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Long-term data records from satellite observations are crucial for the study

of land surface properties and their long-term dynamics. The AVHRR long term

data record (LTDR) is an ongoing effort to generate a consistent climate record of

daily atmospherically corrected observations with global coverage that is suitable

for long term studies of the Earth surface. In this dissertation, I identified three

areas for the improvement of the LTDR: (1) The comprehensive evaluation of the

LTDR performance and characterization if its uncertainties. (2) The retrieval of

water vapor information from AVHRR data for a more accurate atmospheric cor-

rection. (3) The recalibration of the record to address inconsistency issues. The

first study consisted on a global long-term evaluation of the LTDR with matched

observations from the Landat-5 Thematic Mapper instrument. Results from this

evaluation showed that the record performance was close to the proposed specifi-

cation. The second study proposed a method for the retrieval of water vapor from



AVHRR data, which provides a crucial input for the atmospheric correction process.

Evaluation of the retrieved values with reference datasets showed excellent results,

with a water vapor error lower than 0.45g/cm2. Finally, the last chapter proposed

a novel method for the selection of stable areas suitable for satellite intercalibration

and for the derivation of recalibration coefficients. The evaluation of the original

and recalibrated record showed that for most cases the recalibrated record performed

better.



TOWARDS AN IMPROVED LONG-TERM DATA RECORD
FROM THE ADVANCED VERY-HIGH RESOLUTION

RADIOMETER: EVALUATION, ATMOSPHERIC CORRECTION,
AND INTERCALIBRATION

by

Andrés E. Santamaŕıa Artigas
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Chapter 1: Introduction

Satellite remote sensing has become a crucial source of quantitative informa-

tion for the global monitoring and study of our planet. Consistent long term records

from satellite observations are essential for the better understanding of extreme

events and changes in our planet to an extent that would not be possible otherwise

[1–5]. Among long-term satellite records, the Advanced Very High-Resolution Ra-

diometer (AVHRR) onboard NOAA polar-orbiting environmental satellites (POES)

provides the longest time-series of daily global observations.

1.1 The Advanced Very High-Resolution Radiometer

The first AVHRR was launched onboard the Television Infrared Operational

Satellite Next-Generation (TIROS-N) in October 1978 with the objective of studying

global cloud coverage, land characteristics, sea surface temperature, ice, and snow

cover [5]. Forty years later, in November 2018, the last AVHRR instrument was

launched onboard Metop-C, marking the end of the POES program. During that

forty years, the AVHRR instrument was included on over 18 POES missions (Table

1.1).
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Platform Instrument Launch Date Service Start Service End
TIROS-N AVHRR/1 10/1978 10/1978 01/1980
NOAA-6 AVHRR/1 06/1979 06/1979 11/1986
NOAA-7 AVHRR/2 06/1981 08/1981 06/1986
NOAA-8 AVHRR/1 03/1983 05/1983 10/1985
NOAA-9 AVHRR/2 12/1984 02/1985 05/1994
NOAA-10 AVHRR/1 09/1986 11/1986 09/1991
NOAA-11 AVHRR/2 09/1988 11/1988 09/1994
NOAA-12 AVHRR/2 05/1991 05/1991 12/1994
NOAA-13∗ AVHRR/2 08/1993 – –
NOAA-14 AVHRR/2 12/1994 12/1994 05/2007
NOAA-15 AVHRR/3 05/1998 05/1998 Ongoing
NOAA-16 AVHRR/3 09/2000 09/2000 06/2014
NOAA-17 AVHRR/3 06/2002 06/2002 04/2013
NOAA-18 AVHRR/3 05/2005 08/2005 Ongoing
NOAA-19 AVHRR/3 02/2009 06/2009 Ongoing
Metop-A AVHRR/3 10/2006 06/2007 Ongoing
Metop-B AVHRR/3 09/2012 04/2013 Ongoing
Metop-C AVHRR/3 11/2018 07/2019 Ongoing

∗NOAA-13 failed 12 days after launch and collected no data.

Table 1.1: Satellite platforms that carry the AVHRR instrument.

There have been three revisions of the AVHRR instrument (Table 1.2): The

first revision, AVHRR/1, was a four-band radiometer flown onboard the TIROS-N

and NOAA-6/-8/10 platforms. The next model, AVHRR/2, narrowed the band-pass

of the existing 11µm thermal band and added a second one centered at 12µm; it

was flown on NOAA-7/-9/-11/-12/14 platforms. Finally, AVHRR/3 added an extra

band on the short-wave infrared centered at 1.6µm1 and was first flown on NOAA-

15. Note that while the visible bands band-pass is maintained between AVHRR

sensors, the specific spectral responses vary between instruments, which can gener-

ate biases in the data record [6].

1Note however that only one of the 1.6µm or 3.7µm bands is active at a given time.
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Bandpass (µm)
Band AVHRR/1 AVHRR/2 AVHRR/3
1 0.580 - 0.680 0.580 - 0.680 0.580 - 0.680
2 0.725 - 1.100 0.725 - 1.100 0.725 - 1.000
3A Not Present Not Present 1.580 - 1.640
3B 3.550 - 3.930 3.550 - 3.930 3.550 - 3.930
4 10.500 - 11.500 10.300 - 11.300 10.300 - 11.300
5 Not Present 11.500 - 12.500 11.500 - 12.500

Table 1.2: Spectral bands available on AVHRR instruments

Throughout the more than forty years in which AVHRR has provided con-

tinuous daily observations at global scale, its data have contributed significantly to

our understanding of Earth’s atmosphere, land, and ocean processes, and their long

term dynamics. A comprehensive review of these was recently published by [5].

1.2 The AVHRR Long Term Data Record

The AVHRR long term data record (LTDR) is an ongoing effort to generate

a consistent climate record of daily atmospherically corrected observations with

global coverage that is suitable for long term studies of the Earth surface [7,8]. The

LTDR is generated using L1b Global Area Coverage (GAC) [9] data from AVHRR

instruments onboard seven POES platforms: N07, N09, N11, N14, N16, N18, and

N19 (Table 1.3). The LTDR has been used for studies at both regional and global

scales, and for areas such as agricultural yield estimation [8], agricultural drought

risk quantification [2], long-term global land change mapping [3]; and the estimation

of parameters such as albedo [10], aerosol loading [11,12], and Leaf Area Index (LAI)

and Fraction of Photosynthetically Active Radiation (FAPAR) [13].

3



Platform AVHRR Sensor Period
NOAA-7 AVHRR/2 1982 - 1985
NOAA-9 AVHRR/2 1985 - 1988
NOAA-11 AVHRR/2 1988 - 1994
NOAA-14 AVHRR/2 1995 - 2000 pre-MODIS
NOAA-16 AVHRR/3 2000 - 2005 MODIS era
NOAA-18 AVHRR/3 2005 - 2009
NOAA-19 AVHRR/3 2009 - 2020

Table 1.3: AVHRR instruments in the LTDR

Since its inception2 in the early 2000s, the LTDR team has developed a pro-

cessing chain that includes an accurate geolocation with an error lower than one

pixel [8]; absolute calibration accounting for sensor degradation using observations

of ocean and clouds [14], and desert sites [15]; atmospheric correction based on

the Second Simulation of the Satellite signal in the Solar Spectrum (6S) radiative

transfer code [16]; the homogenization from the GAC resolution (4000m at nadir)

to the 0.05◦ Climate Modeling Grid (CMG) (5600m); normalization of directional

reflectance using the Vermote-Justice-Breon (VJB) method [17], and cloud masking

based on albedo thresholds derived from Moderate Resolution Imaging Spectrora-

diometer (MODIS) information [18]. Figure 1.1 shows the processing steps required

to generate a daily LTDR file from corresponding AVHRR L1b GAC data. These

steps are further detailed in the following sections.

Figure 1.1: Processing steps for the generation of an AVHRR LTDR file.

2Saleous, N. “Long Term Land Data Record”. MODIS Science Team Meeting, July 2004.
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1.2.1 LTDR Absolute Calibration

A consistent well calibrated data set is crucial for the generation a long term

data record. Calibration of the AVHRR reflective bands is problematic due to the

lack of an on-board calibration system [19], which has made the topic of AVHRR cal-

ibration popular in the literature for many years [14,15,20–22] 3, and has pushed the

development and improvement of several of the post-launch calibration techniques

currently in use.

For the LTDR, the calibration of AVHRR data is done through the “Ocean

and Clouds” method [14]. This method uses observations of high-altitude, bright

clouds to inter-calibrate the Red and NIR bands. Then, off-nadir ocean observations

are used for the absolute calibration of the Red band, which signal (after accounting

for aerosols) is mainly due to molecular scattering and can be accurately estimated

using radiative transfer models. While the results from this method have been

evaluated positively for some of the AVHRR instruments [8,15], recent studies have

evidenced inconsistency issues that still persist [3, 4, 23].

1.2.2 LTDR Atmospheric Correction

The atmospheric correction is the process by which the perturbation of re-

motely sensed signals due to atmospheric effects is removed. It is essential for the

estimation of physical derived parameters of the surface and their multi-temporal

analysis. Therefore, it is important to apply this process as accurately as possi-

3These are only a few examples of many. A more complete review is given on [22].
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ble. Atmospheric constituents can affect the signal measured by the remote sensor

through the scattering and absorption processes. Scattering is the process in which

electromagnetic radiation is forced to deviate from a straight trajectory after inter-

acting with particles in the atmosphere, and it may increase or decrease the signal

that reaches the sensor. In contrast, absorption can only decrease it. The atmo-

spheric correction process attempts to estimate and remove these effects from the

signal measured by the remote sensor bands that are impacted. This process de-

pends primarily on (1) the model selected to simulate the atmospheric constituents

influence on the at-sensor signal, and (2) on the ancillary information used to de-

scribe those constituents.

The LTDR atmospheric correction is based on Equation 1.1, which describes

the reflectance from a Lambertian surface measured by the AVHRR sensor at the

top of the atmosphere4.

ρTOA = TgO2TgO3

(
ρR +

TRTgH2Oρs
1− Sρs

)
(1.1)

where ρTOA is the reflectance at the top of the atmosphere measured by AVHRR; ρs

is the surface reflectance; TgO2 is the oxygen transmittance; TgO3 is the ozone trans-

mittance; TgH2O is the water vapor transmittance; and ρR, TR and S are, respec-

tively, the Rayleigh atmospheric reflectance, transmittance, and spherical albedo.

For the LTDR, Rayleigh contributions are simulated using analytical formulas

developed by [24], and the influence of atmospheric gases on the AVHRR signal is

4Note that this equation does not account for the effect of stratospheric or tropospheric aerosols
and neither does the current LTDR atmospheric correction.
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modeled using the Second Simulation of the Satellite signal in the Solar Spectrum

(6S) radiative transfer code [16]. The 6S code has been thoroughly validated [25–27]

and has uncertainties lower than 0.05ρ + 0.005 (where ρ is the surface reflectance

value) [28,29].

1.2.2.1 Effect of atmospheric gases on the AVHRR signal

As shown in Equation 1.1, the LTDR atmospheric correction accounts for

three5 main gases on the AVHRR signal: Water Vapor, Ozone, and Oxygen. Figure

1.2 shows the spectral transmittance of these three gases and their specific effect on

the AVHRR signal is described below.

Figure 1.2: Spectral Transmittance of Water Vapor, Ozone, and Oxygen.

Water Vapor:

Atmospheric water vapor primarily absorbs electromagnetic radiation at wavelengths

longer that 0.7µm. This absorption has a small impact on the AVHRR Red band

but can strongly affect the NIR due to its wide bandwidth [30]. On the LTDR, the

5While there are other gases that affect the signal, their effect is overshadowed by these three.
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water vapor transmittance (TgH2O) is computed as shown in Equation 1.2:

TgH2O = exp
(
−a(Muwv)

b
)

(1.2)

where M is the airmass, uwv is the integrated water vapor content in , and a and b

are band specific coefficients derived from 6S simulations.

Ozone

Ozone molecules in the atmosphere limit Earth observations at wavelengths shorter

than 0.35µm and are a source of significant absorption between 0.55 and 0.65µm.

This effect, which is quantified by the ozone transmission function (TgO3), can have

significant effects over the AVHRR Red band but is negligible over the NIR [30].

For the LTDR, TgO3 is computed as shown in Equation 1.3:

TgO3 = exp (−aMuO3) (1.3)

where M is the airmass, uO3 is the total ozone amount in [cm/atm], and a is a band

specific coefficient derived from 6S simulations.

Oxygen:

Oxygen has a narrow absorption band located at around 0.7µm which weakly affects

both the Red and NIR bands. The oxygen transmittance (TgO2) can be written as

a function of the air mass and surface pressure, and in the LTDR is computed as

8



shown in Equation 1.4:

TgO2 = exp
(
−(aP )(M exp(−(b+cP )))

)
(1.4)

where M is the airmass, P is the surface pressure in [atm], and a, b, and c are band

specific coefficients derived from 6S simulations.

1.2.2.2 LTDR atmospheric characterization

The atmospheric correction process previously described requires knowledge

of specific atmospheric variables and constituents, i.e. surface pressure, ozone con-

centration, and water vapor content. In the LTDR, this information is obtained

from satellite data, gridded observations, and reanalysis sources (Table 1.4).

Sources1 Variables2 Period Spatial Res.3 Temp. Res.
MODIS [31] WV 2000-2020 0.05◦ x 0.05◦ daily
TOMS [32] O3 1984-2005 1.00◦ x 1.25◦ daily
NCEP/GDAS [33] O3/WV/P 1984-2020 1.00◦ x 1.00◦ 6 hours
NCEP R1 [34] O3/WV/P 1984-2020 2.50◦ x 2.50◦ 6 hours

1Data selection is prioritized as: MODIS/TOMS→NCEP/GDAS→NCEP R1.
2O3: Ozone; WV: Water Vapor; P: Surface Pressure.
3Spatial resolution is shown in latitude x longitude.

Table 1.4: Ancilliary data used in the LTDR atmospheric correction over land

The selection of which data source to use depends on the time period of the

AVHRR data being corrected and on the availability of information for a given area.

It is important to note that the spatial and temporal resolution varies within data

sources, and that while this might not be a problem for slow spatially and tem-

porally varying variables such as the surface pressure and ozone concentration, it
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could present an issue for the water vapor content, which varies strongly in time

and space [29].

1.2.3 LTDR BRDF Normalization

One of the benefits of the AVHRR LTDR for long term analysis of the sur-

face is that it provides Bidirectional Reflectance Distribution Function (BRDF)

corrected surface reflectance. That is, surface reflectance that has been normalized

to a standard observation geometry such that signal variations due to changes in

the sun-sensor geometry of individual observations are minimized. In particular, the

LTDR uses the Vermote-Justice-Breon (VJB) method [17] to normalize the obser-

vations to a sun zenith angle (θs) of 45◦; view zenith angle (θv) of 0◦; and relative

azimuth angle (φ) of 0◦.

