
Instructions

The goal of this assignment is to extend OpenPonk's OntoUML modelling capabilities of OntoUML

verifications and to implement detection of anti-patterns.

1. Acquaint yourself with the current state of OpenPonk.

2. Design and implement user interface for displaying results of OntoUML verifications.

3. Design and implement a framework for automated updating of OntoUML verification rules from

OntoUML.org specifications.

4. Design and implement detection of OntoUML anti-patterns, including the user interface.

5. Extend the OntoUML.org portal with documentation of anti-patterns.

6. Document, test and demonstrate your work on a case study.

Electronically approved by Ing. Michal Valenta, Ph.D. on 25 January 2021 in Prague.

Assignment of master’s thesis

Title: Extending OntoUML Modelling Capabilities on the OpenPonk Platform

Student: Bc. Marek Bělohoubek

Supervisor: doc. Ing. Robert Pergl, Ph.D.

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Software Engineering

Department: Department of Software Engineering

Validity: until the end of summer semester 2021/2022

Master’s thesis

Extending OntoUML Modelling
Capabilities on the OpenPonk Platform

Bc. Marek Bělohoubek

Department of Software Engineering
Supervisor: doc. Ing. Robert Pergl, Ph.D.

May 6, 2021

Acknowledgements

I would like to thank doc Ing. RobertPergl, Ph.D, my supervisor, for providing
guidance and constructive criticism during creation of this work.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work for non-
profit purposes only, in any way that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 6, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Marek Bělohoubek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Bělohoubek, Marek. Extending OntoUML Modelling Capabilities on the Open-
Ponk Platform. Master’s thesis. Czech Technical University in Prague, Fac-
ulty of Information Technology, 2021.

Abstrakt

Tato práce se zaměřuje na rozšíření možností pro vytváření OntoUML modelů
na platformě OpenPonk. Toto rozšíření je rozděleno do čtyř částí. Prvním
rozšířením je grafické uživatelské rozhraní pro zobrazování výsledků verifikač-
ního frameworku. Druhá část je prezenotvána novým frameworkem, sloužícím
k automatické aktualizaci OunoUML verifikací. Třetím rozšířením je automa-
tická detekce OntoUML anit-patternů. Poslední část se sestává z vybudování
nové sekce portálu ontouml.org, obsahující dokumentaci k jednotlivým anti-
patternům. V závěru práce je detekce anti-patternů demostrována na referenč-
ním modelu.

Klíčová slova OntoUML, OpenPonk, Pharo, Anti-patterny, Aktualizační
framework, Uživatelské rozhraní, Unified foundation ontology, Ontologický
model, Konceptuální model

vii

Abstract

This work focuses on extending OntoUML modelling capabilities on the Open-
Ponk platform. This is done in four parts. First part of the expansion is
graphical user interface for displaying results of the verification framework.
Second part is represented by new framework, which is used for automatic
updating of OntoUML verifications. Third part of the expansion is automatic
detection of OntoUML anti-patterns. Last part consists of new section on por-
tal ontouml.org, dedicated to anti-pattern documentation. End of this thesis
focuses on demonstration of the anti-pattern detection using reference model.

Keywords OntoUML, OpenPonk, Pharo, Anti-patterns, Updating frame-
work, User interface, Unified foundation ontology, Ontological model, Con-
ceptual model

viii

Contents

Introduction 1

Goals 3

I Review and analysis 5

1 OntoUML and OpenPonk review 7
1.1 OntoUML . 7

1.1.1 Modal logic . 8
1.1.2 Rigidity principle . 8
1.1.3 Identity principle . 9
1.1.4 Generalization . 9
1.1.5 Sortals, non-sortals and aspects 10

1.2 Pharo . 10
1.3 OpenPonk . 10

1.3.1 Data model . 11
1.3.1.1 OPUMLMetaElement and OPUMLElement . . 11
1.3.1.2 OPUMLModel 11
1.3.1.3 OPUMLClass 12
1.3.1.4 OPUMLAssociation 12
1.3.1.5 OPUMLGeneralization 12
1.3.1.6 OPUMLGeneralizationSet 12
1.3.1.7 OntoUML stereotypes 12

1.3.2 OntoUML verification framework 12
1.3.2.1 VerificationController 13
1.3.2.2 VerificationResults 15
1.3.2.3 VerificationMessage 15
1.3.2.4 Verification and SteretypeVerification 15

ix

1.3.2.5 TProfileGatherer 16

2 Anti-patterns 17
2.1 Binary relation between overlapping types (BinOver) 17

2.1.1 Overlapping and disjoint sets 17
2.1.2 BinOver anti-pattern . 18

2.2 Deceiving intersection (DecInt) 19
2.2.1 Concrete type . 20
2.2.2 Intentional and derived subtyping 21
2.2.3 Empty extensions . 21
2.2.4 DecInt anti-pattern . 23

2.3 Relationally dependent phase (DepPhase) 24
2.3.1 Phase . 24
2.3.2 Role . 24
2.3.3 DepPhase anti-pattern 24

2.3.3.1 Phase misused as role 24
2.3.3.2 Relational dependency owned, but should be

inherited . 24
2.3.3.3 Phase characterized by intrinsic property and

relation . 26
2.4 Free role specialization (FreeRole) 26

2.4.1 Derived sub-role . 27
2.4.2 Role of role . 28
2.4.3 Intentional sub-role . 28
2.4.4 Material sub-role . 29

2.5 Generalization set with mixed rigidity (GSRig) 30
2.5.1 Generalization set . 30
2.5.2 GSRig anti-pattern . 31

2.6 Heterogeneous collective (HetColl) 33
2.6.1 Collective . 33
2.6.2 Functional complex . 33
2.6.3 HetColl anti-pattern . 33

2.7 Homogeneous Functional Complex (HomoFunc) 34
2.7.1 HomoFunc anti-pattern 35

2.8 Imprecise abstraction (ImpAbs) 35
2.9 Mixin with the same identity (MixIden) 37
2.10 Mixin with the same rigidity (MixRig) 38

2.10.1 Rigidity principle reminder 38
2.10.2 MixRig anti-pattern . 39

2.11 Multiple relational dependency (MultDep) 40
2.12 Part composing overlapping wholes (PartOver) 42
2.13 Relation composition (RelComp) 44
2.14 Relator mediating overlapping types (RelOver) 46
2.15 Relator mediating rigid types (RelRig) 47

x

2.16 Relation specialization (RelSpec) 48
2.17 Repeatable relator instances (RepRel) 50
2.18 Undefined formal association (UndefFormal) 52
2.19 Undefined phase partition (UndefPhase) 53

2.19.1 Derived partition . 54
2.19.2 Intentional partition . 54
2.19.3 UndefPhase anti-pattern 55

2.20 Whole composed of overlapping parts (WholeOver) 55

II Design and implementation 57

3 User interface for verification framework 59
3.1 Design of the UI . 59

3.1.1 UI for starting verification process 60
3.1.2 Results window . 60

3.2 Initial implementation . 60
3.2.1 VerificationUI . 61
3.2.2 Spec2 results window 62

3.3 Final implementation . 62
3.3.1 Results window using inspector tool 63

4 Updating framework 65
4.1 Design of the updating framework 65
4.2 OntoUMLStereotypeYaml . 66
4.3 OntoUMLVerificationUpdater 67

4.3.1 Specification loading and parsing 68
4.3.2 Managing updating process 69

4.4 Changes to verification framework 71
4.4.1 Restructuring of the verification framework 71
4.4.2 New traits . 71
4.4.3 OntoUMLDotOrgReferences 72
4.4.4 Updating verification classes 73
4.4.5 Example implementation of AllowedSubtypesVerification 74

5 Design and implementation of anti-pattern verifications 77
5.1 Design of anti-pattern verifications 77

5.1.1 Design of BinOver anti-pattern verification 77
5.1.2 Design of DecInt anti-pattern verification 78
5.1.3 Design of DepPhase anti-pattern verification 78
5.1.4 Design of FreeRole anti-pattern verification 79
5.1.5 Design of GSRig anti-pattern verification 79
5.1.6 Design of HetColl anti-pattern verification 79
5.1.7 Design of HomoFunc anti-pattern verification 79

xi

5.1.8 Design of ImpAbs anti-pattern verification 80
5.1.9 Design of MixIden anti-pattern verification 80
5.1.10 Design of MixRig anti-pattern verification 80
5.1.11 Design of MultDep anti-pattern verification 80
5.1.12 Design of PartOver anti-pattern verification 81
5.1.13 Design of RelComp anti-pattern verification 81
5.1.14 Design of RelOver anti-pattern verification 81
5.1.15 Design of RelRig anti-pattern verification 81
5.1.16 Design of RelSpecs anti-pattern verification 82
5.1.17 Design of RepRel anti-pattern verification 82
5.1.18 Design of UndefFormal anti-pattern verification 82
5.1.19 Design of UndefPhase anti-pattern verification 82
5.1.20 Design of WholeOver anti-pattern verification 83

5.2 Implementation of anti-pattern verifications 83

IIIDocumentation and testing 85

6 Testing 87
6.1 Unit tests . 87
6.2 Tests on real models . 89

7 Documentation 91

Conclusion 93

Bibliography 95

A Acronyms 97

B Contents of enclosed CD 99

xii

List of Figures

1.1 Class model of the verification framework [1] 14

2.1 First example of binary relation between overlapping types 19
2.2 Second example of binary relation between overlapping types . . . 19
2.3 Concrete type - roles of person . 20
2.4 Concrete type - life states of person 21
2.5 Concrete type - life states and roles of person 21
2.6 Example of intentional and derived subtyping 22
2.7 Example of empty extension . 22
2.8 Example of decieving intersection occurrence 23
2.9 Example of phase misused as role 25
2.10 Example of relational dependecy, that is owned, but should be

inherited instead . 25
2.11 Example of phase characterised by both intrinsic property and re-

lation . 26
2.12 Example of derived sub-role . 27
2.13 Example containing structure for role of role 28
2.14 Example of intentional sub-role . 29
2.15 Example of material sub-role . 30
2.16 Example of possible classifications for kind car 31
2.17 Example of generalization set with mixed rigidity 32
2.18 Example of rigidity forced to anti-rigid type 32
2.19 Example of heterogenous collective 34
2.20 Example of homogenous functional complex 35
2.21 Example of imprecise abstraction 36
2.22 Example of mixin with the same identity 38
2.23 Example of mixin specialized only by roles 39
2.24 Example of mixin specialized only by rigid types 40
2.25 Example of ordered role dependencies 41
2.26 Example of ”dependencies between dependencies” 41

xiii

2.27 Example of multiple relational dependency 42
2.28 Example of part composing overlapping wholes 43
2.29 Example of relation composition 45
2.30 Example of relator mediating overlapping types 46
2.31 Example of relator mediating rigid types 48
2.32 Example of relation specialization - redefining 50
2.33 Example of repeatable relator instances 52
2.34 Example of undefined formal association 53
2.35 Example of derived partition . 54
2.36 Example of intentional partition 54
2.37 Example of whole composed of overlapping types 56

6.1 Unit tests for class UndefPhaseAntipatternVerification 88
6.2 Real life reference model after anti-pattern detection 90

7.1 Documentation for BinOverAntipatternVerification 91

xiv

Introduction

One of the main advantages of the OntoUML modelling languages lies in its
methodologies, that allow modeller to check both syntax and semantics of his
creations. Those methodologies are defined well enough, that it is possible to
incorporate them into tools, that are already used for creation of OntoUML
models. One such tool is platform OpenPonk developed by Czech Technical
University in Prague using object oriented programming language Pharo.

In last few years this platform introduced its own verification framework
used to check syntax of the OntoUML models. It performed its function well,
but because it didn’t have any dedicated graphical user interface, its usage
wasn’t very intuitive. Its other issues were more connected to the OntoUML
language itself.

OntoUML is under constant development and because of this there can be
major changes to its syntax. This created need for automatic process, that
would update existing OntoUML verifications implemented inside OpenPonk
and keep them up to date.

Lastly even though OpenPonk implemented verification of OntoUML syn-
tax, there was no way to let the platform automatically validate semantics of
the OntoUML model, through the anti-pattern detection.

This thesis aims to solve all of the aforementioned problems and its struc-
turally divided into three parts. First part is called ”Review and analysis”
and it introduces reader to all necessary theory needed for the practical parts.

Second part ”Design and implementation” and it explains how this thesis
solved each of the problems mentioned above.

Third and last part is called ”Testing and documentation” and it focuses
on unit tests for the new code, exemplifies anti-pattern detection on a reference
model and mentions documentation for both anti-patterns and new code.

1

Goals

Main goal of this master’s thesis is to extend OntoUML modelling capabil-
ities of OpenPonk platform by following functionalities: creation of graphi-
cal user interface for displaying verification results, development of updating
framework and its integration into the existing verification framework and im-
plementation of anti-pattern detection. All of the aforementioned extensions
have to be both tested and documented.

First, it is necessary to review and analyse OntoUML language (both its
basic concepts and anti-pattern definitions), OpenPonk platform as a whole
(including Pharo programming language) and the existing OntoUML verifica-
tion framework.

Second part is dedicated to design and implementation of the new func-
tionalities. All of them had to be integrated into the existing verification
framework with great emphasis on ease of use, modifiability and expand-
ability. Reason for those requirements is constant development of both On-
toUML modelling language and OpenPonk platform, which can result of major
changes in parts of the verification framework.

Third, newly implemented code has to be verified using unit tests and both
the new user interface and anti-pattern detection should be demonstrated on
reference model.

Final part of this thesis is documentation. This should consist of three
parts: documentation present in this thesis, documentation in the newly im-
plemented code (OpenPonk platform allows any user to customise modelling
environment according to his needs) and documentation if form of new section
on portal ontouml.org dedicated to anti-patterns.

3

Part I

Review and analysis

5

Chapter 1
OntoUML and OpenPonk

review

Start of this chapter briefly talks about OntoUML modelling language, next
two sections introduce reader to Pharo programming language and OpenPonk
platform but the main focus is on the last section describing OntoUML ver-
ification framework, which was created and implemented as part of authors
bachelor’s thesis [1] for the OpenPonk platform and which was significantly
extended as part of this work.

Please note that due to the size of the topic, anti-patterns are not discussed
here, instead they have their own chapter, to increase clarity of this work.

1.1 OntoUML

Information contained in this section were obtained from following sources [2,
3, 4, 5, 6].

OntoUML modelling language was created to provide comprehensive set
of ontological theories, that would cover all fundamental conceptual modelling
and resolve many of the problems faced during conceptual modelling.

It is based on modal expansion of predicate logic called modal logic.
Modality play a great importance in the language as it allows to model reality
much more accurately. Another important part of the language are prin-
ciples of identity, generalization and rigidity, that together with sortal and
non-sortal classifications define all OntoUML stereotypes.

Significant part of anti-patterns presented in this thesis, is result of ei-
ther misunderstanding of those core principles or misuse of stereotypes, it is
therefore necessary to give the reader brief description of all aforementioned
principles starting with modal logic.

7

1. OntoUML and OpenPonk review

1.1.1 Modal logic
Modal logic is expansion of predicate logic and thus it contains all predicate
quantifiers (universal and existential) and logical operations (conjunction, dis-
junction, negation, implication and equivalence).

Modality itself allows us to express how the predicate formulas hold in
different worlds - different space and time. This is done with help of two
modal operators: possibility and necessity.

Possibility operator is represented by symbol ♦ and any statement begin-
ning with it is true in at least one world.

Necessity operator is represented by symbol � and any statement begin-
ning with it is true in all worlds.

To exemplify, statement ”In all words, every ship that has hole under it’s
waterline is sinking.” would have following representation in modal logic:

�(∀ship) : HasHole(ship) ⇒ IsSinking(ship)

1.1.2 Rigidity principle
Rigidity as a principle is closely tied to modality. It defines mutability of the
type - it defines if individuals can become or cease to be instances of the type
without having to altering their identity.

OntoUML distinguishes between four types of rigidity: rigid, anti-rigid,
semi-rigid and non-rigid.

• A rigid (R+) type T is one that classifies its instances necessarily (in
the modal sense), i.e., the instances of that type cannot cease to be so
without ceasing to exist. [3] In modal logic:

R+(T) = �(∀x)(T (x) ⇒ �(T (x)))

• Type T is anti-rigid (R−) when individual instantiates the type in some
possible world, there has to be another world in which the individual
exists but it’s not instance of the anti-rigid type T. In modal logic:

R−(T) = �(∀x)(T (x) ⇒ ♦(¬T (x)))

• Semi-rigid (R∼) type T is rigid for some of it’s instances and anti-rigid
to others. In modal logic:

• Non-rigidity (NR) is logical negation of rigidity. It states that if indi-
vidual instantiates non-rigid type T in one world, there may be another
word in which the individual exists but it’s not instance of the non-rigid
type T. In modal logic:

NR(T) = ♦(∃x)(T (x) ∧ ♦(¬T (x)))

8

1.1. OntoUML

1.1.3 Identity principle

Every entity in the real words has it’s identity. Identity is something that
differentiates particular entity from other entities of the same type. Identity
has to be domain unique and immutable (it has to have the same value in all
worlds).

To exemplify, let’s look at type employee in relational database. Every
employee has it’s name, address and personal identification number. Which
of those is it’s identity? It cannot be the name as it doesn’t guarantee unique-
ness (there are many people called John Smith, but we can still differentiate
between them).

Using the same logic rules out the address as it is neither domain unique
nor immutable (multiple persons can live on the same address and the same
person can move between multiple addresses during it’s life).

This leaves us only with option of personal identification number, which (as
its name suggests) is both unique and immutable, so in our case it represents
the employee identity.

Example above demonstrates two things, first the importance of identity as
a principle - if the employee had no identity we wouldn’t be able to distinguish
between different employees and thus for example we wouldn’t be able pay
them.

Second, defining identity for entities in particular domain isn’t always as
easy as was shown in the example. Look at entity painting for example the
famous painting of Mona Lisa by Leonardo da Vinchi. We can say that it’s
identity lies in the shapes and colours of the image. But then if we paint a
black line through the middle of the painting, it would by our definition lose
its previous identity and become new entity.

1.1.4 Generalization

Much like modal logic is expanding on predicate logic, OntoUML is expanding
on UML. This also means that many of the basic concepts of OntoUML are
carried over from UML, generalization being one of them.

Generalizations are used to create hierarchy between types, defining sub-
types that inherit all properties, methods and relations from subtypes. Mul-
tiple generalizations originating from the same supertype can be also grouped
into one or more generalization sets.

