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Complex microbial communities play a crucial role in environmental and hu-

man health. Traditionally, microbes have been studied by isolating and cultur-

ing them, missing organisms that cannot grow in standard laboratory conditions,

and losing information about microbe-microbe interactions. With affordable high-

throughput sequencing, a new field called metagenomics has emerged, that studies

the genomic content of the microbial community as a whole. Metagenomics enables

researchers to characterize complex microbial communities, however, many compu-

tational challenges remain with downstream analyses of large sequencing datasets.

Here, we explore some fundamental problems in metagenomics and present simple

algorithms and open-source software tools that implement these solutions.

In the first section, we focus on using a reference database of known organisms

(and genomic segments within) to taxonomically classify sequences and estimate

abundances of taxa in a metagenomic sample. We developed a “BLAST outlier de-

tection” algorithm that identifies significant outliers within database search results.



We extended this method and developed ATLAS, which uses significant database

hits to group sequences in the database into partitions. These partitions capture the

extent of ambiguity within the classification of a sample. Besides taxonomically clas-

sifying sequences, we also explored the problem of taxonomic abundance profiling,

i.e., estimating the abundance of different species in the community. We describe

TIPP2, a marker gene-based abundance profiling method, which combines phyloge-

netic placement with statistical techniques to control classification accuracy. TIPP2

includes an updated set of reference packages and several algorithmic improvements

over the original TIPP method.

Next, we explore how to reconstruct genomes from metagenomic samples.

Despite advances in metagenome assembly algorithms, assembling reads into com-

plete genomes is still a computationally challenging problem because of repeated

sequences within and among genomes, uneven abundances of organisms, sequencing

errors, and strain-level variation. To improve upon the fragmented assemblies, re-

searchers use a strategy called binning, which involves clustering together genomic

fragments that likely originate from an individual organism. We describe Binnacle,

a tool that explicitly accounts for scaffold information in binning. We describe novel

algorithms for estimating the scaffold-level depth of coverage information and show

that variation-aware scaffolders help further improve the completeness and quality

of the resulting metagenomic bins.

Finally, we explore how to organize enormous sets of sequence data generated

through the surge of metagenomic studies. There have been recent efforts to organize

and document genes found in microbial communities in “microbial gene catalogs”.



Although gene catalogs are commonly used, they have not been critically evaluated

for their effectiveness as a basis for metagenomic analyses. We investigated one

such catalog and focus on both the approach used to construct this catalog and its

effectiveness when used as a reference for microbiome studies. Our results highlight

important limitations of the approach used to construct the catalog and call into

question the broad usefulness of gene catalogs. We also recommend best practices

for the construction and use of gene catalogs in microbiome studies and highlight

opportunities for future research.

With the increasing data being generated in different metagenomic studies, we

believe our ideas, algorithms, and software tools are well-timed with the need of the

community.
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Chapter 1: Introduction

Microorganisms live in complex communities and play a vital role in human

and environmental health [1, 2, 3]. These large and complex communities of bacteria,

archaea, fungi, and viruses are collectively referred to as the microbiome. Although

some microbes are pathogenic, most microbes assist and complement the functions

of the host. In order to fully realize the therapeutic potential of the microbiome, it

is crucial we understand how these microbes interact with each other and with their

environment. Traditionally, the standard techniques for classifying microbes relied

on microscopic observation of cell morphology and the use of enrichment cultures.

However, most of the microbes cannot grow in standard laboratory environments

and are considered “unculturable” [4, 5, 6]. With high throughput sequencing, it is

not only possible to sequence the genome of a single organism but also to extract

and sequence DNA from mixtures of organisms in the environment. This field of

studying DNA sequencing data from mixtures of organisms is called Metagenomics

[7]. It provides a way to study microbes in their environment and has the potential

to advance our understanding of the microbial world.
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Figure 1.1: Microbiome study workflow. A typical metagenomic study involves
collecting a sample, extracting DNA, and then sequencing. In amplicon sequencing,
a gene, or a region within the gene, is targeted, amplified, and sequenced. These
reads are clustered based on sequence similarity to obtain operational taxonomic
units. In whole metagenomic sequencing, all DNA from sample is sequenced. Typi-
cally, reads are assembled into longer contiguous sequences (contigs). These contigs
are further clustered (binned) to generate genome-level bins. Taxonomic classifica-
tion annotates sequences with taxonomic labels. Abundance profiling uses reads to
estimate species abundance. Note that these are just a few of the many types of
analyses that can be performed on metagenomic data.

2



1.1 Metagenomic data

There are two widely used sequencing strategies in metagenomic studies, namely

targeted amplicon sequencing and whole metagenome sequencing. Figure 1.1 shows

a typical metagenomics study workflow. In targeted amplicon sequencing studies,

a gene, or only a small region within the gene, is extracted and sequenced from

the sample. Usually in such studies, genes that are universally found such as 16S

rRNA in prokaryotes and ITS in fungi are used; such genes are called marker genes.

The conserved regions of the gene allow binding to primers and the hypervariable

regions help differentiate different organisms. Since we target and sequence only

a small region of the genome, such data can provide information about taxonomic

composition of the sample. Two of the major benefits of this approach are that it

is cost effective and can leverage large repositories of already sequenced and charac-

terized 16S rRNA gene sequences. However, there are many known problems with

the approach, such as quantification errors introduced by copy-number variations

[8], variable amplification efficiencies within different taxa [9, 10], different levels

of resolution depending on which region of the gene is targeted [11] and generally

low-resolution power of 16S rRNA sequences to differentiate between closely related

species [12, 13].

In whole-metagenome sequencing data, DNA is extracted directly from a sam-

ple of microbial mixture and sequenced. This process generates millions of reads

that are randomly sampled from the genomes present in the community. Whole-

metagenome sequencing data resolves some biases of the targeted sequencing ap-
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proach, and has the potential to capture strain-level resolution of bacterial, fungal,

and viral communities. It can also help characterize the functional and metabolic

potential of the sample. Compared to amplicon sequencing, it is relatively expensive

to prepare, sequence, and analyze whole metagenomic sample.

1.2 Computational problems in Metagenomics

Metagenomics data analysis has many interesting computational challenges

such as sequence clustering, sequence classification, abundance profiling, genome

assembly, metagenome binning. Here, we describe some computational problems

that are related to the dissertation work.

1.2.1 Taxonomic classification of sequences

One of the first steps in microbial characterization is taxonomic classification.

Modern taxonomy was founded in the 1750s by Swedish botanist Carl Linnaeus,

who worked to establish a hierarchical classification of organisms based on shared

characteristics that were consistent and universally accepted. While the initial tax-

onomy was able to capture complex relationships between organisms, maintaining

and expanding this taxonomy remains a challenge [14]. In particular, the micro-

bial taxonomy has become significantly complex since the time of Linnaeus, most

notably with the advent of next-generation sequencing technologies. In the current

taxonomy, there are seven main taxonomic levels, namely Kingdom, Phylum, Class,

Order, and Species.
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Originally, phylogenetic approaches [15] were used to build trees to relate or-

ganisms based on how they evolved from each other. These trees were independent

of taxonomic annotation and were instead generated directly from sequencing data

via neighbor-joining [16], maximum parsimony [17, 18], maximum likelihood [19], or

other methods. Because searching all sequences against all other sequences and es-

tablishing phylogenetic relationships for a large set of sequences is computationally

expensive, we often perform taxonomic annotation by searching against a taxonom-

ically characterized reference database instead.

1.2.2 Abundance profiling

Besides classifying sequences taxonomically, researchers are also often inter-

ested in estimating the abundance of different species in the community. This pro-

cess is called taxonomic abundance profiling. Different strategies have been intro-

duced for estimating the relative abundance of species in the sample from metage-

nomic data [20, 21, 22]. Note that, because sequencing is a sampling process, we can

only estimate relative abundances of different taxa in the sample and not the abso-

lute abundances. A common strategy is to classify reads by performing a homology

search against taxonomically characterized reference genomes in public databases.

The resulting read assignments normalized by the genome sizes can provide an es-

timate of relative abundance of individual species [20, 23]. An alternative strategy

is to only use marker genes, which are genes that are clade-specific, unique and

single-copy [21, 22, 24, 25, 26, 27]. When using marker genes, the resulting read
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coverages can be used to estimate species abundance without having to normalize

by genome size or copy number.

1.2.3 Metagenome binning

The data generated by the sequencing machine is often fragmented and usu-

ally contains sequencing errors. Thus, another important problem that needs to be

addressed is how to best reconstruct genome sequences of organisms present in the

sample. The process starts by assembling short metagenomic reads into longer con-

tiguous sequences (contigs) based on sequence overlap. Paired-end read information

can then link together and orient assembled contigs into scaffolds [28, 29, 30, 31].

However, constructing the genomes of organisms from a mixture (metagenomic

assembly) is computationally challenging. The uneven abundance of organisms,

repetitive sequences within and across genomes, sequencing errors, and strain-level

variations within a single sample often contribute to incomplete and fragmented

assemblies.

To improve upon the fragmented assemblies constructed by metagenomic as-

sembly tools, researchers utilize a strategy called binning, which involves clustering

together genomic fragments that likely originate from an individual organism. Sev-

eral strategies have been proposed for metagenome binning. Classification-based ap-

proaches rely on assigning taxonomic labels to genomic contigs (as described earlier),

then grouping together those contigs that share a taxonomic label [25, 32, 33, 34].

Because many of the microbes found in microbial communities are yet to be char-
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acterized, classification-based approaches are limited to organisms (and genomic

segments within) that are sufficiently related to known sequences. Clustering-based

approaches focus on genomic features, such as GC content, oligonucleotide frequen-

cies and contig abundance (coverage), to cluster together contigs that share similar

properties [35, 36]. While such approaches are effective even when an organism

shares no similarity to any known sequences, they often miss clustering genomic

regions that have unusual DNA composition or that appear at higher depth of cov-

erage than other segments of the organism of interest —situations that frequently

occur in plasmids, mobile genetic elements, and highly conserved genomic segments

(such as the 16S rRNA operon) [37].

1.2.4 Microbial gene catalogs

Today, researchers are interested in documenting data collected through metage-

nomic studies such that they are readily available to others in the community. One

strategy focuses on genes found in metagenomic contigs and constructs “microbial

gene catalogs”. Microbial gene catalogs are data structures that organize genes

found in microbial communities, providing a reference for standardized analysis of

the microbes across samples and studies. Constructing a gene catalog generally in-

volves collecting complete and fragmentary gene sequences from metagenomic sam-

ples, and then clustering them to reduce the redundancy. Typically, clustering tools

that rely on heuristics, such as CD-HIT [38], are used to cluster genes at such a

large scale. The first large scale gene catalog was constructed to study the diversity
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of proteins found in the ocean [39]. The MetaHIT project [40] constructed a similar

catalog in order to characterize the functional composition of the human gut micro-

biome. Following the MetaHIT catalog, gene catalogs have become ubiquitous in

the analysis of metagenomic datasets, and have been created for the gut microbiota

of multiple animals.

Motivated by these computational challenges in metagenomics, we present

ideas, algorithms, and software to extract and interpret meaningful biological infor-

mation from large datasets.

1.3 Contributions

In Chapter 2, we explore whether and when using top BLAST hits yields

correct taxonomic classification. We developed a method to detect outliers among

BLAST hits to separate the phylogenetically most closely related matches from

matches to sequences from more distantly related organisms.

In Chapter 3, we present ATLAS, a novel strategy for taxonomic annotation

that uses significant outliers within database search results to group sequences in the

database into partitions. These partitions capture the extent of taxonomic ambigu-

ity within the classification of a sample. These partitions provide better resolution

than standard taxonomic levels, and improve our detection power in determining

differential abundance in microbiome association studies.

In Chapter 4, we explore the problem of taxonomic abundance profiling. We

present TIPP2, a marker gene-based abundance profiling method, which combines
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phylogenetic placement with statistical techniques to control classification preci-

sion and recall. TIPP2 includes an updated set of reference packages and several

algorithmic improvements over the original TIPP method. We find that TIPP2 pro-

vides comparable or better estimates of abundance than other profiling methods,

and strictly dominates other methods when there are under-represented genomes

present in the dataset.

In Chapter 5, we explore the problem of metagenome binning —clustering of

contigs into genome-level bins. Existing binning algorithms often miss short contigs

and contigs from regions with unusual coverage or DNA composition characteristics,

such as mobile elements. We propose that information from assembly graphs can

assist current strategies for metagenomic binning. We developed a tool, Binnacle,

that extracts information from the assembly graphs and clusters scaffolds into com-

prehensive bins. We show that binning graph-based scaffolds, rather than contigs,

improves the contiguity and quality of the resulting bins, and captures a broader

set of the genes of the organisms being reconstructed.

