID-Net CXR-2 has a distinctive advantage when it
comes to its ability to generalize on other datasets. This is likely due to its
unique architecture, which was specifically designed by the process of genera-
tive synthesis of deep neural networks with a focus on retaining performance
on out of sample predictions. This has also proved to be evident when we used
the PEPX block design pattern to re-create our own version of the proposed
architectures because the CXR3-B2 had relatively consistent test accuracy
on both assessed versions of the dataset. Our BaseNet prototype, as well as
our fine-tuned models, lack this degree of consistency. However, we find the
COVIDx8B evaluation to be more relevant as the authors of the dataset have
issued a statement19 that the current test set was specifically picked from
the RICORD data repository, which is curated by the Radiological Society of
North America and therefore has more reliable annotations in comparison to
the older dataset versions.

The number of diverse CNN models provided by the Keras framework al-
lowed us to compose an ensemble where the BaseNet was grouped with several
other common architectures that we pre-trained on larger source datasets. The
experiment demonstrated the power of ensemble models, where the majority
has the opportunity to override errors made by individual base models. We
also found that if the architecture is kept constant, it is beneficial to pre-train
its weights on a more similar source dataset such as the ChestX-ray14 rather
than the ImageNet, which belongs to a completely different domain.

During the analysis of the ROC curve and its AUC metric of the collective
predictions, we discovered that lowering the classification threshold alleviates
our models’ problem of having inconsistent performance throughout different
dataset versions. By lowering the threshold from 0.5 to 0.22, we created a
classifier that not only surpasses the state-of-the-art on both COVIDx8B and
COVIDx3 data but also delivers competitive results with traditional diagnos-
tic techniques like the RT-PCR, which has been numerously measured to have
a lower COVID-19 sensitivity. Lowering the threshold also has some impli-
cations in the context of medical diagnosis, where it increases the likelihood

19https://github.com/lindawangg/COVID-Net/issues/159

89

https://github.com/lindawangg/COVID-Net/issues/159

5. Experiments and Results

of detection. This may inevitably also increase the number of false positive
results, but we do not consider those to be as detrimental as false negatives.
In other words, telling an infected patient that they are healthy has much
more severe consequences than telling a healthy patient that they have the
virus, especially in the case of COVID-19, where identification and contain-
ment of the infected are crucial to preventing the virus from spreading. It is
also important to note that while the ensemble model yields the best results,
its memory requirements and inference time are much slower than those of an
individual model. If the model was to be incorporated in a CAD system on
hospital hardware, the requirements could be for a more light-weight solution.
In such a case, our BaseNet prototype or the DenseNet-121 architecture would
be the preferred choice.

We found that the COVIDx data is not particularly suitable for more com-
plex image preprocessing techniques, as a simple pixel intensity normalization
led to the best results. Other works described in our research have success-
fully used image preprocessing to enhance their results, but it seems that their
datasets were more homogenous. The COVIDx gathers data from several di-
verse repositories and would require adaptive calculation of the algorithm’s
thresholds and parameters to work well in general. If the CNN method of
automated diagnosis were to be utilized in an actual medical environment,
we would suggest that applying only elementary preprocessing steps would
ensure the model’s consistency; otherwise, the variation in the positioning of
patients and X-ray exposure intensities could cause problems. On the other
hand, if we can expect a controlled environment, the diaphragm segmentation
pipeline along with increased local contrast with CLAHE could prove to be
useful in focusing the model on the lung markings that indicate the presence
of the virus.

Finally, we discovered that balancing medical datasets is necessary, espe-
cially in the case of COVID-19, where the classes suffer from heavy imbalance.
The best way to balance the data is by using cost sensitive learning, where
each class is assigned a weight inversely proportional to its prevalence in the
training data. If the model is trained for more extended periods of time, it
has proved beneficial to additionally use online data augmentation in order
to reduce the overfitting. A possible alternative could be using the minority
class to train a GAN and then generating synthetic images from the minority
class to increase its prevalence. We were unable to reach reasonable image
quality with our DCGAN implementation, but we suspect that given more
computational resources and perhaps a more modern GAN architecture such
as StyleGAN [121] or CycleGAN [122] could provide results that truly capture
the distinctive features of the various classes.

90

Conclusion

The main focus of this thesis was to research the possibilities of using convolu-
tional neural networks to detect COVID-19 in X-ray images and to implement
a prototype model for performing this task on open datasets available online.
We first described the disease and the current methods used to diagnose it
as well as their potential drawbacks. In the second chapter, we covered the
basics of machine learning theory and defined the necessary terms needed for
understanding the proposed solutions in the latter part of the thesis. The fol-
lowing chapter was dedicated to describing the application of neural networks
in performing detection tasks in medical imaging. We started by exploring
the various methods used for X-ray image preprocessing and resolving issues
commonly found within medical datasets. Next, we analyzed existing archi-
tectures that are frequently used for similar tasks, and finally, we described
existing research on COVID-19 detection that brought relevant insights to
our own experimentation. Chapters 4 and 5 describe our own experimenta-
tion setup as well as the individual experiments and their results. We designed
a comprehensive set of experiments that cover all of the essential steps in solv-
ing the task of COVID-19 detection using convolutional neural networks, such
as image preprocessing and class balancing techniques, application of differ-
ent optimization algorithms and architecture designs, and utilization of the
collective predictive power of model ensembles. Each experimental configura-
tion was evaluated on a state-of-the-art dataset that combines several open
data repositories, and the results were discussed, interpreted, and compared
to previous work.

91

Conclusion

Contribution

By prototyping a basic convolutional neural network and optimizing specific
hyperparameters of its structure, we were able to build an architecture that
delivers excellent results while remaining relatively simple and compact. We
name this light-weight prototype the BaseNet, and it achieves test set accura-
cies of up to 95.50 % with a COVID-19 sensitivity of 93.00 % and specificity
of 98.00 %. These are comparable to results reported by a number of studies
surrounding the traditional diagnosis using RT-PCR in a laboratory environ-
ment. In addition, our automated method of diagnosis provides an alternative
that is more time-efficient, accessible, and less costly.

In order to maximize performance, we proceeded to create an ensemble of
the BaseNet prototype grouped together with several fine-tuned CNN mod-
els. These are architectures that have previously established their dominance
in computer vision contests and other detection tasks, many of which also
belonged to the medical domain. Using the collective predictions of such a
composition of diverse models yielded results that surpass the state-of-the-art
models assessed on the same dataset. More specifically, our proposed ensemble
achieves a test accuracy of 99.25 % with a COVID-19 sensitivity of 98.50 %
and specificity of 100.0 %, proving the point that deep learning has great
potential in assisting medical professionals.

To promote further research on this topic and share our findings, we have
published the implementation of our architectures and experiments on a public
GitHub repository20.

Future Improvements

Due to the time constraints and computational limitations, we were unable to
explore several aspects of the COVID-19 detection task to a satisfactory level
of detail. The following section proposes several ideas for future improvements
that could enhance and further the research conducted as part of this thesis.

The CXR images that form the data used in training and testing the
models often contain a lot of noise and unnecessary features that may be
distracting to the feature classifier. Implementing a localization and segmen-
tation method that would isolate the lung region and crop the image to its
bounding box could simplify the task as well as resolve the loss of information
that is often caused by resizing the images to the dimensions of the networks’
input layers. We have attempted this to a certain degree by using standard
image processing techniques to segment the high-intensity diaphragm region,
but the algorithm was far from perfect on our data and using a deep learn-
ing approach to perform the segmentation would possibly prove to be more
successful.

20https://github.com/chododom/COVID-19-Detection

92

https://github.com/chododom/COVID-19-Detection

Future Improvements

As shown by [98], using twice transfer learning on previously established
architectures can also lead to improved performance. We have used this ap-
proach with a DenseNet-121 model, which was first pre-trained on the Ima-
geNet dataset and then the ChestX-ray14 dataset, where the feature extractor
learned to focus on features found in CXR images. This improved the model’s
convergence and final results during its fine-tuning on our COVID-19 data.
Applying this process to other architectures is another improvement that could
be made in the future.

