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The tremendous growth in video data, both on the internet and in real life, has

encouraged the development of intelligent systems that can automatically analyze video

contents and understand human actions. Therefore, video understanding has been one of

the fundamental research topics in computer vision. Encouraged by the success of deep

neural networks on image classification, many efforts have been made in recent years to

extend the deep networks to video understanding. However, new challenges arise when

the temporal characteristic of videos is taken into account. In this dissertation, we study

two long-standing problems that play important roles in effective temporal modeling in

videos: (i) How to extract motion information from raw video frames? (ii) How to capture

long-range dependencies in time and model their temporal dynamics?

To address the above issues, we first introduce hierarchical contrastive motion learn-

ing, a novel self-supervised learning framework to extract effective motion representa-

tions from raw video frames. Our approach progressively learns a hierarchy of motion

features, from low-level pixel movements to higher-level semantic dynamics, in a fully



self-supervised manner. Next, we investigate the self-attention mechanism for long-range

temporal modeling, and demonstrate that the entangled modeling of spatio-temporal in-

formation fails to capture temporal relationships among frames explicitly. To this end,

we propose Global Temporal Attention (GTA), which performs global temporal atten-

tion on top of spatial attention in a decoupled manner. Unlike conventional self-attention

that computes an instance-specific attention matrix, GTA directly learns a global atten-

tion matrix that is intended to encode temporal structures that generalize across different

samples.

While the performance of video action recognition has been significantly improved

by the aforementioned methods, they are still restricted to model temporal information

within short clips. To overcome this limitation, we introduce a collaborative memory

mechanism that encodes information across multiple sampled clips of a video at each

training iteration. Our proposed framework is end-to-end trainable and significantly im-

proves the accuracy of video classification at a negligible computational overhead. Fi-

nally, we present a spatio-temporal progressive learning framework (STEP) for spatio-

temporal action detection. Our approach performs a multi-step optimization process that

progressively refines the initial proposals towards the final solution. In this way, our ap-

proach can effectively make use of long-term temporal information by handling the spatial

displacement problem in long action tubes.
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Chapter 1: Introduction

1.1 Motivation

Recent years have witnessed a tremendous growth in video data: on the internet,

more than 75% of all IP traffic comes from video streaming and downloads 1; in real

life, millions of cameras (such as surveillance cameras and in-vehicle cameras) are in

operation for service or security reasons. Therefore, there is an urgent need to develop

intelligent systems that can automatically analyze video contents and understand human

actions in videos. For example, online video-sharing websites need to understanding

actions and events in each video to provide accurate recommendations and advertisement;

social media platforms require automatic analysis of the video posts to guarantee their

integrity and identify viral videos that include harmful contents.

Compared with still image analysis, video understanding is much more challenging

due to the introduction of the temporal component in videos. To show the importance

of temporal modeling, let us take a brief overview of some representative work in video

action recognition, as shown in Figure 1.1. Dating back to 2013, where deep learning

was not yet the mainstream algorithm for computer vision, researchers were more fo-

cused on designing hand-crafted motion features for video understanding, such as dense

1Cisco Visual Networking Index: Forecast and Trends, 2017–2022 White Paper
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(a) A Chronological overview of recent representative work in video action recognition.

Figure 1.1: An overview of recent representative work in video action recognition and
their performance on UCF-101 and Kinetics-400. Our works introduced in this disserta-
tion are highlighted in orange.

trajectory (iDT) [1] and 3D-SIFT [2]. When convolutional neural networks (CNNs), like

AlexNet [3], had been attracting more and more attention, people started applying deep

neural networks to videos as well. One seminal work is Two-stream Network [4], which

involves a spatial stream that models appearance information using a single frame, and a

temporal stream that models motion information using optical flow as input. There are

also other attempts that use recurrent networks [5] or extend the 2D spatial kernels to

3D spatio-temporal kernels [6] in order to jointly model the spatial and temporal infor-

mation in video frames. From then on, more and more temporal modeling methods are

proposed and achieve continuous improvement, such as Temporal Segment Network [7],

ActionVLAD [8], Inflated 3D Network [9], Non-local [10], Temporal Shift Moudle [11],

SlowFast [12], etc. We observe two trends here: (i) The use of hand-crafted features is

less favorable in recent work, (ii) Modeling long-range temporal dependencies has been

attracting more and more attention. It also shows that effective temporal modeling is

2



challenging – unlike 2D convolution in still image analysis, there is still no predominant

method for temporal modeling in video understanding.

In this dissertation, we study two long-standing problems that play important roles

in effective temporal modeling: (i) How to extract motion information from raw video

frames? (ii) How to capture long-range dependencies in time and model their temporal

dynamics? Challenges of these problems stem from the temporal characteristic of video

data, as well as the large scale of video models and datasets in practice. For example,

“ground truth motion” of a video is usually unavailable for large-scale video datasets be-

cause it requires fine-grained annotations on a large number of videos each with hundreds

frames. Even with the help of automatic motion extraction algorithms (e.g., TV-L1 [13]

for optical flow estimation), computing and storing the motion features are still extremely

time-consuming and require large storage space. In addition, the large number of frames

in a video also pose challenges for the optimization of video models. Due to the high

computational cost and GPU memory constraints, most video models are optimized over

short clips sampled from the full-length video, which actually impedes their ability to

learn long-term temporal dependencies.

1.2 Our Approaches

To address the above issues, this dissertation presents multiple approaches for video

understanding that focuses on extracting motion information and modeling long-range

temporal dependencies. We first propose a self-supervised learning framework to learn

hierarchical motion representation from raw video frames. We then present a global tem-

3



poral attention module that advances the standard attention mechanism for effective tem-

poral modeling. After that, we present an end-to-end video-level learning framework that

is capable of capturing temporal dependencies beyond short clips. Finally, we introduce

a novel progressive learning framework for spatio-temporal action detection. Our works

keep pushing the state-of-the-art at the time if we put them back into the chronological

overview in Figure 1.1 (highlighted in orange).

1.2.1 Hierarchical Contrastive Motion Learning for Video Action Recog-

nition

One central question for video action recognition is how to model motion. In the

first work, we present hierarchical contrastive motion learning, a novel self-supervised

learning framework to extract effective motion representations from raw video frames.

Our approach progressively learns a hierarchy of motion features that correspond to dif-

ferent abstraction levels in a network. This hierarchical design bridges the semantic gap

between low-level movement cues and high-level recognition tasks, and promotes the fu-

sion of appearance and motion information at multiple levels. At each level, an explicit

motion self-supervision is provided via contrastive learning to enforce the motion features

at the current level to predict the future ones at the previous level. Thus, the motion fea-

tures at higher levels are trained to gradually capture semantic dynamics and evolve more

discriminative for video action recognition. Our motion learning module is lightweight

and flexible to be embedded into various backbone networks. Extensive experiments on

four benchmarks show that the proposed approach consistently achieves superior results.

4



1.2.2 Global Temporal Attention for Video Action Understanding

Self-attention learns pairwise interactions to model long-range dependencies, yield-

ing great improvements for video action recognition. In the second work, we seek a

deeper understanding of self-attention for temporal modeling in videos. We first demon-

strate that the entangled modeling of spatio-temporal information by flattening all pixels

is sub-optimal, failing to capture temporal relationships among frames explicitly. To this

end, we introduce Global Temporal Attention (GTA), which performs global temporal

attention on top of spatial attention in a decoupled manner. We apply GTA on both pixels

and semantically similar regions to capture temporal relationships at different levels of

spatial granularity. Unlike conventional self-attention that computes an instance-specific

attention matrix, GTA directly learns a global attention matrix that is intended to encode

temporal structures that generalize across different samples. We further augment GTA

with a cross-channel multi-head fashion to exploit channel interactions for better temporal

modeling. Extensive experiments on 2D and 3D networks demonstrate that our approach

consistently enhances temporal modeling and provides state-of-the-art performance on

three video action recognition datasets.

1.2.3 Beyond Short Clips: End-to-End Video-Level Learning with Col-

laborative Memories

The standard way of training video models entails sampling at each iteration a sin-

gle clip from a video and optimizing the clip prediction with respect to the video-level

5



label. In the third work, we argue that a single clip may not have enough temporal cov-

erage to exhibit the label to recognize, since video datasets are often weakly labeled with

categorical information but without dense temporal annotations. Furthermore, optimizing

the model over brief clips impedes its ability to learn long-term temporal dependencies.

To overcome these limitations, we introduce a collaborative memory mechanism

that encodes information across multiple sampled clips of a video at each training iter-

ation. This enables the learning of long-range dependencies beyond a single clip. We

explore different design choices for the collaborative memory to ease the optimization

difficulties. Our proposed framework is end-to-end trainable and significantly improves

the accuracy of video classification at a negligible computational overhead. Through ex-

tensive experiments, we demonstrate that our framework generalizes to different video

architectures and tasks, outperforming the state of the art on both action recognition (e.g.,

Kinetics-400 & 700, Charades, Something-Something-V1) and action detection (e.g.,

AVA v2.1 & v2.2).

1.2.4 Spatio-Temporal Progressive Learning for Video Action Detection

In the final work, we focus on improving long-term temporal modeling for spatio-

temporal video action detection. Conventional approaches for action detection are mostly

extended from the image object detectors by performing detection at a clip (i.e., a short

video snippet) level. In particular, 2D region proposals are first generated at the center

frame of the video clip and then replicated over time to get 3D action proposals. However,

this method could be problematic if the action tubes involve large spatial displacement due
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to long sequences or rapid movement of actors or camera.

Therefore, we propose a novel progressive learning framework (STEP) to tackle this

problem. Rather than directly detecting actions all in one run, we perform a multi-step

optimization process that progressively refines the initial proposals (coarse-scale short-

range cuboids) towards the final solution. In this way, high-quality proposals (i.e., adhere

to action movements) can be gradually obtained at later steps by leveraging the regression

outputs from previous steps. At each step, we adaptively extend the proposals in time

to incorporate more related temporal context. Compared to the prior work that performs

action detection in one run, our progressive learning framework is able to naturally handle

the spatial displacement within action tubes and therefore provides a more effective way

for spatio-temporal modeling. We extensively evaluate our approach on UCF101 and

AVA, and demonstrate superior detection results. Remarkably, we achieve mAP of 75.0%

and 18.6% on the two datasets with 3 progressive steps and using respectively only 11

and 34 initial proposals.

1.3 Organization

The remainder of this dissertation is organized as follows. Chapter 2 introduces the

hierarchical contrastive learning framework for motion representation learning. Chapter 3

presents a global temporal attention module for action recognition. Chapter 4 presents

collaborative memory, an end-to-end framework for video-level learning. Chapter 5 in-

troduces a progressive learning framework for spatio-temporal action detection. Finally,

in Chapter 6, we conclude and discuss future research directions.
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Chapter 2: Hierarchical Contrastive Motion Learning for Video Action

Recognition

2.1 Introduction

Motion provides abundant and powerful cues for understanding the dynamic visual

world. A broad range of video understanding tasks can benefit from the introduction of

motion information, such as action recognition [1, 4], activity detection [14, 15], object

tracking [16, 17], etc. Thus, how to extract and model temporal motion is one of the

fundamental problems in video understanding. While early methods in this field mostly

rely on the off-the-shelf pre-computed motion features such as optical flow, recent works

have been actively exploiting convolutional neural networks (CNNs) for more effective

motion learning from raw video frames [18, 19], encouraged by the tremendous success

of end-to-end learning in various vision tasks.

A key challenge for end-to-end motion representation learning is to design an effec-

tive supervision. Unlike many other tasks that afford plenty of well-defined annotations,

“ground truth motion” is usually unavailable or even undefined for motion learning in

practice. One popular idea is to extract motion features by means of the action recogni-

tion supervision. However, the classification loss is shown to be sub-optimal in this task
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as it only provides an implied supervision to guide motion learning [20]. This supervi-

sion is also prone to be biased towards appearance information since some video action

benchmarks can be mostly solved by considering static images without temporal mod-

eling [21]. Recently, some efforts have been made to explore pretext tasks with direct

supervisions for motion learning, such as optical flow prediction [18] and video frame

reconstruction [22]. Although having shown promising results, such supervisions are re-

stricted to pixel-wise and short-term motion as they hinge on pixel photometric loss and

movement between adjacent frames.

In light of the above observations, we introduce a novel self-supervised learning

framework that enables more explicit motion supervision at multiple feature abstraction

levels, which we term hierarchical contrastive motion learning. Specifically, given pre-

liminary motion cues as a bootstrap, our approach progressively learns a hierarchy of

motion features in a bottom-up manner, as illustrated in Figure 2.1(a). This hierarchical

design is proposed to bridge the semantic gap between the low-level preliminary mo-

tion and the high-level recognition task—analogous to the findings in neuroscience that

humans perceive motion patterns in a hierarchical way [23, 24]. At each level, a discrim-

inative contrastive loss [25, 26] is used to provide an explicit self-supervision to enforce

the motion features at current level to predict the future ones at previous level. In contrast

to the aforementioned pretext tasks that focus on low-level image details, the contrastive

learning encourages the model to learn useful semantic dynamics from previously learned

motion features at a lower level, and is more favorable for motion learning at higher levels

where the spatial and temporal resolutions of feature maps are low [27–29]. To acquire

the preliminary motion cues to initialize the hierarchical motion learning, we exploit the
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Figure 2.1: (a) Illustration of the hierarchy of progressively learned motion cues: from
pixel-level and short-range movement to semantic temporal dynamics. (b) Architecture
of the proposed motion learning module embedded in a backbone network. (c) Overview
of positive and negative sampling for contrastive learning to adopt higher-level motion
features to predict future ones at lower-level.

video frame reconstruction [30,31] as an auxiliary task such that the whole motion repre-

sentation learning enjoys an unified self-supervised setup.

The proposed motion learning module is realized via a side network branch, which

is lightweight and flexible to embed into a variety of backbone CNNs. Our hierarchical

design promotes appearance and motion fusion by integrating the learned motion fea-

tures into the backbone network at multiple abstraction levels [32]. Such a multi-level

fusion paradigm is unachievable for previous motion learning methods [22, 33] that de-

pend solely on low-level motion supervisions. It is also noteworthy that our approach only

introduces a small overhead to the computation of a backbone network at inference time.

As shown in Figure 2.1(b), the side branch (i.e., the shaded region) for self-supervised

motion learning is discarded after training, and only the learned motion features are re-

tained in the form of residual connections [34]. Compared to the two-stream method [4]

requiring an additional temporal stream on the pre-computed optical flow, our approach

is capable of boosting action recognition with a minor computational increase.
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We summarize our main contributions as follows. First, we propose a new learning

framework for motion representation learning from raw video frames. Second, we ad-

vance contrastive learning to a hierarchical design that bridges the semantic gap between

low-level motion cues and high-level recognition tasks. Third, to our knowledge, this

work provides the first attempt to empower contrastive learning in motion representation

learning for large-scale video action recognition. Fourth, our approach achieves superior

results on four benchmarks without relying on off-the-shelf motion features or supervised

pre-training.

2.2 Related Work

Motion Extraction. A large family of video action research focuses on motion modeling.

The two-stream networks operate on low-level motion inputs such as optical flow or even

frame differences [35, 36]. However, the short-range two-frame motion is ineffective

at capturing high-level action semantics. It is also popular to use 3D CNNs [37, 38] and

RNNs [5,39] to simultaneously model appearance and motion cues and capture long-term

temporal context.

Recently, SlowFast [12] is introduced to extract motion through a fast pathway at

a fine temporal resolution and a slow pathway to capture appearance at a low frame rate.

STM [40] proposes channel-wise spatio-temporal and motion modules to enhance motion

feature encoding. ActionFlowNet [18] uses pre-computed optical flow as an additional

supervision to encode motion together with appearance in a single stream network. To

integrate optical flow with action networks, a differentiable representation flow layer is
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developed in [41]. By formulating the TV-L1 algorithm [13] in a customized network

layer, TVNet [42] produces optical flow like motion features to complement static ap-

pearance. Inspired by the correlation layer in FlowNet [43], wang2020video [19] and

MotionSqueeze [44] leverage the correlation operation to extract motion from convolu-

tional features. All these studies employ classification loss as an indirect supervision or

mimic optical flow design to learn motion extraction, while in this work we aim to ex-

plicitly realize motion learning through the proposed hierarchical contrastive learning in

a self-supervised way.

Self-Supervised Learning. To take advantage of the abundant unlabeled videos, nu-

merous methods have been developed for video representation learning by different self-

supervisory signals, such as frame interpolation [33, 45–47], sequence ordering [48–50],

future prediction [51–54]. While these methods do not require any pre-trained networks

nor video annotations, the learned models tend to focus on low-level information and may

not effectively catch the high-level and long-term temporal dynamics.

Contrastive learning has been recently explored for self-supervised learning of video

representations [29, 55–59]. Several pretext tasks, such as future prediction [29, 56] and

augmentation invariance [55, 59], are designed to facilitate learning of spatio-temporal

representations that can benefit high-level video recognition tasks. In contrast to the exist-

ing work that focuses on self-supervised learning or model pretraining, our work leverages

contrastive learning to extract motion information with an overall goal to improve super-

vised video classification. Moreover, we conduct contrastive motion learning at multiple

levels across the hierarchical structure of a backbone network and present a progressive

training strategy to build the higher-level motion from the well-learned lower-level ones.
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2.3 Method

Our approach has two phases: a self-supervised learning phase for hierarchical con-

trastive motion learning from raw video frames, and a joint learning phase that leverages

the learned motion features to improve action recognition. In this section, we describe in

details the two learning phases.