In Chapter 6, we make an assessment of gene catalogs for metagenomic anal-

yses. Although gene catalogs are commonly used, they have not been critically

evaluated for their effectiveness as a basis for metagenomic analyses. As a case

study, we investigate one such catalog, the Integrated Gene Catalog (IGC), how-

ever our observations apply broadly to most gene catalogs constructed to date. We

focus on both the approach used to construct this catalog and, on its effectiveness,

when used as a reference for microbiome studies. Our results highlight important

limitations of the approach used to construct the IGC and calls into question the
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broad usefulness of gene catalogs more generally. We also recommend best practices

for the construction and use of gene catalogs in microbiome studies and highlight

opportunities for future research.
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Chapter 2: Finding the relevant database hits using outlier detection

technique

This chapter contains material previously published in Outlier detection in

BLAST hits [41, 42], which was a joint work with Stephen F. Altschul and Mihai

Pop. NS, SFA, and MP designed the algorithm. NS developed the method and

performed the experiments, with the help of MP. NS, SFA, and MP wrote the papers.

2.1 Introduction

One of the goals of metagenomic analyses is to characterize the biological di-

versity of microbial communities. This is usually achieved by targeted amplicon

sequencing of the 16S rRNA gene, either as a whole gene or focused on a hyper-

variable region within the gene [43]. The 16S rRNA gene is commonly used for this

purpose because it is universally found in bacteria and contains a combination of

highly conserved and highly variable regions. Assigning accurate taxonomic labels

to these reads is one of the critical steps for downstream analyses.

The most common approach for assigning taxonomic labels to reads involves

comparing them to a database of sequences from known organisms. These similarity-

based methods typically run rapidly and work well when organisms in the sample
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are well represented in the database. However, a majority of microorganisms can-

not be easily cultured in laboratories, and even if they are culturable, a smaller

number have been sequenced. Thus, not all environmental organisms may be repre-

sented in the sequence database. This prevents the similarity-based methods from

accurately characterizing organisms within a sample that are only distantly related

to the sequences in the reference database. Phylogenetic-tree based methods can

characterize novel organisms within a sample by statistically modeling the evolu-

tionary processes that generated these sequences [25, 44]. However, such methods

incur a high computational cost, limiting their applicability in the context of the

large datasets generated in contemporary studies. Ideally, we would want to use

similarity-based methods to assign labels to sequences from known organisms, and

to use phylogenetic methods to assign labels to sequences from unknown organisms.

We propose a two-step method for taxonomy assignment where we use a rapid

assignment method that can accurately assign labels to sequences that are well

represented in the database, and then use more complex phylogenetic methods to

classify only those sequences unclassified in the first step. In this work, we study

whether and when a method can assign accurate taxonomic labels using a similarity

search of a reference database. We employ BLAST because it is one of the most

widely used similarity search methods [45]. However, it has been shown that the

best BLAST hit may not always provide the correct taxonomic label [46]. Most

taxonomic-assignment methods utilizing BLAST employ ad-hoc techniques such as

recording the consensus label among the top five hits, or using a threshold based on

E-value, percent identity, or bit score [47, 48, 49, 50]. Here we propose an alternative
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approach for detecting whether and when the top BLAST hits yield correct taxo-

nomic labels. We model the problem of separating phylogenetically correct matches

from matches to sequences from similar but phylogenetically more distant organ-

isms as a problem of outlier detection among BLAST hits. Our preliminary results

involving simulated and real metagenomic datasets demonstrate the potential of

employing our method as a filtering step before using phylogenetic methods.

2.1.1 Taxonomy assignment using BLAST

Several metagenomic analyses use BLAST to assign taxonomic labels to un-

characterized reads in a sample [47, 48, 49]. BLAST is a sequence similarity search

tool, and it calculates an E-value and a bit score to assess the quality of each match.

An E-value represents the number of hits of equal or greater score expected to arise

by chance. A bit score can be understood as representing the size of the space one

would need to search in order to find as strong a match by chance. However all 16S

rRNA sequences are related, and therefore these scores, derived from a model of

random sequences, do not provide simple information for separating sequences from

different phylogenetic categories.

2.1.2 BILD scores for multiple sequence alignment

Multiple sequence alignments employ scoring functions to assess the qual-

ity of columns of aligned letters. Such functions have included Sum-of-the-Pairs

(SP) scores [51], entropy scores [52], tree scores [53, 54] and the recently developed

13



Bayesian Integral Log-Odds (BILD) score [55, 56]. For local pairwise alignment,

substitution scores are implicitly of log-odds form [57]. BILD scores extend the log-

odds formalism to multiple sequence alignments. They may be used in numerous

contexts such as the construction of hidden Markov model profiles, the automated

selection of optimal motifs, and the selection of insertion and deletion locations,

and they can inform the decision of whether to include a sequence in a multiple

sequence alignment. BILD scores can also be used to classify related sequences into

subclasses, as we describe below.

2.2 Methods

Broadly, our approach constructs a multiple alignment from all the top hits

obtained by comparing a query sequence to a database. We use BILD scores to

determine whether the multiple alignment can be split into two groups that model

the data better than does a single group. In essence, we find a subset of the sequences

that are more closely related to one another and to the query than to the rest of the

sequences in the multiple alignment. When there is no such subset i.e. when the

single alignment models the data better, we leave the query unclassified and such a

query sequence is then classified in the second step by a phylogenetic method.

2.2.1 Processing query sequences

Let S be the set of sequences in the reference database, each with a taxonomic

label, and Q be a set of uncharacterized reads (i.e. query sequences). We first
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align each sequence in Q to sequences in S using BLAST. For each q ∈ Q, we

construct the ordered set Sq that contains the segments yielding the top 100 bit

scores, in decreasing order of their score. We discard all segments l ∈ Sq where

the BLAST alignment of q and l covers ≤ 90% of q. We use the BLAST-generated

local alignments involving q to impose a multiple alignment (Mq) on the sequences

in q ∪ Sq. We ignore all locations in the local alignment where there is an insertion

in the BLAST hit sequence.

We base our score for a multiple alignment (Mq) on the Bayesian Integral

Log-Odds (BILD) scores described in [55]. For each alignment column, we take the

prior for the nucleotide probabilities to be a Dirichlet distribution with parameters

α, and define α∗ =
4∑

k=1
αk. (Here, we always use Jeffreys’ prior [58], for which all

αk = 0.5, and α∗ = 2). For the jth column M q
j of the alignment and ignoring null

characters, the log-probability of observing its particular vector of c∗j nucleotides,

with count vector cj, is then given by

L(M q
j ) = log

[
Γ(α∗)

Γ(α∗ + c∗j)

4∏
k=1

Γ(αk + cjk)

Γ(αk)

]
. (2.1)

Here, Γ is a gamma function. As suggested in [55], the log-odds score for preferring

a cut, at row i, of the column M q
j into the two sub-columns Xq

ji and Y q
ji, as illustrated

in Figure 2.1, is given by

V q
ji = L(Xq

ji) + L(Y q
ji)− L(M q

j ). (2.2)
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Figure 2.1: Schematic diagram of a multiple sequence alignment and how a cut
divides it into two disjoint groups.
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Taking all columns into account, the log-odds score for preferring a cut at row i is

simply equation 2.2 summed over all columns. However, we have found it useful to

give greater weight to columns with greater diversity. Thus we adopt the score V q
i

for a cut at row i given by the formula

V q
i =

m∑
j=1

eajV
q
ji, (2.3)

where M q has m columns, ej = −∑4
k=1 (cjk/c

∗
j) log4(cjk/c

∗
j) is the entropy (base

4) of column j, and a is an arbitrary positive parameter. Note that, using this

formula, perfectly conserved columns have entropy 0 and thus weight 0, whereas

columns with uniform nucleotide usage have entropy 1 and thus weight 1. We have

found, by experimentation, that a useful value for the parameter α is 2.7.

2.2.2 Outlier detection and taxonomy assignment

We are interested in finding the phylogenetically most closely related matches

in the database to the query sequence q. We proceed by computing V q
i for cuts

with increasing i, from i = 0, and identify first i′ for which V q
i′ ≥ 0, V q

i′ > V q
(i′−1),

and V q
i′ > V q

(i′+1). In other words, we find the first peak among those scores that

imply the data are better explained by a split alignment. Scores below zero favor a

single alignment. The first i′ − 1 sequences from Sq we take as forming an outlier

set Oq = Sq[1 : i′ − 1] for q. We extract the taxonomic labels of all sequences in Oq

and assign the most recent common ancestor (MRCA), of these labels to q. In the

case when scores favor a single alignment, we leave the query sequence unclassified.
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The unclassified query sequences then should be classified, in step two of a two-step

process, using a phylogenetic method.

2.3 Evaluation

2.3.1 Datasets

We used the RDP 16S rRNA gene v16 dataset (RTS), which has taxonomy an-

notated for each of its 13, 212 sequences [59], considering only the 12, 320 sequences

that had taxonomic labels for all six levels - Kingdom, Phylum, Class, Order, Family,

and Genus. These sequences belong to 2, 320 genera with, on average, 6 sequences

per genus. To evaluate our outlier detection method, we compared taxonomic la-

bels assigned to query sequences by our method to their true labels as given in

RTS. First, we used V-Xtractor with default parameters to extract the V3, V4 and

V3-V4 hypervariable regions of the sequences [60]. We then used these V3 (SIM-

2), V4 (SIM-3), V3-V4 (SIM-4) and full (SIM-1) sequences as query datasets and

RTS sequences as a reference database. We also used a real metagenomic dataset

(Dataset-1) to study the effectiveness of our method in actual practice. Dataset-1

has 58,108 sequences from the V1-V2 hypervariable region.

2.3.2 Leave-one-out validation

In the RTS simulated dataset, we know true taxonomic labels for all query

sequences. For each taxonomic level, we compare the taxonomic labels assigned

by our method to the true labels to find the number of queries that are correctly
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Figure 2.2: Leave-one-sequence-out validation using full-length, V3, V4, and V3-V4
region sequences from 16S rRNA dataset (RTS).

classified, misclassified or falsely unclassified. To identify correctly classified query

sequences at each level, we compare, for all query sequences, the taxonomic labels

assigned by our method to the true taxonomic label at that level. If the label as-

signed to a query by our method matches its true label, or if our method leaves

the query sequence unassigned when there are no other sequences in the database

with its particular label, we consider the query sequence as properly classified. For

each taxonomic level, we consider misclassified those query sequences for which the

assigned taxonomic label does not match the true label. We also consider falsely

unclassified those sequences that were not assigned a taxonomic label at a particular

level when the true label existed independently in the database. Figure 2.2 shows

the number of correctly classified, misclassified and falsely unclassified sequences

calculated by leave-one-out cross-validation, where we assign a taxonomic label to a

query sequence (full or hypervariable region) after removing its associated sequence

from the database. For all query datasets, our method rarely misclassified at all

taxonomic levels, generally assigned correct labels at higher levels, but tended not

to assign labels at lower levels. This may be because our method uses the MRCA of
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Figure 2.3: Leave-one-genus-out validation experiment results on 16S rRNA dataset
(RTS). Performance of outlier detection method on full-length, V3, V4, and V3-V4
region sequences. (A). Performance of RDP classifier method on full-length, V3,
V4, and V3-V4 region sequences (B).

taxonomic labels of outlier sequences. When there are closely related sequences in

the database, our method chooses to be conservative by not assigning labels at lower

taxonomic levels. To study the effectiveness of our method in classifying sequences

with taxonomy unrepresented in the database, we performed genus-level leave-one-

out cross-validation. Specifically, for each query, we removed all sequences from

the database belonging to the same genus, and assigned taxonomic labels with our

method and the RDP classifier [61]. We ran the RDP classifier using the QIIME

[62] pipeline with the default confidence threshold of 80%. We calculated the num-

ber of queries that were correctly classified, misclassified and falsely unclassified as

explained above. Figure 2.3A and B show results for our method and RDP respec-
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tively. Because the genus to which a query sequence belongs is never present in the

database, any label assigned at genus level will result in a misclassification error,

and no assignment will result in correct classification. We observed that for higher

taxonomic levels (down to Order) RDP and our method have comparable misclas-

sification rates. However, at the Family and Genus levels, our method has a lower

misclassification rate. For all datasets, RDP misclassified more query sequences at

the Genus level than did our method. This is primarily because RDP aggressively

tries to classify as many sequences as it can, whereas our method prefers to classify

only when it can do so accurately, leaving other sequences to be dealt with later

by a phylogenetic method. This experiment shows that even when sequences from

the same genus as the query are absent from the database, our method has high

precision and makes few mistakes.

2.3.3 Evaluation on a real 16S rRNA metagenomic dataset

To study the effectiveness of our outlier detection method in a realistic setting,

we tested it on a real metagenomic dataset. Since we do not know the true taxonomic

label for all query sequences, we compared our results with those produced by TIPP

[25], a phylogenetic-tree based taxonomic assignment method. We used the RDP

2014 16S rRNA reference database for both methods [59]. In this dataset, there

were 58,108 query sequences for which our method assigned 41,256 sequences at the

Family level or below. Figure 2.4A shows that our method has a high precision for

all taxonomic levels. Also, Figure 2.4B suggests that using our outlier method to
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Figure 2.4: Evaluation of our outlier detection method along with TIPP on a real
metagenomic dataset. Number of query sequences for which classification made by
outlier detection method agrees with classification made by TIPP (A). Number of
query sequences classified and unclassified by both outlier detection method and
TIPP (B).
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Figure 2.5: Box plot of percent identity of the best BLAST hit for all query sequences
that were assigned label at genus level by our method and TIPP versus queries that
remained unassigned by both methods.

make taxonomic assignments (at least down to the Family level) can significantly

reduce the workload of a phylogenetic-tree based method like TIPP. A phylogenetic

method can then search only in a subtree induced by database sequences in our

outlier set as opposed to searching the whole tree for the best placement of the

query sequence on the tree. About 11,000 sequences remained unclassified by both

TIPP and our method, and we investigated whether the best BLAST hit’s percent

identity correlates with the ability of these programs to make classifications; see

Figure 2.5. Unfortunately, there is no clear percent-identity cutoff one can employ

to recognize sequences that will remain unassigned by both methods, although a

large number of the unassigned sequences have low similarity to the nearest database

sequence. We compared the running time of BLAST, BLAST+ outlier method, and

TIPP on different input sizes. Figure 2.6 shows that both BLAST and our method
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Figure 2.6: Runtime comparison of BLAST, BLAST+ outlier method and TIPP as
a function of number of query sequences.

have running time growing linearly with the number of query sequences whereas the

running time of TIPP increases rapidly with the increase in the number of sequences.