The next area to focus on could be balancing the minority COVID-19-
positive class by generating synthetic images with generative adversarial net-
works. We observed a constant improvement in the images generated by our
DCGAN implementation, but the training process used up too much time
and resources to let it converge to an optimal point. We quickly achieved
very promising results when we simplified the problem by reducing the image
dimensions. This leads us to suspect that giving the training process more
time or perhaps using modern GAN implementations such as StyleGAN or
CycleGAN would lead to the generation of images with sufficient detail and
anatomical accuracy to be used to oversample the positive class and enable
the model to learn the discriminatory features using more samples.

As mentioned in Section 1.2, the linear opacities and ground-glass appear-
ances found in the lungs may indicate the presence of a number of pulmonary
viruses, no only the SARS-CoV-2. Consequently, it is often challenging to
accurately classify the specific disease which could cause problems, as each
requires a different treatment. We suggest that expanding the research con-
ducted in this thesis to further explore categorical classification of various
pulmonary diseases could be of great use.

Our final proposal for improving the reliability and usability of convolu-
tional neural networks for the automated diagnosis of COVID-19 would be
adding an explainability module. Such a module would mark the regions of
the image that influenced the model’s final decision, thereby allowing the user
to validate whether the model is making the right decisions for the right rea-
sons. An example of such a design was presented by the COVID-Net team,
who leveraged the GSInquire explainability method for their models [77].

93

Bibliography

1. The World Health Organization, Regional office for the Eastern Mediter-
ranean. About COVID-19 [online]. 2020-03 [visited on 2021-02-15]. Avail-
able from: http://www.emro.who.int/health-topics/corona-viru
s/about-covid-19.html.

2. UDUGAMA, Buddhisha; KADHIRESAN, Pranav; KOZLOWSKI, Han-
nah N.; MALEKJAHANI, Ayden; OSBORNE, Matthew; LI, Vanessa
Y.C.; CHEN, Hongmin; MUBAREKA, Samira; GUBBAY, Jonathan
B.; CHAN, Warren C.W. Diagnosing COVID-19: The Disease and Tools
for Detection. ACS Nano. 2020, vol. 14, no. 4. Available from doi: 10
.1021/acsnano.0c02624.

3. PADHYE, Nikhil S. Reconstructed diagnostic sensitivity and specificity
of the RT-PCR test for COVID-19. medRxiv. 2020. Available from doi:
10.1101/2020.04.24.20078949.

4. BISOFFI, Zeno; POMARI, Elena; PIUBELLI, Chiara; SILVA, Ronaldo;
DEIANA, Michela; RONZONI, Niccolò; BELTRAME, Anna; BERTOLI,
Giulia; RICCARDI, Niccolò; PERANDIN, Francesca; GOBBI, Federico;
FORMENTI, Fabio; BUONFRATE, Dora. Sensitivity, Specificity and
Predictive Values of Molecular and Serological Tests for COVID-19: A
Longitudinal Study in Emergency Room. Diagnostics. 2020, vol. 10, no.
9. issn 2075-4418. Available from doi: 10.3390/diagnostics10090669.

5. MILLER, Tyler E.; GARCIA BELTRAN, Wilfredo F.; BARD, Adam
Z.; GOGAKOS, Tasos; ANAHTAR, Melis N.; ASTUDILLO, Michael
Gerino; YANG, Diane; MAHOWALD, Grace K.; THIERAUF, Julia;
FISCH, Adam S.; FITZPATRICK, Megan J.; NARDI, Valentina; FELD-
MAN, Jared; HAUSER, Blake M.; CARADONNA, Timothy M.; MAR-
BLE, Hetal D.; RITTERHOUSE, Lauren L.; TURBETT, Sara E.; BAT-
TEN, Julie; GEORGANTAS, Nicholas Zeke; ALTER, Galit; SCHMIDT,
Aaron G.; HARRIS, Jason B.; GELFAND, Jeffrey A.; POZNANSKY,
Mark C.; BERNSTEIN, Bradley E.; LOUIS, David N.; DIGHE, Anand;

95

http://www.emro.who.int/health-topics/corona-virus/about-covid-19.html
http://www.emro.who.int/health-topics/corona-virus/about-covid-19.html
https://doi.org/10.1021/acsnano.0c02624
https://doi.org/10.1021/acsnano.0c02624
https://doi.org/10.1101/2020.04.24.20078949
https://doi.org/10.3390/diagnostics10090669

Bibliography

CHARLES, Richelle C.; RYAN, Edward T.; PIERCE, Virginia M.;
BRANDA, John A.; MURALI, Mandakolathur R.; IAFRATE, A. John;
ROSENBERG, Eric S.; LENNERZ, Jochen K. Clinical sensitivity and
interpretation of PCR and serological COVID-19 diagnostics for pa-
tients presenting to the hospital. The FASEB Journal. 2020, vol. 34, no.
10, pp. 13877–13884. Available from doi: https://doi.org/10.1096
/fj.202001700RR.

6. DINNES, Jacqueline; DEEKS, Jonathan J; BERHANE, Sarah; TAY-
LOR, Melissa; ADRIANO, Ada; DAVENPORT, Clare; DITTRICH,
Sabine; EMPERADOR, Devy; TAKWOINGI, Yemisi; CUNNINGHAM,
Jane; BEESE, Sophia; DRETZKE, Janine; FERRANTE DI RUFFANO,
Lavinia; HARRIS, Isobel M; PRICE, Malcolm J; TAYLOR-PHILLIPS,
Sian; HOOFT, Lotty; LEEFLANG, Mariska MG; SPIJKER, René;
VAN DEN BRUEL, Ann. Rapid, point-of-care antigen and molecular-
based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database
of Systematic Reviews. 2020, no. 8. issn 1465-1858. Available from doi:
10.1002/14651858.CD013705.

7. Radiological Society of North America (RSNA) and American College
of Radiology (ACR) [online]. 2020-06 [visited on 2021-02-15]. Available
from: https://www.radiologyinfo.org/en/info.cfm?pg=chestrad.

8. CLEVERLEY, Joanne; PIPER, James; JONES, Melvyn M. The role
of chest radiography in confirming covid-19 pneumonia. BMJ. 2020,
vol. 370. Available from doi: 10.1136/bmj.m2426.

9. HOSSEINY, Melina; KOORAKI, Soheil; GHOLAMREZANEZHAD,
Ali; REDDY, Sravanthi; MYERS, Lee. Radiology Perspective of Coro-
navirus Disease 2019 (COVID-19): Lessons From Severe Acute Res-
piratory Syndrome and Middle East Respiratory Syndrome. American
Journal of Roentgenology. 2020, vol. 214, no. 5, pp. 1078–1082. issn
0361-803X. Available from doi: 10.2214/AJR.20.22969.

10. WU, Zunyou; MCGOOGAN, Jennifer M. Characteristics of and Impor-
tant Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak
in China: Summary of a Report of 72 314 Cases From the Chinese Cen-
ter for Disease Control and Prevention. JAMA. 2020, vol. 323, no. 13,
pp. 1239–1242. issn 0098-7484. Available from doi: 10.1001/jama.20
20.2648.

11. American College of Radiology. ACR Recommendations for the use
of Chest Radiography and Computed Tomography (CT) for Suspected
COVID-19 Infection [online]. 2020 [visited on 2021-02-15]. Available
from: https://www.acr.org/Advocacy-and-Economics/ACR-Posit
ion-Statements/Recommendations-for-Chest-Radiography-and-
CT-for-Suspected-COVID19-Infection.

