
Instructions

JavaScript is the most popular programming language ever. It follows a One JavaScript philosophy to

achieve backwards compatibility: old features are never removed or fixed, but new features are

introduced, new syntax must inter-operate with old syntax. Therefore, JS carries a lot of historical

baggage causing ambiguity and redundancy that makes JS difficult to learn and maintain.

The goal is to explore whether dropping backwards compatibility makes it possible to develop a drop-

in replacement for JS that is:

- is interoperable with JS and existing frameworks,

- legible and easy to learn for JS devs,

- more usable than JS.

The student will:

- identify ambiguities and redundancies in JS and propose specific solutions,

- propose a new language based on the above

- develop an interpreter or compiler for this language,

- perform experiments, surveys and/or interviews to show the improved usability over JS

- do case studies showing the extent of interoperability with JS and its ecosystem.

Electronically approved by Ing. Michal Valenta, Ph.D. on 19 February 2021 in Prague.

Assignment of master’s thesis

Title: Usability improvements to JavaScript/ECMAScript

Student: Bc. Jan Jindráček

Supervisor: Ing. Konrad Siek, Ph.D.

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Software Engineering

Department: Department of Software Engineering

Validity: until the end of summer semester 2022/2023

Master’s thesis

Usability improvements to
JavaScript/ECMAScript

Bc. Jan Jindráček

Department of Software Engineering
Supervisor: Ing. Konrad Siek, Ph.D.

May 4, 2021

Acknowledgements

I wish to thank Ing. Konrad Siek, Ph.D. for his patience, help, advice and
encouragement in guiding me to this point.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 4, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Jan Jindráček. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Jindráček, Jan. Usability improvements to JavaScript/ECMAScript. Master’s
thesis. Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2021. Also available from: 〈https://npmjs.com/package/jonscript〉.

https://npmjs.com/package/jonscript

Abstrakt

JavaScript je nejpopulárněǰśı programovaćı jazyk na světě a je ned́ılnou součást́ı
dnešńıch webových stránek. Nicméně, i přes jeho popularitu je zdrojem frustrace
pro vývojáře, kteř́ı s t́ımto jazykem pracuj́ı. Tato práce identifikuje hlavńı
problémy tohoto jazyka jako nedostatek konzistence základńıch vlastnost́ı ja-
zyka, což často vede k neintuitivńı sémantice. Tento problém je dlouho známý
a byl již částečně vyřešen několika jazyky, jazykovými extenzemi,
striktńım módem a lintery. Tato práce představuje JonScript, jazyk, který
má jednoduchou syntaxi, jednoduše se použ́ıvá, a je kompatibilńı s existuj́ıćımi
knihovnami v JavaScriptu. Jeho výhody spoč́ıvaj́ı v univerzálńım použit́ı arrow
funkćı, funktorovými výrazy, přetěžováńı operátor̊u, automatickým použit́ım
operátoru async a pattern matchingu. Také zjednodušuje a zavád́ı konzis-
tenci k funkcionalitě známé z JavaScriptu: syntax string̊u, dědičnost, vytvářeńı
tř́ıdńıch instanćı a výraz̊um obsahuj́ıćım nedefinované vlastnosti objekt̊u. Tato
práce obsahuje př́ıpadovou studii, která slouž́ı jako př́ıklad použitelnosti Jon-
Scriptu a jeho kompatibilitě s jQuery a Redux knihovnami. Také obsahuje po-
rovnáńı s výkonnost́ı v̊uči TypeScriptu, která poukazuje na vyšš́ı výkonnostńı
nároky JonScriptu, což ukazuje na potřebu optimalizace.

Kĺıčová slova Sémantika v programovaćıch jazyćıch, Funkcionalita a kon-
strukty v jazyćıch, Kompilátor, JavaScript, TypeScript, JonScript

vii

Abstract

JavaScript is the most popular language and the backbone of web develop-
ment. However, despite its popularity, it is a source of frustration for its
developers. This thesis identifies JavaScript’s main problem to be a lack
of consistency within its features (often subtle) which leads to counterintu-
itive semantics. The problem is well known and has been partially addressed
by a number of languages, extensions, JavaScript strict mode, and linters.
This thesis introduces JonScript, a simple and easy-to-use language on top
of JavaScript that is compatible with the JavaScript ecosystem. JonScript’s
features include universally applied arrow function semantics, functor syntax,
operator overloading, async inference, and pattern matching. It also simplifies
and regularizes a number of features with respect to JavaScript: string syntax,
inheritance, instantiation, and expression of undefined object members. The
thesis contains case studies showing the usability of JonScript and compatibil-
ity with jQuery and Redux. It also contains a performance evaluation showing
overhead with respect to TypeScript, suggesting optimization is required.

Keywords Semantics of Programming Languages, Language Constructs and
Features, Compiler, JavaScript, TypeScript, JonScript

viii

Contents

1 Introduction 1
1.1 Utility of functional programming 1
1.2 Powerful resources at the disposal of JavaScript developers . . 3
1.3 Problematic behaviour within JavaScript 4

1.3.1 Problematic variable declaration 4
1.3.2 Problematic property definition 5
1.3.3 Problematic function declaration 6
1.3.4 Multiple array definitions 8

1.4 Problem definition and exploring possible solutions 9
1.5 Thesis statement . 10
1.6 Chapters supporting proposition 10

2 Design 11
2.1 Feature analysis . 11

2.1.1 Static typing . 11
2.1.2 Function contexts . 13
2.1.3 Multiple programming paradigms 14
2.1.4 Quasi prototypal inheritance 16
2.1.5 Forgiveness . 17
2.1.6 String literals . 20
2.1.7 null and undefined . 21
2.1.8 NaN . 23
2.1.9 Null as property . 25
2.1.10 Pattern matching and type-checking 27
2.1.11 Operators and operator overloading 30
2.1.12 The Boolean class . 34
2.1.13 The new keyword . 36
2.1.14 The async keyword . 37
2.1.15 Functors . 38

ix

2.2 Syntax and semantics . 39
2.3 Code example . 50

3 Implementation 53
3.1 Broad overview of the build process 53
3.2 Distribution . 54
3.3 Technologies . 54

3.3.1 NodeJS . 54
3.3.2 NPM . 54
3.3.3 Typescript . 54
3.3.4 antlr4ts . 55
3.3.5 Ts-morph . 56
3.3.6 Webpack . 56

3.4 Parser description . 56
3.5 Future release features and shortcomings 57

3.5.1 Features that will be implemented in future release . . . 57
3.5.2 Features that require more research 58
3.5.3 Shortcomings without a clear fix 59

3.6 Lessons learned . 60

4 Evaluation 61
4.1 Correctness of the implementation 61

4.1.1 Unit test list . 61
4.1.2 Evaluation of the stated goals 61

4.2 Performance testing . 64
4.2.1 Test subjects . 64
4.2.2 Benchmark algorithms 64
4.2.3 Testing enviroment . 65
4.2.4 Results . 65
4.2.5 Analysis . 68

5 Related Work 69
5.1 Strict mode . 69
5.2 Languages and language extension 70

5.2.1 TypeScript . 70
5.2.2 CoffeeScript . 70
5.2.3 JSX . 71
5.2.4 JS++ . 71
5.2.5 Amber . 71

5.3 Linters . 72
5.3.1 ESLint . 72
5.3.2 Other linters . 72

6 Conclusion 73

x

6.1 Threats to validity . 74
6.2 Unsolved problems and future work 74

6.2.1 Issues to be implemented in future release 75
6.2.2 Issues that require more research 75
6.2.3 Performance . 76
6.2.4 Issues that cannot be addressed 76

6.3 Future work . 76

Bibliography 77

Appendix 83
A JonScript ANTLR4 Syntax . 83
B Contents of enclosed USB drive 87

xi

List of Figures

2.1 Prague Stock Exchange displaying NaN% when looking up specific
time horizon for stocks . 24

2.2 Binary arithmetic operators in JonScript 33

4.1 Fibonacci performance . 66
4.2 Langton’s ant performance . 67
4.3 Merge sort performance . 67

xiii

Chapter 1
Introduction

JavaScript is the world’s most used language [44]. It is the backbone of web
development. JavaScript has many amazing features and a wide range of
frameworks and extensions.

1.1 Utility of functional programming

JavaScript contains powerful functional programming features, which give it
the ability to easily create high-level abstractions without any boilerplate code.

JavaScript adheres to the principle of function as first class citizen. This
means that you can, for example, easily add inversion control using function
call as a default parameter value of a function. Or, as it is common in func-
tional programming, you can create a function to which you pass another
function as a parameter or return a function from a function. Furthermore,
the standard library in JavaScript includes powerful functions for array ma-
nipulation, map, filter,1 sort 2 and others, reminiscent of LISP mapping
functions [30]. Modern programming languages that are not considered func-
tional programming languages support there features: C#,3 Lua,4 Python,5
Go,6 Java7 and PHP8 all have functional programming features.

In order to showcase just how useful functional programming is, here is
an example, where you need to create map-reduce algorithm function. This
function counts the length of the words in a string. This type of algorithm
1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/Array/filter

2https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/Array/sort

3https://www.codeproject.com/Articles/375166/Functional-Programming-in-Csharp
4https://luafun.github.io/intro.html
5https://realpython.com/python-functional-programming
6https://blog.logrocket.com/functional-programming-in-go/
7https://www.geeksforgeeks.org/functional-programming-in-java-with-examples
8https://phptherightway.com/pages/Functional-Programming.html

1

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://www.codeproject.com/Articles/375166/Functional-Programming-in-Csharp
https://luafun.github.io/intro.html
https://realpython.com/python-functional-programming
https://blog.logrocket.com/functional-programming-in-go/
https://www.geeksforgeeks.org/functional-programming-in-java-with-examples
https://phptherightway.com/pages/Functional-Programming.html

Introduction

is useful when creating histograms or other statistics about a data set. I am
creating two different versions of this algorithm in JavaScript in order to point
to the differences between imperative and functional programming.

In the first version of the algorithm, map-reduce is implemented without
any functional programming features. In the example below we create a func-
tion which splits any string by spaces. For simplicity of presentation assume
that the string does not contain punctuation. After that, we iterate over
the array of sub-strings (words) and add their lengths in a hash map. This
function returns the completed map.

1 const wordCount = text => {
2 const split = text.split(" ");
3 const map = {};
4 for (let i = 0; i < split. length ; i++) {
5 if (map[split[i]. length]) {
6 map[split[i]. length] += 1;
7 } else {
8 map[split[i]. length] = 1;
9 }

10 }
11 return map;
12 };

In the next example we create the same algorithm, but with JavaScript
functional programming features. We split a string by spaces into words, just
as before, but after, we apply a SELECT-like function which converts an array
of words into an array of word lengths. After this operation, we add each new
length into a hash map through the reduce function (e.g. a historgram).

1 const wordCount = text => text
2 .split(" ")
3 // This is equivalent to SELECT query in SQL
4 .map(word => word. length)
5 // Copy map , rewrite element at index ’length ’
6 . reduce ((p, length) => ({
7 ...p, [c]: (p[length] || 0) + 1
8 }), {});

In the first example, I am using imperative programming. While this is
not incorrect in any way, it does not allow for any abstraction. This means
that if I need to write a similar function, I either need to start from scratch,
or move to object-oriented programming features.

The second is shorter, but the main advantage is that by simply using
parameter for the map function, you can create an abstract map-reduce algo-
rithm and use it elsewhere. The example of such abstraction is shown in the

2

1.2. Powerful resources at the disposal of JavaScript developers

example in the next code listing: a general-purpose map-reduce algorithm,
that can take any mapping function and an array and add the results into a
hash map. It returns the said hash map.

1 /**
2 * Library function to provide map - reduce functionality
3 * { values } Array of input values
4 * {map} Function to map values passed in into the desired type
5 */
6 const mapReduce = (
7 values ,
8 map ,
9) => values

10 // Pass map function into .map () - function as parameter
11 .map(map)
12 // Finally , reduce the array into a hash map
13 . reduce ((hashmap , value) => ({
14 ... hashmap ,
15 [value]: ((hashmap [value] || 0) + 1)
16 }));

Now we have defined a generic function with two type parameters that can
take any map function. Using this generic reduce function we can simplify
other similar functions—not just the word count. See the next listing for
an example of a function that uses this abstraction. This function counts
how many words start with certain letter. The simplification here occurs
thanks to us being able to pass a simple mapping function directly into another
function—the map-reduce.

1 /**
2 * Counts how many words start with certain letter
3 */
4 const firstLetterCount = text => mapReduce (
5 text.split(" "),
6 word => word [0]
7);

1.2 Powerful resources at the disposal of
JavaScript developers

Another advantage JavaScript developers have is a large amount of free re-
sources at hand to help them, thanks to large community support with pack-
age distributions. The best known package repository of these is NPM [48].
Some of the best known packages are: TypeScript [10], ESLint [43], React
[18], Knockout [32], Vue [27] and Angular [17]. TypeScript and ESLint are

3

Introduction

compile-time libraries which affect the quality of the code produced, while
React, Knockout, Vue and Angular are frameworks, used to manipulate the
HTML user interface.

Thanks to such a large ecosystem, modern JavaScript developers also have
access to language extensions, such as JSX [19]. JSX allows you to directly add
HTML tags to your JavaScript code and have them render through JavaScript
in your browser. JSX constructs are reminiscent of those found in Razor [40]
templates in C#. React and Angular take advantage of this by providing
powerful component based systematic approaches to web development.

1.3 Problematic behaviour within JavaScript

With such amazing features, one would think that JavaScript is the perfect
language. This, however, is not the case. Consider that some of the most
used packages in JavaScript are there to help you write cleaner and more un-
derstandable code (ESLint and TypeScript). This hints at a deeper problem.
Developers like to mightily complain about this language, despite its features
[16, 26, 28].

The main problem with JavaScript is that the language is comparatively
old, has undergone many changes, and—much like Java—maintains full back-
wards compatibility. This causes a major problem—there are many ways of
doing the same thing [33, 37, 39]. To explain myself further, I will now begin
to explore a simple use case.

1.3.1 Problematic variable declaration

Consider an example, where I want to define an object with one property.
This property will have a function assigned to it, which returns another object
with just one property. While this seems easy to understand and do, there
are several issues a developer will encounter along the way. To start with, I
will need to define a variable—there are three ways of doing it:

• const defines a constant variable,

• let defines a block-scoped variable, and

• var defines a function-scoped variable.

Those statements differ in semantics. If you try and reassign into constant
variable (const), JavaScript throws an exception upon assignment. You can
re-assign to block-scoped variable (let), and to the function-scoped variable
(var). There is not much special about let, except for the differences between
let variables and function-scoped variables. Function-scoped variables (var)
are hoisted—you can access them in their scope before they are defined. Their

4

1.3. Problematic behaviour within JavaScript

values will be undefined.9 Also, var can be redefined—you can define the
same variable multiple times in the same scope, and when defined inside the
global scope, var becomes the property of the global object (usually window).10

Therefore, var defined variables will mutate the object, even before they are
assigned to.

In our case, let us choose const, since we will not be reassigning the value
anywhere:

1 const Module = {}; // assigns an empty object

1.3.2 Problematic property definition

Next, we are going define to create a property on Module. There are three
distinct ways of doing that:

1. by creating a property: o.property = value,

2. by using a get/set syntax (this means defining a getter and setter func-
tion), and

3. by calling the function Object.defineProperty.

Using the get/set syntax requires that you define a getter, setter, or both.
When you use the get/set syntax, you run the risk of unexpected behaviour,
if you want to create a read-only property—if you try to create a read-only
property by using a getter without setter during property declaration and then
try to assign to this property, JavaScript will throw an exception (assuming
you are using strict mode).11 However, you can remove the getter-only prop-
erty using the delete operator from the object and then assign a new value
into it.

1 const o = {
2 get length () { return this._len },
3 _len: 5
4 };
5
6 // You may assume that a getter cannot be assigned to , but:
7 delete o. length ;
8 o. length = 6; // o. length is now a regular property
9

10 console .log(a. length); // Prints 6
11 console .log(a._len); // Prints 5

9https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/undefined

10https://developer.mozilla.org/en-US/docs/Web/API/Window
11https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

5

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

Introduction

To truly create a read-only property, one must use Object.defineProperty.
I showcase the use of this method by an example found in this 12 documenta-
tion.

1 const object1 = {};
2
3 Object . defineProperty (object1 , ’property1 ’, {
4 value: 42,
5 writable : false ,
6 // Non configurable properties cannot be deleted in scrict mode
7 configurable : false ,
8 });
9

10 // throws an error in strict mode
11 object1 . property1 = 77;
12
13 // expected output : 42
14 console .log(object1 . property1);

For now, let us use a simple assignment. Now, our code looks like this:

1 const Module = {
2 Example : ?
3 }

1.3.3 Problematic function declaration

Now we need to define a function, which returns an object. There are four ways
to define functions in the text below. Each way has certain subtle differences:

• Classic JavaScript function—function name() { return 1; };

• arrow function expression;

• instantiating an instance of the Function class; or

• a class definition.

We discuss each of these below.

12https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/Object/defineProperty

6

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty

1.3. Problematic behaviour within JavaScript

Standard JavaScript function First, we will discuss standard JavaScript
functions. Standard functions definition is initialized by the keyword function,
followed by an optional name and a code block. Function may have a set of
parameters, last one of which can be a spread (variable length argument list
interpreted as an array).

The result of calling a function may depend on its execution scope. One
can access this scope by the this keyword. Function context in a global scope
without strict mode refers to window—in browsers, window is a global name-
space object. It contains the entire standard API. When strict mode is used,
the scope is not defined. Context can be redefined by using functions call,
apply or bind on said function. You can redefine the contents of the this
object by running the function in a different scope.

Each function also has the property length, which refers to the number
of parameters and the ’arguments’ object, which refers to function arguments.
The arguments object also has the callee property, which refers to the func-
tion itself—similar to the aforementioned context, callee is not defined when
using the strict mode.

Arrow function expression Second, let us discuss the arrow function ex-
pression. An arrow function expression does not change its context based on
execution. Arrow function expression context is set and frozen when such
function is defined. Also, an arrow function expression cannot use the yield
operator, nor have its context manipulated by bind, call or apply methods.
Lastly, an arrow function cannot be used for constructors and does not have
the new.target property, which lets you see whether or not it has been called
using the operator new.

Function class instance Third, we can create a function by using the
Function class [1]. This means you convert a string into a function, in a similar
way to how eval13 works. This is highly insecure and not recommended - for
obvious reasons, since it allows for cross-site scripting (XSS) [11] attacks on
your site under certain conditions, when a malicious script is placed within
the Function class constructor.

Function as class And last, but not least, we could define the function
as class. Classes in JavaScript are essentially just functions, which return an
object. Some classes need not to be instantiated with the new keyword—you
can instantiate those classes as if you were calling a function. Also, you can
instantiate a class with the new keyword, without using parentheses (). If
you create your own class and call it without using new, an exception will
13https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_

Objects/eval

7

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval

Introduction

occur. Class definition can be mutated at any time by adding properties to
their prototype property.14

Let’s choose the arrow function for simplicity and continue. Next, we need
to define an array and return the desired value.