This shows that our method can be used as a quick and accurate pre-processing step

before using a phylogenetic method.

2.3.4 Distribution of outliers

Since prior approaches restrict the analysis to just a fixed number of top hits,

we evaluated the number of outliers proposed by our method. As seen in Figure

2.7, the number of outliers has large variance, so a single cutoff (say, the best or

top five BLAST hits) will not identify all phylogenetically related matches from

the database. In this case, we relied on data for which the true taxonomic label

is not known. To validate whether the set of outliers detected by our method is

24



Figure 2.7: Box plot showing the variation in the number of outliers detected per
query sequence in DATASET-1, SIM-1, SIM-2, SIM-3 and SIM-4

25



(A)

(B)

Figure 2.8: Phylogenetic tree showing outliers detected for two example query se-
quences. A subtree where the sequences identified as outliers are clustered closely
to each other (A) and a subtree where the sequences identified as outliers cover a
broader taxonomic range (B).

reasonable, and to better understand the performance of our approach, we evaluated

the placement of the outlier sequences within a phylogenetic tree of the database.

For this, we used the phylogenetic tree for the RDP 2014 database that was bundled

in the TIPP reference package, and used the Interactive Tree Of Life web tool to

visualize outliers [63]. In general, we noticed that the outliers are grouped close to

each other in the phylogenetic tree (see examples in Figure 2.8), suggesting that

our method produces reasonable results. This analysis also provided insights into

the resolution level of the annotations produced by our method. When the outlier

sequences cluster tightly within the phylogeny (Figure 2.8A), a reliable classification

can be made at a low taxonomic level. When the outliers are distributed across a

broader section of the tree (Figure 2.8B), the classification can only be made at a
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Figure 2.9: Number of query sequences classified by our method when using different
databases in the BLAST search step.

higher taxonomic levels.

2.3.5 Effects of database and taxonomy

To understand the effect of the database on the final annotations provided

by our method, we ran BLAST on four 16S rRNA gene databases —EzBiocloud,

SILVA v.119, RDP 2014 and Greengenes on DATASET-1 [59, 64, 65, 66]. We

used the Greengenes database from the QIIME package. It is known that these

databases suffer from incorrect annotations. Mislabels can arise from the classifica-

tion strategy used in curating the database or from errors in the current taxonomy,

e.g. initial misidentification of species, or insufficient external sequence data for cor-

rectly arranging taxa [67]. Note also that these databases have different proportions

of various taxa. Organisms that are well represented in a database will be classi-
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Figure 2.10: A graph where nodes are SILVA database sequences and edges between
nodes are weighted by the number of query sequences from DATASET-1 for which
the sequences of the two nodes are both present in the outlier set. We used the Gephi
tool to visualize the graphs. The connected components, when edges of weight less
than 20 are removed, and where nodes are colored by the Genus label of the sequence
(A). The sub-graph showing only Lactobacillus species (B).

fied more precisely whereas under-represented organisms will have labels assigned

only at higher taxonomic levels. Thus, the differences in the number of sequences

annotated by our method for different databases, as shown in Figure 2.9, can be

attributed primarily to the quality and the composition of the databases.

A current taxonomy may not be fully resolved and our outliers can suggest

refinements. For illustration, we constructed a weighted graph whose nodes are the

sequences in the SILVA database, and with edges between two nodes weighted by

the number of times the nodes co-occur in an outlier set. For this analysis, we

again used ∼58K query sequences from DATASET-1, keeping only the edges with

weight at least 20. Figure 2.10A shows the connected components of the resulting

28



graph colored and grouped by Genus. We used the Gephi tool to visualize these

graphs [68]. Most of the components contain nodes of same Genus. For example,

there is one component for Enterococcus, six for Lactobacillus, four for Streptococcus,

etc. However, there are some genera, such as Bacteroides and Prevotella, that have

very similar regions in the V1-V2 segment of 16S rRNA gene. The query sequences

matching these regions causes the edges in the graph and thus the two commu-

nities are not easily distinguished in our analysis. To analyze further the species

distribution among these components, we examined the connected components for

Lactobacillus, shown in Figure 2.10B. We found that, within each component, all

species belonged to a Lactobacillus group as defined by Felis et al. [69] and Salvetti

et al. [70]. This shows that the outliers detected by our method can provide in-

sights for resolving and refining a taxonomy. Alternatively, a user with information

on deeper taxonomic levels can infer more detailed annotation for the species found

in an outlier set than is provided by our method.

2.4 Conclusion and Discussion

We propose a two-step approach for taxonomic assignment, in which we gain

as much information as we reliably can from BLAST output before using computa-

tionally expensive phylogenetic-tree based methods on sequences that are difficult

to classify. In this paper, we developed an outlier detection method for taxon-

omy assignment using BLAST hits that separates phylogenetically correct matches

from matches to sequences from similar but phylogenetically more distant organ-
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isms. This method can thus be used for step one of a two-step approach, to identify

sequences that can be assigned accurate labels using just a BLAST search of a

reference database.

Because all 16S rRNA sequences are related, statistics like E-value or bit score

from BLAST do not provide ready information for separating sequences from differ-

ent phylogenetic categories. Our experiments show also that a single cutoff cannot

be used to select BLAST hits for correctly assigning taxonomic labels. We have

experimented with finding outliers using bit score distributions, but found they

provided insufficient information to detect phylogenetically correct matches (data

not shown). Our experiments also show that although the percent identity of the

best BLAST hit is correlated with whether a sequence is assigned a taxonomic label.

However, there is not a single percent identity cutoff that can differentiate sequences

that are classified from the sequences that are not classified. This has motivated

our development of a BILD-score based method to identify when the top BLAST

hits will yield accurate taxonomic labels.

Because our method is used as a filtering step, we seek to accurately classify

as many query sequences as possible while making few misclassifications. The se-

quences that we leave unclassified are then to be handled by a phylogenetic method.

Our results on simulated and real 16S rRNA metagenomic datasets show that our

method has high precision at all taxonomic levels, assigning correct labels at higher

levels to a majority of sequences, and that it is computationally efficient compared

to phylogenetic-tree based taxonomic assignment methods. This demonstrates the

promise of a two-step taxonomic assignment approach, using our method as a fil-

30



tering step.

In the future, we plan to study sequences that were classified correctly by

phylogenetic methods but not by ours, to gain insight for possible improvements.

We also plan to study the effectiveness of restricting phylogenetic-tree based methods

to the subtree spanned by outliers. Finally, note that our method was developed for

and tested on 16S rRNA data, and is not applicable as it stands to whole genome

sequencing (WGS) datasets. However, the idea of using a two-step approach for

taxonomy assignment in WGS datasets is an interesting avenue for research.
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Chapter 3: ATLAS: embracing ambiguity in the taxonomic classifi-

cation

This chapter contains material previously published in Embracing ambiguity

in the taxonomic classification of microbiome sequence data [71], which was a joint

work with Jacquelyn S. Meisel and Mihai Pop. NS and MP conceived the research

project. NS designed and implemented the algorithm, with the help of JSM and MP.

NS and JSM analyzed the data. NS, JSM, and MP wrote the manuscript.

3.1 Introduction

In Chapter 2, we presented a method to detect significant database hits, and

use it as a taxonomic classification tool. Our results with both BLAST outlier

detection and RDP classifier show that it is difficult to obtain species-level annota-

tions. In this chapter, we address how we can improve the resolution of taxonomic

classification results.

There are several limitations to database search based taxonomic classifica-

tion approaches. First, it is often impossible to obtain confident genus- or even

species-level classifications within samples due to the lack of discriminative power

of the sequenced marker gene [72]. The 16S rRNA gene contains nine taxonomi-
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cally discriminating hypervariable regions, however there is no single hypervariable

region of the gene that can distinguish between all species. Additionally, reference

databases are not always representative of a sample and are dominated by a small

subset of easy to isolate organisms found at higher abundances [73]. Sequencing data

in reference databases is largely biased towards pathogenic microbes and organisms

commonly found in developed countries. The organisms found in many studies (e.g.,

in environmental communities or in developing countries) have no near neighbors in

reference databases, making it difficult to assign to them accurate taxonomic labels.

Another problem with modern analysis of microbial communities is the rel-

atively coarse-grained resolution obtained, which limits our ability to capture bi-

ologically relevant signals. This stems from the need to simplify computational

workflows. Most commonly used bacterial taxonomies have been regularized to fit

within a standard seven taxonomic levels. This problem is further compounded by

errors and missing information in databases, as well as inherent ambiguities in the

taxonomic assignment of some sequences. Current software tools frequently rely

on “latest common ancestor” strategies to provide an annotation at the most gen-

eral taxonomic level that encompasses all of the possible annotations of a sequence

[50]. As a result, few methods ever make classifications below the genus level, and

frequently sequences are only classified at the family, class, or even phylum level.

As the number and size of sequencing datasets continues to grow, taxonomic

classification methods often make trade-offs between speed and accuracy. Differ-

ent tools have been developed for taxonomic annotation, using either composition-

based, sequence-similarity, or phylogenetic-placement methods [24, 25, 45, 74, 75].
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Composition-based and sequence similarity-based approaches are fast and require

less computational power, but only work well when the microorganisms in the sam-

ple have near neighbors in the database. On the other hand, phylogenetic-placement

based methods statistically model the evolutionary processes that generate the query

sequences and are computationally expensive, but allow classification even if only

distant neighbors are found in databases.

Here we propose a novel strategy for taxonomic annotation that adequately

captures and represents the complexity of the bacterial world, providing more spe-

cific and more interpretable characterizations of the composition of microbial com-

munities, while also capturing the inherent ambiguity in the classification of se-

quences without near neighbors in public databases. This strategy builds upon

our recent work on detecting significant outliers within database search results [41],

allowing us to characterize, in a sample-specific manner, the extent of taxonomic

ambiguity within the classification. This approach allows us to frequently make

assignments at the species level, and even when such assignment is not possible, we

are able to identify the few species within a genus that are the most likely origin

of the fragment being analyzed. Such information is particularly relevant in clinical

applications, allowing us to distinguish between the pathogenic and non-pathogenic

members of the same genus even if the specific species cannot be uniquely identified.

Our method, called ‘ATLAS-Ambiguous Taxonomy eLucidation by Appor-

tionment of Sequences’, is implemented in Python and released under the MIT

license. We demonstrate that ATLAS yields similar results to phylogenetic meth-

ods, but with reduced computational requirements. We use ATLAS to re-examine
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over two-thousand samples from the Human Microbiome Project (HMP) (The Hu-

man Microbiome Project Consortium, 2012) and interrogate almost one-thousand

stool samples from the Global Enteric Multicenter Study (GEMS) of young children

in low-income countries with moderate-to-severe diarrhea [49]. In these datasets,

we identify partitions matching previously defined groupings of organisms, such

as species within the Bacillus genus and the Clostridia class. We also demonstrate

that the partitions identified by ATLAS increase the power of differential abundance

analyses. Although our results specifically focus on data from 16S rRNA gene sur-

veys, ATLAS can be used with any marker gene sequencing data to characterize

the taxonomic composition of a microbial community and to determine microbiome

associations with human and ecological health.

3.2 Materials and Methods

3.2.1 ATLAS algorithm overview

ATLAS groups sequences into biologically meaningful taxonomic partitions by

querying them against a reference database and identifying and clustering significant

database hits that capture the ambiguity in the assignment process. ATLAS has two

phases (see Figure 3.1): (i) identifying significant database hits for query sequences

and (ii) generating database partitions (clusters) that capture the ambiguity in the

assignment process.
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R1
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- ( R1, R2, R3 )
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-  ( R4, R5 ) 

Graph construction and partitioning
Final database clusters

Figure 3.1: Schematic diagram of the ATLAS pipeline. ATLAS takes in query
sequences from a marker gene and searches them against a reference database to
identify outlier sequences. It then constructs a graph of database sequences and
clusters those that are commonly identified together into partitions.

36



3.2.2 Aligning query sequences and identifying significant database

hits

ATLAS uses BLAST [45] to align each sequence in an input set of uncharac-

terized query sequences, to sequences in a reference set (using parameters -outfmt

“6 qseqid sseqid pident length mismatch gapopen qstart qend sstart send evalue

bitscore qseq sseq”). The previously published “BLAST outlier detection” algo-

rithm is used to identify significant top BLAST hits for each query sequence [41].