96

https://doi.org/https://doi.org/10.1096/fj.202001700RR
https://doi.org/https://doi.org/10.1096/fj.202001700RR
https://doi.org/10.1002/14651858.CD013705
https://www.radiologyinfo.org/en/info.cfm?pg=chestrad
https://doi.org/10.1136/bmj.m2426
https://doi.org/10.2214/AJR.20.22969
https://doi.org/10.1001/jama.2020.2648
https://doi.org/10.1001/jama.2020.2648
https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection
https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection
https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection

Bibliography

12. MOHRI, Mehryar; ROSTAMIZADEH, Afshin; TALWALKAR, Ameet.
Foundations of Machine Learning. The MIT Press, 2018. isbn 026201825X.

13. ZHANG, Xian-Da. Machine Learning. In: A Matrix Algebra Approach
to Artificial Intelligence. Springer, Singapore, 2020. Available from doi:
10.1007/978-981-15-2770-8_6.

14. MISHRA, Aditya. Metrics to Evaluate your Machine Learning Algo-
rithm [online]. Towards Data Science, 2020-05 [visited on 2021-02-22].
Available from: https://towardsdatascience.com/metrics-to-eva
luate-your-machine-learning-algorithm-f10ba6e38234.

15. ŠIMUNDIĆ, Ana-Maria. Measures of Diagnostic Accuracy: Basic Def-
initions. EJIFCC. 2009, vol. 19, no. 4, pp. 203–211. issn 1650-3414.
Available also from: https://pubmed.ncbi.nlm.nih.gov/27683318.
PMC4975285[pmcid].

16. Google Developers. Classification: ROC Curve and AUC; Machine Learn-
ing Crash Course [online]. Google [visited on 2021-02-22]. Available
from: https://developers.google.com/machine- learning/cras
h-course/classification/roc-and-auc.

17. PARK, Seong Ho; GOO, Jin Mo; JO, Chan-Hee. Receiver operating
characteristic (ROC) curve: practical review for radiologists. Korean
journal of radiology. 2004, vol. 5, no. 1, pp. 11–18. issn 1229-6929.
Available from doi: 10.3348/kjr.2004.5.1.11. 2004v5n1p11[PII].

18. KLOUDA, Karel; VAŠATA, Daniel. Vytěžováńı znalost́ı z dat: Neu-
ronové śıtě [online]. Czech Technical University in Prague, Faculty of
Information Technology, 2021 [visited on 2021-03-05]. Available from:
https://courses.fit.cvut.cz/BI-VZD/lectures/files/BI-VZD-1
1-cs-handout.pdf.

19. FORTMANN-ROE, Scott. Understanding the Bias-Variance Tradeoff
[online]. 2012 [visited on 2021-02-23]. Available from: http://courses
.washington.edu/me333afe/Bias_Variance_Tradeoff.pdf.

20. GROSSE, Roger. Generalization [online]. [N.d.] [visited on 2021-03-02].
Available from: https://www.cs.toronto.edu/˜lczhang/321/notes
/notes09.pdf.

21. KLOUDA, Karel; VAŠATA, Daniel. Vytěžováńı znalost́ı z dat: Lineárńı
regrese - pokračováńı, Hřebenová regrese [online]. Czech Technical Uni-
versity in Prague, Faculty of Information Technology, 2021 [visited on
2021-02-23]. Available from: https://courses.fit.cvut.cz/BI-
VZD/lectures/files/BI-VZD-08-cs-handout.pdf.

97

https://doi.org/10.1007/978-981-15-2770-8_6
https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234
https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234
https://pubmed.ncbi.nlm.nih.gov/27683318
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://doi.org/10.3348/kjr.2004.5.1.11
https://courses.fit.cvut.cz/BI-VZD/lectures/files/BI-VZD-11-cs-handout.pdf
https://courses.fit.cvut.cz/BI-VZD/lectures/files/BI-VZD-11-cs-handout.pdf
http://courses.washington.edu/me333afe/Bias_Variance_Tradeoff.pdf
http://courses.washington.edu/me333afe/Bias_Variance_Tradeoff.pdf
https://www.cs.toronto.edu/~lczhang/321/notes/notes09.pdf
https://www.cs.toronto.edu/~lczhang/321/notes/notes09.pdf
https://courses.fit.cvut.cz/BI-VZD/lectures/files/BI-VZD-08-cs-handout.pdf
https://courses.fit.cvut.cz/BI-VZD/lectures/files/BI-VZD-08-cs-handout.pdf

Bibliography

22. KLOUDA, Karel; VAŠATA, Daniel. Vytěžováńı znalost́ı z dat: Metoda
nejblǐzš́ıch soused̊u, kř́ı̌zová validace [online]. Czech Technical University
in Prague, Faculty of Information Technology, 2021 [visited on 2021-02-
20]. Available from: https://courses.fit.cvut.cz/BI-VZD/lecture
s/files/BI-VZD-05-cs-handout.pdf.

23. PURUSHOTHAM, Swarnalatha; TRIPATHY, B. K. Evaluation of Clas-
sifier Models Using Stratified Tenfold Cross Validation Techniques. In:
KRISHNA, P. Venkata; BABU, M. Rajasekhara; ARIWA, Ezendu (eds.).
Global Trends in Information Systems and Software Applications. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 680–690. isbn 978-3-
642-29216-3.

24. PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V.;
THIRION, B.; GRISEL, O.; BLONDEL, M.; PRETTENHOFER, P.;
WEISS, R.; DUBOURG, V.; VANDERPLAS, J.; PASSOS, A.; COUR-
NAPEAU, D.; BRUCHER, M.; PERROT, M.; DUCHESNAY, E. Scikit-
learn: Machine Learning in Python. Journal of Machine Learning Re-
search. 2011, vol. 12, pp. 2825–2830.

25. SAMMUT, Claude; WEBB, Geoffrey I. (eds.). Leave-One-Out Cross-
Validation. In: Encyclopedia of Machine Learning. Boston, MA: Springer
US, 2010, pp. 600–601. isbn 978-0-387-30164-8. Available from doi: 10
.1007/978-0-387-30164-8_469.

26. KROGH, Anders; HERTZ, John. A Simple Weight Decay Can Im-
prove Generalization. In: MOODY, J.; HANSON, S.; LIPPMANN, R. P.
(eds.). Advances in Neural Information Processing Systems. Morgan-
Kaufmann, 1992, vol. 4. Available also from: https://proceedings.n
eurips.cc/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21
-Paper.pdf.

27. BADILLO, Solveig; BANFAI, Balazs; BIRZELE, Fabian; SIEBOURG-
POLSTER, Juliane; DAVYDOV, Iakov; HUTCHINSON, Lucy; KAM-
THONG, Tony; STEIERT, Bernhard; ZHANG, Jitao David. An Intro-
duction to Machine Learning. Clinical Pharmacology & Therapeutics.
2020, vol. 107. Available from doi: 10.1002/cpt.1796.

28. FEURER, Matthias; HUTTER, Frank. Hyperparameter optimization.
In: Automated Machine Learning. Springer, Cham, 2019, pp. 3–33.

29. BERGSTRA, James; BENGIO, Yoshua. Random search for hyper-para-
meter optimization. Journal of machine learning research. 2012, vol. 13,
no. 2.

30. FLOREA, Adrian-Catalin; ANDONIE, Razvan. Weighted Random Sea-
rch for Hyperparameter Optimization. INTERNATIONAL JOURNAL
OF COMPUTERS COMMUNICATIONS & CONTROL. 2019, vol. 14,

98

https://courses.fit.cvut.cz/BI-VZD/lectures/files/BI-VZD-05-cs-handout.pdf
https://courses.fit.cvut.cz/BI-VZD/lectures/files/BI-VZD-05-cs-handout.pdf
https://doi.org/10.1007/978-0-387-30164-8_469
https://doi.org/10.1007/978-0-387-30164-8_469
https://proceedings.neurips.cc/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf
https://proceedings.neurips.cc/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf
https://proceedings.neurips.cc/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf
https://doi.org/10.1002/cpt.1796

Bibliography

no. 2, pp. 154–169. issn 1841-9844. Available from doi: 10.15837/ijc
cc.2019.2.3514.

