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Abstract

This thesis focuses on the design, implementation, and verification of a
control system and relative localization approach for a swarm consisting
of unmanned aerial vehicles in a forest environment. The core of the
localization system is the ICP algorithm. The control system is based
on Boids with modifications to adapt to the forest environment better.
Implementation was verified in the realistic Gazebo simulator as well as
in Matlab. The approach introduced in this thesis was also compared
with the existing system for relative localization and navigation used
in the Multi-Robot Systems group at Czech Technical University in
Prague.

Keywords
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Abstrakt

Tato práce se soustřed́ı na návrh, implementaci a ověřeńı ř́ıd́ıćıho
systému a systému pro relativńı lokalizaci roje bezpilotńıch autonomńıch
helikoptér v lesńım prostřed́ı. Základem lokalizačńıho systému je ICP
algoritmus. Rojový ř́ıd́ıćı systém je inspirován Boidy a modifikován
pro lepš́ı interakci s reálným prostřed́ım. Implementace byla ověřena
v realistickém simulátoru Gazebo a pomoćı Matlabu. Př́ıstup, který je
uveden v této práci, byl následně porovnán se současným systémem
pro relativńı lokalizaci a navigaci v lese, které použ́ıvá skupina Multi-
robotických systémů na ČVUT v Praze.

Kĺıčová slova

UAV, dron, roj, boids, uhýbáńı překážkám, ICP
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Chapter 1

Introduction

Robots in this thesis are called Unmanned Aerial Vehicles (UAV). These airborne
vehicles do not carry a pilot on board. They can be controlled either by a human pilot
remotely or they can fly autonomously. The UAVs used in this thesis are quadcopters.
A quadcopter is a vehicle that is propelled by four propellers. Quadcopters or generally
multicopters are being used on daily basis in many domains thanks to their multipurpose
usage and relatively low cost. They can be used for area monitoring, search and rescue,
military deployment or film making.

Figure 1.1: Swarm of UAVs navigating through a forest.

In this thesis, a group of UAVs is called a swarm (Figure 1.1). Individual UAV has
limits as flight range that is influencing the area that a survey UAV can cover. Further,
single UAV has limited thrust force for transportation of sizeable objects. Swarm is used to
compensate for those limits and achieve more difficult tasks. Swarms of UAVs have many
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applications. They can be used for search and rescue missions in hard to reach and difficult
terrain to localize survivors [2] [3] [4]. Another use is in security and surveillance of certain
areas [5] [6]. UAVs could measure the level of air pollution in cities [7] [8]. Swarms of UAVs
could in the future help with fire localization or extinguishing [9] [10] [11]. Last but not
least, swarms have potential in crop monitoring and agriculture [12] [13] [14], and much
more.

Finding ways of safe navigation and localization of swarm members in a forest envi-
ronment has many uses. The above mentioned search and rescue missions are one of the
possible applications. Swarm system can be useful in cases where the terrain is difficult to
reach by human rescuer and the area can not be observed from a high point because the
trees obscure vision. There is also the possibility that system for navigation and localiza-
tion in a forest environment will be generalized and used for localization and navigation in
any obstacle-dense environment for safe pathfinding and localization.

This thesis is dealing with the task of navigation and localization of a swarm in a
forest environment. A modified Boids-like system [15] [1] is used for control and navigation
of the swarm. Indirect information exchange is used for the relative localization of nearby
UAVs. Version of Iterative Closest Point (ICP) algorithm [16] is employed on shared laser
scans to estimate positions of neighboring vehicles.

1.1 State of the art

The partial goal of this thesis is to improve the system introduced in [1]. In [1], a
bio-inspired approach is chosen. UAVs do not communicate and they use only on-board
sensors for relative localization purposes. LIDAR sensor is used for obstacle detection.
The UVDAR system [17] is employed for relative localization without communication. The
control mechanism is based on the idea of Boids from [15].

A similar way of swarm deployment is introduced in [18], where again a version of
the bio-inspired Boids-like model is used for navigation. The system is fully autonomous
without external localization or communication. As in the previous case, the UVDAR
system [17] is used for the relative localization of neighboring agents.

Another swarming approach that was introduced in [19] is based on the behavior of
a swarm of bees. Such a solution requires a minimum count of swarm agents thus it is not
optimal for smaller groups of for example 5 UAVs. It is designed to be used for finding
sources of light, heat, or radiation. The agents do not communicate nor have any memory.
The process is fully decentralized and autonomous using only the on-board sensors.

Further, the authors of [20] also use principles of repulsion, velocity alignment, and
collective and object collision avoidance. A combination of vectors produced is then used
to steer the UAVs in the swarm. It has been validated on real hardware with a swarm of
30 drones and proved to be stable under realistic conditions.
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There are already techniques for relative localization in areas without a global po-
sitioning system. One of them is the UVDAR localization system [17], [21]. The UAVs
are equipped with ultraviolet LED markers. These markers emit light of frequencies that
are found less in nature. The UAVs are also equipped with UV sensitive cameras with
specialized bandpass filters. The UVDAR system relies only on the onboard sensors and
estimates the position of neighboring UAVs by observing the positions of their respective
markers in an image frame.

Another approach [22] uses Ultra-Wideband (UWB) technology for relative localiza-
tion of UAVs. Each UAV first estimates its position relative to a static UAV. UWB ranging
technology is then used to relatively localize neigboring crafts. UWB technology can be
used not only to estimate the location but also the orientation of the device.

Last but not least, relative localization can be achieved using machine learning. The
way of automatic annotation for learning datasets using the UVDAR system is presented
in [23]. Convolutional neural networks for object detection can be trained using such a
dataset for relative localization of UAVs.

1.2 Problem statement

The goal of this thesis was to design a system for swarm navigation in a forest
environment with the following requirements:

1. Relative mutual localization of swarm members independent of any global positioning
system.

2. Minimal inter-UAV communication. Only a local transmission between neighboring
agents is used for relative localization computation.

3. Full autonomy. Given starting and goal position the group will coherently relocate.

4. Robustness of the designed system to situations such as short-term loss of network
connection or failure of swarm individuals.

5. Scalability of the designed system.

UAV platform requirements for the problem are: rangefinder for height estimation, onboard
computer, inertial measurement unit, and laser scanner. We suppose that the map of the
environment is unknown. The UAVs are assumed to be capable of communicating with
each other.
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Chapter 2

Preliminaries

We will introduce crucial software systems and mathematical expressions necessary
to understand the rest of this work. Namely, it is Robot Operating System (ROS), Gazebo
realistic simulator, Boids swarm model, and used frames of reference.

2.1 Robot Operating System

ROS is a framework for robot software. It includes tools, libraries, and others. It
helps to create robot behavior across a wide variety of robotic platforms. It is a middleware
software for robot software development. The core of ROS are messages, services, topics,
and nodes. Nodes1 can subscribe and publish to a topic (Figure 2.1). A node represents a
ROS process. Topics2 can be thought of as channels of messages3. Any node can subscribe
to a topic (accepting messages) as well as it can publish to a topic (sending messages).
Services4 are another type of connection between nodes. Services are used for one-on-one
communication for action with defined beginning and end. Service interaction is comprising
of request and reply. ROS also includes rviz5. Rviz is a visualization tool for visualizing
robots in their environment with many configurable options.