We refer to these BLAST hits as outliers. In brief, the “BLAST outlier detection”

algorithm constructs a multiple sequence alignment of the query sequence and the

top BLAST hits from the BLAST-generated pairwise alignments. It then uses the

Bayesian Integral Log Odds (BILD) score [55, 56] to determine whether the multi-

ple alignment can be split into two groups that model the data better than a single

group. This process identifies which BLAST hits are significantly associated with

the query sequence, without resorting to ad hoc cut-offs on percent identity, bit

score, and/or E-value.

3.2.3 Generating database partitions that capture the ambiguity in

the assignment process

Ambiguity in the taxonomic assignment process occurs for two main reasons.

First, the query sequence may not have any near-neighbors in the database, resulting

in multiple equally-good hits (neighbors) (Figure 3.2). Second, the query sequence
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Figure 3.2: Schematic detailing when ATLAS will provide the greatest improvement
to taxonomic annotation. Shown is a simple example of a phylogenetic tree with
taxonomic information of reference sequences, where the leaves are actual sequences
in the database. When a query sequence (yellow stars) has near neighbors in the
reference, such as Q1, most algorithms will be able to correctly classify the sequence.
However, if a sequence, such as Q2, does not have many near neighbors in the
database, computationally expensive phylogenetic methods are required for accurate
placement (blue arrows) and annotation. ATLAS captures groups (or partitions) of
database sequences (red nodes) that are commonly confused during the annotation
process and assigns them to the query sequence (square node for Q1, and diamond
nodes for Q2,). Black triangles show collapsed portion of the tree. While this
schematic is overly simplified and real phylogenies are much more complex, this is
illustrating that ATLAS will provide additional information when query sequences
do not have near neighbors in the database. This represents ideal cases, where 16S
rRNA phylogeny and taxonomic annotations are congruent.
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may align to a genomic region that is conserved across distantly related organisms.

Our method characterizes this ambiguity in a sample-specific manner, identifying

database sequences that are equivalent with respect to their similarity to the set of

query sequences.

From all query sequences and their set of related database sequences (outlier

set), we construct a confusion graph. The nodes in the graph represent sequences

in the database, while the edges link nodes that are present together in the out-

lier set for at least one query sequence. The edges are weighted by the number of

query sequences that share the same nodes (reference database sequences) within

the outlier set. Tightly-knit sub-communities in the confusion graph indicate am-

biguous database sequences that should be clustered together. To identify these

sub-communities, we remove all the low-weight edges (below mean − 2 ∗ stddev of

all edge weights) and identify strong communities in the network using the Louvain

community detection algorithm, which optimizes the modularity of the network [76].

These sub-communities become the final database partitions (clusters).

3.2.4 Assigning query sequences to the partitions

A query sequence is assigned to a database partition if a certain percentage

(user-defined, default 50%) of the database sequences in the outlier set belong to

the partition. ATLAS does not classify the query sequence if no BLAST outliers

can be detected, or the query sequence does not meet these thresholds. The goal of

ATLAS is only to classify sequences when it has enough confidence in the taxonomic
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assignment. Sequences that remain unclassified by ATLAS should be further exam-

ined with more sophisticated approaches, such as phylogenetic placement methods.

For each query sequence, ATLAS provides a species list based on the reference

database sequences included within the assigned partition. To provide a high-level

summary of the data and simplify the comparison to other annotation methods,

ATLAS also assigns to query sequences the MRCA of all sequences belonging to

a partition. These partitions of database sequences attempt to capture the most

accurate granularity of taxonomic assignment without relying solely on the main

taxonomic levels.

3.2.5 Comparison to other taxonomic assignment methods

To benchmark ATLAS with other widely used taxonomic annotation methods,

we downloaded TAXXI test and train datasets (sp ten 16s v35) from a recent study

that benchmarked taxonomic methods for microbiome studies [77]. We compared

ATLAS with RDP classifier [61], mothur [78], UCLUST [79], SortMeRNA [80], and

the top BLAST hit. RDP classifier, mothur, and UCLUST were run with 80%

confidence threshold. All methods except ATLAS were run via QIIME v. 1.9.1 [62],

using the script assign taxonomy.py. Metrics for method comparison were calculated

as previously published [77].

We also compared ATLAS to the phylogenetic placement method, TIPP. We

ran TIPP with the 16S rRNA reference package (rdp bacteria.refpkg) provided by

the authors (https://github.com/tandyw/tipp-reference/releases/download/v2.0.0/tipp.zip).
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We used the alignment subset size of 100 and the placement subset size of 1, 000,

and the default values for alignment and placement thresholds.

3.2.6 Analysis of samples from the Human Microbiome Project (HMP)

The OTU table and representative sequence FASTA files for the V1-V3 hyper-

variable region of the 16S rRNA gene sequenced as part of the Human Microbiome

Project (The Human Microbiome Project Consortium, 2012) were downloaded from

https://www.hmpdacc.org/HMQCP/. We used the 16S rRNA reference package

from TIPP for ATLAS and ran it with default settings. The OTU table was filtered

to retain OTUs with at least 20 reads and samples containing at least 1, 000 reads.

3.2.7 Analysis of samples from the GEMS study of diarrheal disease

A total of 992 samples were analyzed from a previously published study of di-

arrheal disease in children in low-income countries that sequenced the V1-V2 region

of the 16S rRNA gene [49]. In this study, moderate-to-severe diarrhea cases were

compared to age- and gender-matched healthy controls. Data was downloaded via

Bioconductor, using the msd16s package. We used the 16S rRNA reference package

from TIPP for ATLAS and ran it with default settings. The dataset was filtered to

retain only OTUs with at least 20 reads total and found in at least 10% of case or

10% of control samples.

Significantly differentially abundant OTUs were identified between cases and

controls using the R package metagenomeSeq [81], accounting for age in months,
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country, and sample read counts as potential confounding factors. OTUs were also

aggregated separately by genus and by partition. Significant findings were reported

for features that had fold change or odds ratio exceeding 2 in either cases or con-

trols and a significant statistical association (P < 0.05) after Benjamini-Hochberg

correction for multiple testing.

3.2.8 Analysis of samples from Bangladeshi children with acute di-

arrhea

A total of 142 samples were analyzed from a previously published study of

acute diarrhea in Bangladeshi children that sequenced the V3-V4 region of the 16S

rRNA gene [82]. Fastq files were downloaded from BioProject SRP119744, using

the SRA toolkit v. 2.8.2 and processed in QIIME v. 1.9.1. We used the 16S rRNA

reference package from TIPP for ATLAS and ran it with default settings, identifying

77 partitions.

3.3 Results

3.3.1 ATLAS captures similar information as phylogenetic placement

algorithms

We compared the taxonomic assignments generated by ATLAS for the HMP

and GEMS datasets to the labels generated by TIPP [25]. Because TIPP relies

on a phylogenetic approach for taxonomic annotation, it accounts for evolution-
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Figure 3.3: ATLAS generates classifications similar to phylogenetic place-
ment methods at an improved speed. Taxonomic labels assigned by TIPP and
ATLAS agree at all taxonomic levels for both (A) GEMS and (B) HMP datasets.
(C) The ATLAS pipeline adds minimal post-processing time (in seconds) to stan-
dard BLAST analyses, but significantly outperforms TIPP.

Figure 3.4: ATLAS partitions capture placement nodes identified by TIPP. (A) An
example showing reference database sequences identified by TIPP placement and
ATLAS’ partition assignment for a query sequence. The ratio of TIPP placement
nodes covered by the assigned partition for this query sequence is 3/4 = 0.75.
Partitions assigned by ATLAS contain a majority of reference database sequences
identified by TIPP in the (B) GEMS and (C) HMP datasets.
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Figure 3.5: Comparison of ATLAS to other taxonomic annotation methods. Using
a dataset where the ground truth is known, we characterized the performance of
different classification methods by several metrics. Both the dataset (sp ten 16s v35
) and metrics used are from Edgar, R. C. (2018) [77]. Sequences provided at the
TAXXI website (https://drive5.com/taxxi/doc/index.html) were split into test and
train dataset, such that for all test sequences, the most similar train sequence has
given percent identity (horizontal facet for 100, 99, 97, 95). Reported here are (A)
raw counts of true positives (TP), true negatives (TN), misclassified sequences (MC),
over classified sequences (OC) and under classified sequences (UC). Also shown
are (B) classification rates, including accuracy (Acc), true positive rate (TPR),
misclassification rate (MCR), over classification rate (OCR), and under classification
rate (UCR) for the same dataset.
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GEMS HMP

A
Number of query sequences classified by TIPP
at the species level

13050 10086

Number of query sequences assigned to a partition that
contained TIPP’s species

12847 8999

B

Number of query sequences classified at the species level
by ATLAS that match TIPP’s labeling

29 128

Number of query sequences classified at the species level
by ATLAS that did not match TIPP’s labeling

0 85

Number of query sequences classified at species level
by ATLAS but not by TIPP

18 36

Table 3.1: Comparison between our approach (ATLAS) and a phylogenetic method
(TIPP) examining species level assignments. (A) For query sequences where ATLAS
partitions do not have a species-level LCA, the assigned partition contains reference
sequences that match TIPP’s assigned species. (B) For query sequences where
ATLAS partitions do have a species-level LCA, many of the assigned partitions
match TIPP’s classification.

ary divergence and, therefore, can more effectively analyze sequences without near

neighbors in the database than non-phylogenetic methods. We assume here that

the classifications provided by TIPP are most accurate because the ground-truth is

not available for real datasets. The taxonomic assignments made by ATLAS and

TIPP showed 97% and 98% agreement with TIPP assignments at the genus level

for GEMS and HMP datasets, respectively (Figures 3.3A, B). Importantly, when

TIPP could confidently assign a species level classification label to a query sequence,

but ATLAS could not, the partition assigned by ATLAS for the majority of query

sequences contained the species assigned by TIPP (Table 3.1). The algorithm used

by TIPP identifies multiple putative placements of a sequence within the backbone

tree representing the reference database. In the vast majority of cases, the partitions

identified by ATLAS contained the database sequences selected by TIPP (Figure

3.4). Compared to TIPP, ATLAS had a lower run time and only added a small
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overhead to the run time of BLAST (Figure 3.3C).

We also compared ATLAS to nonphylogenetic approaches (Figure 3.5) on the

sp ten 16s v35 TAXXI benchmarking dataset where the ground truth is known [77].

Compared to other methods, ATLAS has similar or better overclassification and

misclassification rates at all taxonomic levels. However, ATLAS often has a higher

underclassification rate, particularly at lower taxonomic ranks. This behavior is

intentional as ATLAS is meant to serve as a first-level analysis, followed by more

sophisticated approaches (such as phylogenetic placement) for the sequences that

cannot be confidently classified through sequence similarity searches.

3.3.2 Relationship between ATLAS partitions and standard taxo-

nomic levels

HMP GEMS
OTU Partition OTU Genus Partition

Sequencing
Technology

Illumina V1-V3 454 V1-V2

Number of Samples
Post Filtering

2711
180 gut, 1,553 oral,
719 skin, 259 vagina

992
508 Cases, 484 Controls

Number of Features
Pre-Filtering

43,140 OTUs

22,885 partitions
(246

non-singleton
partitions)

26,044 OTUs 172 genera

1,941 partitions
(113

non-singleton
partitions)

Number of Features
Post-Filtering

36,560 OTUs

18,086 partitions
(185

non-singleton
partitions)

10,774 OTUs 149 genera

1,036 partitions
(109

non-singleton
partitions)

Table 3.2: Number of OTUs and partitions in the HMP and GEMS datasets pre-
and post- filtering. Samples with > 1000 reads were retained for analysis. In the
HMP data, features were retained if they had at least 20 total reads or were found
in at least 5 samples. In the GEMS data, features were retained if they had at least
20 total reads or were found in at least 10% of case or control samples. Singleton
partitions have a single OTU mapped to them.
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Figure 3.6: ATLAS partitions for HMP and GEMS data typically capture subgenera
information. Most partitions have the most recent common ancestor at the genus
level for both (A) HMP and (B) GEMS datasets

ATLAS grouped OTU representative sequences into 185 and 109 non-singleton

partitions in the HMP and GEMS datasets, respectively (Table 3.2). A large number

of these partitions each have an MRCA at the genus level, suggesting that they are

capturing sub-genus information (Figure 3.6). Often, there is not enough informa-

tion encoded in the short 16S rRNA gene sequence to offer species-level resolution.

However, ATLAS is able to group similar species within a genus, providing reso-

lution that is more specific than the genus level. For instance, in the HMP data,

ATLAS identified seven partitions belonging to the genus Bacillus (Figure 3.7).