31. KIRKPATRICK, S.; GELATT, C. D.; VECCHI, M. P. Optimization
by Simulated Annealing. Science. 1983, vol. 220, no. 4598, pp. 671–680.
issn 0036-8075. Available from doi: 10.1126/science.220.4598.671.

32. SNOEK, Jasper; LAROCHELLE, Hugo; ADAMS, Ryan P. Practical
bayesian optimization of machine learning algorithms. arXiv preprint
arXiv:1206.2944. 2012.

33. BOCHINSKI, E.; SENST, T.; SIKORA, T. Hyper-parameter optimiza-
tion for convolutional neural network committees based on evolutionary
algorithms. In: 2017 IEEE International Conference on Image Process-
ing (ICIP). 2017, pp. 3924–3928. Available from doi: 10.1109/ICIP.2
017.8297018.

34. BATTITI, Roberto; COLLA, Anna Maria. Democracy in neural nets:
Voting schemes for classification. Neural Networks. 1994, vol. 7, no. 4,
pp. 691–707.

35. GIACINTO, Giorgio; ROLI, Fabio. Ensembles of neural networks for
soft classification of remote sensing images. In: European symposium
on intelligent techniques. 1997, pp. 20–21.

36. HUANG, Y. S.; SUEN, C. Y. A method of combining multiple experts
for the recognition of unconstrained handwritten numerals. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence. 1995, vol. 17, no.
1, pp. 90–94. Available from doi: 10.1109/34.368145.

37. PARK, Y.-S.; LEK, S. Chapter 7 - Artificial Neural Networks: Multi-
layer Perceptron for Ecological Modeling. In: JØRGENSEN, Sven Erik
(ed.). Ecological Model Types. Elsevier, 2016, vol. 28, pp. 123–140. De-
velopments in Environmental Modelling. issn 0167-8892. Available from
doi: https://doi.org/10.1016/B978-0-444-63623-2.00007-4.

38. MÜLLER, Berndt; REINHARDT, Joachim; STRICKLAND, Michael
T. Neural Networks: An Introduction. Springer Science & Business Me-
dia, 1995.

39. WERBOS, Paul. Beyond regression: New tools for prediction and anal-
ysis in the behavioral sciences. Cambridge, MA, 1974. PhD thesis. Har-
vard University.

40. GRAUPE, Daniel. Principles of Artificial Neural Networks. 3rd. WORLD
SCIENTIFIC, 2013. Available from doi: 10.1142/8868.

41. RAMCHOUN, Hassan; AMINE, Mohammed; JANATI IDRISSI, Mo-
hammed Amine; GHANOU, Youssef; ETTAOUIL, Mohamed. Multi-
layer Perceptron: Architecture Optimization and Training. International
Journal of Interactive Multimedia and Artificial Inteligence. 2016, vol. 4,
pp. 26–30. Available from doi: 10.9781/ijimai.2016.415.

99

https://doi.org/10.15837/ijccc.2019.2.3514
https://doi.org/10.15837/ijccc.2019.2.3514
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1109/ICIP.2017.8297018
https://doi.org/10.1109/ICIP.2017.8297018
https://doi.org/10.1109/34.368145
https://doi.org/https://doi.org/10.1016/B978-0-444-63623-2.00007-4
https://doi.org/10.1142/8868
https://doi.org/10.9781/ijimai.2016.415

Bibliography

42. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep
Learning. MIT Press, 2016. http://www.deeplearningbook.org.

43. SATHYANARAYANA, Shashi. A gentle introduction to backpropaga-
tion. Numeric Insight. 2014, vol. 7, pp. 1–15.

44. RAWAT, Waseem; WANG, Zenghui. Deep Convolutional Neural Net-
works for Image Classification: A Comprehensive Review. Neural Com-
putation. 2017, vol. 29, no. 9, pp. 2352–2449. issn 0899-7667. Available
from doi: 10.1162/neco_a_00990.

45. TAN, H. H.; LIM, K. H. Vanishing Gradient Mitigation with Deep
Learning Neural Network Optimization. In: 2019 7th International Con-
ference on Smart Computing Communications (ICSCC). 2019, pp. 1–4.
Available from doi: 10.1109/ICSCC.2019.8843652.

46. SOYDANER, Derya. A Comparison of Optimization Algorithms for
Deep Learning. International Journal of Pattern Recognition and Ar-
tificial Intelligence. 2020, vol. 34, no. 13, p. 2052013. issn 1793-6381.
Available from doi: 10.1142/s0218001420520138.

47. GÉRON, Aurélien. Hands-on machine learning with Scikit-Learn, Keras,
and TensorFlow: Concepts, tools, and techniques to build intelligent sys-
tems. O’Reilly Media, 2019. isbn 9781492032649.

48. PUNTAMBEKAR, Anand. Strengths and Weaknesses of Optimization
Algorithms Used for Machine Learning [online]. The Startup, 2020-09
[visited on 2021-03-14]. Available from: https://medium.com/swlh/st
rengths-and-weaknesses-of-optimization-algorithms-used-for
-machine-learning-58926b1d69dd.

49. KINGMA, Diederik P.; BA, Jimmy. Adam: A Method for Stochastic
Optimization. 2017. Available from arXiv: 1412.6980 [cs.LG].

50. DOZAT, Timothy. Incorporating nesterov momentum into adam. 2016.
51. SHARMA, Sagar. Activation functions in neural networks. towards data

science. 2017, vol. 6.
52. RAMACHANDRAN, Prajit; ZOPH, Barret; LE, Quoc V. Searching for

Activation Functions. CoRR. 2017, vol. abs/1710.05941. Available from
arXiv: 1710.05941.

53. LECUN, Yann; BENGIO, Yoshua; HINTON, Geoffrey. Deep learning.
Nature. 2015, vol. 521, no. 7553, pp. 436–444. issn 1476-4687. Available
from doi: 10.1038/nature14539.

54. ALBAWI, S.; MOHAMMED, T. A.; AL-ZAWI, S. Understanding of
a convolutional neural network. In: 2017 International Conference on
Engineering and Technology (ICET). 2017, pp. 1–6. Available from doi:
10.1109/ICEngTechnol.2017.8308186.

100

http://www.deeplearningbook.org
https://doi.org/10.1162/neco_a_00990
https://doi.org/10.1109/ICSCC.2019.8843652
https://doi.org/10.1142/s0218001420520138
https://medium.com/swlh/strengths-and-weaknesses-of-optimization-algorithms-used-for-machine-learning-58926b1d69dd
https://medium.com/swlh/strengths-and-weaknesses-of-optimization-algorithms-used-for-machine-learning-58926b1d69dd
https://medium.com/swlh/strengths-and-weaknesses-of-optimization-algorithms-used-for-machine-learning-58926b1d69dd
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1710.05941
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/ICEngTechnol.2017.8308186

Bibliography

55. LI, Fei-Fei; KRISHNA, Ranjay; XU, Danfei. Convolutional Neural Net-
works for Visual Recognition [online]. GitHub, [n.d.] [visited on 2021-
03-15]. Available from: https://cs231n.github.io/convolutional-
networks/.

56. YAMASHITA, Rikiya; NISHIO, Mizuho; DO, Richard Kinh Gian; TO-
GASHI, Kaori. Convolutional neural networks: an overview and appli-
cation in radiology. Insights into Imaging. 2018, vol. 9, no. 4, pp. 611–
629. Available from doi: 10.1007/s13244-018-0639-9.

57. MURUGAN, Pushparaja; DURAIRAJ, Shanmugasundaram. Regular-
ization and Optimization strategies in Deep Convolutional Neural Net-
work. CoRR. 2017, vol. abs/1712.04711. Available from arXiv: 1712.0
4711.

58. ASSIRI, Yahia. Stochastic Optimization of Plain Convolutional Neural
Networks with Simple methods. 2020. Available from arXiv: 2001.08856
[cs.CV].