1 const Module = {
2 Example : () => {
3
4 }
5 }

1.3.4 Multiple array definitions

There are three ways of defining an array: instantiating the Array class con-
structor with the new keyword, instantiating the Array class without the new
keyword (as if it was a regular function), or creating the array literal ([]). The
difference between the array literal, and calling Array class, is that is there is a
single numeric parameter passed into the Array class, it will generate an array
of empty elements of certain length. There are no other differences between
these, so let us simply define a variable containing an array by using the array
literal and now we have:

1 const Module = {
2 Example : () => {
3 const map = [1, 2, 3];
4 }
5 }

Since JavaScript has a strong support of functional programming, we can
take the map property (similar in function to SELECT in SQL) and assign it
into separate variable.

1 const Module = {
2 Example : () => {
3 const map = [1, 2, 3]. map;
4 }
5 }

Since JavaScript only has one kind of return statement, we can use it and
return the desired value:
14https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_

prototypes

8

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes

1.4. Problem definition and exploring possible solutions

1 export const Module = {
2 Example : () => {
3 const map = [1, 2, 3]. map;
4 return {
5 result : map(i => i + 1),
6 };
7 },
8 };

1.4 Problem definition and exploring possible
solutions

In the text above, I outline at least six different ways of creating the same
object. Their differences are not just syntactic, they change the semantics of
the program as well.

The algorithm in the last example will throw an exception when executed.
This is due to the map function of an array being context-dependent.15 This
means that after assignment into map variable it will throw an exception when
called, since it is context is undefined. You can fix this problem by either
wrapping the statement in an arrow function expression, or by using the func-
tion bind - this would create a new map function with it’s context set from
then on.

The problem, at its core, is that there are not just many ways of doing the
same thing in JavaScript, but many ways of doing relatively similar things,
that differ from each other in subtle details.

This invites a question—what can be done about the state of things?
In general, the solution should prevent developers from encountering hidden
complexities due to backwards compatibility or strange design choices. The
solution should also be compatible with current JavaScript ecosystem, in order
to allow users to use the massive amount of packages in existence. Last, but
not least, the solution should not take experienced developers a long time to
master, or change the positive aspects of the language.

Such solution could be creating a new language, or a language extension
which fits the above mentioned traits. Such language would need to have a
similar syntax to modern JavaScript, but it’s inside logic should be intuitive,
without changing how an imported code from a package functions within the
context of this new language.

There were many attempts to create such solution in the past. These at-
tempts are discussed at great detail in Chapter 5 (Related Work). Two of the
most significant attempts are CoffeeScript and TypeScript. TypeScript, how-
ever, cannot fix certain run-time errors, and while CoffeeScript comes close
15https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/

this

9

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this

Introduction

to my own work, my work arguably provides more features than CoffeeScript
does. In summary, while these attempts solve parts of the problem, the prob-
lem has not been solved in full.

1.5 Thesis statement

Thesis. It is possible to create a programming language which is interoperable
with JavaScript. The requirements for this language are:

a. Consistency—one way of doing things;

b. Compatibility—the language will be compatible with household frameworks
in JavaScript; and

c. Ease of use—JavaScript programmers, whether beginners or advanced ones,
will be able to easily master it.

1.6 Chapters supporting proposition

This proposition will be supported by following chapters: Chapter 2 con-
tains an overview of all features of this language, which support the proposed
requirements, and goes over syntactic structure of my proposed language.
Chapter 3 contains a description of technologies used during development of
this proposed language, and description of technical details on compile pro-
cess, as well as a detailed description of future work. Chapter 4 goes over
the testing done to ensure correctness and to measure performance of this
language. Chapter 5 dives into similar projects in the past—how they work,
what they accomplish and where they may be insufficient. I conclude with
Chapter 6, that summarizes what was accomplished in this thesis and contains
an overview of future work.

10

Chapter 2
Design

This chapter critiques specific features of JavaScript and provides counter-
proposals to them. Together, these counter-proposals produce a programming
language that fits the requirements from set out in the thesis statement. Be-
sides critiquing JavaScript features, I also describe high-level design of my pro-
posed solution—the language JonScript. This chapter also discusses JonScript
syntax structure and semantics in concrete ways and showcases examples of
how the language works.

2.1 Feature analysis

JavaScript is famous for its problematic idiosyncratic behaviour. In this sec-
tion I list them and provide concrete improvement proposals. Furthermore, I
show that these improvements are useful in improving developer and end user
experience.

2.1.1 Static typing

General concept Static types [25] are present in programming languages
to validate data structures, prevent application errors during run-time by not
allowing operations that violate the type systems rules, and to allow compile-
time optimization.

JavaScript implementation JavaScript does not have static typing. In-
stead, you can check the type of any data structure during run time.16 This is
called dynamic typing. You cannot, for example, restrict what data structure
will be passed into a function as a parameter, or to be assigned to any variable.
If you need to enforce types, you must do it dynamically, at run time.

16https://www.w3schools.com/js/js_datatypes.asp

11

https://www.w3schools.com/js/js_datatypes.asp

Design

Problematic behaviour occurs when a program wrongly assumes the type
of variable, property, or function parameter. This causes errors during run
time, that are hard to detect, because of the variety of data structures that
can be assigned to any variable or property, or passed as a function parameter.
Here is an example of this behavior. We try to create a function called add.
It takes two parameters and adds them together with +. Then, we call this
function with unexpected parameters and discuss the result.

1 const add = (a, b) => a + b;
2 add (5, 4); // returns 9
3 add("5", 4); // returns "54"!

The result of add("5", 4) is "54". This is due to the + operator acting as
concatenation operation instead of addition, because it dispatches on a string
argument. This is preventable by checking the types of parameters entering
the function and raising an exception17 if they are not numbers.

Source of behaviour Without a static type system, JavaScript is more
accessible to new developers.18 Not having to specify what value is stored
within variables, properties or arguments also makes the language less verbose.
This also makes it easier for JavaScript developers to duck-type.19 Duck typing
can be used to avoid excessive conditional statements.20

Consequences Due to the lack of static typing, it is more difficult to pre-
dict the behaviour of JavaScript code. This makes it harder for JavaScript
developers to create complex applications and libraries, and results in bugs
affecting the end user [38].

Solution JonScript contains a subset of TypeScript typing and is compatible
with TypeScript packages. This means that you can define typed methods on
classes and use a certain amount of type coercion known from TypeScript,
through user-defined type guards [14]. This typing is essential for many other
features discussed below, in Section 2.1.4, or Section 2.1.2.

17https://www.w3schools.com/js/js_errors.asp
18https://fosterv222.medium.com/coding-languages-typed-vs-untyped-d29c7e0b3713
19https://hackernoon.com/learning-duck-typing-in-javascript-qa3g35nc
20http://adripofjavascript.com/blog/drips/using-duck-typing-to-avoid-

conditionals-in-javascript.html

12

https://www.w3schools.com/js/js_errors.asp
https://fosterv222.medium.com/coding-languages-typed-vs-untyped-d29c7e0b3713
https://hackernoon.com/learning-duck-typing-in-javascript-qa3g35nc
http://adripofjavascript.com/blog/drips/using-duck-typing-to-avoid-conditionals-in-javascript.html
http://adripofjavascript.com/blog/drips/using-duck-typing-to-avoid-conditionals-in-javascript.html

2.1. Feature analysis

2.1.2 Function contexts

General concept Function context21 is understood as the data structure
from which a method is being called. Function context is very similar to
the keyword this in C#. In C#, the this keyword22 refers to the current
instance of a class.

JavaScript implementation Each data structure carries its own context.
That is when a method is called on an object, you can access the object
properties within said method by using this keyword. In JavaScript, you can
define a function using this without explicitly stating to which object this
refers to. This means that you can re-use the same function as a method for
multiple objects.

Problematic behaviour Function context can be accidentally changed
during run time by passing a method as a parameter, or by assigning a method
to a variable, to the context of the data structure in which the aforementioned
method is executed. This behavior depends on which kind of method is used.
If a method is defined as arrow function expression,23 and not a standard
function, its context is set forever during declaration, to the data structure
in which it was declared. If however, an arrow function expression was not
used to define a method, an unexpected behavior can occurs when you call
this method. Here is an example, where passing a method as a function pa-
rameter leads to an exception. In this example, I wrote a function that takes
another function as parameter (funct) and then tries to execute the function
and convert and return the resulting value as a number.

1 const convertToNumber = funct => Number (funct ());
2 convertToNumber ((2). valueOf); // throws an exception

Source of behaviour Function context behaviour in JavaScript increases
code re-usability by allowing you to define a method for multiple classes (or
objects) and then simply assign it to one of their properties—and utilize their
context within said function. The reason for this behaviour is that originally,
JavaScript did not have the syntax for classes that contain methods [47]. The
usage of this keyword allowed for a top-level definition of methods.
21https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/

this
22https://docs.microsoft.com/cs-cz/dotnet/csharp/language-reference/keywords/

this
23https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/

Arrow_functions

13

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this
https://docs.microsoft.com/cs-cz/dotnet/csharp/language-reference/keywords/this
https://docs.microsoft.com/cs-cz/dotnet/csharp/language-reference/keywords/this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

Design

Consequences This behaviour lessens JavaScript potential to be used as
a functional programming language—by not allowing certain methods to be,
safely, used as first-class citizen functions, JavaScript not only increases the
amount of potential errors a programmer can make, due to context changes,
but also makes the programmer use either a wrapper function—wrapping a
method in an arrow function expression (which came in the ECMAScript ver-
sion 6 (ES6) [50] version of the language—therefore, the context re-assignment
problem partially stems from backwards compatibility) to pass it safely, or,
use the bind method present on each function to define its context and pre-
vent this problem. Alternatively, you can use closures to this end as well24

and assign the desired context to a separate variable (usually self, or that
and use that variable instead of this. All of these solutions, except the arrow
function expression, bloat the code however.

Solution JonScript stops context reassignment from happening. If the same
example was created in JonScript, the valueOf methods function context
would be automatically bound to the number (2). This automatic bind-
ing effectively makes all functions in JonScript behave like arrow function
expressions—when any method is accessed on an object, this binding takes
place.

Here is a rough approximation of what JonScript does when you try to
define a variable to which a method is assigned:

1 const convertToNumber = funct => Number (funct ());
2 convertToNumber (
3 (() => const _e = (2); return _e. valueOf .bind(_e))
4); // Safely binds the method to 2

2.1.3 Multiple programming paradigms

General concept Functional programming [49] is one of modern program-
ming paradigms, which focuses on creating a software by using pure functions.
This means there is no shared state, nor are there function side-effects. This
style of programming is declarative. You use a function definition to declare
what do you want to do—the implementation details are then hidden within
the functions that are passed as parameters. This style of programming is
closely related to the function as first-class citizen principle. When a function
is a first class citizen, it can be used in the same fashion as any other data
structure—as a parameter, a return value or as value assigned to a variable.

24https://salesforce.stackexchange.com/questions/159399/what-is-this-pattern-
for-self-this

14

https://salesforce.stackexchange.com/questions/159399/what-is-this-pattern-for-self-this
https://salesforce.stackexchange.com/questions/159399/what-is-this-pattern-for-self-this

2.1. Feature analysis

JavaScript implementation JavaScript implements the function as first-
class citizen principle—in JavaScript, you can use function as you would any
other data structure. Functions even have their own properties and meth-
ods. Given these facts, you could argue that JavaScript functions are in
fact functors—objects25 that have an overloaded application operator (()).
JavaScript also fully supports imperative and object-oriented26 styles of pro-
gramming. This means that it is equally possible to write JavaScript code
utilizing multiple different approaches.

Problematic behaviour Giving programmers total freedom of using mul-
tiple different paradigms together without limitations causes the JavaScript
developer to essentially develop their own dialect of the language—using a
subset of possible programming styles.27 This causes difficulty when figuring
out the correct approach to developing complex applications in JavaScript.

Source of behaviour Originally, the author company of JavaScript,
Netscape, wanted JavaScript to be simple, dynamically typed object-oriented
language [47], similar in syntax to C. However, the author, Brendan Eich
found LISP-like first class citizen functions to be attractive. Due to the mul-
titude of developers working their own ideas into the language (and pressure
from Netscape), JavaScript ended up with multiple programming paradigms.

Consequences Because of the nigh-unlimited number of possible ways of
writing code, JavaScript developers working in a team frequently resort to us-
ing linters—tools [43] designed to flag code that, while correct and functional,
does not conform to the standards set by the team.

Solution By removing imperative programming from JonScript, the lan-
guage gains larger resemblance to functional programming languages like LISP,
which helps programmers lean more on functional programming features [23].

However, JonScript is not a purely functional language—you can define
both classes and objects. Both can have public and private properties, and
can inherit from each other. This makes JonScript a highly functional, object-
oriented language. With this combination, JonScript offers something both
to fans of functional style, and to everyone else that likes object-oriented
approach, with classes and encapsulation. By enforcing a single, consistent
programming style within JonScript, we avoid the multiple-paradigm issue.

25https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions
26https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object-

oriented_JS
27https://javascript.plainenglish.io/javascript-functional-vs-oop-fb5fbf15a35d

15

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object-oriented_JS
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object-oriented_JS
https://javascript.plainenglish.io/javascript-functional-vs-oop-fb5fbf15a35d

Design

2.1.4 Quasi prototypal inheritance

General concept A class declaration is a blueprint for creating objects. An
object of a class is called an instance [45]. The instance of a class has proper-
ties and methods defined within the class declaration. Class definitions also
provide encapsulation—they tell the object instance which properties should
be public—accessible by other instances—and which should be private, or
protected—only available to select class instances. Classes can inherit prop-
erties and methods from a parent class. This means that a class instance can
have methods and properties that are defined in the parent class. An instance
of a class is also an instance of its parent. There are two kinds of inheritance
systems, prototypal and class based, with significant differences in semantics.

In typical class based inheritance systems, a class cannot remove, or re-
define, parent methods and properties—unless the language allows you to
declare them as abstract,28 or virtual.29 Also, in typical class based sys-
tems, classes can have only one parent class (such as Java or C#). In general,
class definitions are created during compile-time—and stay static during the
entire run of the program.

On the other hand, prototypal inheritance [41] means that a class defini-
tion is simply a function that returns an object. Classes within prototypal
inheritance are called prototypes. Prototypes implement inheritance by sim-
ply composing objects together within the prototype. This means that a
prototype may have multiple parents and can redefine all inherited properties
and methods. In general, prototypes are created during run time and they are
mutable during run time. One important benefit of the prototypal inheritance
is that it solves the fragile base class problem [31].

JavaScript implementation JavaScript uses its own kind of prototype-
based inheritance [9]. A class in JavaScript is special kind of function, re-
turning an object. Each of those objects contains information about its pro-
totype.30 This is what makes the class function different from a regular one.
When calling a method on any object, JavaScript looks at the direct properties
of the object first (which can be added during run-time). If if does not find
anything, it finds said objects prototype and tries to find the method there.
If the method is not found, it continues in a similar fashion onto the parent
of the prototype. Prototypes in JavaScript cannot use multiple inheritance.

Problematic behaviour Most experienced developers who arrive to
JavaScript coming from other modern languages are not expecting a proto-
28https://docs.oracle.com/javase/tutorial/java/IandI/abstract.html
29https://www.infoworld.com/article/2895408/exploring-virtual-and-abstract-

methods-in-c.html
30https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_

prototypes

16

https://docs.oracle.com/javase/tutorial/java/IandI/abstract.html
https://www.infoworld.com/article/2895408/exploring-virtual-and-abstract-methods-in-c.html
https://www.infoworld.com/article/2895408/exploring-virtual-and-abstract-methods-in-c.html
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes

2.1. Feature analysis

typal inheritance system.31 This effect is compounded by JavaScript adding
a new keyword in ES6—class. ES6 JavaScript classes look as if they were
written in Java.32 Therefore, most developers assume that JavaScript uses
a class-based inheritance system. This leads to unexpected and counterin-
tuitive behaviour, such as expecting the class definitions to be immutable,
objects not to be able to become instances of completely different class, or
that class definitions cannot have dynamically generated properties.

Source of behaviour JavaScript tries to be as inviting as possible to new
developers coming to it from other languages—we speculate that that is why
the class keyword was added.33 Furthermore, JavaScript prototypal inheri-
tance allows for a great flexibility—by changing existing class definitions you
can customize behaviour of any API you want to a much greater extent than
you would be able to do otherwise.

Consequences Having a less-known inheritance system and compounding
it with its own specific implementation makes JavaScript inheritance counter-
intuitive. This is further compounded by the ES6 added syntax. This results
in developers working with a system they do not properly understand, which
leads to developers under-utilizing the inheritance system and to unexpected
behaviour of JavaScript applications.

Solution JonScript offers a true version of prototype-based inheritance, with
multiple parents. In addition, JonScript also completely removes the keyword
this from the language—this is useful, since it shortens property access. Fur-
thermore, JonScript prototype-based inheritance is compatible with original
JavaScript one.

2.1.5 Forgiveness

General concept In this thesis, language forgiveness is defined as a feature
that applies transformations to values to prevent errors and to cause code
that would have been erroreous to execute with assumed intended semantics.
An example of language forgiveness would be an interpolated string in C#.34

In C#, you can concatenate numbers with strings within interpolated strings
and even though string and number types are different, C# automatically
converts the number in question to its string representation. An example of
31https://www.toptal.com/javascript/es6-class-chaos-keeps-js-developer-up
32https://everyday.codes/javascript/please-stop-using-classes-in-javascript/
33https://www.digitalocean.com/community/tutorials/understanding-classes-in-

javascript
34https://docs.microsoft.com/cs-cz/dotnet/csharp/language-reference/tokens/

interpolated

17

https://www.toptal.com/javascript/es6-class-chaos-keeps-js-developer-up
https://everyday.codes/javascript/please-stop-using-classes-in-javascript/
https://www.digitalocean.com/community/tutorials/understanding-classes-in-javascript
https://www.digitalocean.com/community/tutorials/understanding-classes-in-javascript
https://docs.microsoft.com/cs-cz/dotnet/csharp/language-reference/tokens/interpolated
https://docs.microsoft.com/cs-cz/dotnet/csharp/language-reference/tokens/interpolated

Design

unforgiving behaviour would be, in C#,35 a division by zero—this would result
in an exception being thrown and the run-time possibly being interrupted, if
such exception is not caught.

JavaScript implementation JavaScript has forgiving arithmetic, logical
and relational operators.36 Unless you change the default behaviour of Ob-
ject, Number or String classes by overriding standard API methods, or change
the prototype of their class instances during run-time, these operators never
throw exceptions—they accept every kind of data structure within the lan-
guage. JavaScript is not forgiving when it comes to accessing properties on
null references. If you try to access a property on a null value, the operation
will result in an exception.37 Similarly, JavaScript is not forgiving when you
try to call a data structure that is not a function.38 In ES2020 [2], JavaScript
added the optional chaining operator ?..39 This operator can be used to ac-
cess properties on an object, items within an array of call a function and will
not result in an exception if the value in question is a null reference. Instead,
the operation returns an empty result (undefined). This operator will not
protect you from an exception being thrown when calling a data structure
that is not a function, and you cannot use this operator when instantiating
classes.

Problematic behaviour This kind of partial forgiveness—throwing an er-
ror when accessing properties on the null (or undefined) value—is problem-
atic when working within complex data structures. For example, when you
try to access a property on a complex data structure that a server returned as
a response to your request, you might only care whether this particular prop-
erty exists within the structure or not—if this is the case, your application
crashing when trying to access this property is not desirable behaviour.