Advantage of this grouping lies in the two meta-properties of generaliza-
tion set. Those meta-properties are disjoint and complete. Disjoint states
that there can be no individual that instantiates more than one of the sub-
types in the generalization set, while covering states that any individual that
instantiates supertype has to also instantiate one or more of the subtypes.

9

1. OntoUML and OpenPonk review

1.1.5 Sortals, non-sortals and aspects
Difference between sortal and non-sortal types is tied to the identity principle.
Sortal types have identity principle and either have or require identity. Entities
in source domain are represented via sortal types. Examples of sortals are
kinds ”car”, ”dog” and ”tree”, collective ”deck of cards” . . .

Non-sortals don’t have identity principle and so they cannot have or pro-
vide identity. Non-sortals are used to model (usually abstract) concepts that
are shared by multiple types in the same domain. Examples of non-sortals are
role ”customer”, phases ”healthy” and ”ill” . . .

Aspects represent features and properties of both sortals and non-sortals.
They can be either structured/measurable in this case represented by aspect
quality, or non-structured/non-measurable represented by aspect mode. Ex-
amples of aspects are qualities ”price”, ”weight” and ”length”, modes ”inten-
tion”, ”ability”, ”mood” . . .

1.2 Pharo
Open-source programming language Pharo (downloadable from [7]) started as
dialect of other object oriented programming language SmallTalk. It’s authors
describe it in a following way:

Pharo is a pure object-oriented programming language and a powerful en-
vironment, focused on simplicity and immediate feedback (think IDE and OS
rolled into one). [8]

Pharo (documented mostly in its code, with additional documentation here
[9]) has three main features that can be considered it’s advantages. First, there
is its syntax, that is compact enough to fit on a postcard as can be seen on
its official summary here [10].

Second feature is the aforementioned combination of both IDE (integrated
development environment) and OS (operation system), this results in live
environment that allows programmer to look at any instance of any object in
the environment, inspect it, interact with it or even rewrite its source code.

Lastly, pharo is purely object-oriented and dynamically typed language.
Pure object-orientation means that every single element of Pharo from the
elementary data types to the UI and developer tools is an object. This com-
bined with the fact that checks for object types happen only during runtime
(dynamic typing) allows Pharo to have simple, yet highly expressive syntax
and programmers to create highly modular object-oriented code.

1.3 OpenPonk
OpenPonk is a metamodeling platform and a modeling workbench implemented
in the dynamic environment Pharo aimed at supporting activities surrounding

10

1.3. OpenPonk

software and business engineering such as modeling, execution, simulation,
source code generation, etc. [11]

OpenPonk (downloadable from [12]) is written in Pharo programming lan-
guage and its currently developed by Centre For Conceptual Modeling and
Implementation on Czech technical university in Prague.

It supports several modelling languages like: Business Objects Relation
Modeling Object-Relation Diagrams (BORM ORD), Petri nets, UML class
diagrams and most importantly OntoUML.

Following subsections look at most important parts of OpenPonk data
model with emphasis on OntoUML profile and data model of OntoUML ver-
ification framework.

Information contained in this section and its subsections was obtained from
[13, 1] and analysis of the OpenPonk source code.

1.3.1 Data model

In this section we look at classes from OpenPonk data model and OntoUML
profile. We start with description of ancestors of most other classes discussed
in this section classes OPUMLMetaElement and OPUMLElement.

We continue with classes that represent the model, entities and relations.
Then we look at generalization, generalization set and we end this subsection
by inspecting classes from the OntoUML profile.

1.3.1.1 OPUMLMetaElement and OPUMLElement

Classes OPUMLMetaElement and OPUMLElement are important because they
stand at the top of the hierarchy. Neither of them are directly instantiated
during the model creation, but they define important parts of interface used
by other classes.

OPUMLMetaElement is abstract class. It’s methods applyStereotype:,
appliedStereotypes and oclIsKindOf are the foundation for applying and
retrieving stereotypes.

Abstract class OPUMLElement is direct subtype of OPUMLMetaElement and
ancestor of all other OPUML classes discussed in this section. It is responsible for
applying composition through methods initializeSharedGeneralizations
and initializeDirectGeneralizations.

1.3.1.2 OPUMLModel

Class OPUMLModel holds all entities, generalizations and relations in the model,
making it the ”data representation” of the conceptual model itself. It most
important method is packagedElements which returns collection of all entities
and relations in the model.

11

1. OntoUML and OpenPonk review

1.3.1.3 OPUMLClass

Entities in from conceptual model are mapped to instances of OPUMLClass.
Because OPUMLClass is subtype of OPUMLElement we can apply of stereotypes
to it and create OntoUML entities.

1.3.1.4 OPUMLAssociation

Instances of OPUMLAssociation are used to represent relations from concep-
tual model. Similarly to OPUMLClass we can also apply stereotypes to it and
this allows it to represent all implemented OntoUML relations.

1.3.1.5 OPUMLGeneralization

Generalizations from conceptual model are stored inside OPUMLModel mapped
as instances of OPUMLGeneralization.

It has three notable methods. First two general and specific are used
for access connected supertype and subtype respectively. Third important
method is generalizationSets, it returns collection with all generalizations
sets that contain this instance of OPUMLGeneralization.

1.3.1.6 OPUMLGeneralizationSet

Generalization sets are represented by instances of OPUMLGeneralizationSet.
References to the instances of OPUMLGeneralization are accessed through
method generalizations.

It also holds two important properties accessible by methods isCovering
(generalizations cover all possible options) and isDisjoint (instance of sub-
type defined by one generalization cannot be instance of subtype defined by
any other generalization in the set).

1.3.1.7 OntoUML stereotypes

Classes representing OntoUML stereotypes are subtypes of OPUMLElement.
Name of each class starts with OntoUML and is followed by the name of the
stereotype (for example OntoUMLKind).

Hierarchy for the stereotypes is created through composition with abstract
”stereotypes” like OntoUMLSortal standing at the top of the hierarchy.

1.3.2 OntoUML verification framework

OntoUML verification framework was created as by author of this master’s
thesis as part of his bachelor’s thesis [1], that will be also main source for this
subsection.

12

1.3. OpenPonk

First let’s look at class diagram (figure 1.1) of the entire verification frame-
work (please note that it contains only one concrete subtype for Verification
and StereotypeVerification for increased clarity).

As we can see from the diagram, verification framework consist of five main
classes: VerificationController, VerificationResults, Verification,
StereotypeVerification and VerificationMessage. Also there is one ad-
ditional trait TProfileGatherer, which is special type of class, that can be
applied through composition to other classes.

Following subsections are dedicated to the aforementioned classes and trait
starting with VerificationController.

Please be aware that following sections describe state of the verification
framework after it’s creation and some part’s might already changed. This
text is being written after finishing the practical part of this thesis which has
been already integrated to the current version of OpenPonk and OntoUML
profile.

1.3.2.1 VerificationController

VerificationController is used to both start and receive results of verifi-
cations. It is located in package OntoUML-VerificationControllers along
with it’s testes.

VerificationController has following methods:

verify: Instance method, runs all verifications on OPUMLModel
passed in parameter and returns their results in form
of VerificationResults instance.

verifySingleObject:1 Instance method, applies all verifications to single ob-
ject passed in parameter and stores their results into
instances of VerificationResults.

getVerifications Instance method, that returns all verifications classes
from OntoUML-Verifications package.

getVerifiedObjects Instance method, returns collection of OPUMLElements
from the OPUMLModel, that was passed as parameter.

We would like to provide more information about the implementation of
the getVerifications method. Verification framework was created with ex-
pansion in mind and this is can be best seen in the aforementioned method.

Method getVerifications takes advantage of ”living environment” pro-
vided by Pharo, that allows it to access source code of the verification frame-
work during runtime. Using this feature getVerifications is able to load all
verifications classes during the runtime and thus it is possible to insert new
verification by simply adding them in to the appropriate package.

1verifySingleObject:WithVerifications:WithModel:WithResults:

13

1. OntoUML and OpenPonk review

V
er
ifi
ca
tio

nM
es
sa
ge

W
ar
ni
ng

V
er
ifi
ca
tio

nM
es
sa
ge

Er
ro
r

V
er
ifi
ca
tio

nM
es
sa
ge

-
m

es
sa

ge
Te

xt
: S

tr
in

g
-

ob
je

ct
Re

fe
re

nc
e:

 O
PU

M
LE

le
m

en
t

-
ve

rifi
ca

tio
n:

 V
er

ifi
ca

tio
n

V
er
ifi
ca

tio
nC

on
tr
ol
le
r

+
ge

tV
er

ifi
ca

tio
ns

():
 C

ol
le

cti
on

<V
er

ifi
ca

tio
n>

+
ge

tV
er

ifi
ed

O
bj

ec
ts

:(O
PU

M
LM

od
el

):
Co

lle
cti

on
<V

er
ifi

ca
tio

n>
+

ve
rif

y:
(O

PU
M

LM
od

el
):

Ve
rifi

ca
tio

nR
es

ul
ts

+
ve

rif
yS

in
gl

eO
bj

ec
t:W

ith
Ve

rifi
ca

tio
ns

:W
ith

M
od

el
:W

ith
Re

su
lts

:(O
PU

M
LE

le
m

en
t,

Co
lle

cti
on

<V
er

ifi
ca

tio
n>

, C
ol

le
cti

on
<O

PU
M

LE
le

m
en

t>
, V

er
ifi

ca
tio

nR
es

ul
ts

)

V
er
ifi
ca

tio
nR

es
ul
ts

-
re

su
lts

: S
et

<V
er

ifi
ca

tio
nM

es
sa

ge
>

+
ad

dR
es

ul
t:(

Ve
rifi

ca
tio

nM
es

sa
ge

)
+

ad
dR

es
ul

ts
:(C

ol
le

cti
on

<V
er

ifi
ca

tio
nM

es
sa

ge
>)

+
ge

tE
rr

or
s:

(O
PU

M
LE

le
m

en
t)

: C
ol

le
cti

on
<V

er
ifi

ca
tio

nM
es

sa
ge

>
+

ge
tW

ar
ni

ng
s:

(O
PU

M
LE

le
m

en
t)

: C
ol

le
cti

on
<V

er
ifi

ca
tio

nM
es

sa
ge

>
+

ha
sE

rr
or

s:
(O

PU
M

LE
le

m
en

t)
: b

oo
le

an
+

ha
sW

ar
ni

ng
s:

(O
PU

M
LE

le
m

en
t)

: b
oo

le
an

+
re

su
lts

():
 S

et
<V

er
ifi

ca
tio

nM
es

sa
ge

>

V
er
ifi
ca
tio

n

+
ca

nV
er

ify
:(O

PU
M

LE
Le

m
en

t)
: b

oo
le

an
+

ve
rifi

ed
Cl

as
s(

):
Cl

as
s

+
ve

rif
y:

w
ith

M
od

el
:(O

PU
M

LE
le

m
en

t,
Co

lle
cti

on
<O

PU
M

LE
le

m
en

t>
):

Co
lle

cti
on

<V
er

efi
ca

tio
nM

es
sa

ge
>

+
ve

rif
yO

bj
ec

t:w
ith

M
od

el
:(O

PU
M

LE
le

m
en

t,
Co

lle
cti

on
<O

PU
M

LE
le

m
en

t>
):

vo
id

St
er
eo

ty
pe

Ve
rifi

ca
tio

n

+
ca

nV
er

ify
:(O

PU
M

LE
Le

m
en

t)
: b

oo
le

an
+

ve
rifi

ed
St

er
eo

ty
pe

s(
):

Co
lle

cti
on

<S
te

re
ot

yp
e>

Re
la
tio

nS
ou

rc
eV

er
ifi
ca
tio

n

+
ve

rif
yO

bj
ec

t:w
ith

M
od

el
:(O

PU
M

LE
le

m
en

t,
Co

lle
cti

on
<O

PU
M

LE
le

m
en

t>
):

vo
id

Id
en

tit
yV

er
ifi
ca
tio

n

+
ve

rif
yO

bj
ec

t:w
ith

M
od

el
:(O

PU
M

LE
le

m
en

t,
Co

lle
cti

on
<O

PU
M

LE
le

m
en

t>
):

vo
id

TP
ro
fil
eG

at
he

re
r

+
ge

tA
ss

oc
ia

tio
n(

St
er

eo
ty

pe
):

O
PU

M
LE

le
m

en
t

+
ge

tE
le

m
en

t(
St

er
eo

ty
pe

):
O

PU
M

LE
le

m
en

t
+

ge
tS

te
re

ot
yp

e:
(O

PU
M

LE
le

m
en

t)
: S

te
re

ot
yp

e

ca
lls

cr
ea

te
s

cr
ea

te
s

Figure 1.1: Class model of the verification framework [1]

14

1.3. OpenPonk

1.3.2.2 VerificationResults

As its name suggests, class VerificationResults contains collection with
outcomes of all applied verification. It’s methods allow both adding and re-
trieving results, but following text contains descriptions only for the three
most important accessors.

results Instance method, that returns collection with all stored
verification results.

hasErrors: Instance method, that looks if results contain at least
one instance of VerificationMessageError for en-
tity, relation or generalization passed as parameter.

hasWarnings: Instance method, that looks if results contain at least
one instance of VerificationMessageWarning for en-
tity, relation or generalization passed as parameter.

1.3.2.3 VerificationMessage

VerificationMessage was created as abstract class to define uniform inter-
face for negative results, i.e., all problems found by verifications in the verified
model.

All methods defined by it, are simple getters and setters for: reference to
verified object, reference to instance of the verification function, short descrip-
tion of the problem and severity of the find.

Last mentioned method severity is implemented in subclasses respon-
sible for representing errors and warnings VerificationMessageError and
VerificationMessageWarning.

1.3.2.4 Verification and SteretypeVerification

Abstract class Verification and its direct subclass SteretypeVerification
define interface for all other verifications. Interface of class Verification
consist of following four methods.

verify:withModel: Class method, that returns collection containing in-
stances of VerificationMessage if the verification is
applicable to the verified model and if it discovered
problems in the model. Otherwise returns empty col-
lection.

canVerify: Class method, checks if the verification can be applied
to the verified object, based on class of the verified
object.

15

1. OntoUML and OpenPonk review

verifiedClass Class method, returns class, to which this verification
can be applied.

verifyObject:withModel: Instance method, that is responsible for imple-
menting the verification process, returns collection of
VerificationMessages (it may be empty).

SteretypeVerification overrides method canVerify: and adds one
more method verifiedStereotype.

canVerify: Class method, checks if the verification can be applied
to the verified object, based on class and stereotype
of the verified object.

verifiedStereotype Class method, returns collection of stereotypes that
can be verified by this verification.

All other verifications are direct subclasses of either Verification or
SteretypeVerification by overriding methods verifyObject:withModel:,
verifiedClass and if needed also verifiedStereotype.

1.3.2.5 TProfileGatherer

Lastly there is train TProfileGatherer, that contains three methods for work-
ing with stereotypes and provides them to other classes through composition.

getStereotype: Class method, that returns stereotype of entity or re-
lation, that was provided as parameter.

getElement: Class method, that returns entity, to which is the
stereotype (provided as method parameter) applied.

getAssociation: Class method, returning relation, to which the stereo-
type (provided as method parameter) is applied.

16

Chapter 2
Anti-patterns

Purpose of this chapter is to introduce anti-patterns as a concept and provide
information for all OntoUML anti-patterns, that were implemented as part of
this work.

First section explains basics of anti-pattern concept. It is followed by
twenty sections of concrete anti-patterns. Each anti-pattern section contains
it’s definition, guide for refactoring it’s occurences and example of one such
occurrence.

Name of each anti-pattern section also contains it’s abbreviation. Please
note that for the clarity of this text we refer to all anti-pattern using those
abbreviations.

Some sections contain definitions for additional OntoUML concepts, in
those cases both refactoring guide and example of occurrence are in separate
section named after the anti-pattern abbreviation.

This chapter was written using information from following sources [14, 15,
16], but the main source was [17] as it was at the time of creation of this work,
only publication that contained definitions for all following anti-patterns (with
most of them being defined there).

2.1 Binary relation between overlapping types
(BinOver)

Name of this anti-pattern its definition, but before we can talk about it prop-
erly, it is necessary to understand the concepts of overlapping and disjoint
sets of types.

2.1.1 Overlapping and disjoint sets
We will first start with the ”informal definitions” and examples that should
help the reader to grasp the general concepts of overlapping and disjoint sets.

17

2. Anti-patterns

End of this subsection contains formal definitions for both overlapping and
disjoint sets.

Set of types is considered overlapping when it’s possible for single individ-
ual to instantiate all types in the set at the same time. Example for overlapping
set would be set consisting of types brother, father and son as it is possible
that single individual will instantiate the entire simultaneously.

Set of types is considered disjoint when it’s impossible for single individual
to instantiate more than one type from set at the same time. Example for
disjoint set would be set consisting of types healthy, ill and dead as it is not
possible for a single individual to instantiate more than one of those types.

(Overlapping Set): Let W be a non-empty set of possible worlds, w ∈ W
be a specific world, T the set of types, t ∈ T be a particular type, extw(t)2

the extension of a t in world w and exists(w) the function that return all
individuals that exists in a world w. A set of types is overlapping if there is
at least one w, such that: [17]

∀t, t′ ∈ T, ∃x, x ∈ exists(w) ∧ x ∈ extw(t) ∧ x ∈ extw(t′)

Definition (Disjoint Set): Making the same conventions as in the pre-
vious definition, a set of types is disjoint, if for every w:

∀t, t′ ∈ T, t ̸= t′ → @x, x ∈ exists(w) ∧ x ∈ extw(t) ∧ x ∈ extw(t′)

2.1.2 BinOver anti-pattern
Any binary relation between overlapping types leads to occurrence of BinOver
anti-pattern. It is important to look out for such structures, because the over-
lap means that it’s possible to have the same type and even same individual
on both ends of the relation.

Sometimes we need to model structures where it is possible or even required
to have the same type on both ends of the relation, but in most cases like this
we don’t want the possibility of the same individual on both ends.

Good example for this would be entity ”person” and formal association
”parentOf” (see figure 2.1). While we need to type ”person” to be both source
and target of the association, it makes no sense for the same individual to be its
own parent/child. In this case the solution would be to create OCL invariant
and use it to enforce acyclicity of the association. Note that in other cases
changing stereotype of the association may also be a possibility.