The surface reflectance (ρ) for a certain geometric configuration (Θ) can be expressed

as:

ρ(Θ) = kiso + kvolFvol(Θ) + kgeoFgeo(Θ) (1.5)

where Θ represents the observation conditions of solar zenith angle (θs), view zenith

angle (θv), and relative azimuth angle between sun and sensor (φ); Fgeo and Fvol

are the geometric and volumetric scattering components that characterize the shape

of the bidirectional reflectance distribution function (BRDF) [35,36]; and kiso, kvol,

and kgeo are isotropic, volumetric, and geometric kernels. It is possible to rewrite
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the model using variables V = kvol
kiso

and R = kgeo
kiso

proposed by [17] as:

ρ(Θ) = kiso(1 + V Fvol(Θ) +RFgeo(Θ)) (1.6)

Both V and R can be derived as a function of the Normalized Difference Vegetation

Index (NDVI) [17,37]. If we assume no change in the surface between two observa-

tions (A, B) with different geometric configurations, we can express this relationship

as:

ρAV HRR(ΘB) = ρAV HRR(ΘA)
(1 + V Fvol(ΘB) +RFgeo(ΘB))

(1 + V Fvol(ΘA) +RFgeo(ΘA))
(1.7)

On the LTDR BRDF correction, the V and R parameters are obtained from a

global database generated from MODIS data between 2010-2011 [17]. The matter of

whether to use VJB parameters derived from MODIS or from AVHRR to normalize

the BRDF effects of AVHRR surface reflectance was analyzed by [38], who found

that VJB parameters derived from MODIS performed 3% (Red) to 5% (NIR) better

than ones derived from AVHRR itself.

1.2.4 LTDR Cloud Screening

In the current LTDR version, cloud screening is performed by comparing

the BRDF-corrected AVHRR surface reflectance against thresholds derived from

monthly climatological values of MODIS Red and NIR BRDF-corrected reflectances.

This per-pixel climatology was computed using 10 years of MODIS Aqua data [18].

However simple in its implementation, this approach has been shown to provide
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higher accuracy than the “Clouds from AVHRR” (CLAVR) algorithm [39] which

was used on previous versions of the LTDR [8]. More recently, a new approach

based on the combination AVHRR, MODIS, and reanalysis data has been proposed

for implementation on the next version of the LTDR [40].

1.2.5 LTDR Performance Evaluation

Despite the benefit that LTDR data can provide for long-term studies of

Earth’s surface processes [2–4, 8, 23], surprisingly few published articles evaluate

its performance and uncertainties. In this regard, previous studies have focused

on either assessing the calibration of top-of-atmosphere (TOA) values from AVHRR

[21,22,41] or evaluating surface reflectance values for only a particular set of AVHRR

instruments [14, 15]. There is only one publication from the LTDR development

team that provides some information on the record’s performance [8]; however, it

is limited to the MODIS-era and only gives globally averaged information. Until

now (that is, until the results from this thesis were published [42]), there was no

comprehensive evaluation of the entire surface reflectance record and no information

on the magnitude and spatiotemporal distribution of its uncertainties.

1.3 Research Objective

The main goal of this dissertation is to advance the development of the AVHRR

Surface Reflectance Long Term Data Record. To this end, I selected three key areas

which appeared to be most relevant for potential improvement of the AVHRR record:

12



(1) The need of a comprehensive evaluation of the performance of the record and the

spatiotemporal-temporal characterization of its uncertainties (1.2.5); (2) The lack

of an adequate water vapor source for the atmospheric correction process during the

pre-MODIS era (1.2.2.2); and (3) calibration inconsistencies present between the

AVHRR instruments in the data record (1.2.1).

1.4 Research Questions and Thesis Structure

This thesis is structured to answer the following major research questions:

1. What is the magnitude of the AVHRR LTDR uncertainties and how

are they distributed in time and space?

For this study, globally distributed surface reflectance data from Landsat-5

Thematic Mapper 5 (TM5) generated by the United States Geological Sur-

vey (USGS) is used as a well-calibrated reference. The evaluation is car-

ried out using a methodology that accounts for directional effects using the

Vermote-Justice-Breon (VJB) BRDF normalization method, and for spectral

differences using spectral adjustment factors derived from EO-1/Hyperion hy-

perspectral data. The AVHRR record performance is reported in terms of the

accuracy, precision, and uncertainty metrics. This work is presented in Chap-

ter 2: “Evaluation of the AVHRR Surface Reflectance LTDR”, which provides

the first global comprehensive evaluation of the AVHRR surface reflectance

LTDR during the period 1984-2011.
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2. What are the uncertainties associated to estimating water vapor

globally from multiple AVHRR instruments in the absence of spe-

cific water vapor retrieval bands?

To this end, this study uses near simultaneous observations of AVHRR N19

brightness temperature difference and MODIS Aqua integrated water vapor

content to derive per-pixel split-window coefficients globally. Spectral adjust-

ment factors are used to adjust the brightness temperature difference from

the rest of the LTDR AVHRR instruments to N19 spectral characteristics and

derive water vapor on a per-pixel basis. The AVHRR-derived water vapor is

evaluated against water vapor estimates from sunphotometer observations of

the Aerosol Robotic Network (AERONET) and against water vapor content

estimated from MODIS Aqua Near-Infrared bands. Finally, the AVHRR-

derived water vapor is evaluated in terms of the atmospheric correction pro-

cess. This work is developed in Chapter 3: “Global estimation of water vapor

from AVHRR”, which presents a method to estimate atmospheric water vapor

content from AVHRR thermal data.

3. What effect do calibration discrepancies between multiple AVHRR

sensors have on the LTDR record?

In this study, a novel method for the automatized selection of pseudo-stable

areas is proposed. The method uses the temporal profile of the ratio between

the Red and NIR surface reflectance to search for pseudo-stable areas around

the globe that are suitable for the AVHRR recalibration. Once these areas
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are selected, the climatological mean for each band is computed from MODIS

Aqua data and used as a stable reference to recalibrate the surface reflectance

record. This work is presented as Chapter 4: “Recalibration of the AVHRR

Long-Term Data Record”, which attempts to mitigate calibration discrepan-

cies between AVHRR instruments in the LTDR.

The final chapter of the thesis, entitled “Discussion and Conclusions”, summarizes

the findings of the previous chapters and puts them into context of the AVHRR

LTDR project evolution. In addition, Chapter 5 gives insight of ongoing work and

future evolution of the LTDR.
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Chapter 2: Evaluation of the AVHRR Surface Reflectance LTDR
1

2.1 Abstract

Due to the length of the AVHRR surface reflectance LTDR and previous un-

availability of a well calibrated reference, no comprehensive evaluation of the en-

tire record has been reported so far. Recently, the United States Geological Survey

(USGS) began production of surface reflectance datasets from the Landsat 4-8 satel-

lites, which provide a suitable reference against which the LTDR can be compared

to. In this chapter, we evaluate the LTDR between 1984 and 2011 using surface

reflectance data from the Landsat-5 Thematic Mapper (TM5) Collection-1 as a ref-

erence. Data from TM5 was obtained from over 740,000 globally distributed scenes

which gave a representative set of land surface types and atmospheric conditions.

Differences due to observation geometry were accounted for using the Vermote-

Justice-Breon (VJB) Bidirectional Reflectance Distribution Function (BRDF) nor-

malization method to adjust the AVHRR surface reflectance to TM5 observation

conditions; the spectral response differences were minimized using spectral band ad-

justment factors (SBAFs) derived from the Earth Observing One (EO-1) Hyperion

1Santamaria-Artigas, A., Vermote, E.F., Franch, B., Roger, J.-C., Skakun, S., 2021. Evaluation
of the AVHRR surface reflectance long term data record between 1984 and 2011. Int. J. Appl.
Earth Obs. Geoinf. 98, 102317. https://doi.org/10.1016/j.jag.2021.102317
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atmospherically corrected hyperspectral spectra. The performance of the AVHRR

record is reported in terms of the accuracy, precision, and uncertainty (APU). Re-

sults show that the LTDR performance is close or within the combined uncertainty

specification of 0.071ρ+0.0071, where ρ is the estimated reflectance.

2.2 Introduction

The long-term data record (LTDR) from the Advanced Very High-Resolution

Radiometer (AVHRR) provides daily surface reflectance with global coverage from

the 1980s to present day, which makes it at invaluable source of information for the

study of land surface properties and their long-term dynamics. Surface reflectance

is a critical input for the generation of products such as vegetation indices, albedo,

and land cover. Therefore, quality of the surface reflectance record should be the

highest possible, and the assessment of its uncertainties is crucial to understand the

record’s potential and limitations, and how the uncertainties might propagate to

downstream products.

Nowadays, data from MODIS is routinely used to evaluate the surface re-

flectance performance of the most recent AVHRR sensors [8]. While MODIS pro-

vides a well calibrated reference dataset, with daily global coverage, a robust atmo-

spheric correction, and uncertainties lower than 0.05ρ + 0.005 (where ρ is the surface

reflectance), its data is only available since 2000 for Terra and 2002 for Aqua, which

leaves over 19 years of record without a consistent surface reflectance reference.
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In recent years, the United States Geological Survey (USGS) began produc-

tion of surface reflectance products2 from Landsat 4, 5, 7, and 8 [43–45], providing

a long-term 16-day dataset at 30m spatial resolution. Data from the Landsat-5

Thematic Mapper (TM5) sensor spans a period of over 27 years, which covers most

of the LTDR record lifetime. While it was initially shown that the internal cali-

bration (IC) system of TM5 was not particularly stable [46], the bands calibration

has been routinely updated based on the detectors response to the IC, the continu-

ous observation of pseudo-invariant sites, and the cross-calibration with Landsat-7

ETM+ [46–48]. These efforts have achieved a radiometric calibration uncertainty

of 7% for the at-sensor radiance [49].

The surface reflectance product provided by USGS is generated using the

Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) [44]. LEDAPS

processing involves the calibration of images using revised coefficients and the at-

mospheric correction based on the 6S radiative transfer code. Performance of the

LEDAPS TM5 surface reflectance product was shown to be better than specifica-

tion of 0.071ρ + 0.0071 in terms of surface reflectance uncertainty [50]. This record

provides a unique opportunity for cross-comparison and evaluation of the AVHRR

surface reflectance LTDR.

This chapter aims to design and conduct the first comprehensive evaluation

of the AVHRR surface reflectance LTDR. For this, we use globally distributed

LEDAPS TM5 surface reflectance data between 1984-2011 as a well-calibrated ref-

erence. The evaluation methodology accounts for directional effects using the VJB

2https://usgs.gov/land-resources/nli/landsat/landsat-collection-1-surface-reflectance
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method, and for spectral differences using spectral adjustment factors derived from

EO-1/Hyperion hyperspectral data. The AVHRR record performance is reported

in terms of the accuracy, precision, and uncertainty metrics (APU) [28], which are

evaluated in terms of their dependence to surface reflectance magnitude, temporal

evolution, seasonality, spatial distribution, and land cover. Section 2.3 describes

the data and materials used in this chapter. Section 2.4 presents the methodology.

Section 2.5 presents the results and section 2.6 their discussion. Finally, section 2.7

gives the chapter conclusions.

2.3 Data

2.3.1 AVHRR Surface Reflectance

In this study, we evaluated the AVHRR surface reflectance Long Term Data

Record (LTDR) [8], which is generated from Global Area Coverage AVHRR L1b

data. The LTDR spans the period between 1981 to the present day and provides

daily BRDF-normalized observations at spatial resolution of 0.05◦x0.05◦ in the Cli-

mate Modeling Grid (CMG). The surface reflectance product includes information

for 5 spectral channels, solar and view zenith angles, relative azimuth angles, and

quality assessment. For this study, we use surface reflectance from the red (0.58-

0.68 µm) and near infrared (0.72-1.10 µm) channels, the solar zenith, view zenith,

and relative azimuth angles, and the quality layer, which was used to remove pixels

contaminated by clouds or other atmospheric effects and analyze only those with

the highest quality. The AVHRR surface reflectance products were obtained from
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the LTDR project website3.

2.3.2 Landsat-5 TM Surface Reflectance

Surface reflectance from the Landsat-5 Thematic Mapper sensor (TM5) was

used as a reference to evaluate the AVHRR record. TM5 acquired images between

1984 and 2012, making it the longest operating Earth observation satellite. Data

from TM5 has a temporal resolution of 16 days and a spatial resolution of 30m. We

used data from over 740,000 scenes of surface reflectance generated by LEDAPS [44]

from terrain corrected L1TP top-of-atmosphere products (Collection-1, Tier-1). The

spatial distribution of scenes is shown in Figure 2.1, and the temporal distribution

of scenes is shown in Figure 2.2. The method for scene selection is explained in

2.4.1. For this study, we use surface reflectance from the red (0.63-0.69 µm) and

near infrared (0.76-0.90 µm) channels, and quality information from the pixel qual-

ity, radiometric saturation, and atmospheric opacity layers. Evaluation of the TM5

LEDAPS surface reflectance found that it performed better than 0.071ρ+0.0071 [50].

The TM-5 Collection-1 Tier-1 surface reflectance products were downloaded from

Google Earth Engine4.

3https://ltdr.modaps.eosdis.nasa.gov
4https://developers.google.com/earth-engine/datasets/catalog/LANDSAT LT05 C01 T1 SR
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Figure 2.1: Global distribution of Landsat-5 TM scenes used for evaluation.

Figure 2.2: Number of matching Landsat-5 TM scenes per year.

2.3.3 Landsat-5 TM per-pixel angles

The TM5 surface reflectance product metadata provides information on the

sun elevation and azimuth angles for the center of the scene but gives no information

on the observation zenith and azimuth angles. With the purpose of having a better

description of the solar and observation geometric characteristics of each scene, we

computed the per-pixel solar zenith, solar azimuth, view zenith, and view azimuth

angles using routines made available by USGS5. These routines read an angle coeffi-

5https://usgs.gov/land-resources/nli/landsat/solar-illumination-and-sensor-viewing-angle-
coefficient-files
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cient file unique to each scene and processes it using the Landsat Image Assessment

System Geometric Libraries [51].

2.3.4 MODIS Land Cover Data

To analyze our results by land cover types we followed the International

Geosphere-Biosphere Program (IGBP) classification included on MODIS product

MCD12C1 [52]). The MCD12C1 product provides yearly global land cover informa-

tion in the CMG grid from 2001 to present year. To reduce possible misclassification

on years before the MODIS era, we generated a single classification map from all

available years by selecting only the pixels that remained constant during the entire

period. The original IGBP classes were then simplified following an approach similar

to [53]. Water areas were excluded from the analysis, and urban, snow, and wetland

classes were removed because they had low pixel counts or were not present at all.

The class reclassification scheme is showed in Table 2.1, and the global distribution

of classes is shown in Figure 2.3.

Abbreviation New Class Name Original IGBP Classes
NLF Needleleaf Forest Evergreen Needleleaf Forest, De-

ciduous Needleleaf Forest
BLF Broadleaf Forest Evergreen Broadleaf Forest, De-

ciduous Broadleaf Forest
SSM Shrublands, Savan-

nas, Mixed Forest
Open Shrubland, Closed Shrub-
land, Savannas, Woody Savannas,
Mixed Forest

CGL Croplands and Grass-
lands

Croplands, Grasslands, Cropland
Natural Vegetation Mosaic

BRN Bare Areas Barren

Table 2.1: Reclassification of IGBP land cover classes
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Figure 2.3: International Geosphere-Biosphere Program (IGBP) land cover classifi-
cation from MODIS MCD12C1. Labels were simplified according to Table 2.1.

2.3.5 Hyperion Surface Reflectance Spectra

In this study, spectral band adjustment factors (SBAF) between AVHRR and

TM5 were derived from a set of more than 100,000 hyperspectral surface reflectance

spectra acquired by the Hyperion (H0) spectrometer onboard the Earth Observer-1

(EO-1) satellite. Hyperion is a hyperspectral imager that acquires data from 198

calibrated bands in the range of 400 to 2500nm with a 10 nm spectral resolution and

30 m spatial resolution [54]. For the purpose of deriving SBAFs over a wide range

of conditions, data from two readily available surface reflectance data sets collected

over Australia between 2001 and 2010 [55] and the Amazon rainforest between 2002

and 2005 [56] were used. In total, 152 H0 granules were included for the derivation

of SBAF, with most of the data coming from the Australian dataset (133 granules
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versus 19 from the Amazon dataset). The spectra were sampled from the middle

of the images, in the center of the swath. Although the spectra came from surface

reflectance products, still some of them had to be manually removed as they showed

traces of water vapor absorption (evidenced by plotting the spectra and observing

the 940nm band), were noisy, or did not report values. After filtering, the number

of H0 spectra considered from each dataset was 54,333 from Australia, and 53,677

from the Amazon.