2.3.1 Formulation

We denote the convolutional features at different levels of a backbone network as{
F0, ...,FL−1

}
, where L is the number of abstraction levels. Our goal is to learn a hierar-

chy of motion representations
{
P0, ...,PL−1

}
that correspond to the different levels. As

the first step, we employ video frame reconstruction to obtain the preliminary motion cues

P0, which function as a bootstrap for the following hierarchical motion learning. With

that, we progressively learn the motion features in a bottom-up manner. At each level

l > 0, we learn the motion features P l by enforcing them to predict the future motion fea-

tures at the previous level l − 1, as described in Sec. 2.3.2. We use the contrastive loss as

an objective so that P l is trained to capture semantic temporal dynamics from P l−1. The

learned motion features at each level are integrated into a backbone network via resid-

ual connections to perform appearance and motion feature fusion: Z l = F l + gl(P l),

where gl(·) is used to match the feature dimensions. After learning motion at all levels,

we jointly train the whole network for action recognition in a multi-tasking manner, as

presented in Sec. 2.3.4.
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2.3.2 Self-Supervised Motion Learning

Prime Motion Block. We first introduce a lightweight prime motion block to transform

the convolutional features of a backbone network to more discriminative representations

for motion learning. The key component of this block is a cost volume layer, which is

inspired by the success of using cost volumes in stereo matching [60] and optical flow

estimation [61]. A cost volume is initially used to store the costs that measure how well

a pixel in one frame matches other pixels in another frame to catch the inter-frame pixel-

wise relations that indicate the rough motion.

In our case, given a sequence of convolutional features F = {F0, ..., FT−1} with

length T , we first conduct an 1× 1× 1 convolution to reduce the input channels by 1/β,

denoted as F̃ . This operation significantly reduces the computational overhead of prime

motion block, and provides more compact representations to reserve the essential infor-

mation to compute cost volumes. The adjacent features are then re-organized to feature

pairs F̃∗ =
{
(F̃0, F̃1), ..., (F̃T−2, F̃T−1), (F̃T−1, F̃T−1)

}
, which is used to construct the

cost volumes. The matching cost between two features is defined as:

cvt(x1, y1, x2, y2) = sim(F̃t(x1, y1), F̃t+1(x2, y2)), (2.1)

where F̃t(x, y) denotes the feature vector at time t and position (x, y), and the cosine

distance is used as the similarity function: sim(u, v) = uTv/‖u‖‖v‖. Note that we repli-

cate the last feature map F̃T−1 to compute their cost volume in order to keep the original

temporal resolution.
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ℱ
Figure 2.2: Architecture of the prime motion block. F and P denote the convolutional
feature from backbone network and the extracted motion feature, respectively.

While constructing a full cost volume over the whole feature map is computation-

ally expensive, we construct a “partial” cost volume following the practice in [62]. So

we limit the search range with the max displacement of (x2, y2) to be d and use a striding

factor s to handle large displacements without increasing the computation. As a result, the

cost volume layer outputs a feature tensor of sizeM×H×W , whereM = (2×bd/sc+1)2

and H,W denote the height and width of a feature map. It is noteworthy that computing

cost volumes is lightweight as it has no learnable parameters and much fewer FLOPs than

3D convolutions.

Finally, we combine the cost volumes with the features obtained after dimension

reduction, motivated by the observation that the two features provide complementary in-

formation for localizing motion boundaries. We concatenate the two features in channels

and then perform a 2D convolution for information fusion. The whole prime motion block

is wrapped as a residual block [34] such that the motion features P can be inserted into a

backbone network seamlessly, as illustrated in Figure 2.2. Batch normalization [63] and

ReLU are applied after each convolutional layer and cost volume layer.
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Hierarchical Motion Learning. Although the prime motion block extracts rough mo-

tion features from convolutional features, we find that such features are easily biased

towards appearance when jointly trained with the backbone network. Thus, an explicit

motion supervision is vital for more effective motion learning at each level.

We propose a multi-level self-supervised objective based on the contrastive loss [25,

26,64], inspired by the recent success of contrastive predictive coding for self-supervised

representation learning [27,29,65]. Our goal is to employ the higher-level motion features

as a conditional input to guide the prediction of the future lower-level motion features

that are well-learned from a previous step. By this way, the higher-level features are

forced to understand a more abstract trajectory that summarizes motion dynamics from

the lower-level ones. This objective therefore allows us to extract slowly varying features

that progressively correspond to high-level semantic concepts [27, 29, 66].

Formally, let us denote the motion features generated by the prime motion block at

level l > 0 as P l =
{
P l
0, ..., P

l
T l−1

}
, where T l indicates the sequence length at this level.

In order to train P l, we enforce P l
t to predict the future motion features at the previous

level (i.e., P l−1
>t ), conditioned on the motion feature at the start time P l−1

t , as illustrated

in Figure 2.1(c). In practice, a predictive function fδ is applied for the motion feature

prediction at time step t + δ: P̂ l−1
t+δ = fδ([P

l
t , P

l−1
t ]), where [·, ·] denotes channel-wise

concatenation. We use a multi-layer perception with one hidden layer for the prediction

function: fδ(x) = W (2)
δ σ(W (1)x), where σ is ReLU and W (1) is shared across all predic-

tion steps for leveraging their common information.

We define the objective function of each level as a contrastive loss that encourages

the predicted P̂ l−1 to be close to the ground truth P l−1 while being far away from the
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negative samples:

Llcontrastive = −
∑
i∈S

[
log

exp(sim(P̂ l−1i , P l−1i )/τ)∑
j∈S exp(sim(P̂ l−1i , P l−1j )/τ)

]
, (2.2)

where the similarity function is defined as the cosine similarity as the one used in com-

puting cost volumes, and S denotes the sampling space of positive and negative samples.

As shown in Figure 2.1(c), the positive sample of the predicted feature is the ground-

truth feature that corresponds to the same video and locates at the same position in both

space and time as the predicted one. Similar to [29], we define three types of negative

samples for all prediction and ground-truth pairs:

• Spatial negatives: the ground-truth features that come from the same video of

the predicted one but at a different spatial position. Considering efficiency, we

randomly sampleN spatial locations for each video within a mini-batch to compute

the loss. The number of spatial negatives is (N − 1)T l.

• Temporal negatives: the ground-truth features that come from the same video and

locate at the same spatial position, but different time steps. The number of temporal

negatives is T l−1 and they are usually the hard negative samples for self-supervised

learning.

• Easy negatives: the ground-truth features that come from different videos. The

number of easy negatives is (B − 1)NT l, where B is the batch size.

As illustrated in Figure 2.1(b), the contrastive motion learning is performed for multiple

levels until the motion hierarchy of the whole network is built up.
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Progressive Training. Training the multi-level self-supervised learning framework si-

multaneously from the beginning is infeasible, as the lower-level motion features are ini-

tially not well-learned and the higher-level prediction would be arbitrary. To facilitate the

optimization process, we propose a progressive training strategy that learns motion fea-

tures for one level at a time, propagating from low-level to high-level. In practice, after

the convergence of training at level l − 1, we freeze all network parameters up to level

l − 1 (therefore fixing the motion features P l−1), and then start the training for level l.

In this way, the higher-level motion features can be stably trained with the well-learned

lower-level ones.

2.3.3 Preliminary Motion Cues

To initialize the progressive training, the preliminary motion cues, i.e., P0, are

required as a bootstrap. They should encode some low-level but valid movement in-

formation to facilitate the following motion learning. Therefore, we adopt video frame

reconstruction to guide the extraction of preliminary motion cues. This task can be for-

mulated as a self-supervised optical flow estimation problem [30, 31], aiming to produce

optical flow to allow frame reconstruction from neighboring frames. Motivated by the

success of recent work on estimating optical flow with CNNs [62], we build a simple

optical flow estimation module using 5 convolutional layers that are stacked sequentially

with dense connections. We make use of the optical flow output to warp video frames

through bilinear interpolation. The loss function consists of a photometric term that

measures the error between the warped frame and the target frame, and a smoothness
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term that addresses the aperture problem that causes ambiguity in motion estimation:

Lreconstruct = Lphotometric + ζLsmoothness. We define the photometric error as:

Lphotometric =
1

HWT

T∑
t=1

W∑
x=1

H∑
y=1

1ρ
(
It(x, y)− Ît(x, y)

)
, (2.3)

where Ît indicates the warped frame at time t and ρ(z) = (z2 + ε2)α is the generalized

Charbonnier penalty function with α = 0.45 and ε = 1e−3 [67], and we apply an indicator

function 1 ∈ {0, 1} to exclude those invalid positions of the warped pixels that are out-

of-boundary. Additionally, we compute the smoothness term as:

Lsmoothness =
1

T

T∑
t=1

ρ(∇xUt) + ρ(∇yUt) + ρ(∇xVt) + ρ(∇yVt), (2.4)

where ∇xU/V and ∇yU/V denote the gradients of estimated flow fields U/V in x/y

directions.

2.3.4 Joint Training for Action Recognition

Our ultimate goal is to improve video action recognition with the learned hierarchi-

cal motion features. To integrate the learned motion features into a backbone network,

we wrap our prime motion block into a residual block: Z l = F l + gl(P l), where F l

is the convolutional features at level l, P l is the corresponding motion features obtained

in Sec. 2.3.2, and gl(·) is a 1 × 1 × 1 convolution. This seamless integration enables

end-to-end fusion of appearance and motion information over multiple levels throughout

a single unified network, instead of learning them disjointly like two-stream networks [4].

After the motion representations are self-supervised learned at all levels, we add in the

classification loss to jointly optimize the total objective, which is a weighted sum of the
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following losses:

Ltotal = Lclassification + λLreconstruct +
∑
l

γlLlcontrastive, (2.5)

where λ and γl are the weights to balance related loss terms. As shown in Figure 2.1(b),

our multi-level self-supervised learning is performed via a side network branch, which

can be flexibly embedded into standard CNNs. Furthermore, this self-supervised learning

side branch is discarded after training so that our final network can well maintain the

efficiency at runtime for inference.

2.4 Experiments

In this section, we first describe in details our experimental setup. We then present

a variety of ablation studies to understand the contributions of each individual component

in our design, and provide in-depth analysis with qualitative visualization results. In the

end, we report comparisons to the state-of-the-art methods on four benchmark datasets.

2.4.1 Experimental Setup

Datasets. We extensively evaluate our proposed approach on the four benchmarks:

Kinetics-400 [9], Something-Something (V1&V2) [68] and UCF-101 [69]. Kinetics-400

is a large-scale video dataset with 400 action categories. As some videos are deleted by

their owners over time, our experiments are conducted on a subset of the original dataset

with approximately 238K training videos (∼96%) and 196K validation videos (∼98%).

In practice, we notice a bit accuracy drop for the same model using our collected dataset

with fewer training samples, suggesting that our results can be further improved with
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the full original dataset. Something-Something (V1&V2) are more sensitive to tempo-

ral motion modeling. Something-V1 contains about 100K videos covering 174 classes,

and Something-V2 increases videos to 221K and improves video resolution and annota-

tion quality. UCF-101 includes about 13K videos with 101 classes. As the number of

training videos is small, it is often used for evaluating unsupervised representation learn-

ing [18, 33] and transfer learning [20, 70].

Implementation Details. Our motion learning module is generic and can be instanti-

ated with various 2D and 3D action networks [9, 10, 71]. In our experiments, we use

the standard networks R2D [10] and R(2+1)D [71] as our backbones. We make a few

changes to the backbones to improve efficiency, e.g., using bottleneck layers, dropping

the temporal convolutions in res2 and res3, and starting temporal striding from res3,

as demonstrated in Table 2.1. For the prime motion block, we set d = 6 and s = 2, and

the channel reduction ratio β = 8. We set the temperature parameter τ in contrastive loss

to 0.07 following the practice in previous work [65, 72].

We follow the standard recipe in [12,73] for model training. Specifically, the spatial

size of the input is 224 × 224, randomly cropped and horizontally flipped from a scaled

video with the shorter side randomly sampled in [256, 320] pixels. We also apply tempo-

ral jittering when sampling clips from a video. We use synchronized SGD training with

a cosine learning rate scheduling [74] and a linear warm-up [73]. For the self-supervised

training phase, global batch normalization [63] is used to avoid trivial solution [28]. Note

that all models are trained from scratch or self-supervised pre-trained without any addi-

tional video annotations or pre-computed optical flow.
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Layer R2D-50 / R(2+1)D-101 Output Size
input – T × 224 × 224

conv1
1×7×7, 64

stride: 1×2×2 T × 112 × 112

res2

 1×1×1, 64
1×3×3, 64
1×1×1, 256

×3 T × 56 × 56

res3

 1×1×1, 128
1×3×3, 128
1×1×1, 512

×4 T/2 × 28 × 28

res4


1×1×1, 256

(3×1×1, 256)
1×3×3, 256
1×1×1, 1024

×6 / 23 T/4 × 14 × 14

res5


1×1×1, 512

(3×1×1, 512)
1×3×3, 512
1×1×1, 2048

×3 T/4 × 7 × 7

Table 2.1: Architectures of the backbone networks R2D-50 / R(2+1)D-101 used in our
experiments.

2.4.2 Ablation Study

Supervision for Motion Learning. We first compare the motion features learned at

different levels by different supervisions. As our motion learning is based on the self-

supervisions that are not directly related with the final action recognition, we first define

a measurement to reflect the efficacy of the learned motion features. Towards this goal,

we take the extracted motion feature as input and train a lightweight classifier for action

recognition on UCF-101. We define the efficacy score as: Score = Acctrain/(Acctrain −

Acctest), where Acctrain and Acctest indicate the top-1 accuracy on the training and test

sets. Intuitively, a higher score implies that the representation is more discriminative (with

higher training accuracy) and generalizes better (with a lower performance gap between
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Input
Supervision

Score
action preliminary hierarchical

Level 1
X 2.3

X 3.1
X –

Level 2
X 1.7

X 2.5
X 3.0

Level 3
X 2.4

X 1.7
X 3.0

Table 2.2: Comparison of efficacy scores of the motion features learned at different levels
under different supervisory forms.

training and testing).

Table 2.2 shows the efficacy scores of motion features at different levels with dif-

ferent supervisions, where “action” indicates the supervision by action classification, and

“preliminary” and “hierarchical” refer to the supervisions by frame reconstruction and

contrastive learning. Levels 1, 2 and 3 correspond to the motion features extracted after

res2, res3 and res4 of R2D. We observe that the self-supervision of low-level frame

reconstruction is particularly effective at level 1, but its performance degrades dramati-

cally at higher levels due to lower spatial/temporal resolutions and higher abstraction of

convolutional features. In contrast, the proposed self-supervision by hierarchical con-

trastive learning is more stable over different levels and more effective to model motion

dynamics. It is also observed that the self-supervision, with correct choices at different

levels, consistently outperforms the supervision by action classification, which is consis-

tent with the findings in [18,20,33]. In Figure 2.4, we visualize the estimated optical flow,

the by-product of frame reconstruction, at each level and find that more accurate optical

flow indeed presents at lower levels.
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Methods PMB Self-Sup FLOPs UCF-101 Something-V1 Kinetics-400

Baseline: R2D 1.00× 66.0 / 86.0 36.1 / 68.1 64.8 / 85.1
Ours: R2D X 1.18× 71.6 / 89.7 43.6 / 74.7 65.6 / 85.5
Ours: R2D X X 1.18× 79.8 / 94.4 44.3 / 75.8 67.3 / 86.4
Baseline: R(2+1)D 1.00× 68.0 / 88.2 48.5 / 78.1 66.8 / 86.6
Ours: R(2+1)D X 1.11× 73.4 / 92.1 49.2 / 77.9 67.4 / 86.9
Ours: R(2+1)D X X 1.11× 80.7 / 95.6 50.4 / 78.9 68.3 / 87.4

Table 2.3: Ablation study on the prime motion block (PMB) and self-supervision (Self-
Sup) for action recognition. We report computational cost and top-1 / top-5 accuracy (%)
on the three benchmarks. Models are evaluated using a single clip per video to eliminate
the impact of test-time augmentation.

Contributions of Individual Components. Here we verify the contributions of pro-

posed components by comparing against the baseline, as shown in Table 2.3. We use one

clip per video and the 224 × 224 center crop for evaluation to eliminate the impact of

test-time augmentation. We report both top-1 and top-5 accuracy for each setting.

It is obvious that our approach consistently and significantly improves the action

recognition accuracy for both 2D and 3D action networks. Our prime motion block pro-

vides complementary motion features at multiple levels, and the self-supervision further

enhances the representations to encode semantic dynamics. In particular, for the dataset

that heavily depends on temporal information like Something-V1, our approach remark-

ably improves the performance of baseline R2D by 8.2%. For the dataset that is small-

scale and tends to overfit to the appearance information like UCF-101, our method im-

proves model generalization and achieves 13.8% improvement. Moreover, our motion

learning module only introduces a small overhead to FLOPs of the backbone network.

We next validate the contribution of our motion learning at each level by incre-

mentally adding the proposed motion feature learning block to the baseline. Figure 2.3
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Figure 2.3: Comparison of top-1 accuracy on UCF-101 with incrementally adding the
proposed motion learning blocks.

demonstrates the results based on the backbones of R2D and R(2+1)D on UCF-101. We

observe that notable gains can be obtained at multiple levels, and the performance gain

does not vanish with the increase of motion learning blocks, suggesting the importance

of leveraging hierarchical motion information across all levels.

2.4.3 Comparison with State-of-the-Art Results

We compare our approach with the state-of-the-art methods on the four action

recognition benchmarks. We report results with the standard test-time augmentations [10]:

increasing the spatial resolution to 256 × 256 and sampling multiple clips per video (9

clips for Something-V1&V2 and 30 clips for Kinetics-400 and UCF-101).