Importantly, reference sequences in partition 156 capture members of the Bacillus

cereus species group, including B. cereus, B. thuringiensis, B. mycoides, and B.

weihenstephanensis [84]. These species have very high sequence similarity and have
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Figure 3.7: Reference database sequences in the sub-genera Bacillus partition in
HMP samples. The TIPP reference tree was plotted using ggtree in R. Taxa in-
cluded in partitions in the HMP dataset are indicated by dots, colored by partition.
Branches not identified in our partitions were collapsed for visualization purposes.
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Figure 3.8: Reference database sequences in the Clostridial partition from the GEMS
dataset. The TIPP reference tree was plotted using ggtree in R. Tree labels represent
Clostridia grouped into partitions in the GEMS dataset, with the node colors rep-
resenting the different partitions. The points on the tree nodes represent members
of Clostridia groups identified in [83]. Branches not identified in our partitions were
collapsed for visualization purposes, as were branches of Clostridia in the reference
tree not grouped by Collins et al. 1994 [83].
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been shown to play significant roles in human and environmental health [85]. AT-

LAS partition 121 corresponds to the Bacillus subtilis group, including species such

as B. subtilis, B. licheniformis, and B. amyloliquefaciens [86]. Given the diverse

function and pathogenic potential of species within this genus, the distinction of

these two groups provides additional benefit to microbiome analyses.

It is important to note that ATLAS partitions are derived purely from sequence

similarity; they do not take into consideration any taxonomic or phylogenetic in-

formation. Given our incomplete knowledge of microbial diversity and the inherent

limitations of 16S rRNA sequences for taxonomic classification, these sub-genus

partitions should be further examined and validated.

Other partitions with higher-level MRCA capture established phylogenetic

groupings that span multiple genera. ATLAS was able to capture well-known phy-

logenetic groupings in the class Clostridia [83, 87]. In the GEMS data, ATLAS

identified 15 partitions comprising sequences from the Clostridia class. Of partic-

ular note, partition 84 contains Acetobacterium species in Clostridial group XV,

partition 81 contains members of Clostridial group XI, and Clostridial group I is

represented in partitions 5 and 6 (Figure 3.8). Clostridial groups encompassed by

partitions 0, 81, and 84 contained multiple genera, highlighting the utility of using

partitions based on information from the sequences themselves rather than solely

relying on modern taxonomic groupings. Interestingly, eight of these partitions were

significantly differentially enriched in healthy control samples, supporting the role

of Clostridia in the maintenance of gut homeostasis [88].

The percentage of query sequences assigned to partitions spanning multiple
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genera was 8% for the HMP data and 39% for the GEMS data. Some of these

higher-level partition groupings reflect limitations in the hypervariable region of the

16S rRNA gene sequenced. For instance, in both the HMP and GEMS data, ATLAS

identified a single partition spanning the Enterobacteriaceae family. While it would

be beneficial to distinguish between Escherichia and Shigella species in the GEMS

dataset, the V1-V2 and V1-V3 hypervariable regions of the 16S rRNA marker gene

are insufficient for discrimination [89].

3.3.3 ATLAS partitions improve the power of microbiome-disease

association studies

OTU Genus Partition

Number of Significant
Features Increased in
Case Samples

679 OTUs

(415,257 sequences)

16 genera

(892 OTUs,
342,960 sequences)

13 partitions and
71 non-partitioned OTUs

(692 OTUs,
189,005 sequences)

Number of Significant
Features Increased in
Control Samples

1,112 OTUs

(637,591 sequences)

22 genera

(1,626 OTUs,
447,680 sequences)

17 partitions and
108 non-partitioned OTUs

(4,917 OTUs,
1,300,544 sequences)

Number of
Non-significant
Features

8,983 OTUs

(2,448,992 sequences)

105 genera

(5,845 OTUs,
1,811,878 sequences)

77 partitions and
745 non-partitioned OTUs
(5,165 OTUs,
2,012,291 sequences)

Table 3.3: Number of OTUs, genera, and ATLAS partitions that are statistically
significantly different between moderate-to-severe diarrheal cases and healthy con-
trols.

We explored whether ATLAS partitions could provide improved resolution

over OTUs in differential abundance analyses. The original GEMS dataset contains

26,044 OTUs, many of which are not prevalent or abundant enough to provide
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Figure 3.9: Differentially abundant OTUs in the GEMS dataset by genera. OTUs
are grouped by whether they are not significant by either ATLAS partitions or indi-
vidual OTUs, significant by both ATLAS partitions and individual OTUs, significant
by individual OTUs only, or significant by ATLAS partitions only.
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OTUs
Not Significant Significant

Partitions
Not Significant 4,557 608

Significant 4,426 1,183

Table 3.4: Confusion matrix highlighting the number of shared/unshared statisti-
cally significant OTUs and ATLAS partitions.

statistical power for identifying associations between health and disease. Filtering

OTUs and partitions according to their abundance and prevalence, we retained just

those that contained at least 20 sequences and were found in at least 10% of the

samples. Only 10,774 OTUs, comprising just 41% of the sequences in the dataset,

were retained, whereas ATLAS partitions retained after filtering contained 25,135

total OTUs, comprising 97% of the sequences in the dataset (Table 3.2).

We identified statistically significantly different features between cases with

diarrheal disease and healthy controls (Table 3.3). We performed this analysis sep-

arately on (i) OTUs, (ii) OTUs aggregated by genus-level assignments, and (iii)

OTUs aggregated by ATLAS partitions. Compared to the OTU analysis, OTUs

aggregated at the genus-level generally identified more significant OTUs, but fewer

overall significant dataset sequences. This is potentially impacted by the fact that

2,411 OTUs and 899,322 sequences had no assignment at the genus level. OTUs

aggregated by ATLAS partitions identified a greater number of significant OTUs

and sequences enriched in the control samples. When looking at the 10,774 OTUs

included in both the OTU-level and partition-based analyses, the majority agreed

on differential abundance results (i.e., they were significant or not significant in both

analyses) (Table 3.4). Forty-one percent were significant by the partition analysis,

but not by OTU based methods. These OTUs were most likely lower abundant com-
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Figure 3.10: Partitions identified by ATLAS in acute diarrhea samples from
Bangladesh. (A) Most partitions have the most recent common ancestor at the
genus level for this dataset. (B) Number of partitions for the most common genera
with sub-genus resolution in the Bangladesh dataset.

munity members that became significant as they were aggregated with similar, more

abundant microbiota. The few remaining OTUs were significant at the OTU level

but not in our partition-based analyses and generally belonged to low abundance

genera (Figure 3.9).

We also applied ATLAS to a separate acute diarrhea dataset from children in

Bangladesh [82], which used a different hypervariable region of the 16S rRNA gene,

a different sequencing platform, and different downstream analyses. Within this

dataset, we also identified sub-genus level partitions (Figure 3.10A). Many of the

sub-genus level partitions in the Bangladesh dataset were in Lactobacillus, Strep-
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tococcus, Helicobacter, and Campylobacter, genera which are commonly associated

with diarrheal disease (Figure 3.10B).

3.4 Conclusion and Discussion

As DNA sequencing technologies become faster and cheaper, the number of

microbiome studies are rapidly increasing. These studies are aimed at both develop-

ing a better understanding of the microbial communities inhabiting the world and at

characterizing the association between microbiota and health. Accurate taxonomic

assignment is a critical requirement for the interpretation of the data generated in

such studies. Current approaches for taxonomic annotation fall at two extremes

—computationally intensive phylogenetic inference methods that can accurately

classify even sequences that are only distantly related to the reference database

and fast approaches based on sequence alignment or k-mer analysis that are primar-

ily effective in identifying already characterized sequences. Here, we have described

an approach that bridges the two extremes. While it is based on sequence-similarity

approach, ATLAS provides a similar level of accuracy as phylogenetic approaches

while retaining computational efficiency.

ATLAS identifies the ambiguity in the classification of sequences in a sample-

specific manner, thereby obviating the need for removing redundancy from the refer-

ence database (a computationally expensive process) and ensuring that the method

effectively adapts to the specific parameters of the experiment (e.g., choice of hy-

pervariable region in the 16S rRNA gene). While ATLAS is intended to replace
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commonly-used “most recent common ancestor” (MRCA) approaches that are un-

necessarily conservative, it can also improve on such techniques. The ATLAS par-

titions are constructed after examining all the query sequences, and after removing

spurious connections between database sequences, thereby eliminating many of the

errors that can reduce the taxonomic resolution of the MRCA approach.

We have shown that ATLAS is effective in analyzing real microbiome datasets,

where it is able to automatically discover taxonomic groupings that are relevant to

the interpretation of the data but that do not match predefined taxonomic levels.

Examples include subdivisions of the Bacillus genus and Clostridial class homology

groups. Our paper describes results generated from 16S rRNA gene sequencing

data, however, the approach is applicable to any other marker gene dataset. Because

ATLAS relies on marker gene data, it can only provide a level of resolution matching

that of the maker gene itself.

Our analysis of the HMP and GEMS datasets reveals a difference in the level of

ambiguity identified by ATLAS; our method was able to better resolve the taxonomy

of sequences from the HMP project than that of sequences from the GEMS dataset.

This finding is likely due to the relationship between the sequences from the two

studies and the data found in the reference database. The GEMS study contains

data from children from sub-Saharan Africa and Southeast Asia, sequences that

are only distantly related to the reference sequences primarily characterized within

Western populations. Our findings support the idea that the choice of database

plays a huge role in classification accuracy [90]. To ensure an accurate taxonomic

annotation, a custom environment-specific database is desirable, and the accuracy
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of the database sequences and their annotation must be ensured. Studies must also

carefully consider and document the choice of database.

The GEMS dataset was generated several years ago using 454 sequencing tech-

nology with high-insertion-deletion error rates. This can provide useful information

for future applications to current long read sequencing datasets, which also have

higher insertion-deletion error rates compared to short-read technologies. Despite

differences between the GEMS and Bangladesh datasets, ATLAS identified sub-

genus partitions in important taxa previously associated with diarrhea. This im-

proved resolution will provide greater insight into potentially harmful or beneficial

organisms.

An opportunity for future research is the integration of the approach embodied

in ATLAS with phylogenetic algorithms. Phylogenetic approaches can use the par-

titions identified by ATLAS to prune the reference tree before attempting to place

query sequences on the tree, resulting in higher accuracy with lower computational

overhead. In the future, we also plan to identify and investigate cases where ATLAS

assignments and phylogenetic classifications disagree in order to identify opportuni-

ties for improvements to either alignment-based or phylogenetic approaches. As the

wealth of microbiome data increases, greater emphasis is being placed on more accu-

rate taxonomic annotations that currently cannot be obtained using fast, sequence

similarity-based methods. ATLAS is the first step in this direction.
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Chapter 4: TIPP2: metagenomic taxonomic profiling using phyloge-

netic markers

This chapter contains material previously published in TIPP2: metagenomic

taxonomic profiling using phylogenetic markers [91], which was joint work with Erin

K. Molloy, Mihai Pop, and Tandy Warnow. NS developed the database for the

TIPP2 package under the guidance of MP and TW. NS and EKM changed TIPP

software and maintain it. EKM helped in initial exploration experiments. NS de-

signed and performed all experiments with the help of EKM, MP, and TW. NS,

EKM, MP, and TW wrote the paper.

4.1 Introduction

In Chapters 2 and 3, we explored taxonomic classification problems in metage-

nomics. In this chapter, we explore a related problem of taxonomic abundance pro-

filing. The goal is to estimate the relative proportions of different species in the

sample.

Several different strategies have been introduced for estimating the relative

abundance of species in the sample from metagenomic data [20, 21, 22]. One ap-

proach is to classify reads by searching against known sequences database, and then
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normalize the read assignments by genome sizes to provide an estimate of relative

abundance of each species [20, 23]. An alternative strategy involves the use of marker

genes. Marker genes are generally clade-specific or universal, unique and single-copy

[21, 22, 24, 25, 26, 27]. Because marker genes are unique and single-copy, the re-

sulting read coverages can be readily used to estimate species abundance without

normalization by genome size or copy number.

However, methods that just rely on aligning against sequences in reference

databases (pairwise alignment) are likely to miss species in the sample that are

not well-represented in the database, and fail to account for the abundance of these

species. Good reference collections are missing for many understudied environments,

such as soil or ocean [92, 93, 94, 95]. Phylogenetic approaches are designed to be able

to detect distant homology, enabling the characterization of previously unseen or-

ganisms. However, with the ever-growing number of sequences in databases, scaling

up phylogenetic approaches creates new challenges.

In 2014, we developed TIPP [25], a method that uses phylogenetic placement

and a database of marker genes for abundance profiling, along with a method that

uses an ensemble of Hidden Markov models (eHMMs; [96]) for improving classifi-

cation accuracy. TIPP performed especially well in reads with high insertion and

deletion (indel) sequencing errors, and in reads from unrepresented genomes (novel

genomes). Here, we present TIPP2, an updated version of TIPP (henceforth referred

to as TIPP1). Our experiments show that TIPP2 substantially improves on TIPP1

with respect to accuracy in abundance profiling. A comparison between TIPP2 and

the leading current methods for abundance profiling reveals the following trends:
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For each marker gene and an assigned read:
Use SEPP to add and place read into the 
corresponding taxonomic tree (from the 
reference package), and infer taxonomic 
label

Input: 
Metagenomic 

reads

Step 1: Binning reads

All Marker gene 
sequences

Reads are assigned to one of the 
marker genes using BLAST 

Step 2: Classifying  reads

Read sequence

Step 3: Compute
relative abundance

Pool classifications from all genes and 
normalize to get abundance profile

0
0.1
0.2
0.3
0.4
0.5

Taxon
1

Taxon
2

Taxon
3

Taxon
4

Relative abundance

Figure 4.1: Schematic of TIPP1 and TIPP2 pipelines. TIPP1 has a database
of 30 marker genes with ∼1300 sequences each, and TIPP2 has a database of 39
marker genes with ∼4300 sequences each; each also has a reference package of tax-
onomies and sequence alignments for each marker gene in their database. In Step
1, TIPP1 and TIPP2 assign metagenomic reads to marker genes using BLAST (and
so some reads are not assigned to any marker gene, and are discarded), but differ
in the specific technique used with BLAST (see text).

when the reads are drawn from genomes that are well-represented in the reference

databases (i.e. the “known genomes” condition), then TIPP2 matches the accuracy

of the leading alternative methods, while when the reads are drawn from genomes

that are not present in the reference database (i.e. the “novel genomes” condition),

then TIPP2 dominates the other methods in terms of accuracy. Hence, TIPP2 is a

new method for abundance profiling that provides superior accuracy.