Here is an example of how you may have to do an operation without excep-
tions being thrown: Lets assume that the server can return either
{ a: { b: c: { d: 5 } } } structure, or { a: 1 }. We only care if prop-
erty d exists within the structure (named response).

35https://docs.microsoft.com/cs-cz/dotnet/api/system.dividebyzeroexception?view=
net-5.0

36http://speakingjs.com/es5/ch09.html
37https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Errors/No_

properties
38https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Errors/Not_

a_function
39https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/

Optional_chaining

18

https://docs.microsoft.com/cs-cz/dotnet/api/system.dividebyzeroexception?view=net-5.0
https://docs.microsoft.com/cs-cz/dotnet/api/system.dividebyzeroexception?view=net-5.0
http://speakingjs.com/es5/ch09.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Errors/No_properties
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Errors/No_properties
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Errors/Not_a_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Errors/Not_a_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Optional_chaining
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Optional_chaining

2.1. Feature analysis

1 if (response != null
2 && response .a.b != null
3 && response .a.b.c != null
4 && response .a.b.c.d != null) {
5 // do stuff
6 }

This way we can always make sure that our program will not crash on null
reference exception. However, for each property that may not be defined, we
need an extra null check. This will bloat our code. There is a better way of
doing this with the aforementioned optional chaining operator:

1 if (response .a?.b?.c?.d != null) {
2 // do stuff
3 }

However, the problem with optional chaining operator is that we can forget
to use it. Programmers are human after all, and constantly remembering to
annotate every property access that may lead to a null reference exception
can be difficult and prone to errors.

Source of behaviour By having null reference exceptions, JavaScript con-
forms to a well-known standard behaviour that most developers who have used
other programming languages are familiar with.40 This may help developers
orient themselves better when working in JavaScript. Null reference excep-
tion tells you that you have tried to access something that does not exist. The
reasoning is similar to throwing an exception when calling a data structure
that is not a function. This behaviour also helps to prevent typos within your
code.

Consequences Incomplete forgiveness in JavaScript leads to a website crash-
ing on null reference exception. If uncaught, these exceptions can completely
interrupt the user progressing through a website. Similar situation occurs
when you try and call a data structure that is not a function.

Solution JonScript uses automatic optional chaining whenever you access
an item within an array, a property within an object, or try to call a method,
or a function. JonScript is also forgiving when it comes to arithmetic, logical
operators and comparative operators: no operation will cause a crash, but if
the operation would result in an invalid, or unexpected value, it simply returns
a null value (undefined). More on operators in Section 2.1.11.
40https://www.geeksforgeeks.org/null-pointer-exception-in-java/

19

https://www.geeksforgeeks.org/null-pointer-exception-in-java/

Design

2.1.6 String literals

General concept A string is a sequence of characters. Most object-oriented
languages represent string by a String class.41 This class encapsulates the un-
derlying sequence of characters and adds useful methods for manipulating text
within the programming language. In modern programming object-oriented
languages, such as C#,42 Java,43 or Rust,44 you instantiate a string class
instance by using the "Text here" text within quotes.

JavaScript implementation JavaScript has three kinds of strings:45

1. string surrounded by double quotes—"string",

2. string surrounded by single quotes—’string’, and

3. a string surrounded by backticks (grave accents)—‘string‘.

The first two, single, and double quoted strings, only differ in that they
escape each other quotes—therefore, "’" and ’"’ are both valid strings in
JavaScript. The third kind, ‘string‘46 (added in ES6) is template literal
string. This kind of string supports string interpolation (allows embedded
expressions) and is a multi-line string—the single and double quoted strings
can only be multi-line if you escape the newlines present within them by a
backslash \.

Problematic behaviour In modern popular programming languages, such
as C#47 or Java,48 single quotes mean that a value is a char. A char is a single
character value. JavaScript does not have char. This causes a counterintuitive
behaviour, where developers may assume that ’c’ is a character and will treat
is as such—this can lead to unexpected behaviour, especially when using the +
operator—a C# developer, new to JavaScript, may assume that a + operation
on ’c’ would result in a new character—but instead, it simply concatenates
’c’ with the value passed into the + operation.

41https://realpython.com/oop-in-python-vs-java/
42https://docs.microsoft.com/cs-cz/dotnet/csharp/programming-guide/strings
43https://www.geeksforgeeks.org/strings-in-java
44https://www.geeksforgeeks.org/r-strings
45https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_

Objects/String
46https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_

literals
47https://docs.microsoft.com/cs-cz/dotnet/csharp/language-reference/builtin-

types/char
48https://www.tutorialspoint.com/java/java_characters.htm

20

https://realpython.com/oop-in-python-vs-java/
https://docs.microsoft.com/cs-cz/dotnet/csharp/programming-guide/strings
https://www.geeksforgeeks.org/strings-in-java
https://www.geeksforgeeks.org/r-strings
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://docs.microsoft.com/cs-cz/dotnet/csharp/language-reference/builtin-types/char
https://docs.microsoft.com/cs-cz/dotnet/csharp/language-reference/builtin-types/char
https://www.tutorialspoint.com/java/java_characters.htm

2.1. Feature analysis

Source of behaviour The single and double quoted strings in JavaScript
exist due to preference—if you are, working with a string containing HTML
code with element attributes, such as ’<p align="right"></p>’49 it is better
to use single quoted strings to avoid having to escape the double quotes in
HTML. However, if you are, for example, working with text representation
that contains single quotes as contractions in English, such as "I’m", it is
better to use double quotes and avoid additional escapes.

Consequences JavaScript developers can become confused by the unusual
variety of quotes around strings JavaScript offers. Even if the developers do
not assume that single quotes mean the char type, this confusion can result
in inconsistent usage of quotes within application code. While this seems
innocuous, the fact that JavaScript projects can have linters [5] set up in a way
that disallows programmers to use these strings interchangeably suggests that
the inconsistent usage of quotes around strings is perceived as a problem. 50

Solution JonScript only uses template strings and double quoted strings,
thereby avoiding the confusing differences between single and double quoted
strings. There is no difference between JonScript double quoted string and
JavaScript double quoted strings.

2.1.7 null and undefined

General concept A null value in most modern object-oriented program-
ming languages (like C#)51 is a value on a property of a data structure that
indicated such property is empty (has no value). This value in most modern
programming languages has its own special type (like C#, or Java).52 When
trying to access a property on a null value, either one of these three things
happens:

1. the application crashes, (in C),

2. the operation throws an exception (in Java or C#), or

3. the operation uses type coercion to another value (SQL).53

49https://www.w3docs.com/snippets/javascript/when-to-use-double-or-single-
quotes-in-javascript.html

50https://eslint.org/docs/rules/quotes
51https://docs.microsoft.com/cs-cz/dotnet/csharp/language-reference/keywords/

null
52https://www.javatpoint.com/null-keyword-in-java
53https://www.tutorialspoint.com/sql/sql-null-values.htm

21

https://www.w3docs.com/snippets/javascript/when-to-use-double-or-single-quotes-in-javascript.html
https://www.w3docs.com/snippets/javascript/when-to-use-double-or-single-quotes-in-javascript.html
https://eslint.org/docs/rules/quotes
https://docs.microsoft.com/cs-cz/dotnet/csharp/language-reference/keywords/null
https://docs.microsoft.com/cs-cz/dotnet/csharp/language-reference/keywords/null
https://www.javatpoint.com/null-keyword-in-java
https://www.tutorialspoint.com/sql/sql-null-values.htm

Design

JavaScript implementation JavaScript has two null-like values, null54

and undefined.55 The null value has the same type as an object, evaluates
within logical conditions as false-like, and within arithmetic operations as
zero. On the other hand, the undefined has its own run-time type, but
still evaluates as false-like. However, if you use undefined within arithmetic
operations, the resulting value is NaN.56 Both of these values are evaluated
as equal57 when using the == operator, but will be unequal when using the
=== operator. They also have different semantic meaning—null means that a
property value, variable or parameter is empty—a value may be set in its place
later on (or was deleted earlier), while undefined denotes that a property does
not exist, or that a value was declared, but not yet assigned to. When using
comparison operators, such as greater-than, or less-than on these two values,
the result is always false.

Problematic behaviour Can be shown by defining a function called
arrayify that takes a single parameter aValue and returns an array con-
taining this single parameter. This function simply returns the value passed
into it as an element within an array containing only said value passed into
the function. By doing this with both null and undefined I showcase the
problematic behaviour of having two slightly different null-like values. When
this function receives undefined as a parameter, it returns an array withotu
any elements. However, if it receives null, it returns an array with a single
item inside: the null value.

1 const arrayify = aValue => new Array(aValue);
2 arrayify (undefined); // results in an empty array
3 arrayify (null); // results in an array with null inside

This is due to the fact that a function, or a constructor will treat an undefined
parameter as if it was no there. While this is consistent with the meaning of
null an undefined, it is not very intuitive for programmers who are used to
null values from C#, Java, or other modern programming languages.

54https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/null

55https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/undefined

56https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/NaN

57https://developer.mozilla.org/en-US/docs/Web/JavaScript/Equality_comparisons_
and_sameness

22

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/null
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/null
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/NaN
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/NaN
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Equality_comparisons_and_sameness
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Equality_comparisons_and_sameness

2.1. Feature analysis

Source of behaviour According to the author of JavaScript, this behaviour
was a design mistake.58 This mistake was not fixed from the language due to
backwards compatibility concerns.

Consequences JavaScript has two different null-like values, each with their
own set of subtle semantic differences. This creates counterintuitive behaviour
when trying to check for null-like values—such as having to check for two
possible values instead of one.

1 const check = aValue => aValue !== null && aValue !== undefined ;

Solution JonScript combines these two values into a single entity, called
nil. This entity behaves the same as JavaScript value undefined.

2.1.8 NaN

General concept According to the IEEE 754 standard,59 NaN is a value
denoting that a certain result is not a numeric result. This special value is the
result of an invalid operation, such as dividing zero by zero, or by dividing
an infinity with an infinity. This value is never equal, greater, lesser, greater
or equal, lesser or equal than any other value except for itself. This value is
unequal to every other value within the standard, including itself. When used
in arithmetic operators, this value consumes all other values—1 + NaN equals
NaN, 1 - NaN equals NaN and so on.

JavaScript implementation JavaScript uses the value NaN when dividing
zero by zero, infinity by infinity, or when a function that is supposed to return
a numerical result receives invalid input. The value NaN is not a numeric
primitive—instead, it is a variable in the global scope. Similar to zero, this
value is treated as false-like within logical conditions and behaves like the
IEEE 754 standard when placed within comparison operators. However, when
concatenating the value NaN with a string, JavaScript coerces the value NaN
into a string form—"NaN". Therefore, NaN + "a" results in the string "NaNa".
JavaScript also considers the value NaN to have run-time type of number, just
like any other numerical value. If you want to find out whether a value is NaN
or not, you can use either the function isNaN, or the function Object.is. The
former will try to coerce the value to a number, so isNaN("dog") as well as
isNaN(NaN) will evaluate as true, and the latter can be used like this, when
checking the value of aValue:
58https://twitter.com/brendaneich/status/1140668264109891590
59https://ieeexplore.ieee.org/document/8766229

23

https://twitter.com/brendaneich/status/1140668264109891590
https://ieeexplore.ieee.org/document/8766229

Design

Figure 2.1: Prague Stock Exchange displaying NaN% when looking up specific
time horizon for stocks

1 const aValue = 0 / 0; // results in NaN
2 Object .is(aValue , NaN); // results in true

Problematic behaviour Since NaN can be displayed as "NaN" on a web-
site, if you use NaN within concatenation operation, this can create confusing
artefacts in your application for the end user. While this may seem like an
issue that is easy to solve, there are professional websites still struggling with
displaying NaN correctly. A concrete example of this behaviour would be the
Prague Stock Exchange.60

Furthermore, JavaScript considering the NaN to be a number can cause
problems if you try to do a run-time type check on a value. Since you need
to do a special check for this numeric value, it is easy to forget and therefore
very easy to incorrectly sanitize function parameters, if you do not want your
function to work with NaN as if it was a regular number.

Source of behaviour The concatenation behaviour of NaN is due to
NaN.toString() resulting in "NaN". This is similar to the behaviour of other
languages which contain the value NaN, like C++61 and Python.62 The nu-
60https://pse.cz
61http://www.cplusplus.com/reference/cmath/nan-function/
62https://towardsdatascience.com/5-methods-to-check-for-nan-values-in-in-

python-3f21ddd17eed

24

https://pse.cz
http://www.cplusplus.com/reference/cmath/nan-function/
https://towardsdatascience.com/5-methods-to-check-for-nan-values-in-in-python-3f21ddd17eed
https://towardsdatascience.com/5-methods-to-check-for-nan-values-in-in-python-3f21ddd17eed

2.1. Feature analysis

meric run time typing of NaN as a number also makes sense, given that NaN is
part of the IEEE 754. When working with an infinite value, which is also a
part of this standard, its run time type is also a number.

Consequences Given the difficulty of working with NaN, numerical opera-
tions in JavaScript frequently yield problematic behaviour on websites which
may confuse clients. Most users do not recognize the text "NaN" as a nu-
merical value and will instead be confused by such values displayed. Also,
while NaN not being equal to itself is a part of the IEEE 754 standard, this is
not common knowledge amongst developers.63 This causes further errors in
JavaScript development. The author of JavaScript himself makes jokes about
this behaviour.64

Solution Similar to how null is treated in JonScript, JonScript simply con-
verts any NaN value that results from an operation into undefined. If any
operation returns an object that contains NaN within its properties, JonScript
will also convert this value to undefined when it is being accessed—this does
not however change the object in question—the accessing operation merely
gives you undefined instead of NaN. Interestingly, JavaScript already does
a very similar thing (except it converts NaN into null and not undefined)
when parsing an object into its string JavaScript Standard Object Notation
(JSON)65 representation. Any property that has the value NaN will be con-
verted into a property that contains null.66

2.1.9 Null as property

General concept In many modern programming languages, like C#, there
is a distinction between accessing a property that does not exist—in C#,
this throws an exception,67 and accessing a property with null value. The
latter usually simply yields the value null. What about removing properties?
In most modern, statically typed programming languages there is no way of
removing a property, or a method from an object—you can only assign a null
value to a property.

63http://adripofjavascript.com/blog/drips/the-problem-with-testing-for-nan-in-
javascript.html

64https://twitter.com/brendaneich/status/819360853476507649
65https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_

Objects/JSON
66https://levelup.gitconnected.com/manipulating-json-strings-in-javascript-

5c9423841fa3
67https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-

messages/cs1061

25

http://adripofjavascript.com/blog/drips/the-problem-with-testing-for-nan-in-javascript.html
http://adripofjavascript.com/blog/drips/the-problem-with-testing-for-nan-in-javascript.html
https://twitter.com/brendaneich/status/819360853476507649
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON
https://levelup.gitconnected.com/manipulating-json-strings-in-javascript-5c9423841fa3
https://levelup.gitconnected.com/manipulating-json-strings-in-javascript-5c9423841fa3
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-messages/cs1061
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-messages/cs1061

Design

JavaScript implementation In JavaScript, you can access non-existent
properties on an object without an exception being raised. There are three
operations that act as a way of removing a property from an object:

• by assigning the value null,

• by assigning the value undefined, or

• by using the delete68 operator.

The differences between null and undefined were already discussed above in
Section 2.1.7. The delete operator does something different—it remove the
property from an object completely. While a removed (or nonexistent) prop-
erty will still yield undefined when accessed, there are differences between a
property that has the value of undefined and a property that does not exist.
The JavaScript standard API treats them differently—any function, whose job
is to enumerate properties on an object (like Object.keys,69 Object.values70

and Object.entries71) will treat a property that has undefined assigned
to it as it it was still a part of the object—this means, for example, that
Object.keys, which returns an array of strings for each property of an object
will return a string key for a property that has the value of undefined.

Problematic behaviour Since there are three different ways of removing
a property from an object with varying effects, the resulting behaviour is
counterintuitive. Consider an example, where I try to remove a property from
an object named object:

1 const object = {
2 property : 1,
3 };
4 object . property = undefined ;
5 object . property === undefined ; // is true! but:
6 // hasOwnProperty is a method on Object . prototype
7 object . hasOwnProperty (" property ") // is true as well!

68https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/
delete

69https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/Object/keys

70https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/Object/values

71https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/Object/entries

26

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/delete
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/delete
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/keys
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/keys
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/values
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/values
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/entries
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/entries

2.1. Feature analysis

Source of behaviour Since JavaScript objects are similar to hash-maps
(except for behaviour related to prototypes), the behaviour of property re-
moval as discussed above is a logical consequence of previously stated facts
and is consistent with other operations within the language. The delete op-
erator then acts as a way of doing additional operations that you simply are
not able to do through simple assignment.

Consequences Having three subtly different ways of doing the same thing
is counterintuitive, since it makes it difficult to decide which of these ways is
appropriate given the circumstances. This negatively affects beginner devel-
opers, and developers coming to JavaScript from other languages that have
no such concept as removing properties from an object. If these developers
choose to either assign undefined or null to a property as a way of removing
it, they can encounter null reference exceptions when iterating over object
properties.

Solution When assigning undefined value to an object or a class, JonScript
automatically deletes the property to which this value was assigned. This does
not affect compile-time typing within the language in any way. Also, if you
are using methods Object.keys, Object.values or Object.entries on an
object that contains null, undefined, or NaN properties, these methods will
act as if those properties were not present on that object. This behaviour is
important when working with objects from imported packages, or from the
standard JavaScript API. This functionality will be extended to cover the rest
of JavaScript standard API in future versions of JonScript.

2.1.10 Pattern matching and type-checking

General concept Pattern matching [46] is the act of checking a data struc-
ture against a pattern. This pattern is made up of values that the data struc-
ture constituents are compared against. The match is always exact—the data
structure either matches the pattern, or it does not. In this thesis, run-time
type checking is considered as a way of matching an object against a pattern
consisting of a type. A match occurs when an object is an instance of said
type.

27

Design

JavaScript implementation JavaScript has three ways of checking a data
structure against a pattern (or type):

• the switch statement,

• the typeof operator,

• the RegExp class, and

• the instanceof operator.

The switch statement is the same in JavaScript as it is in other modern object-
oriented programming languages, such as Java, and will not coerce the values
used within itself. The RegExp72 class provides regular expressions for pattern
matching within a string. The typeof73 operator is an infix operator that,
when applied on a value, returns a string based on the type of value passed
into it. This operator can return these seven values:

1. "number" for numbers,

2. "string" for strings,

3. "object" for objects, arrays, class instances or null,

4. "undefined" for undefined,

5. "function" for functions,

6. "bigint" for a special kind of large number without floating point,74

7. "symbol" for symbols.75

The other operator for determining the type of a value, instanceof76 is a bi-
nary comparison operator that returns a boolean value. Left hand side should
contain an object you are trying to match with a class definition that is on the
right hand side. This operator will try to determine whether or not a value is
an instance of a prototype. The operator will also consider inheritance, so a
child class instance will match to its parent class definition using instanceof.
This operator will only work on functions and objects—values, to which the
72https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_

Objects/RegExp
73https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/

typeof
74https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_

Objects/BigInt
75https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_

Objects/Symbol
76https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/

instanceof

28

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/typeof
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/typeof
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/instanceof
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/instanceof

2.1. Feature analysis

typeof operator returns either "object", or "function", with the exception
of null, to which typeof returns "object", but the instanceof operator
always returns false on comparison. If you pass a primitive string, number,
boolean, symbol, bigint value into instanceof and try to compare them with
String, Number Boolean class definitions, or the object BigInt, or the object
Symbol, the result will always be false.