59. SRIVASTAVA, Nitish; HINTON, Geoffrey; KRIZHEVSKY, Alex; SUT-
SKEVER, Ilya; SALAKHUTDINOV, Ruslan. Dropout: A Simple Way
to Prevent Neural Networks from Overfitting. Journal of Machine Learn-
ing Research. 2014, vol. 15, no. 56, pp. 1929–1958. Available also from:
http://jmlr.org/papers/v15/srivastava14a.html.

60. SANTOSH, K. C.; ANTANI, S. Automated Chest X-Ray Screening: Can
Lung Region Symmetry Help Detect Pulmonary Abnormalities? IEEE
Transactions on Medical Imaging. 2018, vol. 37, no. 5, pp. 1168–1177.
Available from doi: 10.1109/TMI.2017.2775636.

61. VAN GINNEKEN, Bram; KATSURAGAWA, Shigehiko; DOI, Kunio;
HAAR ROMENY, Bart M ter; VIERGEVER, Max A. Automatic de-
tection of abnormalities in chest radiographs using local texture analysis.
IEEE transactions on medical imaging. 2002, vol. 21, no. 2, pp. 139–
149.

62. JAEGER, Stefan; KARARGYRIS, Alexandros; CANDEMIR, Sema;
FOLIO, Les; SIEGELMAN, Jenifer; CALLAGHAN, Fiona; XUE, Zhiyun;
PALANIAPPAN, Kannappan; SINGH, Rahul K; ANTANI, Sameer,
et al. Automatic tuberculosis screening using chest radiographs. IEEE
transactions on medical imaging. 2013, vol. 33, no. 2, pp. 233–245.

63. CHAUHAN, Arun; CHAUHAN, Devesh; ROUT, Chittaranjan. Role
of gist and PHOG features in computer-aided diagnosis of tuberculosis
without segmentation. PloS one. 2014, vol. 9, no. 11, e112980.

101

https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/
https://doi.org/10.1007/s13244-018-0639-9
https://arxiv.org/abs/1712.04711
https://arxiv.org/abs/1712.04711
https://arxiv.org/abs/2001.08856
https://arxiv.org/abs/2001.08856
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1109/TMI.2017.2775636

Bibliography

64. GULSHAN, Varun; PENG, Lily; CORAM, Marc; STUMPE, Martin C.;
WU, Derek; NARAYANASWAMY, Arunachalam; VENUGOPALAN,
Subhashini; WIDNER, Kasumi; MADAMS, Tom; CUADROS, Jorge;
KIM, Ramasamy; RAMAN, Rajiv; NELSON, Philip C.; MEGA, Jes-
sica L.; WEBSTER, Dale R. Development and Validation of a Deep
Learning Algorithm for Detection of Diabetic Retinopathy in Retinal
Fundus Photographs. JAMA. 2016, vol. 316, no. 22, pp. 2402–2410. issn
0098-7484. Available from doi: 10.1001/jama.2016.17216.

65. ESTEVA, Andre; KUPREL, Brett; NOVOA, Roberto A.; KO, Justin;
SWETTER, Susan M.; BLAU, Helen M.; THRUN, Sebastian. Dermato-
logist-level classification of skin cancer with deep neural networks. Na-
ture. 2017, vol. 542, no. 7639, pp. 115–118. issn 1476-4687. Available
from doi: 10.1038/nature21056.

66. BEJNORDI, Babak Ehteshami; VETA, Mitko; VAN DIEST, Paul Jo-
hannes; VAN GINNEKEN, Bram; KARSSEMEIJER, Nico; LITJENS,
Geert; VAN DER LAAK, Jeroen AWM; HERMSEN, Meyke; MAN-
SON, Quirine F; BALKENHOL, Maschenka, et al. Diagnostic assess-
ment of deep learning algorithms for detection of lymph node metastases
in women with breast cancer. Jama. 2017, vol. 318, no. 22, pp. 2199–
2210.

67. RAJPURKAR, Pranav; IRVIN, Jeremy; ZHU, Kaylie; YANG, Bran-
don; MEHTA, Hershel; DUAN, Tony; DING, Daisy Yi; BAGUL, Aarti;
LANGLOTZ, Curtis; SHPANSKAYA, Katie S.; LUNGREN, Matthew
P.; NG, Andrew Y. CheXNet: Radiologist-Level Pneumonia Detection
on Chest X-Rays with Deep Learning. CoRR. 2017, vol. abs/1711.05225.
Available from arXiv: 1711.05225.

68. BASSI, Pedro R. A. S.; ATTUX, Romis. A Deep Convolutional Neural
Network for COVID-19 Detection Using Chest X-Rays. 2021. Available
from arXiv: 2005.01578 [eess.IV].

69. KOHLI, Marc; PREVEDELLO, Luciano M.; FILICE, Ross W.; GEIS,
J. Raymond. Implementing Machine Learning in Radiology Practice and
Research. American Journal of Roentgenology. 2017, vol. 208, no. 4,
pp. 754–760. issn 0361-803X. Available from doi: 10.2214/AJR.16.17
224.

70. PAL, K. K.; SUDEEP, K. S. Preprocessing for image classification by
convolutional neural networks. In: 2016 IEEE International Conference
on Recent Trends in Electronics, Information Communication Tech-
nology (RTEICT). 2016, pp. 1778–1781. Available from doi: 10.110
9/RTEICT.2016.7808140.

102

https://doi.org/10.1001/jama.2016.17216
https://doi.org/10.1038/nature21056
https://arxiv.org/abs/1711.05225
https://arxiv.org/abs/2005.01578
https://doi.org/10.2214/AJR.16.17224
https://doi.org/10.2214/AJR.16.17224
https://doi.org/10.1109/RTEICT.2016.7808140
https://doi.org/10.1109/RTEICT.2016.7808140

Bibliography

71. ALBERT, Benji. Data preprocessing: Should we normalise images pixel-
wise? [Online]. Stack Exchange, Data Science, 2018-01 [visited on 2021-
03-24]. Available from: https://datascience.stackexchange.com/q
uestions/26881/data-preprocessing-should-we-normalise-imag
es-pixel-wise.

72. IOFFE, Sergey; SZEGEDY, Christian. Batch Normalization: Acceler-
ating Deep Network Training by Reducing Internal Covariate Shift. In:
BACH, Francis; BLEI, David (eds.). Proceedings of the 32nd Interna-
tional Conference on Machine Learning. Lille, France: PMLR, 2015,
vol. 37, pp. 448–456. Proceedings of Machine Learning Research. Avail-
able also from: http://proceedings.mlr.press/v37/ioffe15.html.

73. SAIZ, Fatima; BARANDIARAN, Iñigo. COVID-19 Detection in Chest
X-ray Images using a Deep Learning Approach. International Journal
of Interactive Multimedia and Artificial Intelligence. 2020, vol. InPress,
p. 1. Available from doi: 10.9781/ijimai.2020.04.003.

74. YORKSTON, John. Understanding and Managing Noise Sources in X-
ray Imaging [online]. Carestream, 2020-06 [visited on 2020-03-24]. Avail-
able from: https://www.carestream.com/blog/2020/04/21/unders
tanding-and-managing-noise-sources-in-x-ray-imaging/.

75. JIŘINA, Marcel; NOVÁK, Jakub; BRCHL, Lukáš. Strojové viděńı a
zpracováńı obrazu: Filtrace v prostorové a frekvenčńı oblasti [online].
Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2020-05 [visited on 2021-03-24]. Available from: https://courses
.fit.cvut.cz/BI-SVZ/lectures/files/bi-svz-07-filtrace-v-pr
ostorove-a-frekvencni-oblasti.pdf.

76. PARIS, Sylvain; KORNPROBST, Pierre; TUMBLIN, Jack; DURAND,
Frédo. Bilateral filtering: Theory and applications. Now Publishers Inc,
2009.