2.3.6 Relative Spectral Responses

Relative spectral responses (RSR) from AVHRR and TM5 were used to spec-

trally convolve the H0 surface reflectance spectra and derive spectral adjustment

factors. Figure 2.4 shows the RSR for each AVHRR sensor considered (N07 to

N19), and for TM5. The RSR were obtained from the NASA Langley cloud and

radiation research webpage6.

2.4 Method

2.4.1 Selection of reference Landsat-5 TM dataset

The Landsat-5 scenes used as reference for this study were selected with the

objective of maintaining a high spatial and temporal representativeness. This was

achieved in two steps: First, we generated a global 5◦ latitude-longitude uniform

grid of points and selected all Landsat-5 scenes that intersected a point for the

6https://cloudsway2.larc.nasa.gov
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Figure 2.4: AVHRR and TM5 Relative Spectral Responses.

entire period of study. Second, for the first and last year of each POES satellite, we

selected all globally available scenes. In both cases, we discarded the scenes that

had more than 60% of cloud cover over land. This process generated a database of

more than 740,000 globally distributed scenes (Figures 2.1 & 2.2). Finally, for all

remaining scenes we downloaded a 120kmx120km subset located on the center of

each image.

2.4.2 Spatial aggregation of Landsat 5 TM surface reflectance

The first step in the evaluation was to aggregate the 30m TM5 surface re-

flectance pixels to the scale of the AVHRR climate modeling grid (CMG) of 0.05◦x0.05◦.
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For this, we first selected the valid TM5 pixels following the criteria proposed by [50]:

clear land pixels (with no cloud, cloud-shadow, water, or snow), that show no satu-

ration, and with an atmospheric opacity lower than 0.3. Once the valid pixels were

selected, we aggregated them to CMG scale using an averaging filter. Finally, we

discarded all aggregated pixels generated from less than 100% valid TM5 pixels.

2.4.3 Geometric adjustment of AVHRR surface reflectance

The AVHRR LTDR product is originally normalized to a sun zenith angle

(θs) of 45◦; view zenith angle (θv) of 0◦; and relative azimuth angle (φ) of 0◦. To

analyze the impact of BRDF on the LTDR performance, we started by undoing

the current normalization in order to have a baseline dataset with no geometric or

spectral adjustment whatsoever. We refer to this dataset as “No adjustment” in

the rest of the manuscript. It is important to remark that comparing reflectance

data from different sensors without accounting for BRDF effects should be avoided,

as different geometric configurations can produce different errors that depend on

both sensors sun-view geometries and on the observed surface characteristics. We

then used the VJB method [17] explained on section 1.2.3 to account for observa-

tion geometry differences between AVHRR and Landsat-5 by adjusting the AVHRR

surface reflectance to the corresponding Landsat-5 sun and view angles.

Following the relationship described in Equation 1.7, the same-day AVHRR

surface reflectance can be adjusted to the corresponding TM5 observation geometry
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as:

ρAV HRR(ΘTM5) = ρAV HRR(ΘAVHRR)
(1 + V Fvol(ΘTM5) +RFgeo(ΘTM5))

(1 + V Fvol(ΘAVHRR) +RFgeo(ΘAVHRR))

(2.1)

For this study, the AVHRR angles were obtained directly from the LTDR product,

and the TM5 angles were computed as described in subsection 2.3.3.

2.4.4 Spectral adjustment of AVHRR surface reflectance

Relative spectral responses (RSR) determine how a continuous spectrum from

the surface is recorded on a sensor discrete band. Thus, differences in RSR between

AVHRR and TM5 can affect the results of the cross-comparison, and a spectral

adjustment should be applied to mitigate this [57]. Amongst spectral adjustment

methods the statistical based ones are the most common [6]. These methods consist

in deriving statistical relationships between two analogous bands using radiative

transfer simulations [41, 58], remotely sensed data [41, 59], or hyperspectral spectra

convolutions [60,61]. For this study, we derived the spectral adjustment factors using

the latter method. We first extracted over 100,000 H0 atmospherically corrected

reflectance spectra from two readily available datasets (more information is given

in 2.3.5). Because the spectral mixture inside an AVHRR CMG pixel ( 5600m)

is typically more diverse than that of a Hyperion pixel (30m), we followed the

approach proposed by [6], and simulated a dataset of 500,000 surface reflectance

spectra from the linear combination of up to three independent H0 spectra. This

provided a spectra database more representative of the CMG pixels scale. The
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generated spectra were convolved with each sensor RSR as shown in Equation 2.2,

where λ represents the Red or NIR band.

ρ̄λ =

∫
ρλRSRλdλ∫
RSRλdλ

(2.2)

The convolved values were used to derive spectral band adjustment factors

(SBAF) for each TM5/AVHRR pair as:

SBAFλ =
ρ̄λ,TM5

ρ̄λ,AV HRR
(2.3)

We tested several spectral adjustment models [6] and found that the best fit

was obtained by fitting the SBAFs to the quadratic NDVI:

SBAFλ = aλ + b · λNDV IAVHRR + c · λNDV I2AVHRR (2.4)

Finally, the derived coefficients are used to spectrally adjust the AVHRR to

TM5-like values as:

ρλ,TM5 = ρλ,AV HRR · SBAFλ (2.5)

2.4.5 Evaluation of Surface Reflectance

For the evaluation we assumed no daily variation of the surfaces and relied on

same day AVHRR and TM5 acquisitions. We only considered AVHRR observations

with a sun zenith angle smaller than 75◦ and view zenith angle smaller than 45◦.

Finally, we used the Local Outlier Factor method to remove any remaining outliers
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[62]. We evaluate the differences between AVHRR and TM5 using three statistical

metrics designed to quantify the accuracy, precision, and uncertainty (APU). The

accuracy (A) represents the mean bias of the estimates versus the reference (εi):

Accuracy (A) =

∑n
i=1 εi
N

(2.6)

The precision (P ) represents the repeatability of the estimates corrected for the

mean bias:

Precision (P ) =

√√√√ 1

N − 1

n∑
i=1

(εi − A)2 (2.7)

The uncertainty (U) represents the actual statistical deviation including the mean

bias:

Uncertainty (U) =

√√√√ 1

N

N∑
i−1

ε2i (2.8)

To provide a better perspective of each band performance, it is helpful to show the

uncertainty relative to the average reference value (m). The relative uncertainty

(rU) is then computed as:

Relative Uncertainty (rU) =
U

m
(2.9)

In this chapter, A, P , and U follow the definitions from [28]. Thus, higher values

reflect larger discrepancies between both datasets and lower values reflect a better

agreement.
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To assess the evaluation results, we compare the uncertainty values against

a certain specification (S). For surface reflectance products, this specification is

based on a sensitivity analysis of the atmospheric correction method, which for both

AVHRR LTDR and TM5 LEDAPS is based on the 6S model and has been previously

found to be 0.05ρ+0.005 (where ρ is the surface reflectance magnitude) [28, 29].

Because in this study we evaluate AVHRR using TM-5 as a reference, the evaluation

specification is then defined as the quadratic sum of each sensor’s specification, which

for this case is 0.071ρ+0.0071. This approach has been adopted by other surface

reflectance evaluation and intercomparison studies [50, 59].

2.5 Results

In this section we present the results from the AVHRR evaluation. First, we

show the impact of the BRDF and spectral adjustment on the comparison between

AVHRR and TM5 surface reflectance 2.5.1; we then show the evaluation results in

terms of the surface reflectance magnitude 2.5.2, temporal evolution 2.5.3, seasonal

variation 2.5.5, spatial distribution 2.5.4, and land cover 2.5.6.

2.5.1 Impact of geometric and spectral adjustment

We first analyzed the impact of the geometric and spectral adjustment on

the accuracy, precision, and uncertainty. Figure 2.5 shows the comparison between

AVHRR and TM5 surface reflectance for four adjustment levels: No Adjustment,

only BRDF adjustment, only spectral adjustment, and with both adjustments.
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Figure 2.5: Impact of the geometrical and spectral adjustments on the accuracy (A),
precision (P), and uncertainty (U). Results are shown for the Red (top row) and
NIR (bottom row) bands. A ”-” sign above the accuracy bars indicates negative
values. Lower values show better agreement between AVHRR and Landsat-5 TM.

The BRDF adjustment improved the results on all the metrics for both bands.

In particular, the improvements were more evident on the Precision metric, which

represents the scattering of the errors between AVHRR and TM5 and is mainly

affected by differences in their sun-view geometry. The accuracy metric also showed

improvements with BRDF correction but were not as consistent across all sensors.

When the spectral adjustment was applied to the not-BRDF adjusted data,

the results tended to show worse agreement between AVHRR and TM5, with only

minor improvements in the best of cases. In general, the best results for accuracy,

precision and uncertainty were achieved when both adjustments were applied to the

AVHRR data.

For all cases, the Red band showed lower uncertainty values than the NIR.

However, because the surface reflectance magnitudes on the NIR are usually higher,

its relative uncertainties were lower. Table 2.2 summarizes the relative uncertainty

results for the case with no adjustment and with both BRDF and spectral adjust-
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ments.

Band / Adjustment N07 N09 N11 N14 N16 N18 N19
Red / No Adjustment 23% 22% 19% 18% 18% 17% 17%
Red / BRDF + Spectral 14% 13% 11% 11% 10% 12% 13%
NIR / No Adjustment 20% 21% 17% 20% 17% 16% 14%
NIR / BRDF + Spectral 10% 10% 9% 10% 9% 10% 8%

Table 2.2: Relative uncertainty before and after BRDF and spectral adjustment

2.5.2 Performance of LTDR in terms of reflectance magnitude

Performance of surface reflectance products varies with the reflectance mag-

nitude of the measured target. Here we present this dependence using APU graphs

(Vermote and Kotchenova, 2008), which represent the accuracy, precision, and un-

certainty for a range of reference reflectance values. Figure 2.6 shows APU graphs

of the evaluation for each sensor and band using both the geometric and spec-

tral adjustments. For most sensor-band combinations, the uncertainty increased

with surface reflectance magnitude but remained under the combined specification

(0.071ρ + 0.0071). For the Red band, average values ranged between -0.001 to 0.005

for the accuracy, 0.012 to 0.019 for the precision, and 0.014 to 0.020 for the uncer-

tainty. In the case of the NIR band, the average values ranged between -0.008 to

0.014 for the accuracy, 0.019 to 0.027 for the precision, and 0.020 to 0.028 for the un-

certainty. Overall, data from KLM (N16 to N19) sensors showed better performance

than pre-KLM ones (N07 to N14).
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Figure 2.6: Accuracy (A), Precision (P), and Uncertainty (U) of AVHRR surface
reflectance evaluation. Metrics are computed in bins of 0.02 reflectance units and the
overall value is given in the top of each subplot. The histogram of values is displayed
in black (right axis). Circles on the accuracy line represent negative values. The
magenta line represents the specification of 0.071ρ + 0.0071 from the TM5 product.

2.5.3 Temporal evolution of LTDR performance

Performance of a satellite data record can change in time, as changes in plat-

form orbit, sensor degradation, and data calibration can affect the quality of top-

of-atmosphere data. Moreover, performance of the atmospheric correction process

depends on the quality of available ancillary data used to characterize atmospheric

conditions. In this regard, it is important to evaluate how the performance of the

AVHRR LTDR changes with time. Figure 2.7 shows the temporal evolution of the
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APU metrics during the 1984-2011 study period. Yearly results are shown for each

sensor-band combination for the geometrical and spectrally adjusted AVHRR data.

Accuracies showed a generally consistent behavior for each independent sensor, i.e.,

in most cases a particular AVHRR sensor showed either negative or positive bias

with respect to TM5. One exception was N11 NIR band, which exhibited variations

in the bias direction during its lifetime and an opposite bias behavior both when

transitioning from its predecessor (N11) and to its successor (N14). In terms of

precision, the pre-KLM sensors (N07-N014) showed an increasing trend of the P

metric during their lifetimes that was present in both bands. This was not the case

for the KLM sensors (N16-N19) which showed a more stable temporal behavior.

Figure 2.7: Temporal evolution of the Accuracy, Precision, and Uncertainty. A ”-”
sign above the accuracy bar represents negative values. The number of CMG pixels
(in thousands) is shown at the top.

2.5.4 Spatial distribution of bias and relative uncertainty

Performance of the LTDR is not spatially uniform. Two metrics helpful to

represent this are the accuracy, which shows the mean bias of AVHRR with respect
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to TM5; and the relative uncertainty, which gives context to the uncertainty metric

in relation to the actual average reflectance of a particular site. We display these

metrics in 2.5° latitude and longitude bins that provide enough data to compute

the statistical metrics. For each bin, the metrics were computed from all included

CMG pixels. Wider spatial coverage in the results of newer AVHRR sensors is due

to a larger number of TM5 scenes available and is not related with AVHRR data

availability. Accuracy results showed lower biases for the Red than for the NIR band

(Figure 2.8). The Red band accuracy values for 95% of bins varied within -0.028

to 0.026 for N07, -0.015 to 0.018 for N09, -0.021 to 0.013 for N11, -0.012 to 0.014

for N14, -0.008 to 0.012 for N16, -0.005 to 0.015 for N18, and -0.003 to 0.015 for

N19. For the NIR band, accuracy values for 95% of the bins varied within -0.040 to

0.017 for N07, -0.025 to 0.025 for N09, -0.026 to 0.014 for N11, -0.008 to 0.034 for

N14, -0.008 to 0.023 for N16, -0.006 to 0.022 for N18, and -0.001 to 0.018 for N19.

There is a change in the bias direction and magnitude (sign of the accuracy value)

on the NIR band when transitioning from N11 to N14 which is especially noticeable

on Northern Africa and Western Asia.
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Figure 2.8: Accuracy maps for AVHRR LTDR Red and NIR bands. Values closer
to 0 represent better performance. The values were computed in 2.5° (latitude and
longitude) bins considering all corresponding CMG pixels.

The spatial distribution of relative uncertainties was generally consistent be-

tween all sensors (Figure 2.9). The highest relative uncertainties were observed

over high latitudes and over tropical regions. In particular, the largest values were

observed over the Amazon forest, where the density of observation is low due to fre-

quent cloud cover. The Red band showed worse performance than the NIR. When

considering 95% of the bins, the global relative uncertainty average values for the

Red band were (15±6)% for N07, (14±6)% for N09, (13±4)% for N11, (13±4)% for

N14, (14±6)% for N16, (16±6)% for N18, and (15±6)% for N19. In the NIR band,

the values were (10±3)% for N07, (10±2)% for N09, (9±2)% for N11, (10±2)% for

N14, (9±2)% for N16, (9±2)% for N18, and (8±2)% for N19. On the next sections,

we analyze these results in terms of seasonality and land cover class.
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Figure 2.9: Relative uncertainty maps for AVHRR LTDR Red and NIR bands.
Values closer to 0 represent better performance. The values were computed in 2.5°
(latitude and longitude) bins considering all corresponding CMG pixels.