Problematic behaviour JavaScript does not have a general-purpose pat-
tern matching operator, despite its functional programming support—an op-
erator similar to match in Scala [34] would improve JavaScript capacity to be
more verbose and create abstractions more easily.

Another problematic part of JavaScript related pattern matching comes
to play when trying to determine the type of an object—an important feature
in a language without static typing. Consider an example, where I write a
function checkInstance that checks a parameter aValue against the param-
eter aPrototype to see if aValue is an instance of aPrototype, regardles of
whether aValue is an object or a value:

1 const checkInstance = (aValue , aPrototype) => {
2 // this is not enough
3 if (aValue instanceof aPrototype) {
4 return true;
5 }
6 // check primitive strings
7 if (typeof aValue === " string "
8 && aPrototype === String) {
9 return true;

10 }
11 // check primitive numbers
12 if (typeof aValue === " number "
13 && aPrototype === Number) {
14 return true;
15 }
16 // and so on ...
17 };

As you can see with this example, creating a custom function to simply
check the basic language types in JavaScript is arguably a long and verbose
process. This should not be the case, as most modern programming languages
can do similar operations more easily—for example, the is operator in C#.77

Source of behaviour The lack of a general-purpose pattern matching op-
erator is something to be expected, since the inspiration for JavaScript during
77https://docs.microsoft.com/cs-cz/dotnet/csharp/language-reference/operators/

type-testing-and-cast

29

https://docs.microsoft.com/cs-cz/dotnet/csharp/language-reference/operators/type-testing-and-cast
https://docs.microsoft.com/cs-cz/dotnet/csharp/language-reference/operators/type-testing-and-cast

Design

its creation was Java, which does not have such an operator. This absence
may be ameliorated with the ECMAScript pattern matching proposal.78

The differences between typeof and instanceof are due to the differences
between primitive values of string, number or boolean and their class coun-
terparts. For example, a String class79 will behave differently than a string
primitive value when the operator === is used to compare it. Furthermore, you
can define additional properties on a String class instance during run-time, as
opposed to a string primitive. Therefore, it makes sense to have operators
that distinguish between the two.

Consequences Given the state of things in JavaScript regarding pattern
matching, if JavaScript developers want to add pattern matching algorithms,
they have to import packages to help them.80 Furthermore, given the counter-
intuitive nature of typeof and instanceof type-checking mechanism, devel-
opers are faced with additional challenges when they want to correctly check
a type of variable, parameter or an object property.

Solution JonScript offers an improvement on the operator typeof and
instanceof—by offering a general-purpose pattern matching operator. The
is operator correctly matches both primitive and class instances as strings,
numbers, boolean values etc. But that is not all—is also offers pattern match-
ing that is found in other programming languages—for example, it can match
any object onto an object pattern, similar to Scala. When using is JonScript
uses user-defined type guards that TypeScript offers81 for conditional type
coercion.

2.1.11 Operators and operator overloading

General concept Operators82 are language concepts designed to perform
a specific arithmetic, logical, or relational operation. They are similar to
function calls, but differ syntactically and in their semantics from functions or
methods in any specific language. Operator overloading is an act of defining
a method that a compiler, or an interpreter will utilize instead of standard
operator behaviour on a specific instance of class in order to perform a custom
action when an operator is applied to such instance.

78https://github.com/tc39/proposal-pattern-matching
79https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_

Objects/String/String
80https://www.npmjs.com/package/ts-pattern
81https://www.typescriptlang.org/docs/handbook/advanced-types.html
82https://brainly.in/question/26216828

30

https://github.com/tc39/proposal-pattern-matching
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/String
https://www.npmjs.com/package/ts-pattern
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://brainly.in/question/26216828

2.1. Feature analysis

JavaScript implementation JavaScript supports all logical, arithmetic
and relational operators found in Java.83 Furthermore, it adds several addi-
tional operators.84 In addition to these, for the purposes of this section, object
property access and function call will be considered as operators. JavaScript
supports a limited amount of operator overloading. You can overload the
property access operators . and [] by defining getters and setters on object
properties, or by creating an object proxy through the Proxy class.85 The
proxy class allows you to control any access to any of the objects properties
and allows you to override the default behaviour. Furthermore, you can over-
load the () operator by creating a functor—in this sense a functor is simply a
function which had additional properties defined during run-time. And lastly,
you can override the arithmetic operators—but only to an extent—by redefin-
ing the valueOf86 method within a class declaration. This will not change
how the operator acts by itself, but it does allow you to create custom rep-
resentation of your class. This method also will not allow you to specify the
return type of such operation—it merely affects how a class will behave when
coerced into a string or a number.

Problematic behaviour Operator forgiveness as implemented within
JavaScript leads to counterintuitive behaviour. This is due to type coercion.
There are many examples of this behaviour [8], but here is an example of one
of the arguably worst: if you compare two objects, called a and b that are
unequal to each other (a != b is true), one will never be less than (a < b
is false), nor greater than (a > b is false) the other. However, both of these
structures will be less or equal to each other (a <= b is true), and greater or
equal to each other (a >= b is also true). This behaviour is due to JavaScript
operators <, >, >= and <= using type coercion by converting a and b struc-
tures into strings. This coercion results in both a and b being compared as
the string "[object Object]" (by conversion to a Primitive [4]). Since both
string version of a and string version of b are equal to each other, a >= b and
a <= b are true, but a > b and a < b are false.

Furthermore, the limited amount of operator overloading hobbles JavaScript
developers if they wish to create classes for managing currencies, matrices or
complex numbers—since true arithmetic operator overloading would nicely
encapsulate operations for these classes. Lack of overloading affects the com-
parison operators as well in a similar way.

The behaviour of equality operators, == and ===, is counterintuitive as
well. Consider this example with the equality operator ==:
83https://www.tutorialspoint.com/java/java_basic_operators.htm
84https://www.w3schools.com/jsref/jsref_operators.asp
85https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_

Objects/Proxy
86https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_

Objects/Object/valueOf

31

https://www.tutorialspoint.com/java/java_basic_operators.htm
https://www.w3schools.com/jsref/jsref_operators.asp
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/valueOf
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/valueOf

Design

1 [] == 0 // is true
2 0 == "0" // is also true
3 [] == "0" // is not true

Therefore, the equality operator == is not transitive. Transitivity is meant
to be provided by the === operator. While triple equals is transitive, consider
this example:

1 // is not true
2 new String ("Hello") === new String ("Hello")
3 // is true
4 new String ("Hello") == new String ("Hello")

The triple equals operator employs no coercion when it comes to objects—
instead, it only compares their references, even in places where a developer
experienced in modern programming language, such as Java87 or C#88 would
expect a value-based comparison.

Source of behaviour Operator forgiveness works based on type coercion89

that allows JavaScript to not crash upon invalid operations. Type coercion
in JavaScript always tries to give the best approximate result to what a pro-
grammer meant. This means that even if at all possible, website will always
display at least somewhat correct content. While JavaScript does not yet have
complete operator overloading, there is a pending proposal for this feature.90

However, the author of JavaScript himself called the operator type coercion
”insane”.91

Consequences The type coercion system is confusing, unwieldy and fre-
quently causes difficult situations for developers.92

Solution JonScript gives you a smaller set of arithmetic and comparison
operators that utilize less type coercion. First, I will showcase how arithmetic
operators work within the language based on parameter types in Table 2.2.
Each operation listed in the table is symmetric: If you use a string class with
a string primitive (or class), you end up with a class value. Also, when using +

87https://www.javatpoint.com/string-comparison-in-java
88https://www.tutorialsteacher.com/articles/compare-strings-in-csharp
89https://developer.mozilla.org/en-US/docs/Glossary/Type_coercion
90https://github.com/tc39/proposal-operator-overloading
91https://twitter.com/brendaneich/status/1053029515968970754
92http://mauricio.github.io/javascript-from-hell/#/

32

https://www.javatpoint.com/string-comparison-in-java
https://www.tutorialsteacher.com/articles/compare-strings-in-csharp
https://developer.mozilla.org/en-US/docs/Glossary/Type_coercion
https://github.com/tc39/proposal-operator-overloading
https://twitter.com/brendaneich/status/1053029515968970754
http://mauricio.github.io/javascript-from-hell/#/

2.1. Feature analysis

Operator Left hand side Right hand side Type of result
+ string string string
+ string String class String class
+ string Number class string
+ string number string
+ String class String class String class
+ string undefined string
+ String class undefined String class
+ Number class Number class Number class
+ number Number class Number class
+ number number number
- number number number
- number Number class Number class
* number number number
* number Number class Number class
/ number number number
/ number Number class Number class
% number number number
% number Number class Number class

Figure 2.2: Binary arithmetic operators in JonScript

for concatenation between a string, or String class and undefined, the result
will be the string, or String class instance that the operator was run on.

Relational operators are simplified There is no triple equals. Instead, dou-
ble equals works as triple equals—but with one important caveat: it employs
coercion that makes it able to compare string classes with string primitives—
same goes for numbers and their class counterparts. Other comparative oper-
ators will only return true when comparing numbers with numbers (or their
class counterparts), or with strings and strings (or their class counterparts).

JonScript also contains the await93 unary operator, which resolves asyn-
chronous calls94 and ternary conditions95—ternary conditions
(condition ? then : else). execute and return the then branch if con-
dition is true-like, otherwise they execute and return the else branch.

93https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/
await

94https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/Promise

95https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/
Conditional_Operator

33

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator

Design

If you need to throw an exception within your code, JonScript offers the
throw inline expression for that purpose. This is unary, prefix operator that
throws any parameter passed inside as an exception.

On the other hand, if you need to catch an exception, JonScript contains
the try-catch-finally ternary operator. If an expression within try throws
an exception, the mandatory catch clause will handle it—this part requires a
function whose first parameter is the exception thrown. If there is no exception
thrown, the try clause simply returns the result of the expression passed into
it. The optional finally clause can change this process further by accepting
what the try or catch clauses return and applies to them whichever function
you have passed into it.

Furthermore, JonScript allows overloading relational and arithmetic oper-
ators. You can do this by defining one of these methods on any object. Here
is a list of special methods for overloading operators:

1. plus, for the + operator,

2. minus, for the - operator,

3. divide, for the \ operator,

4. multiply, for the * operator,

5. module, for the % operator, and

6. compare for relational operators.

The compare works like this: when two values are equal, it should return 0,
a positive number when the left hand side is greater than the right hand one
and negative, when the opposite is true.

Operator overloading works in a symmetric fashion—it does not matter
whether or not the overloaded object is on the left hand side, or the right
hand side. An exception to this behaviour is a situation where both objects
have an overload—the left hand side overload will be applied.

Logical operators && and || behave just like they do in JavaScript.96 The
&& is a binary operator that, if the left hand side is false-like, it will return the
left hand side, but if the left hand side is true-like, it returns the right hand
side. The || returns left hand side if it is true-like and the right hand side if
the left hand side is false-like. Both of these operators short-circuit.

2.1.12 The Boolean class

General concept Class counterparts of the boolean type exist in many
modern object-oriented programming languages, such as C#97 and Java.98

96https://www.w3schools.com/js/js_comparisons.asp
97https://docs.microsoft.com/cs-cz/dotnet/api/system.boolean?view=net-5.0
98https://docs.oracle.com/javase/8/docs/api/java/lang/Boolean.html

34

https://www.w3schools.com/js/js_comparisons.asp
https://docs.microsoft.com/cs-cz/dotnet/api/system.boolean?view=net-5.0
https://docs.oracle.com/javase/8/docs/api/java/lang/Boolean.html

2.1. Feature analysis

These values exist as a consequence of a class-based model, since it is beneficial
to be able to call methods on these values.

JavaScript implementation JavaScript standard API has the aforemen-
tioned functionality as well—there is a Boolean class.99 Boolean class instance
valueOf method returns its boolean value. When converted to string using
toString, the class instance returns string representation of its boolean value.

Problematic behaviour Boolean class instances are typed as objects. Ob-
jects, besides null, are always true-like values.100 Therefore, if you use
new Boolean(false) in a condition, the expression will be evaluated as true
and then branch of the condition will execute. This gets even stranger when
using the == operator, since this operator will coerce the Boolean class as a
boolean primitive when comparing this class to a boolean value. Here is a
simple example with two variables, a and b:

1 // what do you think the value of "a" will be?
2 const a = new Boolean (false) ? true : false;
3 // what do you think the value of "b" will be?
4 const b = new Boolean (false) == false ;

Because of the aforementioned behaviour, both a and b are true. Consid-
ering how the Boolean class acts in other languages, such as C# and Java, this
behaviour is very counterintuitive. Even the official documentation specifies
that the Boolean class should not be used as a replacement for the boolean
value.101

Source of behaviour This behaviour is consistent with how JavaScript
treats classes, objects, and logical evaluations. Objects, besides null, are al-
ways true-like within logical expressions and conditions. Also, the == operator
always tries to do type coercion on values passed into it—therefore, the afore-
mentioned example is logical from this perspective. However, the author calls
this decision unfortunate, and has stated that he is not proud of it.102

Consequences The Boolean class is not recommended for use. It is hard to
find any utility for this class that cannot be achieved with simple logical oper-
ators within JavaScript. If you, for example, need to know if a value of aValue

99https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/Boolean

100https://developer.mozilla.org/en-US/docs/Glossary/Truthy
101https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_

Objects/Boolean
102https://brendaneich.com/2008/04/popularity/

35

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/Glossary/Truthy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Boolean
https://brendaneich.com/2008/04/popularity/

Design

if true-like, or false-like, you can use either !!aValue, or Boolean(aValue).
Both approaches return a simple boolean value.

Solution JonScript will not create Boolean class through its automatic new
keyword insertion.

2.1.13 The new keyword

General concept The new keyword in languages similar to C#103 or Java104

is used to instantiate a class. In C++ however, this operator is used for
memory allocation,105 instead of the original C function malloc.106

JavaScript implementation The new107 keyword lets you create an in-
stance of a class. This keyword can also be used when calling any function.
When used in a conjunction with a call to a standard JavaScript function, the
function/constructor, depending on its implementation (a function can find
out whether or not a new has been used to call it through looking a the prop-
erty new.target),108 can return a different value based on the presence of this
keyword. This feature is used in several standard JavaScript API functions,
such as Date, String, Number or Boolean—these functions return a different
value when called without the new keyword. However, if you create your own
class definition using the keyword class, not using new during a call to con-
structor results in an exception. Furthermore, you can call a class constructor
with merely the new keyword and omit the parentheses.

Problematic behaviour This behaviour of returning a different value based
on the presence of the new keyword is counterintuitive, since this behaviour is
not present in modern object-oriented languages like C# or Java. Developers
used to these languages would not expect the missing new to affect what a
function/class constructor returns. For example, when calling the Date class
constructor without the new keyword, it yields a string, not a Date class in-
stance. Here are the examples of the aforementioned behaviour:

103https://docs.microsoft.com/cs-cz/dotnet/csharp/language-reference/keywords/
new-modifier

104https://www.javatpoint.com/new-keyword-in-java
105https://www.geeksforgeeks.org/new-vs-operator-new-in-cpp/
106https://www.tutorialspoint.com/c_standard_library/c_function_malloc.htm
107https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/

new
108https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/

new.target

36

https://docs.microsoft.com/cs-cz/dotnet/csharp/language-reference/keywords/new-modifier
https://docs.microsoft.com/cs-cz/dotnet/csharp/language-reference/keywords/new-modifier
https://www.javatpoint.com/new-keyword-in-java
https://www.geeksforgeeks.org/new-vs-operator-new-in-cpp/
https://www.tutorialspoint.com/c_standard_library/c_function_malloc.htm
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/new
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/new
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/new.target
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/new.target

2.1. Feature analysis

1 const a = new Date; // "a" becomes a Date object
2 const b = Date (); // "b" becomes a string
3 const c = new Date (); // "c" becomes a Date object

Source of behaviour When calling a class constructor without the keyword
new, you are specifically calling a function and not a class constructor. It is
therefore not unexpected behaviour that this function would return a different
result.

Consequences Not needing to use the keyword new leads to many situa-
tions, where a bug occurs in an application because of a developer oversight.
This oversight is that much easier to make since there are classes within the
JavaScript standard API that do not react to a missing new keyword during
constructor call—such as the Array,109 or RegExp classes.

Solution JonScript automatically detects whether or not the new keyword is
appropriate (through looking for a class signature within TypeScript typing)
and inserts it into the code by itself—therefore removing the need for the new
keyword within the language in the first place.

2.1.14 The async keyword

General concept The keyword async is a part of a programming pattern
called async/await [21]. Popular programming languages, such as Python
[22] and C# [35] support this feature. It is used to handle asynchronous, non-
blocking operations through function annotation. The async before a function
means that the value it returns is a promise. A promise is a data structure
that contains an operation and its return value. While the value does not
exist initially, the promise will contain this value once the operation finishes.
The use of the operator await can then resolve the promise, and return the
unwrapped value.

JavaScript implementation In JavaScript, the async110 keyword used
before a function acts as a wrapper that takes the return value of a function
and does either one of two things: if the value that this function returns is
a promise, it simply returns that promise, and if the value that the function

109https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/Array

110https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Statements/async_function

37

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

Design

returns is not a promise, it returns a promise that resolves into the afore-
mentioned value. Furthermore, if you try to define a function that uses the
await111 operator without async, an exception will be thrown.

Problematic behaviour When a programmer is already using the keyword
await within a method or a function, they must add async—this is redundant
and should be automatic. The async is a necessary formality when await is
already used within a function.

Source of behaviour Await/async is a well-known pattern in several other
languages, such as C#112 or Python.113 When this implementation is already
present in other well-known languages, it is easier for developers coming to
JavaScript from other languages to understand how to use await in functions
or methods if the feature is used in the same way in JavaScript.

Consequences When programmers wish to extend a deeply embedded func-
tion to use await/async pattern, they must then add the keyword async to
all functions in which they wish to await the return value of the embedded
function—and this addition of async will spread exponentially through their
code.

Solution Whenever a function uses await within its body, JonScript au-
tomatically inserts async into its definition. This way, you can use await
anywhere you wish without bloating your code.

2.1.15 Functors

General concept A functor, as understood in C++, is a class instance that
acts like a function.114 In C++, this is achieved through overloading the ()
operator on a class definition. Sometimes, a functor may be referred to as a
stateful function.115

JavaScript implementation Functors in JavaScript are created differently
from C++. A functor is a function that has additional properties created on
itself during run-time. Since it is impossible to actually overload the operator
() as you would in C++, this is the way to achieve the same behaviour in
JavaScript.
111https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/

await
112https://docs.microsoft.com/cs-cz/dotnet/csharp/programming-guide/concepts/

async/
113https://docs.python.org/3/library/asyncio-task.html
114https://www.cprogramming.com/tutorial/functors-function-objects-in-c++.html
115https://basarat.gitbook.io/typescript/main-1/statefulfunctions

38

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://docs.microsoft.com/cs-cz/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/cs-cz/dotnet/csharp/programming-guide/concepts/async/
https://docs.python.org/3/library/asyncio-task.html
https://www.cprogramming.com/tutorial/functors-function-objects-in-c++.html
https://basarat.gitbook.io/typescript/main-1/statefulfunctions

2.2. Syntax and semantics

Problematic behaviour While functors by themselves are not problem-
atic, there is no simple way of creating them—you need to write a specific
merging function between an object and a function as parameters that re-
turns the desired functor. The lack of functor definition syntax results in a
code-bloat.