77. WANG, Linda; WONG, Alexander. COVID-Net: A Tailored Deep Con-
volutional Neural Network Design for Detection of COVID-19 Cases
from Chest X-Ray Images. 2020. Available from arXiv: 2003 . 09871
[eess.IV].

78. GAÁL, Gusztáv; MAGA, Balázs; LUKÁCS, András. Attention U-Net
Based Adversarial Architectures for Chest X-ray Lung Segmentation.
2020. Available from arXiv: 2003.10304 [eess.IV].

79. REZA, Ali M. Realization of the Contrast Limited Adaptive Histogram
Equalization (CLAHE) for Real-Time Image Enhancement. Journal of
VLSI signal processing systems for signal, image and video technology.
2004, vol. 38, no. 1, pp. 35–44. issn 0922-5773. Available from doi:
10.1023/B:VLSI.0000028532.53893.82.

103

https://datascience.stackexchange.com/questions/26881/data-preprocessing-should-we-normalise-images-pixel-wise
https://datascience.stackexchange.com/questions/26881/data-preprocessing-should-we-normalise-images-pixel-wise
https://datascience.stackexchange.com/questions/26881/data-preprocessing-should-we-normalise-images-pixel-wise
http://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.9781/ijimai.2020.04.003
https://www.carestream.com/blog/2020/04/21/understanding-and-managing-noise-sources-in-x-ray-imaging/
https://www.carestream.com/blog/2020/04/21/understanding-and-managing-noise-sources-in-x-ray-imaging/
https://courses.fit.cvut.cz/BI-SVZ/lectures/files/bi-svz-07-filtrace-v-prostorove-a-frekvencni-oblasti.pdf
https://courses.fit.cvut.cz/BI-SVZ/lectures/files/bi-svz-07-filtrace-v-prostorove-a-frekvencni-oblasti.pdf
https://courses.fit.cvut.cz/BI-SVZ/lectures/files/bi-svz-07-filtrace-v-prostorove-a-frekvencni-oblasti.pdf
https://arxiv.org/abs/2003.09871
https://arxiv.org/abs/2003.09871
https://arxiv.org/abs/2003.10304
https://doi.org/10.1023/B:VLSI.0000028532.53893.82

Bibliography

80. CHEN, Hsin-Jui; RUAN, Shanq-Jang; HUANG, Sha-Wo; PENG, Yan-
Tsung. Lung X-ray Segmentation using Deep Convolutional Neural Net-
works on Contrast-Enhanced Binarized Images. Mathematics. 2020, vol.
8, no. 4. issn 2227-7390. Available from doi: 10.3390/math8040545.

81. RONNEBERGER, Olaf; FISCHER, Philipp; BROX, Thomas. U-net:
Convolutional networks for biomedical image segmentation. In: Interna-
tional Conference on Medical image computing and computer-assisted
intervention. Springer International Publishing, 2015, pp. 234–241. isbn
978-3-319-24574-4.

82. HE, Kaiming; GKIOXARI, Georgia; DOLLÁR, Piotr; GIRSHICK, Ross
B. Mask R-CNN. CoRR. 2017, vol. abs/1703.06870. Available from
arXiv: 1703.06870.

83. HEIDARI, Morteza; MIRNIAHARIKANDEHEI, Seyedehnafiseh; QIU,
Yuchen; KHUZANI, Abolfazl Zargari; DANALA, Gopichandh; ZHENG,
Bin. Improving the performance of CNN to predict the likelihood of
COVID-19 using chest X-ray images with preprocessing algorithms. In-
ternational Journal of Medical Informatics. 2020, vol. 144, p. 104284.
issn 1386-5056. Available from doi: https://doi.org/10.1016/j.ij
medinf.2020.104284.

84. MCINNES, Leland; HEALY, John; MELVILLE, James. UMAP: Uni-
form Manifold Approximation and Projection for Dimension Reduction.
2020. Available from arXiv: 1802.03426 [stat.ML].

85. AHSAN, Mominul; KOWALSKI, Marcin; BASED, Md; HAIDER, Jul-
fikar, et al. COVID-19 Detection from Chest X-ray Images Using Fea-
ture Fusion and Deep Learning. Sensors. 2021, vol. 21, no. 4, p. 1480.
issn 1424-8220. Available from doi: 10.3390/s21041480.

86. BRIA, Alessandro; MARROCCO, Claudio; TORTORELLA, Francesco.
Addressing class imbalance in deep learning for small lesion detection
on medical images. Computers in Biology and Medicine. 2020, vol. 120,
p. 103735. issn 0010-4825. Available from doi: https://doi.org/10
.1016/j.compbiomed.2020.103735.

87. BUITINCK, Lars; LOUPPE, Gilles; PEDREGOSA, Fabian; BLON-
DEL, Mathieu; MUELLER, Andreas; GRISEL, Olivier; HOLT, Brian;
NICULAE, Vlad; PRETTENHOFER, Peter; GRAMFORT, Alexan-
dre; JOLY, Arnaud; GROBLER, Jaques; LAYTON, Robert; VANDER-
PLAS, Jake; VAROQUAUX, Gaël. API design for machine learning
software: experiences from the scikit-learn project. In: ECML PKDD
Workshop: Languages for Data Mining and Machine Learning. 2013,
pp. 108–122. Available also from: https://scikit-learn.org/stabl
e/modules/generated/sklearn.utils.class_weight.compute_cla
ss_weight.html.

104

https://doi.org/10.3390/math8040545
https://arxiv.org/abs/1703.06870
https://doi.org/https://doi.org/10.1016/j.ijmedinf.2020.104284
https://doi.org/https://doi.org/10.1016/j.ijmedinf.2020.104284
https://arxiv.org/abs/1802.03426
https://doi.org/10.3390/s21041480
https://doi.org/https://doi.org/10.1016/j.compbiomed.2020.103735
https://doi.org/https://doi.org/10.1016/j.compbiomed.2020.103735
https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html

Bibliography

88. BUDA, Mateusz; MAKI, Atsuto; MAZUROWSKI, Maciej A. A system-
atic study of the class imbalance problem in convolutional neural net-
works. Neural Networks. 2018, vol. 106, pp. 249–259. issn 0893-6080.
Available from doi: https://doi.org/10.1016/j.neunet.2018.07.0
11.

89. GOODFELLOW, Ian J; POUGET-ABADIE, Jean; MIRZA, Mehdi;
XU, Bing; WARDE-FARLEY, David; OZAIR, Sherjil; COURVILLE,
Aaron; BENGIO, Yoshua. Generative adversarial networks. arXiv pre-
print arXiv:1406.2661. 2014.

90. RADFORD, Alec; METZ, Luke; CHINTALA, Soumith. Unsupervised
representation learning with deep convolutional generative adversarial
networks. arXiv preprint arXiv:1511.06434. 2015.

91. WAHEED, A.; GOYAL, M.; GUPTA, D.; KHANNA, A.; PINHEIRO,
P. R.; AL-TURJMAN, F. CovidGAN: Data Augmentation Using Aux-
iliary Classifier GAN for Improved Covid-19 Detection. IEEE Access.
2020, vol. 8, pp. 91916–91923. Available from doi: 10.1109/ACCESS.2
020.2994762.

92. POOJARY, R.; PAI, A. Comparative Study of Model Optimization Tech-
niques in Fine-Tuned CNN Models. In: 2019 International Conference
on Electrical and Computing Technologies and Applications (ICECTA).
2019, pp. 1–4. Available from doi: 10.1109/ICECTA48151.2019.89596
81.

93. DENG, J.; DONG, W.; SOCHER, R.; LI, L.; KAI LI; LI FEI-FEI. Im-
ageNet: A large-scale hierarchical image database. In: 2009 IEEE Con-
ference on Computer Vision and Pattern Recognition. 2009, pp. 248–
255. Available from doi: 10.1109/CVPR.2009.5206848.