2.2 Gazebo simulator

Gazebo simulator6 is a 3D simulator with a robust physics engine for robotics. It
is ideal for tests of algorithms in various modeled environments without hardware that

1http://wiki.ros.org/Nodes
2http://wiki.ros.org/Topics
3http://wiki.ros.org/Messages
4http://wiki.ros.org/Services
5http://wiki.ros.org/rviz
6http://gazebosim.org/
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TopicNode1 Node4

Node3

Node2

Publish

Publish

Subscribe

Subscribe

Service

Service

Figure 2.1: Visualization of available ways of communication between ROS nodes.

might not be to disposal at the moment. It also eliminates the danger of damaging robot
hardware. Own robotic devices, as well as environments, can be created for testing purposes.
Sensors can be designed to interact with the environment. It provides graphical components
including textures, lightning and shadows as displayed in Figure 2.2. Gazebo is an open-
source project. The majority of simulations in this thesis were carried out in Gazebo.

2.3 Boids

We present an overview of the former Boids controller [1] used within our group. The
controller was based on the idea of Boids from [15].

The final control vector from [1] has the following form:

~f = ~p+ ~n+ ~c, (2.1)

where ~f represents the final control vector and ~p, ~n,~c are the proximal, navigation, and
collision vectors respectively.

the navigation vector to the goal location was constructed according to the following
equations:

~n = knφ(µd)~x
n, (2.2)

φ(µd) =

{
1− ( µd

dmax
)2, if 0 ≤ µd ≤ dmax

0, if dmax < µd
(2.3)
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Figure 2.2: Running simulation within the Gazebo simulator.

where kn is a gain of the navigation vector, ~xn is the relative position of the closest point
in the path, and φ(µd) is used to regulate the distance of the agent from the rest of the
group.

Obstacle collision avoidance vector had to follow these rules:

~c =
1

Nc

No∑
i=1

Φ(||~xoi ||)~xoi , (2.4)

Φ(~xoi ) =

{
ko(

1√
||~xoi ||
− 1√

dr
), if 0 ≤ ||~xoi || ≤ dr

0, if dr < ||~xoi ||
(2.5)

where No is the total number of detected obstacles and ~xoi is the relative position of the
currently detected ith obstacle. Nc is the number of obstacles with a non-zero value for
Φ(~xoi ).

The used proximal control vector makes sure that agents are flying in a swarm for-
mation but not too close to collide. Equations expressing the proximal control are:

~p =
1

Na

Na+Nr∑
i=1

(a(||~xai ||)~xai ) +
1

Nr

Na+Nr∑
i=1

(r(||~xai ||)~xai ), (2.6)

a(||~xai ||) =


0, if 0 ≤ ||~xai || ≤ d0

ka(||~xai || − d0)2, if d0 < ||~xai || ≤ df

λ1 tan−1(||~xai || − 0.9df ), if df < ||~xai ||
(2.7)

r(||~xai ||) =


−λ2( 1√

||~xai ||
− 1√

d0
), if 0 < ||~xai || ≤ dc

−kr(||~xai || − d0)2, if dc < ||~xai || ≤ d0

0, if d0 < ||~xai ||
(2.8)
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where ~xai is the relative position vector of the currently observed ith agent and a(~xai ), a(~xai )
are the attraction and repulsion functions respectively.

Modification of equations mentioned above is a part of this thesis and it is explained
further in sections 4.2 and 4.3.

2.4 Frames of reference

Three types of reference frames are used in this thesis.

1. world frame - world coordinate frame has its center and orientation coinciding with
the starting position and orientation of relevant UAV.

2. rotational frame - The rotational frame is a coordinate frame centered at the center
of gravity of the relevant UAV and the xy-plane is parallel to xy-plane of the world
frame. Orientation is the same as orientation of the UAV. This reference frame is
used for most coordinate related operations.

3. body frame - body coordinate frame is similar to the rotational frame as it has its
origin at the center of gravity of the UAV but its z -axis is parallel to the thrust force
produced by the propellers.

x
1

x
2

y
1

y
2

z
1

z
2

Figure 2.3: Coordinate system 1 describes the world frame and system 2 describes the
rotational or body frame as those are identical in this situation.



Chapter 3

Localization of swarm neighbors

An obvious choice for a localization system for outdoor deployment of UAVs is a
navigation satellite system, e.g. GPS (global positioning system). GPS performs well in a
situation where the receiver has a high chance of successfully receiving and processing the
signal. In cases like underground or tunnels, the GPS signal may be completely missing.
In areas like a forest, the GPS signal may be insufficient or completely lacking. Based on
prior experience the GPS itself doesn’t provide enough accuracy to operate in forest-like
areas. Therefore, this task requires localization that is independent of GPS.

For the agents to navigate using Boids-like mechanics it is necessary to relatively local-
ize agents in their immediate neighborhood. That means there is a need for transformation
between reference frames of nearby agents. Such transformation consists of translation and
rotation. The proposed system is designed so that the swarm agents operate in 2D forma-
tion in a forest environment. Because of this, the agents have to work with translation in
the x and y axes, and the rotation is considered around the z-axis that is perpendicular to
the x and y axes. All these axes are expressed in the rotational frame (section 2.4) of the
agent.

This work aims to introduce a relative localization system independent of any global
localization system like GPS that should be scalable with minimal explicit inter-agent
communication and sensory usage. First, the ICP (Iterative closest point) algorithm will
be described and its usage in the proposed localization system will be explained. Next, the
obstacle handling and representation will be discussed. Finally, the ICP algorithm will be
improved using the FRMSD (Fractional root mean square distance).

3.1 ICP Algorithm

Iterative closest point is an algorithm used in various applications such as scan match-
ing or path planning. Given two scans with an overlapping segment, the iterative closest
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point is searching for the optimal way those scans overlap. UAVs are transmitting posi-
tions of near obstacles in the UAV’s respective body frame (section 2.4) to other UAVs.
Each UAV then compares received obstacle positions with detected obstacle positions and
based on that estimates rotation and translation between rotational frames (section 2.4)
of respective UAVs.

The ICP algorithm is represented by the pseudocode 1 where E is the error repre-
senting the amount of misalignment of the two scans, S and R are the points representing
the source and the reference scans that ought to be compared, P are the paired points
between S and R, Tra ∈ R2×1 is the translation vector and Rot ∈ R2×2 is the rotation
matrix, threshold is acceptable error value and iter is the maximum number of iterations
the algorithm can run.

Algorithm 1 Iterative Closest Point pseudocode

while E > threshold and i < iter do
P ← pairing(S,R)
[Tra,Rot] ← estimateTransform(P )
S ← tranSource(S,Tra,Rot)
E ← calcError(S,R)
i++;

end while

The pairing(S,R) procedure is in most cases the biggest time consumer within the
ICP algorithm. Source and Reference sets of points are inputs of the pairing procedure. The
goal is to make pairs consisting always of one point from the Source set and one point from
the Reference set. The points are paired so that for a given point aS from the Source set a
point aR from the Reference set is chosen that is thought to be the correct placement of aS
in the Reference scan. To determine a correspondence between two points the Euclidean
distance is mostly used. Comparing point distances is computationally demanding. The
point aR becomes paired with aS if it is closest to aS from the Reference set. In an ideal
case, this process produces a set of pairs of truly corresponding points.

estimateTransform(P ) is the crucial part of ICP. The paired points are used to
compute the ideal translation and rotation needed to align both scans. Translation vector
Tra is actually in many cases calculated even before the points are paired. It is done by
calculating the center of mass of set S and R and shifting all the points in S by the vector
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between the two centers of mass. This process can be described by the following equations:

~cS =
1

N

N∑
i=1

~ai ~ai ∈ S, (3.1)

~cR =
1

N

N∑
i=1

~ai ~ai ∈ R, (3.2)

Tra = ~cS − ~cR, (3.3)

~a′i = ~ai − Tra i = 1, 2, ..., N ; ~ai ∈ S; ~a′i ∈ S ′, (3.4)

where ~cS and ~cR are the centers of mass of set S and R respectively and N is the number
of points in the set.