2.5.5 Seasonal variation of Accuracy and Relative Uncertainty

The seasonal variation of the Accuracy and Relative Uncertainty are shown

in Figure 2.10. The metrics were first computed per pixel, and then aggregated

by season and analyzed for the Northern (NH) and Southern (SH) hemispheres

separately. Seasons correspond to December-January-February (DJF), March-April-

May (MAM), June-July-August (JJA), and September-October-November (SON).

Only pixels with more than 30 valid observations were considered in the analysis.

The number of pixels per season, hemisphere, and satellite is shown in Table 2.3.

The number of pixels with more than 30 observations is, on average, around 4

times larger on the Northern hemisphere than in the Southern hemisphere, which is

likely due to distribution of land bodies as well as TM5 data availability. On both

hemispheres, the JJA season showed the highest number of observations available.

Average Red band accuracies ranged between -0.013±0.015 (N07 in DJF) to

0.007±0.006 (N18 in JJA) on the northern hemisphere, and between -0.024±0.017

(N07 in MAM) to 0.019±0.009 (N07 in JJA) on the southern hemisphere. Results for

the NIR band showed average accuracies that ranged between -0.021±0.014 (N07
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Season
Northern Hemisphere Southern Hemisphere

Platform DJF MAM JJA SON DJF MAM JJA SON
N07 14527 14109 27725 19077 1695 862 7152 4631
N09 50760 98427 114798 97697 13442 20172 32442 21383
N11 66669 179228 219928 147291 17795 50791 96986 28075
N14 123343 166604 146475 182020 10230 42750 82012 29062
N16 142899 258199 323567 255178 32492 63199 175859 62986
N18 95938 171564 282999 415161 16426 118936 300556 94323
N19 129799 201134 522381 494477 24814 109541 184704 100931

Table 2.3: Number of CMG pixels per season

in DJF) to 0.015±0.012 (N14 in JJA) on the northern hemisphere, and between

-0.024±0.017 (N07 in MAM) to 0.019±0.009 (N07 in JJA) on the southern hemi-

sphere. For most cases, the spread of values was generally similar between the Red

and NIR bands. In terms of relative uncertainties, average values for the Red band

ranged between (10±5)% (N16 in DJF) to (20±8)% (N18 in JJA) on the northern

hemisphere, and between (10±5)% (N11 in JJA) to (37±13)% (N07 in MAM) in the

southern hemisphere. In the case of the NIR band, average values ranged between

(8±2)% (N19 in DJF) to (11±4)% (N07 in DJF) on the northern hemisphere, and

between (7±2) (N11 in JJA) to (13±6)% (N07 in MAM) in the southern hemisphere.
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Figure 2.10: Seasonal variation of accuracy and relative uncertainty for Red and NIR
bands on the northern (top) and southern (bottom) hemispheres. Boxplot notches
represent the median confidence interval. Green triangles represent the mean. Val-
ues outside the 2.5th and 97.5th percentiles are plotted individually outside the
boxplot whiskers.

2.5.6 Accuracy and Relative Uncertainty analysis by land cover

Accuracy and relative uncertainty aggregated by land cover class are shown

in Figure 2.11. The land cover classes analyzed correspond to the ones shown in

Table 1. The metrics were first computed per pixel, and then aggregated by land

cover class. Only pixels with more than 30 valid observations were considered for

the analysis. The number of pixels per land cover class for each POES satellite is

shown in Table 2.4.

Average accuracy values for the Red and NIR bands showed little variation
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Land Cover Class
Platform NLF BLF SSM CGL BRN

N07 435 4674 18985 50202 15548
N09 2770 17543 120336 225264 82994
N11 2855 17168 204620 422263 159665
N14 1951 16295 189696 368736 205684
N16 12485 42271 372754 565779 320876
N18 11090 44301 557509 755103 127602
N19 21853 82534 649113 850797 162205

Table 2.4: Number of CMG pixels per land cover class

between sensors and land cover classes. Values ranged between -0.016±0.013 (N07

on BRN) to 0.012±0.005 (N18 on NLF) for the Red band, and between -0.014±0.015

(N07 on BRN) to 0.02±0.019 (N14 on NLF) for the NIR band. The newer sensors

generally showed less variability within the same land cover. Overall, the largest

spread of values was shown by the BRN class. In terms of relative uncertainties,

results showed that for the Red band the largest uncertainties occurred on the Forest

classes, which ranged between (19±9)% (N14 on BLF) to (34±14)% (N18 on NLF).

In contrast, the BRN class showed the lowest relative uncertainties, ranging between

(8±3)% (N16) to (10±4)% (N18). In the case of the NIR band, results were more

consistent between land classes and sensors, and were noticeably lower than those of

the Red band, ranging between (7±2)% (N19 on BLF) to (14±8%) (N14 on NLF).

2.5.7 Relationship between Red and NIR bands relative errors

Knowledge of possible correlation between the Red and NIR band errors can

be of interest for downstream data producers and users. In this context, Figure

2.12 shows the spatial distribution of the determination coefficient (R2) computed

between the Red and NIR bands relative errors with data from all AVHRR sen-
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Figure 2.11: Accuracy (top) and relative uncertainty (bottom) results by land cover
class for Red and NIR bands. Boxplot notches represent the median confidence
interval. Green triangles represent the mean. Values outside the 2.5th and 97.5th
percentiles are plotted individually outside the boxplot whiskers.

sors. Results showed a strong relationship between relative errors over bare areas in

North Africa and Southern Asia (R2 >0.8), and over open shrubland areas in North

America, South America, South Africa, and Australia (R2 >0.5). Similar results

were obtained for each sensor independently but are excluded for brevity.

2.6 Discussion

In this chapter, we evaluated the performance of the AVHRR surface re-

flectance long-term data record between 1984 and 2011 using Landsat-5 TM surface

reflectance as reference. While the current LTDR temporal coverage spans the pe-
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Figure 2.12: Determination coefficient between Red and NIR bands relative errors.
The values were computed in 2.5° (latitude and longitude) bins considering all cor-
responding CMG pixels.

riod between 1982 to present day, we limited this study to the period where Landsat-

5 was active. This allowed us to evaluate the performance of all AVHRR sensors

with one consistent reference that has gone through a series of strict recalibration

procedures [48].

The VJB method was used to normalize the AVHRR surface reflectance to the

observation geometry of TM5, which largely improved the uncertainties between

sensors, and is explained by the minimization of errors generated from the very

different observation geometries. These results agree with previous studies [37, 38,

63, 64] that showed the good performance of the BRDF-adjustment obtained with

the VJB method. For this study we used global V and R coefficients derived from

MODIS and applied them to adjust AVHRR data, which are the same coefficients

used to normalize the BRDF in the LTDR product.

Adjustment of spectral differences showed mixed performance. When applied
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alone, only a couple of sensor-band combinations improved the agreement between

AVHRR and TM5, and the general results showed an overcompensation and in-

crease of bias. On the other hand, when the SBAFs were used to spectrally adjust

the BRDF-normalized data, results improved as it further reduced the mean bias

between AVHRR and TM5 for almost all cases. This might be explained by the

dependence of the spectral adjustment factors on the NDVI, which although is less

perturbed than independent bands to observation geometry, it is affected to some

extent due to the increase of BRDF effects with wavelength, something that is ev-

idenced by the larger improvements on the NIR band after the BRDF adjustment

showed in Figure 5, and that is in agreement with previous studies [50,65,66]. The

largest improvements in APU were obtained with both the BRDF and spectral

adjustments applied.

The accuracy, precision, and uncertainty graphs revealed similar performance

between the Red and NIR bands, with results for most of the AVHRR sensor-bands

close or within the combined AVHRR and TM5 specification. Regarding the shape of

the APU curves, two effects can be noted: First, the aerosol and Rayleigh scattering

that increase the signal reaching the sensor at low surface reflectance values; and

second, the signal attenuation by aerosol absorption that occurs at higher values [67].

These effects are shown by the APU with low and high reflectance values showing

a positive and negative bias, respectively.

Temporal variations in APU were relatively small, with a general decreasing

trend during the study period. In the case of the N07-N14, there is an increase

in the uncertainty during the lifetime of each sensor, which can be attributed to
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their orbital drift [68, 69]. This effect was not evident on N16-N19 platforms, as

their orbits were more stable during the years included in the study period. These

results were consistent with the errors reported by the previous evaluation of N16-

N19 surface reflectance using MODIS [8]. Seasonal analysis of relative uncertainties

did not show significant differences between seasons.

The spatial distribution of accuracies showed better performance of the Red

band, which had biases closer to zero and that were more stable. Results for the

NIR showed inconsistencies in the biases between some sensors, which were more

noticeable between N11 and N14. These results are coherent to findings of previ-

ous studies that reported abrupt changes in the LTDR surface reflectance magnitude

when transitioning between sensors [3,23]. Spatial distribution of relative uncertain-

ties was consistent between the sensors on all POES satellites. The highest values

were located over high latitudes and over tropical regions, which might be attributed

to stronger atmospheric effects [28], cloud and snow pixel miss-classification in these

areas [50,70], and varying performance of the LTDR over different land cover types.

The latter was also evidenced by the land cover analysis that revealed larger and less

consistent uncertainties over forest classes. Overall, the NIR showed lower relative

uncertainties than the Red, which is due to the normally higher NIR reflectance

magnitudes.

The spatial analysis of Red versus NIR bands errors showed strong correla-

tions over barren and sparsely vegetated areas, which are commonly associated with

low values of vegetation indices such as the Normalized Difference Vegetation Index

(NDVI) and 2-band Enhanced Vegetation Index (EVI2). In contrast, only weak
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relationships were found over other regions and land covers. This might be of par-

ticular interest to producers and users of AVHRR land datasets, as error correlation

between bands can impact downstream products.

2.7 Conclusions

In this study we evaluated the accuracy, precision, and uncertainty of the

AVHRR Long Term Data Record for the period 1984-2011 using globally distributed

data from the Thematic-Mapper sensor onboard Landsat-5 used as a reference. The

evaluation was carried out for the AVHRR sensor on each POES satellite indepen-

dently.

We analyzed four different adjustment levels of AVHRR data: a “No-Adjustment”

level, obtained by removing the BRDF normalization initially present on the LTDR

product, which represents the original AVHRR data after the atmospheric correc-

tion process; a “BRDF adjusted level” which was obtained by implementing the VJB

method to account for reflectance variations due to changes in sun and view geome-

tries; a “spectrally adjusted level”, where spectral adjustment factors derived from

Hyperion hyperspectral data were applied to minimize the band spectral differences

between sensors; and a final adjustment stage, where both the BRDF and spectral

adjustments are applied. The VJB BRDF-correction method used in the LTDR

showed good performance when it was used to adjust the AVHRR observations to

the Landsat-5 geometry, reducing the uncertainties when compared to unadjusted

data. The spectral adjustment factors derived from Hyperion data proved to be ef-
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ficient, when applied to BRDF-normalized data, further reducing the uncertainties

in most cases. However, when it was applied to data without BRDF correction, the

results were mixed, and evidence of over adjustment was observed.

Results of the cross-comparison showed a good agreement between AVHRR

and TM5, with uncertainties that were close to or within the proposed combined

specification of 0.071ρ+0.0071. The Red band showed biases closer to zero and more

temporally consistent than the NIR band, which broad spectral response makes it

especially sensitive to water vapor absorption effects. Moreover, certain regions

showed inconsistencies in the surface reflectance bias between contiguous AVHRR

sensors, which suggests that, depending on the nature of their study, users of the cur-

rent LTDR version might still need to utilize data normalization steps and carefully

examine their results for artifacts.

The next chapters of the dissertation will attempt to reduce some of the record

inconsistencies found in this study. Chapter 3 will target the atmospheric correction

process, and in particular, the retrieval of water vapor for atmospheric correction.

Chapter 4 will target the calibration inconsistencies and attempt to calibrate the

surface reflectance product using stable areas.
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Chapter 3: Global estimation of water vapor from AVHRR

3.1 Abstract

Water vapor impact on the AVHRR signal has been estimated to be between

0.7% to 4.4% for the red channel and between 7.7% to 25% for the NIR channel.

Previous studies have shown that water vapor can be derived from AVHRR thermal

channels using a split-window model based on the strong linear relationship be-

tween water vapor content and the brightness temperature difference (∆BT ) of two

channels with differential attenuation by water vapor. This relationship is strongly

dependent on local characteristics such as spectral emissivity, surface temperature,

and atmospheric conditions, which has historically limited it’s global applicabil-

ity. This study proposes a method to statistically calibrate the split-window coeffi-

cients for AVHRR using ∆BT from AVHRR N19 channels 4 (11µm) and 5 (12µm)

with collocated total water vapor content from MYD09CMG using data between

2010 and 2014. The split-window coefficients derived from N19 are then used es-

timate the column water vapor from AVHRR ∆BT . Spectral response differences

between AVHRR instruments are accounted for using spectral adjustment factors

derived from MODTRAN simulations. The water vapor estimations are evaluated

with observations from globally distributed AERONET sunphotometers and the
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water vapor estimates from MODIS Aqua. Results show good agreement between

AVHRR-estimated water vapor and both reference datasets, with a determination

coefficient greater than 0.75 and an error lower than 0.50g·cm−2.

3.2 Introduction

Absorption of electromagnetic radiation by water vapor limits the atmospheric

windows available for Earth observation. Water vapor absorbs electromagnetic ra-

diation through rotational, vibrational, and electronic transitions. Rotational tran-

sitions are responsible for absorption in the far-infrared and microwave regions,

vibrational transitions for absorption in the infrared, and electronic transitions for

absorption in the visible and ultra-violet. Modern Earth observation instruments

count with narrow spectral channels designed to avoid regions of water vapor ab-

sorption. Unfortunately, due to technological limitations at the time of its design1,

this is not the case for AVHRR, which counts with broad spectral channels that

overlap water vapor absorption bands (Figure 3.1).

Several authors have studied the effects of water vapor on AVHRR visible

channels and derived indices. From radiative transfer simulations, [30] estimated

that for typical water vapor contents between 0.5 - 4.1 g·cm−2, the Red channel signal

can decrease between 0.7% - 4.4%, the NIR signal between 7.7% - 25%, and the NDVI

between 0.011 - 0.12 units. [71] analyzed the effects of water vapor uncertainty on

the AVHRR NDVI over the Sahel with similar results. The atmospheric correction

process in the current LTDR version considers the water vapor content from three

1Broad spectral channels were needed to achieve an acceptable signal-to-noise ratio.
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Figure 3.1: Water vapor transmittance spectrum on the range of AVHRR visible
channels. A weak absorption band occurs within the waveband of AVHRR Red
Channel and a much stronger one on the NIR.

ancillary sources. For the pre-MODIS era (N-7/-9/-11/-14), water vapor information

is obtained from either the NCEP/NCAR Reanalysis (NCEP R1) or the NCEP

Global Data Assimilation System (GDAS). During the MODIS era (N-16/-18/-19),

water vapor is obtained from same-day MODIS Terra or Aqua observations. If

MODIS data for a particular day is not available, then the LTDR processing system

uses GDAS or NCEP R1 data. Table 3.1 shows the main characteristics of the three

ancillary datasets.

Sources1 Period Spatial Res.2 Temp. Res.
MODIS [31] 2000-2020 0.05◦ x 0.05◦ daily
NCEP/GDAS [33] 1984-2020 1.00◦ x 1.00◦ 6 hours
NCEP R1 [34] 1984-2020 2.50◦ x 2.50◦ 6 hours

1Data selection is prioritized as: MODIS→NCEP/GDAS→NCEP/R1.
2Spatial resolution is shown in latitude x longitude.

Table 3.1: Water vapor sources for LTDR atmospheric correction.