In case when the association connects two different but overlapping types,
we may need to enforce disjointness of those types. To exemplify, look at
the figure 2.2. It contains small model for a prison that contains only guards
and prisoners. Both types ”guard” and ”prisoner” were classified as roles and
both of them specialize kind ”person”. In addition to that we also have formal
association ”guards” from role ”guard” to role ”prisoner”.

2We use the function extw(t) as defined in [2]

18

2.2. Deceiving intersection (DecInt)

Figure 2.1: First example of binary relation between overlapping types

Figure 2.2: Second example of binary relation between overlapping types

All may look well, but after more thorough analysis, we can see that the
model allows single person to be both guard and prisoner at once. Not only
that but this ”prisoner guard” can also be guarding himself. In this case the
problem lies in the generalization set and so does the fix. We have to simply
set the meta-attribute isDisjoint on the generalization set to true and this will
both prevent the same person to guard itself but it will also prevent the same
person to be both guard and prisoner at the same time.

2.2 Deceiving intersection (DecInt)

Deceiving intersection anti-pattern aims to investigate if subtype (stereotyped
as subkind, phase, role, mode or relator) with multiple generalizations to
concrete types is case of intentional or derived subtyping and if its extension
is not empty.

We can see the entire definition of DecInt anti-pattern above, but to fully
understand it we will have to talk about concepts of concrete type, intentional
and derived subtyping and lastly about empty extensions.

19

2. Anti-patterns

2.2.1 Concrete type
To be considered concrete, type has to fulfil two conditions. Its meta-attribute
isAbstract has to be set to false and all generalizations set that aggregate gener-
alizations to the concrete type must have their meta meta-attribute isCovering
set to false. In another words, type is considered concrete, if it’s possible to
create instance of said type, that is not instance of one of its child types.

In figures bellow we can see three examples. In all three examples we have
entity ”person” stereotyped as kind which has meta-attribute isAbstract set
to false. In first case (figure 2.3) we model that person can become a doctor
or a teacher, but since person can also be neither doctor, nor teacher, we did
set meta-attribute isCovering of the generalization set to false. This means
that kind person concrete type in the first example.

Figure 2.3: Concrete type - roles of person

For the second example (figure 2.4) we have again kind person, but this
time we model life ”states” of the person. In order to keep the model simple, we
say that each person can be either alive or dead. Those two states are modelled
as phases and because of that we have to set meta-attribute isCovering to true
for their generalization set. Kind ”person” can be now instantiated only if the
instance also instantiates either phase alive or phase dead, thus in the second
example kind ”person” is not considered as concrete type.

Third example (figure 2.5) combines the first two together. Again, we
have kind ”person” and it is specialized by two generalization sets. First set
aggregates generalizations for roles ”doctor” and ”teacher”, while the second
set contains generalizations for phases ”alive” and ”dead”. Even though the
generalization set for roles has its meta-attribute isCovering set to false and
thus allows instantiation of person that is neither doctor nor teacher, we still
have to look at the second generalization set that aggregates generalization for
phases. Since this second generalization set has its meta-attribute isCovering
set to true, it is not possible to instantiate person that is neither alive nor
dead and this means that the kind ”person” is not concrete type in the third
example.

20

2.2. Deceiving intersection (DecInt)

Figure 2.4: Concrete type - life states of person

Figure 2.5: Concrete type - life states and roles of person

2.2.2 Intentional and derived subtyping

If we use generalization to characterize subtypes, by adding complementary
characteristic, we would be using intentional subtyping. Other option is to use
derived subtyping, i.e., use generalization to select subset of subtypes based
on one or more properties of the parent type (characterization by restriction).

In figure 2.6 we can see usage of both subtyping methods. At the top of
the generalization tree there is a ”2D object”, that has height and width. It
is subtyped by ”3D object”, that adds depth thus it is case of intentional sub-
typing. Lastly the ”3D object” is further subtyped by ”sphere”, that restricts
the shape of the object, making it an example of derived subtyping.

2.2.3 Empty extensions

By using multiple generalizations for the same type, we run into the hazard
of creation empty extensions. This happens when two or more parents of
the modelled type provide/inherit different identity principles or if they are

21

2. Anti-patterns

Figure 2.6: Example of intentional and derived subtyping

mutually disjoint due to their generalization set.
To exemplify let’s look again on person and its live ”state”. Similarly, to

example in section about concrete types, we say that each person can be either
dead or alive and both of those states will be modelled as distinct phases.

Now let’s assume that we are creating this model for a game or a fantasy
story and we want to model new state ”undead” as being both ”alive” and
”dead”. In the figure 2.7 we have stereotyped it as phase and made it subtype
of both ”dead” and ”aliv”e. Problem is that ”dead” and ”alive” are mutually
exclusive (their generalization set is disjoint) and this consequently means that
we cannot instantiate phase ”undead” making it an empty extension.

Figure 2.7: Example of empty extension

22

2.2. Deceiving intersection (DecInt)

2.2.4 DecInt anti-pattern

Since we have already encountered the full definition of DecInt anti-pattern in
the beginning of this section we will instead continue straight to the examples.

We want to create model (figure 2.8) for small company that sells its prod-
ucts to other companies and individuals. We have relator ”contract” with two
mediations: one to kind ”company” and second to role ”customer”. Role ”cus-
tomer” is further specialized by roles ”individual customer” and ”company
customer”. Individual customer also specializes kind ”person”, while ”com-
pany customer” specializes kind ”company”.

Figure 2.8: Example of decieving intersection occurrence

In case of this model both ”individual customer” and ”company customer”
would cause DecInt anti-pattern to occur, as both of them have two general-
ization to concrete types (”person” and ”customer” for ”individual customer”;
”company” and ”customer” for ”company customer”) and there is no gener-
alization set with isCovering meta-attribute set to true. (Also the role ”cus-
tomer” hasn’t got any identity provider).

To fix this we should do two things. First, we should change stereotype of
”customer” from role to roleMixin. This would take care of both occurrences
of DecInt anti-pattern since roleMixin is abstract by definition and thus any
type stereotyped by it cannot be concrete type.

Second, we should also set meta-attribute isDistinct on generalization set
that aggregates both generalizations to ”customer” to true. Optionally we
should also make the aforementioned generalization set covering, if there are
no other types of customer.

23

2. Anti-patterns

2.3 Relationally dependent phase (DepPhase)
Before we start with the description of the anti-pattern itself, it is crucial to
about the difference between stereotypes phase and role.

2.3.1 Phase
Phase represents state of the object that can change in time and this state
is directly connected to some intrinsic property of the entity. Changes in
this intrinsic property can (and often will) lead to instantiation of new phase.
For example, entity ”person” can be subtyped by phases ”child” and ”adult”,
which are both based on property ”age”.

2.3.2 Role
Role on the other hand is used to specialize entities in relation context, thus
its instantiation and destruction depends on existence of a connected relation.
Example for this can be entity ”person” subtyped by roles ”employer” and
”employee” connected through relator ”contract” via mediations.

2.3.3 DepPhase anti-pattern
DepPhase anti-pattern occurs when we mix the concepts of role and phase. It
is identified by phase being directly connected to other entity via mediation.
Further analysis of this structure can lead to one of three following possibilities.

2.3.3.1 Phase misused as role

First and probably most common possibility for occurrence of DepPhase anti-
pattern, is using phase when we should have used the role.

In example 2.9 you can see simple model for small company. We have
entity ”person” subtyped with ”employer” and ”employee” that are mediated
through ”contract”. Both ”person” and ”contract” were correctly stereotyped
as kind and relator respectively, but the modeller made a mistake and stereo-
typed both ”employer” and ”employee” as phase instead of role, thus creating
instance of DepPhase anti-pattern for both phases.

2.3.3.2 Relational dependency owned, but should be inherited

Second possibility is that suspicious part of model represents situation in
which relational dependency should not be owned, but instead inherited by
the phase.

For example, let’s suppose that we are creating model (figure 2.10) for a
hospital. We have entity ”person” and we want to model that ”person” can
be a ”patient” and each” patient” can be either ”healthy” or ”ill”. ”Person”

24

2.3. Relationally dependent phase (DepPhase)

Figure 2.9: Example of phase misused as role

becomes ”patient” when it is registered in the hospital. As you can see in
the model bellow, we have chosen to model this by subtyping kind ”person”
with phases ”ill patient” and ”healthy patient” and connecting them to the
”patient card” relator via mediation.

Figure 2.10: Example of relational dependecy, that is owned, but should be
inherited instead

This is another occurrence of DepPhase anti-pattern and as you can see
in the second diagram, we should have subtyped kind ”person” with role
”patient”, that is both connected to the ”patient card” relator via mediation,
and further subtyped by phases ”ill” and ”healthy”.

25

2. Anti-patterns

2.3.3.3 Phase characterized by intrinsic property and relation

Third possibility is that the phase is characterized by both change in an in-
trinsic property and creation of relational property.

This can be seen in the next example in which we model car and its
possible states. We have entity ”car” stereotyped as kind, that subtyped
by phases ”damaged” and ”operational”. Both phases are characterized by
intrinsic properties of the ”car”, but for the ”car” to be considered legally
”operational” is also needs ”MOT” certificate from ”certification authority”,
thus requiring relational property.

Figure 2.11: Example of phase characterised by both intrinsic property and
relation

In this particular case, when phase is characterized by intrinsic property
and relational property, DepPhase anti-pattern does not occur and we get a
false alarm.

2.4 Free role specialization (FreeRole)
As we have discussed previously in section about DepPhase anti-pattern, role
is relationally dependent type and as such it has to be connected to relator
via mediation. It is possible to fulfil this dependency indirectly by specializing
role or rolemixin that is connected to relator through mediation (again this
specialization may be done indirectly through multiple ancestors).

Even though this indirect fulfilment is possible according to the OntoUML
specification, such structures require increased attention, since they might
indicate that the model is still missing some parts. There is however one
more condition FreeRole anti-patter does not occur when the role and all its
ancestors are indirectly connected to mediation through rolemixin ancestor.

There are four main reasons for the free role occurrences corresponding to
four role specialization patterns: derived sub-role, intentional sub-role, mate-
rial sub-role and role of role. Whenever we investigate a free role occurrence it

26

2.4. Free role specialization (FreeRole)

is crucial to identify the reason / role specialization for the occurrence, since
it also provides a solution for correcting the model.

Now to the reasons / role specialization patterns themselves.

2.4.1 Derived sub-role

The derived sub-role pattern applies to free-roles when they are instantiated
according to a pre-determined set of conditions [17].

Informally we can think about derived sub-role as a ”phase of role”, since
it creates structure similar to phase specialization. Note the emphasis on
informality, unlike phase derived sub-role doesn’t require to be part of distinct
generalization set.

Example for derived sub-role can be seen in figure 2.12 containing classi-
fication of drivers. Person becomes driver, when she obtains driving license
from certification authority. Statistics also use terms inexperienced driver for
drivers that have their driving license for less than two years, and experienced
driver for others.

Figure 2.12: Example of derived sub-role

Stereotypes in the model were chosen as follows: both ”person” and ”certi-
fication authority” are kinds, ”driving license” is relator and all three ”drivers”
are roles. According to the specification above both ”experienced driver” and
”inexperienced drive”r are instantiated according to set conditions (in our
case time since obtaining their drivers license) and are examples of derived
sub-role.

27

2. Anti-patterns

2.4.2 Role of role

This pattern is used when we need to define set of roles that require specific
order in which they can be instantiated. Each role in the ”specification tree”
has to have connection to independent relator to represent each ”step” in the
role instantiation hierarchy.

To exemplify please refer to figure 2.13 that contains simplified model for
athletes and Olympic representants. For the purposes of the professional sport,
person becomes athlete when she has its own record in athletics ladder for
the appropriate sport (maintained by athletics association). Athlete becomes
representative after being chosen by Olympic committee from its country,
based on its previous performances represented by his rank on the ladder.

Figure 2.13: Example containing structure for role of role

Following the specification, both ”person” and ”athletics association” were
stereotyped as kind, ”Olympic committee” was identified as collective (for the
purposes of this model), ”ladder record” and ”nomination” were modelled as
relators and finally ”athlete” and ”Olympic representative” were stereotyped
as roles.

2.4.3 Intentional sub-role

Sometimes we need to model role that is supposed to represent special case
in parent mediation in this case we use intentional sub-role pattern. In this
case we create new relator that specializes relator in the parent relation and
connect it to the sub-role.

Let’s suppose we are creating OntoUML model for a hospital (figure 2.14).
We have analysed the domain and found out that there are three roles patient,
doctor and x-ray operator. We know that person becomes patient when it had

28

2.4. Free role specialization (FreeRole)

a medical checkup which has to be done by doctor, and that some checkups
may be done on x-ray machine.

This has left us with model that has kind ”person” specialized by roles
”patient” and ”doctor” which is further specialized by role” x-ray operator”.
There is also relator ”medical checkup” that is mediated by ”patient” and
”doctor”.

Figure 2.14: Example of intentional sub-role

Right now, we have created occurrence of free role anti-pattern as our
model is still missing something. Answer lies in the relation between ”checkup”
and ”x-ray operator” or rather lack of it. To resolve this, we should create
relator ”x-ray checkup” which should specialize ”relator checkup” and should
be connected via mediation to ”patient” and ”x-ray operator”.

Note that we still have multiple occurrences of BinOver anti-pattern, but
correcting them is out of scope of this example.

2.4.4 Material sub-role
The material sub-role pattern is used when modeller needs to create sub-role
which is defined by only a subset of relators defining parent role, but unlike in
the case of intentional sub-role pattern the subset doesn’t add any additional
characteristics.

Suppose that we are creating simplified model for patent approval process
(figure 2.15). We start with kind ”technical solution” that is specialized by
role ”patent application” that is further specialized by roles ”accepted patent”
and ”rejected patent”. Relator ”application result” is connected to role ”patent
application” and kind ”patent office” via mediation.

This would result in occurrence of free role anti-pattern. To avoid it we
need to add two more relations in this case material associations between roles
”accepted pattern”/”rejected pattern” and kind ”patent office”.

29

2. Anti-patterns

Figure 2.15: Example of material sub-role

2.5 Generalization set with mixed rigidity (GSRig)
As the name suggests this anti-pattern occurs when we have multiple types
that follow different rigidity principles in the same generalization set. To
understand why are such structures dangerous to model integrity, we must
first talk about the principles behind the generalization set as concept.

2.5.1 Generalization set

Generalization sets are used to aggregate generalization to the same supertype
and that follow a common specialization criterion. While first part of this
definition is quite clear, the second part dealing with common specialization
criterion might look a bit ominous, so we will explain it with an example.

Let’s look at cars (figure 2.16). We can classify cars using their current
price as either cheap or expensive. Alternatively, we can classify cars based
on their mechanical state as either operational or damaged. Specialization
criterion is used to define the reason why instance of type becomes instance
of one of its subtypes, in other words why we classify concrete car as cheap
or expensive using our first classification and why we classify concrete car as
operational or damaged in our second classification. So, the specialization
criterion would be price / mechanical state for the first/second classification
respectively.

Another reason for using generalization sets lies in their meta-properties
isCovering and isDisjoint. Those meta-properties allow us to define concrete
types with additional subtypes and allow/forbid overlap in the subtype in-
stantiation.

30

2.5. Generalization set with mixed rigidity (GSRig)

Figure 2.16: Example of possible classifications for kind car

2.5.2 GSRig anti-pattern
In previous subsection we have talked about the principles behind the gener-
alization set as concept and now we can finally look at the GSRig anti-pattern
itself. Although we will focus mostly on finding, analysing and if needed cor-
recting generalization sets with mixed rigidity, focus of this anti pattern is to
identify generalization sets that aggregate generalizations using two or more
specialization criteria at once.

The main reason for limiting further explanation only to the generalization
sets with mixed rigidity is that the specialization criteria are closely connected
to the domain semantics and the way we look at the domain. Which makes
detection of this anti-pattern occurrences generally impossible without proper
domain knowledge. Only exceptions to this problem are aforementioned gen-
eralization sets with mixed rigidity.

Any generalization set that contains subtypes that follow different rigidity
principles is most likely aggregation of two or more generalization sets follow-
ing different specialization criteria or contains one or more subtypes that have
been incorrectly stereotyped. Notable exception to this ”rule” is generalization
set that has mixin as supertype, since mixin by definition has to be specialized
by both rigid and non-rigid types at the same type (see anti-pattern MixRig
for more information).

To continue with our example about cars, let’s talk about car classification
based on their mechanical states (damaged or operational) and body types.
For the purposes of this explanation (figure 2.17) we will limit ourselves to
sedans, hatchbacks and SUVs.

So right now, we have kind ”car”, phases ”damaged” and ”operational”
and subkinds ”sedan”, ”hatchback” and ”SUV”. Let’s suppose that we made
a mistake and decided to put all generalizations of the kind (all phases and
subkinds) into one generalization set and made it disjoint.

Through this mistake we created occurrence of GSRig anti-pattern. Our
model now allows a car to be either sedan, hatchback, SUV, damaged or oper-

31

2. Anti-patterns

Figure 2.17: Example of generalization set with mixed rigidity

ational at one time, i.e., we cannot have car that is both sedan and operational
or hatchback and damaged.

If we decided to remove operational and its generalization from the gener-
alization set and make the set covering, we would get into even more trouble.
As seen in the figure 2.18, we have now generalization set that is both disjoint
and covering. This means that instance of ”car” has to instantiate one of the
subtypes from the generalization set and that it has to instantiate exactly one.
But this means that phase ”damaged” was now made rigid!

Figure 2.18: Example of rigidity forced to anti-rigid type

There are three ways to refactor GSRig occurrence. First, we should check
if all subtypes are stereotyped properly. If not, we should change the stereo-
types appropriately and this will either fix the problem or we will have to
continue in our analysis of the generalization set.

Second option for resolving this problem is to look if the generalization
couldn’t be split. This would be the way to fix our example model. Phases
”operational” and ”damaged” would-be part of one generalization set and sub-
kinds ”sedan”, ”hatchback” and ”SUV” would be part of second generalization
set.

Third option is to create new direct parent for one or more anti-rigid
subtypes. This might have to be followed with creating OCL restriction if the
previous step resulted in creation of only one rigid subtype.

32

2.6. Heterogeneous collective (HetColl)

2.6 Heterogeneous collective (HetColl)
Anti-pattern HetColl is closely connected to the HomoFunc (Homogeneous
functional complex) anti-pattern, as both of them are result of misunderstand-
ing of differentiation between stereotype collective and functional complex.

2.6.1 Collective
Collective represents rigid concepts that provide identity principle for their
instances. Its main characteristic is that all its parts are perceived in the
same way from the collective’s point of view, i.e., its internal structure is
homogeneous.