4.2 Approach

TIPP2 builds upon TIPP1, but uses a larger set of marker genes for the ref-

erence database and has slightly modified algorithmic steps (Figure 4.1). Here, we

explain briefly the TIPP1 algorithm and highlight the novel contributions in TIPP2.

60



4.2.1 TIPP1 algorithm overview

As a preprocessing step for each marker gene, TIPP1 generates a multiple

sequence alignment and a maximum likelihood tree constrained by the NCBI tax-

onomy; the collection of alignment-tree pairs for all marker genes is collectively

referred to as the ‘reference package’. TIPP1 has three key steps when analyzing

reads from a metagenomic sample.

1. Binning reads: First, all reads are assigned to one of the marker gene se-

quences using BLAST [45]. Specifically, each read is assigned to the marker

gene to which it has the best alignment. Reads that do not have a good

alignment to any of the marker genes are excluded from analysis.

2. Classifying reads: Each read is added to the multiple sequence alignment of

the marker gene and then placed into the corresponding taxonomic tree. This

alignment/placement step is performed with SEPP [97], a method that uses

an ensemble of hidden Markov models (eHMMs) designed to provide high

taxonomic placement accuracy for large alignment/tree pairs. Importantly,

each read is placed at the lowest internal node N so that placement support

values summed across the placements on all edges of the subtree rooted at

that node N surpasses the user-specified threshold (0.95 by default).

Because we are working with a taxonomic tree, placing the read onto any

internal branch gives a taxonomic label to the read. Note that placement on

a terminal branch yields a species or strain-level classification, but placements
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at internal branches may yield only higher-level classifications. For example,

a read placed on an internal branch may only be classified at the family level

and higher, in which case the read is unclassified at the genus and species

levels.

3. Computing relative abundance: Once all reads are taxonomically classi-

fied, TIPP1 pools together the information from all marker genes, and com-

putes relative abundances for each taxon. The relative abundance of a taxon

is computed as the total number of reads classified within the taxon divided

by the total number of reads classified by TIPP1.

4.2.2 Improvements to the reference package

In TIPP1, we used a set of bacterial marker genes that had been previously

used in MetaPhyler [24] for the database: this contains 30 marker genes, with

1300 sequences per gene. In TIPP2, we changed to a set of 39 bacterial and

archaeal marker genes, which were previously used for prokaryotic species delin-

eation by [98]. The RpoB gene was not included in the TIPP2 database, as it had

lower precision than all the other genes (discussed later). We downloaded approx-

imately 170,000 bacterial and archaeal genomes from the NCBI RefSeq database.

We then performed a sequence of analyses that were designed to identify those

genomes that had a large number of marker genes retrievable using fetchMG tool

(http://vm-lux.embl.de/mende/fetchMG/about.html). Finally, from that reduced

set of genomes, we selected either one or two genomes per genus. This resulted in a
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Marker COG ID Number of sequences Median gene length Max p-distance Average p-distance
ArgS COG0018 4411 11484 0.78 0.56
CysS COG0215 4358 9252 0.72 0.5
Ffh COG0541 4493 8367 0.69 0.46
FtsY COG0552 4507 31581 0.68 0.48
Gtp1 COG0012 4268 2367 0.7 0.43
HisS COG0124 4082 7680 0.77 0.55
LeuS COG0495 4497 24744 0.74 0.48
PheS COG0016 4321 5289 0.71 0.47
RplA COG0081 4315 1275 0.72 0.44
RplB COG0090 4343 1500 0.65 0.42
RplC COG0087 4110 3120 0.71 0.47
RplD COG0088 4269 2286 0.74 0.52
RplE COG0094 4185 1155 0.74 0.42
RplF COG0097 4137 1053 0.74 0.47
RplK COG0080 4265 1041 0.73 0.4
RplM COG0102 4322 1101 0.81 0.45
RplN COG0093 4345 534 0.64 0.37
RplO COG0200 4306 1743 0.79 0.5
RplP COG0197 4309 717 0.66 0.41
RplR COG0256 4329 1050 0.75 0.48
RplV COG0091 4525 3471 0.78 0.5
RpoA COG0202 4308 3867 0.74 0.48
RpoB COG0085 4416 35103 0.78 0.42
RpsB COG0052 4089 4941 0.74 0.46
RpsC COG0092 4325 5550 0.73 0.45
RpsD COG0522 4360 1404 0.78 0.48
RpsE COG0098 4328 2907 0.73 0.46
RpsG COG0049 4333 903 0.69 0.42
RpsH COG0096 4516 651 0.71 0.47
RpsI COG0103 4170 1737 0.74 0.46
RpsK COG0100 4497 1083 0.69 0.41
RpsL COG0048 4496 843 0.69 0.36
RpsM COG0099 4343 591 0.71 0.41
RpsO COG0184 4354 606 0.71 0.44
RpsQ COG0186 4505 1692 0.74 0.48
RpsS COG0185 4338 606 0.64 0.39
SecY COG0201 4341 6153 0.73 0.49
SerS COG0172 4371 4686 0.73 0.49
TsaD COG0533 4364 8376 0.71 0.5
ValS COG0525 4425 27369 0.75 0.49

Table 4.1: Statistics for the 40 marker genes.

set of approximately 4300 genomes per marker gene.

To identify whether a marker gene was retrievable in a given genome, we per-

formed the following sequence of analyses. For each marker gene, we extracted

sequences from each of the 170,000 genomes using the HMMs in the fetchMG tool,

and computed the median length of these sequences. We noticed that many gene

sequences recruited by the fetchMG HMMs had lengths that were far from the me-

dian, thus suggesting that these were false positives (i.e., not truly homologous).

Subsequently, we used a length-based filtering approach to remove from considera-

tion gene sequences that were far from the median length for that gene (median ±
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3 × standard deviation).

For each marker gene, a multiple sequence alignment was built on the full

length sequences using PASTA [99]. We used RAxML [100] to generate a phylo-

genetic tree constrained to the NCBI taxonomy for each marker gene. Table 4.1

provides the list of marker genes and corresponding statistics of the reference mul-

tiple sequence alignments. The number of sequences per marker gene ranges from

4082 to 4525, with an average of 4339 sequences per marker gene.

4.2.3 Improvements to the TIPP1 algorithm

In TIPP2, we changed step 1 (i.e., the way reads are assigned to marker genes).

TIPP1 used the top BLAST hit [45] to identify the marker gene for each read. Due

to the way in which BLAST handles gapped alignments, the top hit may not always

represent the correct marker gene [46, 101]. Therefore, TIPP2 requires the BLAST

hit to cover at least a certain length (user-defined parameter, default 50bp), and it

selects the marker gene based on the hit that has maximum-length alignment to the

read. TIPP2 uses BLAST instead of HMMER [96] to determine the orientation of

the reads with respect to the gene sequences in the reference database. When the

reads align across the end of a marker gene sequence, TIPP2 trims the read to just

the aligned region, a feature that also enables the use of the tool on long read data

or assembled contigs.
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4.3 Experimental study design

4.3.1 Overview

We set out to evaluate the performance of the improvements made in TIPP2,

both with respect to the performance of TIPP1 and with respect to commonly used

taxonomic profiling tools. We also evaluated the impact of the set of marker genes

used as part of the reference package for TIPP2. We performed three experiments:

• Experiment 1: Testing whether abundances can be accurately estimated using

a small subset of the marker genes, enabling a fast variant of TIPP2.

• Experiment 2: Comparing TIPP2 to TIPP1 on datasets with both known and

novel genomes.

• Experiment 3: Comparing TIPP2, TIPP2-fast, and other existing methods for

abundance profiling.

In Experiment 1, we worked with training datasets where the query sequences are

from ‘novel’ genomes (i.e., species that are not present in TIPP2 databases). We

used the training datasets only in the design phase, to select the subset of marker

genes used for TIPP2-fast. In Experiments 2 and 3, we evaluated the performance

of TIPP2 and TIPP2-fast using test datasets which contain both known and novel

genomes, and which are simulated with different sequencing technologies and read

lengths.
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4.3.2 Metagenomic abundance profiling methods used for benchmark-

ing

We compared the performance of TIPP2 with TIPP1, MetaPhlAn2 [27], mO-

TUsv2 [21], Bracken [20], and BLAST [45]. Except for BLAST, all of these meth-

ods are specifically designed for estimating taxonomic relative abundances in the

metagenomic data, and except for Bracken, all these methods are marker-based.

MetaPhlAn2 uses ∼1 million clade-specific markers to detect and estimate the rel-

ative abundance of organisms. TIPP2 uses a set of 39 marker genes from [98] and

mOTUsv2 uses a subset of 10 marker genes described in the same study. Bracken

[20] is an extension of Kraken [75] that reassigns the unclassified portion of reads

based on probabilistic estimates of the true abundance profile from the Kraken out-

put. We used BLAST as a baseline to compare TIPP2 performance, assigning each

query sequence the taxonomic label of the hit selected during the read binning phase

of TIPP2 (therefore the BLAST analysis utilizes the same marker gene database as

TIPP2). We then calculate the abundance profile as relative abundance of reads

from each taxon.

4.3.3 Simulated metagenomic datasets

We simulated metagenomic datasets with different characteristics, such as the

average read length (range 100–250 bp), the number of genomes in the sample,

sequencing technology profile, and whether the datasets contain known or novel
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Dataset Test/Train dataset Known/Novel genomes Number of genomes Number of reads Sequencing technology Median read length
Known-51 454 Roche Test Known 51 2,863,285 454 Roche 229
Known-51 Illumina 100bp Test Known 51 8,130,295 Illumina 100
Known-51 Illumina 250bp Test Known 51 3,252,030 Illumina 250
Novel-100 454 Roche Test Novel 100 48,196,018 454 Roche 173
Novel-100 Illumina 150bp Test Novel 100 55,730,636 Illumina 150
Novel-100 Illumina 250bp Test Novel 100 33,397,306 Illumina 250
Novel-33 454 Roche Train Novel 33 17,314,764 454 Roche 173
Novel-33 Illumina 150bp Train Novel 33 20,052,474 Illumina 150
Novel-33 Illumina 250 bp Train Novel 33 12,031,210 Illumina 250

Table 4.2: Properties of simulated datasets.

genomes. A dataset is called ‘novel’ if none of the genomes in the dataset are

present in the reference databases of any of the methods being tested. A dataset

is called ‘known’ if it contains genomes that were used in reference databases of

at least one of the methods tested. We simulated three groups of datasets. The

first group of datasets contained reads from known genomes. We used the ART

sequence simulator [102] to generate three datasets from a mixture of 51 genomes.

We simulated one dataset with the 454 sequencing profile and the other two with the

Illumina profile and different read lengths (100bp and 250bp). Table 4.2 provides

the overview of all datasets, and a more detailed description of how these datasets

were constructed can be found in supplementary section S4.

To find genomes that are ‘novel’ to the methods studied, we downloaded all

complete genomes from the NCBI GenBank database and identified species that

are not represented in the reference database of any method. There were 133 such

genomes. We selected a set of 100 genomes and created three metagenomic datasets

using the ART simulator [102]. We simulated one dataset with the 454 sequencing

profile and the other two with Illumina profile and two different read lengths (150bp,

and 250bp). We used the set of remaining 33 novel genomes to create a third group
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of datasets, which were used just for training and optimizing the TIPP2 pipeline.

4.3.4 Accuracy evaluation

Because we know the true abundance profile for each dataset, we can compute

the error in abundance estimation. To evaluate error in the estimated abundance

profile, we compute the Hellinger distance [103] between the estimated abundance

profile and the true abundance profile. Briefly, the Hellinger distance is

Hl =

√∑
xεCl

(
√
Tx −

√
Ex)2√

2
,

where Cl is the set of clades in the true and estimated profiles for taxonomic level

l, Tx is the abundance of the clade x in the true profile, and Ex is the abundance

in the estimated profile. Hl ranges from 0 (if there is a perfect match between the

profiles) and 1 (if the two profiles are fully disjoint). Note that the reads that are

unclassified at a given taxonomic level are not included in the Hl calculation for

that level.

4.3.5 Running time study

We generated five replicate datasets with 2,000,000 sequences from novel genomes

with two sequencing technologies—454 Roche and Illumina 250bp. Each method was

run on a Blue Waters machine with 16 CPUs and 32 GB of total memory. We report

the average wall clock running time for all methods.
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Figure 4.2: Experiment 1: Precision of reads classified by each marker gene on the
training datasets (Novel-33 datasets). For a given taxonomic level and a marker
gene, the precision (also called positive predictive value) is calculated as the ratio
of the number of reads correctly classified (True positives) to the total number of
reads classified (True positives + True negatives).