Table 2.4 shows the comparisons on Kinetics-400 and Something-V1&V2. Without

using optical flow or supervised pre-training, our model based on backbone R(2+1)D-101

achieves the best results among the single-stream methods over all three datasets. Our

approach also outperforms most two-stream methods, apart from the recent two-stream

TSM [11] on Something-V2. As for the datasets that focus more on temporal modeling

like Something-V1&V2, 2D networks are usually not able to achieve as good results as 3D
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Methods Pre-Training Flow Kinetics-400 Something-V1 Something-V2

I3D [9] ImageNet X 75.7 – –
R(2+1)D [71] Sports1M 74.3 45.7 –
R(2+1)D [71] Sports1M X 75.4 – –
NL I3D-50 [10] ImageNet 76.5 44.4 –
S3D-G [38] ImageNet X 77.2 48.2 –
TRN [75] ImageNet X – 42.0 55.5
TSM [11] ImageNet 75.7 49.7 63.4
TSM [11] ImageNet X – 52.6 66.0
ECO [76] – X 70.0 49.5 –
SlowFast [12] – 77.9 – –

Disentangling [77] ImageNet 71.5 – –
D3D [20] ImageNet 75.9 – –
STM [40] ImageNet 73.7 50.7 64.2
Rep. Flow [41] – 77.1 – –
MARS [78] – 72.7 – –
DynamoNet [33] – 77.9 – –

Ours, R2D-50 – 74.8 46.2 59.4
Ours, R(2+1)D-101 – 78.3 52.8 64.4

Table 2.4: Comparison of top-1 accuracy (%) with the state-of-the-art methods on
Kinetics-400 and Something-V1&V2.

models. However, by equipping with the proposed motion learning module, we find that

our method based on backbone R2D-50 outperforms some 3D models, such as R(2+1)D

and NL I3D. Our approach also achieves superior results compared with the most recent

work that are specifically designed for temporal motion modeling (i.e., the second group

in Table 2.4). More importantly, our motion learning is fully self-supervised from raw

video frames without any supervisions from optical flow or pre-trained temporal stream.

For the experiment on UCF-101, we fine-tune the models trained only on Kinetics-

400 for classification following the standard setting in previous work, and report the aver-

aged accuracy over all 3 splits. As shown in Table 2.5, our approach achieves 97.8% top-1

accuracy, a new state-of-the-art result among the single-stream methods on UCF-101.
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Methods Pre-Training UCF-101

I3D [9] ImageNet + Kinetics-400 95.4
R(2+1)D [71] Kinetics-400 96.8
S3D-G [38] ImageNet + Kinetics-400 96.8

Disentangling [77] ImageNet + Kinetics-400 95.9
D3D [20] ImageNet + Kinetics-400 97.0
STM [40] ImageNet + Kinetics-400 96.2
MARS [78] Kinetics-400 97.0
DynamoNet [33] YouTube8M + Kinetics-400 97.8
Ours, R(2+1)D-101 Kinetics-400 97.8

Table 2.5: Comparison of top-1 accuracy (%) with the state-of-the-art on UCF-101.

Method Pre-training Accuracy

Shuffle and Learn [48] UCF-101 50.2
OPN [49] UCF-101 59.8
Odd-One-Out [50] UCF-101 60.3
ActionFlowNet* [18] UCF-101 83.9
3D-Puzzel [79] Kinetics-400 65.8
DPC [29] Kinetics-400 75.7
DynamoNet [33] YouTube8M 88.1

Ours: R2D-50 (random) – 69.9
Ours: R2D-50 Kinetics-400 82.2
Ours: R(2+1)D-101 (random) – 70.9
Ours: R(2+1)D-101 Kinetics-400 85.1

Table 2.6: Comparison of top-1 accuracy (%) with self-supervised methods on UCF-101
(split-1).

2.4.4 Self-Supervised Pre-Training

The self-supervised learning of video feature representations without using large

amount of labeled data has been gaining increasing attention in recent years [29, 33, 48–

50, 79]. In addition to the hierarchical motion learning, our multi-level self-supervised

learning can also serve as pre-training of a network. As an example, after self-supervised

pre-training on Kinetics-400, we fine-tune the network on UCF-101 for 80 epochs with a
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Figure 2.4: Visualization of the estimated optical flow at different feature abstraction
levels. For each group, columns 1-2 are adjacent frames; column 3 is the reference optical
flow extracted by [80]; columns 4-6 are the estimated optical flow at levels 1, 2 and 3.

batch size of 16 and a learning rate of 0.01. We compare our approach with other state-of-

the-art self-supervised methods in Table 2.4.3. Interestingly, even though not specifically

designed for network pre-training, our approach is capable of learning effective video

representation that generalizes well to the small dataset. Note that previous work requires

optical flow [18] or a much larger pre-training dataset (YouTube8M) [33] to achieve state-

of-the-art results.

2.4.5 Motion at Different Levels

In this section, we investigate the different semantics integrated in the motion fea-

tures learned at different levels. This can be justified by the following observations. First,

as shown in figure 2.4, the motion features at lower levels generate more accurate optical

flow, indicating that they involve more pixel-wise and low-level motion information than

the ones at higher levels.

Second, we conduct a video retrieval experiment using the learned motion features

of different levels. Specifically, given a query video, we rank the videos in the valida-

tion set based on the `2 distance of their motion features extracted at a certain level. As

illustrated in Figure 2.5, the motion features at lower levels tend to retrieve the videos

sharing similar elementary movements but lacking of high-level action correlations. Fur-
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Figure 2.5: Examples of the retrieved videos to reflect the different motion semantics
learned by the motion features at different levels.

Acc (%) Classes with the largest relative gains

“turning the camera left” (73.8)
Low-level 11.6 “turning the camera right” (71.7)

“turning the camera upwards” (58.3)

“showing a photo to the camera” (0→ 19.4)
Mid-level 15.2 “showing smth behind smth” (0→ 12.2)

“poking a stack of smth” (0→ 9.5)

“pulling two ends of smth” (0→ 14.0)
High-level 21.7 “tipping smth with smth in it over” (0→ 12.5)

“sprinkling smth onto smth” (0→ 9.1)

Table 2.7: Comparison of classification accuracy using motion features learned at differ-
ent levels (accuracy for random output: 0.6%). For the mid/high levels, we show the top-3
classes with the largest relative gains compared with the lower-level motion features. For
the low level, we report the top-3 classes with the highest accuracy instead.

thermore, the retrieval results can be used as a k-nearest-neighbor classifier by assigning

the query video to the majority class among its top k retrieval results. We compare the

classification accuracy for motion features learned at different levels in Table 2.7. It is

not surprising that the motion features at higher levels achieve higher accuracy than the

ones at lower levels as the former possess more useful semantics of motion dynamics for

the action recognition task. More interestingly, we find that the low-level motion features

can obtain relatively high accuracy for some action classes with apparent moving patterns
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Figure 2.6: Visualization of the learned features by Grad-CAM++ [81]. Fonts in green
and red indicate correct recognition and misclassification. (a-b) Features learned by our
approach (bottom) are more sensitive to the regions with motion cues. (c) Our motion
learning module (bottom) equips the 2D backbone with the ability of reasoning the tem-
poral order of video frames.

(e.g., “turning the camera left”). This indicates that the low-level motion features are ca-

pable of extracting elementary movements from raw video frames. On the other hand, the

motion features at higher levels can recognize the actions that require finer understanding

of high-level motion semantics (e.g., “pulling two ends of something so that it separates

into two pieces”).

2.4.6 Qualitative Results

To qualitatively verify the impact of the learned motion features, we utilize Grad-

CAM++ [81] to visualize the class activation map of the last convolution layer. Figure 2.6

shows the comparison between baseline and our model with the backbone R2D-50 on

UCF-101 and Something-V1. Our model attentions more on the regions with informative

motion, while the baseline tends to be distracted by the static appearance. For instance,

in Figure 2.6(a), our method focuses on the moving hands of the person, while the base-

line concentrates on the static human body. Our motion learning module also equips the

2D backbone with effective temporal modeling ability. As shown in Figure 2.6(c), our
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model is capable of reasoning the temporal order of the video and predicting the correct

action, while the baseline outputs the opposite prediction result as it fails to capture the

chronological relationship.

2.5 Conclusion

We have presented hierarchical contrastive motion learning, a multi-level self-supervised

framework that progressively learns a hierarchy of motion features from raw video frames.

A discriminative contrastive loss at each level provides explicit self-supervision for mo-

tion learning. This hierarchical design bridges the semantic gap between low-level motion

cues and high-level recognition tasks, meanwhile promotes effective fusion of appearance

and motion information to finally boost action recognition. Extensive experiments on four

benchmarks show that our approach compares favorably against the state-of-the-art meth-

ods yet without requiring optical flow or supervised pre-training.
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Chapter 3: Global Temporal Attention for Video Action Understanding

3.1 Introduction

Attention mechanisms have demonstrated impressive achievements in a wide range

of tasks such as language modeling [82, 83], speech recognition [84] and image classifi-

cation [85,86]. One of the most effective attention methods is self-attention, which learns

self-alignment via dot product operations, computing pairwise similarities between a pixel

(i.e., query) and other pixels (i.e., key) to modulate the transformed inputs (i.e., value).

For action recognition [10], this requires: (i) flattening all pixels in a video, regardless of

their spatial and temporal locations, into a huge vector; (ii) sharing the same set of pa-

rameters for all pixels to derive the query/key/value; and (iii) generating a joint attention

map for both spatial and temporal context.

In this chapter, we seek a better understanding of self-attention for temporal mod-

eling in videos. In particular, we wish to answer the following questions: (i) Is treating

all pixels in space and time as a flattened vector to perform dot-product sufficient for

temporal modeling? (ii) Is dot product based self-attention really necessary for capturing

temporal relationships across different frames?

In contrast to the conventional use of self-attention for video recognition, we posit

that temporal attention should be disentangled from spatial attention, since they focus on
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Figure 3.1: Top: input frames (action: removing something to reveal something). The
green cross-mark indicates the query position. Center: spatio-temporal attention maps
generated by NL blocks. The attention is biased towards the appearance similarity, which
fades overtime ignoring temporal clues; thus, the model generates incorrect prediction:
putting something in front of something. Bottom: the decoupled blocks generate spatial
attention maps within the query frames and temporal attention weights across different
time steps. The temporal attention has larger values at the key frames that are critical for
recognizing the action (i.e., revealing something), and the model gives the correct predic-
tion. GTA is built upon the decoupled framework and advances the temporal attention to
a more effective design.

different aspects. As shown in Figure 3.1, the spatial attention tends to capture appearance

similarity (i.e., the orange), while the temporal attention is more focused on frames that

are important for recognizing the action (i.e., revealing something). When these two types

of attention are modeled together (Figure 3.1 Center), the attention is biased towards the

appearance similarity, dominating any temporal context.

In addition, we argue that dot product based self-attention is not even suitable for

temporal modeling. Standard self-attention produces instance-specific attention weights,

conditioned on pairwise interactions. In the spatial domain, it can attend to salient regions

for improved performance. When used for temporal modeling, it ignores the ordering of

frames as self-attention is known to be permutation invariant [87]. For instance, if we

shuffle two pixels temporally, their relationship will be the same as before, producing the
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same output. This is not sufficient for differentiating actions like “reveal something” and

“cover something”. We hypothesize that temporal modeling requires learning a global

temporal structure that generalizes across different samples rather than relying on pair-

wise interactions across time steps.

In light of this, we introduce Global Temporal Attention (GTA), for video action

recognition. In particular, we first decouple the traditional spatio-temporal self-attention

into two successive steps—a standard self-attention in the spatial domain within each

frame followed by the proposed GTA module to capture temporal relationships across

different frames. Moreover, we not only apply GTA to each pixel location along the

temporal dimension but also “superpixels”—pixels in a region share similar semantic

meanings. This enables our model to capture temporal relationships at different levels

of spatial granularity. Unlike computing pairwise frame interactions with dot product,

GTA directly learns a global attention matrix that is randomly initialized to be instance-

independent. The intuition of the global attention matrix is to not rely on pairwise frame

relations without specific ordering information or individual sample information, but to

learn a global task-specific weight matrix considering temporal structures that generalize

across different samples. To exploit information across different channels, we split feature

maps into multiple groups along the channel-dimension, and for each group we apply

GTA in a multi-head fashion such that each head focuses on different aspects of the inputs.

Then, outputs from different channel groups are further aggregated to produce a unified

representation.

We conduct extensive experiments on Something-Something [68] (both v1 and v2)

and Kinetics-400 [88]. Our experimental results demonstrate that our proposed GTA
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outperforms the traditional spatio-temporal self-attention by clear margins, and achieves

state-of-the-art results on these three datasets. We also provide a side-by-side comparison

with recent NL variants [89–91] to show the superior performance of GTA in temporal

modeling. We summarize our main contributions as follows.

• We provide an in-depth analysis of the sub-optimal design of the spatio-temporal

self-attention and propose to decouple attention across the two dimensions.

• We introduce GTA, which improves the conventional temporal attention by intro-

ducing: (i) temporal modeling at both pixel and region levels; (ii) a global attention

matrix for all samples; (iii) a cross-channel multi-head design for incorporating

channel interactions.

3.2 Related Work

Temporal Modeling in Action Recognition. A large family of research in action recog-

nition focuses on the effective modeling of temporal information in videos. Early work

simply aggregates the frame/clip-level features across time via average pooling [7, 92]

or feature encoding like ActionVLAD [8], without considering the temporal relation-

ships of video frames. Later on, two-stream networks [4], 3D convolution networks

(CNNs) [6,93] and recurrent neural networks (RNNs) [5,94] are used to model the spatial

and temporal context in videos. Recently, various temporal modules are proposed to cap-

ture temporal relations, such as TRN [75] based on relation networks, Timeception [95]

based on multi-scale temporal convolutions, and SlowFast [12] based on slow and fast

branches capturing spatial and motion information, respectively. TSM [11] adopts a chan-
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nel shifting operation along the time dimension to enable temporal modeling on 2D CNN

networks. STM [40], TEA [96] and MSNet [44] encode the motion information into the

network by extracting motion features between adjacent frames.

Non-Local and Self-Attention. Modeling long-range relations in feature representa-

tions has a long history [97–102] and has proven to be effective in various tasks, such

as machine translation [83], generative modeling [103], image recognition [10, 86, 90],

object detection [10,90,104], semantic segmentation [10,90,105] and visual question an-

swering [106]. In computer vision, Non-local Network (NL) [10] is proposed to model the

pixel-level pairwise similarities to encode long-range dependencies. SENet [85] uses a

Squeeze-and-Excitation block to model inter-dependencies along the channel dimension.

GCNet [90], CGNL [89] and DANet [107] further improve the vanilla NL by integrating

pixel-wise and channel-wise attention. CCNet [108] improves the efficiency of NL by

computing the contextual information of the pixels on its crisscross path instead of the

global region. GloRe [91] proposes the relation reasoning via graph convolution on a

region-based graph in the interaction space to capture the global information.

In this work, we present a novel way to model temporal relationships and bring

new perspectives for a better understanding of the attention mechanism utilized in video

action recognition. Our approach learns global temporal attention that generalizes well

across different samples as opposed to using pairwise interactions with dot product in the

conventional self-attention.
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3.3 Approach

We start with a brief review of self-attention for video action recognition in Sec-

tion 3.3.1. Then, we introduce the decoupling of spatial and temporal attention in Sec-

tion 3.3.2. Finally, we elaborate on GTA that is designed for better temporal modeling in

Section 3.3.3 and 3.3.4.

3.3.1 Background

Extending the self-attention module [83] for language tasks, the non-local block [10]

takes as input flattened pixels in spacetime to model pairwise interactions, as shown in

Figure 3.2(a). More formally, given an input feature map X ∈ RN×C , three linear projec-

tions are applied to obtain key (K), query (Q), and value (V ) representations, where C is

the channel dimension of the feature map. We use N = THW to denote the total number

of positions in both space and time dimensions, where T , H and W are the number of

time steps, height and width of the feature map, respectively. The three projections can

be written as

Q = XWQ, K = XWK , V = XWV , (3.1)

parameterized by three weight matrices WQ,WK ,WV ∈ RC×C respectively. The output

of the self-attention operation is computed as a weighted sum of the value representations.

Here, the weight is defined by the attention weight matrix M ∈ RN×N , where each

element denotes a scaled dot product between the query pixel and the corresponding key
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Figure 3.2: (a) Standard self-attention for action recognition, which computes pairwise
similarities between a pixel (query) with other pixels (key) in the spacetime domain. (b)
Decoupled spatial and temporal self-attention, which uses separated key/query/value
representations for spatial and temporal attention and aggregates spatial and temporal
context in a separate manner. (c) Global temporal attention, which learns two randomly
initialized global attention maps at the pixel-level and the region-level, respectively. Re-
gions are derived automatically with a learned transformation matrix. Inside the rectan-
gular (dashed line), the spatial dimension of feature maps is omitted. GTA is also applied
in a cross-channel multi-head fashion, where feature maps are split along the channel
dimension into G groups (only 2 groups are shown for simplicity). See texts for more
details.

pixel, followed by a softmax normalization:

M = softmax

(
QKT

√
C

)
(3.2)

A =MV (3.3)

The attention output is incorporated into the backbone network via a final linear projection

and a residual connection [34]:

Y = X + AWO, (3.4)

where WO ∈ RC×C . An optional normalization layer (e.g., BatchNorm [63] and Layer-

Norm [109]) can be used before the residual connection, and we drop it here for clarity.
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3.3.2 Decoupled Spatial and Temporal Self-Attention

Although self-attention has been widely used in action recognition for capturing

spatio-temporal dependencies, we argue in this chapter that the coupled modeling of spa-

tial and temporal self-attention prevents the model from learning effective temporal atten-

tion. First, when sharing the same transformation matrices for key, query and value, it fails

to differentiate between spatial and temporal contexts. This is unsatisfactory for temporal

modeling as we need to consider temporal structures of videos instead of simply com-

puting the salient regions by performing self-attention in the spatial domain. Moreover,

when the two attentions are modeled and aggregated jointly, the combined attention tends

to be biased towards the appearance similarity as the temporal attention is dominated by

the spatial one (see Figure 3.1). Based on this observation, we propose the decoupled

spatial and temporal self-attention in Figure 3.2 (b), which breaks down the standard self-

attention block into a spatial self-attention block followed by a temporal self-attention

block. We will provide a more in-depth analysis of the decoupled self-attention design via

experiments in Section 3.4.2. Note that although the idea of processing spatial and tem-

poral information separately has been explored before for video understanding [71, 110],

the effect of disentangling the two dimensions in self-attention is unknown in prior work.