When the centers of mass are identical the goal is to minimize the distance between
corresponding points only by rotating the S ′ set. There are various ways of computing the
optimal rotation. In this thesis, the SVD (Singular value decomposition) (3.10) decompo-
sition was used for this purpose. The method of computing the optimal rotation with the
use of SVD can be summarized as:

R = [~ar1,~ar2, ...,~ari], (3.5)

~ari = [xri, yri]
T , (3.6)

S′ = [~as′1,~as′2, ...,~as′i], (3.7)

~as′i = [xs′i, ys′i]
T , (3.8)

W = RS′
T
, (3.9)

W = UΣVT , (3.10)

Rot = UVT , (3.11)

where U and V are matrices containing left-singular vectors and right-singular vectors of
W respectively and the diagonal elements of Σ are the singular values of W.

In some cases, there is the possibility that the determinant of the Rot matrix equals
−1. Then the matrix is a reflection matrix and not a rotation matrix. To compensate for
this issue the last column of the matrix V has to be multiplied by −1.

In tranSource(S,Tra,Rot) the rotation and translation from the previous step are
applied to the Source set of points:

~ai = Rot(~ai − ~cS) + ~cR i = 1, 2, ..., N ; ~ai ∈ S. (3.12)

Error of translation and rotation is calculated in calcError(S,R). A sum of squared
differences between paired points after transformation can be used as a valid metric for
representing the measure of alignment of given scans. The ICP algorithm stops after some
given number of allowed iterations or when the error is small enough or when the error in
step k + 1 is higher than in the previous step k.
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ICP algorithm is dependent on the first estimate. Thus, the error of translation
and rotation at the initialization of the algorithm is not desirable to be significant. This
condition doesn’t have to apply in cases where corresponding points in both sets are already
known but this is mostly not the case. If the difference in alignment is too significant at
the beginning of the algorithm, the pairing of corresponding points cannot be carried out
well enough and the algorithm is not likely to find the optimal solution.

3.2 Obstacles

This work describes navigation in a forest-like environment. As mentioned before the
agents are considered to be operating in the 2D plane above the forest vegetation and
beneath the tree crowns. This eliminates the danger of colliding with small branches that
are hard to detect as well as improves obstacle detection. The obstacles in this environment
can be represented as tall cylindrical structures. When assuming the 2D operational space
the obstacles can be found as a 2D projection of the intersection of a cylinder and xy-
plane of agents body frame (section 2.4). Further, the projection is replaced by a circle.
Therefore, the circular shape of all obstacles can be assumed.

The RPLIDAR-A3 laser scanner was used as the sensor to detect surrounding ob-
stacles. The sensor is sufficient enough considering the mentioned premises of navigation
through 2D space. A point cloud is the output of the laser scanner consisting of up to 750
points 360 around the agent. This sensor is the only source of data for the ICP algorithm in
the proposed solution. The number of points in the point cloud is a critical parameter for
the most computationally demanding step of the ICP, the pairing of corresponding points.
More points lead to significantly longer processing times. This is very important as this
way of localization is supposed to be working with groups of agents. It follows that the
algorithm will have to compare multiple scans. Shouldn’t this process be fast it might not
be able to operate in real-time. Therefore, the following approach of grouping points in the
point cloud has been chosen.

Firstly, the points from the laser scanner point cloud have to be divided into groups.
Each group consists of points that belong to the same obstacle. Assuming the obstacle
shape to be a circle, points in a group will always be a section of this circle. The circle
section shouldn’t introduce any sudden large changes in depth of the scanned points as
there are no sharp edges. Using this logic the points can be grouped accordingly as shown
in the following pseudocode 2.

Grouping the points based on depth difference alone does not solve the problem
because it only sorts the points but still keeps all of them. The next step is to represent
every group by fewer points than it contains. It appears that every group can be well
represented using a single point. Assuming the group of points is creating a circle section
then circle fitting using the least squares method can be utilized. This method solves the
problem in the rotational frame from section 2.4 by finding the best parameters x0, y0, r0
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Algorithm 2 Obstacle identification pseudocode

while not all points processed do
repeat

p ← next unprocessed point
Obst.append(p)
if (next point == False) then break
end if
dist ← distance(p, next point)

until dist < 1
Groups.append(Obst)
Obst.clear()

end while

where x0 and y0 are the x and y coordinates of the circle center and r0 is the radius of
the given circle. Such a circle minimizes the error expressed as the distance between the
circle and the points from the group. System of linear equations describing a circle can be
expressed as:

2xx0 + 2yy0 + (r20 − x20 − y20) = x2 + y2, (3.13)

where ~x and ~y are the x and y coordinates respectively of points in a group. Equations in
(3.13) can be written in a matrix equation

A~c = ~b,

where matrix A contains x and y coordinates of the grouped points, vector ~c consists of
the unknown variables x0, y0, and r0, vector ~b includes the right side values.

A =

2x1 2y1 1
... ... ...

2xn 2yn 1

,

~b =

x21 + y21
...

x2n + y2n

,

~c =

 x0
y0

(r20 − x20 − y20)

.

The following equation has to be solved in order to acquire the optimal fitting solution.

ATA~x = AT~b (3.14)

~x = (ATA)−1AT~b (3.15)
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It is necessary to filter out groups of points that contain less than 3 points in total
before applying the least squares method. The solution would not be unique if the number
of points was lower than 3, since 3 parameters are unknown. In such a case, the group may
be incorrectly represented.

The approach of circle fitting lowers the number of points to be paired and matched
in ICP from an initial 750 to approximately 20 depending on the number of obstacles
in the area of interest. Therefore significantly reducing the time needed to execute this
computationally demanding step of the ICP. Moreover, this method also provides the same
representation of the obstacle from different viewing angles as it computes the center of the
obstacle and doesn’t only consider the closest points on it. This makes the ICP algorithm
independent of the angle of view. Thus it brings more reliable localization techniques. Using
this method also introduces an improvement in transmission. When trying to minimize
the amount of transmitted data the agents now have to share only lower tens (Figure
3.1) of obstacle coordinates instead of the previous entire 750 coordinate point cloud. In
conclusion, the method of obstacle representation is essential for this localization system
to work.

Figure 3.1: Red points are data from the laser scanner, whereas the green dot is the circle
center estimation. Two agents are found in the center obtaining this obstacle laser scan.

3.3 FRMSD ICP

Usually, when employed for localization or odometry purposes, the ICP algorithm is
used to align scans originating from the same agent. In the proposed system the ICP is
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used to match two scans from different agents which introduces additional requirements.
The main difference is that the size of the translation between the two scans is generally
smaller when used on a single agent assuming a high enough scan rate. On the other hand,
when used on scans originating from different agents, translation size is bigger because the
agents find themselves several meters apart when the scans are taken. Thus the proposed
method has to be robust and reliable for the comparison of two scans with diverse origins.