Examples of collective are: deck of cards, forest, band.

2.6.2 Functional complex
Functional complex represents entity with multiple parts that play different
roles as viewed by the complex itself, i.e., its internal structure is heterogenous.
Similarly to collective, functional complex provides identity principle for its
instances.

Examples of functional complex are: car (consisting from engine, chassis…),
IT company staff (consisting of managers, programmers, support…), opera
staff (consisting of singers, musicians, technical staff…).

2.6.3 HetColl anti-pattern
As was previously mentioned, HetColl anti-pattern occurs when the modeller
confuses the difference between collective and functional complex and uses
the former instead of the latter. This doesn’t have to be a result of misun-
derstanding or lack of knowledge of the principles, but it can also appear as
result of change of perception of the modelled entity.

It is important to know that the same entity can be correctly modelled as
a collective in one model and in second model it will be correctly identified as
functional complex. Example for this can be entity ”deck of cards” especially
if we take a deck from card game such as Magic the Gathering.

From the manufacturers point of view ”deck of cards” will be modelled as
collective, since all cards have the same dimensions and are printed using the
same process.

From the players point of view ”deck of cards” will be functional complex
since it contains cards representing creatures, lands, spells… and each of those
categories has its own distinct set of properties and rules.

HetColl anti-pattern would occur if we modelled the deck from the point
of view of the player and decided to stereotype it as collective. Such model
can be seen in figure 2.19.

There are three conditions that must be met for HetColl to occur:

33

2. Anti-patterns

Figure 2.19: Example of heterogenous collective

1. Entity representing the whole has to be stereotyped as collection.

2. All parts must be instantiated directly by the whole.

3. All parts must be connected by memberOf association directly to the
whole or one of its ancestors.

If all three conditions above are evaluated as true, modeller should check
the collection and all its parts as it is probable, that the entity stereotyped as
collective should be functional complex instead.

2.7 Homogeneous Functional Complex
(HomoFunc)

HomoFunc anti-pattern occurs when modeller misidentifies collective and in-
stead models it as functional complex. This differentiates HomoFunc anti-
pattern from HetColl anti-pattern that deals with the same problem of misun-
derstanding differences between collective and functional complex, but focuses
on analysis of the collective.

Due to this similarity, we have already covered differences between collec-
tive and functional complex in chapter about HetColl anti-pattern and this
chapter will cover only parts that are specific to the HomoFunc anti-pattern.

34

2.8. Imprecise abstraction (ImpAbs)

2.7.1 HomoFunc anti-pattern
If we simplify the problem to its most basic form, we can say that HomoFunc
anti-pattern occurs when there is functional complex that consist of multiple
instances of single part, thus creating functional complex with homogeneous
structure, which should be instantiated as collective instead.

You can see this in figure 2.20 in which we model entity ”deck of cards”
from the point of view of the manufacturer, but the modeller didn’t take this
in mind and stereotyped the entity as a kind.

Figure 2.20: Example of homogenous functional complex

There are four conditions that are mandatory for HomoFunc to occur:

1. Only functional complexes may instantiate the Whole.

2. Only functional complexes may instantiate the Part.

3. Whole has only single direct or indirect Part.

4. Multiplicity of the partOf association has to be greater or equal to 2.

Only after all four conditions are true, HomoFunc anti-pattern occurs. In
that case model should be analysed again and modeller should decide if the
functional complex should be instead stereotyped as collective, or if additional
parts should be added.

As we discussed in the chapter dealing with HetColl anti-pattern, we must
always keep in mind the view with which we look at the domain, because it
will determine we should model analysed entity either as functional complex
or as collective. We have to remember this especially when the view changes,
parts may be added or removed and this can lead to occurrence of HetColl or
HomoFunc anti-patterns.

2.8 Imprecise abstraction (ImpAbs)
Anti-pattern ImpAbs is used to detect associations that connect generaliza-
tion structures that are considered too permissive. This sort of connections
usually means that the model allows for creation of unforeseen and unwanted
instances.

ImpAbs anti-pattern requires occurs only when either of two following
conditions hold:

35

2. Anti-patterns

• multiplicity on the source end of the association is greater or equal to 2
and source has at least 2 direct subtypes,

• multiplicity on the target end of the association is greater or equal to 2
and target has at least 2 direct subtypes.

As was said previously, making models too permissive will usually lead to
unexpected consequences. Let’s suppose we are creating a simple ontological
model for a house. Each house consists of roof and multiple walls. For this
example (figure 2.21), we assume that there are two kinds of a wall: bearing
wall and partition wall, which are defined as follows: bearing walls hold full
weight of the house, and therefore (for the purpose of this example) cannot
have any windows or doors inside them, while partition walls can.

Figure 2.21: Example of imprecise abstraction

Full model can be seen bellow and on the first look everything looks fine.
Problems start to appear when we analyze it. Due to our imprecise abstrac-
tion, we are permitted to build house that consist only from partition walls
which would lead to instability and even to the collapse of the house. We are
also permitted to build house that has only bearing walls, which would make
it stable, but also impossible to get to, since bearing walls cannot have doors
inside them.

There are three solutions for our problem (and to ImpAbs anti-pattern
occurrences in general):

1. Set cardinality constrains using OCL invariant specification.

2. Set cardinality constrains by creating new associations between the set
of subtypes on one end and the other end of original association. (In our
case create associations between ”bearing wall” and ”partition wall” on
one side and ”house” on the other side).

3. Create association similarly to option 2, but also specify association
meta-property values. For this we can use meta-properties isEssen-
tial, isInseparable, isImutableWhole, isImmutablePart, isShareable or
isReadOnly.

36

2.9. Mixin with the same identity (MixIden)

Also, as Sales notes in his work [17], ImpAbs anti-pattern is most likely
to show in cases when the association characterizing the occurrence is a part-
whole relation (with the exception of memberOf association). modellers there-
fore should pay increased attention to those types of association, because as
mentioned previously consequences for making a mistake can be quite surpris-
ing.

2.9 Mixin with the same identity (MixIden)

MixIden anti-pattern is part of ”classification anti-patterns” together with
others such as HetColl and HomoFunc. All of those anti-patterns usually
occur due to modellers lack of understanding of the OntoUML principles, or
due to lack of attention to the view used to describe the model domain.

Principle that is being confused in case of MixIden anti-pattern is the
difference between sortals and non-sortals. Instances of sortals (individuals)
follow the same identity principle while non-sortals don’t [6].

You can see this in the model of the customer. Kind company is a sortal
and thus all its subtypes follow the same identity principle in this case its
company number. RoleMixin customer is a non-sortal since all of its subtypes
don’t follow the same identity principle, in case of the ”company customer” it’s
the aforementioned company number and in case of the ”individual customer”
it’s the personal identification number.

MixIden anti-pattern occurs when modeller confuses the definition of non-
sortals and models a structure in which all sortal children of non-sortal follow
the same identity principle. This means that all sortal children get their
identity directly or indirectly from the same ancestor, which can also be child
of the same non-sortal. Note that although full name of MixIden is mixin with
the same identity, its scope covers all non-sortals, not just mixin.

In figure 2.22 we can see OntoUML model for acquiring supplies by a shop.
First there is a kind ”Company” representing shops business partners. Com-
pany can be either ”Manufacturer” or ”Distributor”, but both ”Manufacturer”
and ”Distributor” can become ”Supplier”, by establishing ”Supply contract”
with one of the shops ”Managers”. Note that for clarity of this example, we
have omitted fulfilment of relational dependency for role ”Manager” in the
presented model.

As we can see the modeller decided classify ”Supplier” as a rolemixin, but
this results in occurrence of MixIden anti-pattern, since both ”Manufacturer”
and ”Distributor” get their identity from the same source.

Correcting this mistake is bit more complicated. Any occurrence of MixI-
den can be fixed by changing the non-sortal that causes the problem to sortal
appropriate to the rest of the model, but (like in this case) we might need to
make additional changes to the model.

37

2. Anti-patterns

Figure 2.22: Example of mixin with the same identity

First we need to change stereotype of ”Supplier” from rolemixin to role.
Then we need to remove generalizations between ”Supplier”, ”Manufacturer”
and ”Distributor”. Since ”Supplier” is now stereotyped as role it also requires
identity, so we need to create generalization from ”Supplier” to general ”Com-
pany”. Lastly we need to create OCL invariant to enforce that each ”Supplier”
has to also be ”Manufacturer” or ”Distributor”.

2.10 Mixin with the same rigidity (MixRig)

As the name suggests MixRig anti-pattern occurrence is characterized by
mixin with multiple children, that are all either rigid or non-rigid. Although
this might look like other anti-patterns that cover misclassification analysed
of entities (such as HetColl, HomoFunc, MixIden…) in case of MixRig it might
be actually one of the mixin children that has been misclassified. But first we
have to talk about mixin and the principle of rigidity.

2.10.1 Rigidity principle reminder

Rigidity is ontological meta-property, that defines mutability of the type. In
other words, it defines if instances of particular type are always connected to
the type or if their types can change.

There are four types of rigidity, but for purposes of MixRig anti-pattern
and this reminder we will talk only about three:

1. Rigid – Individuals instantiate rigid in all possible scenarios (worlds).
Rigid types define essential characteristics for their instances.

38

2.10. Mixin with the same rigidity (MixRig)

2. Non-Rigid – Non-rigidity is logical negation of rigidity. Type is non-
rigid if at least one instance to which this type applies to in one world,
is not applied by this type in another world.

3. Semi-rigid – Type is semi-rigid, if it is rigid for some instances and
non-rigid to others. Stereotype mixin is semi-rigid.

2.10.2 MixRig anti-pattern

Mixin is semi-rigid type and as such it should be specialized by both rigid and
non-rigid types. Analysis of mixin specialized only by rigid or non-rigid types
leads to one of three possibilities:

1. modeller has misclassified the type as mixin and therefore the cor-
rection lies in finding proper classification of the type. Typical example
for this is mixin specialized only by roles as seen in figure 2.23. In this
case model can be fixed simply by changing mixin to rolemixin.

Figure 2.23: Example of mixin specialized only by roles

2. modeller has misclassified one of the children. Example for this
can be seen in model [17]. Let’s suppose that we are creating model (fig-
ure 2.24) for a transport company that needs to differentiate between
legal and illegal goods. We can say that drugs are always considered ille-
gal, but car is considered illegal only if it has been stolen. As we can see
modeller made a mistake and specialized ”Stolen” and ”Legally owned”
as subkinds instead of phases which leads to occurrence of MixRig.

3. Model is incomplete. This can typically happen during initial phase
of the model creation when we are still identifying entities and associ-
ations between them. Nevertheless, this is as severe if not more than
misclassification of either mixin or its children, as it means that we have
omitted some part of the domain in our model.

39

2. Anti-patterns

Figure 2.24: Example of mixin specialized only by rigid types

2.11 Multiple relational dependency (MultDep)

In OntoUML relational dependency is closely tied to classes stereotyped as role
or roleMixin, but it is not exclusive to them. Others such as kind, collective,
quantity, subkind, role, phase, category, mixin, roleMixin and phaseMixin can
be also connected by mediation (characterizes relational dependency).

Even though there is no upper limit to how many relational dependencies
(mediations) can be applied to single class, having more than one relational
dependency can mean that there is a hidden complexity and even additional
dependencies between the relational dependencies.

MultDep anti-pattern aims to identify classes with multiple relational de-
pendencies and warn the modeller that he should carefully analyse both the
class and all its dependencies.

Analysis itself should start with investigating the dependencies, notably
if they are all mandatory or if some of them are optional. For each optional
dependency modeller should create new role as a child of the original class
and make the dependency mandatory for the new role.

After modeller creates all required roles, he shall look on the dependencies
again and check if some of them require particular order in which they are
established. Ordered dependencies will force modeller to create hierarchy of
roles. For example, during each operation there is exactly one lead operator
and he can have multiple doctors as assistants, but you have to first become
a doctor, before you can be lead operator. This would be represented in
the model by entity person, that is specialized by role doctor, that is further
specialized by role lead operator as seen in the figure 2.25.

On the other hand, some dependencies don’t require any particular or-
dering or cannot be ordered at all. Example for this can be roles singer and
actor, as there is no requirement that you have to become a singer before you
become an actor or vice versa.

Third step of the analysis is focused on search for ”dependencies between
dependencies”. This happens if relator that formalizes the dependency is in
relation with relator that formalizes different dependency.

40

2.11. Multiple relational dependency (MultDep)

Figure 2.25: Example of ordered role dependencies

To exemplify this, we will refer to example provided as part of MultDep
definition (see figure 2.26):

A person becomes an undergraduate student when she enrolls in a major
course at a university, e.g. ”Computer Science” or ”Philosophy”. A unique
number identifies each enrollment. Victor, a very curious and dedicated young
man, decides to pursue, simultaneously, a major in ”Philosophy” and ”Com-
puter Science”. To do that, he would need to enroll two times at the university.
After his enrollments, Victor wants to apply for ”Logics 101” as a ”Computer
Science” student and apply for ”Sociology 101” as a ”Philosophy” major. To
do that, each course application must not only identify ”Victor” as the apply-
ing student, but also identify the particular enrollment he is using to apply. []
ref tiago

Figure 2.26: Example of ”dependencies between dependencies”

Finally let’s look at example of MultDep occurrence in model for a car

41

2. Anti-patterns

rental company. Rental company has many cars. Each of them should have
valid MOT to be considered operational. We also know that car is considered
to be rented, when another company signs rental contract.

Figure 2.27: Example of multiple relational dependency

As we can see in figure 2.27, modeller decided to model role ”Rented
car” mediated by both ”MOT” and ”Rental contract”, thus creating MultDep
occurrence. This should be corrected by creating new phases ”Operational”
and ”Damaged”. Mediation to ”MOT” should be removed from ”Rented car”
and moved instead to phase ”Operational”.

2.12 Part composing overlapping wholes
(PartOver)

Part over anti-pattern follows similar logic to BinOver anti-pattern, actually
there are cases in which both anti-patterns overlap. Because of the similar-
ity between the anti-patterns, reader is highly advised to look at BinOver
anti-pattern first, as it contains definitions and explanation for concepts of
overlapping and disjoint sets.

There are two conditions that have to be fulfilled in order to PartOver to
occur. Both of them are rather obvious and can be summarized in a single
sentence: part has to compose multiple wholes that have to be part of single
overlapping set.

First condition states that the wholes have to overlap, i.e., it has to be
possible for a single instance to instantiate all types in the set at the same
time, while the second condition says that the sum of upper cardinalities of
all part-whole associations has to be greater or equal to two, i.e., it has to be
possible for a single instance of part to compose at least two wholes at once.

To both explain why is this structure potentially dangerous and to provide
an example, we will create model for a deck of cards. In the figure 2.28 we
can see collective ”deck of cards” (note that we look at the ”deck of cards”
from the point of view of the manufacturer so all ”cards” have equal roles,
otherwise we would get occurrence of HomoFunc anti-pattern).

42

2.12. Part composing overlapping wholes (PartOver)

Figure 2.28: Example of part composing overlapping wholes

Deck of cards is specialized by subkinds ”poker deck” and ”tarot deck”.
Last type in the model is kind ”card” which has two memberOf associations
one to whole ”poker deck” and other to the ”tarot deck”. Upper bound for
whole end of both associations is unlimited.

This model represents the most basic occurrence of PartOver anti-pattern.
Main reason behind identifying such structures it their permissiveness, in other
words, such structures may allow unexpected and often invalid (in terms of
the domain) instances of whole.

PartOver anti-pattern is usually result of modellers mistake/oversight dur-
ing creation of one of following intended interpretations:

• We want the whole to be disjoint, i.e., no individual can instantiate
multiple whole types. This corresponds to our example. No card can
be part of the poker deck and tarot deck at the same time. Solution for
this is to simply make the whole types disjoint.

• We want the wholes to be exclusive, individual can instantiate multiple
whole types at once, but each instance of the part can be connected only
to one whole type at once. In our example this interpretation would be
represented by ”mashup” deck (created by shuffling poker and tarot
decks together). In this case we won’t need to make any changes to the
generalization set, but we should create an OCL invariant to keep our
previous logic that single card cannot be both poker and tarot card at
once.

• We want the whole to be partially exclusive, i.e., individuals can
instantiate some whole types simultaneously while others should be dis-
joint. Expanding on our previous example with ”mashup” deck, we will

43

2. Anti-patterns

now add collective bridge deck specializing deck of card and as whole
end for another member of association to the kind card. Now we have
situation when card can be part of both poker and bridge deck, but not
tarot deck. Again, the solution would be to create OCL invariant to
define the exclusive subsets.

2.13 Relation composition (RelComp)
Significant part of anti-patterns discussed in this work was created to identify
overly permissive structures to warn modeller about unforeseen consequences
and to provide help with deciding if and how to refactor/correct them.

RelComp anti-pattern is another representative of this category. It is de-
fined by two distinct associations: association A that connects type sourceA
to type targetA and association B that connects type sourceB to type targetB.

There are two additional conditions that need to be fulfilled. Note that
for this explanation we suppose that association A is the on that connects
”ancestor types” (second condition contains additional explanation).

First condition defines minimal cardinality of association A on targetA
end. Concretely lower bound has to be greater than zero and upper bound
has to be greater than one. Second condition is bit more complicated. It is
fulfilled when one or both of following sub-conditions are fulfilled:

• SourceA is equal to or ancestor of both SourceB and TargetB. In predi-
cate logic:

(SourceA = SourceB ∨ ancestorOf(SourceA, SourceB))∧
(SourceA = TargetB ∨ ancestorOf(SourceA, TargetB))

• TargetA is equal to or ancestor of both SourceB and TargetB. In predi-
cate logic:

(TargetA = SourceB ∨ ancestorOf(TargetA, SourceB))∧
(TargetA = TargetB ∨ ancestorOf(TargetA, TargetB))

Fulfilling both primary conditions described above would lead to occur-
rence of RelComp anti-pattern. This does not mean that the model contains
mistake or that its incorrect, it only urges the creator of the model to analyse
the structure and think about the intended form of composition.