3.3.3 Global Temporal Attention

We now introduce GTA, which is built upon the decoupled self-attention framework

and advances the temporal attention to a more effective design. GTA aims to learn a global

attention map that considers temporal structures and generalizes well for all samples.
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Formally, given the input feature map X ∈ RT×HW×C generated by the spatial

self-attention block, GTA models temporal relationships at two different levels of spatial

granularity: pixel-level and region-level. For Pixel GTA, all positions in the spatial do-

main (i.e., HW ) are treated individually as different samples and temporal modeling is

performed along the time axis T . As for Region GTA, we first project the spatial domain

HW of each time step to R semantic regions. This is achieved by a region transforma-

tion matrix WR ∈ RT×R×HW that groups similar pixels with related semantic meanings

into the same region [91]. Then, temporal modeling is performed across frames on each

region individually in the same manner as Pixel GTA, followed by a reversed region trans-

formation matrix W T
R to reproduce the pixel-level spatial domain. Similar to Eqn. 3.4, the

output of GTA can be written as:

Y = X + APW P
O︸ ︷︷ ︸

Pixel GTA

+W T
RA

RWR
O︸ ︷︷ ︸

Region GTA

, (3.5)

where W P
O and WR

O transform the output of Pixel GTA and Region GTA to be added with

X in a residual manner.

Unlike conventional self-attention where the attention map is produced by pairwise

interactions conditioned on input pixels (Eqn. 3.2), we train an attention map that does

not depend on individual pixels. In particular, we directly learn a randomly initialized

weight matrix M̂ ∈ RT×T to modulate the value representation:

A = M̂V. (3.6)
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We omit the superscript P and R for A, M̂ and V , as the same operations are applied

to both Pixel GTA and Region GTA. The idea of using a global attention matrix rather

than pairwise dot product is that pairwise interactions fluctuate across different samples,

lacking a global temporal consistency at the dataset level. In addition, the standard self-

attention fails to consider the ordering of sequences [87]—if we shuffle the pixels used to

compute the attention map (i.e. Eqn. 3.2), the attention value between a pair would still

be the same in the matrix, thus the output will not change, which is not what we desire.

Cross-channel Multi-head GTA. The attention matrix M̂ in Eqn. 3.6 is used to learn

a linear combination of V ∈ RT×C 1 across different time steps, without considering

feature interactions in the channel dimension. We further improve temporal modeling by

incorporating channel interactions. We split C into G groups, and for each group and we

apply a multi-head GTA. In particular, for the g-th group, the outputs of the multi-head

attention MHg can be derived as:

MHg = ConcatNh
k=1(M̂

k
g Vg) ∈ RNh×T×bCGc, (3.7)

where M̂k
g ∈ RT×T represents the k-th head for the g-th group, Vg ∈ RT×bCGc denotes the

value for the g-th group and Nh denotes the number of heads used. Each head focuses on

distinct temporal attention patterns. To capture interactions across different groups, we

sum the outputs along the channel dimension between different groups to produce MHG
1HW are considered as different samples and we omit it for brevity.
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as:

MHG =
G∑
g=1

MHg ∈ RNh×T×bCGc, (3.8)

which mixes information across channels in different groups. In order for MHG to have the

same size as X ∈ RT×C 1 for residual addition, one can transform MHG with an additional

layer. Instead, we simply set Nh to be G and reshape MHG to be the same size of RT×C .

3.3.4 Relations to Prior Work

Our proposed decoupled framework and the cross-channel multi-head (CCMH) de-

sign are the two key differences between GTA and the prior work (GloRe [91]). Specifi-

cally, our Region GTA generates semantic regions within each frame and performs tempo-

ral modeling on each region individually along the time axis. In contrast, when applied to

spatio-temporal data, GloRe projects the whole 3D feature maps into semantic groups and

models the interactions among them. We argue that this kind of grouping and modeling

is not capable of capturing effective temporal relationships across different time steps.

Moreover, GloRe leverages graph convolution to model node-wise interactions, which

only considers information diffusion on each channel. Our GTA incorporates channel

interactions to further improve temporal modeling, and we show its effectiveness in Sec-

tion 3.4.3.
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3.4 Experiments

3.4.1 Experimental Setups

Datasets. We evaluate our approach on three video action benchmarks, including two

temporal-related datasets: Something-Something v1 (SSv1) and Something-Something

v2 (SSv2) [68], and a large-scale dataset that is less sensitive to temporal relationships:

Kinetics-400 (K400) [9]. In detail, Something-Something v1&v2 include 110K and 220K

videos respectively over 174 action classes. Kinetics-400 is a human action recognition

dataset that consists of about 300K YouTube videos covering 400 classes. As stated

in [38,75,111], actions in Kinetics datasets can be easily determined from the background

clues instead of temporal information. As we aim to improve temporal modeling for video

action recognition, our experiments focus more on temporal sensitive datasets (SSv1 and

SSv2).

Implementation Details. GTA is flexible and can be easily inserted into existing 2D

and 3D backbones. In our experiments, we adopt the standard R2D-50 network [34] and

the SlowFast-R50 network [12] as our 2D/3D backbones.

For experiments using 2D CNN backbones, we initialize the model with Ima-

geNet [112] pre-trained weights and follow the segment-based sampling strategy [7] for

model training. We also apply the same data augmentation as TSN [7], which first resizes

the input frames to 240 × 320 pixels, followed by the multi-scale cropping and random

flipping, and then resizes the cropped regions to 224 × 224 pixels. Unless otherwise

stated, we use 8 frames as inputs for experiments on 2D CNN backbones for SSv1 and
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SSv2 datasets. For experiments with 3D CNN backbones, we follow the same sampling

practice and training/testing strategy in SlowFast [12]. Specifically, we densely sample a

clip from a full video and apply scale-jittering with a shorter side sampled in [256,340]

pixels and then randomly crop a region of 224 × 224 pixels for training. More dataset-

specific training details are available in the supplementary material.

During testing, on SSv1 and SSv2 datasets, we sample 1 clip from each video and

the center crop of size 224× 224 pixels for evaluation. We keep the same protocol for the

methods compared in the same table. On the Kinetics-400 dataset, we sample 10 clips in

the temporal domain and 3 crops in the spatial domain of size 256× 256 pixels.

3.4.2 Main Results

Effectiveness of GTA in a decoupled framework. We report the results of GTA using

both 2D and 3D backbones and compare with the alternative approaches: (1) standard

non-local block (NL) [10], which is a variant of self-attention that flattens all pixels in

space and time dimension into a huge vector; (2) decoupled non-local block (DNL),

which breaks down the non-local block into spatial self-attention followed by temporal

self-attention. For both of our approaches and the compared baselines, we apply five

blocks (2 to res3 and 3 to res4 for every other residual block) in the backbone networks

unless specified, following [10].

Table 3.1 summarizes the comparison results. We first observe a huge gap between

the performance of 2D and 3D backbones, which shows the importance of utilizing tem-

poral information for SSv1&SSv2 datasets. Notably, we see that by simply separating
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Model FLOPs (G) #Params (M) SSv1 (%) SSv2 (%)

R2D-50 32.7 23.9 17.0 26.8
+ NL 61.1 31.2 31.2 50.7
+ DNL 49.9 31.2 38.8 55.5
+ GTA 50.2 31.2 50.6 63.5

SlowFast-R50 131.4 34.0 50.9 63.4
+ NL 239.9 41.4 51.7 63.9
+ DNL 169.1 41.4 52.0 64.1
+ GTA 169.9 41.4 53.4 64.9

Table 3.1: Comparisons with the standard non-local block (NL). Top-1 accuracy on vali-
dation set is reported here. GTA significantly outperforms NL on both 2D/3D backbones
while requiring 20%-30% less computation cost.

temporal self-attention from spatial self-attention, DNL outperforms NL on both back-

bones, while requiring 20%-30% less computation cost. Compared to NL, DNL offers

a 7.6% / 4.8% gain on SSv1 and SSv2, respectively in the 2D setting. This suggests

that the spatial and temporal self-attentions should be treated separately to capture more

informative temporal contexts.

We further visualize the attention maps obtained by NL and DNL in Figure 3.3.

The first row in each example shows the attention maps obtained by NL, which includes

spatio-temporal attention between the query position and all other positions in the entire

video. The second and third rows show the attention maps obtained by DNL, including

a spatial attention map within the query frame and a temporal attention map at the query

position over the whole sequence. We observe that the attention maps obtained by the

NL mostly focus on the same object across input frames (i.e., the key, the book) and

are uniformly distributed across different time steps. This implies that the attention in

NL mostly concentrates on capturing the appearance similarities instead of the temporal
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(a) (b)

Figure 3.3: Visualization of the attention maps of two examples: (a) pushing something
with something; (b) closing something. The first row shows the spatio-temporal attention
maps generated by the non-local block. The red cross-mark denotes the query position.
The second and third rows are the spatial and temporal attention maps obtained by the
decoupled non-local block.

relations within the video sequence. In contrast, by decoupling them, DNL is capable of

capturing effective temporal dependencies by attending to the frames which are critical

for recognizing the actions. For example, in Figure 3.3(a), the temporal attention weights

are larger in the last few frames where the action ”pushing something” is happening, while

the temporal attention weights in the middle frames are greater in Figure 3.3(b).

Finally, GTA produces the best results on the two datasets with both 2D and 3D

backbones with reduced FLOPs comparing to NL. For example, on the 2D backbone,

GTA further outperforms DNL by 11.8% / 8.0% on SSv1, SSv2, respectively, confirming

the effectiveness of GTA for temporal modeling. On a 3D backbone, we observe similar

trends with smaller gains, since GTA is built upon a stronger baseline with temporal

information extracted by 3D convolutions. This highlights the compatibility of GTA for

both 2D and 3D networks. It is also noteworthy that 2D networks can achieve comparable

performance with 3D backbones when equipped with GTA.

46



Setting CGNL [89] GCNet [90] GloRe [91] GTA

Original 26.7 28.4 33.2 –
Decoupled 37.4 39.0 38.6 50.6

Table 3.2: Comparisons with recent NL variants using the R2D-50 backbone. Top-1
accuracy (%) on SSv1 is reported.

Temporal modeling in NL variants. Recent work has focused on improving the vanilla

non-local block by introducing channel-wise attention [89, 90] or graph-based reason-

ing [91]. Although these variants have been applied to video action recognition, their

capacity to model temporal relations is relatively underexplored. In Table 3.2, we provide

a side-by-side comparison with these NL variants and their decoupled version on SSv1.

The decoupled variants are achieved by breaking down the spatio-temporal operations

into spatial operations at each frame followed by temporal operations at each pixel.

We first observe that all three variants fail to achieve satisfying improvements over

the vanilla NL (31.2%). In particular, the use of extra channel-wise attention ( CGNL [89],

GCNet [90]) leads to even worse results, indicating that the entangled modeling of spatial,

temporal and channel interactions in fact hinders the learning of temporal relationships.

Interestingly, by simply decoupling the spatial and temporal operations, substantial im-

provements can be achieved for all three variants and the results are comparable with

DNL (38.8%). Nevertheless, our GTA outperforms these NL variants by clear margins,

which demonstrates its superior capacity to model temporal information.
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Pixel Region CCMH Top-1
a

X X X 50.6 –

X X 49.6 -1.0
X X 47.9 -2.7

X X 49.4 -1.2
X 49.1 -1.5

X 46.3 -4.3

Table 3.3: Ablation on the contribution of different components in GTA. Group count is
set to 8 for CCMH.

3.4.3 Ablative Studies

Contribution of Different Components. We first validate the contribution of each

component in GTA by removing them from the full model. As shown in Table 3.3, while

Pixel GTA plays a more important role than Region GTA, the combination of these two

modules yields the best result, achieving more than 1% improvement compared to using

each of them alone. It indicates that Pixel GTA and Region GTA are complementary to

each other, focusing on learning temporal relationships at different levels of spatial gran-

ularity. We further visualize regions that are automatically discovered by Region GTA

in Figure 3.4. We can see that Region GTA is capable of discovering regions that share

similar semantic meanings. For example, in the first video, the “hand” and the “paper”

are automatically identified as different regions, while the “hand” and the “watch” are

detected in the second video.

Table 3.3 also shows the contribution of the cross-channel multi-head (CCMH)

design when the group size is set to 8. Specifically, CCMH has a larger impact on Region

GTA than Pixel GTA (1% gain v.s. 0.5% gain) and we hypothesize that modeling temporal
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(a) (b)

Figure 3.4: Visualization of transformed regions: (a)“Tearing something into two pieces”;
(b)“Moving something closer to something”. The first row is the frame sequences. The
second and third rows are regions obtained by Region GTA.

Model FLOPs (G) #Params (M) Top-1
a

R2D-50 32.7 23.9 17.0 -

+ SA 41.7 27.5 17.9 +0.9
+ TA 41.0 27.5 37.6 +20.6
+ SA + TA 49.9 31.2 38.8 +21.8
+ SA + TAPE 49.9 31.2 48.4 +31.4
+ SA + GTA 50.2 31.2 50.6 +33.6

Table 3.4: Ablation on the impact of SA and temporal order. GTA achieves superior
performance with minor extra FLOPs compared with TAPE.

relationships at the region level is more challenging and requires channel interactions.

With the improved performance of Region GTA, the fusion of pixel-level and region-

level information becomes more beneficial when CCMH is applied (1.0% gain v.s. 0.3%

gain w/o CCMH).

Impact of Spatial Attention and Temporal Order. In Table 3.4, we compare the con-

tribution of spatial and temporal self-attention modules, as well as the impact of modeling

temporal order in temporal self-attention. As the SSv1 dataset relies highly on temporal

relationships, applying spatial self-attention (SA) alone in the spatial domain slightly im-
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res3 res4 res5 Top-1

17.0

+1 46.2
+1 46.4

+1 37.4
+1 +1 49.5
+2 +3 50.6

Table 3.5: Ablation on the impact of inserting positions and number of blocks.

proves the backbone network (0.9% gain). In contrast, using the temporal self-attention

(TA) provides much more significant improvements (20.6% gain). Adding positional en-

coding to the temporal self-attention module (TAPE) further improves the performance

by 9.6%, which proves the importance of modeling temporal order information. Finally,

our GTA achieves the best result with a negligible increase in computation cost. It is

worth noting that our Pixel GTA (without applying GTA to regions) already outperforms

TAPE no matter whether CCMH is used or not (49.1% / 49.6% in Table 3.3). This verifies

that our GTA design is more effective in temporal modeling than temporal self-attention

and positional encoding.

Impact of inserting positions and number of blocks. Table 3.5 explores the perfor-

mance of different inserting positions and the number of blocks inserted. We see that

even a single GTA block inserted at res3 or res4 can bring significant improvement over

the baseline. However, the enhancement on res5 is relatively minor. We hypothesize that

the final residual stage loses too much fine-grained spatial information, which may hinder

the learning of temporal attention at the pixel-level and the region-level. Following the

common practice [10], our full model inserts five GTA blocks to leverage the comple-
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Figure 3.5: Impact of group count in cross-channel multi-head GTA.

Model w/o CCMH w/ CCMH

+ TAPE 46.5 47.2
+ Pixel GTA 48.0 48.5

+ SA + TAPE 48.4 48.8
+ SA + Pixel GTA 49.1 49.6

Table 3.6: Ablation on positional embedding (TAPE) and cross-channel multi-head
(CCMH) design.

mentary information provided by different residual stages and achieves the best result.

Impact of Group Count in CCMH GTA. We evaluate different values of group count

used in GTA on SSv1 and SSv2 datasets. The results are summarized in Figure 3.5. We

can see that using a group count larger than 1 can largely improve the performance on

both SSv1 and SSv2 datasets, which demonstrates the importance of channel interactions

in GTA. And a group count of 8 offers the best performance on SSv1 and SSv2. When

the group count becomes larger than 8, the performance drops because the number of

channels in each group becomes too small.

Comparison with Temporal Attention with Positional Embedding (TAPE) Our GTA

module is more effective in temporal modeling than TAPE because it not only consid-
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Method GFLOPs × views Top-1 Top-5

TSN [7] 80×10 72.5 90.2

TSM [11] 86×30 74.7 91.4

bLVNet-TAM [113] 93×9 73.5 91.2

MSNet [44] 87×10 76.4 -

Two-Stream R(2+1)D [71] 304×115 75.4 91.9

Two-Stream S3D-G [38] 143×N/A 77.2 93.0

I3D+NL [10] 359×30 77.7 93.3

SlowFast-R101 [12] 106×30 77.9 93.2

CorrNet-R101 [19] 224×30 79.2 -

R2D-R50 + NL 77×30 74.8 91.5

R2D-R50 + GTA 62×30 75.9 92.2

SlowFast-R101 + NL 137×30 78.9 93.9

SlowFast-R101 + GTA 137×30 79.8 94.1

Table 3.7: Comparisons with state-of-the-art methods on Kinetics-400 dataset.

ers the chronological order of video frames but also models the temporal relationships

among them. Results in Table 2(b) of the main paper show that GTA outperforms TAPE

by 2.2% on SSv1. Here, we provide a side-by-side comparison between TAPE and our

Pixel GTA (without applying GTA to regions) in Table 3.6. Our Pixel GTA consistently

outperforms TAPE under different settings. Furthermore, TAPE can also benefit from our

cross-channel multi-head (CCMH) design, but Pixel GTA still achieves the best perfor-

mance.