The proposed usage of ICP algorithm further brings a bigger number of outliers
because the agents are further away and therefore their scans have less overlap. An outlier
is a point in one of the scans that does not have a real corresponding point in the other
scan. These are then paired wrongly with falsely corresponding points and thus negatively
influencing the ICP algorithm. Numerous methods for outlier rejection exist. In this thesis,
the Iterative Closest Point with Fractional Root Mean Square Distance (FRMSD) outlier
rejection is used (Figure 3.2).

Figure 3.2: Black arrows point at obstacles, which represent outliers, that are visible only
from one of the two agents and therefore are not marked by the green estimation. Outliers
are not included in the scan comparison. The same approach is applied for neighbors which
are evaluated as an obstacle by ICP.

Definition of FRMSD is as follows

FRMSD =
1

fλ

√√√√ 1

|Df |
∑
p∈Df

d2, (3.16)
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d = ||p− µ(p)||, (3.17)

where D is the own point set, p is a point from D, µ(p) marks the corresponding point in
the received point set, |Df | = f |D|, f ∈ [0, 1] and λ = 1.3 (generally for 2D) as explained
in [16].

Few additional steps must be added to implement the FRMSD into the ICP algo-
rithm. Firstly, the set D is ordered starting with the point with the smallest distance to
its corresponding point (3.17) and ending with the point with the biggest distance to its
corresponding point. Then the first i points are chosen into the Df for which FRMSDi is
the smallest. It can be decided with more precision which pairs of points will be used in the
calculation of the transformation because of the FRMSD extension to the ICP algorithm.
Others will be discarded as pairs containing an outlier. The new set Df is then used to
compute the transformation.

The parameter λ can be modified during different stages of the algorithm based on
the rate of convergence. It can be understood so that if the λ parameter is too small the
FRMSD can classify even correctly corresponding points as outliers [16].

Algorithm 3 Outlier rejection FRMSD pseudocode

i = 0
best i = 0
best frmsd = 0
D ← QuickSort(D)
while i < |D| do

i++
Df ← first i points from D
if FRMSD(Df ) ¡ best frmsd then

best i = i
best frmsd = FRMSD(Df )

end if
end while
Df ← first best i points from D

The FRMSD based pair filtering (pseudocode 3) is then repeated in the ICP algorithm
every time after the pairs of corresponding points are made.
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Swarm Controller

This chapter describes the control mechanisms for swarm navigation through the
forest. The swarm controller in this thesis is inspired by the work of Craig Reynolds on
the topic of Boids [15]. The Boids control mechanism was first introduced as a simulation
of animal motion such as bird swarming behavior or fish schools1. Boids are referring to
the swarm particles. There are three basic steering behaviors for the particles: separation,
alignment, and cohesion. The combination of those behaviors determines the motion of
the particle. Extensions and variants of this method were already used for robotic swarm
applications [24], [1]. This thesis introduces a Boid-based controller with obstacle avoidance
and relative localization of neighboring swarm particles (section 3).

4.1 Control vector definition

We introduce a combining procedure needed to obtain the final control vector (pseu-
docode 4). The control vector has the meaning of UAV’s desired velocity and it serves as a
reference for the SpeedTracker [25]. First, the cohesion vector ~vc and the separation vector
~vs are computed. Then the navigation vector is calculated. Vectors ~vc, ~vs, ~vn are summed
into the vector ~p that is used to calculate the obstacle avoidance vector. Finally, ~vc, ~vs,
~vo are used to recalculate the navigation vector. All the four vectors ~vc, ~vs, ~vo, ~vn are then
summed and the final control vector is scaled properly.

~v = kc · ~vc + ks · ~vs + ko · ~vo + kn · ~vn, (4.1)

~vf =

{
~v
||~v|| · kf , if ||~vf || > 1

~v · kf , otherwise
(4.2)

where ~vf is the final control vector, the kf is a parameter used to adjust the desired speed,
kc, ks, ko, and kn are parameters to adjust their respective vectors.

1https://www.red3d.com/cwr/boids/
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Algorithm 4 Control vector computation

while True do
neighb agents ← getNeighbLocation()
obstacles ← getObstacleLocation()
cohesion vec ← calcCohesionVec(neighb agents)
separation vec ← calcSeparationVec(neighb agents)
navigation vec ← calcNavigationVec(cohesion vec, separation vec)
p ← cohesion vec + separation vec + avoidance vec
avoidance vec ← calcAvoidanceVec(obsatcles, p)
navigation vec ← calcNavigationVec(cohesion vec, separation vec, avoidance vec)
final vec ← kc·cohesion vec + ks·separation vec + ko·avoidance vec +

kn·navigation vec
if (||final vec|| > 1) then

final vec ← final vec
||final vec||

end if
final vec ← final vec · kf

end while

4.2 Cohesion

The purpose of the cohesion vector is to hold the agents together so that they act as
a group rather than individual units. To calculate the cohesion vector, all the neighboring
agents’ relative position vectors are summed and divided by the number that is by one
higher than the count of neighboring agents. This will provide a ”center of mass” of near
agents.

~c =
1

N + 1

N∑
i=1

~xi, (4.3)

where ~c is the center of mass of neighbors, N is the number of neighbors, and ~xi are relative
coordinates of the i-th agent.

If there is an obstacle nearby of the UAV only the closest neighboring agent’s co-
ordinates are used to calculate the center of mass (Figure 4.1). This helps to prevent a
situation where an agent is dragged into an obstacle by the group. It gives temporarily
more flexibility to the agent while still moving with the group. This means that even if
the agent is still being pulled into the obstacle it is advantageous to use only one neighbor
for calculation. Thus, the center of mass of neighbors gets closer to the agent. When the
center is closer than the cohesion vector becomes weak quicker (Figure 4.2) which makes
the avoidance vector more influential.
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C
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Figure 4.1: A situation where only the closest neighboring agent is used to calculate the
center of mass. Agent on the left would be dragged straight into the obstacle (red) if the
center c1 (orange) was used. The center c2 (green) provides more space for avoidance while
still keeping up with the group.
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Figure 4.2: The relation between the distance of the center of mass and the magnitude
of the cohesion vector. The blue part is where the vector is active and the red where the
vector is unused.

The cohesion vector is then calculated using the following equations:

k = max(0, 1− 2.5

||~c||
), (4.4)

~vc = k · ~c, (4.5)

~vc =

{
~vc
||~vc|| , if ||~vc|| > 1

~vc, otherwise
(4.6)

where the max function causes the cohesion vector ~vc to be active only outside of a certain
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radius. Thus, the vector ~vc always acts as an attractive vector and never as a repulsive.

4.3 Separation

The separation vector has the collision avoidance function. It is supposed to prevent
collisions between agents in the group. For this purpose, a distance-dependent approach
has been chosen similar to [20]:

ki =

{
−1, if (1− 3

||~xi||) < −1

(1− 3
||~xi||), otherwise

(4.7)

~vi =


[

0

0

]
, if ||xi|| > 2

ki · ~xi
||~xi|| , otherwise

(4.8)

~vs =
1

N

N∑
i=1

~vi, (4.9)

where ~xi are coordinates of the i -th agent expressed in the rotational frame (section 2.4)
and N is the number of all agents used to calculate the separation vector ~vs.
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Figure 4.3: Relation between the distance of the neighboring agent and the magnitude of
the separation vector computed for this agent. The blue part is where the vector is active
and the red where the vector is unused.