4.4 Results

4.4.1 Experiment 1: Testing whether fewer marker genes can cor-

rectly estimate abundances

We wanted to test whether we need the complete set of marker genes in the

TIPP2 pipeline. Using training datasets (Novel-33 454 Roche, Novel-33 Illumina

100bp, Novel-33 Illumina 250bp), we explored the accuracy of abundance estimation

for each gene separately.

We computed precision on a per-gene basis using the accuracy of taxonomic
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Figure 4.3: Experiment 1: Error in abundance profile estimates on training datasets.
The training datasets are simulated metagenomic datasets from novel genomes with
different sequencing technology and read lengths. We show Hellinger distance for
TIPP2 using all marker genes, and TIPP2-fast, which uses just three genes (RpsL,
RpsK, and RplO).

identification of reads using TIPP2. For a given taxonomic level, the precision (also

called positive predictive value) is calculated as the ratio of the number of reads

correctly classified (True positives) to the total number of reads classified (True

positives + True negatives). We found that the RpoB (COG0085) gene consistently

had lower precision than all other genes (see Figure 4.2). Hence, we removed the

RpoB gene from the TIPP2 reference package. Moreover, we found that TIPP2,

when run with just three genes—RpsL (COG0048), RpsK (COG0100), and RplO

(COG0200)—provided better abundance estimates compared to the version that

used the full set of genes (see Figure 4.3). These three genes were the top three

high precision genes when the genes were ranked based on average precision across

taxonomic ranks and datasets. We call this version TIPP2-fast because using fewer

genes for classification reduces the running time of the pipeline (see Table 4.3). We
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found that TIPP2-fast had lower error than TIPP2 at all taxonomic levels above

the species level, and matched TIPP2’s performance at the species level, showing

that using fewer marker genes does not negatively affect the overall accuracy of the

pipeline, and can actually improve accuracy.

4.4.2 Experiment 2: Comparing TIPP2 to TIPP1

In Experiment 2, we compared TIPP2 and TIPP2-fast with TIPP1. First, we

compared TIPP1 and TIPP2 with the same reference package; these results (see

Figures 4.4 and 4.5) show that the changes to the algorithmic design have minimal

impact. Hence, our subsequent comparisons are between TIPP2 (and TIPP2-fast)

using the updated reference package and TIPP1 using the 2014 reference package.

Figure 4.6 shows the average Hellinger distance for TIPP2-fast, TIPP2, and

TIPP1 for known and novel genomes datasets. For both known and novel genomes,

TIPP2 improves on TIPP1, but the improvement is much larger for the known

genome condition, where TIPP2 has a consistent and large improvement over TIPP1.

TIPP2 improves on TIPP2-fast for the known genome condition at all taxonomic

levels, but just matches TIPP2-fast for the novel genome condition. This suggests

that when samples contain well-characterized genomes, using a comprehensive set

of genes (as contained in TIPP2) can provide better abundance estimates, and that

the advantage in using the larger reference package is reduced for novel genomes.
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Figure 4.4: Experiment 2: Comparing TIPP2 and TIPP1, both using the reference
package from 2014 (TIPP1 reference package) on the novel genome datasets. (A)
The Hellinger distances to the true abundance profile (i.e., error) for TIPP2 and
TIPP1 on the novel genome datasets. (B) Number of fragments (reads) correctly
classified, misclassified, and unclassified by TIPP2 and TIPP1 for the novel genome
datasets.
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Figure 4.5: Comparing TIPP2 and TIPP1 using the reference package from 2014
(TIPP1 reference package) on the known genome datasets. (A) The Hellinger dis-
tances to the true abundance profile (i.e., error) for TIPP2 and TIPP1 on the known
genome datasets. (B) Number of fragments (reads) correctly classified, misclassified,
and unclassified by TIPP2 and TIPP1 in known genome datasets.
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Figure 4.6: Experiment 2: Evaluating TIPP2 to TIPP. We show error in abundance
estimates on simulated metagenomic datasets from known and novel genomes, with
different sequencing technology and read lengths. We show average Hellinger dis-
tance for TIPP2 using all marker genes, TIPP2-fast using three marker genes, and
TIPP1.

4.4.3 Experiment 3: Comparing TIPP2 with other methods

In Experiment 3, we used all testing datasets with known and novel genomes

to compare the performance of different abundance profiling methods. Figure 4.7

shows the Hellinger distances for three known genomes datasets (top row), and the

three novel genomes datasets (bottom row). Across datasets with different read

length and sequencing technologies, we observe very minute differences in Hellinger

distances. The trends are consistent and robust regardless of the read length and

technology. As expected, we observe higher Hellinger distances for all methods when

working with datasets with novel genomes than datasets with known genomes.

For the known genomes dataset, MetaPhlAn2 consistently has higher error
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Figure 4.7: Experiment 3: Error in abundance estimates of simulated metagenomic
datasets containing known genomes (A) and novel genomes (B). For each dataset,
we show Hellinger distance between estimated profile and true abundance profile for
TIPP2, TIPP2-fast, and other metagenomic abundance profiling methods.
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compared to other methods. Bracken has the second highest error, after MetaPhlAn2,

at all taxonomic levels except at the species level where it performs similar to

BLAST, mOTUsv2, and TIPP2-fast. BLAST performs very similar to TIPP2-fast

in these datasets. At the genus and species levels, mOTUsv2, BLAST, TIPP2-fast,

and Bracken have very similar performance. mOTUsv2 and TIPP2 have the best

performance at the higher taxonomic levels (phylum to family), but at the genus

and species levels, TIPP2 outperforms mOTUsv2 and all other methods.

In the novel genomes datasets, TIPP2-fast and TIPP2 have similar perfor-

mance except at the phylum level, where TIPP2-fast has lower error than TIPP2.

At all taxonomic levels, TIPP2-fast has comparable or better performance than

all other methods. BLAST has similar performance as TIPP2 at the phylum and

class levels, but incurs higher errors at the order, family, genus, and species lev-

els. MetaPhlAn2, followed by mOTUsv2, have larger Hellinger distances than all

other methods at higher taxonomic levels of phylum, class, order, and family. At

the genus level, BLAST has the worst performance, closely followed by mOTUsv2

and then MetaPhlAn2; and at the species level, BLAST and MetaPhlAn2 have the

worst performance, closely followed by mOTUsv2 and Bracken.

4.4.4 Running time

We generated five replicates of 2,000,000 reads from the novel-100 genomes

datasets with 454 and Illumina sequencing technologies. Table 4.3 shows the average

wall clock time to run these methods on a computer with 16 CPUs and 32 GB
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2,000,000 reads from novel-Illumina datasets
Method Average wall clock running time (hrs)
TIPP2-fast 1.0
TIPP2 5.0
MetaPhlAn2 0.3
mOTUsv2 0.3
Bracken <0.1

2,000,000 reads from novel-454 datasets
Method Average wall clock running time (hrs)
TIPP2-fast 0.8
TIPP2 5.2
MetaPhlAn2 0.2
mOTUsv2 0.2
Bracken <0.1

Table 4.3: Average wall clock running time, in hours, analyzing five replicates of
2,000,000 reads for each sequencing technologies. Each method was run on a dedi-
cated node with 16 CPUs and 32 GB of memory. All methods have multi-threading
implementation, so took advantage of all available CPUs.

memory. All methods are multi-threaded and were able to exploit parallelism by

using multiple cores. Bracken was the fastest of all methods, finishing in less than

6 minutes. Both mOTUsv2 and MetaPhlAn2 performed similarly and finished in

under an hour. Even though TIPP2 performs complex alignment and phylogenetic

placement steps, it is able to complete within five hours. TIPP2-fast, which uses

fewer markers, is significantly faster, and completes within an hour.

To evaluate the running time and peak memory usage for TIPP2, we generated

five datasets, varying the total number of reads from 1M to 10M, where 1% of reads

align to the TIPP2 marker genes and the rest do not align to marker genes. We

generated four replicates for each dataset to document variation in measurements.

For all datasets, TIPP2 was run with 8 CPUs and 36 GB of memory allocation.

In the TIPP2 pipeline, there is a constant cost for creating the reference databases

(specifically the HMMs) for each run on the fly. In our experiments, this step

took 27 CPU minutes and 0.8 GB of memory; this is a small overhead cost in

comparison to the rest of the pipeline usage, and its impact on total CPU time

and peak memory decreases with the increase in number of reads. We also observe

that the read binning phase takes significantly less time than the placement and
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Figure 4.8: CPU time (A) and peak memory usage (B) for five datasets with varying
number of reads. Note that all reads are processed through the first read binning
phase of TIPP2; however, only the reads that align to marker genes are processed
through the placement and abundance estimation phases of the TIPP2 pipeline (this
is 1% of the total set of reads ).

abundance estimation phase of TIPP2 pipeline (Figure 4.8). Thus, even in large

metagenomic datasets, the running time and memory usage will be mainly used for

analyzing the reads aligning to marker genes. For example, if the dataset has ten

million (10,000,000) reads and 1% of the reads align to marker genes, then this will

be approximately 1500 CPU minutes.

4.5 Discussion

Our prior work showed that methods based on marker genes provide better

abundance estimates than the composition-based methods [25]. In this study, we

compared methods for metagenomic abundance profiling, including several based on

marker genes and one (Bracken) that is composition-based. Sequencing technology
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did not have a significant impact on the accuracy of any of the tools tested, and

sequence length had only a small impact. However, methods performed differently

when novel genomes are analyzed compared to known genomes, and differences be-

tween methods were also larger. In datasets that contained sequences from genomes

closely related to those within the reference packages used by the various tools,

most methods performed well, with TIPP2 and mOTUsv2 largely outperforming

the other tools. When working with novel genomes, the performance of all meth-

ods degraded. TIPP2-fast and TIPP2 had the best performance in all datasets at

almost all taxonomic levels. We conjecture that TIPP2 performs well with novel

genomes due to its ability to detect distant homology through its use of sequence

alignment (enhanced by the use of an ensemble of profile HMMs) and phylogenetic

placement, which has shown improved recall compared to other methods (including

single HMMs) in prior studies [104, 105].

Our study shows that TIPP2 improves on TIPP1, a consequence mainly of us-

ing a new reference package which contains a denser reference taxonomy and multiple

sequence alignment for each marker gene. This result shows the importance of the

choice of database in taxonomic classification and abundance estimation tools [90].

To ensure accurate annotation and abundance estimation, a custom, environment-

specific database is desirable; however, many marker-genes based methods are re-

leased with fixed databases which make it nearly impossible to customize the tool

for specific applications, or even to upgrade the database as more data become avail-

able. Consequently, within the TIPP2 package, we release code and documentation

for creating new references to enable end-users to create custom databases.
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One of the interesting observations from our study is that we can accurately

estimate abundances using just a carefully selected small set of marker genes rather

than working with a comprehensive set of marker genes. This is consistent with

mOTUsv2 and mOTU, which also worked with a subset of ten marker genes from

the set of forty genes known to be single-copy and universal [21, 26].

4.6 Conclusions

TIPP, introduced in 2014 (here referred to as TIPP1), provided high accuracy

for abundance profiling of metagenomic reads. Here we introduced TIPP2, an up-

dated version of TIPP1. TIPP2 not only provides more accurate abundance profiling

than TIPP1, but also outperforms commonly used taxonomic profiling tools —es-

pecially when datasets contain genomes that are not closely related to the reference

sequences used by these packages. These improvements will enable a more precise

characterization of microbial communities, particularly those that contain species

that are not well characterized in public databases. Moreover, the biodiversity on

Earth remains under-explored, and tools like TIPP2 are critical for characterizing

the composition of microbial communities, many of which are expected to include

currently uncharacterized genomes.

Our work indicates several directions for future research. The main improve-

ment of TIPP2 over TIPP1 was obtained through the modification to the reference

package. While TIPP1 had 30 marker genes each with about 1300 sequences, our

new reference package had 39 marker genes, each with about 4339 sequences; hence,
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the revised reference package contains more marker genes and each marker gene se-

quence collection is more densely sampled. The improvement of TIPP2 over TIPP1

indicates the value added in increased taxon sampling, and suggests further improve-

ment might be obtained by maintaining and improving the reference package used

by TIPP2. For example, one of the major challenges for taxonomic annotation and

abundance profiling tools is keeping up with constant re-arrangements, renaming,

and changes in microbial taxonomy, spurred in part by metagenomic studies. As

a result, taxonomic profiling tools need to be based on the most recent databases,

since these should provide the most accurate annotations. In our experiments, we

found that many species had changed their order-level labels after MetaPhlAn2

databases were released, and that those changes led to higher error in our evalu-

ations (Experiment 3). Beyond constant updates to reference packages, there is a

need for developing taxonomy-agnostic annotation approaches that rely on sequence

characteristics rather than man-made taxonomic labels (which can have errors, as

this history indicates). We also observed that increasing the taxon sampling of the

reference database improves accuracy. However scaling up accurate phylogenetic

placement to the number of publicly available sequences remains a challenge. Our

study also suggests that additional investigation into the selection of a subset of the

marker genes could be helpful in improving accuracy and reducing running time.
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Chapter 5: Binnacle: using graph scaffolds improves the quality of

metagenomic bins

This chapter contains material previously published in Binnacle: Using Scaf-

folds to Improve the Contiguity and Quality of Metagenomic Bins [106], which was

joint work with Harihara Subrahmaniam Muralidharan, Jacquelyn S. Meisel, and

Mihai Pop. HSM, NS, JSM, and MP conceived the research project. HSM and NS

designed and implemented the algorithm, with the help of JSM and MP. HSM, NS,

and JSM analyzed the data. HSM, NS, JSM, and MP wrote the manuscript.