Source of behaviour Functors require overloading the application operator
(). See Section 2.1.11 for more details.

Consequences Programmers that wish to utilize functors in JavaScript, as
they would in C++ need to write their own custom function that creates them
and use it each time that they want to create a functor.

Solution JonScript is capable of creating functor objects and classes with a
single expression. Also, JonScript can easily create constructs, where a class
may inherit the overload from it’s parent.

2.2 Syntax and semantics

This section will go through the syntax and semantics of my newly created
language—a description of how to define methods, classes, objects, and ex-
pressions with a description of how they work. I will first enumerate each
important point in JonScript syntax. There are points within this enumera-
tion, where JonScript does not differ from TypeScript. At such points, there
are appropriate links to resources to the appropriate TypeScript semantics, in
order to not reiterate TypeScript syntax.

Variable name JonScript has stricter variable name rules than JavaScript
or TypeScript. In JonScript, a variable name can only consist of letters from
A to Z, uppercase and lowercase, the dollar sign and numbers from 0 to 9.
A variable name cannot start with a number. The intended convention is for
class properties to start with a lowercase letter, and module and class names
to start with an uppercase letter.

List of imports Each JonScript file can have one list of imports, similar
to TypeScript import syntax,116 defined before anything else. These imports
either denote a local file dependency, or a NPM package dependency. There
are two kinds of imports shown below. There are no separators between
imports.

116https://www.typescriptlang.org/docs/handbook/modules.html

39

https://www.typescriptlang.org/docs/handbook/modules.html

Design

Default import A default import consists of the import keyword, a vari-
able name to be used as a reference to the imported dependency, and a string
literal denoting either the path to a dependency—this may be a path to a
folder, if such folder contains a file named index.js, or index.ts—this is
consistent with how imports in TypeScript behave. This path may contain
a name of the imported NPM package as root—this is a standard feature
of TypeScript imports as well. A default import will import all exported
variables from a dependency. Consider this example, where I import every
exported variable from package jquery:

1 import $ from " jquery "

Named import Named imports work in a similar fashion as default im-
ports, except that instead of a variable name to be used as a reference to the
imported dependency, named imports contain a list of variable names, sepa-
rated by commas within curly brackets. Each variable name can be followed
by an optional keyword as and another variable name. This specifies that you
want the imported variable to be referred to as the other variable name within
the file. Consider an example where I want to import two exported variables
(named uniq and orderBy from the lodash package:

1 import { uniq , orderBy } from " lodash "

In the next example, I import the same variables under different names:

1 import { uniq as unique , orderBy as sort } from " lodash "

If I use the renamed import example instead of the original one, the ex-
ported variable uniq will be referred to as unique and the variable orderBy
as sort within the file.

Module Each JonScript file needs to include exactly one module containing
prototypes. A module consists of a variable name and curly braces. Between
the curly braces, there is a list of classes without separator. Consider this
example, where I create and empty module named NameOfModule:

1 NameOfModule {
2
3 }

40

2.2. Syntax and semantics

Prototype Each prototype is comprised of template types, parameters, pri-
vate properties, inheritance and public properties. A prototype is an alter-
native to a class within a prototype inheritance enviroment. A prototype
definition consists of:

1. a variable name (unique to other prototypes within the same module),

2. an optional list of type templates (each with unique name), surrounded
by triangle braces, separated by commas,

3. a list of parameters surrounded by parentheses (each with unique name),
and

4. a pair of curly braces, which contain a list of private properties delimited
by commas, inheritance statements delimited by commas, and a public
API, in this order.

Parameters Each parameter declared in JonScript consists of a parameter
name—which works the same as a generic variable name, but with one ex-
ception. The _ character may replace the parameter name. The _ parameter
means a placeholder—a method parameter that will not be referred to within
the function body. Next, each parameter can have the colon sign, or a ques-
tion mark with a colon sign, after which a type definition follows. After type
definition, the optional keyword = can be placed, with an expression following
after it. This expression will be the default parameter value. While the colon
sign simply indicates a place for the parameter type, question mark with a
colon sign indicates that this parameter is an optional one. There is also a
special kind of parameter, which is denoted by three dots before its name.
These dots denote a rest parameter,117 which can only occur as the last—or
only—parameter defined within a parameter list. This parameter signals an
unlimited amount of parameters of certain type will be accepted during a call.
Here is an example of a list of three parameters. The first parameter, a, is a
string, the second parameter, b, is a number, and the third parameter, c, is a
spread parameter of numbers.

1 (a: string , b: string , ...c: number [])

117https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-
0.html

41

https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-0.html
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-0.html

Design

Types JonScript typing is essentially just TypeScript typing of parameters
and return values of methods. Here is a list of possible syntax for type declar-
tion in JonScript:

a type name This way, you can refer to a defined type elsewhere in the
current scope,

a type operation Either a type intersection (type1 & type2), denoting a
merge between two types, or a type union (type1 | type2), denoting
that a parameter can be either of two different types,118

a generic type reference This reference119 takes a type name, and a list
of types surrounded by less-than sign on the left and more-than sign on
the right,

an arrow function expression type This type consists of a pair of paren-
theses, in which a list of parameters is defined, separated by commas,
and an arrow sign =>—after this sign, there is a return type, and

an object type Which consists of a pair of curly braces, between which a
list of properties is found, separated by commas—each property consists
of a property name and its type—the format of which is the same as if
it was a parameter type.

There are two special template types in JonScript, that are not found in
TypeScript—Class and Object. The former is a shorthand way of referencing
a return type of a method, function, or a prototype. The latter is a way of
referring to a type of variable (as replacement for typeof in TypeScript).

Templates JonScript templates work like a subset of TypeScript templates—
a template consists of three parts—a template name (which works in the same
way as a variable name), an optional keyword extends followed by a type,
and an optional keyword =, followed by a type. The type which comes after
extends enables you to limit what kind of type can be used within the generic
type and the keyword = allows you to set a default template type, when this
template is used. Here is a list of templates surrounded by square brackets.
First template, T, can be any type, second template, E, must be type which
inherits from string (such as string enumeration), and third template type, F,
will be a number by default (but can be any other type if specified).

1 <T, E extends string , F = number >

118https://www.typescriptlang.org/docs/handbook/unions-and-intersections.html
119https://www.typescriptlang.org/docs/handbook/2/generics.html

42

https://www.typescriptlang.org/docs/handbook/unions-and-intersections.html
https://www.typescriptlang.org/docs/handbook/2/generics.html

2.2. Syntax and semantics

Private properties Private property consists of a variable name and an
expression, separated by colon. A comma is placed after the expression. Ref-
erences to private variables within scope work from top to bottom—bottom
properties can reference top ones. A special type of private property is _. This
property refers to an ignored property. This property is not accessible and es-
sentially just serves as a way to express something to which you will not refer
to in the future. A private property cannot have the same name a method-
/constructor parameter. Consider this example, where I create a single pro-
totype, named EmptyPrototype and one private property privateProperty
with value of 1:

1 EmptyPrototype () {
2 privateProperty : 1,
3 }

Inheritance statements An inheritance statement consists of a three-dot
token ... and an expression, ending with a comma. Right after such state-
ment is defined, two things happen: All public properties and methods of this
object will immediately be accessible within the body of the prototype and
the very same properties will now also be included amongst public properties
of the prototype instance, unless overridden by other inheritance statements
of the prototypes own public properties. Consider this example, where I cre-
ate a single module, with a single prototype, Child and one import—Module
containing a single prototype—Parent:

1 import { Module } from " parent "
2 ChildModule {
3 Child () {
4 ... Module . Parent (), // Inheritance statement
5 }
6 }

43

Design

Public API A public API can be defined as either one of these two things:

1. as a list of properties—this list consists of a pair of curly braces, within
which is a list of properties in a similar format as private properties.
Each public property within this list must have a unique name, can be
named the same as private property or method/constructor parameter,
but if it is named the same as an inherited property, it must either
share its type, or be nil. Public properties cannot be _ (ignored).
Public properties are delimited by commas—the exception to this is a
list of properties with a single member—this member does not have to
be delimited by a comma, or

2. as an expression—any expression within JonScript can be used as a
public API.

Public API provides public properties to its class or object.
To show how a public API within JonScript works, I showcase several

examples of public APIs. The first example will be a simple module with a
class and a single public property (publicProperty) with a value of 1:

1 Module {
2 Class () {
3 {
4 publicProperty : 1,
5 }
6 }
7 }

Next, I showcase how to create a prototype with an overloaded application
operator () with an expression public API—the expression in question is a
method declaration.

1 Module {
2 Class () {
3 () => 5
4 }
5 }

Comments JonScript has two C-style comments, single-line and multi-line.
Single-line comments are denoted by two forward slashes (//) and multi-line
comments are denoted by a pair of slashes with stars (/**/).

44

2.2. Syntax and semantics

Expressions

This subsection goes over the semantics of all the expressions that can be used
in JonScript and explains how they function.

Method/Function declaration Each method defined in JonScript is a
first class, higher order anonymous function (also, an arrow function expres-
sion) assigned to a prototype, or object, property. A function consists of a list
of parameters surrounded by parentheses—after the parameter declaration,
there is an optional colon followed by a return type. After, an arrow syntax
token (=>) is present, followed by an expression that the method returns. The
only difference from TypeScript arrow function expressions, similar to private
properties, is that there can be multiple _ parameters—denoting that certain
parameters should be ignored (rather than at most one in JavaScript).

Objects Objects have the same syntactic structures as class bodies. There-
fore, each object can have private properties, inheritance statements and a
public API, either comprised of public properties, or an expression. This
principle embodies the statement that prototypal ”classes” are just functions
that return an object. Consider an example, where I create a class with
a single public property (publicObject) containing an object. This object
inherits a from a single imported Parent prototype, has a single private prop-
erty named privateProperty with the value of "Hello", and a single public
property with the value of "Hello World":

1 import { ParentModule } from " parentModule "
2 Module {
3 Prototype {{
4 publicObject : {
5 privateProperty : "Hello",
6 ... ParentModule . Parent (),
7 {
8 publicProperty : privateProperty + " World",
9 }

10 },
11 }}
12 }

Functors You create a functor by adding a function expression to the top
of an object body. This is normally possible to do in JavaScript only through
multiple statements and problematic to do in TypeScript. Consider an exam-
ple, where I create a simple functor with two public properties a and b. When
called, this functor will return the result of the expression a + b.

45

Design

1 Module {
2 Class () {{
3 () => a + b,
4 a: 5,
5 b: 10,
6 }}
7 }

Try-catch-finally expression This ternary expression consists of three
keywords: try, catch and finally (which is optional). After try, an ex-
pression is required. After catch and finally, a function is expected. Try will
evaluate an expression—if this expression throws an exception, catch block
executes a function that has been passed into it. If the finally is present,
the resulting value of either the try expression, or the catch executed func-
tion will be passed into the function defined after the finally keyword. This
expression returns either the value returned by catch on expression, or the
value passed into try clause, if finally is not present. If the finally is
present, then this expression returns the return value of the executed function
that was passed into it. Consider this example, of a simple simple try-catch
expression catching from a function call of the function toCatch and print it
into a console.error. Finally, the expression returns the number 5:

1 try
2 toCatch ()
3 catch
4 exception => console .error(exception)
5 finally
6 () => 5

Next, I will showcase the same example from before, except without the
finally part:

1 try
2 toCatch ()
3 catch
4 exception => console .error(exception)

This expression now returns the value nil, if the expression toCatch()
throws an exception—or it returns the return value of toCatch(), if it does
not.

Await expressions Await expression is an unary prefix operator, which
consists of the await keyword and an expression. If the expression within this

46

2.2. Syntax and semantics

expression is a promise, it will be resolved. If not, the expression is simply
returned as-is. Await expressions [7] act much the same as their TypeScript
counterparts. Here is an example of an await expression awaiting a promise
resolution from the variable aPromise.

1 await aPromise

Throw expressions Throw expression is an unary prefix operator, which
consists of the throw keyword an an expression. This expression is thrown
as an exception. This behaviour is consistent with the TypeScript throw
statement.120 Here is an example of throwing a string "Hello World".

1 throw "Hello World"

Property access expressions There are two kinds of property access within
JonScript. The first one consists of two variable names with the . keyword
between them. Alternatively, you can use a variable name and a pair of square
brackets with an expression between them to the same effect. Here is an exam-
ple of two property accesses–one through a dot, one though square brackets.
I showcase accessing a property aProperty on the variable anObject.

1 anObject . aProperty
2 anObject [" aProperty "]

Function call expressions A function call expression consists of a function
name as reference, an optional template, which is a list of types surrounded
with less-than on the left and more-than sign on the right with delimiting
commas between them, and a pair of parentheses with a list of parameters
between them, also delimited by commas. Here is an example of calling a
function aFunction, which accepts three numeric parameters.

1 aFunction (1, 2, 3)

Array expressions An array expression consists of a pair of square brackets
with a list of expressions between them, delimited by commas. Each element
in the list can be preceded by the ... keyword. This denotes the use of the
120https://basarat.gitbook.io/typescript/type-system/exceptions

47

https://basarat.gitbook.io/typescript/type-system/exceptions

Design

spread operator, which merges the expression as if it was an array. Consider
this example, where I merge together two arrays and one object:

1 [...[1 , 2, 3], ...[1 , 2, 3], ...{{ a: 5 }}]

The result of this expression will be an array containing the following
numbers, in this particular order: [1, 2, 3, 1, 2, 3, 5]. The spread op-
erator in JonScript automatically converts any object it receives into an array
of property values. The ordering of these values is determined by the order
in which they were defined on the aforementioned object. String values and
String classes merge as if they were arrays of characters. If you try to merge
any kind of numerical value, nil, or a function, the resulting array elements
will not be affected.

Logical expressions There are three kinds of logical expressions within
JonScript:

1. the ! unary prefix operator, which returns a true boolean, if its param-
eter is false-like, and the false boolean, if its parameter is true-like,

2. the || binary infix operator, which returns the right hand side argument,
if the left hand side argument is false-like, and returns the left hand side
argument, if it is true-like, and

3. the && binary infix operator, which returns the right hand side argument,
if the left hand side argument is true-like, and returns the left hand side
argument, if the left hand side argument is false-like.

Relational expressions There are six kinds of relational expressions within
JonScript. Since their function was already described in Section 2.1.11, this
will only be a brief overview of their syntax:

1. The equality binary infix operator ==,

2. The less-than binary infix operator <,

3. The more-than binary infix operator >,

4. The less-or-equal-than binary infix operator <=,

5. The more-or-equal-than binary infix operator >=,

6. The non-equality binary infix operator !=.

48

2.2. Syntax and semantics

Condition expressions JonScript contains a single ternary conditional op-
erator. This operator consists of an conditional expression, the ? keyword, a
consequent expression following it, and : keyword, with an alternative expres-
sion following as well. If the conditional expression before the ? keyword is
true-like, the consequent expression is executed and returned. If the condi-
tional expression is false like operator is false-like, the alternative expression
is executed and returned. Here is an example of conditional expression, with
a conditional expression being the variable aCondition, the consequent ex-
pression being the variable aConsequent and the alternative expression being
anAlternative.

1 aConsequent ? aCondition : anAlternative

Is operator The is operator is a binary logical operator, that also acts as a
TypeScript type-guard is.121 The is operator’s left hand side is an expression
to be evaluated and the right hand side contains a pattern for the left hand side
to be checked against. This operator provides pattern matching to JonScript.
Consider an example, where I check an object (anObject) against an object
pattern. This pattern consists of an object with three properties. The first
property, a is a String class constructor. This property will match any string
or a string class instance. The second property, b, contains a Date class
instance of a concrete date. This property will match to either the Date
object representing the same date, a string which represents this concrete
date, or a numerical value of milliseconds from the UNIX epoch before the
aforementioned date. The third property, c, contains an array of two values,
1 and 2. The c property will match to an array of two elements, 1 and 2.

1 anObject is {{
2 a: String ,
3 b: Date (2020 , 1, 1),
4 c: [1, 2],
5 }}

String literals There are two kinds of string literals within JonScript: the
first one consists of a pair of double quotes with text between them—working
just like the double-quoted string122 in JavaScript does. The other kind of
string is a template literal string—this string consists of a pair of grave accents
between text. If this text contains the dollar sign with curly brackets after
it, the value inside the curly brackets will be evaluated as an expression and
121https://www.typescriptlang.org/docs/handbook/advanced-types.html
122https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_

Objects/String

49

https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

Design

concatenated within the string. Here is an example of concatenation of double-
quoted string ("Hello "), and a template string literal, with a variable aName
inside it.

1 "Hello " + ‘World ${aName}‘

Boolean literals There are two boolean literals within JonScript, true an
false.

Number literals JonScript number literals consist of positive and negative
floating-point numbers, including a zero, without NaN. See Section 2.1.8.

Nil literal The nil literal value within JonScript acts as a way to denote
a null (empty) value. This value can also be used within type definitions to
the same effect, denoting an empty (void) type. This literal is compiled into
undefined.

2.3 Code example

This section showcases JonScript functional programming capacity by creating
two algorithms as examples in it. The first example is algorithm is a fibonacci
calculation algorithm. This example contains a single module MathModule,
in it a single class Fibonacci, with a single number type parameter index,
which will have a function declaration expression as its public API. When
this function executes, the resulting number is the member of the fibonacci
sequence at the index denoted by index. The concrete implementation of
fibonacci sequence calculator is placed in private method named calculate:

1 MathModule {
2 Fibonacci (index: number) {
3 calculate : (
4 index: number ,
5 first: number = 0,
6 second : number = 1
7) => !index
8 ? first
9 : calculate (index - 1, second , second + first),

10 () => calculate (index)
11 }
12 }

The second example is a queue algorithm. This example is a generic Queue
prototype. The Queue prototype has three basic queue methods: push, pop

50

2.3. Code example

and top. The first method enqueues an element (and return queue), the
second method returns a queue with a dequeued first element, and the third
method returns the first element in line to be dequeued.

1 QueueModule {
2 Queue <T >(... items: T[]) {{
3 push: (item: T) => Queue(item , ... items),
4 pop: () => Queue(items.slice (1)),
5 top: () => items [0],
6 }}
7 }

Note that this example uses TypeScript type inference123 in order to sim-
plify the use of generics—one does not need to use explicit generics when
defining the Queue class—the type for generics will be inferred from the ele-
ments passed into its constructor.

123https://www.typescriptlang.org/docs/handbook/type-inference.html

51

https://www.typescriptlang.org/docs/handbook/type-inference.html

Chapter 3
Implementation

This chapter describes the technical details of the JonScript implementation.
It covers the technologies used to create this language, as well as an overview
of the build process and what the future development of JonScript.

3.1 Broad overview of the build process

I this section I describe the implementation details without focusing on par-
ticular technologies that were used to accomplish them. There are four main
parts to the JonScript build process:

Pre-processor Which resolves references to JonScript files and breaks the
JonScript files into syntactic tokens;

Parser Which is the main part of the build process, where JonScript files are
compiled into TypeScript;

Post-processing Which analyzes the resulting TypeScript code and does
additional processing to implement type-dependent changes within the
code, such as automatic new and async insertions; and

JavaScript compilation Which compiles the resulting TypeScript into
JavaScript. This JavaScript may, depending on configuration outside
of JonScript, then be subject to other changes, such as minification or
uglification.