The three datasets have different spatiotemporal characteristics and are pro-
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cessed differently. Data from MODIS is obtained in the same CMG grid as the LTDR

product and correspond to the same-day observation from Terra or Aqua (in that

order2). Due to this characteristics, no spatial or temporal interpolation of MODIS

water vapor is done before it’s use on the LTDR. Data from the NCEP/GDAS and

NCEP R1 is much coarser than the LTDR CMG resolution and requires interpola-

tion before being used. In both cases, the data is bi-linearly interpolated in space

from the closes four grid cells, and linearly interpolated in time from the two closest

observations to AVHRR’s overpass. This situation is not ideal, as NCEP data might

be too coarse to characterize local water vapor variations [15, 72, 73] and MODIS

data might be too temporally distant to represent the water vapor value at AVHRR

overpass time accurately.

If possible, the water vapor used for atmospheric correction should be derived

from the same sensor that measures the TOA reflectance [71]. This approach was

first tested with MODIS, which counts with three NIR channels located within

the 0.94µm water vapor band absorption region that were implemented with the

purpose of water vapor retrieval [31]. Other modern sensors have also implemented

this approach. More recent missions, such Sentinel-2 [74] and Sentinel-3 [75] also

implement a similar approach.

Unfortunately, AVHRR does not count with bands specifically implemented

with the purpose of water vapor retrieval over land [76]. However, starting with

AVHRR/2 on N07 (Table 1.2), the instrument design included a second band on

2MODIS ancillary data used was originally intended to correct Landsat-8 observations, which
overpass time matches closely with Terra.
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the thermal infrared region. The presence of two thermal infrared bands centered at

11µm and 12µm enabled the development and implementation of numerous split-

window algorithms, which depends on the differential atmospheric absorption in two

adjacent thermal infrared channels. Split-window algorithm have been applied to

AVHRR data for retrieving Sea Surface Temperature (SST) [77, 78], Land Surface

Temperature (LST) [79, 80], and water vapor content over oceans [76] and land

[15,71,81]. The latter ones are of particular interest for this chapter, as they provide

an insight of potential methods for the operational retrieval of AVHRR water vapor

over land.

[76] showed that, the brightness temperature difference (∆BT ) between AVHRR

bands 4 (11µm) and 5 (12µm) is linearly related to the atmospheric water vapor

content (uwv), such that: uwv = a∆BT + b. He first derived the split-window rela-

tionship using radiative transfer simulations and then evaluated it using simulated

AVHRR bands and radiosonde measurements over the ocean. His results showed

that AVHRR thermal bands can retrieve water vapor concentration with an error

of ±0.5g·cm−2. The method proposed by [76] was later evaluated by [71] over the

Sahel region, who found different coefficients but similar errors (±0.51g·cm−2) when

compared to radiosonde measurements. He suggested that the difference in regres-

sion coefficients between both studies might be explained by several surface and

atmospheric characteristics. This was in agreement with previous results from [79]

that showed a strong dependency between ∆BT and spectral emissivity.

The dependency of the relationship between ∆BT and uwv with local atmo-

spheric and surface conditions is something that historically has limited its global
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application. Contrary to the ocean surface, where emissivity is stable, land surface

emissivity varies with land cover, and makes the estimation of globally-applicable

split-window parameters a more complex matter.

This chapter presents a method to derive water vapor globally over land using

the split-window algorithm from [76] and an approach proposed by [15]. The method

is based on near-simultaneous observations from AVHRR (N19) thermal bands and

MODIS Aqua Total Column Water Vapor (TCWV) derived from bands 18 and 19.

To transfer the split-window coefficients from N19 to other AVHRR instruments,

we use spectral adjustment factors derived from radiative transfer simulations to

account for spectral differences. We then evaluate the derived water vapor using

collocated sunphotometer observations from AERONET and near-simultaneous ob-

servations from MODIS Aqua. Finally, we evaluate the water vapor estimates in

the context of the LTDR atmospheric correction by comparing the LTDR surface

reflectance generated using water vapor from AVHRR to surface reflectance values

generated using MODIS water vapor. Section 3.3 describes the data and materials

used in this chapter. Section 3.4 presents the methodology. Section 3.5 presents

the results and Section 3.6 their discussion. Finally, section 3.7 gives the chapter

conclusions.
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3.3 Data

3.3.1 AVHRR Brightness Temperature

The AVHRR surface reflectance Long Term Data Record (LTDR) V5 [8] spans

the period between 1981 to the present day and provides daily global BRDF-normalized

surface reflectance, brightness temperature, and view and solar geometry informa-

tion at a spatial resolution of 0.05◦x0.05◦ (latitude-longitude) in the Climate Mod-

eling Grid (CMG). For this study, we use brightness temperature from bands 4

(11µm) and 5 (12µm); the view zenith angles; and the control quality layer, which

was used to remove observations contaminated by clouds or other atmospheric ef-

fects and leave only those with the highest quality. The AVHRR LTDR products

were obtained from the LTDR project website3.

3.3.2 MODIS Brightness Temperature and Water Vapor

The MYD09CMG product from MODIS Aqua collection 6 provides daily

global surface reflectance, brightness temperature, view and solar geometries, and in-

formation of several atmospheric variables from 2002 to the present day. Similarly to

the AVHRR LTDR, the MYD09CMG product is generated at a spatial resolution of

0.05◦x0.0◦ (latitude-longitude) in the Climate Modeling Grid (CMG). For this study

we use brightness temperature from bands 31 (11µm) and 32 (12µm), the columnar

water vapor (CWV) content, view and solar angles information, and the quality

3https://ltdr.modaps.eosdis.nasa.gov
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assessment layer. As with the AVHRR data, we used the quality layer to remove

observations contaminated by clouds and other atmospheric effects. The water va-

por content in the MYD09CMG product is derived from bands 18 (0.936µm) and 19

(0.940µm) following a two-band approach with a theoretical accuracy of 5-10% [31].

Recent studies have shown wet biases between Aqua water vapor derived using the

two-band approach when compared to data from ground based stations [82–84].

The MYD09CMG data was obtained from the Land Processes Distributed Active

Archive Center4.

3.3.3 AERONET Water Vapor

We use columnar water vapor data from the AErosol RObotic NETwork

(AERONET) to evaluate the water vapor derived from MODIS and AVHRR. AERONET

is a federated network with more than 400 sites distributed globally, which represent

a wide gamut of atmospheric conditions. Data from AERONET has been used to

evaluate the retrieval of water vapor content by numerous studies [84–86]. For this

study, we use Precipitable Water data from AERONET Version 3.0 Level 2.0. The

Precipitable Water dataset corresponds to the columnar water vapor content and is

retrieved using the Beer-Lamber-Bouguer attenuation law and modeled water vapor

transmittances. More information on AERONET and its water vapor retrieval algo-

rithm can be found in [87,88]. AERONET data was downloaded from the project’s

website5.

4https://e4ftl01.cr.usgs.gov/MOLA/MYD09CMG.006/.
5https://aeronet.gsfc.nasa.gov/
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3.3.4 Global Atmospheric Profiles from Reanalysis Information

The Global Atmospheric Profiles from Reanalysis Information database [89]

(GAPRI) is a compilation of 8,324 globally distributed vertical atmospheric profiles

from ERA-Interim [90]. Atmospheric profiles in GAPRI includes information on

geopotential height, atmospheric pressure, air temperature and relative humidity

at 29 vertical levels. The GAPRI database has been used by several studies for

the radiative transfer simulation of brightness temperatures and the development of

generalized algorithms to estimate land surface temperature. In this study, we used

the atmospheric profiles to simulate 11um and 12um brightness temperatures from

AVHRR and MODIS to derive spectral adjustment coefficients. GAPRI profiles

were obtained directly from their authors.

3.3.5 Relative Spectral Responses of AVHRR and MODIS Thermal

Channels

Relative spectral responses (RSR) from the AVHRR instruments on the LTDR

were used to spectrally convolve simulated radiance spectra and derive spectral

adjustment factors. Figure 3 shows the RSR for each AVHRR sensor considered

(N07 to N19), and for MODIS Aqua. The RSR were obtained from the NASA

Langley cloud and radiation research webpage6.

6https://cloudsway2.larc.nasa.gov
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3.4 Method

3.4.1 Collocation between satellite and AERONET measurements

To match and AERONET and satellite observations we utilized a collocation

approach used by several studies [28, 43, 85]. At the location of each AERONET

site, we extracted the value from the closest CMG pixel (AVHRR or MODIS) and

compared it to the temporal average of all valid AERONET observations within 30

minutes of the satellite overpass.

3.4.2 Spectral adjustment of brightness temperatures

Relative spectral responses (RSR) determine how a continuous spectrum from

the surface is recorded on a sensor’s discrete band. In this work, we adjusted the

differences between different sensors brightness temperatures using spectral adjust-

ment coefficients derived from radiative transfer simulations. For this, atmospheric

profiles from GAPRI were used as inputs of the Moderate Spectral Resolution At-

mospheric Transmittance Model (MODTRAN) version 4 to simulate a dataset of

8,324 radiance spectra. The radiance spectra were then convolved with AVHRR

and MODIS relative spectral responses as shown in Equation 3.1, where L
′

is the

radiance spectra, L̄′ the convolved radiance, and λ represents each spectral band.

L̄
′
λ =

∫
L
′

λRSRλdλ∫
RSRλdλ

(3.1)
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The convolved radiances were then converted to at-sensor brightness temperatures

(BT) using Equation 3.2, where c1 is equal to 1.1910427x10−5
[

mW
m2·sr·cm−4

]
and c2 is

equal to 1.4387770 [cm ·K]; vc is the central wavenumber of each channel; and A

and B are sensor specific coefficients. For this study, the A and B coefficients were

obtained from the RTTOV V12 radiative transfer code database [91]. Note that BT

and L̄′ correspond to spectral values, but the λ subscript was dropped for simplicity.

BT =

c2vc

ln

(
1+

c1v
3
c

¯
L
′

) − A
B

(3.2)

Finally, we used a linear fit to compute the adjustment coefficients between the

brightness temperature of two sensors corresponding bands.

3.4.3 Calibration of Aqua TCWV with AERONET

For this study, we use TCWV from MODIS product MYD09CMG as a ref-

erence to calibrate a split-window algorithm with AVHRR thermal data. Due to

wet biases reported by previous studies [82–84], we first calibrate the MYD09CMG

water vapor using collocated data from AERONET sites between 2002 and 2019.

For this, we kept only the collocated matches in which MODIS pixels were flagged as

clear and with low aerosol content. The number of matched observations was mostly

dependent on AERONET data availability and cloud conditions at Aqua overpass

time. Figure 3.2 shows the number of matched observations at each AERONET

site.
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Figure 3.2: Number of match-ups between AERONET and MYD09CMG observa-
tions. The number of sites is 312 and the total number of observations after filtering
is 52,637.

3.4.4 Global derivation of split-window coefficients

Our approach to derive water vapor from AVHRR data relies on the split-

window model proposed by [76] and later tested by [15,71]. This model is based on

the strong linear relationship between water vapor content (uwv) and the brightness

temperature difference (∆BT ) of two bands with different water vapor absorption

coefficients (Equation 3.3).

uwv = a∆BT + b (3.3)

The a and b coefficients can be statistically derived using matched observations.

Previous studies have suggested that these coefficients are site specific and depend

on local conditions such as spectral emissivity, surface temperature, and atmospheric
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conditions [71,79].

3.4.4.1 MODIS bands 31 (11µm) and 32(12µm)

We first evaluated the global validity of the split-window model using five

years of MYD09CMG data (2004 through 2008) to analyze the relationship between

the ∆BT of bands 31 (11um) and 32 (12um) with the water vapor content derived

from near-infrared bands 18 and 19 [31]. It is important to mention that the water

vapor in the MYD09CMG product correspond to the total column water vapor, i.e.,

the total water vapor in the signal path normalized by the total air mass. Note

that in the case of thermal bands, the signal only travels through the atmosphere

once: on its path from the surface emission to the sensor. In the case of the near-

infrared bands, the signal travels through the atmosphere twice: first when it enters

the Earth’s atmosphere towards the surface, and then when is reflected and travels

towards the sensor. This means that depending on the observation and solar geom-

etry, the water vapor in the path of the NIR bands could differ substantially from

the one in the path of the thermal bands.

3.4.4.2 AVHRR bands 4(11µm) and 5(12µm)

Next, to derive the split-window coefficients for AVHRR, we calibrated Equa-

tion using ∆BT from bands 4 (11um) and 5 (12um) with the collocated water vapor

from MYD09CMG (previously calibrated using global AERONET observations as

explained in section 3.4.3). The calibration of the split-window coefficients was
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done using data from NOAA-19 between 2010 and 2014. We only considered clear

observations with low or average aerosol content, and in which the overpass time

difference between AVHRR and MODIS was smaller than 30 minutes. The clear ob-

servations were selected using each product’s quality flags, and the aerosol quantity

was obtained from the MYD09CMG product “State QA” dataset.

3.4.5 Global estimation of water vapor over land from AVHRR

We then used the split-window coefficients derived for the different AVHRR

sensors to estimate the integrated water vapor content from AVHRR ∆BT . To

account for spectral differences between N19 and the other AVHRR instruments,

we used the spectral adjustment factors derived in section 3.4.2.

3.4.6 Evaluation of AVHRR water vapor performance

We evaluated the performance of the water vapor derived from AVHRR against

two references datasets:

1. Collocated observations from AERONET sunphotometers.

2. Near-simultaneous (±30 minutes) TCWV from MODIS-Aqua.

In both cases, we evaluated the water vapor estimates from N16 (2002-2005), N18

(2005-2009), and N19 (2015-2017)7 using three common statistical metrics:

Bias =

∑n
i=1 εi
N

Sigma =

√√√√ 1

N − 1

n∑
i=1

(εi − A)2 RMSE =

√√√√ 1

N

N∑
i−1

ε2i

7Note that this period is different than the one used to calibrate N19.
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where εi corresponds to the estimated value minus the reference value and N the

number of observations.

3.4.7 Evaluation of AVHRR water vapor for atmospheric correction

Water vapor content is a crucial variable in the atmospheric correction of

AVHRR data, particularly for the NIR band. To evaluate the performance of the

AVHRR-derived water vapor in the context of the LTDR atmospheric correction,

we first extracted the top-of-atmosphere (TOA) reflectance and ancillary data time

series from N16, N18, and N19 over 444 BELMANIP-2 sites [92]. This provided

a database that is well-representative of different land cover and atmospheric con-

ditions, and that allows us to analyze the atmospheric correction process without

having to reprocess the entire LTDR record. We then ran the 6S code twice for

each observation: (1) with the water vapor from MODIS closest overpass; and (2)

with the water vapor derived from AVHRR. All other ancillary variables were main-

tained equal between successive 6S runs. Finally, we used the dataset of surface

reflectances based on MODIS water vapor as a reference to evaluate the surface

reflectance obtained using water vapor from AVHRR.

3.5 Results

3.5.1 Evaluation of MODIS Aqua TCWV with AERONET

Results showed a strong relationship (R2>0.9) and low errors (RMSE<0.5cm)

between TCWV from Aqua and AERONET (Figure 3.3). However, there is a wet
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bias in Aqua TCWV of around 0.4 [cm] that increased with water vapor content and

should be accounted for. For the the rest of this study, we calibrated the TCWV

from AQUA to AERONET-like values using the slope (0.827) and intercept (-0.113)

computed in from this evaluation.