The separation vector ~vs is active only inside of a certain radius (Figure 4.3). The
vector ~vs always acts as a repulsive vector and never as an attractive. Moreover all neighbor
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Figure 4.4: Pictures are chronologically from left to right. Red crosses are obstacles (with
1.5-meter black radius around them), green dots are agents. Red (separation) and black
(final) lines depict the direction of given vectors that spread from the bottleneck.

Figure 4.5: In the figure on the left, the agents are calculating the separation vector only
for neighbors in front of them. In the right figure, agents are calculating the separation
vector for all nearby neighbors. The left picture shows the emergent queuing behavior in the
bottleneck whereas the right picture displays how the agents are forced closer to obstacles
and the entire group seems more disorganized.

agents that are not situated in 180◦ circular section around the desired direction of move-
ment are ignored when calculating ~vs. Large-scale simulations have shown that ignoring
those agents actually prevents collision in some situations. A typical example is when the
group is queuing into a bottleneck (Figure 4.5). If agents reacted with separation to all
nearby neighbors it would cause pressure on the front of the group to move forward faster.
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Therefore, it would provide less maneuvering space causing jam which forces agents into
collisions with obstacles. Such behavior produces waves that spread from the front of the
group to the back as shown in Figure 4.4.

4.4 Obstacle Avoidance

Another very important part of the control system is obstacle avoidance. The rep-
resentation of obstacles is described in section 3.2. The obstacle avoidance is active in a
certain radius around the agent (Figure 4.6) and considers always only the closest obstacle.
The vector is orthogonal to the position vector of the obstacle [18]. It is calculated as a
projection on orthogonal complement of the space spanned by the position vector:

P = I− ~y

||~y||

(
~y

||~y||

)T
, (4.10)

~v = P~p, (4.11)

~vo = ~v
1

||~v||
2

||~y||
, (4.12)

~vo =

{
~vo
||~vo|| , if ||~vo|| > 1

~vo, otherwise
(4.13)

where P is the projection matrix, ~y is the position vector of an obstacle, ~vo is the obstacle
avoidance vector and ~p is a vector representing the current desired direction of flight. Origin
of ~p is described in section 4.1.
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Figure 4.6: Relation between the distance of an obstacle and the magnitude of the obstacle
avoidance vector. The blue part is where the vector is active and the red where the vector
is unused.
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Obstacles that are situated more than 135◦ from the current desired direction of
movement are ignored when calculating ~vo (Figure 4.7). This allows the agent not to be
dragged too long around an obstacle and also discards obstacles that are not obstructing
the path.

y
[m

]

y
[m

]

x [m] x [m]
0

0 3 3

3 3

0
0

Direction of flight

Figure 4.7: On the left is a path of an agent (green dots) considering past obstacle (red).
On the right is the path when ignoring past obstacle. The path on the right is shorter
without unnecessarily keeping close to the obstacle and turns. Also, it does not pull agents
too close together when they approach the same obstacle from different sides.

4.5 Navigation and Alignment

If the group of UAVs has a certain location to reach and not only to hover around
equilibrium it needs a way to navigate. Considering that the agents have their goal locations
in the same direction it can be done in the following way. Heading alignment is ensured by
computing the mean of all the neighbors’ relative heading deviations and keeping up with
the mean value (Figure 4.8).

α = atan2
( N∑
i=1

sin Θi,

N∑
i=1

cos Θi

)
, (4.14)
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where α is the mean, N is the number of considered agents, and Θi is the relative heading
of i -th agent.

A virtual agent is added to ensure that the agents are moving towards the goal
location. Goal location is defined in the world frame (section 2.4). The virtual agent has
the same location as the agent itself and heading is set towards the goal position.

Θ = atan2(gy − py, gx − px), (4.15)

where Θ is the heading of the virtual agent, px, py, gx and gy are coordinates of the agent’s
position and final goal position respectively in the world frame. This is keeping the heading
in the direction of the final goal position.

45°-45°

Figure 4.8: A situation where two agents have different relative heading. Green lines are
x -axes of the agent’s body frame, red lines are y-axes and light blue lines are z -axes. The
arrows indicate the direction each agent will turn to keep the same relative heading.

Considering that the agents are maintaining similar relative heading. Then the navi-
gation vector is a vector aligned with the x -axis of the body frame of the agent. This vector
then propels the group in one common direction. The navigation vector is calculated based
on all vectors introduced above. Magnitudes of all the previous vectors are summed and
based on their combined magnitude the magnitude of the navigation vector is calculated
(Figure 4.9).

kn = ||~vc||+ ||~vs||+ ||~vo||, (4.16)

~vn =



[
0

0

]
, if kn > 1[

1

0

]
· (1− kn), otherwise

(4.17)

where ~vc, ~vs, ~vo is the cohesion, separation and obstacle avoidance vector respectively and
~vn is the navigation vector.

The proposed approach of vector combining emphasizes the different priorities of
individual vectors. The first priority is to prevent the group from falling apart and to
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Figure 4.9: Relation between the combined magnitude of vectors used to compute the
navigation vector and the magnitude of the navigation vector.

prevent collisions between the agents and obstacles. For example, the obstacle avoidance
vector will have a greater magnitude when an agent needs to avoid a close obstacle. That
will stop the navigation vector from demanding progress and provides more space for a
steady avoidance maneuver. After the prioritized situation is resolved the navigation vector
starts acting again.

4.6 Comparison

The differences between the control approach proposed in this thesis and the control
approach specified in [1] are mentioned in this section.

First of all, there are major differences in the navigation vector (section 4.5). The
navigation vector in [1] is a vector pointing to the closest point in the desired path of
the UAV. This path is generated using a modified A* algorithm. This thesis proposes a
navigation vector that is aligned with the x-axis of the body frame. Navigation is ensured
using this vector together with heading alignment towards the goal location.

Another difference between the two approaches is scaling functions for the vectors.
Scaling functions in [1] are designed to keep larger distances between UAVs within the
swarm. The UVDAR system [17] is used for relative localization in [1]. The UVDAR sys-
tem is more reliable for larger distances. The ICP localization system (section 3) works
better with closer proximity as the laser scans overlap more. Therefore, this thesis proposes
equations allowing smaller distances between agents.

The difference in separation vector is that all neighbors are considered when calcu-
lating the separation vector in [1]. On the contrary, only neighbors in front of the UAV are
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used to calculate the separation vector in this thesis as explained in section 4.3.

The obstacle avoidance vector in [1] is computed considering all nearby obstacles.
The obstacles behind the UAV are ignored when computing obstacle avoidance vector in
this thesis as explained in section 4.4. Moreover, obstacle avoidance vectors in this thesis
are tangential to the obstacles whereas in [1] they are pointing directly away from the
obstacle.

The order of computing the control vectors (section 4.1) and the way of computing the
navigation vector (section 4.5) along with considering fewer neighbors in the computation
of the cohesion vector while too close to an obstacle (section 4.2) are also different from the
ones used in [1]. The approach in this thesis was chosen to prioritize the obstacle avoidance
vector making the flight safer.