I chose to compile JonScript to TypeScript, over asm.js and webassembly
[15]. The obstacle in choosing WebAssembly is its lack of access to Document
Object Model124 (DOM), making it less suitable for regular web develop-
ment.125 The reason for not choosing asm.js is that it is deprecated.126

124https://www.w3schools.com/js/js_htmldom.asp
125https://developer.mozilla.org/en-US/docs/WebAssembly/Concepts
126https://developer.mozilla.org/en-US/docs/Games/Tools/asm.js

53

https://www.w3schools.com/js/js_htmldom.asp
https://developer.mozilla.org/en-US/docs/WebAssembly/Concepts
https://developer.mozilla.org/en-US/docs/Games/Tools/asm.js

Implementation

3.2 Distribution

JonScript is distributed as an NPM package, to be used as a webpack plu-
gin. For description of how webpack is used, refer to Section 3.3.6. You can
download this package to be used as plugin from NPM.127

3.3 Technologies

This section goes over a list of packages from NPM repository which JonScript
depends on, as well as detailed explanation how they are related to the com-
pilation process. This list does not contain every single package used—rather,
it focuses on the most important ones. For a full list of dependencies, you can
refer to the jonscript128 and jonscript-util129 (utility package for the language)
respectively.

3.3.1 NodeJS

NodeJS [13] is a very popular run-time for JavaScript.130 It is based on the
Google Chrome JavaScript engine. This project uses this run-time to compile
JonScript into TypeScript.

3.3.2 NPM

NPM is a package management system and therefore controls all other depen-
dencies of JonScript used during the build process. NPM is also responsible
for package versioning and allowing others to download my newly-published
language.

3.3.3 Typescript

JonScript compiles into TypeScript rather than directly into JavaScript. Com-
piling JonScript this way allows JonScript to take advantage of TypeScript
type system.

127https://npmjs.com/package/jonscript
128https://npmjs.com/package/jonscript
129https://npmjs.com/package/jonscript-util
130https://insights.stackoverflow.com/survey/2019#technology

54

https://npmjs.com/package/jonscript
https://npmjs.com/package/jonscript
https://npmjs.com/package/jonscript-util
https://insights.stackoverflow.com/survey/2019#technology

3.3. Technologies

JonScript uses the TypeScript typing system to implement these features:

1. methods keeping context after assignment (for details about this process,
see Section 2.1.2),

2. removing the this keyword from JonScript,

3. removing the new keyword from JonScript (for details about this process,
see Section 2.1.13),

4. removing the async keyword from JonScript (for details about this pro-
cess, see Section 2.1.14).

Implementing these features manually would have meant generating complex
boilerplate code. Instead, TypeScript provides these features. This would
have led to code-bloat and much slower run-time. If I wanted to implement
automatic new within JonScript without the help of TypeScript typing, I would
need to check each function for the property constructor.name before call-
ing it. Worse yet, if I wanted to ensure that methods keep their context
after assignment, I would need to check each and every property access, to
see if it yielded a function. In case I wanted to remove this keyword from
the language, I would need to generate inherited properties as local variables
(since JonScript provides a this-free access to inherited properties as well as
it does to private and public ones). The only way of doing this is using the
with keyword—which is not recommended for use.131 The only features that
I would be able to implement easily without TypeScript would be async re-
moval, since this would only require JonScript parser to do additional lookup
for the operator await within function body. However, since the package ts-
morph (more detailed description is in Section 3.3.5) offers this feature already,
I decided to use their implementation instead.

As consequence, JonScript is only able to use either packages written in
TypeScript, or JavaScript packages have TypeScript typing accessible. Given
the popularity of TypeScript [6], most popular packages either are written
in TypeScript, or have TypeScript compatible typing either included right
away, or the typing exists as a separate package. In case you wish to use
purely JavaScript package within JonScript, you can define your own typing
for such package. Alternatively, you can import the pure JavaScript package
into a TypeScript file and import the TypeScript file instead—since JonScript
allows you to import local TypeScript files.

3.3.4 antlr4ts

In order to implement the language parser, I used ANother Tool for Language
Recognition 4 (ANTLR4) [36]. ANTLR4 is a LL(*) left-to-right, leftmost
131https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/

Statements/with

55

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/with
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/with

Implementation

derivation parser generator written in Java. ANTLR is widely used for lan-
guage implementation. To utilize ANTLR4 within my project, I imported this
the package antlr4ts.132 This package takes ANTLR4 grammar and outputs
a parser written in TypeScript. This parser was then used to parse JonScript
into a JonScript Abstract Syntax Tree (AST).

3.3.5 Ts-morph

In order to compile JonScript to TypeScript, I used the package ts-morph. 133

Ts-morph is a compilation and AST manipulation framework for TypeScript.
JonScript is compiled into TypeScript by compiling the JonScript AST into
a TypeScript AST, managed by this package. After that, ts-morph generates
TypeScript source code. After compiling the code into TypeScript, I also
use ts-morph to perform JonScript post-processing features mentioned in the
Section 3.3.3.

3.3.6 Webpack

Webpack is a household name within modern JavaScript development.134

Webpack allows you to insert unlimited compilers and then add directions
as to which files they will compile and where they should output the resulting
files. Webpack simplifies compilation configuration.

JonScript exists as a webpack plugin. This was done so that the TypeScript
files emitted by JonScript compilation could be compiled into JavaScript.
When you wish to use TypeScript in the browser, you do so by compiling
it into a JavaScript bundle, alongside a collection of map files (map files will
be included if you wish to debug your code in a browser). JonScript is designed
to be integrated within standard TypeScript application.

3.4 Parser description

This section describes how JonScript is parsed from each JonScript file to
the resulting JavaScript code to be run in the browser. First, the ANTLR
generated parser takes each individual file and parses them into a stream of
tokens. JonScript then uses the ANTLR bindings onto each of these tokens
and uses mapping functions to parse the ANTLR bound tokens to an AST
of TypeScript. The ts-morph package then saves the generated AST into a
file. Then, all generated files are subjected to post processing. The package
ts-morph is responsible for this as well. It loads an AST from each individual
file at the same time and then mutates the tree in order to implement the
132https://www.npmjs.com/package/antlr4ts
133https://www.npmjs.com/package/ts-morph
134https://www.npmjs.com/package/webpack

56

https://www.npmjs.com/package/antlr4ts
https://www.npmjs.com/package/ts-morph
https://www.npmjs.com/package/webpack

3.5. Future release features and shortcomings

post-processing features. This double loading is done due to the fact that ts-
morph cannot recognize TypeScript types until the AST in question is saved
to a file. Then, all TypeScript files are loaded by webpack and compiled into
JavaScript.

3.5 Future release features and shortcomings

This section dives into problems that are either not yet implemented in Jon-
Script, due to time and resource constraints, or will require further research,
or are likely impossible to solve due to an underlying JavaScript constraints.

3.5.1 Features that will be implemented in future release

These features were not implemented in the first JonScript purely because of
a lack of time and resources—they will be rolled out in near future. There
is not much further research required for these, since they are rather straight
forward.

Implement JSX The JSX [19] is a language extension for JavaScript, which
allows you to model HTML tags as JavaScript expressions. As discussed in
the introduction, the JSX is of great help when trying to model user interface
in your application.

Sanitize unwanted types JonScript needs to be able to crash on compila-
tion if it encounters the any, or unknown types—since they will interfere with
its capacity to do post-processing.

Fix spread operator on array-like values In standard JavaScript API,
there are several methods that return values that are similar to arrays. These
values can be converted to regular arrays in JavaScript by using the spread
operator.135 I will be adding this functionality into JonScript as well. Cur-
rently, the workaround is the use of Array.from,136 which converts array-like
objects to simple arrays.

Fix template literal string escape sequences JonScript needs addi-
tional escape characters when using $, { or } within template literal strings.137

JavaScript only needs to escape $ character within such string. This will be
135https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/

Spread_syntax
136https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_

Objects/Array/from
137https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_

literals

57

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

Implementation

fixed with a better parser in the future release. Since this bug fix was not
considered significant enough to be fixed in the first release, it will be fixed in
the future one by implementing a more capable parser.

Introduce map files into compilation process Map files [6] are a great
tool for debugging your program. In essence, they allow you to map the com-
piled JavaScript code onto whatever the original language that was compiled
into JavaScript was. This is highly useful, as you can then use a debugger
which correctly goes over line-by-line of the original code, therefore greatly
decreasing the difficulty in debugging compiled code. Since JonScript uses
the package webpack for its build process and webpack already supports the
creation of map files, an algorithm will be added to provide this functionality.

Visual Studio Code Extension for JonScript Visual Studio Code138

is an open-source IDE developed by Microsoft. Since it supports a large
amount of extensions making it compatible with a number of languages, I will
develop an open-source extension for JonScript, offering features like syntax
highlighting, debugging and code references.

Descriptors for properties in classes JavaScript has some measure of
support for class, property and method descriptors139 on both classes and
objects. In future versions of JonScript these features will be added and
possibly improved.

3.5.2 Features that require more research

These features either need to be researched further, in order to fit them neatly
into another category, or there are multiple ways of implementing or designing
them. Therefore, they are in a category on their own—likely, they will be fixed
in a future release, but I do not yet have a clear outline of the concrete solution.

Add regex expressions JavaScript has regular expression literals, which
can be created a string surrounded by forward slashes (/). For now, JonScript
only supports the use of RegExp class for creating regular expressions. In
future release, JonScript will support the creation of these regular expression
literals.

Rename properties to protect against keyword conflicts JavaScript
has many keywords and sometimes, when a property name is the same as
a keyword within the language an exception, or a build failure may occur.
138https://code.visualstudio.com/
139https://medium.com/jspoint/a-quick-introduction-to-the-property-descriptor-

of-the-javascript-objects-5093c37d079

58

https://code.visualstudio.com/
https://medium.com/jspoint/a-quick-introduction-to-the-property-descriptor-of-the-javascript-objects-5093c37d079
https://medium.com/jspoint/a-quick-introduction-to-the-property-descriptor-of-the-javascript-objects-5093c37d079

3.5. Future release features and shortcomings

There may be a renaming scheme to protect against this behaviour in the
future release—at least for private properties.

Fix possible-null types Since JonScript implements automatic optional
chaining and TypeScript can be set up to crash on an unchecked null refer-
ence, this creates a problem—either all types in JonScript will be compiled as
possibly null,140 therefore avoiding this issue, or the default JonScript Type-
Script compiler will be set up to ignore this error, or the non-null assertion
operator may be deployed to fix this error.

Add the is operators compatibility with JonScript classes While the
is operator is an improvement over both typeof and instanceof, it still lacks
one very important feature—it cannot yet match classes directly created in
JonScript—at least not out-of-the box for now.

This can be ameliorated by using a public property of a class for a match
with is and letting TypeScript do its type coercion by using a union type
between the pertinent types.

Optimize the build process Given that JonScript has eliminated the need
for this keyword in your code, it needs a way of accessing properties within
a class. This is achieved through dynamically creating local variables. This,
however, seems to slow down the build process significantly, when inheritance
is involved. Further research is required on how to make JonScript compile
faster.

Allow access to private properties within same-type classes So far
you cannot access a private property of another class instance of certain pro-
totype within a context of the same prototype. Each instance can only access
its own private properties. Future versions of JonScript should allow you to
access private properties of another instance of the same-type class.

3.5.3 Shortcomings without a clear fix

This subsection describes problems with JavaScript engine to which I have
not found a solution. In general, these problems relate to compromises among
the JonScript tenets in the Chapter 1 (Introduction), and to the JavaScript
engine and how it treats certain values.

No deep object sanitize In above section I write about the removal of NaN
and null from the language, as well as JonScript being compatible with the
JavaScript ecosystem. A question arose from these two facts—what happens,
if an object contains an embedded property with the NaN value? JonScript
140https://www.typescriptlang.org/docs/handbook/advanced-types.html

59

https://www.typescriptlang.org/docs/handbook/advanced-types.html

Implementation

guarantees that such property, when directly accessed, will act as if it was
simply undefined. However, because of performance, JonScript does not
remove every NaN or null that happens to exist within its object structure.
This means that if you pass an object from outside of JonScript into a function
that was imported as well, their behaviour might change based on these values.
This behaviour also makes sense if the function or method that accepts such
object depends on these values being what they are.

Subtle differences between values and their class counterparts While
JonScript ameliorates most of the differences between, say, String class and
string value, two differences still prevail because of the JavaScript engine.
These differences are the inability to add properties onto a string primitive
and the fact that a class instance can never be false-like. Therefore, the class
instance of number zero, or the class instance of empty string will not be
false-like, even though their values will. It is possible that these classes will
be removed within future release.

3.6 Lessons learned

During the implementation process of JonScript, I have learned how difficult
it is to plan and execute a creation of a whole new language from bottom-up
perspective. Furthermore, there needs to be an immense effort to document
features properly, in order to make the new language understandable to new-
comers. While I truly believe that the features implemented in JonScript are
of use to both beginner and experienced JavaScript developers, it may be
beneficial to think about moving JonScript features from a separate language
to TypeScript pre-processor—implementing JonScript features directly within
standard TypeScript syntax.

60

Chapter 4
Evaluation

This chapter evaluates the implementation of JonScript in two ways. First, I
evaluate the correctness of the implementation with respect both to the spec-
ification and the stated goals. Second, I evaluate the run-time performance
of JonScript compiled JavaScript code in comparison to JavaScript compiled
from TypeScript.

4.1 Correctness of the implementation

This section focuses on whether JonScript fulfills the specification from the
Chapter 2 (Design), and the stated goals in the Chapter 1 (Introduction).
This section also contains a list of descriptively named unit tests, all of which
my solution passes. These unit tests were designed to show correctness of the
implementation—not only that it compiles into JavaScript properly, but also
that the features stated in the Chapter 2 (Design) are functional.

4.1.1 Unit test list

To further support my arguments about the utility and correctness of Jon-
Script, I developed thirty unit tests. These tests set out to ensure the cor-
rectness of JonScript and its most important features. All of these unit tests
pass. See Table 4.1.

4.1.2 Evaluation of the stated goals

In the thesis statement, I declared three goals: Ease of use, consistency and
compatibility. This subsection presents arguments for all three of these goals
in terms of whether or not they were achieved and to what extent.

Ease of use JonScript syntax is largely similar to TypeScript syntax. This
leads to easier adoption of this language from developers that are already

61

Evaluation

Name of test Test result
Overload the plus operator Passed
Overload division operator and then convert resulting NaN
to undefined

Passed

Calculate Fibonacci sequence Passed
Use standard JavaScript API method reduce on array Passed
Access properties on undefined value Without error
Custom QuickSort algorithm Passed
Inheritance, inherits function public API Passed
Import local TypeScript files Passed
Do named import and then rename it from TypeScript file Passed
Import multiple named imports from local TypeScript file Passed
Import and inherit from a prototype from renamed Jon-
Script module

Passed

Use default import, which imports all exported variables Passed
Import and utilize JonScript module Passed
Use single parameter anonymous functions without paren-
theses

Passed

Run QuickSort with generic types Passed
Create classes which use inversion control Passed
Use the is operator Passed
Use spread operators on arrays with nil members Passed
Import and inherit from JonScript module Passed
Create a single-expression functor Passed
Use a function type as a type of parameter Passed
Use the Class template type to get type of prototype im-
ported from another module

Passed

Use with multi-level inheritance with prototypes having
multiple parents

Passed

Remove inherited properties from public API Passed
One object can inherit from another Passed
Use object type as method parameter type Passed
Create multi-level object inheritance from other objects Passed
Create complex prototype system with pattern matching,
and with automatic async and new keyword insertion

Passed

Can inherit from an array in prototype Passed
Define an expression as public API in prototype Passed
Call Array.from despite from being a keyword in Jon-
Script

Passed

Table 4.1: Unit test results

62

4.1. Correctness of the implementation

used to TypeScript. Furthermore, JonScript increased compatibility with
functional programming paradigm (due to single-expression functors, func-
tion consistency improvements and removal of side-effect operators). Due to
this, developers can gain greater use of function as first class citizen principle,
and higher order functions. However, it could be argued that due to slow
build time, JonScript has not fully achieved this stated goal. Further research
will be necessary to determine how exactly to ameliorate (and measure) this
issue.

Consistency Second goal of JonScript is to fix inconsistent and hard to pre-
dict behaviour JavaScript is known for. The Chapter 2 (Design) and Chapter 1
(Introduction) describe these inconsistencies in detail. Here is a list of ways
how JonScript was able to correct these:

1. function context behaviour,

2. null value behaviour,

3. class initialization behaviour,

4. operator behaviour with regards to type coercion,

5. single and double quoted strings, and

6. run-time type checking of String class instances, Number class instances,
and their class-less counterparts.

However, JonScript was not able to ameliorate the differences between
strings and String classes and numbers and their class counterparts entirely:
the Number class of number zero and String class of empty string are still
evaluated as true-like in JonScript, despite the empty string and number being
false-like. The ideal solution would be to make the classes in question behave
in a false-like manner, when they represent the empty string and number zero
respectively. This however was not possible due to how JavaScript evaluates
objects.

Furthermore, JonScript is still not able to add properties during run-time
to values that are not an object, nor a function. This creates another difference
in behaviour between strings, numbers and their class counterparts.

Compatibility JonScript has been designed to be largely compatible with
either TypeScript written NPM packages, of JavaScript NPM packages that
have TypeScript typing. In order to showcase basic compatibility, I created
a test project as a case study, containing a questionnaire about common
JavaScript pitfalls, written in JonScript, to be displayed in a browser. This

63

Evaluation

project can be found within the test folder of the JonScript git repository.141

In order to display the questions within the questionnaire, I have imported
the household name package jQuery. 142. Furthermore, in order to store the
answers to each questions, I have imported another household name package—
Redux. 143 The Redux package was responsible for predictable state updates
within the project. The JonScript application works with both packages with-
out issues.

4.2 Performance testing

While better performance was not one of the stated goals of JonScript, it
is still relevant to the utility of this language. To test the performance of
JonScript, I implement a set of micro benchmark applications and measure
performance against TypeScript.

4.2.1 Test subjects

I tested two sets of JavaScript code, one compiled from TypeScript, and one
compiled from JonScript. Since TypeScript does not affect the run-time, the
TypeScript test-times represent how a vanilla JonScript algorithm would per-
form. In effect, I measure the overhead that JonScript features introduce into
an equivalent JavaScript program.

4.2.2 Benchmark algorithms

I measure three algorithms:

Fibonacci sequence An i-th element in the fibonacci sequence, which was
implemented as a recursive end-tail method,

Merge sort Stable, out-place sorting algorithm, which was implemented as
a recursive method sorting elements, and

Langton’s ant Algorithm [20], which is a cellular automaton in two dimen-
sional field executed over k steps.