94. RUSSAKOVSKY, Olga; DENG, Jia; SU, Hao; KRAUSE, Jonathan;
SATHEESH, Sanjeev; MA, Sean; HUANG, Zhiheng; KARPATHY, An-
drej; KHOSLA, Aditya; BERNSTEIN, Michael; BERG, Alexander C.;
FEI-FEI, Li. ImageNet Large Scale Visual Recognition Challenge. Inter-
national Journal of Computer Vision. 2015, vol. 115, no. 3, pp. 211–252.
issn 1573-1405. Available from doi: 10.1007/s11263-015-0816-y.

95. WANG, Xiaosong; PENG, Yifan; LU, Le; LU, Zhiyong; BAGHERI,
Mohammadhadi; SUMMERS, Ronald M. ChestX-ray8: Hospital-Scale
Chest X-Ray Database and Benchmarks on Weakly-Supervised Classi-
fication and Localization of Common Thorax Diseases. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2017.

105

https://doi.org/https://doi.org/10.1016/j.neunet.2018.07.011
https://doi.org/https://doi.org/10.1016/j.neunet.2018.07.011
https://doi.org/10.1109/ACCESS.2020.2994762
https://doi.org/10.1109/ACCESS.2020.2994762
https://doi.org/10.1109/ICECTA48151.2019.8959681
https://doi.org/10.1109/ICECTA48151.2019.8959681
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1007/s11263-015-0816-y

Bibliography

96. AL-WAISY, Alaa S.; AL-FAHDAWI, Shumoos; MOHAMMED, Mazin
Abed; MAASHI, Mashael S.; ABDULKAREEM, Karrar Hameed; ARIF,
Muhammad; MOSTAFA, Salama A.; GARCIA-ZAPIRAIN, Begonya.
COVID-CheXNet: hybrid deep learning framework for identifying COV-
ID-19 virus in chest X-rays images. Soft Computing. 2020. issn 1433-
7479. Available from doi: 10.1007/s00500-020-05424-3.

97. MANGAL, Arpan; KALIA, Surya; RAJGOPAL, Harish; RANGARA-
JAN, Krithika; NAMBOODIRI, Vinay; ARORA, Chetan; BANERJEE,
Subhashis. CovidAID: COVID-19 Detection Using Chest X-Ray. 2020.
Available from arXiv: 2004.09803 [eess.IV].

98. BASSI, Pedro R. A. S.; ATTUX, Romis. A Deep Convolutional Neural
Network for COVID-19 Detection Using Chest X-Rays. 2021. Available
from arXiv: 2005.01578 [eess.IV].

99. ZHANG, Quan. Convolutional neural networks. In: Proceedings of the
3rd International Conference on Electromechanical Control Technology
and Transportation. 2018, pp. 434–439.

100. KRIZHEVSKY, Alex; SUTSKEVER, Ilya; HINTON, Geoffrey E. Ima-
geNet Classification with Deep Convolutional Neural Networks. In: Ad-
vances in Neural Information Processing Systems. Curran Associates,
Inc., 2012, vol. 25, pp. 1097–1105. Available also from: https://proce
edings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e92
4a68c45b-Paper.pdf.

101. SIMONYAN, Karen; ZISSERMAN, Andrew. Very Deep Convolutional
Networks for Large-Scale Image Recognition. In: International Confer-
ence on Learning Representations. 2015.

102. HE, Kaiming; ZHANG, Xiangyu; REN, Shaoqing; SUN, Jian. Deep
Residual Learning for Image Recognition. CoRR. 2015, vol. abs/1512.03-
385. Available from arXiv: 1512.03385.

103. CHOLLET, François et al. Keras [https://keras.io]. 2015.
104. LIU, Quan; FENG, Chen; SONG, Zida; LOUIS, Joseph; ZHOU, Jian.

Deep Learning Model Comparison for Vision-Based Classification of
Full/Empty-Load Trucks in Earthmoving Operations. Applied Sciences.
2019, vol. 9, no. 22, p. 4871. issn 2076-3417. Available from doi: 10.3
390/app9224871.

105. SZEGEDY, Christian; LIU, Wei; JIA, Yangqing; SERMANET, Pierre;
REED, Scott E.; ANGUELOV, Dragomir; ERHAN, Dumitru; VAN-
HOUCKE, Vincent; RABINOVICH, Andrew. Going Deeper with Con-
volutions. CoRR. 2014, vol. abs/1409.4842. Available from arXiv: 1409
.4842.

106

https://doi.org/10.1007/s00500-020-05424-3
https://arxiv.org/abs/2004.09803
https://arxiv.org/abs/2005.01578
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/1512.03385
https://keras.io
https://doi.org/10.3390/app9224871
https://doi.org/10.3390/app9224871
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842

Bibliography

106. CHOLLET, François. Xception: Deep Learning with Depthwise Sepa-
rable Convolutions. CoRR. 2016, vol. abs/1610.02357. Available from
arXiv: 1610.02357.

107. HUANG, Gao; LIU, Zhuang; VAN DER MAATEN, Laurens; WEIN-
BERGER, Kilian Q. Densely connected convolutional networks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). 2017, pp. 4700–4708. Available from arXiv: 1608.0699
3.

108. UMER, Muhammad; ASHRAF, Imran; ULLAH, Saleem; MEHMOOD,
Arif; CHOI, Gyu Sang. COVINet: a convolutional neural network ap-
proach for predicting COVID-19 from chest X-ray images. Journal of
Ambient Intelligence and Humanized Computing. 2021. issn 1868-5145.
Available from doi: 10.1007/s12652-021-02917-3.

109. WANG, Linda; LIN, Zhong Qiu; WONG, Alexander. COVID-Net [htt
ps://github.com/lindawangg/COVID-Net]. GitHub, 2021 [visited on
2021-04-05].

110. WONG, Alexander; SHAFIEE, Mohammad Javad; CHWYL, Brendan;
LI, Francis. FermiNets: Learning generative machines to generate effi-
cient neural networks via generative synthesis. CoRR. 2018, vol. abs/18-
09.05989. Available from arXiv: 1809.05989.

111. GUNRAJ, Hayden; WANG, Linda; WONG, Alexander. COVIDNet-
CT: A Tailored Deep Convolutional Neural Network Design for Detec-
tion of COVID-19 Cases From Chest CT Images. Frontiers in Medicine.
2020, vol. 7, p. 1025. issn 2296-858X. Available from doi: 10.3389/fm
ed.2020.608525.

112. WONG, Alexander; LIN, Zhong Qiu; WANG, Linda; CHUNG, Au-
drey G.; SHEN, Beiyi; ABBASI, Almas; HOSHMAND-KOCHI, Mahsa;
DUONG, Timothy Q. COVIDNet-S: Towards computer-aided severity
assessment via training and validation of deep neural networks for ge-
ographic extent and opacity extent scoring of chest X-rays for SARS-
CoV-2 lung disease severity. 2020. Available from arXiv: 2005.12855
[eess.IV].

113. TAMBAD, Samarth; NANDWANI, Rohit; MCINTOSH, Suzanne K.
Analyzing programming languages by community characteristics on Git-
hub and StackOverflow. 2020. Available from arXiv: 2006.01351 [cs.SE].

114. COHEN, Joseph Paul; MORRISON, Paul; DAO, Lan. COVID-19 Im-
age Data Collection. 2020. Available from arXiv: 2003.11597 [eess.IV].

115. CHUNG, Audrey. Figure 1 COVID-19 chest x-ray data initiative [htt
ps://github.com/agchung/Figure1-COVID-chestxray-dataset].
GitHub, 2020 [visited on 2021-04-07].

107

https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://doi.org/10.1007/s12652-021-02917-3
https://github.com/lindawangg/COVID-Net
https://github.com/lindawangg/COVID-Net
https://arxiv.org/abs/1809.05989
https://doi.org/10.3389/fmed.2020.608525
https://doi.org/10.3389/fmed.2020.608525
https://arxiv.org/abs/2005.12855
https://arxiv.org/abs/2005.12855
https://arxiv.org/abs/2006.01351
https://arxiv.org/abs/2003.11597
https://github.com/agchung/Figure1-COVID-chestxray-dataset
https://github.com/agchung/Figure1-COVID-chestxray-dataset

Bibliography

116. CHUNG, Audrey. Actualmed COVID-19 Chest X-ray Dataset Initiative
[https://github.com/agchung/Actualmed-COVID-chestxray-datas
et]. GitHub, 2020 [visited on 2021-04-07].