3.4.4 Comparison with State-of-the-art

Kinetics-400 Table 3.7 presents the comparative results with other state-of-the-art meth-

ods on Kinetics-400. The first section of the table shows the methods based on 2D CNN

network. The second section contains the models with 3D CNN backbone. The third sec-
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Method Backbone Frames×Crops
×Clips

SSv1 SSv2

Val Top-1 Val Top-5 Val Top-1 Val Top-5

TRN [75] BNInception 8×1×1 34.4 - 48.8 -
TSM [11] 2D R50 8×1×1 45.6 74.2 58.8 85.4
TSM [11] 2D R50 16×1×1 47.3 77.1 61.2 86.9
TSMRGB+Flow [11] 2D R50 (16+16)×1×1 52.6 81.9 65.0 89.4
MSNet [44] 2D R50+TSM 8×1×1 50.9 80.3 63.0 88.4
MSNet [44] 2D R50+TSM 16×1×1 52.1 82.3 64.7 89.4
MSNetEn [44] 2D R50+TSM (16+8)×1×10 55.1 84.0 67.1 91.0

ECO [76] 3D R18+BNInc 16×1×1 41.4 - - -
ECOEnLite [76] BNInc+3D R18 92×1×1 46.4 - - -
I3D+NL [10] 3D R50 32×3×2 44.4 76.0 - -
I3D+NL+GCN [114] 3D R50 32×3×2 46.1 76.8 - -
S3D-G [38] 3D Inception 64×1×1 48.2 78.7 - -
CorrNet [19] 3D CorrNet-50 32×1×10 48.5 - - -
CorrNet [19] 3D CorrNet-101 32×3×10 51.1 - - -
TEA [96] 3D R50 8×1×1 48.9 78.1 - -
TEA [96] 3D R50 16×3×10 52.3 81.9 65.1 89.9

GTA 2D R50 8×1×1 50.6 78.8 63.5 88.6
GTA 2D R50 16×1×1 52.0 80.5 64.7 89.3
GTA 2D R50+TSM 8×1×1 51.6 79.8 63.7 88.9
GTA 2D R50+TSM 16×1×1 53.7 81.7 65.3 89.6
GTAEn 2D R50+TSM (16+8)×3×2 56.5 83.1 68.1 91.1

Table 3.8: Comparisons with state-of-the-art methods on Something-Something v1 & v2
datasets. Bold and underline shows the highest and second highest results.

tion illustrates the comparison of our GTA and NL added to 2D and 3D CNN backbones.

We can see that GTA achieves consistent improvement over the NL counterpart on 2D

and 3D CNN backbones. And adding GTA to SlowFast-R101 can achieve 79.8% top-1

accuracy on Kinetics-400 dataset, which is the state-of-the-art performance on Kinetics-

400.

Something-Something v1&v2 We compare our approach with the state-of-the-art meth-

ods on SSv1 & SSv2 datasets. As shown in Table 3.8, given 8 input frames, our ap-

proach based on 2D RestNet-50 with TSM backbone achieves 51.6% and 63.7% on

SSv1 and SSv2 at top-1 accuracy, respectively. Specifically, with the same number of

input frames, our approach outperforms TRN [75] which utilizes relation networks, and
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Method Backbone Frames SSv1 SSv2

TRNRGB+Flow [75] BNInc 8+8 40.7 56.2
TSM [11] 2D R50 16 46.0 64.3
TSMRGB+Flow [11] 2D R50 16+16 50.7 66.6
STM [40] 2D R50 16 43.1 63.5
bLVNet-TAM [113] 2D R101 64 48.9 -

ECOEnLite [76] BNInc+3D R18 92 42.3 -
I3D+NL+GCN [114] 3D R50 32 45.0 -
TEA [96] 3D R50 16 46.6 63.2

GTAEn 2D R50+TSM 16+8 49.8 66.9

Table 3.9: Results on the test set of Something-Something v1 & v2 datasets. Bold and
underline shows the highest and second highest results.

MSNet [44] which incorporates the motion features. This demonstrates that our pro-

posed GTA is more effective in modeling temporal relationships. Our approach also

achieves superior results when compared with the recent work that leverages additional

modules to improve 3D CNN backbones, such as the non-local block (I3D+NL [10]),

GCN (I3D+NL+GCN [114]), the correlation operation (CorrNet [19]), and the multiple

temporal aggregation module and the motion excitation module (TEA [96]). Finally, we

evaluate the ensemble model (GTAEn) by averaging output prediction scores of the 8-

frame and 16-frame models, and obtain 56.5% and 68.1% at top-1 accuracy on SSv1 and

SSv2, respectively, which achieves the state-of-the-art performance on both datasets.

We also compare the performance of our approach on the test set with the state-of-

the-art methods on Something-Something v1 & v2 datasets. As is shown in Table 3.9, our

approach based on 2D RestNet-50 with TSM backbone achieves 49.8% and 66.9% on

SSv1 and SSv2 at top-1 accuracy, respectively. Although on SSv1 dataset, it is still below

the TSMRGB+Flow, TSMRGB+Flow is based on the two-stream network and utilizes additional
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optical flow information. With only RGB input, our GTA achieves the best performance

among the recently proposed STM [40] and bLVNet-TAM [113] on 2D CNN backbone;

I3D+NL+GCN [114] and TEA [96] on 3D CNN backbone.

3.5 Conclusion

In this chapter, we present Global Temporal Attention (GTA), which is designed

for improved temporal modeling in video tasks. GTA is built upon a decoupled self-

attention framework, where temporal attention is disentangled from the spatial attention

to prevent being dominated by the spatial one. We apply GTA to model the temporal

relationships at both pixel-level and region-level. Moreover, GTA directly learns a global,

instance-independent attention matrix that generalizes well across different samples. A

cross-channel multi-head mechanism is also designed to further improve the temporal

modeling in GTA. Experimental results demonstrate that our proposed GTA effectively

enhances temporal modeling and achieves state-of-the-art results on three challenging

video action benchmarks.
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Chapter 4: Beyond Short Clips: End-to-End Video-Level Learning with

Collaborative Memories

4.1 Introduction

In recent years, end-to-end learning of 3D convolutional networks (3D CNNs) has

emerged as the prominent paradigm for video classification [6, 9, 10, 12, 19, 33, 38, 71,

93, 115–119]. Steady improvements in accuracy have come with the introduction of in-

creasingly deeper and larger networks. However, due to their high computational cost

and large memory requirements, most video models are optimized at each iteration over

short, fixed-length clips rather than the entire video.

Although widely used in modern video models, the clip-level learning framework

is sub-optimal for video-level classification. First, capturing long-range temporal struc-

ture beyond short clips is not possible as the models are only exposed to individual clips

during training. Second, the video-level label may not be well represented in a brief clip,

which may be an uninformative segment of the video or include only a portion of the

action, as shown in Figure 4.1(a). Thus, optimizing a model over individual clips using

video-level labels is akin to training with noisy labels. Recent attempts to overcome these

limitations include methods that build a separate network on top of the clip-based back-
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sampled clip
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Backbone

sampled clip

Clip-level Learning

iteration i

…

(a) Standard: clip-level learning on individual clips at each iteration.
Video-level Learning

(b) Our framework: video-level learning with collaborative memory.

sampled clip sampled clip

Backbone Backbone Backbone

Collaborative Memory

sampled clip

Figure 4.1: Clip-level learning vs. our proposed end-to-end video-level learning frame-
work. (Action label: something being deflected from something.)

bone [95, 120, 121]. However, these approaches either cannot be trained end-to-end with

the backbone (i.e., the video model is optimized over pre-extracted clip-level features)

or require ad-hoc backbones which hinder their application in the current landscape of

evolving architectures.

In this chapter, we propose an end-to-end learning framework that optimizes the

classification model using video-level information collected from multiple temporal lo-

cations of the video, shown in Figure 4.1(b). Our approach hinges on a collaborative

memory mechanism that accumulates video-level contextual information from multiple

clips sampled from the video. Within the same training iteration, this contextual informa-

tion is shared back with all the clips to enhance the individual clip representations. The

collaborative memory allows the model to capture long-range temporal dependencies be-
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yond individual short clips by generating clip-specific memories that encode the relation

between each local clip and the global video-level context.

Our experiments demonstrate that the proposed training framework is effective and

generic. Specifically, our approach does not make any assumption about the backbone

architecture. We empirically show that it consistently yields significant gains in accuracy

when applied to different state-of-the-art architectures (e.g. SlowFast [12], R(2+1)D [71],

I3D-NL [10]). We also introduce and compare several design variants of the collabora-

tive memory. Furthermore, we demonstrate that the accuracy improvements come at a

negligible computational overhead and without an increase in memory requirements. Fi-

nally, we show that our framework can be extended to action detection where it yields

significant improvements without requiring extra information, such as optical flow and

object detection predictions, which are commonly used in previous work [122, 123]. We

summarize our major contributions as follows:

• A new framework that enables end-to-end learning of video-level dependencies for

clip-based models.

• A new collaborative memory mechanism that facilitates information exchange across

multiple clips. We explore different design choices and provide insights about the

optimization difficulties.

• Experiments demonstrating that our collaborative memory framework generalizes

to different backbones and tasks, producing state of the art results for action recog-

nition and detection.
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4.2 Related Work

Clip-Level Video Architectures. Since the introduction of 3D CNNs [6, 93, 115] to

video classification, new architectures [9, 10, 19, 33, 38, 71, 116–118] have been proposed

to learn better spatiotemporal representations. Besides models aimed at improving accu-

racy, several architectures have been proposed to achieve better performance/cost trade-

offs [11,76,118,119,124–126]. Another line of research involves the design of multiple-

stream networks [4, 5, 7, 9, 12, 32, 38], where each stream consumes a different type of

input, e.g., RGB or optical flow. Besides CNNs, transformer-based models, e.g., TimeS-

former [127], also show promising results. Unlike prior work focused on the design

of clip-level architecture, our work proposes a new framework to learn long-range de-

pendencies using existing clip-level models. As we do not make any assumption about

the clip-level architecture, our framework generalizes to different backbones and enables

end-to-end training of clip models with video-level contextual information.

Video-Level Classification. Several attempts have been made to overcome the limita-

tions of the single-clip training framework. Timeception [95] uses multi-scale temporal

convolutions to cover different temporal extents for long-range temporal modeling. Time-

ception layers are trained on top of a frozen backbone. Both TSN [7] and ECO [76] divide

the input video into segments of equal size and randomly sample a short snippet or a sin-

gle frame from each segment to provide better temporal coverage during training. As the

GPU memory cost grows linearly w.r.t. the number of segments, TSN and ECO adopt

lightweight 3D CNNs or even 2D CNNs as backbones in order to process multiple seg-
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ments simultaneously. These simple backbones limit the performance of the framework.

In addition, TSN uses averaging to aggregate the predictions from different segments,

whereas we propose a dedicated memory mechanism to model the video-level context.

FASTER [121] and SCSampler [128] explore strategies to limit the detrimental impact of

applying video-level labels to clips and to save computational cost.

Another related work to our approach is LFB [120]. It leverages context features

from other clips to augment the prediction on the current clip. Unlike our approach, con-

text features stored in LFB are pre-computed using a separate model. As a result, the

context features cannot be updated during the training and the model used to extract these

context features is not optimized for the task. In contrast, our framework is end-to-end

trainable and the accumulated contextual information can back-propagate into the back-

bone architecture. Note that storing context features is infeasible for large-scale video

datasets, e.g., Kinetics, and LFB is mainly designed for action detection applications.

Learning With Memories. Memory mechanisms [129–132] have been widely used in

Recurrent Neural Networks for language modeling in order to learn long-term dependen-

cies from sequential text data. Specifically, memory networks [129] have been proposed

for question answering (QA), while Sukhbaatar et al. [130] have introduced a strategy

enabling end-to-end learning of these models. RWMN [133] has extended the QA appli-

cation on movie videos. Grave et al. [131] have proposed to store past hidden activations

as a memory that can be accessed through a dot product with the current hidden activation.

These works are similar in spirit to our approach, but our application is in a differ-

ent domain with different constraints and challenges. Moreover, our collaborative mem-
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ory mechanism is designed to capture the interactions among the samples, is extremely

lightweight and memory-friendly, and is suitable for training computationally intensive

video models.

4.3 End-to-End Video-Level Learning with Collaborative Memory

We start with an overview of the proposed framework, then present different designs

for the collaborative memory. We conclude with a discussion of implementation strategies

to cope with the GPU memory constraint.

4.3.1 Overview of the Proposed Framework

Given a video recognition architecture (e.g., I3D [9], R(2+1)D [71], SlowFast [12])

that operates on short, fixed-length clips, our goal is to perform video-level learning in

an end-to-end manner. In particular, we aim to optimize the clip-based model using

video-level information collected from the whole video. To achieve this, we start by

sampling multiple clips from the video within the same training iteration in order to cover

different temporal locations of the video. The clip-based representations generated from

multiple clips are then accumulated via a collaborative memory mechanism that captures

interactions among the clips and builds video-level contextual information. After that,

clip-specific memories are generated to enhance the individual clip-based representations

by infusing the video-level information into the backbone. Finally, the sampled clips are

jointly optimized with a video-level supervision applied to the consensus of predictions

from multiple clips.
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Multi-clip sampling. Given a video V = {I0, ..., IT−1} with T frames, we sample

N clips {C0, ..., CN−1} from the video at each training iteration. Each short clip Cn =

{Itn , ..., Itn+L−1} consists ofL consecutive frames randomly sampled from the full-length

video where tn indicates the index of the start frame. N is a hyper-parameter that can be

decided based on the ratio between the video length and the clip length to ensure suf-

ficient temporal coverage. The sampled clips are then fed to the backbone to generate

clip-based representations {Xn}N−1n=0 , where Xn = f(Cn), and f represents the clip-level

backbone. In the traditional clip-level classification, Xn is directly used to perform the

final prediction via a classifier h : yn = h(Xn) = h(f(Cn)), where yn is the vector of

classification scores.

Collaborative memory. Our approach hinges on a collaborative memory mechanism

that accumulates information from multiple clips for learning video-level dependencies

and then shares this video-level context back with the individual clips, as illustrated in

Figure 4.2. Specifically, the collaborative memory involves two stages:

• Memory interactions: A global memory of the whole video is constructed by

accumulating information from multiple clips:M = Push({Xn}N−1n=0 ). The global

memory is then shared back with the individual clips in order to generate clip-

specific memories: Mn = Pop(M, Xn).

• Context infusion: The individual clip-based representations are infused with video-

level context. This is done by means of a gating function g that enhances each

clip representation with the information stored in the clip-specific memory: X̂n =

g(Xn,Mn).
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Figure 4.2: Collaborative memory with associative memory and feature gating. The fea-
ture maps are shown as the shape of their tensors, e.g., l×h×w×d. GAP denotes global
average pooling. ⊗ and � indicate matrix and elementwise multiplication, respectively.

Video-level supervision. To facilitate the joint optimization over multiple clips, we ap-

ply a video-level loss that takes into account the clip-level predictions as well as the

video-level prediction aggregated from all N sampled clips. Formally, we first aggre-

gate the clip-level predictions via average pooling over N clips: H = 1
N

∑N−1
n=0 h(X̂n) =

1
N

∑N−1
n=0 h(g(f(Cn),Mn)). Then our video-level loss can be written as

Lvideo =
1

N

N−1∑
n=0

L(h(X̂n)) + αL(H). (4.1)

L denotes the cross-entropy loss for classification and α is the weight to balance the two

terms which account for the clip-level losses and the video-level loss aggregated from

all N clips. All the parameters (i.e., f , g, and h) are optimized end-to-end w.r.t. this

objective.
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4.3.2 Collaborative memory

Our idea of collaborative memory is generic and can be implemented in a variety of

ways. In this section we introduce a few possible designs. We empirically evaluate these

different options in Section 4.4.3.

Memory interactions. The design of memory interactions should follow two princi-

ples: 1) The memory footprint for storing the global memory should be manageable; 2)

Interactions with the memory should be computationally efficient. The first principle im-

plies that the memory consumption should not grow with the number of clips N . Thus,

simply storing all clip-based features is not feasible.

– Average Pooling: Let the clip-based representation Xn be a k× d matrix, where

k is the spatial-temporal resolution (i.e., height × width × length) and d is the number

of channels. A simple strategy is to perform a global average pooling over all sampled

clips: M = Push({Xn}N−1n=0 ) = Pool({XnWI}N−1n=0 ). WI ∈ Rd×d′ is a learnable weight

matrix to reduce the dimensionality from d to d′. This global information can be simply

shared back with all the clips: Mn = Pop(M, Xn) =M.

– Associative Memory: Although avg/max pooling is capable of collecting in-

formation from multiple clips, it fails to capture the inter-clip dependencies and the clip-

specific information cannot be retrieved from the global memoryM. This motivates us

to design a new mechanism that enables the retrieval of clip-specific information when

needed. Inspired by associative networks [132, 134], we propose to accumulate the clip-
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level features using the outer product operator to generate the global memoryM:

Push({Xn}N−1n=0 ) =
1

N

N−1∑
n=0

(XnWk)
T (XnWv). (4.2)

Given the n-th clip, we obtain its clip-specific memory by:

Mn = Pop(M, Xn) = (XnWq)M, (4.3)

where Wk,Wv,Wq ∈ Rd×d′ are learnable weight matrices for memory interactions and

dimension reduction. Note that this memory design can be viewed as implementing a

form of video-level inter-clip attention, where the clip-based representation Xn attends to

features generated from all sampled clips of the video in proportion to their similarities:

Mn = 1
N

∑N−1
m=0

[
(XnWq)(XmWk)

T
]
(XmWv). However, unlike the self-attention mech-

anism [10, 83], our design is more efficient in both computation and memory consump-

tion as it does not require to store all clip-level features or perform pairwise comparison

between all the clips.

Context Infusion. One way to incorporate the clip-specific memory Mn with the clip-

level features Xn is through a residual connection: X̂n = MnWO + Xn, where WO ∈

Rd′×d is a linear transformation to match the feature dimensionality. However, as we

will show in our experiments (Figure 4.5), this design tends to overfit to the clip-specific

memory during training and leads to inferior performance. As Mn stores much more

information than a single clip-level feature Xn, the model mostly relies on Mn during

training and makes little use of Xn.
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In light of the above observation, we propose to infuse context information into the

clip-level features through a feature gating operation. Rather than allowing the model to

directly access the clip-specific memoryMn, feature gating forces the model to recalibrate

the strengths of different clip-level features using the contextual information. Formally,

the enhanced features are computed as

X̂n =
(
J + σ(M̂nWO)

)
�Xn, (4.4)

where σ is the sigmoid activation function, � is the elementwise multiplication and J

is an all-ones matrix for residual connection. M̂n is obtained by averaging the spatial

and temporal dimensions of Mn: M̂n = GAP (Mn). Our feature gating operation can

be considered as a channel-wise attention mechanism similar to context gating [38, 135]

and the SE block [85]. However, the attention weights in our method are generated by

video-level contextual information, instead of self-gating values that capture channel-wise

relationships within the same clip. Experimental results show that our proposed feature

gating design alleviates the optimization difficulties during training and enables a more

effective use of the video-level contextual information.