Chapter 5

Database of agents

The ICP algorithm introduced in section 3.1 can be used to match two laser scans
and determine the relative positions of their sources. A simple approach where every agent
runs the ICP algorithm every time on every scan it receives is viable but has a weak
scaling potential. In the worst-case scenario considering every agent is able to a receive scan
from every other agent then every agent also has to run the ICP on every scan received.
This approach is more computationally demanding for large-scale swarms. Therefore, we
introduce the solution for reduction of computational demands of ICP algorithm together
with process of neighbor information handling.

5.1 ICP First estimates

The main goal of the proposed approach is to make the localization system viable
for large groups of agents by minimizing the time spent on computing the ICP algorithm.
Two ways have been chosen to achieve this. Firstly, it is unnecessary to try to localize an
agent that is too far to be localized by the ICP. Secondly, it is desirable to use the agent’s
last known position as a starting estimate for the ICP algorithm.

As mentioned in section 3.1, ICP requires a decent starting estimate to work properly.
In this thesis, the problem of the first estimation is solved by iteratively calling ICP and
comparing the obtained FRMSD. Thus, if there is not any available starting estimate to
initiate the ICP algorithm, the ICP algorithm will be executed iteratively at every point
of a grid that spans 6 meters to each direction from the agent. The grid consists of 441
points at which the ICP evaluates all relative headings (Figure 5.1). The best position is
chosen as the first estimate. This is possible because the goal is assumed to be in a similar
direction. Moreover, the sparse point cloud representation makes the ICP algorithm run
fast enough (section 3.2).

Using only this way of estimating the initial position takes a relatively long time to
compute. Therefore, the last known position is often used as the first estimate. We propose
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Figure 5.1: Green points around the agent are positions that are probed for the full starting
estimate. The closest distance between two points is 0.5m.

to use 3 variations of the ICP to improve the computational demands of the localization
system (Figure 5.2).

• Firstly, the initial ICP (iICP) is used when a new laser scan is received. It locates
the source of the laser scan if possible and also creates an entry in the database. The
iICP contains the full first estimate as described above and thus takes more time to
be computed.

• Secondly, the short ICP (sICP). The sICP takes in the database entry and updates
its values. It is not using the full starting estimate but already just the last known
position. This makes it fast and is used most of the time.

• Lastly, the long ICP (lICP). Situations can occur when the position is incorrectly
determined as a result of quick maneuver or other disturbing factors. In such cases,
the sICP continues using the wrong position as the estimate which could lead to
misplacement of the agent. It is difficult to determine when this happens. Therefore,
regular checks take place after a given period of time to compensate for possible
deviations. The lICP takes in the database entry and updates it using the full estimate
every 5 seconds.
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Figure 5.2: Data obtained from a short simulated flight of two agents.

A simulation was run with 2 UAVs using the Gazebo simulator (Figure 2.2). Graphs
5.2 show, which variant of ICP is used by one of the agents to keep track of the second one.
The first graph shows the number of short ICPs used, the second one shows long ICPs and
the third is the initial ICP. It shows that the iICP is called only once at the initialization
and is never used again. The lICP is used every 5 seconds. The last graph presents all
counts together for comparison. It is visible that the overwhelming majority of used ICPs
are the least demanding sICP.

5.2 Agent entries

Above mentioned improvements require a certain way how an agent can distinguish
between other individual agents in the group. However, it is preferred that all the agents in
the group are interchangeable and not unique. This fact does not allow for any type of IDs
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to be assigned to the individual agents because that would not make neighboring agents
replaceable. Furthermore, the ID is another information that would have to be transmitted
or communicated. Last but not least, adding a new agent to the group would be more
complicated when merging two larger groups because IDs cannot be duplicated.

We propose a dynamic database consisting of entries about surrounding agents. The
database is unique for each agent. Each agent makes an entry for every other agent that
has been in contact with him. The entry holds important information about the agent.
Unused entries can be discarded and new created. The laser scan is used as an ID for the
entries. Considering the forest surrounding the group is unique then the laser scan is also
unique for each agent. There can not be two agents exactly at the same location at the
same time since the flocking operates in 2D and therefore there cannot be two agents with
the same laser scan.

Algorithm 5 Database entry structure

struct uav {
e::Matrix2d rotation;
e::Vector2d translation;
ros::Time last long;
vector<e::Vector2d> ID;
bool suspended;
ros::Time suspension time;
ros::Time last used;
bool chosen;
};

Pseudocode 5 shows the database entry for one agent. Each agent has such entry
for every agent whose laser scan is received. Variables within the entry have the following
purposes.

• rotation is 2D matrix describing the relative rotation between the headings of the
two agents.

• translation is a 2D vector describing the relative translation between the two agents.

• last long is a time information. It states the last time when ICP with the full starting
estimate was used to update or create this entry.

• ID are coordinates representing the obstacles from the given laser scan.

• suspended is true if the agents location could not be determined the last time it
was checked. It states whether the agent is in range of the ICP or not.

• suspension time is a time information. It states the last time when the entry was
classified as suspended.
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• last used is time information stating the last time the entry was updated in any
way.

• chosen helps track active agents in the surroundings.

5.3 Entry handling

The database is changing with time. Entries are being updated, discarded, or added.
Some are ready for use and some are suspended. The following algorithm 6 decides what
happens with every entry.

Algorithm 6 Entry handling

for entry in database do
entry.chosen = false

end for
for scan in received scans do

best match = findBestMatch(scan, database)
if best match frmsd <= 1 then

database[best match index].chosen = true
end if
if best match frmsd > 1 then

addNewEntry(scan, database, ref scan)
continue

end if
if best match.suspended == true and best match suspension time < 5 then

best match.last used = timeNow()
continue

end if
if best match lICP time > 5 then

lICP(best match, ref scan)
else

sICP(best match, ref scan)
end if
best match.last used = timeNow()

end for

First, the .chosen member of each entry is set to false as an initialization of the new
iteration of the algorithm. Further, the following routine was repeated for every scan that
was recently received by the agent.

findBestMatch(scan, database) takes in the received scan and the database. It
applies ICP without the full starting estimate on the received scan and .ID member of
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each entry. This step does not modify the database in any way. It finds the entry that
together with the received scan achieves the lowest FRMSD.

The next step will be chosen based on the value of the last FRMSD of an entry. If
the FRMSD is less or equal to 1 then the .chosen member of the entry is set to true.

addNewEntry(scan, database, ref scan) is called if FRMSD is higher than 1, which
indicates that the scan is out of range of the ICP. This value was acquired experimentally
in the simulation. It takes in the received scan, database, and scan of the ego agent. It
creates a new entry in the database for the received scan.

Next, the suspension status of the found entry is checked. If the entry is suspended
for less than 5 seconds it will not be updated. This means that the agent is likely still out
of range for the ICP.

lICP(best match, ref scan) or sICP(best match, ref scan) is used to update an entry
if the entry is found with low enough FRMSD and is not suspended. The type of ICP is
chosen based on the time since the last update with a full starting estimate.

In the end, the used entry is stamped with the time it was used. All entries that were
used more than 0.5 seconds ago are discarded from the database.
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Simulation

The above mentioned components were put together and tested in simulations1. Sim-
ulations are carried out in realistic Gazebo simulator and using Matlab. Simulation scenario
where the swarm has to navigate in a forest environment is testing both the localization of
swarm neighbors presented in section 3 and section 5 as well as the proposed control ap-
proach (section 4). Gazebo is used for simulations that include UAV dynamics. Therefore,
simulations in Gazebo are closer to the real world. Matlab is used for large-scale simula-
tions that consist of tens of UAVs without dynamics. Matlab simulator is purely used to
test the scalability of the proposed control system (section 4) and was designed specifically
for the purposes of this thesis.