Figure 3.3: Evaluation of MYD09CMG water vapor with AERONET Data. The
dashed line corresponds to the 1:1 line and the solid red line is the regression line.
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3.5.2 Global estimation of split-window coefficients

3.5.2.1 MODIS Aqua B31-B32 ∆BT vs TCWV

Results showed a globally strong relationship between Aqua B31-B32 ∆BT

and TCWV content. Figure 3.4 shows the global distribution and histogram of R2

values.

Figure 3.4: Determination coefficient between MYD09CMG B31-B32 brightness
temperature difference and MYD09CMG columnar water vapor. Gray areas corre-
spond to regions with no available data.

The distribution of R2 values was skewed towards high values, with a mean

of 0.75±0.14, and a median of 0.80 with and inter-quantile range of 0.14. Overall,

88% of pixels had a R2 value higher than 0.6. Generally, tropical areas showed the

lowest values. Next, Figure 3.5 shows results for the regression slope.
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Figure 3.5: Regression slope between MYD09CMG B31-B32 brightness tempera-
ture difference and MYD09CMG columnar water vapor. Gray areas correspond to
regions with no available data.

The regression slope showed a bimodal distribution, with the main peak at

around 0.65 and a lower peak at around 1.10. There is a noticeable difference be-

tween areas with no or sparse vegetation (slopes<1) and vegetated areas (slope>1).

3.5.2.2 AVHRR NOAA-19 B4-B5 ∆BT vs MODIS Aqua TCWV

Similarly to MODIS, results showed a globally strong relationship between

AVHRR N19 B4-B5 ∆BT and MODIS Aqua TCWV content. Figure 3.6 shows the

global distribution and histogram of R2 values.

The distribution of R2 was skewed towards high values, with a mean of 0.70±0.17,

and a median of 0.74 with and inter-quantile range of 0.18, with 78% of pixels scoring
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Figure 3.6: Determination coefficient between AVHRR (N19) B4-B5 brightness tem-
perature difference and MODIS (Aqua) columnar water vapor. Gray areas corre-
spond to regions with no available data.

a R2 value higher than 0.6. As with MODIS, some pixels located in tropical regions

showed particularly low R2 values. Figure 3.7 shows results for the regression slope.

Note that in this case the range of values is different than 3.5. For AVHRR the

regression slope also showed a bimodal distribution. The the main peak was located

at around 0.40 with a lower peak at around 0.57. Results for N16 and N18 were

similar and are omitted for brevity.
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Figure 3.7: Regression slope between AVHRR (N19) B4-B5 brightness temperature
difference and MODIS (Aqua) columnar water vapor. Gray areas correspond to
regions with no available data.

3.5.3 Evaluation of AVHRR water vapor with AERONET

The comparison between AVHRR and AERONET TCWV is shown in Fig-

ure 3.8. In the case of N16 and N18, the ∆BT between B4 and B5 was spectrally

adjusted to N19-like values before computing the TCWV (Section 3.4.2). Re-

sults of the evaluation showed good agreement between AVHRR water vapor and

AERONET observations. The R2 was greater than 0.75 and RMSE lower than 0.45

g·cm−2 for all three cases. Values for the bias were low, with N18 showing the

largest differences of 0.13 g·cm−2. The Sigma (i.e., the estimates’ precision) was

similar between N-16/-18/-19 and explained most of the estimation uncertainty.
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Figure 3.8: Evaluation of column water vapor derived from AVHRR vs collocated
measurements from AERONET. Results are shown for N16, N18, and N19.

3.5.4 Global evaluation of AVHRR water vapor with MODIS Aqua

Next, we show the bias, R2, and RMSE of the global evaluation between

TCWV from AVHRR N-16/-18/-19 with MODIS Aqua (Figure 3.9). As mentioned

before, the N-16/-18 ∆BT was spectrally adjusted to N19-like values before com-

puting the TCWV (Section 3.4.2).
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Results of the global evaluation show good performance of the TCWV from

AVHRR when compared to MODIS Aqua. Bias for N16 and N19 were close and

distributed around 0, while N18 values showed a small dry bias. The magnitude

and spatial distribution of R2 and RMSE was similar between the three platforms:

R2 values were generally greater than 0.65 and RMSE values were lower than 0.5.

All three metrics showed poor performance on tropical regions.

3.5.5 Evaluation of AVHRR water vapor for atmospheric correction

Figure 3.10 shows the evaluation of AVHRR-derived water vapor on the at-

mospheric correction of surface reflectance and NDVI.

Figure 3.10: Comparison of atmospheric correction results using water vapor derived
from AVHRR against results from MODIS water vapor values. Results are shown
Red (left), NIR (center), and NDVI (right).

Results of the atmospheric correction evaluation showed good agreement be-

tween surface reflectance corrected with water vapor values from AVHRR and MODIS.

Results for the Red band were practically identical, which due to the low influence

of water vapor at shorter visible wavelengths was something to be expected. In this

sense, results for the NIR and NDVI are more interesting. Only minor differences
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were found for the NIR between both sets of values, with a Bias of 0.003, RMSE of

0.010, and R2 of 0.991. The NDVI showed positive results as well, with a Bias of

0.004, RMSE of 0.011, and R2 of 0.997.

3.6 Discussion

The evaluation of TCWV from MODIS Aqua with AERONET showed good

relationship between both datasets but a wet bias on MODIS, which is in agreement

to results from other studies that compared TCWV retrievals from Aqua NIR bands

with GPS stations [82, 83] and other ground based techniques [84]. These results

were useful to adjust the TCWV from Aqua before using it to calibrate the split-

window algorithm, thus minimizing the potential biases on AVHRR estimates.

The relationship between TCWV and AVHRR ∆BT used in this chapter has

been well characterized by previous studies but only for specific surface and at-

mospheric characteristics. Over oceans, where spectral emissivity is stable, this

relationship can be accurately described by radiative transfer simulations [76]. In

contrast, spectral and atmospheric characteristics over land surfaces are more di-

verse, which makes describing the relationship between TCWV and ∆BT more com-

plex [79] and limits the applicability of coefficients derived from radiative transfer.

In this study we overcome this limitation by deriving location specific split-window

coefficients using near-simultaneous observations from MODIS Aqua at a global

scale.
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The proposed method agrees well with results from a previous study by [15]

that computed split-window coefficients between NOAA-16 ∆BT and TCWV from

MODIS Aqua over an homogeneous area in the Saharan desert. That study found

a linear slope and intercept of 0.41 and 1.0, respectively. In comparison, over the

same area our method yields a slope of 0.38 and intercept of 1.0.

Regarding the spatial distribution of the split-window coefficients, the results

from this study give some interesting insights. For both of MODIS ∆BT and

AVHRR ∆BT , there is a noticeable difference in the regression slope value between

areas with no (or sparse) vegetation and vegetated areas, with marked transition

zones between them. While this agrees with the dependence of the split-window

method on the local surface emissivity, it suggests the possibility of estimating co-

efficients grouped by land cover class, which could be used to assign coefficients in

areas where the number of matched AVHRR/AQUA observations are not enough

for a robust statistical regression.

The evaluation with AERONET and MODIS showed good global performance

of the TCWV from AVHRR, with errors that were generally close or lower to those

found by previous studies [71, 76]. The poor performance of estimates in tropical

regions might be attributed to persistent cloud coverage [93] or high water vapor

content and variability [94]. Furthermore, the bad performance observed over the

West African Sahel could be the result of swings between periods of drought and

abundant rainfall [95], and increasingly frequently flooding events [96]. All these

phenomena can modify the local relationship between ∆BT and TCWV and influ-

ence the estimated split-window coefficients.
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Finally, when the TCWV from AVHRR was used in the atmospheric correction

process of the LTDR, the obtained surface reflectance values showed a good agree-

ment with the surface reflectance corrected using the TCWV from MODIS. These

findings show that the proposed method is a valid alternative to derive TCWV

for atmospheric correction directly from AVHRR, instead of depending on coarse

resolution ancillary data, which might often be inadequate at representing the spa-

tiotemporal variation of atmospheric water vapor.

3.7 Conclusions

This study presented the first estimates of TCWV over land derived from

AVHRR at a global scale. This was achieved through the per-pixel calibration of a

split-window algorithm using ∆BT from AVHRR N19 bands 4 (11µm) and 5 (12µm)

with the collocated TCWV from MODIS Aqua. To transfer the split-window coef-

ficients to AVHRR instruments on other NOAA platforms we used spectral adjust-

ment factors derived from MODTRAN radiative transfer simulations. The TCWV

derived from AVHRR was then evaluated against collocated AERONET and MODIS

Aqua observation, showing good agreement and errors lower that those reported by

previous studies. In terms of the LTDR atmospheric correction, the water vapor

estimates from AVHRR were comparable to estimates from MODIS. The findings

of this study are promising and a step-forward in both the improvement of the

LTDR atmospheric correction and the potential generation of a long-term water

vapor product from AVHRR. The next chapter will target calibration inconsisten-
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cies between AVHRR instruments and attempt to calibrate the surface reflectance

product using stable areas.
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Chapter 4: Recalibration of the AVHRR Long Term Data Record

4.1 Abstract

The LTDR is a unique source of information for the study of the Earth’s surface

processes and their long-term dynamics. However, numerous studies have evidenced

calibration inconsistencies in the LTDR. This study proposes an approach for the

recalibration of the record with observations from automatically selected stable ar-

eas. The areas are selected with a pattern-matching algorithm and then used to

compare the surface reflectance from AVHRR with the MODIS climatological value

and derive recalibration coefficients. The recalibration coefficients were evaluated

using the comprehensive method presented in Chapter 2. Results from the evalua-

tion were positive and showed that the derived coefficients improved the accuracy of

most instruments. These findings are promising and show potential of the proposed

method to improve the calibration of the LTDR and minimize the consistency issues.

4.2 Introduction

The surface reflectance LTDR is generated using almost 30 years of daily data

from seven AVHRR instruments onboard different NOAA satellites. This makes the
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LTDR a unique source of information for long-term studies of the Earth’s surface.

While numerous efforts have been made throughout the years to generate a well

calibrated and consistent product, combining observations from multiple sensors

is certainly not an easy task. In this context, numerous studies have shown in-

consistencies between the observations made by the AVHRR instruments on board

different NOAA platforms [3,4,23], especially for the period before NOAA-16, when

the sensor degradation and orbital drift were major issues. This is something that

studies have addressed by proposing corrections suitable for their intended pur-

poses [3, 97, 98]. These issues should ideally be addressed by the data producers

before they propagate to higher level products. In summary, there is a need to

improve the LTDR surface reflectance inter-consistency.

The calibration of the AVHRR reflective bands is not an easy task due to the

lack of an on-board calibration system [19], which has made the topic of AVHRR cal-

ibration popular in the literature for many years. In this regard, pseudo-invariant

targets have been shown to be suitable for the detection of instrument degrada-

tion [15], and the transference of calibration coefficients from a well calibrated instru-

ment [22]. In fact, pseudo-invariant stable calibration sites are the most exploited

invariant targets for the purpose of sensor inter-calibration [99].

Numerous studies have proposed stable areas or analyzed their feasibility for

the purpose. For example, [100] evaluated the temporal stability of twenty 100

x 100 km2 desert targets located in the Saharan and Arabian desert using TOA

visible images from Meteosat-4 between July of 1989 and January of 1990 and

found temporal variations of up to 15%, which were reduced to 3% with a desert-
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specific BRDF model [101]. More recently, [22] analyzed a set of these sites using 12

years of MODIS Aqua Ch.1 TOA observations with similar results. However, one of

the issues with calibration methods based on stable sites is their inability to detect

changes in their reference targets, which are assumed to be stable during the inter-

calibration period. In this regard, the use of multiple varied targets might aid in

isolating the part of the signal variation that is independent of each site and can be

assumed to emerge from the sensor. To this end, pattern-matching algorithms seem

like an interesting alternative. These types of algorithms have already been applied

to Land Use and Land Cover classification studies with good results [102, 103], so

they seem to be a promising option for the automatic selection of stable areas.

One issue that can complicate the intercalibration and comparison of different

instruments is related to differences in their spectral response. Which depending

on the sensor combination, can cause differences of up to 20% [40]. This issue can

be mitigated by deriving spectral adjustment coefficients that adjust the sensors to

a common radiometric scale. Previous studied have accounted for this by deriving

spectral band adjustment factors. For example, [104] took advantage of hyperspec-

tral radiances from the Scanning Imaging Absorption Spectrometer for Atmospheric

Cartography (SCIAMACHY) to spectrally adjust and inter-calibrate geostationary

sensors by deriving SBAF on a global scale. More recently, [6] used a curated

selection of laboratory measurements to derive and evaluate spectral adjustment

equation between numerous sensors.

Moreover, differences in the signals from two sensors can be due to directional

(BRDF) effects [36] and should be accounted for. While the LTDR product includes
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a BRDF-normalization step in its processing, any other product used for addressing

the calibration inconsistencies of the LTDR should also account for this. Fortunately,

methods to achieve this in rather simple ways already exist [17].

This chapter presents a method to assess calibration inconsistencies present in

the LTDR. This method is based on a novel approach, that uses pattern-matching

techniques, for the automatic selection of stable areas suitable for the intercalibra-

tion of remote sensors. The selected stable areas are then used to derive calibration

coefficients for all AVHRR instruments in the LTDR and recalibrate the data record.

Finally, the results from this recalibration are evaluated with the methodology devel-

oped in Chapter 2. Section 4.3 describe the data and materials used in this chapter.

Section 4.4 presents the methodology. Section 4.5 presents the results 4.5 which are

discussed in Section 4.6. Finally, section 4.7 gives the chapter conclusions.

4.3 Data

4.3.1 AVHRR Surface Reflectance

In this study, we analyzed the calibration inconsistencies present in the AVHRR

surface reflectance Long Term Data Record (LTDR) [8]. The LTDR is generated

from L1b GAC data from 7 AVHRR instruments between 1981 to present day. Data

from the LTDR provides daily BRDF-normalized observations at spatial resolution

of 0.05◦x0.05◦ in the Climate Modeling Grid (CMG). The surface reflectance product

includes information for 5 spectral channels, solar and view zenith angles, relative

azimuth angles, and quality assessment. For this study, we use surface reflectance
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from the red (0.58-0.68 µm) and near infrared (0.72-1.10 µm) channels, and the

quality layer, which was used to remove pixels contaminated by clouds or other

atmospheric effects and analyze only those with the highest quality. The AVHRR

surface reflectance products were obtained from the LTDR project website1.

4.3.2 MODIS Surface Reflectance

Red and near-infrared surface reflectance from MODIS Aqua Collection 6

were used in the study for evaluating the calibration of AVHRR. The MODIS

MYD09CMG Collection 6 product provides surface reflectance images on 7 channels

between 450 and 2100 nm at a spatial resolution of 0.05◦x0.05◦) in the same grid as

AVHRR. The surface reflectance from MODIS was evaluated by [28], who reported

uncertainties lower than 0.005 + 0.05ρ. In this study, we normalized the MODIS

BRDF using the method explained in Section 2.4.3.

4.3.3 Hyperion Surface Reflectance Spectra

Spectral band adjustment factors (SBAF) between AVHRR and MODIS Aqua

were derived from a set of more than 100,000 hyperspectral surface reflectance spec-

tra acquired by the Hyperion (H0) spectrometer onboard the Earth Observer-1

(EO-1) satellite2.

1https://ltdr.modaps.eosdis.nasa.gov
2Note that this is the same dataset used in Chapter 2.
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4.3.4 Relative Spectral Responses

Relative spectral responses (RSR) from AVHRR and MODIS were used to

spectrally convolve the H0 surface reflectance spectra and derive spectral adjustment

factors in a similar way to the method explained in Section 2.4.4. The RSR’s for

MODIS and every AVHRR instrument int the record was obtained from the NASA

Langley cloud and radiation research webpage3.