141https://gitlab.fit.cvut.cz/jindrj14/master-thesis
142https://jquery.com
143https://redux.js.org

64

https://gitlab.fit.cvut.cz/jindrj14/master-thesis
https://jquery.com
https://redux.js.org

4.2. Performance testing

Benchmark for JavaScript Min Max Mean Median Std
Dev

5000th fibonacci number 5 15 7.47 7.0 2.19
1000th Langtons ant step 8 29 14.96 17.0 4.80
Merge Sort (700 elements) 3 13 6.85 6.5 1.61
Benchmark for JonScript Min Max Mean Median Std

Dev
5000th fibonacci number 1128 1447 1224.30 1255.0 80.06
1000th Langtons ant step 125 302 152.89 147.5 26.39
Merge Sort (700 elements) 73 140 80.92 79.0 8.01

Table 4.2: Microbenchmark performance summary

4.2.3 Testing enviroment

These algorithms were tested on my personal computer with these specifica-
tions:

1. Processor: AMD Ryzen 7 3700U with Radeon Vega Mobile Gfx × 4,

2. Random Access Memory (RAM): 8 GB 1600 MHz DDR3L SDRAM,

3. Physical memory: 1 TB 5400 rpm SATA SSHD, and

4. Operating system: Linux Mint 20 Cinnamon.

These tests were ran in NodeJS version 12.22.1 enviroment.

4.2.4 Results

In Table 4.2 you can see various averages measured during the test. These
results represent times of run in milliseconds. There were 100 measured iter-
ations for each test. For Langton’s ant and Fibonacci, each of those results
were for a hundred runs. This means that a 5000th fibonacci member, and the
1000th step of Langton’s automaton, were computed a hundred times in each
of those hundred tests runs. Merge sort ran once per iteration. All values in
this table are in milliseconds.

In order to better understand the differences between the test subjects, I
present three graphs, one for each test. The graphs are violin plots which show
the distribution of execution times within each test. The Y-axis is the execu-
tion time. The X-axis is the tested code, either compiled from JonScript, or
compiled from TypeScript. The shape of the violin describes the distribution
of results from a single test in a single test subject. The graphs are to-scale

65

Evaluation

0

500

1000

1500

JavaScript JonScript

E
la

ps
ed

 ti
m

e
[m

s]

Fibonacci

Figure 4.1: Fibonacci performance

with each other. The violin is widest in the median execution time for each
test and test subject.

There are boxplots within each violin. They describe the distribution
of results and provide additional information. In each boxplot, there is a
horizontal line representing median execution time, which splits the dataset
in two. There are two boxes, one above, and one below the horizontal line
both of which extend to the lower and upper quartile respectively. Each of
them ends at the median of the lower/upper half of the dataset. In each
boxplot, there are whiskers, top and bottom. The top whisker shows the
distribution between the upper half median and the maximum exection time.
The bottom whisker shows the same information for lower half median and
minimum execution time. The outliers are excluded from these and plotted
separately with points per outlying execution time.

In Figure 4.1 you can see the execution times plot for the fibonacci sequence
calculation algorithm. In Figure 4.2 you can see the execution times plot for
the Langtons ant algorithm. In Figure 4.3 you can see the execution times
plot for the merge sort algorithm.

66

4.2. Performance testing

0

100

200

300

JavaScript JonScript

E
la

ps
ed

 ti
m

e
[m

s]

Langton's Ant

Figure 4.2: Langton’s ant performance

0

50

100

150

JavaScript JonScript

E
la

ps
ed

 ti
m

e
[m

s]

Merge Sort

Figure 4.3: Merge sort performance

67

Evaluation

4.2.5 Analysis

Unfortunately, JonScript suffers severe overhead compared to TypeScript. In
each of the tests run, the median time for TypeScript compiled JavaScript code
execution was lower than the JonScript alternative. These measurements were
relatively stable (e.g. low standard deviation compared to the median). The
differences in mean for each algorithm ranged from 74.07 ms (for merge sort
algorithm) to 1216.83 ms (for Fibonacci).

The deoptimization possibly stems from this list of suspect factors:

1. custom operator behaviour (custom type coercion),

2. function context safety,

3. automatic optional null chaining,

4. unification of null values (null and undefined), and

5. automatic checking and removal of NaN values.

Optimization The suspected problems that have caused the deoptimization
will require further testing and profiling to ascertain whether or not solving
them will improve the compiled JavaScript code from JonScript performance
during run-time.

68

Chapter 5
Related Work

This chapter introduces other works developed in the field of programming
languages aiming at ameliorating the idiosyncrasies of JavaScript. This chap-
ter is split into three sections. The first section is dedicated strictly to the
JavaScript strict mode, in order to discuss whether or not it can ameliorate the
issues JonScript fixes. The second section deals with alternatives to JonScript
and the third section deals with linters.

5.1 Strict mode

Strict mode144 is a declaration which can be placed either into the global
context or the function body. This statement works by limiting functionality
of JavaScript to improve developer experience and limit severe errors within
an application. Strict mode was introduced in ES5 [3]. The most important
issues this mode fixes for JavaScript developers are: throwing errors when you
assign a value to a variable that has not been defined, changing the value of
function context of a function executed in global context from the window145

object to the value undefined,146 and throwing an error when you use the
delete147 operator on a prototype object148 (e.g. remove the prototype).

While the features of strict mode are very useful in preventing bugs in
JavaScript code, they do not address any of the issues that JonScript ad-
dresses, which were discussed at length in Chapter 1 (Introduction) and Chap-

144https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_
mode

145https://developer.mozilla.org/en-US/docs/Web/API/Window
146https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_

Objects/undefined
147https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/

delete
148https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_

prototypes

69

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/undefined
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/delete
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/delete
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes

Related Work

ter 2 (Design). Furthermore, JonScript already uses strict mode automatically,
due to its usage of TypeScript.

5.2 Languages and language extension

This section describes popular, interesting alternatives to JonScript and how
they compare to what JonScript does. These alternatives either fix a portion of
problems within JonScript, or they improve developer experience of JavaScript
developers in similar way to JonScript.

5.2.1 TypeScript

TypeScript is a language, which is a superset of JavaScript. Therefore, all
JavaScript code is valid TypeScript code. TypeScript extends JavaScript by
providing compile-time typing, which does not influence the run-time and is
executed in the browser by being compiled into JavaScript. The compiler gives
the developer useful information by warnings and error messages in case of a
typing mismatch.

TypeScript has powerful type inference system [29]. This is significant,
since it allows one not to have to explicitly define function return types, ob-
ject types, variable types and so on. As an improvement over normal Type-
Script usage, JonScript makes it so that every object and prototype can have
recursive type definitions. Normally, TypeScript would only allow this on
class/prototype definitions.

TypeScript is an integral part of JonScript structure. JonScript utilizes
TypeScript typing when importing packages, declaring methods, type-checking,
using type inference and post-processing. So, where does JonScript add value
over pure TypeScript? In the effects it has on run-time. TypeScript tries
as hard as possible to keep developers from making mistakes—but JonScript
lets you write intuitive code, extends the language possibilities by adding
additional syntactic and semantic features—all of this, while still utilizing
TypeScript.

5.2.2 CoffeeScript

CoffeeScript [12] aims to remove Java influence from the JavaScript language,
leaving it with more similarities to a functional programming language.149 To
that end, it adds functional programming features within the language, such as
re-creating ternary conditional operator with the keyword if. CoffeeScript is
compatible with any JavaScript library and with the JSX syntax. CoffeeScript
can be used with TypeScript (through the compiled-coffee package).150

149https://www.npmjs.com/package/coffeescript
150https://www.npmjs.com/package/compiled-coffee

70

https://www.npmjs.com/package/coffeescript
https://www.npmjs.com/package/compiled-coffee

5.2. Languages and language extension

The benefits of CoffeeScript are one-to-one compilation into JavaScript,
easy syntax, and guaranteed compatibility. JonScript differs from Coffee-
Script philosophy that it is more active in trying to change the underlying
JavaScript behaviour—for example, JonScript uses its own, more consistent,
operator type coercion—JonScript will not produce "NaN" string when work-
ing with invalid numerical operations (such as dividing zero by zero) and then
concatenating the result with a string. JonScript also introduces function con-
text change safeguards for all methods called within JonScript. Furthermore,
JonScript provides automatic new and async keyword insertions.

5.2.3 JSX

While the JSX [19] syntax extension does not try to fix any of the problem-
atic behaviour in JavaScript, it is still worth mentioning, since it does extend
the JavaScript syntax in order to improve developer experience. JSX allows
the developer to input HTML-like syntax into JavaScript code. This syn-
tax is then compiled into JavaScript expressions. In essence, both JSX and
CoffeeScript add syntactic benefits, while JonScript adds both syntactic and
semantic benefits.

5.2.4 JS++

JS++ is a JavaScript language extension that imposes strict C++-like typ-
ing and does run-time coercion on values based on these types.151 JS++ is
similar to TypeScript, in that it uses a typing structure to improve devel-
oper experience. JS++ supports imperative, functional and object-oriented
programming paradigms. While JS++ is similar to JonScript in how it aims
to fix the JavaScript run-time problems, it can be argued that JonScript has
more functional programming features.

5.2.5 Amber

Amber is a SmallTalk [24] dialect that can be compiled into JavaScript.152

Since SmallTalk has comparatively small developer community,153 it is more
difficult to find people who work in it. While Amber fixes JavaScript problem-
atic behaviour, it is not easy to use for current JavaScript developers—simply
put, it differs too much in syntax.154 JonScript keeps much of the JavaScript
(or rather, TypeScript) syntax as-is. This allows easier switch from JavaScript
151https://www.onux.com/jspp
152https://www.npmjs.com/package/amber
153https://insights.stackoverflow.com/survey/2020#technology-most-loved-

dreaded-and-wanted-languages-loved
154https://www.gnu.org/software/smalltalk/manual/html_node/Defining-

methods.html

71

https://www.onux.com/jspp
https://www.npmjs.com/package/amber
https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages-loved
https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages-loved
https://www.gnu.org/software/smalltalk/manual/html_node/Defining-methods.html
https://www.gnu.org/software/smalltalk/manual/html_node/Defining-methods.html

Related Work

or TypeScript to JonScript. Furthermore, Amber is not a forgiving language—
for example, when trying to concatenate NaN with a string, it throws an ex-
ception. This is arguably undesirable behaviour, since throwing an exception
on such operation may break the website and not display any content to the
end-user.

5.3 Linters

Linters [43] are code analysis tool that work by giving developers useful infor-
mation about their code. They do so by recognizing patterns and keywords
within code that may be dangerous. Linters use static code analysis to gain
this information. Linters can be connected to an Integrated Development
Enviroment (IDE) to provide additional syntax highlighting alongside useful
advice within the IDE [42].

5.3.1 ESLint

ESLint is a popular JavaScript linter.155 ESLint identifier problematic pat-
terns within JavaScript code. For example, ESLint can be set up to flag any
function definition that is not an arrow function expression to try to prevent
function context errors. In this way, ESLint is similar to JonScript. How-
ever, JonScript goes a step beyond warnings—it simply fixes the issues both
during compile-time and during run-time. Furthermore, JonScript is its own
language—this means that JonScript can add more value than simply remov-
ing the bad parts of JavaScript—such as adding single-expression functors.

5.3.2 Other linters

The problematic nature of JavaScript semantics compelled many developers
to create their own linters, different from ESLint. Similarly to ESLint, they
only deliver warnings and do not improve the language. I mention them for
completeness. They include JSLint,156 JSHint,157 JSCS,158 and TSLint.159

155https://www.npmjs.com/package/eslint
156https://jslint.com
157https://jshint.com
158https://jscs-dev.github.io
159https://palantir.github.io/tslint

72

https://www.npmjs.com/package/eslint
https://jslint.com
https://jshint.com
https://jscs-dev.github.io
https://palantir.github.io/tslint

Chapter 6
Conclusion

This thesis identifies the problematic behaviour of JavaScript and as a lack
of consistency within its API, and in subtle variations in its grammar with
significant semantic effects. Furthermore, the thesis identified problems with
JavaScript counterintuitive quasi-prototypal inheritance system, counterintu-
itive type coercion when using operators, such as concatenation, arithmetic
operators and relational operators. These issues are not addressed by existing
solutions. This thesis addresses these problems by introducing a new lan-
guages, called JonScript, which compiles into JavaScript, via TypeScript, and
has these three guiding principles: consistency, compatibility with household
frameworks in JavaScript, and ease of use.

The changes to JavaScript grammar and semantics include the universal
use of arrow functions, automatic application of the async operator when
the await operator is used, automatic application of the new operator when
instantiating a class, and intuitive type coercion system when using operators.
These changes make JonScript source code more consistent than JavaScript.

JonScript is rigorously tested for correctness and I have developed a case
study project to showcase its compatibility with jQuery and Redux. JonScript
is easy to use for both experienced JavaScript developers, since its syntax and
semantics are similar enough to JavaScript, while its consistency makes it easy
for new developers to start using it alongside the JavaScript veterans.

73

Conclusion

However, JonScript incurs an overhead within run-time due to safety fea-
tures it implements. These features are:

• automatic optional chaining for constructor calls, property and element
access and function calls,

• safety from unexpected changes in function context,

• improvements on JavaScript inheritance system,

• improvements on operator type coercion, and

• consistency when operating with null values.

Despite the overhead, an argument could be made that safety features which
improve both developer and the end-user experience by avoiding common
JavaScript pitfalls which can break an application are worth the overhead.
Nevertheless, the future versions of JonScript will contain optimizations ame-
liorating these problems.

JonScript is distributed as a plugin for Webpack. It is publically available
at NPM JonScript repository. The package has been downloaded 168 times
at the time of writing.

6.1 Threats to validity

Due to TypeScript type system affecting the JonScript run-time, there is a
possibility that an error in TypeScript typing would invalidate JonScript fea-
tures. However, given that JonScript programmers have the freedom to import
TypeScript files into JonScript, these problems can be addressed by fixing the
problematic types in question—therefore, even if this threat occurs, it would
not invalidate the thesis.

6.2 Unsolved problems and future work

Given the scope of development of JonScript and the time and resources I
have at my disposal during the creation of this thesis, there are leftover issues
not addressed in the language that will require future attention. This list of
issues will be split into three parts: First, a list of issues that are not yet
fixed/implemented due to lack of time and resources. Second, a list of issues
that require future research, and third, a list of issues that are impossible
to fix due to JavaScript functionality, or due to compatibility or run-time
performance concerns.

74

https://npmjs.com/package/jonscript

6.2. Unsolved problems and future work

6.2.1 Issues to be implemented in future release

Here is a list of issues that will be implemented in a future release of JonScript:

1. add support JSX syntax. JSX syntax allows developers to insert HTML-
like syntax which will be compiled into JavaScript expressions to simplify
application UI definition—for details, see Section 3.5.1,

2. unify type references to null-like values—types such as null, or void
can still be defined in JonScript—for details see Section 3.5.1,

3. fix spread operator on array-like values—they should work as they do in
regular JavaScript within spread operators, see Section 3.5.1,

4. fix literal string escape sequences, since they require more escape char-
acters than the same expressions in JavaScript, see Section 3.5.1,

5. utilize map files to help JonScript developers with debugging see subsection—
map files are used to map compiled JavaScript code onto another lan-
guage it originated from—see Section 3.5.1,

6. develop a Visual Studio Code extension for JonScript developers, for
syntax highlighting, debugging and code reference—see Section 3.5.1,

7. add syntax for prototype and method attributes—see Section 3.5.1, and

8. add regular expression literals—see Section 3.5.2.

6.2.2 Issues that require more research

Here is a list of issues that may be fixed in the future release, if possible, or
that have multiple possible solutions and the correct approach to solving them
requires more research:

1. automatic renaming of properties to protect against keyword conflicts—
Section 3.5.2,

2. fix type errors concerning null references—Section 3.5.2,

3. fix JonScript prototype compatibility with the is operator—Section 3.5.2,

4. optimize the build process—Section 3.5.2, and

5. allow access to private properties within same-type classes—Section 3.5.2.

75

Conclusion

6.2.3 Performance

I created three different performance tests using benchmark algorithms to
measure the difference between JavaScript code that was compiled from Jon-
Script and JavaScript code that was compiled from TypeScript. JonScript
have consistently performed worse than TypeScript in each of these bench-
marks.

6.2.4 Issues that cannot be addressed

These issues cannot be fixed due to either JavaScript itself, concerns of com-
patibility, or concerns of heavily sub-optimal run-time:

1. cannot recursively sanitize imported objects to remove null and NaN
values (see Section 3.5.3)—this is not practical to solve, since it would
further decrease performance and potentially cause compatibility issues,
and

2. cannot remove all subtle differences between non-object values and their
class counterparts—this is not fixable due to how JavaScript engines
treat false-like values (see Section 3.5.3).

6.3 Future work

The results of performance evaluation show that I need to optimize run time
of JonScript. Furthermore, I will research optimization of compilation time,
and implement more unit tests, improve documentation, and fix the afore-
mentioned issues.

76

Bibliography

[1] How to create a function from a string in JavaScript. https:
//www.geeksforgeeks.org/how-to-create-a-function-from-a-
string-in-javascript/, Oct 2019. [Online; accessed 3. May 2021].

[2] ECMA-262 - Ecma International. https://www.ecma-
international.org/publications-and-standards/standards/ecma-
262, Mar 2021. [Online; accessed 1. May 2021].

[3] ECMAScript Language Specification - ECMA-262 Edition 5.1. https:
//262.ecma-international.org/5.1, Jan 2021. [Online; accessed 1. May
2021].

[4] ECMAScript® 2022 Language Specification. https://tc39.es/ecma262/
#sec-abstract-relational-comparison, Apr 2021. [Online; accessed
1. May 2021].

[5] ESLint User Guide. Configuring ESLint. https://eslint.org/docs/
user-guide/configuring, May 2021. [Online; accessed 3. May 2021].

[6] Introduction to JavaScript Source Maps-HTML5 Rocks. https:
//www.html5rocks.com/en/tutorials/developertools/sourcemaps,
Apr 2021. [Online; accessed 18. Apr. 2021].

[7] TypeScript 3.7 documentation. https://www.typescriptlang.org/
docs/handbook/release-notes/typescript-3-7.html, Apr 2021. [On-
line; accessed 18. Apr. 2021].

[8] Enrique Amodeo. JavaScript Horror Show. https://
eamodeorubio.github.io/thejshorrorshow, Apr 2013. [Online;
accessed 3. May 2021].

[9] Sammie Bae. JavaScript objects. In JavaScript Data Structures and
Algorithms, pages 83–88. Springer, 2019.

77

https://www.geeksforgeeks.org/how-to-create-a-function-from-a-string-in-javascript/
https://www.geeksforgeeks.org/how-to-create-a-function-from-a-string-in-javascript/
https://www.geeksforgeeks.org/how-to-create-a-function-from-a-string-in-javascript/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262
https://www.ecma-international.org/publications-and-standards/standards/ecma-262
https://www.ecma-international.org/publications-and-standards/standards/ecma-262
https://262.ecma-international.org/5.1
https://262.ecma-international.org/5.1
https://tc39.es/ecma262/#sec-abstract-relational-comparison
https://tc39.es/ecma262/#sec-abstract-relational-comparison
https://eslint.org/docs/user-guide/configuring
https://eslint.org/docs/user-guide/configuring
https://www.html5rocks.com/en/tutorials/developertools/sourcemaps
https://www.html5rocks.com/en/tutorials/developertools/sourcemaps
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-7.html
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-7.html
https://eamodeorubio.github.io/thejshorrorshow
https://eamodeorubio.github.io/thejshorrorshow

Bibliography

[10] Gavin Bierman, Mart́ın Abadi, and Mads Torgersen. Understanding
TypeScript. In European Conference on Object-Oriented Programming,
pages 257–281. Springer, 2014.

[11] Prithvi Bisht and VN Venkatakrishnan. XSS-GUARD: precise dynamic
prevention of cross-site scripting attacks. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 23–43. Springer, 2008.