6.1 5 UAV - Gazebo

The first set of simulations was performed in the realistic Gazebo simulator. Five
agents were used for this simulation. Their group goal was to navigate from around the
point (0, 0) to around the point (30, 0) in a simulated forest environment. Data from one
agent were used to present the results.

Graph 6.1 shows paths (dotted lines) of all agents in x, y coordinates. The blue path
is the path of the agent that is specified by the triangle and whose data were used for
presenting the results of the simulation. Black objects represent trees. The goal was to
reach the point (30, 0) as a group. The graph presents the swarm at three different points
in time. The position of the group closest to the left represents the position after 17 seconds
of the flight. The position in the middle depicts the group after 77 seconds from the start
and the position on the right after 127 seconds. Trace (solid line) behind each agent shows
its path during the previous 5 seconds.

The blue and the orange lines in the graph 6.2 represent the magnitudes of the
navigation (section 4.5) and the obstacle avoidance (section 4.4) vector respectively. The

1http://mrs.felk.cvut.cz/krizek-2021-bp
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Figure 6.1: Agents (colored) depicted at three different times with their complete paths
(dotted) during their navigation through obstacles (black).

navigation vector is filling in spots where the obstacle avoidance vector is less active as
explained in section 4.5. This behavior produces almost mirror image and the differences
are caused by the change in the activity of other vectors.

Figure 6.2: The navigation vector magnitude (blue) and obstacle avoidance vector magni-
tude (orange).

Connections between the presented data can be observed well around 127 s times-
tamp. In the graph with the closest agent distance (Figure 6.6) is a significant increase in
distance to the closest neighbor. Evidence of this is also visible in the graph with the num-
ber of detected neighbors (Figure 6.7). The number of detected neighbors declines around
this point which is indicating that the other agents are getting out of range of the ICP.
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Followed by a quick increase in activity of the cohesion vector (Figure 6.3) that begins to
force the agent back to the group. The situation is depicted in Figure 6.1 where the group
on the right represents the situation at this timestamp. It is clear that the measured agent
has increased its distance from the group and is the furthest from the center of mass and
therefore is being pulled back to the group.

Figure 6.3: The cohesion vector magnitude (green) and separation vector magnitude (red).
The two vectors do not work against each other but they alternate depending on the
situation.

Figure 6.4: The final vector magnitude after combining all other components. The maximal
magnitude of the final vector was set to 0.4.

Graph 6.5 shows that flight was without any agent-obstacle collision and the distance
to obstacles was sufficiently big. Moreover, graph 6.6 shows that the flight was without any
agent-agent collision and the distance between agents was sufficiently big as well. Peak
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values in distance estimated by the ICP can be filtered by a low-pass filter. The average
error between ground truth and ICP estimation is 0.052 m.

Figure 6.5: The shortest distance to the closest obstacle at any point in time.

Figure 6.6: The shortest distance to the closest agent determined by the ICP (blue) and
the ground truth (green).

Figure 6.7 presents the number of detected neighboring agents by the UAV during
the flight. The correctness of this value depends not only on the laser scan of the ego
agent but also on the laser scans provided by the other agents. Some neighboring agents
might be balancing on the maximum range of the ICP. Therefore, quick changes between
detected neighbors count can occur. But even if those short changes were all mistakes the
one stable value is still active 89% of the time interval. This graph is the demonstration of
entry handling introduced in section 5.3.

Distances agent-obstacle and agent-agent are important for the safety and reliability
of the proposed system. Those distances from the simulation are presented in Figure 6.1
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Figure 6.7: The number of detected neighbouring agents by the UAV during the flight.

along with their averages. Furthermore, the desired speed of the UAV can be seen in Table
6.4.

Agent 1 2 3 4 5 Average
Obstacle distance [m] 1.4 1.3 1.4 1.48 1.23 1.36
Agent distance [m] 1.35 1.52 1.57 1.45 1.4 1.45

Table 6.1: Individual minimal distances for each agent during the test flight.

6.2 7 UAV - Gazebo

Seven agents were used with the same goal as in the previous experiment in the second
simulation. Moreover, another static UAV was placed close to the swarm to simulate system
failure. The group behaved accordingly to the algorithm even when one UAV serves as a
disturbance. Therefore, this case can be used as proof of decentralization and robustness of
the system. Furthermore, interesting situation occurred during the same simulation. One
of the agents was separated from the group shortly after takeoff but managed to join the
group again later. The separation was caused by a strong need to avoid obstacle collision.
System reliability within leaving and joining the group during the flight was demonstrated
during this experiment (Figure 6.9).

Figure 6.9 consists of three graphs. The first one shows the number of located neigh-
bors of the UAV2 at any time. The second figure shows the number of located neighbors of
the UAV7 which is the agent that has separated from the group. The last figure presents
the distance of the UAV7 to the closest neighbor according to the ICP (blue) and in com-
parison with the ground truth (green). The same time period is highlighted by the orange
vertical lines in all figures. The first orange line marks the time when the separated agent
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Figure 6.8: The swarm group of 7 UAVs and its path through the forest.

joins the group again and locates its first neighbor after being out of range. Since this mo-
ment the UAV7 tracks the position of the UAV2 with good precision according to the data
in the third figure. The second orange line marks the time when the UAV2 localizes the
UAV7. Red horizontal lines show the distance beyond which contact with the last neighbor
before separation was lost (upper line) and when it was after separation regained (lower
line). The contact was lost at around 6.7 m and regained at around 6.3 m. During the
separation period, the number of neighbors of the UAV7 was a stable 0 which shows that
all laser scans were correctly identified as out of range by the localization algorithm.

Paths of the individual agents as well as their locations at the time marked by the
second orange vertical line in Figure 6.9 are shown in Figure 6.8. The cyan dot on the left
represents the static UAV. The separated UAV (green) makes the first contact with UAV2
(red) as explained in Figure 6.9.

In simulations with a larger group of UAVs (e.g. 8 agents) an issue was identified.
Each agent must consider all laser scans that are received. That means it takes more time
to compute relative positions of neighbors for larger groups. Approximately every 5 sec-
onds there was a peak in computational time as can be seen in the first graph of Figure
6.10. This time period corresponds with time intervals after which lICP is used to update
location (Figure 5.2) and also the time after which the suspended laser scans are evalu-
ated again using iICP. Therefore, it has been concluded that these peaks are caused by a
high concentration of time-demanding algorithms (lICP and iICP) at one moment. This is
further supported by the second graph in Figure 6.10 where the line representing the total
number of lICP and iICP algorithms has a much steeper slope in those peaks. This issue
causes delays because the controller waits with the command until all ICP algorithms are
finished. The following approach was designed to solve the problem described in Figure
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Figure 6.9: This figure describes the separation of UAV7 and its reunion with the UAV2
and the rest of the swarm.