117. Radiological Society of North America. RSNA Pneumonia Detection
Challenge [online]. [N.d.] [visited on 2021-04-07]. Available from: https
://www.kaggle.com/c/rsna-pneumonia-detection-challenge/dat
a.

118. CHOWDHURY, M. E. H.; RAHMAN, T.; KHANDAKAR, A.; ISLAM,
K. R.; MAZHAR, R.; KADIR, M. A.; MAHBUB, Z. B.; KHAN, M. S.;
IQBAL, A.; EMADI, N. A.; REAZ, M. B. I.; ISLAM, M. T. Can AI Help
in Screening Viral and COVID-19 Pneumonia? IEEE Access. 2020,
vol. 8, pp. 132665–132676. Available from doi: 10.1109/ACCESS.20
20.3010287.

119. TSAI, Emily B.; SIMPSON, Scott; LUNGREN, Matthew P.; HERSH-
MAN, Michelle; ROSHKOVAN, Leonid; COLAK, Errol; ERICKSON,
Bradley J.; SHIH, George; STEIN, Anouk; KALPATHY-CRAMER,
Jayashree; SHEN, Jody; HAFEZ, Mona; JOHN, Susan; RAJIAH, Prab-
hakar; POGATCHNIK, Brian P.; MONGAN, John; ALTINMAKAS,
Emre; RANSCHAERT, Erik R.; KITAMURA, Felipe C.; TOPFF, Lau-
rens; MOY, Linda; KANNE, Jeffrey P.; WU, Carol C. Data from Med-
ical Imaging Data Resource Center (MIDRC) - RSNA International
COVID Radiology Database (RICORD) Release 1c - Chest x-ray, Covid+
(MIDRC-RICORD-1c). 2021. Available also from: https://doi.org/1
0.7937/91ah-v663.

120. LI, Lisha; JAMIESON, Kevin; DESALVO, Giulia; ROSTAMIZADEH,
Afshin; TALWALKAR, Ameet. Hyperband: A Novel Bandit-Based Ap-
proach to Hyperparameter Optimization. Journal of Machine Learning
Research. 2018, vol. 18, no. 185, pp. 1–52. Available also from: http:
//jmlr.org/papers/v18/16-558.html.

121. KARRAS, Tero; LAINE, Samuli; AILA, Timo. A Style-Based Generator
Architecture for Generative Adversarial Networks. 2019. Available from
arXiv: 1812.04948 [cs.NE].

122. ZHU, Jun-Yan; PARK, Taesung; ISOLA, Phillip; EFROS, Alexei A.
Unpaired Image-to-Image Translation using Cycle-Consistent Adversar-
ial Networks. 2020. Available from arXiv: 1703.10593 [cs.CV].

108

https://github.com/agchung/Actualmed-COVID-chestxray-dataset
https://github.com/agchung/Actualmed-COVID-chestxray-dataset
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
https://doi.org/10.1109/ACCESS.2020.3010287
https://doi.org/10.1109/ACCESS.2020.3010287
https://doi.org/10.7937/91ah-v663
https://doi.org/10.7937/91ah-v663
http://jmlr.org/papers/v18/16-558.html
http://jmlr.org/papers/v18/16-558.html
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1703.10593

Appendix A
Acronyms

ANN Artificial Neural Network

AUC Area Under the Receiver Operating Characteristic Curve

CAD Computer-aided Diagnosis

CLAHE Contrast Limited Adaptive Histogram Equalization

CNN Convolutional Neural Network

COVID-19 Coronavirus Disease of 2019

CXR Chest X-Ray

DCGAN Deep Convolutional Generative Adversarial Network

GAN Generative Adversarial Network

ILSVRC ImageNet Large Scale Visual Recognition Challenge

ML Machine Learning

MLP Multi-layer Perceptron

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

TPR True Positive Rate

TNR True Negative Rate

UMAP Uniform Manifold Approximation and Projection

109

Appendix B
Contents of Enclosed SD Card

README.md markdown file with SD card contents description
README.pdf.................PDF file with SD card contents description
src........................implementation files and IPython notebooks

model architectures..........definitions of CNN and GAN models
preprocessing image and dataset preprocessing files
utils utilities and helper functions

thesis directory with the thesis
thesis.zip.......LaTeX source codes and images used in thesis text
BP Chodounsky Dominik 2021.pdf.............PDF with thesis text

environment.yml virtual environment specifications

111

Appendix C
Network Architectures

Table C.1: Summary of the Generator’s architecture in our implementation
of the DCGAN for generating 256× 256 px colour images.

113

C. Network Architectures

Table C.2: Summary of the Discriminators’s architecture in our implementa-
tion of the DCGAN for generating 256× 256 px colour images.

114

Table C.3: Summary of our BaseNet prototype architecture.

115

	Introduction
	Motivation
	Objectives

	Detection of COVID-19
	COVID-19
	Chest X-rays

	Machine Learning
	Supervised vs. Unsupervised Learning
	Supervised Learning
	Unsupervised Learning

	Evaluation Metrics
	Accuracy
	Predictive Values
	Area Under the ROC Curve
	Cross-entropy Loss
	Bias-varince Tradeoff

	Training, Validation and Test Set
	Cross-validation
	Overfitting and Underfitting

	Hyperparameter Optimization
	Ensemble Model
	Artificial Neural Networks
	Single-layer Perceptron
	Multi-layer Perceptron
	Cost Function
	Backpropagation and Gradient Descent
	Optimizers
	Stochastic Gradient Descent
	AdaGrad
	RMSProp
	Adam

	Activation Functions
	Convolutional Neural Networks
	Convolution
	Pooling

	Regularization
	Data Augmentation
	L1 and L2 Regularization
	Dropout
	Early Stopping

	Analysis
	Medical Imaging
	Preprocessing Methods
	Image Resizing
	Data Transformation
	Noise Reduction
	Histogram Equalization
	Image Segmentation
	Preprocessing Pipeline for COVID-19 Detection
	Dimensionality Reduction

	Imbalanced Datasets
	Cost Sensitive Learning
	Undersampling
	Oversampling
	Data Augmentation and Synthetic Data Generation
	Generative Adversarial Networks

	Transfer Learning
	ImageNet
	ChestX-ray
	AlexNet
	VGG
	ResNet
	Inception
	DenseNet

	Research in COVID-19 Detection
	COVID-Net
	Application of VGG16 and Image Preprocessing for COVID-19 Detection
	Twice Transfer Learning for COVID-19 Detection

	Design and Implementation
	Requirements and Technologies
	Python
	NumPy
	Scikit-learn
	OpenCV
	Matplotlib and Seaborn
	TensorFlow and Keras
	Jupyter Notebook and Google Colab

	Dataset
	Data Exploration
	Data Separability in Lower-dimensional Spaces

	Model Training and Evaluation

	Experiments and Results
	Evaluating COVID-Net Performance
	COVID-Net CXR-2
	COVID-Net CXR3-B

	BaseNet Architecture and its Hyperparameter Optimization
	Optimizer Selection
	Impact of Image Preprocessing Techniques
	Min-max Normalization
	Histogram Equalization
	Contrast Limited Adaptive Histogram Equalization
	Diaphragm Segmentation
	Results

	Data Augmentation and Generation
	Oversampling and Augmentation
	Generating Synthetic CXR Images with DCGAN

	Transfer Learning and Fine-tuning
	Ensemble Model
	Discussion

	Conclusion
	Contribution
	Future Improvements

	Bibliography
	Acronyms
	Contents of Enclosed SD Card
	Network Architectures