4.4 Method

4.4.1 Global selection of Stable Sites

In this study we propose a method for the automatic selection of stable

sites (i.e., pixels) that are suitable for characterizing the calibration inconsisten-

cies present in the LTDR. The automatic selection method is based on a reference

temporal profile and on a similarity metric.

4.4.1.1 Definition of reference temporal profile

To find stable sites using the AVHRR data we began by defining a reference

temporal profile. AVHRR surface reflectance shows temporal variations in the signal

that are not representative of changes in the surface of Earth but are generated by

sensor degradation and calibration issues. To account for this, we based our metric

to find stable targets, on the temporal profile of the Red to Near-Infrared surface

3https://cloudsway2.larc.nasa.gov
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reflectance ratio anomaly. The reference temporal profile was generated from ob-

servations of 8 stable sites (Table 4.1) over the entire AVHRR record. These sites

were selected because their spatiotemporal variability and atmospheric conditions

has been previously analyzed by several studies and found suitable for the intercal-

ibration of satellite instruments [15,22,99,100,105].

Site Latitude Longitude Type
DomeC 75.102 123.395 Snow
Libya4 28.55 23.39 Desert
Niger1 19.67 9.81 Desert
Saharan 21.5 14.4 Desert
Sudan1 21.74 28.22 Desert
Arabia1 18.88 46.76 Desert
Libya1 24.42 13.35 Desert

Table 4.1: Reference calibration sites.

A profile of the Red to Near-Infrared ratio temporal anomaly (Figure 4.1) was

computed independently for each site and averaged to derive the reference profile

used to automatize the selection of sites globally.

4.4.1.2 Automatic selection of stable sites

The method for automatic selection of stable sites, is based on measuring the

similarity between the reference profile computed in the previous section, with that

of other land pixels. There are numerous techniques designed to extract patterns

and measure the similarity between time series [106,107]. For this study, we selected

the Dynamic Time Warping (DTW) distance [108], a well-known metric used to

quantify the similarity between two or more sequences.
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Figure 4.1: Temporal anomaly of the Red/NIR ratio.

We selected the DTW as a similarity metric because it is suitable for use

on time series with missing observations and has been shown to be one of the

fastest [109] and better performing techniques for the identification of pattern in

data series [110].

4.4.2 Reference Surface Reflectance Climatology

To get a reference value against which to compare the surface reflectance from

AVHRR we computed the MODIS Aqua BRDF-corrected surface reflectance per-

pixel climatology (2002-2016) for each stable site selected by the DTW distance

metric. The climatology was calculated from all cloud and shadow free pixels with

an aerosol optical depth lower than 0.6.
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4.4.3 Spectral Adjustment between the AVHRR and MODIS

The method used to derive spectral adjustment factors (SBAF) is similar to

the one presented in Section 2.4.4 and is omitted here for brevity. However, for

this study we fitted the SBAFs between MODIS and AVHRR to the NDVI from

AVHRR using the double exponential model described in Equation 4.1:

SBAFReference
AV HRR

= a·exp(b·NDV IAVHRR) + c·exp(d·NDV IAVHRR) (4.1)

The double exponential model was selected because it has been shown to best repre-

sent the spectral relationship between AVHRR and MODIS Red and NIR bands [6].

4.4.4 Derivation of Recalibration Coefficients

At each stable site we computed the ratio between the MODIS climatological

value and the corresponding AVHRR Red and NIR surface reflectances. These ratios

are what we refer to as “recalibration coefficients”. To obtain an equation useful

for the recalibration of the entire record, we fitted the 3-month averaged ratios to

the number of days that each NOAA platform had been in orbit at the time of

the observation. This type of fit is useful for characterizing signal changes due to

sensor and orbit degradation [14, 22, 111]. Finally, to evaluate the impact of the

recalibration coefficients on the LTDR, we replicated the evaluation presented in

Chapter 2 with the recalibrated record.
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4.5 Results

4.5.1 Global selection of stable sites

Figure 4.2 shows the stable areas selected using the DTW method.

Figure 4.2: Areas selected by the DTW distance method.

The approach, based on a reference time series and the DTW method gener-

ated a selection of pixels over North Africa, the South Pole, and the Amazon forest.

The majority of selected pixels was found over bare ground or snow areas which are

similar to the surfaces of the sites used to generate the reference time series.
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4.5.2 Spectral Adjustment

Figure 4.3 shows the resulting fit and spectra adjustment coefficients for MODIS/AVHRR.

Figure 4.3: Spectral Band Adjustment Factors between AVHRR and MODIS. The
histogram shows the distribution of NDVI values from MODIS.

There is a noticeable difference between the SBAFs for the Red and NIR

bands. The SBAFs for the Red band tend to decrease in value when the NDVI

increases, and this dependence is noticeable stronger for N07-N14 than for N16-

N19. In contrast, the NIR band SBAFS tend to increase with the NDVI and show

a more consistent behavior.
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4.5.3 Calibration Coefficients

Figure 4.4 shows the computed recalibration coefficients for the Red band as

a function of the days that each platform has been in orbit. Each plot shows the

linear and quadratic fits.

Figure 4.4: Recalibration coefficients for AVHRR Red band. The markers represent
3-month mean and standard deviation. Numbers on top of each marker show the
number of observations in thousands. The gap in N11 values is due to the eruption
of Mt. Pinatubo in 1991.

The recalibration coefficients for the Red band were generally smaller than

unity. Results for N11 showed the smallest calibration slope, which suggest a more

stable calibration of the instrument. In contrast, N09 showed the largest calibration

slope. For most cases, the temporal variation of the coefficients was better repre-

sented by a quadratic fit. However, for N11, N16 and N18 there was little difference

between the linear and quadratic methods. Some of the coefficients showed a small

seasonality, which was more evident for the N07 and N14. Figure 4.5 shows the

recalibration coefficients for the NIR band.
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Figure 4.5: Recalibration coefficients for AVHRR Red band. The markers represent
3-month mean and standard deviation. Numbers on top of each marker show the
number of observations in thousands. The gap in N11 values is due to the eruption
of Mt. Pinatubo in 1991.

Results for the NIR band are similar to the Red band. The calibration coef-

ficients were smaller than unity and their temporal variation was generally better

represented by a quadratic fit. In the following section, we evaluate the LTDR

recalibration using the quadratic coefficients.
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4.5.4 Evaluation of the Recalibrated LTDR

Table 4.2 shows the Red band APU metrics computed for the original LTDR

and the recalibrated record (LTDR-I) using the quadratic coefficients.

Red Band
Accuracy Precision Uncertainty

LTDR LTDRI-I LTDR LTDR-I LTDR LTDR-I
N07 0.001 -0.001 0.019 0.020 0.020 0.020
N09 0.004 0.001 0.017 0.017 0.018 0.017
N11 -0.001 -0.002 0.016 0.016 0.016 0.017
N14 0.002 0.000 0.017 0.016 0.017 0.016
N16 0.002 -0.001 0.016 0.016 0.016 0.016
N18 0.004 0.001 0.015 0.015 0.015 0.015
N19 0.005 0.003 0.012 0.012 0.014 0.013

Table 4.2: Red APU for the original (LTDR) and recalibrated (LTDR-I) record.

Results of the Red band recalibration were generally positive, albeit small.

Except for N11, the accuracy for all instruments improved after the recalibration.

The largest accuracy improvements were shown for N09 and N07 (0.004 to 0.001).

Changes in uncertainty reached 5% and were mostly due to accuracy improvements,

as the precision was mostly unchanged. Results for the NIR are shown in Table 4.3.

NIR Band
Accuracy Precision Uncertainty

LTDR LTDRI-I LTDR LTDR-I LTDR LTDR-I
N07 -0.008 -0.019 0.027 0.026 0.028 0.032
N09 -0.003 -0.008 0.026 0.025 0.027 0.027
N11 -0.004 -0.014 0.022 0.021 0.022 0.026
N14 0.014 -0.004 0.024 0.022 0.028 0.022
N16 0.010 0.002 0.022 0.021 0.024 0.021
N18 0.010 0.001 0.021 0.020 0.023 0.020
N19 0.006 0.001 0.019 0.019 0.020 0.019

Table 4.3: NIR APU for the original (LTDR) and recalibrated (LTDR-I) record.
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Results for the NIR band were mixed. For the instruments on N07-N14, the

accuracy decreased after the recalibration, with N07 showing the worst results (from

-0.008 to -0.019). For N14-N16 the situation was different, with a considerable

accuracy improvement in all cases. The largest accuracy improvements after the

recalibration were show by N14 (0.014 to -0.004) and N18 (0.010 to 0.001). Changes

in uncertainty ranged between 5% for N19 to 22% for N14. As with the Red band,

the precision was mostly unchanged. Figure 4.6 shows the relative change in the Red

and NIR bands uncertainty for all instruments. The APU graphs for the recalibrated

record are shown in Appendix B.

Figure 4.6: Relative change in uncertainty after surface reflectance recalibration.
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4.6 Discussion

In this chapter, we proposed an approach to address calibration inconsisten-

cies in the LTDR. The proposed approach used a novel method based on a pattern-

matching algorithm (DTW) to drive the automated selection of stable areas suitable

for sensor intercalibration. The areas selected by the pattern-matching algorithm

were then used to derive recalibration coefficients for the LTDR. This was done by

comparing the surface reflectance from spectrally adjusted AVHRR with a climato-

logical value derived from MODIS Aqua BRDF-normalized reflectance.

The areas selected by the automatic method correspond to well-known cali-

brated targets (deserts, permanent snow), which shows the good performance of the

pattern-matching algorithms as a method to identify surfaces from reference time-

series. In fact, numerous studies have also taken advantage of the DTW method

for Land-Use and Land-Cover mapping and classification [102, 103]. Moreover, the

selection of forest areas agreed with calibration methods previously proposed [10].

The spectral adjustment factors derived in this study were an important

step for the appropriate recalibration of the LTDR. Specially for the forest areas,

since larger NDVI values show the largest spectral differences between AVHRR and

MODIS Aqua.

The recalibration coefficients showed that the LTDR surface reflectance has a

positive bias when compared to the climatological value from MODIS Aqua. The

coefficients generally showed a quadratic relationship with the number of days that

each platform has been in orbit. It is important to note that these results do
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not necessarily represent issues in the AVHRR instruments, and they are more

likely accounting for small variations not entirely addressed by the initial LTDR

calibration, or by artifacts introduced during the LTDR processing steps. However,

it is important not to forget that calibration issues are many times worse before

being corrected by the LTDR absolute calibration.

The evaluation of the recalibrated record showed good results. The Red band

showed improvements in accuracy for most of the instruments (up to 5%). In con-

trast, changes in the NIR band accuracy after calibration were more noticeable (up

to 22%). The large accuracy improvements of N14-N19 (0.005-0.01) showed that

the method developed in this chapter will contribute to a more consistent LTDR

record. The reduced performance of N07-N11 should be further looked into, but re-

sults suggest that the recalibration issues could be generated by water vapor effects

not accounted in the atmospheric correction due to the coarse resolution products

used. This issue might be solved by implementing the AVHRR water vapor re-

trieval approach presented in Chapter 3. Furthermore, a new method to define the

reference time series used by the patter-matching algorithm, based in the temporal

profile of high-altitude bright clouds, is currently being researched and may provide

further improvements.

4.7 Conclusions

This chapter presented a novel approach to assess and correct the calibration

uncertainties present in the LTDR. Our proposed method was based on reference
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time series from 8 well-characterized stable sites to drive a pattern-match algorithm

and automatically select areas suitable for the intercalibration of AVHRR spec-

tral bands. The stable sites where then used to derive recalibration coefficients by

comparing the AVHRR observations to a climatological value from MODIS Aqua.

Evaluation of the recalibrated LTDR was promising and showed the potential of

the proposed method to improve the calibration of the LTDR and minimize the

consistency issues.
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Chapter 5: Conclusions

5.1 Summary of Findings and Impact of Research

The main objective of this dissertation was to advance the development of the

AVHRR surface reflectance LTDR. This section summarizes the main findings of

this dissertation and how they might impact both the community of LTDR data

users and the LTDR future development.

First, in Chapter 2 a method was proposed for the comprehensive evaluation

of the LTDR surface reflectance performance, and the characterization of its uncer-

tainties. The method used same-day observations from Landsat TM5 as a reference

dataset, the VJB BRDF-normalization method to account for differences in observa-

tion geometry, and spectral adjustment factors to harmonize both sensors’ spectral

behavior. The LTDR performance was evaluated in terms of accuracy, precision,

and uncertainty metrics and compared to a target specification.

The evaluation showed that the overall performance of the LTDR is close to

the target specification of 0.071ρ + 0.0071. In general, the more recent AVHRR

instruments performed better. The temporal analysis of uncertainties showed an

increasing trend during the lifetime of N07-N14 that was not present for N16-N19.

This increase in uncertainty was mainly attributed to orbital drift effects present
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in the earlier AVHRR instruments of the LTDR. Moreover, the seasonal analysis

showed no significant variation between seasons in either the Northern or Southern

Hemisphere. The spatial distribution of uncertainties was similar for all AVHRR

instruments, with the largest uncertainties found over forests in high latitudes and

tropical regions. A strong correlation was found between the relative errors of the

Red and NIR bands over barren (R2>0.8) and sparsely vegetated (R2>0.5) areas.

These results provide the first comprehensive evaluation of the LTDR, which

is valuable to data users and the LTDR development team. This evaluation will

help users better understand the potential and limitations of the record for their

particular studies and address them as needed. Furthermore, LTDR users now can

include uncertainty estimates, which are will improve correct interpretation of their

research results. The LTDR development team also benefits from this evaluation,

as the assessment of the product’s spatiotemporal performance provides insight on

potential issues in the production of the data record.

Next, Chapter 3 presents a method to derive water vapor content from the

AVHRR observations and provide better input information for the LTDR atmo-

spheric correction. The proposed method relied on near-coincident observations

from AVHRR N19 and MODIS Aqua to calibrate local split-window coefficients

globally. Moreover, spectral adjustment factors made it possible to use the coeffi-

cients derived for N19 on other AVHRR instruments, which allowed the retrieval of

water vapor from AVHRR for the pre-MODIS era.

The water vapor estimates from N16-N19 were validated against measurements

from globally-distributed AERONET sunphotometers with good results (R2>0.75;
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RMSE<0.45g·cm−2). Moreover, the estimates from AVHRR were evaluated globally

on a per-pixel basis using near-coincident total column water vapor from MODIS

Aqua. This evaluation showed good performance of the estimates globally, with an

error lower than 0.50g·cm−2, with the exception of some tropical areas.

To evaluate the potential use of AVHRR water vapor for the atmospheric

correction of the Red and NIR bands, a dataset of over 500,000 AVHRR TOA

observations was atmospherically corrected using the water vapor estimates from

AVHRR and compared to values corrected with MODIS water vapor. Results for the

NIR band (which is impacted by absorption from atmospheric water vapor) showed

good agreement between the surface reflectance derived using water vapor from

AVHRR and the values corrected using MODIS water vapor (R2=0.99; RMSE=0.01;

Bias=0.003).

The derived global split-window coefficients will allow the LTDR team to esti-

mate water vapor for the atmospheric correction directly from the instrument that

measures the surface reflectance. At least in theory, this will enable the genera-

tion of better and more consistent surface reflectance values than the current ones

obtained from coarse resolution atmospheric products. Furthermore, if the atmo-

spheric correction is improved, users of LTDR data will directly benefit from surface

reflectance estimates that better represent the land surface.