6.10. The goal is to have concentrated computationally demanding algorithms spread out
in time so that the periods with lower workload are utilized better. Only two lICP/iICP
with the highest priority can be calculated in every step before the control command is
published. The priority depends on time, when the location was lastly updated. lICP algo-
rithms with lower priority are replaced by quicker sICP. Skipped lICPs are executed in one
of the following computational steps, when they reach the top of the priority list. Also the
maximum number of ICP iterations was reduced. Lastly, a failsafe was added that stops
further computations if the step duration is already too long. However, in this case the
failsafe has not even triggered. All of this was tested to confirm that it does not affect
the precision of the localization system. The results are shown in Figure 6.11. The average
mean value of step duration was 0.0362 s in Figure 6.10 and is 0.0317 s after the modifi-
cations. The computation time mean is similar but the variance is smaller. Therefore, the
modifications are distributing the workload more uniformly. This is also supported by the
second graph in Figure 6.11, where a similar number of lICP/iICP algorithms is computed
in every step. The simulation introduced in this section was using these modifications.
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Figure 6.10: The upper graph shows sudden increases in the computational time needed to
localize the neighbors. The lower graph shows that the higher demand for computational
time is connected to the accumulation of processes.

Figure 6.11: The situation after the issue from Figure 6.10 was resolved. The mean value of
computational time did not change and the distribution is more uniform as the algorithms
are being processed continuously.
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6.3 5 UAV - Matlab

The transition of the proposed swarm system to the Matlab was verified by this
experiment. It is supposed to prove that the Matlab simulator without UAV dynamics still
reflects reality to a certain extend. The Matlab simulator will then be used for large-scale
simulation.

Graph 6.14 shows the comparison between trajectories of swarm particles in Gazebo
and Matlab within the same initial condition as in section 6.1. The time to goal was
approximately 120s for Gazebo and 105s for Matlab. Means of agent to obstacle distances
(Figure 6.12) were calculated using data from all 5 UAVs and they differ by approximately
0.3 m. Means of agent to agent distances (Figure 6.13) were calculated using data from all
5 UAVs and they differ by approximately 0.4m. The means from the Matlab simulation
are higher in both cases.

Figure 6.12: Agent to obstacle distances. Data are displayed only from one pair of UAVs.

Figure 6.13: Agent to agent distances. Data are displayed only from one pair of UAVs.
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Figure 6.14: The comparison between trajectories from simulations in Gazebo and Matlab.

6.4 40 UAV - Matlab

An experiment with 40 UAVs in Matlab tests the scalability of the proposed system.
Only the swarm controller (section 4) was tested in this simulation. The goal of the swarm
was to navigate straight through a forest environment. The forest environment (Figure
6.15) was generated based on the tree density and distances between individual trees in
the previous experiments to have comparable conditions.

Figure 6.15: The swarm particles are green. Red crosses are centers of trees and black
circles have a radius of 1.5 m. The direction of motion is from left to right.

Results are presented in Figure 6.16. One UAV was used to present the results of
avoidance, navigation, separation, and cohesion vector. Distances to the closest obstacle
and closest UAV are also presented on the same UAV. Moreover, distances are presented
with their mean values calculated using the entire 40-UAV swarm. The minimal distance
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to an obstacle was 1.06 m and the mean value is 2.71 m. The minimal distance to another
agent was 1.31 m and the mean is 2.24 m.

The obstacle avoidance and the navigation vector are behaving similarly as in section
6.1. The UAV was positioned in the middle of the swarm for most of the time. Therefore,
the separation vector is more frequent whereas the cohesion vector is inactive.

Figure 6.16: The first graph depicts magnitudes of obstacle avoidance and navigation vec-
tor. The second graph shows the magnitudes of the separation and cohesion vector. The
last two graphs show minimal distance to obstacles and other UAVs respectively.
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6.5 4 UAV - Gazebo comparison

The last experiment was performed to compare the system proposed by this thesis
with the approach introduced in [1]. Results from [1] are shown in Figure 6.17. The exper-
iment includes 4 UAVs. The UAV in the front is informed about the location of the goal.
The same map and goal location was used with the system proposed in this thesis.

The UAVs stayed together as a group and successfully reached the goal location in
both cases (Figure 6.17 and 6.18). The approach from [1] took 340 s to reach the goal.
Swarm with the approach proposed in this thesis reached the goal in 147 s. In the end, the
system proposed in this thesis was 2.3 times faster than the one introduced in [1].

Figure 6.17: Flight of 4 UAVs using the system introduced in [1].

Figure 6.18: Flight of UAVs using the system proposed in this thesis. UAV marked by the
triangle (green) is the informed UAV. Positions from the left are 35 s, 90 s, and 140 s since
the start of the flight.
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Conclusion

This thesis introduced a system for swarming in a forest environment. A swarm
controller and relative localization system were developed and tested. Simulations were
carried out in the realistic Gazebo simulator and simulator implemented in Matlab to
verify the functionality of the system. The swarm can safely and smoothly navigate between
obstacles in a forest environment when using the approach proposed in this thesis. Following
goals have been reached:

• System for relative localization using the ICP algorithm was introduced in Chapter
3.

• Swarm boids-like controller was developed in Chapter 4 allowing navigation of UAVs
in a forest environment.

• Efficiency of the system for relative localization was further improved in Chapter 5.

• The complete system was implemented and integrated into Robot Operating System
and the Multi-Robot Systems group system.

• Behavior of the system was successfully tested in Chapter 6 in realistic Gazebo sim-
ulator and Matlab.

• Developed approach was compared with the existing method for forest flying used in
Multi-Robot Systems group.

The future work will be focused as follows. Prepare a HW outdoor experiment which
we were unable to carry out because of the current situation. Further, merge the existing
relative localization system used in the MRS group with the ICP variant as they can
complement each other. The existing system would be used for larger distances and ICP
for closer proximity.
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[20] G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A. E. Eiben, and T. Vicsek,
“Optimized flocking of autonomous drones in confined environments,” Science
Robotics, vol. 3, no. 20, Jul. 2018. [Online]. Available: https://robotics.sciencemag.
org/content/3/20/eaat3536

[21] V. Walter, M. Saska, and A. Franchi, “Fast Mutual Relative Localization of UAVs
using Ultraviolet LED Markers,” in 2018 International Conference on Unmanned Air-
craft Systems (ICUAS), Jun. 2018, pp. 1217–1226, iSSN: 2575-7296.

[22] K. Guo, Z. Qiu, W. Meng, L. Xie, and R. Teo, “Ultra-wideband based
cooperative relative localization algorithm and experiments for multiple unmanned
aerial vehicles in GPS denied environments,” International Journal of Micro
Air Vehicles, vol. 9, no. 3, pp. 169–186, Sep. 2017. [Online]. Available:
https://doi.org/10.1177/1756829317695564

[23] V. Walter, M. Vrba, and M. Saska, “On training datasets for machine learning-based
visual relative localization of micro-scale UAVs,” in 2020 IEEE International Con-
ference on Robotics and Automation (ICRA), May 2020, pp. 10 674–10 680, iSSN:
2577-087X.
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Appendices





List of abbreviations

In Table 1 are listed abbreviations used in this thesis.

Abbreviation Meaning
UAV Unmanned Aerial Vehicle
GPS Global Positioning System
UVDAR UltraViolet Direction and Ranging
UV Ultraviolet
ROS Robot Operating System
ICP Iterative Closest Point
FRMSD Fractional Root Mean Square Distance
UWB Ultra-Wideband
SVD Singular Value Decomposition
MRS Multi-robot systems

Table 1: Lists of abbreviations
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