4.3.3 Coping with the GPU Memory Constraint

A challenge posed by video-level learning is the need to jointly optimize over mul-

tiple clips under a fixed and tight GPU memory budget. In this section, we discuss two

simple implementations that allow end-to-end training of video-level dependencies under

this constraint.
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Batch reduction. LetB be the size of the mini-batch of videos used for traditional clip-

level training. Our approach can be implemented under the same GPU memory budget by

reducing the batch size by a factor of N : B̂ = round(B/N). This allows us to load into

the memory N clips for each of the B/N different videos. In order to improve the clip

diversity for updating the batch-norm [63] parameters within a mini-batch, we propose

to calculate batch-norm statistics using only the clips from different videos. Although

this implementation cannot handle arbitrarily large N , it is simple, efficient and we found

it applicable to most settings in practice. For example, a typical choice of batch size

for training clip-based models is a 8-GPU machine with B = 64; our approach can be

implemented under this memory setup by using in each iteration B̂ = 16 different videos,

and by sampling from each of them N = 4 clips.

Multi-iteration. Instead of directly loading N clips into one mini-batch, we can also

unroll the training of a video into N iterations. Each iteration uses one of the N clips.

This implementation is memory-friendly and consumes the same amount of memory as

the standard single-clip training framework. It allows us to process arbitrarily long videos

with arbitrarily large N . When incorporating the collaborative memory, we simply per-

form a two-scan process: the first scan generates the clip-based features to build the

global memory M and the second scan generates the classification output of each clip

conditioned onM.
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4.4 Experiments

To demonstrate the advantages of our end-to-end video-level learning framework,

we conduct extensive experiments on four action recognition benchmarks with different

backbone architectures. We implement our models and conduct the experiments using the

PySlowFast codebase [136].

4.4.1 Experimental Setup

Datasets. Kinetics [88] (K400 & K700) is one of the most popular datasets for large-

scale video classification. Charades [137] is a multi-label dataset with long-range activi-

ties. Something-Something-V1 [68] is a dataset requiring good use of temporal relation-

ships for accurate recognition. Following the standard protocol, we use the training set

for training and report top-1 accuracy on the validation set.

Backbones. We evaluate our framework using different backbone architectures includ-

ing I3D [10], R(2+1)D [19,71], Slow-only [12] and SlowFast [12], optionally augmented

with non-local blocks (NL) [10]. We attach the proposed collaborative memory to the last

convolutional layer of these backbones for joint training.

Training. We first train the backbones by themselves following their original sched-

ules [12, 19], then re-train the backbones in conjunction with our collaborative memory

for video-level learning. When training on Kinetics, we use synchronous SGD with a

cosine learning schedule [74]. For Charades and Something-Something-V1, we follow

the recipe from PySlowFast [136] and initialize the network weights from the models
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pre-trained on Kinetics, since these two datasets are relatively small. For the video-level

training, we employ the batch reduction strategy to handle the GPU memory constraint by

default and apply the linear scaling rule [73] to adjust the training schedule accordingly.

Inference. Following [10, 12], we uniformly samples 3× 10 crops from each video for

testing (i.e., 3 spatial crops and 10 temporal crops). The global memoryM is aggregated

from 10 spatially centered crops and shared for the inference of all 30 crops. We employ

the multi-iteration approach from Section 4.3.3 during inference to overcome the GPU

memory constraint. The softmax scores of all 30 clips are averaged for the final video-

level prediction.

4.4.2 Evaluating Collaborative Memory

For all the experiments in this section we use the associative version of the col-

laborative memory with feature gating since, as demonstrated in ablation studies (Sec-

tion 4.4.3), this design provides the best results.

Effectiveness of video-level learning. We begin by presenting an experimental com-

parison between our proposed video-level learning and the standard clip-level training

applied to the same architecture. For this evaluation we use the Slow-only backbone with

50 layers, which can be considered as a 3D ResNet [34]. In order to investigate the impact

of temporal coverage on video-level learning, we train models using different numbers of

sampled clips per video: N ∈ {1, 3, 5, 7, 9}. N = 1 corresponds to the conventional

clip-level training, as we only sample one clip per video. In such case the collaborative
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Figure 4.3: Video-level accuracy on
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for training CM. Note that all models use
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Figure 4.4: Clip-level accuracy on
Kinetics-400 at 10 different temporal lo-
cations within the video. N indicates the
number of clips used for training CM.

memory (CM) is limited to perform “self-attention” within the single clip. For N > 1,

CM captures video-level information across the N clips.

Figure 4.3 shows the video-level accuracy achieved by the different models, all us-

ing the same testing setup of 3×10 crops per video. Note that under this setting all models

“look” at the same number of clips for each video in testing. As shown in Figure 4.3, our

CM framework significantly improves the video-level accuracy. For example, when the

clip length is 8×8 (8 frames with a temporal stride of 8), using CM with N = 9 yields

a remarkable 2.6% improvement compared with training using a single clip (74.5% vs.

77.1%). When the clip has a shorter length (i.e., 8×2), our method gives an even larger

gain, 3.2% (73.2% vs. 76.4%). As expected, the improvement from our method increases

with the number of sampled clips N . The performance saturates when N ≥ 7. To keep

the training time more manageable, we use N = 5 by default.

Figure 4.4 shows the clip-level accuracy at different temporal locations of a video,

according to their temporal order. When N = 1, the clips from the middle of the video

have much higher accuracy than the clips from the beginning or the end of the video, as
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Model Baseline Ours 4 FLOPs

Slow-only-50 8×8 [12] 74.4 76.8 +2.4 1.03×
I3D-50+NL 32×2 [10] 74.9 77.5 +2.4 1.02×
R(2+1)D-50 16×2 [71] 75.7 78.0 +2.3 1.01×

SlowFast-50 4×16 [12] 75.6 77.8 +2.2 1.02×
SlowFast-50 8×8 [12] 76.8 78.9 +2.1 1.03×

Table 4.1: Generalization to different backbone architectures. We report the video-level
accuracy on Kinetics-400 for both standard clip-level training (“Baseline”) and video-
level training with CM (“Ours”).

the middle clips tend to include more relevant information. CM significantly improves

the clip-level accuracy by augmenting each clip with video-level context information (i.e.,

N ≥ 3), especially for clips near the boundary of the video. This is a clear indication that

our memory mechanism is capable of capturing video-level dependencies and sharing

them effectively with the clips within the video to boost the recognition accuracy.

Generalization to different backbones. As we do not make any assumption about the

backbone, our video-level end-to-end learning framework can be seamlessly integrated

with different architectures and input configurations (e.g., clip length, sampling stride,

etc.). As shown in Table 4.1, CM produces consistent video-level accuracy gains of over

2% on top of state-of-the-art video models, including I3D with non-local blocks [10], the

improved R(2+1)D network [19, 71] and the recent SlowFast network [12]. Note that we

achieve these improvements with only negligible additional inference cost, about 1-3%

more FLOPs compared to the backbone themselves.

71



Multi-clip Memory End-to-end Top-1

X X 74.5
X X 75.5
X X 75.9

X X X 76.8

Table 4.2: Evaluating different components of our video-level learning framework.

4.4.3 Ablation Studies

We conduct ablation experiments on Kinetics-400. Top-1 video-level accuracy (%)

is reported. Unless otherwise stated, we use Slow-only [12] with 50 layers and the input

clip length is 8× 8. R(2+1)D is also 50 layers with a clip length of 16× 2.

Assessing the components in our framework. Unlike most prior work on video-level

modeling [95, 120], our framework is end-to-end trainable. To show the benefits of end-

to-end learning in improving the backbone, we conduct an ablation that freezes the pa-

rameters of the backbone and only updates the parameters from the collaborative memory

and the FC layers for classification. As shown in Table 4.2, end-to-end learning improves

the performance by 1.1% compared with learning video-level aggregation on top of the

frozen backbones (76.8% vs. 75.9%).

Table 4.2 also shows the result of video-level learning without using CM. This is

done by optimizing multiple clips per video but without sharing any information across

the clips. Interestingly, this simple setup also delivers a good improvement over the

single-clip learning baseline (75.5% vs. 74.5%). The gain comes from the joint optimiza-

tion over multiple clips of a video, which again confirms the importance of video-level

learning for classification. Our CM framework achieves the best performance with all the
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Setting Associative Gating Top-1

Multi-clip (w/o memory) 75.5

CM (avgpool) X 75.8
CM (residual) X 76.0
CM (default) X X 76.8

Table 4.3: Comparing different designs of our
collaborative memory mechanism.

Setting #Param. Top-1

α = 1 49.2 M 76.8
α = 2 40.9 M 76.8
α = 4 36.7 M 76.8
α = 8 34.6 M 76.4

Table 4.4: Varying channel reduc-
tion ratio α = d/d

′ .
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Figure 4.5: Video-level training/validation errors on Kinetics-400 for different designs of
the collaborative memory.

components enabled.

Collaborative memory design. Our default design uses the associative memory for

memory interactions and a feature gating operation for context infusion. In Table 4.3, we

explore other design choices by replacing the associative memory with average pooling

or substituting the feature gating with a residual connection.

We observe that all these variants offer improvement over the naı̈ve video-level

learning setup without the memory. However, the gain provided by average pooling is

relatively small, which is not surprising given that there is no the inter-clip interaction.

While we also witness a performance drop by removing the feature gating operation, the

reason behind it is different. As shown by the training/validation error curves in Fig-

ure 4.5, the model without feature gating achieves lower training error but higher valida-
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Model Stage-wise Top-1

Slow-only
76.1

X 76.8

R(2+1)D
77.7

X 78.0

Table 4.5: Stage-wise training vs.
training everything from scratch.

Model Batch reduction Multi-iteration Top-1

Slow-only
X 76.6

X 76.8

R(2+1)D
X 77.9

X 78.0

Table 4.6: Comparing different ways of training
CM: batch reduction vs. multi-iteration.

tion error. This suggests that the model degenerates during training due to over-fitting to

the video-level context.

In Table 4.4 we ablate the number of channels used in CM (d′ in Eq. 4.2, 4.3),

which can be controlled by the channel reduction ratio α = d/d′. We can see that the

results remain unchanged as long as the reduction ratio is reasonable (α ≤ 4). We use

α = 4 as the default value in our experiments since it introduces fewer extra parameters.

Training strategies. Recall that we adopt a stage-wise training strategy: the backbones

are first trained using standard clip-level training recipes and then re-trained in conjunc-

tion with CM for video-level learning. In Table 4.5, we compare this strategy with train-

ing everything from scratch (equivalent training iterations are used for both strategies).

Experiments on two different backbones show that training everything from scratch yields

slightly worse results. We hypothesize that stage-wise training allows the optimization in

the second stage to focus on effective long-range modeling thanks to the well-initialized

backbone. We note that non-local networks are also trained in a stage-wise way.

We also compare the two methods to cope with the GPU memory constraint (Sec-

tion 4.3.3). As shown in Table 4.6, the accuracy of the two methods is almost the same

and the difference is within the margin of randomness, which makes sense as the two
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Model
Temporal stride

CM
2 4 8 16

Slow-only 73.2 74.3 74.4 74.4 76.8

R(2+1)D 75.7 76.4 75.0 72.2 78.0

Table 4.7: Comparing CM with backbones using clips with large temporal strides.

methods are technically identical.

Limitations of temporal striding. One simple way to increase the temporal coverage

of a video model is to use larger temporal strides when sampling the frames of the input

clips. We compare our video-level learning framework with this strategy in Table 4.7.

Note that we keep the temporal strides of CM the same as the original backbones, i.e., 8

frames for Slow-only and 2 frames for R(2+1)D.

We can see that increasing the temporal coverage through striding yields only a

modest gain in accuracy. Notably, using a very large stride even hurts performance for

some architectures like R(2+1)D. In contrast, our approach can learn long-range depen-

dencies and improves the performances of short clip-based backbones by large margins.

4.4.4 Comparison with the State of the Art

Previous experimental results are from Kinetics-400. To demonstrate that our method

can generalize to different datasets, we further evaluate our method on Kinetics-700 [140],

Charades [137] and Something-Something-V1 [68]. Among them, Charades has longer-

range activities (30 seconds on average), whereas Something-Something-V1 includes

mostly human-object interactions. We compare the results with the state of the art in

Table 4.8, 4.9, 4.10 and 4.11. Our proposed CM framework yields consistent gains of
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Methods Pretrain
Only GFLOPs

Top-1RGB × crops

I3D [9] ImageNet 7 216×N/A 75.7
S3D-G [38] ImageNet 7 142.8×N/A 77.2
LGD-3D-101 [70] ImageNet 7 N/A 81.2
I3D-101+NL [10] ImageNet 3 359×30 77.7
ip-CSN-152 [119] Sports1M 3 109×30 79.2
CorrNet-101 Sports1M 3 224×30 81.0

MARS+RGB [78] none 3 N/A 74.8
DynamoNet [33] none 3 N/A 77.9
CorrNet-101 [19] none 3 224×30 79.2
SlowFast-101 8×8 [12] none 3 106×30 77.9
SlowFast-101 16×8 [12] none 3 213×30 78.9
SlowFast-101+NL 16×8 [12] none 3 234×30 79.8

Ours (R(2+1)D-101 32×2) none 3 243×30 80.5
Ours (SlowFast-101 8×8) none 3 128×30 80.0
Ours (SlowFast-101+NL 8×8) none 3 137×30 81.4

Table 4.8: Comparison with the state-of-the-art on Kinetics-400.

Methods Pretrain
GFLOPs

Top-1× crops

SlowFast-101+NL 8×8 [12] K600 115×30 70.6
SlowFast-101+NL 16×8 [12] K600 234×30 71.0

SlowFast-50 4×16∗ K600 36×30 66.1
SlowFast-101 8×8∗ K600 126×30 69.2
SlowFast-101+NL 8×8∗ K600 135×30 70.2

Ours (SlowFast-50 4×16) K600 37×30 68.3
Ours (SlowFast-101 8×8) K600 128×30 70.9
Ours (SlowFast-101+NL 8×8) K600 137×30 72.4

Table 4.9: Comparison with the state-of-the-art on Kinetics-700. ∗ indicates results re-
produced by us.

over 2% for different variants of SlowFast on all datasets. These improvements are very

significant given that SlowFast is among the best video backbones.

On Kinetics-400 and Kinetics-700, our method establishes a new state of the art,

as shown in Table 4.8 and 4.9. Notably, we achieve these results without pre-training

on other datasets or using optical flow. Similarly, our method outperforms the state of
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Methods Pretrain
GFLOPs

Top-1× crops

TRN [75] ImageNet N/A 25.2
I3D-101+NL [10] ImageNet+K400 544 × 30 37.5
STRG [114] ImageNet+K400 630 × 30 39.7
Timeception [95] K400 N/A 41.1
LFB (I3D-101+NL) [120] K400 N/A 42.5
SlowFast-101+NL [12] K400 234×30 42.5
AVSlowFast-101+NL [138] K400 278×30 43.7

SlowFast-50 16×8∗ K400 131×30 39.4
SlowFast-101+NL 16×8∗ K400 273×30 41.3

Ours (SlowFast-50 16×8) K400 135×30 42.9
Ours (SlowFast-101+NL 16×8) K400 277×30 44.6

Table 4.10: Comparison with the state-of-the-art on Charades. ∗ indicates results repro-
duced by us.

Methods Pretrain Only RGB Top-1

S3D-G [38] ImageNet 7 48.2
ECO [76] none 7 49.5
Two-stream TSM [11] ImageNet 7 52.6
MARS+RGB+Flow [78] K400 7 53.0
NL I3D-50+GCN [114] ImageNet 3 46.1
GST-50 [139] ImageNet 3 48.6
MSNet [44] ImageNet 3 52.1
CorrNet-101 [19] Sports1M 3 53.3

SlowFast-50 8×8* K400 3 50.1
SlowFast-101+NL 8×8* K400 3 51.2

Ours (SlowFast-50 8×8) K400 3 52.3
Ours (SlowFast-101+NL 8×8) K400 3 53.7

Table 4.11: Comparison with the state-of-the-art on Something-Something-V1. ∗ indi-
cates results reproduced by us.

the art on both Charades (in Table 4.10) and Something-Something-V1 (in Table 4.11).

On Charades, our CM framework yields more than 3% gains (e.g., 44.6% vs 41.3%).

This demonstrates that CM performs even better on datasets that have longer videos and

require longer-term temporal learning. Note that our method significantly outperforms

other recent work on long-range temporal modeling (e.g., Timeception [95], LFB [120]).
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4.4.5 Collaborative Memory for Action Detection

In this section, we show that the benefits of our framework also extend to the task

of action detection. We evaluate our method on AVA [141], which includes 211k training

and 57k validation video segments. AVA v2.2 provides more consistent annotations than

v2.1 on the same data. We report mean average precision (mAP) over 60 frequent classes

on the validation set following the standard protocol.

Adaptation to action detection. Adapting our approach to action detection is straight-

forward. Instead of randomly sampling multiple clips from the whole video, we sample

clips within a certain temporal window tn ∈ [t − w, t + w] to detect action at time t,

where tn indicates the center frame of the nth sampled clip and 2w + 1 is the window

size. As AVA includes sparse annotations at one frame per second, we simply sample

the clips with a one-second stride such that the sampled clips are centered at frames with

annotations. In this way, the temporal window size increases accordingly as we use a

larger number of clips N during training. After that, we jointly optimize these sampled

clips with their own annotations. The collaborative memory is used to share long-range

context information among sampled clips. We use N = 9 in our experiments and follow

the schedule in AIA [123] for model training.