Finally, Chapter 4 proposed an approach to address calibration inconsistencies

in the LTDR. The proposed approach used a novel method based on the Dynamic

Time Warping metric to drive the automated selection of globally distributed stable

areas. The areas selected by the DTW-based method were then used to derive
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calibration coefficients for the LTDR. This was done by comparing the 3-month

average surface reflectance from spectrally adjusted AVHRR observation with a

climatological value derived from MODIS Aqua BRDF-normalized reflectance.

Evaluation of the recalibrated LTDR showed good results, with improvements

in uncertainty that reached 5% for the Red band and varied between 5% to 22%

for the NIR. Results for N07 and N09 NIR band showed an uncertainty increase

after the recalibration. This was attributed to water vapor effects not accounted

in the atmospheric correction due to the currently used coarse resolution products.

These findings provide valuable information for the LTDR development team and a

further step towards the improved calibration of the surface reflectance record.

5.2 Future Research

In this dissertation, the LTDR evaluation was based on an inter-comparison

with surface reflectance values from TM5, a product with quantified performance

and uncertainties. This type of inter-comparison is well established in the literature

as a way to evaluate or inter-calibrate remote sensors. However, evaluation of surface

reflectance derived from satellite observations is a topic for continued development.

In this context, it is interesting to research novel alternatives for the validation of

satellite measurements. To this end, I am currently part of a team developing such

an alternative. Our approach employs ground-based multi-spectral cameras for the

continuous measurement of surface reflectance and characterization of representative

sites. While the system is still in development, initial results show promise [112].
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This type of system could provide a good source of reference data to evaluate surface

reflectance from high and very-high resolution instruments.

Regarding the water vapor retrieval method from the AVHRR, while the orig-

inal purpose of the estimates was to generate better input data for the LTDR atmo-

spheric corrections, it is interesting to investigate if they might prove useful in other

research areas. For example, estimates from AVHRR can be used to extend the

water vapor record from MODIS to the early 1980s, practically doubling its current

length. This information could be highly interesting for the atmospheric research

community and help provide a better understanding of water vapor spatiotemporal-

temporal variability [113]. However, before the water vapor estimates from AVHRR

can be used for scientific research, a comprehensive evaluation that provides uncer-

tainty information for the entire period should be carried out. Moreover, the orbital

drift of NOAA platforms could provide a significant complication for long-term anal-

ysis. Nevertheless, this is an exciting topic for future research.

Furthermore, the LTDR current atmospheric correction approach does not

account for the effect of stratospheric and tropospheric aerosols, which can be a

large source of uncertainty. However, retrieving aerosols over land from AVHRR

data is a complex task due to the small number of spectral bands. Numerous

studies have proposed methods for the estimation of aerosol optical depth over land

surfaces, however most of them are limited to specific surfaces where the surface

reflectance can be accurately modeled for the aerosol inversion. In terms of global

estimation, the Deep Blue algorithm developed for the Sea-viewing Wide Field-of-

View satellite was adapted to AVHRR and could be an interesting alternative [11].
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However, recent studies showed that it frequently underestimates the AOT over

bright surfaces [114]. It would be interesting to undertake research on this topic in

the future from the perspective of the LTDR, for example by taking advantage of

the middle-infrared reflectance generated in the data record [115].

5.3 Conclusion

The LTDR project has been in continuous development for more than fifteen

years. In that time, the LTDR has gone through numerous changes, which have

been motivated by advances in processing techniques, retrieval algorithms, instru-

ment changes, and more. This interest for constant improvement is motivated by

the idea that AVHRR, even with all its technical limitations by today’s techno-

logical standards, provides a unique opportunity to study our planet. That idea

also motivated this dissertation, with the goal of contributing to this ambitious re-

search agenda to create a unique data record of the land surface and advance the

development of the AVHRR Surface Reflectance LTDR. Increasing attention to the

effects of climate change on the Earth’s surface will require quantitative approaches

to measuring and assess such change. The LTDR could play an important role in

assessing such changes.
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Appendix A: LTDR Recalibration Coefficients

Instrument Band Intercept Slope Quadratic Slope
N07 RED 0.996 -4.97E-05 3.12E-08
N09 RED 1.014 -9.26E-05 4.68E-08
N11 RED 0.991 -4.69E-06 2.08E-09
N14 RED 0.994 -3.50E-05 1.77E-08
N16 RED 1.001 -3.72E-05 1.14E-08
N18 RED 0.965 1.37E-05 -3.28E-09
N19 RED 0.976 2.20E-05 -8.82E-09
N07 NIR 0.971 -3.29E-05 2.03E-08
N09 NIR 0.983 -9.02E-05 5.27E-08
N11 NIR 0.975 -3.69E-05 1.43E-08
N14 NIR 0.946 -4.12E-05 1.84E-08
N16 NIR 0.990 -4.67E-05 1.71E-08
N18 NIR 0.953 2.28E-05 -9.03E-09
N19 NIR 0.978 1.21E-05 -4.45E-09

Table A.1: Quadratic Recalibration Coefficients
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Instrument Band Intercept Slope
N07 RED 0.984 -5.94E-06
N09 RED 0.994 -2.33E-05
N11 RED 0.988 4.91E-08
N14 RED 0.979 3.43E-06
N16 RED 0.990 -1.18E-05
N18 RED 0.967 7.50E-06
N19 RED 0.990 -3.68E-06
N07 NIR 0.963 -4.51E-06
N09 NIR 0.961 -1.22E-05
N11 NIR 0.960 -4.46E-06
N14 NIR 0.930 -1.15E-06
N16 NIR 0.973 -8.53E-06
N18 NIR 0.959 5.75E-06
N19 NIR 0.985 -8.52E-07

Table A.2: Linear Recalibration Coefficients
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Appendix B: APU of Recalibrated LTDR

Figure B.1 shows the APU graphs1 for the recalibrated surface reflectance

record.

Figure B.1: Accuracy (A), Precision (P), and Uncertainty (U) of the LTDR after the
Surface Reflectance Recalibration. Details of the graphs are given on the caption of
Figure 2.6.

1For details check on how the APU are computed, check Section 2.4.5.

102



Bibliography

[1] P. Potapov, S. Turubanova, A. Tyukavina, A. Krylov, J. McCarty,
V. Radeloff, and M. Hansen, “Eastern Europe’s forest cover dynamics
from 1985 to 2012 quantified from the full Landsat archive,” Remote
Sensing of Environment, vol. 159, pp. 28–43, 2015. [Online]. Available:
https://doi.org/10.1016%2Fj.rse.2014.11.027

[2] S. Skakun, N. Kussul, A. Shelestov, and O. Kussul, “The use of satellite data
for agriculture drought risk quantification in Ukraine,” Geomatics, Natural
Hazards and Risk, vol. 7, no. 3, pp. 901–917, 2015. [Online]. Available:
https://doi.org/10.1080%2F19475705.2015.1016555

[3] X.-P. Song, M. C. Hansen, S. V. Stehman, P. V. Potapov, A. Tyukavina,
E. F. Vermote, and J. R. Townshend, “Global land change from 1982 to
2016,” Nature, vol. 560, no. 7720, pp. 639–643, 2018. [Online]. Available:
https://doi.org/10.1038%2Fs41586-018-0411-9

[4] X. Zhang, “Reconstruction of a complete global time series of daily
vegetation index trajectory from long-term AVHRR data,” Remote
Sensing of Environment, vol. 156, pp. 457–472, 2015. [Online]. Available:
https://doi.org/10.1016%2Fj.rse.2014.10.012

[5] S. Kalluri, C. Cao, A. Heidinger, A. Ignatov, J. Key, and T. Smith,
“The advanced very high resolution radiometer: Contributing to earth
observations for over 40 years,” Bulletin of the American Meteorological
Society, vol. 102, no. 2, pp. E351–E366, 2021. [Online]. Available:
https://doi.org/10.1175%2Fbams-d-20-0088.1

[6] J. L. Villaescusa-Nadal, B. Franch, J.-C. Roger, E. F. Vermote, S. Skakun,
and C. Justice, “Spectral Adjustment Model’s Analysis and Application to
Remote Sensing Data,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 12, no. 3, pp. 961–972, 2019. [Online].
Available: https://doi.org/10.1109%2Fjstars.2018.2890068

103

https://doi.org/10.1016%2Fj.rse.2014.11.027
https://doi.org/10.1080%2F19475705.2015.1016555
https://doi.org/10.1038%2Fs41586-018-0411-9
https://doi.org/10.1016%2Fj.rse.2014.10.012
https://doi.org/10.1175%2Fbams-d-20-0088.1
https://doi.org/10.1109%2Fjstars.2018.2890068


[7] J. Pedelty, S. Devadiga, E. Masuoka, M. Brown, J. Pinzon, C. Tucker,
E. Vermote, S. Prince, J. Nagol, C. Justice, D. Roy, J. Ju, C. Schaaf, J. Liu,
J. Privette, and A. Pinheiro, “Generating a long-term land data record
from the AVHRR and MODIS instruments,” in 2007 IEEE International
Geoscience and Remote Sensing Symposium. IEEE, 2007. [Online]. Available:
https://doi.org/10.1109%2Figarss.2007.4422974

[8] B. Franch, E. Vermote, J.-C. Roger, E. Murphy, I. Becker-Reshef,
C. Justice, M. Claverie, J. Nagol, I. Csiszar, D. Meyer, F. Baret,
E. Masuoka, R. Wolfe, and S. Devadiga, “A 30+ Year AVHRR Land
Surface Reflectance Climate Data Record and Its Application to Wheat Yield
Monitoring,” Remote Sensing, vol. 9, no. 3, p. 296, 2017. [Online]. Available:
https://doi.org/10.3390%2Frs9030296

[9] J. Robel and A. Graumann, “NOAA KLM user‘s guide,” 2014.
[Online]. Available: https://www.star.nesdis.noaa.gov/mirs/documents/0.
0 NOAA KLM Users Guide.pdf

[10] Z. Song, S. Liang, D. Wang, Y. Zhou, and A. Jia, “Long-term record of
top-of-atmosphere albedo over land generated from AVHRR data,” Remote
Sensing of Environment, vol. 211, pp. 71–88, 2018. [Online]. Available:
https://doi.org/10.1016%2Fj.rse.2018.03.044

[11] N. C. Hsu, J. Lee, A. M. Sayer, N. Carletta, S.-H. Chen, C. J. Tucker, B. N.
Holben, and S.-C. Tsay, “Retrieving near-global aerosol loading over land and
ocean from AVHRR,” J. Geophys. Res. Atmos., vol. 122, no. 18, pp. 9968–
9989, sep 2017. [Online]. Available: https://doi.org/10.1002%2F2017jd026932

[12] A. M. Sayer, N. C. Hsu, J. Lee, N. Carletta, S.-H. Chen, and A. Smirnov,
“Evaluation of NASA deep blue/SOAR aerosol retrieval algorithms applied to
AVHRR measurements,” J. Geophys. Res. Atmos., vol. 122, no. 18, pp. 9945–
9967, sep 2017. [Online]. Available: https://doi.org/10.1002%2F2017jd026934

[13] M. Claverie, J. Matthews, E. Vermote, and C. Justice, “A 30+ Year
AVHRR LAI and FAPAR Climate Data Record: Algorithm Description and
Validation,” Remote Sensing, vol. 8, no. 3, p. 263, 2016. [Online]. Available:
https://doi.org/10.3390%2Frs8030263

[14] E. Vermote and Y. Kaufman, “Absolute calibration of AVHRR visible and
near-infrared channels using ocean and cloud views,” International Journal
of Remote Sensing, vol. 16, no. 13, pp. 2317–2340, 1995. [Online]. Available:
https://doi.org/10.1080%2F01431169508954561

[15] E. Vermote and N. Saleous, “Calibration of NOAA16 AVHRR over
a desert site using MODIS data,” Remote Sensing of Environment,
vol. 105, no. 3, pp. 214–220, 2006. [Online]. Available: https:
//doi.org/10.1016%2Fj.rse.2006.06.015

104

https://doi.org/10.1109%2Figarss.2007.4422974
https://doi.org/10.3390%2Frs9030296
https://www.star.nesdis.noaa.gov/mirs/documents/0.0_NOAA_KLM_Users_Guide.pdf
https://www.star.nesdis.noaa.gov/mirs/documents/0.0_NOAA_KLM_Users_Guide.pdf
https://doi.org/10.1016%2Fj.rse.2018.03.044
https://doi.org/10.1002%2F2017jd026932
https://doi.org/10.1002%2F2017jd026934
https://doi.org/10.3390%2Frs8030263
https://doi.org/10.1080%2F01431169508954561
https://doi.org/10.1016%2Fj.rse.2006.06.015
https://doi.org/10.1016%2Fj.rse.2006.06.015


[16] E. Vermote, D. Tanre, J. Deuze, M. Herman, and J.-J. Morcette, “Second
Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 3, pp.
675–686, 1997. [Online]. Available: https://doi.org/10.1109%2F36.581987

[17] E. Vermote, C. Justice, and F.-M. Breon, “Towards a Generalized Approach
for Correction of the BRDF Effect in MODIS Directional Reflectances,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 47, no. 3, pp. 898–908,
2009. [Online]. Available: https://doi.org/10.1109%2Ftgrs.2008.2005977

[18] E. Vermote and M. Claverie, “Climate Algorithm Theoretical Ba-
sis Document (C-ATBD) AVHRR Land Bundle - Surface Re-
flectance and Normalized Difference Vegetation Index,” 2018. [Online].
Available: https://www.ncei.noaa.gov/pub/data/sds/cdr/CDRs/AVHRR%
20Surface%20Reflectance/AlgorithmDescription 01B-20a.pdf

[19] P. Teillet, P. Slater, Y. Ding, R. Santer, R. Jackson, and M. Moran, “Three
methods for the absolute calibration of the NOAA AVHRR sensors in-flight,”
Remote Sensing of Environment, vol. 31, no. 2, pp. 105–120, 1990. [Online].
Available: https://doi.org/10.1016/0034-4257(90)90060-y

[20] R. Frouin and C. Gautier, “Calibration of NOAA-7 AVHRR, GOES-5,
and GOES-6 VISSR/VAS solar channels,” Remote Sensing of Environment,
vol. 22, no. 1, pp. 73–101, 1987. [Online]. Available: https://doi.org/10.
1016%2F0034-4257%2887%2990028-9

[21] A. K. Heidinger, C. Cao, and J. T. Sullivan, “Using moderate resolution
imaging spectrometer (MODIS) to calibrate advanced very high resolution
radiometer reflectance channels,” Journal of Geophysical Research, vol.
107, no. D23, pp. AAC 11–1–AAC 11–10, 2002. [Online]. Available:
https://doi.org/10.1029%2F2001jd002035

[22] R. Bhatt, D. R. Doelling, B. R. Scarino, A. Gopalan, C. O. Haney,
P. Minnis, and K. M. Bedka, “A consistent AVHRR visible calibration
record based on multiple methods applicable for the NOAA degrading
orbits. part i: Methodology,” Journal of Atmospheric and Oceanic
Technology, vol. 33, no. 11, pp. 2499–2515, 2016. [Online]. Available:
https://doi.org/10.1175%2Fjtech-d-16-0044.1

[23] L. Giglio and D. Roy, “On the outstanding need for a long-term,
multi-decadal, validated and quality assessed record of global burned area:
Caution in the use of Advanced Very High Resolution Radiometer data,”
Science of Remote Sensing, vol. 2, p. 100007, 2020. [Online]. Available:
https://doi.org/10.1016%2Fj.srs.2020.100007
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