[12] Trevor Burnham. CoffeeScript: accelerated JavaScript development.
Pragmatic Bookshelf, 2015.

[13] Mike Cantelon, Marc Harter, TJ Holowaychuk, and Nathan Rajlich.
Node.js in Action. Manning Greenwich, 2014.

[14] Ivo Gabe de Wolff and Jurriaan Hage. Refining types using type guards
in TypeScript. In Proceedings of the 2017 ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation, pages 111–122, 2017.

[15] Massimo DiPierro. The rise of JavaScript. Computing in Science &
Engineering, 20(1):9–10, 2018.

[16] Richard Kenneth Eng. JavaScript cannot be fixed! - JavaScript
Non Grata - Medium. https://medium.com/javascript-non-grata/
as-others-have-noted-the-fundamental-problem-with-web-
development-is-that-javascript-is-a-broken-7f9675048c77, Mar
2018.

[17] Yakov Fain and Anton Moiseev. Angular 2 Development with TypeScript.
Manning Publications Company, 2017.

[18] Cory Gackenheimer. Introduction to React. Apress, 2015.

[19] Cory Gackenheimer. JSX Fundamentals. In Introduction to React, pages
43–64. Springer, 2015.

[20] Anahi Gajardo, Andre Moreira, and Eric Goles. Complexity of Langton’s
ant. Discrete Applied Mathematics, 117(1-3):41–50, 2002.

[21] Mariana Goranova, Elena Kalcheva-Yovkova, and Stanimir Penkov. Task-
based asynchronous pattern with async and await. In International Sci-
entific Conference Computer Science, page 150, 2015.

[22] Caleb Hattingh. Using Asyncio in Python: Understanding Python’s Asyn-
chronous Programming Features. O’Reilly Media, Inc., 2020.

[23] John Hughes. Why functional programming matters. The computer jour-
nal, 32(2):98–107, 1989.

78

https://medium.com/javascript-non-grata/as-others-have-noted-the-fundamental-problem-with-web-development-is-that-javascript-is-a-broken-7f9675048c77
https://medium.com/javascript-non-grata/as-others-have-noted-the-fundamental-problem-with-web-development-is-that-javascript-is-a-broken-7f9675048c77
https://medium.com/javascript-non-grata/as-others-have-noted-the-fundamental-problem-with-web-development-is-that-javascript-is-a-broken-7f9675048c77

Bibliography

[24] John Hunt. Smalltalk and object orientation: an introduction. Springer
Science & Business Media, 2012.

[25] Sebastian Kleinschmager, Romain Robbes, Andreas Stefik, Stefan Hanen-
berg, and Eric Tanter. Do static type systems improve the maintainability
of software systems? An empirical study. In 2012 20th IEEE Interna-
tional Conference on Program Comprehension (ICPC), pages 153–162.
IEEE, 2012.

[26] Brian Kovacs. Why JavaScript Sucks! (for now. . .). Medium, Sep
2018. https://medium.com/@briankovacs/why-javascript-sucks-
for-now-6bd30de6eafc.

[27] Alex Kyriakidis and Kostas Maniatis. The Majesty of Vue. js. Packt
Publishing Ltd, 2016.

[28] David Luecke. JavaScript — The weird parts. Medium, May 2018. https:
//medium.com/@daffl/javascript-the-weird-parts-8ff3da55798e.

[29] Dan Maharry. TypeScript revealed. Apress, 2013.

[30] John McCarthy. History of LISP. In History of programming languages,
pages 173–185. 1978.

[31] Leonid Mikhajlov and Emil Sekerinski. A study of the fragile base
class problem. In European Conference on Object-Oriented Programming,
pages 355–382. Springer, 1998.

[32] Jamie Munro. Knockout. JS: building dynamic client-side web applica-
tions. O’Reilly Media, Inc., 2014.

[33] Chris Nwamba. Declaring JavaScript Variables: var, let and
const. https://scotch.io/courses/10-need-to-know-javascript-
concepts/declaring-javascript-variables-var-let-and-const,
May 2021. [Online; accessed 3. May 2021].

[34] Martin Odersky et al. The Scala programming language. 2008. https:
//www.scala-lang.org.

[35] Semih Okur, David L Hartveld, Danny Dig, and Arie van Deursen. A
study and toolkit for asynchronous programming in C#. In Proceedings of
the 36th International Conference on Software Engineering, pages 1117–
1127, 2014.

[36] Terence Parr. The definitive ANTLR 4 reference. Pragmatic Bookshelf,
2013.

79

https://medium.com/@briankovacs/why-javascript-sucks-for-now-6bd30de6eafc
https://medium.com/@briankovacs/why-javascript-sucks-for-now-6bd30de6eafc
https://medium.com/@daffl/javascript-the-weird-parts-8ff3da55798e
https://medium.com/@daffl/javascript-the-weird-parts-8ff3da55798e
https://scotch.io/courses/10-need-to-know-javascript-concepts/declaring-javascript-variables-var-let-and-const
https://scotch.io/courses/10-need-to-know-javascript-concepts/declaring-javascript-variables-var-let-and-const
https://www.scala-lang.org
https://www.scala-lang.org

Bibliography

[37] Dmitri Pavlutin. 5 Differences Between Arrow and Regular Func-
tions. Dmitri Pavlutin Blog, Mar 2021. https://dmitripavlutin.com/
differences-between-arrow-and-regular-functions.

[38] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar De-
vanbu. A large scale study of programming languages and code quality in
github. In Proceedings of the 22nd ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, pages 155–165, 2014.

[39] Ashutosh K. Singh. Three Different Ways to Create Objects in JavaScript.
Medium, Sep 2020. https://betterprogramming.pub/three-
different-ways-to-create-objects-in-javascript-d3595d693296.

[40] Ralph Steyer. Razor–Syntax und View Engine. In Webanwendungen mit
ASP. NET MVC und Razor, pages 41–46. Springer, 2017.

[41] Antero Taivalsaari. Classes vs. prototypes - some philosophical and his-
torical observations. In Journal of Object-Oriented Programming, pages
44–50. SpringerVerlag, 1996.

[42] Krist́ın Fjóla Tómasdóttir, Mauricio Aniche, and Arie van Deursen. Why
and how JavaScript developers use linters. In 2017 32nd IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE), pages
578–589. IEEE, 2017.

[43] Krist́ın Fjóla Tómasdóttir, Mauricio Aniche, and Arie Van Deursen. The
adoption of JavaScript linters in practice: A case study on ESLint. IEEE
Transactions on Software Engineering, 46(8):863–891, 2018.

[44] Liam Tung. Programming language popularity: JavaScript leads—5
million new developers since 2017. https://www.zdnet.com/article/
programming-language-popularity-javascript-leads-5-million-
new-developers-since-2017/.

[45] Kathy Walrath. The Java Tutorial. Addison-Wesley, Feb 1996.

[46] Peter Weiner. Linear pattern matching algorithms. In 14th Annual Sym-
posium on Switching and Automata Theory (swat 1973), pages 1–11.
IEEE, 1973.

[47] Allen Wirfs-Brock and Brendan Eich. Javascript: the first 20 years.
Proceedings of the ACM on Programming Languages, 4(HOPL):1–189,
2020.

[48] Erik Wittern, Philippe Suter, and Shriram Rajagopalan. A look at the
dynamics of the JavaScript package ecosystem. In Proceedings of the
13th International Conference on Mining Software Repositories, pages
351–361, 2016.

80

https://dmitripavlutin.com/differences-between-arrow-and-regular-functions
https://dmitripavlutin.com/differences-between-arrow-and-regular-functions
https://betterprogramming.pub/three-different-ways-to-create-objects-in-javascript-d3595d693296
https://betterprogramming.pub/three-different-ways-to-create-objects-in-javascript-d3595d693296
https://www.zdnet.com/article/programming-language-popularity-javascript-leads-5-million-new-developers-since-2017/
https://www.zdnet.com/article/programming-language-popularity-javascript-leads-5-million-new-developers-since-2017/
https://www.zdnet.com/article/programming-language-popularity-javascript-leads-5-million-new-developers-since-2017/

Bibliography

[49] Richard Wyatt. Understanding functional programming. Journal of Com-
puting Sciences in Colleges, 18(5):109–117, 2003.

[50] Nicholas C Zakas. Understanding ECMAScript 6: the definitive guide for
JavaScript developers. No Starch Press, 2016.

81

Appendix

A JonScript ANTLR4 Syntax

1 TRY: ’try ’;
2 CATCH : ’catch ’;
3 FINALLY : ’finally ’;
4 THROW : ’throw ’;
5 IMPORT : ’import ’;
6 EXTENDS : ’extends ’;
7 EQUALS : ’=’;
8 IS: ’is’;
9 AS: ’as’;

10 FROM: ’from ’;
11 ARROW: ’=>’;
12 INHERITS : ’... ’;
13 QMARK: ’?’;
14 COLON: ’:’;
15 LIST_BEGIN : ’[’;
16 LIST_END : ’]’;
17 EVAL_BEGIN : ’(’;
18 EVAL_END : ’)’;
19 OBJECT_BEGIN : ’{’;
20 OBJECT_END : ’}’;
21 COMMA: ’,’;
22 ATOMIC : NUMBER | STRING | BOOLEAN | NIL;
23 NIL: ’nil ’;
24 BOOLEAN : ’true ’ | ’false ’;
25 NUMBER :
26 NEGATIVE_NUMBER
27 | NATURAL_NUMBER
28 | DECIMAL_NUMBER
29 | NEGATIVE_DECIMAL_NUMBER
30 | ZERO
31 | INFINITY ;
32 fragment ZERO: ’0’;
33 fragment NEGATIVE_NUMBER : ’-’ [1 -9][0 -9]*;
34 fragment NATURAL_NUMBER : [1 -9][0 -9]*;

83

Appendix

35 fragment DECIMAL_NUMBER : [0 -9]+ ’.’ [0 -9]+;
36 fragment NEGATIVE_DECIMAL_NUMBER : ’-’ [0 -9]+ ’.’ [0 -9]+;
37 fragment INFINITY : ’Infinity ’;
38 SINGLE_COMMENT : ’//’ .*? NEWLINE -> skip;
39 MULTILINE_COMMENT : ’/*’ .*? ’*/’ -> skip;
40 NEWLINE : (’\n’ | ’\r\n’) -> channel (HIDDEN);
41 SPACE: (’\t’ | ’ ’) -> channel (HIDDEN);
42 fragment ESC_STRING : (’\\\\ ’)* ’\\" ’;
43 STRING : ’"’ (ESC_STRING | ˜’"’)* ’"’;
44 INTERPOLATED_SEQUENCE_EMPTY : ’‘‘’;
45 fragment ESC_DOLAR : (’\\\\ ’)* ’\\$’;
46 fragment ESC_OBJECT_BEGIN : (’\\\\ ’)* ’\\{ ’;
47 fragment ESC_OBJECT_END : (’\\\\ ’)* ’\\} ’;
48 fragment ESC_INTERPOLATED : (’\\\\ ’)* ’\\‘’;
49 fragment INTERPOLATED_SEQUENCE_CONTENTS : (
50 ESC_DOLAR
51 | ESC_OBJECT_BEGIN
52 | ESC_OBJECT_END
53 | ESC_INTERPOLATED
54 | ˜(’‘’ | ’$’ | ’{’ | ’}’)
55);
56 INTERPOLATED_SEQUENCE_STRING :
57 INTERPOLATED_SEQUENCE_BORDER INTERPOLATED_SEQUENCE_CONTENTS *?

INTERPOLATED_SEQUENCE_BORDER ;
58 INTERPOLATED_SEQUENCE : (
59 INTERPOLATED_SEQUENCE_BORDER
60 | OBJECT_END
61) INTERPOLATED_SEQUENCE_CONTENTS *? (
62 INTERPOLATED_SEQUENCE_BORDER
63 | INTERPOLATED_SEQUENCE_EXPR_START
64);
65 fragment INTERPOLATED_SEQUENCE_BORDER : ’‘’;
66 fragment INTERPOLATED_SEQUENCE_EXPR_START : ’${’;
67 LOGICAL_OPERATORS : ’&&’ | ’||’;
68 MULTIPLYDIVIDEMOD_OPERATORS : ’*’ | ’/’ | ’%’;
69 PLUSMINUS_OPERATORS : ’+’ | ’-’;
70 EQUALITY : ’==’;
71 NEQUALITY : ’!=’;
72 EQUAL_OR_GREATER : ’>=’;
73 EQUAL_OR_LESS : ’<=’;
74 LESS_THAN : ’<’;
75 MORE_THAN : ’>’;
76 TYPE_OPERATORS : TYPE_OR | TYPE_AND ;
77 fragment TYPE_OR : ’|’;
78 fragment TYPE_AND : ’&’;
79 OBJECT_OPERATORS : ’.’;
80 PREFIX_UNARY_OPERATORS : ’!’ | ’await ’;
81 IGNORE : ’_’;
82 VAR: [a-zA -Z0 -9$]+;
83
84 parent : imported * module ;
85
86 importVar : VAR | (VAR AS VAR);
87 defaultImport : VAR;

84

First appendix

88 imported :
89 IMPORT (
90 defaultImport
91 | (OBJECT_BEGIN (importVar COMMA)* importVar OBJECT_END)
92) FROM ATOMIC ;
93
94 module : VAR OBJECT_BEGIN classdef * OBJECT_END ;
95
96 classdef :
97 VAR template ? (
98 EVAL_BEGIN (ignoreableVar COMMA)* (
99 INHERITS ? ignoreableVar

100)? EVAL_END object
101);
102
103 assignment : (VAR COMMA)
104 | ((VAR | IGNORE) COLON (object | expression) COMMA);
105 varAssignment : (VAR COMMA)
106 | (VAR COLON (object | expression) COMMA);
107 singleVarAssignment : VAR | (VAR COLON (object | expression));
108 publicObject :
109 OBJECT_BEGIN (
110 functor
111 | singleVarAssignment
112 | ((functor COMMA)? varAssignment *)
113) OBJECT_END ;
114 publicApi : (publicObject | expression);
115 inheritance : INHERITS expression COMMA;
116
117 object :
118 OBJECT_BEGIN assignment * inheritance * publicApi ?
119 OBJECT_END ;
120 functor : (
121 VAR
122 | (
123 template ? EVAL_BEGIN (ignoreableVar COMMA)* (
124 INHERITS ? ignoreableVar
125)? EVAL_END (COLON type)?
126)
127) ARROW (object | expression);
128
129 ignoreableVar : (VAR QMARK? (COLON type)? (EQUALS expression)?)
130 | IGNORE ;
131
132 template :
133 LESS_THAN (templateContents COMMA)* templateContents

MORE_THAN ;
134 templateContents : VAR extendsType ? equalsType ?;
135 extendsType : EXTENDS type;
136 equalsType : EQUALS type;
137
138 type:
139 VAR
140 | type LIST_BEGIN LIST_END

85

Appendix

141 | typeEval
142 | tuple
143 | type op = TYPE_OPERATORS type
144 | (VAR | accessType) templateType
145 | ATOMIC
146 | functionType
147 | objectType
148 | accessType ;
149 accessType : VAR OBJECT_OPERATORS (accessType | VAR);
150 typeEval : EVAL_BEGIN type EVAL_END ;
151 tuple: LIST_BEGIN (type (COMMA type)*)? LIST_END ;
152 templateType : LESS_THAN type (COMMA type)* MORE_THAN ;
153 paramType : VAR QMARK? COLON type;
154 functionType :
155 template ? EVAL_BEGIN (paramType (COMMA paramType)*)? EVAL_END

ARROW type;
156 objectType :
157 OBJECT_BEGIN (
158 objectParamType (COMMA objectParamType)* COMMA?
159)? OBJECT_END ;
160 objectParamType : VAR QMARK? COLON type;
161
162 expression :
163 ATOMIC
164 | VAR templateType ?
165 | functor
166 | expression obj = OBJECT_OPERATORS expression
167 | expression obj = OBJECT_OPERATORS (
168 THROW
169 | IMPORT
170 | AS
171 | IS
172 | TRY
173 | CATCH
174 | FINALLY
175 | EXTENDS
176 | FROM
177)
178 | expression EVAL_BEGIN expressionList ? EVAL_END
179 | expression LIST_BEGIN expression LIST_END
180 | eval
181 | LIST_BEGIN expressionList ? LIST_END
182 | PREFIX_UNARY_OPERATORS expression
183 | INTERPOLATED_SEQUENCE_EMPTY
184 | INTERPOLATED_SEQUENCE_STRING
185 | INTERPOLATED_SEQUENCE interpolated ? INTERPOLATED_SEQUENCE
186 | expression op = MULTIPLYDIVIDEMOD_OPERATORS expression
187 | expression op = PLUSMINUS_OPERATORS expression
188 | expression cmp = (
189 EQUAL_OR_GREATER
190 | EQUAL_OR_LESS
191 | LESS_THAN
192 | MORE_THAN
193) expression

86

B. Contents of enclosed USB drive

194 | expression cmp = (EQUALITY | NEQUALITY) expression
195 | expression logic = LOGICAL_OPERATORS expression
196 | expression IS expression
197 | THROW expression
198 | object
199 | TRY expression CATCH expression (FINALLY expression)?
200 | expression QMARK expression COLON expression ;
201
202 eval: EVAL_BEGIN expression EVAL_END ;
203 interpolated : (INTERPOLATED_SEQUENCE | expression) interpolated ?;
204 expressionList : expressionItem (COMMA expressionItem)* COMMA ?;
205 expressionItem : (INHERITS ? expression);

B Contents of enclosed USB drive

root
README.mdContents description and build process for JonScript
src .. JonScript source code
thesis.pdfThe thesis PDF
latex-sourceThe thesis LATEX sources

87

	Introduction
	Utility of functional programming
	Powerful resources at the disposal of JavaScript developers
	Problematic behaviour within JavaScript
	Problematic variable declaration
	Problematic property definition
	Problematic function declaration
	Multiple array definitions

	Problem definition and exploring possible solutions
	Thesis statement
	Chapters supporting proposition

	Design
	Feature analysis
	Static typing
	Function contexts
	Multiple programming paradigms
	Quasi prototypal inheritance
	Forgiveness
	String literals
	null and undefined
	NaN
	Null as property
	Pattern matching and type-checking
	Operators and operator overloading
	The Boolean class
	The new keyword
	The async keyword
	Functors

	Syntax and semantics
	Code example

	Implementation
	Broad overview of the build process
	Distribution
	Technologies
	NodeJS
	NPM
	Typescript
	antlr4ts
	Ts-morph
	Webpack

	Parser description
	Future release features and shortcomings
	Features that will be implemented in future release
	Features that require more research
	Shortcomings without a clear fix

	Lessons learned

	Evaluation
	Correctness of the implementation
	Unit test list
	Evaluation of the stated goals

	Performance testing
	Test subjects
	Benchmark algorithms
	Testing enviroment
	Results
	Analysis

	Related Work
	Strict mode
	Languages and language extension
	TypeScript
	CoffeeScript
	JSX
	JS++
	Amber

	Linters
	ESLint
	Other linters

	Conclusion
	Threats to validity
	Unsolved problems and future work
	Issues to be implemented in future release
	Issues that require more research
	Performance
	Issues that cannot be addressed

	Future work

	Bibliography
	Appendix
	JonScript ANTLR4 Syntax
	Contents of enclosed USB drive