OntoUML defines five types of composition based on the way in which the
instantiation of association B depends on instantiation of association A:

• Definition (Existential Composition): for every distinct individuals
x, y, if x is related to y through B, it implies that x and y are related to
at least one common individual through relation A. [17]

44

2.13. Relation composition (RelComp)

• Definition (Right Universal Composition): for every distinct in-
dividuals x, y, if x is related to y through B, it implies that all z that is
connected to x, through A, is also connected to y, through A. [17]

• Definition (Left Universal Composition): for every distinct indi-
viduals x, y, if x is related to y through B, it implies that all z that is
connected to y, through A, is also connected to z, through A. [17]

• Definition (Forbidden Composition): for every two distinct indi-
viduals x, y, if x is related to y through B, it implies that x and y are
connected to no individual in common through A. [17]

• Definition (Custom Existential Composition): for every distinct
individuals x, y, if x is related to y through B, it implies that x and y
are connected to [less than / more than / exactly] n common individuals
through A. [17]

Refactoring of the RelComp anti-pattern consists of identification of the
desired type of composition and creation of OCL invariant that enforces it.

Figure 2.29 represents OntoUML model of graph and it’s also example of
RelComp occurrence. Each graph consists of at least one ”graph element”.
There are two kinds of ”graph elements”: vertexes and edges. Edges con-
nect either one or two vertexes and this is represented by formal association
”connects”.

Figure 2.29: Example of relation composition

Such model can be used to describe simple graphs and can form a basis for
further description of graph theory in OntoUML. Problem is that the model
also contains a hidden catch, it allows single edge to connect two different
graphs.

This might be an issue (it depends on our definition of graph) and if we
decide that it’s indeed an unwanted consequence we should identify our desired
composition type and create appropriate OCL invariant to enforce it.

45

2. Anti-patterns

2.14 Relator mediating overlapping types
(RelOver)

Logic behind RelOver anti-pattern is almost identical to PartOver anti-pattern
and there is also overlap with BinOver anti-pattern. Since most of the defini-
tions and explanations have been provided in sections dealing with aforemen-
tioned anti-patterns, we are not going to repeat them here and instead focus
on explaining the differences and providing an example.

Main difference between PartOver and RelOver anti-patterns is directly
connected to their names. PartOver focuses on overlapping wholes, while
RelOver focuses on identifying relators that are mediated by overlapping types.

RelOver anti-pattern has two conditions that have to be fulfilled for it to
occur. First one is similar to PartOver and it states that the types mediating
common relator have to be part of overlapping set, i.e., it has to be possible
for single individual to instantiate all mediated types at same time.

Second condition was created to limit the number of ”false alarms” of
RelOver anti-pattern. The total sum of upper bounds of all mediations be-
tween common relator and the set of overlapping types on the relator side has
to be greater than two.

This is essential because OntoUML definition of relator states that each
relator has to mediate at least two distinct individuals and without the second
condition above we would need to analyse many occurrences of RelOver, just
to find that significant part of them were ”false alarms”.

Similarly to PartOver anti-pattern RelOver usually occurs when modeller
wants the mediated types to be disjoint, exclusive or partially exclusive. For
more explanation about the intended interpretations, please read the PartOver
section.

Now let’s look at a typical example of RelOver anti-pattern as can be
seen in figure 2.30. Here we have simple model for crime investigation namely
interrogation of suspects. Suppose that have been told that each interrogation
is done by one suspect and one investigator and results in interrogation report.

Figure 2.30: Example of relator mediating overlapping types

We have correctly determined that the interrogation report should be
stereotyped as relator, while ”suspect” and ”investigator” should be roles me-

46

2.15. Relator mediating rigid types (RelRig)

diated by the interrogation report. Since role is anti-rigid sortal and as such
it requires an identity, we have also created kind ”person” and specialized it
by both roles.

This wouldn’t be enough to cause RelOver occurrence, but since we know
that single investigator may (and most probably will) be part of multiple
interrogations as might be the suspect we need to set the upper cardinalities
of the mediations at the relator end to * (unlimited).

Problem is that we have now created model that permits single person
to not only be both investigator and suspect, but also create interrogation
reports with itself. Luckily the solution is to just create new generalization
set, add both generalizations to it and set it’s meta property isDisjoint to
true.

2.15 Relator mediating rigid types (RelRig)
Mediations are usually used to connect relator on one side with role/roleMixin
(anti-rigid types) on the other side. Although this is the most common model
structure OntoUML also allows other types to be part of mediation.

RelRig anti-pattern is defined by mediation connecting relator with rigid
type (category, collective, kind, quantity or subkind). This structure is syn-
tactically valid, but modeler should pay increased attention to it, as it may
indicate that improper stereotype was selected for the rigid type or event that
the model is missing some parts.

Analysis of RelRig occurrence should therefore start with verifying rigidity
of the mediated type, continue with checking if the mediation is really manda-
tory and end with determining the direction of the relational dependency.

When verifying the mediated type (further referred also as <Type>) rigid-
ity, we have to determine if the type is rigid by asking ourselves if every indi-
vidual that at some point instantiates <Type> had to be created as one and
cannot cease to be instance of the <Type> during the individual’s existence.
Or we ask ourselves following question to determine anti-rigidity: ”Can an
individual that was not created as <Type> to become one, or an individual
that is already an instance of <Type> cease to be it and still exists?”. [17]

If we discover that the mediated type is anti-rigid, we have to change its
stereotype based on it’s sortal/non-sortal property to either role/roleMixin
respectively and we may end in our analysis (we may also need to create new
identity provider for the role).

Next step is to check if the relational dependency is mandatory for the
mediated type. If we determine this is not the case, we should create new
role/roleMixin and add/change specializations accordingly, otherwise we need
to continue to the third step of our analysis.

Third and last step of our analysis is aimed at determination of the depen-
dency direction. Since we have already determined that the mediation relation

47

2. Anti-patterns

is mandatory, we have only three possible cases of the dependency direction:

1. Dependency is bidirectional: (both relator and mediated type are
dependent on each other) modeler has to set isReadOnly meta-property
on the mediated type end to true.

2. Dependency from relator to mediated type: in this case RelRig
occurrence is a false alarm.

3. Dependency from mediated type to relator: both mediation asso-
ciation and the mediated type have been incorrectly stereotyped. Mod-
eller should change the mediation to characterization and the stereotype
of the mediated type to mode.

Figure 2.31 contains simplified model for ordering food from restaurant.
We have kind ”person” that is specialized by role ”customer”. There is also
kind ”restaurant” and relator ”food order” that is connected through media-
tions to both ”customer” and ”restaurant”.

Figure 2.31: Example of relator mediating rigid types

RelRig occurrence is connection between kind ”restaurant” and relator
”food order”. Therefore, we have to start our analysis at the first step, by
verifying rigidity of the ”restaurant”. In this case we quickly realize that
”restaurant” is not rigid – restaurant may branch out and include shop with
local grocery or it might change into catering company.

Kind ”restaurant” should be stereotyped as role instead. Since role doesn’t
have provide identity, we also need to create kind ”company” and add gener-
alization between it and role ”restaurant” as its subtype.

2.16 Relation specialization (RelSpec)
Structures that characterize RelSpec anti-pattern are similar to structures
that characterize RelComp anti-pattern, indeed there are several special cases
that are both occurrences of RelSpec and RelComp.

48

2.16. Relation specialization (RelSpec)

Basic structure of RelSpec anti-pattern is characterized by two distinct
relations: association A that connects types SourceA and TargetA, and asso-
ciation B that connects types SourceB and TargetB.

There are two additional conditions that need to be fulfilled before Rel-
Specs occurs. Note that for the purposes of this explanation, we assume that
association a contains ”ancestor types”, i.e., that SourceB is descendant/equal
to either SourceA or TargetA and the same has to be true for TargetB.

First condition is fairly simple as it states that associations A and B have
to be distinct, but the second condition has almost identical structure to
second condition of RelComp anti-pattern and as such it consist of two sub-
conditions. At least one of the following sub-conditions has to be evaluated
as true to fulfil the second condition.

• SourceA is equal to or ancestor of SourceB and TargetA is equal to or
ancestor of TargetB. In predicate logic:

(SourceA = SourceB ∨ ancestorOf(SourceA, SourceB))∧
(TargetA = TargetB ∨ ancestorOf(TargetA, TargetB))

• TargetA is equal to or ancestor of SourceB and SourceA is equal to or
ancestor of TargetB. In predicate logic:

(TargetA = SourceB ∨ ancestorOf(TargetA, SourceB))∧
(SourceA = TargetB ∨ ancestorOf(SourceA, TargetB))

Correcting occurrence of RelSpec anti-pattern depends on type of restric-
tion for the instantiations of associations A and B. There are four types of
restrictions: subsetting, redefinition, association disjointness and specializa-
tion.

Subsetting happens when being related through association B implies
being related to association A. Examples of subsetting are associations ”sibling
of” and ”sister of”. Every sisters is also a sibling but not all siblings are sisters.

Redefining happens when following condition holds for each instance of
SourceB: ”individuals connected to instance of SourceB through association B
are the same individuals that are connected through association A”. In other
words, instance of SourceB is connected to other individual either through
both A and B, or not at all.

Continuing with our previous example, let’s assume that the SourceA is
kind ”person”, SourceB is subkind ”girl”, association A is ”child of” and as-
sociation B is ”daughter of”. Association ”daughter of” redefines association
”child of”, because both ”daughter of” and ”child of” always define the same
set of parents. By creating association ”daughter of” we have increased com-
plexity of the model but we haven’t provided any new knowledge. Model for
this example can be seen in figure 2.32.

49

2. Anti-patterns

Figure 2.32: Example of relation specialization - redefining

Disjointness happens when being related through association B implies
not being related through association A. Let’s use math to exemplify, by
looking at relations greater than and lesser than. We can say that number X
is greater than Y, if and only if, X is also not lesser or equal to X.

Specialization is similar to subsetting, but it also represents intentional
relation between associations A and B, by forcing inheritance of all properties
from association A to association B, i.e. marking that association B is subtype
of A.

Refactoring of first three restriction types (subsetting, redefining and dis-
jointness) is done by creation of OCL invariant and enforcing the desired
partition type, while refactoring to enforce specialization is even easier, since
we only have to create generalization from subtype B to supertype A.

2.17 Repeatable relator instances (RepRel)
Purpose of RepRel anti-pattern is to help modeller with applying internal
uniqueness constraint. This concept comes from Object Role Modelling (ORM)
approach. In ORM uniqueness constraint is applied to limit duplication of
identical combinations for a single predicate.

OntoUML unlike ORM is not fact-oriented language and instead of using
predicates to define roles for entities, it uses relators and mediations. This
might be an issue in some models, since OntoUML normally doesn’t set any
limits to duplicate instances of relator, that mediate the same individuals.
Uniqueness constraint has to be therefore enforced by creation of OCL invari-
ant for either current relator type or historical relator type.

Historical relator is little bit closer to the ORM view of the world, because
it represents ”database table” that contains single record for each relator ex-
istence. Note that existence is not the same as instantiation.

50

2.17. Repeatable relator instances (RepRel)

To exemplify, employee has work contract with his employer. Instance
of work contract is always time limited, it has start and end, even though
the end date might not be defined during the contract creation. Instance of
historical relator ”work contract” would represent the contract form its start
till its end, but it wouldn’t cease to exist when the contract expires. This way
we can represent the history of all instances of ”work contract” between the
same employer and employee.

Concurrent relator on the other hand represents truth maker of existing
relation. The moment the relation ceases to exist so does the appropriate
relator instance. Continuing with our previous example, representing ”work
contract” by concurrent relator would give us information about all work con-
tracts between employer and its employees that are currently active, but it
wouldn’t allow us to represent their history.

As was mentioned previously uniqueness constraint is enforced via OCL
invariant for both relator types. Historical relator might also require creation
of new phases to represent states in which the relator instance was ”active”
or ”expired”.

We have already presented why was RepRel anti-pattern defined, we have
discussed and provided examples for both concurrent and historical relators,
but we have yet to properly define the RepRel anti-pattern itself.

Structure of RepRel occurrence is characterized by relator mediated by at
least two other types. There are also two additional conditions that need to
be fulfilled:

1. Each mediation that directly or indirectly (through ancestor) connects
relator to other type has to have its upper bound cardinality on relator
end greater than one.

2. There has to be at least one mediation connected directly to the relator,
that characterizes the RepRel occurrence.

Figure 2.33 contains example of RepRel occurrence. We have simple model
for marriage. There is kind ”person” specialized by disjoint roles ”husband”
and ”wife”. Relator ”marriage” is connected to both roles via mediations. We
have also set upper bound cardinality on relator end in both mediations to
unlimited.

Now we have model that permits any person to be in marriage multiple
times at the same time. Not only that it is also possible for two persons to be
in marriage multiple times with each other. This is definitely an error on the
modelers side and needs to be fixed.

This particular example can be corrected in three ways based on the in-
tended outcome:

51

2. Anti-patterns

Figure 2.33: Example of repeatable relator instances

1. Setting upper bound cardinality of the mediations on the relator end to
one, would result concurrent relator, that allows each person to be in at
most one marriage at the same time.

2. Creating an OCL invariant that limits duplicate instances of marriage
between the same two people, would be the right decision if we wanted
”marriage” to be a concurrent relator and model polygamy.

3. Adding phases ”active” and ”ended”, and creating an appropriate OCL
invariant (that can either permit or deny polygamy), would result in
model with historical relator, model which acts as ”register” of mar-
riages.

2.18 Undefined formal association (UndefFormal)
Before we can define UndefFormal anti-pattern, we need to first talk about
difference between association stereotype formal and OntoUML concept of
formal relations.

OntoUML defines two kinds of associations material and formal. Formal
relations simply connect two individuals, while material relations are defined
by their truth-maker, entity that is created as part of the material relation
and that acts as seal between the two connected individuals.

This means that relations stereotyped as characterisation, componentOf,
derivation, memberOf and many others are also considered formal relations.
Of course the next logical question is why have stereotype formal?

Full name of the formal (sometimes called domainFormal) is Domain Com-
parative Formal Relation (from now on referred as DCFR). Such relations are
characterised by qualities of the connected types. Examples of this are qual-
ities ”age” in relation ”olderThan”, ”weight” in relation ”heavierThan” and
”size” in relation ”smallerThan”.

52

2.19. Undefined phase partition (UndefPhase)

Creation of DCFR association between two individuals that don’t have
such quality leads to UndefFormal occurrence. This is caused by either of
two possible causes: our ontology is missing qualities used for deriving of the
relation or we have stereotyped the relation incorrectly as DCFR.

Refactoring of such structure is dependant on the reason for UndefFormal
occurrence. If our relation is indeed DCFR, we have to either add qualities to
the connected individual set the relation as derived, and create OCL invariant
with definition of the derivation rule.

If we decide that our relations isn’t DCFR after all, we need to change
the stereotype to the correct one - this heavily depends on context of the
UndefFormal occurrence, and in some cases it may also lead into creation of
additional entities.

Lastly we may conclude that our relation is formal, but there is no On-
toUML stereotype that suits it. In this case we don’t need to refactor anything,
but this decision has to be backed by a proper analysis. Modellers often use
formal stereotype in most cases when it’s not clear for them which stereotype
should be used, since they know that the model will be syntactically valid.

In figure 2.34 we have example of UndefFormal occurrence. Modeller
wanted to create simple model for keg of gunpowder. Both ”Keg” and ”Gun-
powder” were stereotyped as kinds, and modeller decided to connect them
with (domain) formal relation. This is a typical example of UndefFormal
occurrence and in this case, it indicates two problems.

Figure 2.34: Example of undefined formal association

First we should change stereotype of the formal relation from domain for-
mal to containment. This will lead us to the second problem – ”Gunpowder”
was incorrectly stereotyped. Instead of kind it should be stereotyped as quan-
tity. After both changes we will end with valid model with no anti-pattern
occurrences.

2.19 Undefined phase partition (UndefPhase)
OntoUML defines phase as anti-rigid subtypes instantiated by changes in
intrinsic properties (more on phases section about DepPhase anti-pattern
above). It is therefore logical that any type that acts as supertype of phase
should have at least one such property.

UndefPhase anti-pattern (similarly to UndefFormal anti-pattern) aims to
identify every phase, whose supertype is lacking any intrinsic property (mod-

53

2. Anti-patterns

elled either directly as property or indirectly as connected mode/quality) and
notify modeller about their existence.

There are three refactoring options, but before we can talk about them we
need to first look at derived and intentional partitioning.

2.19.1 Derived partition
Derived partition as its name suggest is derived from intrinsic properties of
parent for all phases in the partition. Example for this can be seen in figure
2.35. Here we have kind ”Person” with quality ”Age” and derived partition
consisting of phases ”Baby”, ”Child”, ”Teenager”, ”Adult” and ”Senior”. All
of the aforementioned phases (and their transitions) have been derived based
on value of quality ”Age”.

Figure 2.35: Example of derived partition

2.19.2 Intentional partition
Intentional partition still requires intrinsic property or properties, but those
properties don’t have to be owned by a common parent. Some or even all of
them can be connected directly to the phases themselves and thus can appear
and disappear. Example of intentional partition is simple classification of ship
states (figure 2.36). We can say that any ship can be either afloat or sinking
and that ship is sinking when it has hole under waterline, thus the ship state
is determined by existence or absence of hole under waterline.

Figure 2.36: Example of intentional partition

54

2.20. Whole composed of overlapping parts (WholeOver)

2.19.3 UndefPhase anti-pattern
As was mentioned previously there are three refactoring options: creation of
derived partition, creation of intentional partition and changing stereotype of
the phase.

If we intend to create derived partition, we need to make sure that there
is common supertype with intrinsic property (represented as property, quality
or mode). Additionally we might need to create an OCL invariant to define
transitions between the phases.

If we intend to create intentional partition the process is even simple. All
we have to do is to make sure that every phase is characterised by at least one
mode or quality (it’s possible to let one phase without mode or quality, this
is called partition through exclusion).

Last option for refactoring is used when we decide that the types were
stereotyped as phases incorrectly. Usually this means that they should be
stereotyped as roles instead, but this depends on the current context.

We don’t provide explicit example of UndefPhase occurrence as it can be
easily obtained from either figure 2.35 or 2.36 by removing the quality/mode.

2.20 Whole composed of overlapping parts
(WholeOver)

Last anti-pattern discussed in this work is also last representant of ”Over”
anti-patterns. It follows similar logic as RelOver, PartOver and BinOver anti-
patterns. It’s closes connection is to the PartOver anti-pattern, since they
both deal with overlapping types in part-whole relations, but each is dealing
with overlap on different end.

Contrary to what the shortcut suggest, WholeOver anti-pattern focuses
on identification of overlapping parts. Since we already covered all definitions
in sections about BinOver, PartOver and RelOver, we won’t repeat them here
again. Instead, we will present WholeOver specific constraints and examples.