Quantitative results. We compare CM with the state of the art on AVA in Table 4.12.

Although the CM framework is not specifically designed for action detection, it achieves

results comparable with the state of the art. In particular, CM yields a consistent improve-

ment of more than 2% for different backbone networks (e.g., 2.9% gain for SlowFast-
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Methods Pretrain mAP

ACRN [122] K400 17.4†

AVSF-50 4×16 [138] K400 27.8†

AT (I3D) [142] K400 25.0
LFB(R50+NL) [120] K400 25.8

R50+NL∗ [120] K400 23.6
SF-50 4×16∗ [12] K400 23.6

Ours (R50+NL) K400 26.3
Ours (SF-50 4×16) K400 25.8

Methods Pretrain mAP

AVSF-101 8×8 [138] K400 28.6†

AIA(SF-50 4×16) [123] K700 29.8†

AIA(SF-101 8×8) [123] K700 32.3†

SF-101+NL 8×8 [12] K600 29.0

SF-50 4x16∗ [12] K700 26.9
SF-101 8x8∗ [12] K700 29.0

Ours (SF-50 4×16) K700 29.8
Ours (SF-101 8×8) K700 31.6

Table 4.12: Comparison with SOTA on AVA v2.1 (left) and v2.2 (right). † indicates results
with extra information other than RGB frames, such as optical flow, audio and objection
detection predictions. ∗ indicates results reproduced by us.

50 4×16 backbone on AVA v2.2). This demonstrate that we can effectively extend our

method to the detection task and achieve significant improvements as well. Note that our

method also outperforms LFB [120] when using the same backbone (i.e., R50-I3D+NL)

on AVA v2.1 (26.3% vs. 25.8%).

4.5 Conclusions

We have presented an end-to-end learning framework that optimizes classification

models using video-level information. Our approach hinges on a novel collaborative

memory mechanism that accumulates contextual information from multiple clips sam-

pled from the video and then shares back this video-level context to enhance the individ-

ual clip representations. Long-range temporal dependencies beyond short clips are cap-

tured through the interactions between the local clips and the global memory. Extensive

experiments on both action recognition and detection benchmarks show that our frame-

work significantly improves the accuracy of video models at a negligible computational

overhead.
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Chapter 5: Spatio-Temporal Progressive Learning for Video Action De-

tection

5.1 Introduction

Spatio-temporal action detection aims to recognize the actions of interest that present

in a video and localize them in both space and time. Inspired by the advances in the field

of object detection in images [143, 144], most recent work approaches this task based

on the standard two-stage framework: in the first stage action proposals are produced

by a region proposal algorithm or densely sampled anchors, and in the second stage the

proposals are used for action classification and localization refinement.

Compared to object detection in images, spatio-temporal action detection in videos

is however a more challenging problem. New challenges arise from both of the above two

stages when the temporal characteristic of videos is taken into account. First, an action

tube (i.e., a sequence of bounding boxes of action) usually involves spatial displacement

over time, which introduces extra complexity for proposal generation and refinement.

Second, effective temporal modeling becomes imperative for accurate action classifica-

tion, as a number of actions are only identifiable when temporal context information is

available.
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Previous work usually exploits temporal information by performing action detec-

tion at the clip (i.e., a short video snippet) level. For instance, [14, 145] take as input a

sequence of frames and output the action categories and regressed tubelets of each clip.

In order to generate action proposals, they extend 2D region proposals to 3D by repli-

cating them over time, assuming that the spatial extent is fixed within a clip. However,

this assumption would be violated for the action tubes with large spatial displacement, in

particular when the clip is long or involves rapid movement of actors or camera. Thus,

using long cuboids directly as action proposals is not optimal, since they introduce ex-

tra noise for action classification and make action localization more challenging, if not

hopeless. Recently, there are some attempts to use adaptive proposals for action detec-

tion [146,147]. However, these methods require an offline linking process to generate the

proposals.

To this end, we present a novel learning framework, Spatio-TEmporal Progressive

(STEP) action detector, for video action detection. As illustrated in Figure 5.1, unlike ex-

isting methods that directly perform action detection in one run, our framework involves

a multi-step optimization process that progressively refines the initial proposals towards

the final solution. Specifically, STEP consists of two components: spatial refinement

and temporal extension. Spatial refinement starts with a small number of coarse-scale

proposals and updates them iteratively to better classify and localize action regions. We

carry out the multiple steps in a sequential order, where the outputs of one step are used

as the proposals for next step. This is motivated by the fact that the regression outputs can

better follow actors and adapt to action tubes than the input proposals. Temporal exten-

sion focuses on improving classification accuracy by incorporating longer-range temporal
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Figure 5.1: A schematic overview of spatio-temporal progressive learning for action de-
tection. Starting with a coarse-scale proposal cuboid, it progressively refines the proposal
towards the action, and adaptively extends the proposal to incorporate more related tem-
poral context at each step.

information. However, simply taking a longer clip as input is inefficient and also ineffec-

tive since a longer sequence tends to have larger spatial displacement, as shown in Fig-

ure 5.1. Instead, we progressively process longer sequences at each step and adaptively

extend proposals to follow action movement. In this manner, STEP can naturally han-

dle the spatial displacement problem and therefore provide more efficient and effective

spatio-temporal modeling. Moreover, STEP achieves superior performance by using only

a handful (e.g., 11) of proposals, obviating the need to generate and process large numbers

(e.g., >1K) of proposals due to the tremendous spatial and temporal search space.

To our knowledge, this work provides the first end-to-end progressive optimization

framework for video action detection. We bring up the spatial displacement problem in

action tubes and show that our method can naturally handle the problem in an efficient

and effective way. Extensive evaluations find our approach to produce superior detection

results while only using a small number of proposals.
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5.2 Related Work

Spatio-Temporal Action Detection. Inspired by the recent advances in image object

detection, a number of efforts have been made to extend image object detectors (e.g., R-

CNN, Fast R-CNN and SSD) to the task as frame-level action detectors [148–154]. The

extensions mainly include: first, optical flow is used to capture motion cues, and second,

linking algorithms are developed to connect frame-level detection results as action tubes.

Although these methods have achieved promising results, the temporal property of videos

is not explicitly or fully exploited as the detection is performed on each frame indepen-

dently. To better leverage the temporal cues, several recent work has been proposed to

perform action detection at clip level. For instance, ACT [145] takes as input a short se-

quence of frames (e.g., 6 frames) and outputs the regressed tubelets, which are then linked

by a tubelet linking algorithm to construct action tubes. Gu et al. [14] further demonstrate

the importance of temporal information by using longer clips (e.g., 40 frames) and taking

advantage of I3D pre-trained on the large-scale video dataset [9]. Rather than linking the

frame or clip level detection results, there are also some methods that are developed to

link the proposals before classification to generate action tube proposals [146, 147].

Progressive Optimization. This technique has been explored in a range of vision tasks

from pose estimation [155], image generation [156] to object detection [157–160]. Specif-

ically, the multi-region detector [158] introduces iterative bounding box regression with

R-CNN to produce better regression results. AttractioNet in [159] employs a multi-stage

procedure to generate accurate object proposals that are then input to Fast R-CNN. G-
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CNN [160] trains a regressor to iteratively move a grid of bounding boxes towards objects.

Cascade R-CNN [157] proposes a cascade framework for high-quality object detection,

where a sequence of R-CNN detectors are trained with increasing IoU thresholds to iter-

atively suppress close false positives.

5.3 Method

In this section, we introduce the proposed progressive learning framework STEP

for video action detection. We first formulate the problem and provide an overview of our

approach. We then describe in details the two primary components of STEP including

spatial refinement and temporal extension. Finally, the training algorithm and implemen-

tation details are presented.

5.3.1 Framework Overview

Proceeding with the recent work [14, 145], our approach performs action detection

at clip level, i.e., detection results are first obtained from each clip and then linked to

build action tubes across a whole video. We assume that each action tubelet of a clip has

a constant action label, considering the short duration of a clip, e.g., within one second.

Our target is to tackle the action detection problem through a few progressive steps,

rather than directly detecting actions all at one run. In order to detect the actions in a

clip It with K frames, according to the maximum progressive steps Smax, we first extract

the convolutional features for a set of clips I = {It−Smax+1, ..., It, ..., It+Smax−1} using

a backbone network such as VGG16 [161] or I3D [9]. The progressive learning starts

84



Figure 5.2: Example of the 11 initial proposals: 2D boxes are replicated across time to
obtain cuboids.

with M pre-defined proposal cuboids B0 = {b0i }
M
i=1 and b0i ∈ RK×4, which are sparsely

sampled from a coarse-scale grid of boxes and replicated across time to form the initial

proposals. An example of the 11 initial proposals used in our experiments is illustrated in

Figure 5.2.

The initial proposals are then progressively updated to better classify and localize

the actions. At each step s, we update the proposals by performing the following pro-

cesses in order:

• Extend: the proposals are temporally extended to the adjacent clips to include

longer-range temporal context, and the temporal extension is adaptive to the move-

ment of actions, as described in Section 5.3.3.

• Refine: the extended proposals are forwarded to the spatial refinement, which out-

puts the classification and regression results, as presented in Section 5.3.2.

• Update: all proposals are updated using a simple greedy algorithm, i.e., each pro-

posal is replaced by the regression output with the highest classification score:

bsi
.
= lsi (c

∗), c∗ = argmax
c

psi (c), (5.1)
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Algorithm 1: STEP Action Detection for Clip It
Input : video clips I, initial proposals B0, and

maximum steps Smax
Output: detection results

{
(pSmax
i , lSmax

i )
}M
i=1

1 extract convolutional features for video clips I
2 for s← 1 to Smax do
3 if s == 1 then
4 // initial proposals

5 B̃s−1 ← B0

6 else
7 // temporal extension

(Sec.5.3.3)

8 B̃s−1 ← Extend(Bs−1)

9 end
10 // spatial refinement (Sec.5.3.2)

11
{
(psi , l

s
i )
}M
i=1
← Refine(B̃s−1)

12 // update proposals (Eq.5.1)

13 Bs ← Update
({

(psi , l
s
i )
}M
i=1

)
14 end

where c is an action class, psi ∈ R(C+1) is the probability distribution of the ith proposal

over C action classes plus background, lsi ∈ RK×4×C denotes its parameterized coordi-

nates (for computing the localization loss in Eq. 5.3) at each frame for each class, and

.
= indicates decoding the parameterized coordinates. We summarize the outline of our

detection algorithm in Algorithm 1.

5.3.2 Spatial Refinement

At each step s, the spatial refinement solves a multi-task learning problem that

involves action classification and localization regression. Accordingly, we design a two-

branch architecture, which learns separate features for the two tasks, as illustrated in

Figure 5.3. Our motivation is that the two tasks have substantially different objectives
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Figure 5.3: Left: the architecture of our two-branch network. Right: the illustration of
our progressive learning framework, where “S” indicates spatial refinement, “T” temporal
extension, “P” classification, and “L” localization, the numbers correspond to the steps,
and “L0” denotes the initial proposals.

and require different types of information. For accurate action classification, it demands

context features in both space and time, while for robust localization regression, it needs

more precise spatial cues at frame level. As a result, our two-branch network consists of

a global branch that performs spatio-temporal modeling on the entire input sequence for

action classification, as well as a local branch that performs bounding box regression at

each frame.

Given the frame-level convolutional features and the tubelet proposals for the cur-

rent step, we first extract regional features through an ROI pooling [143]. Then we take

the regional features to the global branch for spatio-temporal modeling and produce the

global feature. Each global feature encodes the context information of a whole tubelet

and is further used to predict the classification output psi . Moreover, the global feature

is concatenated with the corresponding regional features at each frame to form the local

feature, which is used to generate the class-specific regression output lsi . Our local feature

not only captures the spatio-temporal context of a tubelet but also extracts the local details

of each frame. By jointly training the two branches, the network learns the two separate
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features that are informative and adaptable for their own tasks.

Training Loss. We enforce a multi-task loss to jointly train for action classification

and tubelet regression. Let Ps denote the set of selected positive samples and N s the set

of negative samples at step s (the sampling strategy is described in Section 5.3.4). We

define the training loss Ls as:

Ls =
∑

i∈{Ps,N s}

Lcls(psi , ui) + λ
∑
i∈Ps

Lloc(lsi (ui), vi), (5.2)

where ui and vi are the ground truth class label and localization target for the ith sample,

and λ is the weight to control the importance of the two loss terms. We employ the multi-

class cross-entropy loss as the classification loss Lcls(psi , ui) = − log psi (ui) in Eq. 5.2.

We define the localization loss using the averaged `1,smooth between predicted and ground

truth bounding boxes over the frames of a clip:

Lloc(lsi (ui), vi) =
1

K

K∑
k=1

`1,smooth(l
s
i,k(ui)− vi,k). (5.3)

We apply the same parameterization for vi,k as in [162] by using a scale-invariant center

translation and a log-space height/width shift relative to the bounding box.

5.3.3 Temporal Extension

Video temporal information, especially the long-term temporal dependency, is crit-

ical for accurate action classification [9, 39]. In order to leverage longer range of tem-

poral context, we extend the proposals to include in more frames as input. However, the
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extension is not trivial since the spatial displacement problem becomes even more se-

vere for longer sequences, as illustrated in Figure 5.1. Recently, some negative impacts

caused by the spatial displacement problem for action detection have also been observed

by [14,145], which simply replicate 2D proposals across time to increase longer temporal

length.

With the intention to alleviate the spatial displacement problem, we perform tem-

poral extension progressively and adaptively. From the second step, we extend the tubelet

proposals to the two adjacent clips at a time. In other words, at each step 1 ≤ s < Smax,

the proposals Bs with length Ks are extended to B̃s = Bs
−1 ◦ Bs ◦ Bs

+1 with length

Ks + 2K, where ◦ denotes concatenation. Additionally, the temporal extension is adap-

tive to action movement by taking advantage of the regressed tubelets from the previous

step. We introduce two methods to enable the temporal extension to be adaptive as de-

scribed in the following.

Extrapolation. By assuming that the spatial movement of an action satisfies a linear

function approximately within a short temporal range, such as a 6-frame clip, we can

extend the tubelet proposals by using a simple linear extrapolation function (also shown

in Figure 5.4):

Bs
+1,k = Bs

Ks +
k

K − 1
(Bs

Ks −Bs
Ks−K+1). (5.4)

A similar function can be applied to Bs
−1 to adapt to the movement trend, but the assump-

tion would be violated for long sequences and therefore results in drifted estimations.
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Figure 5.4: Illustration of extrapolation for adaptive temporal extension. Blue shaded
boxes are the first and last bounding boxes of the corresponding tubelets.

Anticipation. We can also achieve the adaptive temporal extension by location anticipa-

tion, i.e., training an extra regression branch to conjecture the tubelet locations in adjacent

clips based on the current clip. Intuitively, the anticipation requires the network to infer

the movement trend in adjacent clips by action modeling in the current clip. A similar

idea is explored in [153], where location anticipation is used at the region proposal stage.

We formulate our location anticipation as a residual learning problem [34, 163]

based on the assumption that the tubelets of two adjacent clips differ from each other by a

small residual. Let x indicate the features forwarded to the output layer f of the location

regressor Ls = f(x) at step s. So the anticipated locations can be obtained as:

Ls−1 = Ls + f−1(x), L
s
+1 = Ls + f+1(x), (5.5)

where f−1 and f+1 are the anticipation regressors, which are lightweight and introduce

negligible computational overhead. Ls−1 and Ls+1 are then decoded to the proposals Bs
−1

and Bs
+1. The loss function of location anticipation is defined in a similar way as Eq. 5.3,

and combined with Lcls and Lloc with a coefficient γ to form the overall loss.

90



5.3.4 Network Training

Although STEP involves multiple progressive steps, the whole framework can be

trained end-to-end to optimize the models at different steps jointly. Compared against the

step-wised training scheme used in [160], our joint training is simpler to implement, runs

more efficiently, and achieves better performance in our experiments.

Given a mini-batch of training data, we first perform an (Smax − 1)-step inference

pass, as illustrated in the right of Figure 5.3, to obtain the inputs needed for all progressive

steps. In practice, the detection outputs {(psi , lsi )}
M
i=1 at each step are collected and used

to select the positive and negative samples Ps and N s for training. We accumulate the

losses of all steps and back-propagate to update the whole model at the same time.

Coping with Distribution Change. Compared to the prior work that performs detec-

tion in one run, our training could be more challenging as the input/output distributions

change over steps. As shown in Figure 5.5, the input distribution is right-skewed or cen-

tered in a low-IoU level at early steps, and reverses at later steps. This is because our

approach starts from a coarse-scale grid (see Figure 5.2) and progressively refines them

towards generating high-quality proposals. Accordingly, the range of output distribution

(i.e., the scale of offset vectors) decreases over steps.

Inspired by [157], we tackle the distribution change in three ways. First, separate

headers are used at different steps to adapt to the different input/output distributions.

Second, we increase IoU thresholds over the multiple steps. Intuitively, a lower IoU

threshold at early steps tolerates the initial proposals to include sufficient positive samples
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Figure 5.5: Change of input distribution (IoU between input proposals and ground truth)
over steps on UCF101.

and a higher IoU threshold at late steps encourages high-quality detection. Third, a hard-

aware sampling strategy is employed to select more informative samples during training.

Hard-Aware Sampling. We design the sampling strategy based on two principles: (i)

the numbers of positive and negative samples should be roughly balanced, and (ii) the

harder negatives should be selected more often. To measure the “hardness” of a negative

sample, we use the classification scores from the previous step. The tubelet with a high

confidence but a low overlap to any ground truth is viewed as a hard sample. We calculate

the overlap of two tubelets by averaging the IoU of bounding boxes over K frames of the

target clip. So the negative samples with higher classification scores will be sampled with

a higher chance.