There are two conditions that need to be fulfilled before we can talk about
WholeOver occurrence:

1. Total sum of upper bound cardinality for all part-whole relations on part
ends has to be greater or equal to two.

2. Parts have to be part of overlapping set.

Example of WholeOver anti-pattern occurrence can be seen in figure 2.37.
It contains fragment of OntoUML model describing an orchestra. Model itself
consist of kind ”orchestra” that represents the whole for multiple part-whole
relations with roles ”flutist”, ”soloist” and ”violinist”, that are specializations
of kind ”person”. Note that for greater clarity of this example, we have omitted

55

2. Anti-patterns

all types and associations that would be required to fulfil relational dependen-
cies of aforementioned roles.

Figure 2.37: Example of whole composed of overlapping types

Orchestra consist of multiple flautists, violinists and sometimes there can
be multiple soloists. This leads to occurrence of WholeOver anti-patter, which
can be corrected similarly to PartOver/RelOver anti-patterns in three different
ways:

1. using OCL invariant to enforce exclusivity,

2. using OCL invariant to enforce partial exclusivity (this would be used
to correct our example),

3. removing overlap between the parts by forcing disjoitness.

56

Part II

Design and implementation

57

Chapter 3
User interface for verification

framework

This chapter describes both design process and final implementation of user
interface (UI) for verification framework.

This chapter consists of three sections. First section talks about designs,
while second describes the initial implementation and its shortcomings. Lastly
thirds sections focuses on the final implementation and it’s challenges.

3.1 Design of the UI
Even though the user interface was the second part of this thesis to be imple-
mented, preparations for it started during creation of the verification frame-
work in form of classes VerificationResults and VerificationMessage.
But before we get into the initial implementation and resulting problems, we
have to first talk about the design itself.

User interface for verification framework has to fulfil three functions:

1. provide user a way to start the verification that will be both simple and
quick,

2. display the results in separate window, that contains all necessary infor-
mation in one place,

3. highlight all model elements (entities, relations and generalizations), for
which either errors or warnings have been found. Also selecting verifi-
cation result should change highlight of the connected element.

Each of the following three subsections discussed design choices made to
incorporate the aforementioned functions.

59

3. User interface for verification framework

3.1.1 UI for starting verification process
Designing interface for the first function (starting the verification process) was
fairly straightforward. It was decided to expand ”Diagram” drop-down menu
at the in the top toolbar of OpenPonk editor.

Initially there was going to be only one button for starting the whole veri-
fication process including detection of anti-patterns, but after further analysis,
it was decided to split it into two buttons – one for applying verifications and
one for detection of anti-patterns.

In the latter part of implementation process we have also decided to add
third button for removing all highlights from model, otherwise they would
stay active even after closing the results window.

3.1.2 Results window
In previous section we have talked about the way to start the verification
process. It equally important to display the results.

It was decided that the best way to do this, would be to create new win-
dow containing table with multiple columns. Each row would contain single
verification result (represented in the data model asVerificationMessage)
and columns would correspond to its properties.

Results window should also allow user to inspect selected row directly
through built-in Pharo inspector and selecting row in the table should also
highlight the corresponding element in the model window.

Last step of the design was deciding which properties would be displayed
and how will they be ordered. Following list contains all displayed properties
in order from left to right.

1. Severity – warning for anti-patterns, error for verifications.

2. Object – reference to the verified element

3. Reason – contents of property messageText.

4. Documentation reference – link to the documentation at ontouml.org
portal.

3.2 Initial implementation
Even though this implementation wasn’t entirely successful, most of its code
was used in the final implementation. We will therefore start our description
with class VerificationUI that was created as part of the initial implemen-
tation and completely unchanged stayed as part of final implementation.

This subsection will be then followed by brief description of results window
implemented using library Spec and resulting problems.

60

3.2. Initial implementation

3.2.1 VerificationUI
Previously verification process was started by sending message verify: with
the verified model as a parameter to the instance of VerificationController.

As we discussed in the design section, our goal was to create button in the
drop-down menu ”Diagram” that would both start the process and after it
finishes passed its results to the results window.

This required creation of new subclass of ComposablePresenter (from
library Spec-Core) called VerificationUI. Following list contains descriptions
of its most important methods (please note that some methods in the list are
referenced using abbreviations, full names are in the footnote):

changeElementColorTo:3 Class method, that is responsible of changing color
of single element. It’s parameters are color and con-
troller of the element.

removeHighlights:4 Class method, responsible for removing highlights from
all elements in the model. Its parameter is diagram-
Controller for the of the verified model.

toolbarMenu: Class method, that checks if the currently displayed
model uses OntoUML profile. This is needed to pre-
vent verification framework UI from showing up in
models from different languages.

toolbarMenuItemFor: Class method, that defines buttons ”verify model”,
”detect anti-patterns” and ”remove highlights”.

updateElementStyle:5 Class method, that checks if results contain errors
or warnings for the updated element and changes its
color accordingly. It takes two parameters instance of
VerificationResults and controller of the updated
element.

updateElements:6 Class method, that first updates all verified elements
by calling updateElementStyle: for each of them
and then opens results window. It has two parame-
ters instance of VerificationResults and controller
of the verified model.

Buttons ”verify model” and ”detect anti-patterns” defined by method
toolbarMenuItemFor: send messages directly to VerificationController
and pass its results to updateElements:5.

3changeElementColorTo:using:
4removeHighlightsFromElementsIn:
5updateVerifiedElementStyle:using:
5updateVerifiedElements:using:

61

3. User interface for verification framework

Because VerificationController contained only methods for gathering
and applying verifications, we had to add two additional methods:

getAntiPatterns7 Instance method, that gathers all anti-pattern verifi-
cations located in OntoUML-VerificationFramework.

detectAntipatternsIn: Instance method, that applies anti-pattern verifica-
tions on model passed in parameter.

3.2.2 Spec2 results window
Initial implementation of results window was created using library Spec (we
also tried its newer version Spec2, which can be downloaded from [18]). This
library was chosen because it is used through most of the OpenPonk UI and
therefore it would be easier to make the new results window math the style of
OpenPonk.

The goal was to create results window with multicolumn table. Documen-
tation for such element was rather scarce, so in the end it was decided to use
class MultiColumnListModel. But with it lied the first problem, each row in
this multicolumn list consist of several cells and each cell is represented by a
single string.

It was therefore needed to separately obtain each displayed property from
VerificationMessage and one by one convert them to string, then those
values had to be in correct order put into collection representing row and all
rows had to be put into additional collection along with table header to make
contents of the table.

MultiColumnListModel was proving to be a bit clumsy, but the main
problem came during implementation of row inspection and highlighting ele-
ment corresponding to the selected row. Since all rows were just collections of
strings, they didn’t contain any reference to the VerificationMessage and
therefore no reference to the verified element.

Those problems could be partially resolved, but it would result in fragile
code that would be very hard to maintain. So in the end it was decided to
abandon Spec and instead use resources build in to the Pharo itself.

3.3 Final implementation
In previous sections we have described class VerificationUI, changes to class
VerificationController and implementation of results window using library
Spec2.

We have also discussed problems with the Spec2, which lead to creation
of second and final implementation. But before we start with its description,

7getAntiPatternVerifications

62

3.3. Final implementation

it is necessary to mention, that both VerificationUI and changes to class
VerificationController have been kept over from the initial implementa-
tion.

3.3.1 Results window using inspector tool
Problems with the previous implementation forced us to look for another
solution. We have found it in the tool which has been built into the Pharo
from the very start. It’s called Inspector.

This tool allows inspection of any class or its instance in current Pharo
image. It is also possible to customize contents of the inspection window by
implementing instance method gtInspectorTableIn: in the inspected class.

Since verification process returns its findings in form of instance of class
VerificationResults that holds individual VerificationMessages, we had
to create two more UI classes. First let’s look at class VerificationMessageUI
which has only one method:

getObjectReferenceName: Class method, that returns formatted name of
referenced object. It has one parameter, which is in-
stance of VerificationMessage.

Second class VerificationResultsUI has much more methods, twelve of
them to be exact. To increase clarity of the following list we have omitted
six of them, because they are just simple getters and setters for properties
verificationResults, controller and highlights. Please note that some
methods are referred using abbreviations, due to their name being too long.
Their full names are in the footnotes.

changeElementColor:8 Instance method, responsible for changing color for
single element. It’s parameters are element and color.

createUIFor:9 Class method, parametric constructor that takes in-
stance of VerificationResults and collection of UI
controllers for all elements (classes, generalizations
and associations) in the model as parameters.

getElementColor: Instance method, that returns stroke colour of element,
that was passed in parameter.

gtInspectorTableIn: Instance method, defines custom inspection page with
multicolumn table, containing all verification results.

8changeElementColor:toColor:
9createUIFor:withControllers:

63

3. User interface for verification framework

highlightElement: Instance method, responsible for highlighting selected
element. It first checks if it is already highlighted and
stops if it is. Otherwise it changes color of all high-
lighted elements to the previous one, saves color of the
selected element and then highlights it. Parameter of
this method is the element that should be highlighted.

notifySelectChanged: Instance method, acting as event handler responsi-
ble for calling highlightElement: whenever selection
changes.

Even this implementation started with some problems, the most notable
one was acquiring currently selected row in the table. There were multiple
tries to solve this problem, but in the end it was solved by creating new class
of called GLMTableSelectablePresentation, that expands parent class with
the methods necessary for reliably acquiring the selected row.

Expansion itself consist of adding collection for selection: handlers,
method for registration of those handlers and finally overriding of method
selection: to include call to all registered handlers. Code of this override
can be seen bellow.

selection: anObject
super selection: anObject.
onSelectHandlers do: [:handler |

handler notifySelectChanged: self selection].

64

Chapter 4
Updating framework

Even though it is not the biggest part of this thesis, it was definitely the
most challenging one. Updating framework itself is extension of verification
framework and can be split into three parts characterised by affected classes:
updating process itself represented by OntoUMLVerificationUpdater, parsing
OntoUML definitions using OntoUMLStereotypeYaml and lastly changes made
to updated verification classes.

But before we can delve into describing implementation of each of those
parts, we first need to discuss design of the updating framework as a whole.

4.1 Design of the updating framework

Significant part of verification classes matches one or more properties of the
verified element against collection of permitted values. Good examples for this
are AllowedSupertypeVerification and AllowedSubtypeVerification.

Both of them inspect generalization and check if the stereotype of super-
type/subtype is permitted based on the stereotype of the other type. This is
done through dictionary with keys represented by OntoUML class stereotypes
and values mapped to collections of allowed class stereotypes.

All those values have been hard coded into the verification classes. Ordi-
narily this would be just a small issue, but since OntoUML is being continu-
ously developed and expanded, it was necessary to create user friendly process
that would automatically apply changes in the OntoUML specification directly
to the the verification classes.

Rather than saving all OntoUML specifications into separate files and
loading them each time user wants to verify a model, we have decided to try
meta-programming, using code reflection and through it allow verifications to
regenerate their own source code. This split the work on the framework to the
three aforementioned parts: parsing and transforming OntoUML specification,

65

4. Updating framework

defining and controlling the updating process and updating the verification
classes themselves.

Following three sections each delve into both design and implementation
for each of the parts and each section is named after the representative class.

4.2 OntoUMLStereotypeYaml
First task of the updating framework is to download and parse OntoUML
specification for stereotypes. This specification is currently located in Github
repository together with the source files for the ontouml.org portal. Each
OntoUML stereotype has its own specification file written in YAML.

YAML™ (rhymes with ”camel”) is a human-friendly, cross language, Uni-
code based data serialization language designed around the common native data
structures of agile programming languages. [19]

This meant that each file containing specification for a single stereotype
had to be parsed and transformed into form suitable for further use by updat-
ing framework. Parsing itself is done in OntoUMLVerificationUpdater, but
its result are still not suitable for use by updating framework.

We have therefore created class OntoUMLStereotypeYaml, that encapsu-
lates the parsed document, defines basic interface for accessing the raw result
and also implements parsing corrections (there are some minor differences
between internal stereotype names in OpenPonk and in specification files).

There are two additional subclasses OntoUMLClassStereotypeYaml and
OntoUMLAssociationStereotypeYaml. Each of them defines methods for ac-
cessing properties for the parsed class/association stereotype specification.

Here is the list of methods of class OntoUMLClassStereotypeYaml that
allow access to similarly named properties:

abstract specifies if the stereotypes is abstract, possible values
are true, false or undefined.

dependency specifies if the stereotype is relationally dependant.

forbiddenAssociations specifies collection of forbidden relations.

identityPrinciple defines how/if stereotype follows identity principle.

name specifies name of the class stereotype.

providesIdentity defines if stereotype provides identity for its subtypes.

rigidity specifies rigidity of the stereotype.

subtypes specifies collection of allowed subtypes.

supertypes specifies collection of allowed supertypes.

66

4.3. OntoUMLVerificationUpdater

Relationship stereotype specifications have a slightly different format (rep-
resented by OntoUMLAssociationStereotypeYaml) and include several struc-
tured properties, most notably properties for both source and target end. We
have decided to create method for accessing the ends as a structure and their
”subproperty” allowed due to its importance for the updated verifications.

OntoUMLAssociationStereotypeYaml provides following methods.

allowedSources specifies collection of allowed stereotypes at the source
end.

allowedTargets specifies collection of allowed stereotypes at the target
end.

binaryProperties structured property, that specifies reflexivity, transi-
tivity, symmetry and cyclicity.

directed specifies if the relation is directed or directionless.

name specifies name of the relation stereotype.

sourceEnd structured property, that specifies values for lower and
upper multiplicity bounds, readOnly mate-property
and list of allowed stereotypes for the source end.

targetEnd structured property, that specifies values for lower and
upper multiplicity bounds, readOnly mate-property
and list of allowed stereotypes for the target end.

Every single method had to be tested, but this lead to a problem. Parsed
specification is fairly complicated structure and it would require test data of
similar complexity. It was therefore decided to create ”Mock” subclass for both
OntoUMLClassStereotypeYaml and OntoUMLAssociationStereotypeYaml.

These ”Mock” classes define setters for all properties that don’t already
have them. This allows for massive simplification of test data and creation of
clear unit tests.

4.3 OntoUMLVerificationUpdater
OntoUMLVerificationUpdater is the hearth of the updating framework. It
is responsible for control of the entire updating process and as such contains
single method that starts the entire process, methods for downloading and
parsing specification from source files, transforming the parsed results using
OntoUMLClassStereotypeYaml and finally calling method updateFrom: for
every single verification.

First we’ll discuss how are the specifications downloaded and parsed in
separate subsection and then describe execution of the update itself.

67

4. Updating framework

4.3.1 Specification loading and parsing

We have previously mentioned that the specifications are located in Github
repository together with other source files for the ontouml.org portal. Each
stereotype has its own separate specification and since the repository is struc-
tured mostly according to OntoUML stereotype hierarchy, each of the speci-
fications is located in its own directory and may or may not share some part
of its path with specifications for other stereotypes.

Hardcoding references to for such structure into the updating framework
would be highly inefficient and it would lead to unmanageable code. We have
therefore created file called updatingIndex.yaml. This file is located at the
very top of the repository and contains paths to all stereotype specifications.

First step of the loading process is to download and parse this index.
Parsing itself is done using class PPYAMLGrammar, which is part of PetitParser
framework. This open-source framework can be downloaded from here [20].

After loading and parsing of the index, we need to load and parse all
stereotype specification mentioned in the index. Parsing is again done using
PPYAMLGrammar, but this time we have to encapsulate each parsed specifica-
tion either into instance of OntoUMLClassStereotypeYaml or into instance of
OntoUMLAssociationStereotypeYaml based on the type of the specification.

Resulting collection is then passed to the updated verifications, but we’ll
look at it in more detail in the next subsection. Before that here is list of most
important methods used to loading and parsing of both updatingIndex.yaml
and stereotype specifications. Some methods are referenced using abbrevia-
tions, full names are in footnotes.

loadClassSpec:10 Instance method, responsible for downloading single
class specification. Takes url of the specification as a
parameter.

loadClassSpecs11 Instance method, responsible for downloading all class
specifications.

loadDocRef12 Instance method, responsible for loading collection of
references to documentation, that is located at portal
ontouml.org.

loadIndex Instance method, responsible for both downloading
and parsing updatingIndex.yaml.

10loadClassSpecification:
11loadClassSpecifications
12loadDocumentationReferences

68

4.3. OntoUMLVerificationUpdater

loadRelSpec:13 Instance method, responsible for downloading single
relation specification. Takes url of the specification as
a parameter.

loadRelSpecs14 Instance method, responsible for downloading all rela-
tion specifications.

parseClassYaml: Instance method, responsible for parsing and trans-
forming specification of single class stereotype. Takes
contents of YAML document as parameter.

parseRelYaml:15 Instance method, responsible for parsing and trans-
forming specification of single relationship stereotypes.
Takes contents of YAML document as parameter..

parseYaml: Instance method, responsible for parsing all YAML
documents. Takes contents of YAML document as
parameter.

4.3.2 Managing updating process
So far we have described how OntoUMLVerificationUpdater handles down-
loading, parsing and transforming of stereotype specifications. All that is left
is to discuss how does it handle updating itself.

This can be best explained by its only class method updateVerifications.
Please note that there are two methods called updateVerifications one is
class method and it’s code can be seen directly bellow this paragraph and the
second instance method will be described later.

updateVerifications
| updater |
updater := self new.
updater classSpecifications: updater loadClassSpecifications.
updater relationshipSpecifications:

updater loadRelationshipSpecifications.
updater loadDocumentationReferences.
updater updateReferences.
updater updateVerifications.

From the code above we can see the entire process. First it creates new
instance of OntoUMLVerificationUpdater, then it loads, parses and trans-
forms class and relationship specifications, which are then saved into internal

13loadRelationshipSpecification:
14loadRelationshipSpecifications
15parseRelationshipYaml:

69

4. Updating framework

collections. It also parses and saves all references to OntoUML documenta-
tion.

Now to the last two methods updateReferences and updateReferences.
Both of them are fairly simple with similar implementation, but both are
crucial to the updating framework. Following list contains descriptions for
them and most important accessing methods. Some methods are referred
using abbreviations, their full names are in the footnotes.

updateReferences Instance method, that forces update of constants in
class OntoUMLDotOrgReferences.

updateVerifications Instance method, that forces update of constants in
all verification classes.

classDocReferences16 Instance method, that provides access to collection of
loaded references to class documentation, located on
portal ontouml.org.

classSpecifications Instance method, that provides access to collection of
OntoUMLClassStereotypeYamls encapsulating speci-
fications for class stereotypes.

relDocReferences17 Instance method, that provides access to collection of
loaded references to relationship documentation, lo-
cated on portal ontouml.org.

relSpecifications18 Instance method, that provides access to collection of
OntoUMLAssociationStereotypeYamls encapsulating
specifications for relationship stereotypes.

List above contains several accessing methods, that are used by updated
classes. Putting all stereotype specifications into one collection would only
increase overhead, because each updated class would have to filter between
class and relationship specifications.

Passing only the correct collection to the updated class wouldn’t help
that much. OntoUMLVerificationUpdater would have to implement logic for
distinguishing between different types of updated classes (class/relationship
verifications).

Access methods allow us to use double dispatch, i.e., pass reference for
OntoUMLVerificationUpdater to the updated class and let the class select the
correct collection of stereotype specifications. Double dispatch also simplifies
future expansions of the updating framework.

16classDocumentationReferences
17relationshipDocumentationReferences
18relationshipSpecifications

70

4.4. Changes to verification framework

Instance method updateVerifications implements one half of the double
dispatch pattern, other half is implemented in all updated classes. Following
source code contain implementation of the aforementioned method.

updateVerifications
self getVerifications do: [:verification |

verification updateFrom: self].

4.4 Changes to verification framework
Previous sections talked about updating framework and classes from which
it consists. This section describes changes and additions to the verification
framework, that were needed to connect both frameworks together.

We will start our description with changes to the structure of packages
that form the verification framework and continue with newly created traits
TClassUpdater and TCodeInjectionChecker. Next we will discuss creation
of class OntoUMLDotOrgReferences, which will be followed by description of
changes done to Verification itself. This section will be finished with exam-
ple: implementation of updating methods by AllowedSubtypesVerification.

4.4.1 Restructuring of the verification framework
Verification framework was originally split into five separate packages, which
proved to be impractical. Therefore as part of development of updating frame-
work, we have merged all five packages into one.

Each package is now represented by tag applied to all classes that used to
be part of the original packages. Same principle bas been applied for all new
classes created as part of this thesis, so for example all UI classes have been
marked by tag UI, all verifications are now tagged as verification-classes
and so on.

This lead to changes in VerificationController, most notably in its
method getVerifications originally loaded all verifications from their own
separate package.

4.4.2 New traits
Before we can talk about OntoUMLDotOrgReferences and Verification, it
is necessary to describe two new traits created for the updating framework.
Those traits are TClassUpdater and TCodeInjectionChecker. They are ap-
plied through composition to all updated classes.

Let’s start with the TClassUpdater. It contains single class method called
updateMessage:withClassification:. As we can see from its source code
bellow, it takes two parameters aMessageCode (contains code of the newly

71

4. Updating framework

created method) and aClassification (name of protocol, under which it
will be saved) and compiles new method into the trait / composing class.

updateMessage: aMessageCode withClassification: aClassification
self class compile: aMessageCode classified: aClassification.

Trait TCodeInjectionChecker is used in conjunction with TClassUpdater.
It contains two methods, that are called checkStringForCodeInjection:
and checkUrlForCodeInjection:. Both of them are used to prevent gener-
ated code from injecting and executing malicious code.

4.4.3 OntoUMLDotOrgReferences
Part of the updating framework are also references to documentation on portal
ontouml.org and their updating. This means two things. First, that it would
be necessary to expand VerificationMessage by adding methods for getting
and setting documentation reference and second, that new class for holding
all references to portal ontouml.org would have to be created.

Expansion of the VerificationMessage class added new property called
documentationReference and its getter and setter. Since verifications don’t
have their own documentation (they are result of class and relationship spec-
ifications), most of the documentation references would be determined by the
verified object.

We have therefore expanded getter for documentationReference. If first
checks if the values is not nil (not empty) and if it is empty, loads documen-
tation reference for the verified object into the property before it returns its
value as normal.

This leads to us to class OntoUMLDotOrgReferences. It holds all references
for documentation on class and relationship stereotypes. Each reference is
represented by its own method named after the referenced stereotype and
the url itself is hardcoded. Normally this would lead to code that would be
difficult to manage, but because this class was created as part of the updating
framework, all reference methods were generated using the updating process
and can be simply regenerated after every change in the documentation.

Following list contain the most important methods implemented by class
OntoUMLDotOrgReferences. Note that this list is not complete due to sheer
number of the methods and due to the fact, that several methods are obtained
from traits TClassUpdater and TCodeInjectionChecker. Some methods are
referred using abbreviations, their full names are in the footnotes.

getDefRefFor:19 Class method, that takes class or relation as parameter
and returns url to documentation of applied stereo-
type applied to class/relation.

19getDefinitionRefereceFor:

72

4.4. Changes to verification framework

getDefRefForSterCode:20 Class method, that takes key-value pair consisting
of stereotype name and documentation reference as a
parameter. It returns string containing with source
code for method with hardcoded documentation ref-
erence.

updateFrom: Class method, that has one parameter, which is in-
stance of OntoUMLVerificationUpdater and regen-
erates all methods with documentation references.

OntoUMLDotOrgReferences also contains methods for all references to
stereotype documentation (and in future to documentation of anti-patterns).

Those methods are named in following way getDefinitionRefereceFor
followed by name of the referenced stereotype.

4.4.4 Updating verification classes
Next step in the development of the updating framework was expansion of
the Verification abstract class. This meant adding following three new
methods (some of them are referred using abbreviations, their full names are
in the footnotes):

expandAllowedClStIn:from:21 Class method, that takes two parameters: col-
lection of strings (stereotype names) and instance of
OntoUMLVerificationUpdater. It iterates through
the collection and if necessary expands subcolections
defined by values ”functional complex” or ’*’.

expandClSt:from:22 Class method, takes string containing class stereotype
name, functional complex or ’*’ (symbol for all stereo-
types), if necessary expands it using second parame-
ter (instance of OntoUMLVerificationUpdater) and
returns collection of strings.

updateFrom: Class method, that takes one parameter instance of
OntoUMLVerificationUpdater. Subclasses that want
to included in the updating process need to override
this methods.

All three methods are meant to be used by subclasses of Verification.
Method updateFrom: was kept intentionally empty instead of making it ab-
stract and because of this OntoUMLVerificationUpdater can send this mes-
sage to all verifications and update only those that override it with own their
specific code. Example of such implementation is in the next subsection.

20getDefinitionReferenceForStereotypeCode:
21expandAllowedClassStereotypesIn:from:
22expandClassStereotype:from:

73

4. Updating framework

4.4.5 Example implementation of
AllowedSubtypesVerification

Until now we have described every principle behind the updating framework,
from loading, parsing and transforming specifications to changes made to class
Verification. But there one thing is still missing – example for the imple-
mentation of the updating methods in non-abstract class.

Therefore we will look at class AllowedSubtypesVerification, starting
with implementation of method updateFrom:.

updateFrom: aVerificationUpdater
| updatedMessageCode |
updatedMessageCode :=

self getUpdatedMessageCode: aVerificationUpdater.

aVerificationUpdater classSpecifications
do: [:classSpecification |

self setValidSubtypesFor: classSpecification name
fromCollection: classSpecification subtypes.].

self updateMessage: updatedMessageCode
withClassification: 'constants'.

As we can see implementation of method updateFrom: does three things.
First it call method getUpdatedMessageCode:, that returns string with source
code for method validSubtypes which builds stereotype dictionary from
Pharo associations (key-value pairs) using class specifications contained in
OntoUMLVerificationUpdater.

Next block of code (re)generates methods, that contain aforementioned
Pharo associations with class stereotype as key and collection of allowed sub-
types as value.

Last block of code uses variable updatedMessageCode, that contains code
obtained in the first step, to (re)generate method validSubtypes.

All updated verification contain similar implementation of updateFrom:,
first calling another method to get the new code and then (re)generating it.

Before the end of this section (and chapter) let’s look at two more code
snippets first is shortened implementation of method validSubtypes (we have
omitted several lines, which build parts of the dictionary).

validSubtypes
| result |
result := Dictionary new.
result add: self validSubtypesForKind.
result add: self validSubtypesForRoleMixin.
^ result.

74

4.4. Changes to verification framework

Second code snippet contains method getUpdatedMessageCode:, which is
used to generate string containing source code of the aforementioned method
validSubtypes showed above (we have removed all comment lines from this
code for this example).

getUpdatedMessageCode: aVerificationUpdater
| validSubtypesCode |
validSubtypesCode := 'validSubtypes
| result |
result := Dictionary new.'.

aVerificationUpdater classSpecifications
do: [:classSpecification |

self checkStringForCodeInjection:
classSpecification name.

validSubtypesCode := validSubtypesCode ,
(String with: Character cr),
'result add: self validSubtypesFor' ,

classSpecification name, '.'].

validSubtypesCode := validSubtypesCode ,
(String with: Character cr),
'^ result.'.

^ validSubtypesCode.

As we can see in the generating code above, every time we include any
value outside of the prepared code we need to check if it does not contain
unexpected code, which would cause code injection.

75

Chapter 5
Design and implementation of

anti-pattern verifications

Even though the implementation of anti-pattern verification/detection repre-
sents the biggest part of this thesis (in the terms of analysis, implementation
and documentation), this design and implementation chapter will be shorter.

Sizeable part of the design was done during the development of the verifi-
cation framework, which was created by author as his bachelor’s thesis. Veri-
fication framework was conceived with possibility of anti-pattern extension in
mind and this greatly reduced time needed for design and implementation of
the anti-pattern verifications themselves.

This chapter is divided into two sections. First section contains brief design
descriptions for each implemented anti-pattern and second explains general
principles behind anti-pattern implementation.

5.1 Design of anti-pattern verifications
This section is split into twenty subsections one for each implemented anti-
pattern. Each subsection contains brief description of algorithm used for de-
tection of the discussed anti-pattern. Please note that we refer to all anti-
patterns using their abbreviations.

5.1.1 Design of BinOver anti-pattern verification
Occurrence of anti-pattern BinOver is characterised by relation between two
overlapping types source and target. Since BinOver detects overlap for all
relations it was one of the hardest anti-patterns to implement, as it required
the most precise detection of overlapping types.

Types A and B are considered to be overlapping when they fulfil at least
one of the following conditions:

77

5. Design and implementation of anti-pattern verifications

1. A is equal to B.

2. A is ancestor of B or B is ancestor of A.

3. A and B are sortals, have the same identity provider and there is no
generalization set, that makes them disjoint.

4. A and B are both relators or modes with common ancestor and there is
no generalization set, that makes them disjoint.

5. A and B are mixins, that either have at least one common sortal descen-
dant, or have common ancestor and none of their subtypes are sortals.

This means that we had to implement methods for obtaining identity
providers, ancestor trees and using those calculate ”identity paths” for both
types A and B, before we could check the overlap.

It was also necessary to check for generalization sets in the common parts
of the ancestor tree that have meta-property isDistinct set to true.

5.1.2 Design of DecInt anti-pattern verification
DecInt anti-pattern occurs when type specializes two or more concrete types.
Anti-pattern itself has just three additional conditions:

1. Generalization between type and its parent must be syntactically valid.

2. Parent type mustn’t be abstract.

3. All generalization sets, that have parent type as supertype must have
meta-property isCovering set to false.

We have decided to omit the first additional condition in our implemen-
tation. This will result in slightly more detected occurrences, but in this case
we think its better to warn the modeller using both dedicated verification and
this anti-pattern.

Latter two additional conditions are part of single method that returns all
concrete parents for the tested type.

5.1.3 Design of DepPhase anti-pattern verification
DepPhase anti-pattern occurs when there is a phase directly connected to
relation stereotyped as mediation.

Due to simplicity of the rule, we have decided to implement it using only
one method that simply checks if the phase is connected to at least one medi-
ation.

78

5.1. Design of anti-pattern verifications

5.1.4 Design of FreeRole anti-pattern verification
FreeRole anti-pattern occurs when there is a role, that has its mediation de-
pendency fulfilled indirectly by ancestral role or if is mediation dependency is
unfulfilled.

Therefore we have to start our verification of role by getting all its ancestors
stereotyped as role. Then get all mediations that are directly connected to
the role or one of the ancestral roles. After that we have to check if the
inspected role is directly connected to at least one mediation and if not, check
the ancestral roles in the same way.

Again we have decided to omit part of this anti-pattern - complete check
for fulfilment of mediation dependency. This is covered by existing verification
called RoleMediationDependencyVerification.

5.1.5 Design of GSRig anti-pattern verification
GSRig anti-pattern occurs when single generalization set with rigid supertype
contains subtypes that follow different rigidity principles.

During design we have decided to implement it using four methods. First
method checks if the supertype is rigid. Then we have two methods one for
finding rigid subtypes and one for finding anti-rigid subtypes. Last method
manages the entire process and returns the final result.

5.1.6 Design of HetColl anti-pattern verification
HetColl anti-pattern occurs when ”collective” has multiple different parts.
Design of the anti-pattern verification is very simple, it contains two methods,
one that checks if the ”collective” has more than one part (either directly,
or indirectly through its ancestors) and second one that checks if the type is
”collective”.

Reason why we are talking about ”collective” is because this anti-pattern
is applicable to following stereotypes:

• collective,

• subkind, phase or role, that have collective as their ancestor (direct or
indirect),

• category, mixin, phasemixin or rolemixin, whose children are all ”collec-
tives”.

5.1.7 Design of HomoFunc anti-pattern verification
HomoFunc anti-pattern occurs when functional complex has multiple parts
and all parts are of the same type.

79

5. Design and implementation of anti-pattern verifications

We have split the detection into four methods. First method represents
the detection process, call all other methods and returns findings. Second and
third methods are responsible for verifying that the inspected type is actually
functional complex. Last method is needed for obtaining sortal descendants
of the inspected type.

5.1.8 Design of ImpAbs anti-pattern verification

ImpAbs anti-pattern occurs when at least one end of a relation has its lover
bound multiplicity grater or equal to two and the connected type has at least
two subtypes.

ImpAbs anti-pattern verification was split into three methods. One method
for obtaining lower bound multiplicity, another method for counting subtypes
of the inspected type and lastly method, that encapsulates the process and
returns its findings.

5.1.9 Design of MixIden anti-pattern verification

MixIden anti-pattern occurs when children of type sterotyped as category,
mixin, phasemixin or rolemixin follow the same identity principle.

This calls for four methods. First method to manage the detection process,
second method for obtaining identity providers of a type, third method for
checking if stereotype provides identity and last method for detecting identity
overlap.

5.1.10 Design of MixRig anti-pattern verification

MixRig anti-pattern occurs when type stereotyped as mixin has only rigid
or non-rigid subtypes (those subtypes can be either direct or indirect if all
subtypes between the ancestor mixin and descendant type are stereotyped as
mixin).

Detection of the anti-pattern occurrence is relatively easy and thus it could
be handled by one method, but obtaining all subtypes of the mixin and child
mixins had to be handled by separate recursive method.

5.1.11 Design of MultDep anti-pattern verification

MultDep anti-pattern occurs when type (other than relator) is mediated by
at least two distinct relators. There is an exception to this rule – if one or
more connected relators are direct or indirect child of other connected relator,
MultDep does not occur.

We have split the detection into three methods. One method to manage
the process and two for checking if the is hierarchy between the relators.

80

5.1. Design of anti-pattern verifications

5.1.12 Design of PartOver anti-pattern verification

PartOver anti-pattern occurs when part composes two or more overlapping
wholes. OntoUML defines four different path-whole relations: subQuantityOf,
componentOf, memberOf and subCollectionOf.

Since part-whole relations limit possible stereotypes that could be over-
lapping it wasn’t necessary to design and implement full overlap detection.

This means that detection of PartOver can be split into just five methods.
First it is necessary to get all part-whole relations in which the verified type
acts as part. After that we have to check upper multiplicity for all connected
part-whole relation. Next we need to check for both regular and mixin overlap.
Lastly we have to create method that encapsulates the entire process.

5.1.13 Design of RelComp anti-pattern verification

RelComp anti-pattern occurrence is characterised by two different relations:
relation A, that must have multiplicity bounds set on its target end to at
least one for the lower bound and at least two for the upper bound, and B.
Additionally source or target of relation A has to be ancestor or equal to
source and target of relation B.

Detection of the RelComp has to be therefore split into four methods: one
to represent the detection process, another that checks if one type is ancestor
or equal to second type, next method has to check the required cardinality
and the last one for that would apply previously mentioned methods on all
associations connected to verified type.

5.1.14 Design of RelOver anti-pattern verification

RelOver anti-pattern occurs when single relator mediates multiple overlapping
types. Anti-pattern RelOver is similar to PartOver anti-pattern.

Because of this we were able to reuse design of the PartOver anti-pattern
verification, with the only changes being in the implementation of method rep-
resenting the detection process and method responsible for obtaining mediated
types.

5.1.15 Design of RelRig anti-pattern verification

RelRig anti-pattern occurs when relator mediates one or more rigid types and
their ends are not marked as read-only.

Detection of RelRig is simple enough to be handled by single method, that
collects all mediations connected to the relator and checks if at least one of
the mediated ends is rigid and not read-only.

81

5. Design and implementation of anti-pattern verifications

5.1.16 Design of RelSpecs anti-pattern verification
RelSpecs anti-pattern occurrence is characterised by two different relations A
and B. Additionally one of the following conditions has to be fulfilled:

• source of A has to be ancestor of or equal to source of B and target of
A has to be ancestor of or equal to target of B;

• target of A has to be ancestor of or equal to source of B and source of
A has to be ancestor of or equal to target of B.

During design we have decided to implement it using three methods. First
method to check if one type is ancestor or equal to second type. Second
method to represent the detection itself and third method to apply previous
methods to all relations connected to verified type.

5.1.17 Design of RepRel anti-pattern verification
RepRel anti-pattern occurs when single relator is connected to multiple me-
diations and all of those mediations have upper bound multiplicity on the
relator end greater or equal to two.

Its anti-pattern verification has three main methods, one method to obtain
all mediations for relator and its ancestors, another mediation for getting
upper bound multiplicity at the relator end from a mediation and last one to
represent the detection itself.

5.1.18 Design of UndefFormal anti-pattern verification
UndefFormal anti-pattern occurs when formal relation connects types, that
don’t own/inherit any qualities or attributes.

We had to implement three methods. First to check if type owns or inherits
any attributes, second to check if type owns or inherits any qualities and third
that contains the detection algorithm.

5.1.19 Design of UndefPhase anti-pattern verification
UndefPhase anti-pattern occurs when common parent of all phases in a par-
tition does not own or inherit any qualities, modes or attributes.