Formally, given a set of proposals and the overlap threshold τ s at step s, we first

assign positive labels to the candidates with the highest overlap with ground truth. This

is to ensure that each ground truth tube has at least one positive sample. After that, the

proposals having an overlap higher than τ s with any ground truth tube are added to the

positive pool and the rest to the negative pool. We then sample |Ps| positives and |N s|

negatives from the two pools, respectively, with the sampling probability proportional to

the classification score. For the first step, the highest overlap with ground truth tubes is
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used as the score for sampling. Each selected positive inPs is assigned to the ground truth

tube with which it has the highest overlap. Note that a single proposal can be assigned to

only one ground truth tube.

5.3.5 Full Model

We can also integrate our model with the common practices for video action detec-

tion [14, 145, 151], such as two-stream fusion and tubelet linking.

Scene Context. It has been proven to be beneficial to object and action detection [122,

147]. Intuitively, some action-related semantic clues from scene context can be utilized to

improve action classification, for example, the scene of a basketball court for recognizing

“basketball dunk”. We incorporate scene context by concatenating extended features to

original regional features in the global branch. The extended features can be obtained by

RoI pooling of the whole image. So the global features encode both spatial and temporal

context useful for action classification.

Two-Stream Fusion. Most previous methods use late fusion to combine the results at

test time, i.e., the detections are obtained independently from the two streams and then

fused using either mean fusion [145] or union fusion [151]. In this work, we also in-

vestigate early fusion for two-stream fusion, which concatenates RGB frames and optical

flow maps in channel and input to the network as a whole. Intuitively, early fusion can

model the low-level interactions between the two modalities and also obviates the need

for training two separate networks. In addition, a hybrid fusion can be further performed
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to combine detection results from the early fusion and the two streams. Our experiment

shows that early fusion outperforms late fusion, and hybrid fusion achieves the best per-

formance.

Tubelet Linking. Given the clip-level detection results, we link them in space and time

to construct the final action tubes. We follow the same linking algorithm as described

in [145], apart from that we do not apply global non-maximum suppression across classes

but perform temporal trimming over the linked paths as commonly used in [147, 150].

The temporal trimming enforces consecutive boxes to have smooth classification scores

by solving an energy maximization problem via dynamic programming.

5.4 Experiments

In this section, we describe the experiments to evaluate STEP and compare against

the recent competing algorithms. We start by performing a variety of ablation studies to

better understand the contributions of each individual component in our approach. We

then report comparisons to the state-of-the-art methods, provide in-depth analysis, and

present the qualitative detection results.

5.4.1 Experimental Setup

Datasets. We evaluate our approach on the two benchmarks: UCF101 [69] and AVA [14].

In comparison with other action detection datasets, such as J-HMDB and UCFSports,

the two benchmarks are much larger and more challenging, and more importantly, they

are temporally untrimmed, which fits better to the spatio-temporal action detection task.
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UCF101 is originally an action classification dataset collected from online videos, and a

subset of 24 classes with 3,207 videos are provided with the spatio-temporal annotations

for action detection. Following the standard evaluation protocol [145], we report results

on the first split of the dataset. AVA contains complex actions and scenes sourced from

movies. We use the version 2.1 of AVA, which consists of the annotations at 1 fps over

80 action classes. Following the standard setup in [14], we report results on the most

frequent 60 classes that have at least 25 validation examples per class.

Evaluation Metrics. We report the frame-level mean average precision (frame-mAP)

with an IoU threshold of 0.5 for both datasets. This metric allows us to evaluate the

quality of the detection results independently of the linking algorithm. We also use the

video-mAP on UCF101 to compare with the state-of-the-art results.

Implementation Details. For the experiments on UCF101, we use VGG16 [161] pre-

trained on ImageNet [112] as the backbone network. Although more advanced models

are available, we choose the same backbone as [145] for fair comparisons. The input of

the backbone are video frames resized to 400 × 400 with the clip length K = 6. Similar

to [145], we stack 5 consecutive optical flow maps as a whole for the optical flow input.

Table 5.1 shows the details of our two-branch architecture. The network takes as inputs a

sequence of 512×25×25 feature maps from the backbone network (i.e., VGG16) as well

as a set of proposal tubelets. For each proposal, an RoI pooling layer extracts a sequence

of fixed-length regional features from the feature maps. For temporal modeling in the

global branch, we first spatially extend each proposal tubelet to incorporate more scene
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Layer Output size

Global branch

conv1
3× 3× 3, 1024

6× 7× 7
max pool

conv2
3× 3× 3, 512

3× 7× 7
max pool

conv3
3× 3× 3, 256

1× 7× 7
average pool

fc1(2) 4096 1× 1× 1

out C + 1, softmax 1× 1× 1

Local branch

fc1(2) 4096 1× 1× 1

out 4× (C + 1) 1× 1× 1

Table 5.1: Architecture of the two-branch network, where T × H ×W,N represent the
dimensions of convolutional kernels and output feature maps.

context, as described in Section 5.3.5. We then forward the extended features to three

3D convolutional layers to obtain the global features. To perform action classification,

the global features are flatten and fed into a sequence of fully connected (fc) layers,

which finally output the softmax probability estimates overC classes plus background. To

perform tubelet regression, the global features are concatenated along channel dimension

with the regional features at each frame and then fed into another sequence of fc layers,

which produce a class-specific regression output with the shape 4 × (C + 1) for each

frame. We train our models for 35 epochs using Adam [164] with a batch size of 4. We

set the initial learning rate to 5 × 10−5 and perform step decay after 20 and 30 epochs

with the decay rate 0.1.

For the experiments on AVA, we adopt I3D [9] (up to Mixed 4f) pre-trained on

Kinetics-400 [88] as the backbone network. Instead of introducing extra 3D convolutional

layers for temporal modeling as in Table 5.1, we take the two layers Mixed 5b and
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Mixed 5c of I3D for temporal modeling in our global branch. Input frames are sampled

in 12 fps and resized to 400× 400, and the clip length is set to K = 12. We use 34 initial

proposals and perform temporal extension only at the third step. The initial proposals

are generated following the practice in [160]. In details, we generate the initial proposals

using a two-level spatial pyramid with [4/3, 2] scales and [5/6, 3/4] overlap for each

spatial scale. In other words, a sliding window with size 3W/4×3H/4 pixels and overlap

ratio 5/6 is used for the first level, and a sliding window with size W/2×H/2 pixels and

overlap ratio 3/4 is used for the second level. Here, W andH denote the width and height

of the frames, respectively. As the classification is more challenging on AVA, we first pre-

train our model for an action classification task using the spatial ground truth of training

set. We then train the model for action detection with a batch size of 4 for 10 epochs. We

do not use optical flow on this dataset due to the heavy computation and instead combine

results of two RGB models. Our initial learning rate is 5×10−6 for the backbone network

and 5 × 10−5 for the two-branch networks, and step decay is performed after 6 epochs

with the decay rate 0.1.

For all experiments, we extract optical flow (if used) with Brox [165], and perform

data augmentation to the whole sequence of frames during training, including random

flipping and cropping.

5.4.2 Ablation Study

We perform various ablation experiments on UCF101 to evaluate the impacts of

different design choices in our framework. For all experiments in this section, we employ
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Smax
s

1 2 3 4

1 51.5 - - -
2 56.6 60.7 - -
3 57.1 61.8 62.6 -
4 58.2 62.1 62.8 62.7

Mode f-mAP

RGB 66.7
Flow 63.5

Late 70.7
Early 74.3
Hybrid 75.0

Table 5.2: Comparisons of frame-mAP (%) of our models trained with different numbers
of steps (left), and different input modalities and fusion methods (right).

the 11 initial proposals as shown in Figure 5.2 and RGB only, unless explicitly mentioned

otherwise, and frame-mAP is used as the evaluation metric.

Effectiveness of Spatial Refinement. Our primary design of STEP is to progressively

tackle the action detection problem through a few steps. We thus first verify the effective-

ness of progressive learning by comparing the detection results at different steps with the

spatial refinement. No temporal extension is applied in this comparison. Table 5.2 (left)

demonstrates the step-wise performance under different maximum steps Smax. Since our

approach starts from the coarse-scale proposals, performing spatial refinement once is

insufficient to achieve good results. We observe that the second step improves results

consistently and substantially, indicating that the updated proposals have higher quality

and provide more precise information for classification and localization. Further improve-

ment can be obtained by additional steps, suggesting the effectiveness of our progressive

spatial refinement. We use 3 steps for most of our experiments as the performance satu-

rates after that. Note that using more steps also improves the results of early steps, due to

the benefits of our multi-step joint training.
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Figure 5.6: Comparison of frame-mAP (%) of our models trained with and without tem-
poral extension.

Effectiveness of Temporal Extension. In addition to the spatial refinement, our pro-

gressive learning contains the temporal extension to progressively process a longer se-

quence at each step. We compare the detection results with and without temporal ex-

tension in Figure 5.6. We show the results of the models taking K = 6 and K = 30

frames as inputs directly without temporal extension, and the results of the extrapolation

and anticipation methods. Note that the models with temporal extension also deal with

30 frames at the third step (extension process: 6→ 18→ 30).

Both of the temporal extension methods outperform the baseline (K = 6) by a large

margin, which clearly shows the benefit of incorporating longer-range temporal context

for action classification. More remarkably, simply taking K = 30 frames as input with-

out temporal extension results in inferior performance, validating the importance of adap-

tively extending the temporal scale in the progressive manner. Furthermore, we observe

that anticipation performs better than extrapolation for longer sequences, indicating that

anticipation can better capture nonlinear movement trends and therefore generate better

extensions.
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Fusion Comparison. Table 5.2 (right) presents the detection results of different fusions:

late, early and hybrid fusion. In all cases, using both modalities improves the perfor-

mance compared to individual ones. We find that early fusion outperforms late fusion,

and attribute the improvement to modeling between the two modalities at the early stage.

Hybrid fusion achieves the best result by further utilizing the complementary information

of different methods.

Miscellaneous. We describe several techniques to improve the training in Section 5.3,

including incorporating scene context, hard-award sampling and increasing IoU thresh-

old. To validate the contributions of the three techniques, we conduct ablation experi-

ments by removing one at a time, which correspondingly results in a performance drop

of 2.5%, 1.5% and 1%. In addition, we observe that incorporating scene context provides

more gains for later steps, suggesting that scene context is more important for action

classification when bounding boxes become tight.

5.4.3 Runtime Analysis

Although STEP involves a multi-step optimization, our model is efficient since we

only process a small number of proposals. STEP runs at 21 fps using early fusion with

11 initial proposals and 3 steps on a single GPU, which is comparable with the clip based

approach (23 fps) [145] and much faster than the frame based method (4 fps) [149].

Figure 5.7(a) demonstrates the speeds of our approach with increasing number of steps

under the settings with and without temporal extension. We also report the running time

and detection performance of our approach (w/o temporal extension for 3 steps) with
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Figure 5.7: Analysis of runtime of our approach under various settings: (a) the inference
speeds using different step numbers with and without temporal extension, and (b) the
detection results (green dots) and speeds (blue bars) using different numbers of initial
proposals.

increasing number of initial proposals in Figure 5.7(b). We observe substantial gains in

detection accuracy by increasing the number of initial proposals, but it also results in

slowed inference speed. This trade-off between accuracy and speed can be controlled

according to a specified time budget.

5.4.4 Comparison with State-of-the-Art Results

We compare our approach with the state-of-the-art methods on UCF101 and AVA

in Tables 5.3 and 5.4. Following the standard settings, we report the frame-mAP at IoU

threshold 0.5 on both datasets and the video-mAP at various IoU thresholds on UCF101.

STEP consistently performs better than the state-of-the-art methods on UCF101, and

brings a clear gain in frame-mAP, producing 5.5% improvement over the second best

result. Our approach also achieves superior result on AVA, outperforming the recently

proposed ACRN by 1.2%. Notably, STEP performs detection simply from a handful of

initial proposals, while other competing algorithms rely on a great amount of densely

sampled anchors or an extra person detector trained with external large-scale image ob-
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Method
frame-mAP video-mAP

0.5 0.05 0.1 0.2

MR-TS [149] 65.7 78.8 77.3 72.9
ROAD [151] - - - 73.5
CPLA [153] - 79.0 77.3 73.5
RTPR [147] - 81.5 80.7 76.3
PntMatch [154] 67.0 79.4 77.7 76.2
T-CNN [146] 67.3 78.2 77.9 73.1
ACT [145] 69.5 - - 76.5
Ours 75.0 84.6 83.1 76.6

Table 5.3: Comparison with the state-of-the-art
methods on UCF101 by frame-mAP (%) and
video-mAP (%) under different IoU thresholds.

Method Flow frame-mAP

Single Frame [14] X 14.2
I3D [14] 14.7
I3D [14] X 15.6
ACRN [122] X 17.4
Ours 20.7

Table 5.4: Comparison with the
state-of-the-art methods on AVA by
frame-mAP (%) under IoU = 0.5.
“*” means the results obtained by
incorporating optical flow.

Figure 5.8: Comparison of the per-class breakdown frame-AP at IoU threshold 0.5 on
AVA.

ject detection datasets. We also demonstrates the per-class breakdown frame-AP on AVA

in Figure 5.8.

5.4.5 Qualitative Results

We first show some examples to illustrate the spatial displacement problem in Fig-

ure 5.9. We further analyze the spatial displacement problem on UCF101 by calculating

the minimum IoU within tubes (MIUT). Given a ground truth action tube, MIUT is de-
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Figure 5.9: Examples of the spatial displacement problem. Red boxes indicate the ground
truth bounding boxes and blue ones the spatial grids. From top to bottom are LongJump
(ID: 12), FloorGymnastics (ID: 8) and CliffDiving (ID: 4).

Figure 5.10: MIUT of ground truth action tubes on UCF101. K denotes different tube
lengths, and red dash line corresponds to MIUT = 0.5.

fined by the minimum IoU overlap between the center bounding box (i.e., the box of the

center frame) and the other bounding boxes within the tube. Figure 5.10 demonstrates the

statistics of different actions with different length using ground truth action tubes in the

validation set. We observe that the spatial displacement problem is not very obvious for

short clips (e.g., K = 6), as most action classes have high MIUT values. However, the

spatial displacement problem becomes more severe for most actions when the sequence

length increases. For example, “Skijet” (ID: 18) has a 0.12 MIUT and “CliffDiving”
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Figure 5.11: Examples of the detection results on UCF101. Red boxes indicate correct
detection and blue ones misclassification. (a) illustrates the effect of progressive learning
to improve action classification over steps. (b) demonstrates the regression outputs by
spatial refinement at each step.

(ID: 4) has a 0.17 MIUT when K = 30, indicating both actions encounter large spatial

displacements within the tubes.

We then visualize the detection results of our approach at different steps in Figure

5.11. Each row indicates the detection outputs at a certain step. A bounding box is labeled

in red if the detection result is correct, otherwise it is labeled in blue. Figure 5.11(a)

demonstrates the effect of progressive learning for more accurate action classification. It

can be observed by the fact that the blue boxes are eliminated at later steps. In Figure

5.11(b), the first row corresponds to the initial proposals and the next two rows show

the effect of spatial refinement of the proposals over steps. It is clear that the proposals

progressively move towards the persons performing the actions and better localization

results are obtained at later steps. Although starting from coarse-scale proposals, our

approach is robust to various action scales thanks to the progressive spatial refinement, as

illustrated in Figure 5.12.
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Figure 5.12: Examples of the small scale action detection by our approach. Red boxes
indicate the initial proposals and orange ones the detection outputs.

5.5 Conclusion

In this chapter, we have presented the spatio-temporal progressive learning frame-

work STEP for video action detection. STEP involves spatial refinement and temporal

extension, where the former starts from sparse initial proposals and iteratively updates

bounding boxes, and the latter gradually and adaptively increases sequence length to in-

corporate more related temporal context. STEP is found to be able to more effectively

make use of longer temporal information by handling the spatial displacement problem

in action tubes. Extensive experiments on two benchmarks show that STEP consistently

brings performance gains by using only a handful of proposals and a few updating steps.
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Chapter 6: Conclusion and Future Directions

In this dissertation, we study the temporal modeling of video data for action recog-

nition and detection. In particular, we focus on extracting motion representation from raw

video frames and modeling long-range temporal dependencies in full-length videos. We

first presented a hierarchical contrastive learning framework that extracts lower-level and

high-level motion features in a fully self-supervised manner. Next, we investigated the

self-attention mechanism for temporal modeling and proposed a global temporal atten-

tion (GTA) module that significantly outperforms the standard non-local block for action

recognition. We then presented collaborative memory (CM), an end-to-end video-level

learning framework that is capable of capturing temporal dependencies beyond short

clips. Finally, we introduced the spatio-temporal progressive learning framework (STEP)

for video action detection, which is able to more effectively make use of longer temporal

information by handling the spatial displacement problem in action tubes.

While the performance of video action recognition system has been significantly

improved, there are still many remaining challenges for video understanding:

Reasoning about spatio-temporal relationships. Existing action detection meth-

ods simply view co-occurred actions as irrelevant categories and train independent clas-

sifiers for each class. However, the correlation and interaction of human actions, both in
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space and time, provide rich context for actions and a wealth of commonsense informa-

tion about the physical world. For example, “falling down” is likely to be followed by

“lying”, while “dancing” and “fighting” are very unlikely to co-occur (though they may

share similar appearance and motion). We believe that explicit higher level reasoning

with scenes, poses and objects will help develop more accurate and explainable action

understanding models.

Better understanding of how motion information help action Recognition. Most

of the current state-of-the-art action recognition models utilize optical flow as motion rep-

resentation. However, it is still open questions why optical flow is helpful, what makes

a flow method good for action recognition, and how we can make it better. Recent

work [166] has shown that much of the value of optical flow, when used as input of

the two-stream architectures, is that it is a representation invariant to appearance. This

motivates us to explore more effective ways to utilize optical flow for action recognition.

For example, it is appealing to design new models that can directly leverage the direc-

tional information encoded in optical flow, rather than simply taking optical flow a “black

box” input.
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