This is another case of anti-pattern detection in which we decided to make
a small deviation from the specification. Instead of running detection on
generalization sets (which define partitions), we are looking for occurrence of
UndefPhase from each phase.

Reason for this difference between specification and implementation lies in
the way in which OpenPonk model stores generalization sets which is slightly
different to the way in which verification framework obtains all elements for
verification / anti-pattern detection.

82

5.2. Implementation of anti-pattern verifications

Using phases to detect occurrence might produce few more false alarms,
but all of those are special cases of intentional partitioning (see part Review
and analysis, chapter Anti-patterns, section UndefPhase).

Otherwise design and implementation are almost identical to UndefFormal
anti-pattern verification.

5.1.20 Design of WholeOver anti-pattern verification
WholeOver anti-pattern occurs when whole is composed of two or more over-
lapping parts. Is almost identical to PartOver only difference between them
is that WholeOver looks at whole ends of part-whole relations while PartOver
looks at the part ends.

Due to this design and implementation of both anti-pattern verification
differs only in few details (mainly relation ends accessed during the detection).

5.2 Implementation of anti-pattern verifications
Previous section discussed design of each anti-pattern verification. In this
section we are going to describe thei implementation as part of the verification
framework.

First of all, we need to explain why are we calling those classes anti-pattern
verifications instead of using more appropriate name – anti-pattern detectors.
This is result of their integration into the verification framework. All classes
created for detecting anti-pattern occurrences are direct or indirect (through
class StereotypeVerification) subclasses of Verification.

This means that every anti-pattern verification must implement following
methods:

verifiedClass Class method, that specifies class, to which can be this
verification applied.

verifiedSterotype Class method, that specifies collection of stereotypes,
that can be inspected by this verification. Only sub-
classes of StereotypeVerification implement this
method.

verifyObject:withModel: Instance method, responsible for performing the
verification/detection itself. Its parameters are veri-
fied object (method canVerify: makes sure it will have
correct class and stereotype) and verified model.

Rest of the implementation is either specific to each anti-pattern verifica-
tion, or it’s provided by the verification framework (for more information see
chapter OntoUML and OpenPonk review, section OpenPonk).

83

Part III

Documentation and testing

85

Chapter 6
Testing

This chapter is split into two sections. First sections describes design, im-
plementation and problems with unit test, while second section briefly talks
about tests on real models.

6.1 Unit tests
No matter how good we thing the design and implementation of any program
are, it sis always necessary to create (unit) test to both prove that it works
as intended and to help maintaining its integrity during future updates and
expansions.

Luckily for us, Pharo provides unit test framework that is both robust and
easy to use. With its help we were able to create unit tests for most methods
written as part of this thesis.

Even classes that have higher amount of methods without concrete unit
test (such as BinOverAntipatternVerification), have at least one test that
covers all methods at once.

Since all anti-pattern verifications are subclasses of either Verification
or StereotypeVerification, classes containing their unit test had to spe-
cialize either AbstractVerificationTest or StereotypeVerificationTest
in similar way. This means that every method inherited from original verifi-
cations had already its own unit test prepared and in most cases we had to
only prepare data for the test. Example of this can be seen in figure 6.1

Creating unit test for methods generated by updating framework proved to
be much bigger challenge. Tests that cover code generation were split into two
types. First type validates code of the generated methods without actually
compiling them. Second type validates generation itself, i.e., test that we can
use appropriate methods to generate/regenerate methods.

In addition all generated methods have to be checked, to be sure that they
do what they are supposed to do. This presented another problem number

87

6. Testing

Figure 6.1: Unit tests for class UndefPhaseAntipatternVerification

of the tested methods is not known before runtime. Therefore all generated
methods would have to have generated unit test (this would be a bit impracti-
cal) or we would have to create single test for each group of generated methods
and call test them using a cycle.

We have chosen the latter option. If the test fails we won’t know which
method caused it immediately (it would require additional analysis), but since
all methods covered by one test are generated by the same code, there is a
very good chance that all of them are malformed.

However, we run into one more problem – how to call multiple methods
without knowing their names before runtime? Or solution lies again in use
of meta-programming, concretely in reflection. Following code snippet shows
implementation of unit test for methods validSubtypesFor*, where * should
is replaced by name of class stereotype, for which was the method built.

testValidSubtypesFor
| methodList |
methodList := (AllowedSubtypesVerification class localMethods
collect: [:method | method selector])

select: [:methodName |
methodName matchesRegex: 'validSubtypesFor.*'].

self assert: methodList isNotEmpty.
methodList do: [:methodName | self assert:
(((OntoUMLDotOrgReferences class >> (methodName asSymbol))

valueWithReceiver: nil arguments: #())
findString: 'http://') equals: 0.].

88

6.2. Tests on real models

Code above was split into three blocks for better reading. First block uses
reflection to collect all validSubtypesFor* methods. Second block checks
that the list is not empty and the third block uses meta-programming to call
each tested methods using string with its name.

6.2 Tests on real models
In addition to the unit test, we have also tested detecting anti-patterns in real
models. Model shown in figure 6.2 was the biggest one with well over hundred
elements (50 types, 59 relations and 27 generalizations). This model (along
with other models used for testing) was created as part of commercial project
and therefore we cannot provide much additional information about it, except
that it was chosen for its considerable size and complexity.

We have applied both OntoUML verifications and anti-pattern detection
to this model and to our pleasant surprise run time for both processes was
around one second. OntoUML verifications found two errors, both of them
were result of inverting source and target of a mediation.

Anti-pattern detection discovered seventeen anti-pattern occurrences, in-
cluding one occurrence of ImpAbs, three cases of MixIden, one instance of
MultDep, four occurrences of RelRig, four cases of RelSpecs and finally four
instances of RepRel.

It is worth noting that this model was obtained during its creation, but as
can be seen from the number of verification errors (only two minor ones), its
creators focused on its from the beginning correctness. Nevertheless number
of detected anti-patterns show, that there are still some problems with its
semantics.

89

6. Testing

Figure 6.2: Real life reference model after anti-pattern detection

90

Chapter 7
Documentation

Documentation for practical part of this thesis consists of three parts. First
part is this text, which contains explanation of for both design and implemen-
tation of the practical part.

Second part is located directly in the implementation itself in form of
comments for both classes and methods. This can be seen in figure 7.1 which
contains comments for class BinOverAntipatternVerification.

Figure 7.1: Documentation for BinOverAntipatternVerification

Last part of the documentation is located on portal ontouml.org. It consists
of twenty pages, one for each anti-pattern. Those pages were created using
anti-pattern summary tables form [17].

Format of the tables had to be changed, diagrams had to be extracted
form the original text and in some cases, we also had to draw new diagrams
with examples.

There are also plans for expansion of the anti-pattern section outside scope
of this thesis in form of additional examples taken from this thesis and creation
of educational clips that will provide additional explanation of the anti-pattern
problematic.

91

Conclusion

Goal of this master’s thesis was extending OntoUML modelling capabilities of
OpenPonk platform with three new functionalities: graphical user interface for
displaying verification results, updating framework (including integration into
the existing verification framework) and OntoUML anti-pattern detection.

First, we reviewed and analysed OntoUML modelling language, Open-
Ponk platform, OntoUML verification framework and there was a full chapter
dedicated to OntoUML anti-patterns which provided both explanation and
examples for each anti-pattern.

Next part focused on design and implementation of aforementioned func-
tionalities, which were successfully integrated into existing verification frame-
work. During the design we put emphasis on ease of use (in case of the user
interface), modifiability and expandability. This was done to provide stable
and long lasting additions to the OpenPonk platform.

Third part of this thesis was aimed at verifying the new functionalities
using unit test for most of the internal classes and reference model for demon-
stration of anti-pattern detection and user interface.

Last part was dedicated to documentation, which is located at three sep-
arate places. First part of the documentation is represented by this thesis,
second part is in the newly implemented code and the third part is located in
new section of ontouml.org dedicated to anti-pattern.

With this I have fulfilled all goals set at the start of this thesis, but there are
still many ways for OpenPonk expansion. There are additional anti-patterns
that were out of scope of this thesis, because they would require major overhaul
of the verification framework.

There are also OntoUML patterns, that represents structures for typical
use cases and their addition would help both new and experienced modellers.
Lastly there is possibility for optimalization of the verification framework as
a whole. So far it was created with focus on expandability and even though
there were no problems with the performance yet, there is still room for im-
provement.

93

Bibliography

1. BĚLOHOUBEK, Marek. OntoUML Models Verification for the Open-
Ponk plat-form. 2019. B.S. thesis. Czech Technical University in Prague,
Faculty of Information Technology.

2. GUIZZARDI, Giancarlo. Ontological foundations for structural concep-
tual models. Telematica Instituut / CTIT, 2005. isbn 90-75176-81-3. PhD
thesis. University of Twente.

3. GUIZZARDI, Giancarlo; FONSECA, Claudenir M.; BENEVIDES,
Alessander Botti; ALMEIDA, João Paulo A.; PORELLO, Daniele;
SALES, Tiago Prince. Endurant Types in Ontology-Driven Conceptual
Modeling: Towards OntoUML 2.0. In: TRUJILLO, Juan C.; DAVIS,
Karen C.; DU, Xiaoyong; LI, Zhanhuai; LING, Tok Wang; LI, Guoliang;
LEE, Mong Li (eds.). Conceptual Modeling. Cham: Springer Interna-
tional Publishing, 2018, pp. 136–150. isbn 978-3-030-00847-5.

4. GUIZZARDI, Giancarlo; WAGNER, Gerd. A Unified Foundational On-
tology and some Applications of it in Business Modeling. In: CAiSE
Workshops (3). 2004, pp. 129–143.

5. ONTOUML COMMUNITY. OntoUML community portal [online]. 2018
[visited on 2021-05-04]. Available from: ontouml.org.

6. PERGL, Robert; SALES, Tiago Prince; RYBOLA, Zdeněk. Towards On-
toUML for Software Engineering: From Domain Ontology to Implemen-
tation Model. In: CUZZOCREA, Alfredo; MAABOUT, Sofian (eds.).
Model and Data Engineering. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2013, pp. 249–263. isbn 978-3-642-41366-7.

7. PHARO COMMUNITY. Pharo [online]. 2021. Version 8.0. Available also
from: https://pharo.org/download.

8. PHARO COMMUNITY. pharo.org [online] [visited on 2021-05-04]. Avail-
able from: https://pharo.org/.

95

ontouml.org
https://pharo.org/download
https://pharo.org/

Bibliography

9. PHARO COMMUNITY. Pharo wiki [online] [visited on 2021-05-04].
Available from: https://github.com/pharo-open-documentation/
pharo-wiki.

10. PHARO COMMUNITY. PharoCheatSheet [online]. [N.d.] [visited on
2021-05-04]. Available from: http : / / files . pharo . org / media /
pharoCheatSheet.pdf.

11. UHNÁK, Peter; BLIZNIČENKO, Jan. OpenPonk modeling platform [on-
line]. 2020 [visited on 2021-05-04]. Available from: https://openponk.
org/.

12. CENTRE FOR CONCEPTUAL MODELLING AND IMPLEMEN-
TATION. OpenPonk [online]. 2010. Version 1.0.0. Available also from:
https://openponk.org.

13. UHNÁK, Peter; PERGL, Robert. The OpenPonk modeling platform. In:
IWST. 2016, p. 14.

14. GUIZZARDI, Giancarlo. Ontological patterns, anti-patterns and pat-
tern languages for next-generation conceptual modeling. In: International
Conference on Conceptual Modeling. 2014, pp. 13–27.

15. GUIZZARDI, Giancarlo; SALES, Tiago Prince. Detection, Simulation
and Elimination of Semantic Anti-patterns in Ontology-Driven Concep-
tual Models. In: YU, Eric; DOBBIE, Gillian; JARKE, Matthias; PU-
RAO, Sandeep (eds.). Conceptual Modeling. Cham: Springer Interna-
tional Publishing, 2014, pp. 363–376. isbn 978-3-319-12206-9.

16. SALES, Tiago Prince; BARCELOS, Pedro Paulo Favato; GUIZZARDI,
Giancarlo. Identification of semantic anti-patterns in ontology-driven
conceptual modeling via visual simulation. In: 4th International Work-
shop on Ontology-Driven Information Systems (ODISE 2012). 2012.

17. SALES, Tiago Prince. Ontology Validation for Managers. 2014. PhD
thesis. Free University of Bozen-Bolzano.

18. PHARO COMMUNITY. Spec2 [online]. 2021. Version 0.8.12. Available
also from: https://github.com/pharo-spec/Spec.

19. BEN-KIKI, Oren; EVANS, Clark; NET, Ingy döt. The Official YAML
Web Site [online]. 2009-10-01 [visited on 2021-05-04]. Available from:
https://yaml.org/.

20. MOOSETECHNOLOGY. PetitParser [online]. 2010. Available also from:
https://github.com/moosetechnology/PetitParser.

96

https://github.com/pharo-open-documentation/pharo-wiki
https://github.com/pharo-open-documentation/pharo-wiki
http://files.pharo.org/media/pharoCheatSheet.pdf
http://files.pharo.org/media/pharoCheatSheet.pdf
https://openponk.org/
https://openponk.org/
https://openponk.org
https://github.com/pharo-spec/Spec
https://yaml.org/
https://github.com/moosetechnology/PetitParser

Appendix A
Acronyms

IDE Integrated development environment

OS Operating System

ORM Object Role Modelling

UI User interface

BinOver Binary relation between overlapping types

DecInt Deceiving intersection

DepPhase Relationally dependent phase ()

FreeRole Free role specialization

GSRigGSRig Generalization set with mixed rigidity

HetColl Heterogeneous collective

HomoFunc Homogeneous Functional Complex

ImpAbs Imprecise abstraction

MixIden Mixin with the same identity

MixRig Mixin with the same rigidity

MultDep Multiple relational dependency

PartOver Part composing overlapping wholes

RelComp Relation composition

RelOver Relator mediating overlapping types

97

A. Acronyms

RelRig Relator mediating rigid types

RelSpec Relation specialization

RepRel Repeatable relator instances

UndefFormal Undefined formal association

UndefPhase Undefined phase partition

WholeOver Whole composed of overlapping parts

98

Appendix B
Contents of enclosed CD

readme.txtFile describing structure of enclosed CD
EXE...Directory with executables

OpenPonk.......Directory with OpenPonk and verification framework
Ontouml.org..............Directory with source files for ontouml.org

TEXT..................Directory containing this text and its source codes
DP_Assignment.pdf.........................Assignment of this thesis
DP_Bělohoubek_Marek_2021.pdf......Master’s thesis in PDF format
DP_Latex..............Directory with LATEX source files for the thesis

Figures..................Directory with figures used in this thesis

99

	Introduction
	Goals
	Review and analysis
	OntoUML and OpenPonk review
	OntoUML
	Modal logic
	Rigidity principle
	Identity principle
	Generalization
	Sortals, non-sortals and aspects

	Pharo
	OpenPonk
	Data model
	OPUMLMetaElement and OPUMLElement
	OPUMLModel
	OPUMLClass
	OPUMLAssociation
	OPUMLGeneralization
	OPUMLGeneralizationSet
	OntoUML stereotypes

	OntoUML verification framework
	VerificationController
	VerificationResults
	VerificationMessage
	Verification and SteretypeVerification
	TProfileGatherer

	Anti-patterns
	Binary relation between overlapping types (BinOver)
	Overlapping and disjoint sets
	BinOver anti-pattern

	Deceiving intersection (DecInt)
	Concrete type
	Intentional and derived subtyping
	Empty extensions
	DecInt anti-pattern

	Relationally dependent phase (DepPhase)
	Phase
	Role
	DepPhase anti-pattern
	Phase misused as role
	Relational dependency owned, but should be inherited
	Phase characterized by intrinsic property and relation

	Free role specialization (FreeRole)
	Derived sub-role
	Role of role
	Intentional sub-role
	Material sub-role

	Generalization set with mixed rigidity (GSRig)
	Generalization set
	GSRig anti-pattern

	Heterogeneous collective (HetColl)
	Collective
	Functional complex
	HetColl anti-pattern

	Homogeneous Functional Complex (HomoFunc)
	HomoFunc anti-pattern

	Imprecise abstraction (ImpAbs)
	Mixin with the same identity (MixIden)
	Mixin with the same rigidity (MixRig)
	Rigidity principle reminder
	MixRig anti-pattern

	Multiple relational dependency (MultDep)
	Part composing overlapping wholes (PartOver)
	Relation composition (RelComp)
	Relator mediating overlapping types (RelOver)
	Relator mediating rigid types (RelRig)
	Relation specialization (RelSpec)
	Repeatable relator instances (RepRel)
	Undefined formal association (UndefFormal)
	Undefined phase partition (UndefPhase)
	Derived partition
	Intentional partition
	UndefPhase anti-pattern

	Whole composed of overlapping parts (WholeOver)

	Design and implementation
	User interface for verification framework
	Design of the UI
	UI for starting verification process
	Results window

	Initial implementation
	VerificationUI
	Spec2 results window

	Final implementation
	Results window using inspector tool

	Updating framework
	Design of the updating framework
	OntoUMLStereotypeYaml
	OntoUMLVerificationUpdater
	Specification loading and parsing
	Managing updating process

	Changes to verification framework
	Restructuring of the verification framework
	New traits
	OntoUMLDotOrgReferences
	Updating verification classes
	Example implementation of AllowedSubtypesVerification

	Design and implementation of anti-pattern verifications
	Design of anti-pattern verifications
	Design of BinOver anti-pattern verification
	Design of DecInt anti-pattern verification
	Design of DepPhase anti-pattern verification
	Design of FreeRole anti-pattern verification
	Design of GSRig anti-pattern verification
	Design of HetColl anti-pattern verification
	Design of HomoFunc anti-pattern verification
	Design of ImpAbs anti-pattern verification
	Design of MixIden anti-pattern verification
	Design of MixRig anti-pattern verification
	Design of MultDep anti-pattern verification
	Design of PartOver anti-pattern verification
	Design of RelComp anti-pattern verification
	Design of RelOver anti-pattern verification
	Design of RelRig anti-pattern verification
	Design of RelSpecs anti-pattern verification
	Design of RepRel anti-pattern verification
	Design of UndefFormal anti-pattern verification
	Design of UndefPhase anti-pattern verification
	Design of WholeOver anti-pattern verification

	Implementation of anti-pattern verifications

	Documentation and testing
	Testing
	Unit tests
	Tests on real models

	Documentation
	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