5.1 Introduction

In chapters 2–4, we explore techniques to characterize the composition of

the sample using a reference database of genomes available in public repositories.

However, many microbes are still not studied, sequenced, or characterized in the

databases. In this chapter, we focus on how to best reconstruct genomes from a

metagenomic sample.

Whole metagenomic shotgun sequencing allows for a comprehensive analysis

of microbial DNA from a sample. It has been instrumental in expanding our under-

standing of the functional potential and genetic composition of different microorgan-
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isms that have not been previously cultured. An important step in characterizing

organisms that have not been isolated is the reconstruction of their complete genome

sequence [107, 108]. This process involves assembling short metagenomic reads into

longer contiguous sequences (contigs) based on sequence overlap. Paired-end read

information can then be used to link together and orient assembled contigs into

scaffolds [28, 29, 30, 31]. However, constructing the genomes of organisms from

a mixture (metagenomic assembly) is computationally challenging. The uneven

abundance of organisms, repetitive sequences within and across genomes, sequenc-

ing errors, and strain-level variations within a single sample often contribute to

incomplete and fragmented assemblies.

In order to improve upon the fragmented assemblies constructed by metage-

nomic assembly tools, researchers utilize a strategy called binning, which involves

clustering together genomic fragments that likely originate from an individual organ-

ism. Several strategies have been proposed for metagenome binning. Classification-

based approaches rely on assigning taxonomic labels to genomic contigs, then group-

ing together those contigs that share a taxonomic label [25, 32, 33, 34]. Classification-

based approaches are limited to organisms (and genomic segments within) that are

sufficiently related to known sequences, and will miss microbes that are yet to be

characterized. Clustering-based approaches focus instead on genomic features, such

as GC content, oligonucleotide frequencies and contig abundance (coverage), to clus-

ter together contigs that share similar properties [35, 36]. While such approaches

are effective even when an organism shares no similarity to any known sequences,

they are stymied by genomic regions that have unusual DNA composition or that
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appear at higher depth of coverage than other segments of the organism of interest

such as plasmids and mobile genetic elements [37].

Clustering/binning has also been applied to genes rather than contigs [109].

The resulting clusters were termed co-abundance gene groups (CAGs). CAGs that

contained a large number of genes, roughly equivalent to the expected number of

genes in a bacterial genome were referred to as metagenome species (MGS). More

recently, in metagenome binning, when a cluster of contigs represents a complete, or

close to complete, genome, it is referred to as a “metagenome-assembled genome”

(MAG). While it is possible to recover MAGs from automated metagenome binning

algorithms, many of the clusters obtained are incomplete or contaminated, and

manual “finishing steps” are required to recover MAGs. In this paper, because we

work with clusters obtained directly from binning algorithms, we refer to them as

metagenomic bins rather than MAGs unless, referring to high quality bins.

While scaffolding and binning are both approaches for grouping together con-

tigs that belong to an individual organism, they are often applied independently of

each other, with some exceptions. MaxBin [110], for example, uses genomic scaf-

folds as a substrate for binning, however, they appear to be handled as if they were

linear contigs. A newer version of this tool, MaxBin 2.0 [111], focuses solely on

contigs. COCACOLA [112] incorporates paired-end information as another source

of linkage information during the binning process, and does not explicitly construct

or leverage scaffold information. GraphBin2 [113] independently bins contigs then

refines the bins in the context of an assembly graph, by correcting bin assignments

and propagating labels to unbinned nodes in the graph.
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Here, we demonstrate the effectiveness of explicitly accounting for scaffold

information in binning. We describe novel algorithms for estimating scaffold-level

depth of coverage information that are effective even for non-linear (graph) scaf-

folds, and show that variation-aware scaffolders, which detect and explicitly model

ambiguity in the assembly graph, help further improve the completeness and qual-

ity of the resulting metagenomic bins. We present a new software tool, Binnacle

that accurately computes coverage of graph scaffolds and seamlessly integrates with

leading binning methods. We show that using graph scaffolds for binning improves

the contiguity and quality of metagenomic bins and captures a broader set of the ac-

cessory elements of the reconstructed genomes. Binnacle is implemented in Python

3 and released open source on GitHub at https://github.com/marbl/binnacle.

5.2 Materials and Methods

Binnacle operates as an add-on to existing binning tools. It relies on MetaCarvel

[31] to construct genomic scaffolds, then uses a new algorithm for estimating the

depth of coverage/abundance of scaffolds from read-mapping data, taking into ac-

count genomic variation as well as potential mis-assemblies and other artifacts. The

resulting abundance information across one or more samples is then provided to a

binning algorithm in order to generate scaffold-level bins (Figure 5.1). Each step in

this pipeline is described in more detail below.
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Figure 5.1: Short reads are assembled into contigs with a metagenome assembly tool.
These contigs are oriented and ordered to generate graph scaffolds. For each scaffold,
based on the length, orientation, and gap estimates, each contig in a scaffold is
assigned global start and end coordinates; and the span of the scaffold is computed.
Scaffold coverage is the per-base depth of coverage across the scaffold span. In
the mis-assembly detection and correction routine, scaffolds are broken up if there
are discontinuities in coverage signals. The final set of scaffolds and corresponding
coverage information are used as input to binning methods to generate metagenomic
bins.
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5.2.1 Metagenome assembly

Like other binning approaches, Binnacle relies on the output of a metagenomic

assembler. Any metagenomic assembler can be used to assemble the data, with the

caveat that assembly errors can have a significant negative impact on binning. The

results presented in this paper were generated by assembling each sample separately

(i.e., avoiding a possibly expensive co-assembly step), and details about the tools

and parameters used are presented below.

5.2.2 Scaffolding with MetaCarvel

Sequencing reads are mapped back to the assembled contigs, and the paired-

end read information is used to scaffold the contigs using MetaCarvel [31]. This

process results in a scaffold graph, where nodes are contigs and edges represent

contig adjacencies inferred from paired-end read information. The scaffold graphs

constructed by MetaCarvel are non-linear and preserve complex graph patterns,

such as bubbles, which manifest when contigs diverge into one or more paths before

converging again. Such patterns typically correspond to sequence variants between

closely related organisms within a community, such as insertion/deletion (indel)

events. Binnacle specifically works with the MetaCarvel scaffolder because of its

unique ability to preserve variation in scaffolds.
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5.2.3 Estimating scaffold span and coverage

One of the key features used by binning algorithms is information about the

abundance/depth of coverage of genomic contigs, either within a single sample, or

across multiple samples. To our knowledge, coverage estimation of scaffolds within

metagenomic data sets has not been critically explored. Most current approaches

rely on raw read counts averaged across the contigs or scaffolds being binned, similar

to the “reads per kilo-basepair per million” (RPKM) measure used in RNA-seq

analysis. A number of artifacts impact coverage estimation from scaffolds using

such an approach, including potential overlaps between contigs (particularly relevant

within regions of genomic variation), and assembly or scaffolding errors.

In non-linear “graph” scaffolds, such as those generated by MetaCarvel, the

genomic extent covered by the scaffold cannot be directly inferred from the size

of the contigs that are scaffolded together. To estimate the scaffold span —total

effective length of the scaffold, i.e., the distance from the starting contig to the

maximal rightmost coordinate of contigs contained in the scaffold —we rely on the

following algorithm. For every graph scaffold, we identify a node with in-degree

0 which is assigned coordinate 0. If a scaffold contains no nodes with in-degree

0, we break the cycle using an approximation of the minimum feedback arc set

problem. This problem is known to be NP-complete [114, 115] and hence we use an

approximate solution: delinking the incoming edges of a vertex with the lowest in-

degree. Coordinates for the other contigs in the scaffold are assigned in a breadth-

first manner taking into account the length of the contig, the length of overlap
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Algorithm 1: Pseudo-code to Assign Coordinates to Contigs in a Sca↵old

Input : Sca↵old Subgraph G
Output: coordinates
if (The minimum in-degree is 0) then

source  Node with in-degree 0
else

Delink the predecessors of node with lowest in-degree.
source  Node with in-degree 0

end
q  Queue()
q.enqueue(source)
coordinates  {}
if source.orientation ==“Forward” then

start, end  0, source.Length
else

start, end  source.Length, 0
end
while q 6= � do

v  q.dequeue()
Mark v as visited.
startv, endv  coordinates[v]
for n 2 G.neighbors(v) do

overlap  G.edge[(v,n)].overlap
if v.orientation == “Forward” then

if n.orientation == “Forward” then
end  endv + overlap
start  end + n.Length

else if n.orientation == “Reverse” then
start  endv+overlap
end  start + n.Length

end

else if v.orientation == “Reverse” then
if n.orientation == “Forward” then

start  startv+overlap
end  start + n.Length

else if n.orientation == “Reverse” then
end  startv+overlap
start  end + n.Length

end

end
if coordinates[n].start < start then

coordinates[n]  (start,end)
end
if n NOT visited then

q.enqueue(n)
end

end

end
return coordinates

1

Figure 5.2: Assigns start and end coordinates to contigs in a scaffold. The lowest
start coordinate and the highest end coordinate determine the scaffold span.
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between contigs, and the relative orientation of the contigs (Figure 5.2). If there

are multiple possible coordinate assignments for a contig (vertex), we retain the one

with the largest possible value. We use this heuristic because choosing any other

strategy to break ties might lead to an artificial increase in depth of coverage and

negatively impact coverage computation. The span of the scaffold is then assigned

to the distance between the right-most and left-most ends of the scaffolded contigs,

based on the inferred contig coordinates.

Once the coordinates are available, we map reads to the contigs using Bowtie

2 (version 2.3.0) [116] and estimate per-base contig coverage using the genomecov

program in the bedtools (version 2.26.0) [117] suite with the options -bga and -

split. The per-base coverage of the scaffold is computed by adding up the coverage

information of the contigs that overlap at each position in the scaffold span.

5.2.4 Detection and correction of mis-assemblies

When building graph scaffolds, MetaCarvel uses mapping of paired-end reads

to contigs to infer adjacency information, however, this approach can sometimes

falsely link together contigs. To detect such events, we rely on discontinuities in the

depth of coverage signal as follows.

Ignoring sequencing biases, we expect each genomic position within a scaffold

span to be covered equally well (uniformly). Hence, we assume that the per-base

coverage of each organism (scaffold) follows a Poisson distribution and can be ap-

proximated by a Gaussian distribution with a mean, µ and a variance, σ2. To break
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up scaffolds containing contigs possibly originating from multiple species, we rely on

a change point detection algorithm [118, 119] that operates on the per-base coverage

signals.

To identify change points, we slide a window w of size |w| along the coverage

signal, computing the empirical means and variances. The user can select any value

of w, but by default, we set |w| = 1500 bp. For scaffolds shorter than 3000 bp,

we recursively set |w| = |w|/5 until the scaffold length is at least 2w. For each

position i along the scaffold span, we note the mean µi−1 and variance σ2
i−1 of the

window wi−1 defining the coverages from the coordinates i− |w| to i and the mean

µi and variance σ2
i of the window wi defining the coverage along the positions from

i to i+ |w|. We identify the windows wi−1 and wi with respect to the position i as

predecessor and successor windows, respectively. Given the coverage distribution for

the two windows, we compare these distributions using the two-sample Z-statistic

given by,

Z =
µi−1 − µi√
σ2
i−1 + σ2

i

(5.1)

The empirical distribution of the Z-statistic such derived forms a Gaussian

distribution, and we select the points within the tails of the Z-statistic distribution

as candidates for change points (by default, we set α = 1 percentile). To reduce

the potential for false-positives, we next check if the change points coincide with

the start or end of a contig within the scaffold, which suggest that the identified

contig is incorrectly linked into the scaffold. Therefore, we delink the contig from its

predecessors if the change point coincides with its start and delink from its successor
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Algorithm 2: Pseudo-code Describing the Changepoint Detection Algorithm for Identifying Outliers
in Graph Sca↵old Coverages

Input : coverage- Perbase coverage of the sca↵old
coordinates- Coordinates of the contigs in the sca↵old computed by Algorithm 1
|w|- Size of the sliding window
↵- The threshold for identifying outliers
�- The cuto↵ parameter to delinking contigs

Zstat  []
for i |w| to coverage.Length-|w| do

wi�1  coverage[i-|w|,i]
wi  coverage[i,i+|w|]
µi�1,�i�1  mean(wi�1), SD(wi�1)
µi,�i  mean(wi), SD(wi)
Zstat[i] µi�1�µip

�2
i�1+�2

i

end
Zlow  Percentile(Zstat,↵)
Zhigh  Percentile(Zstat, 100� ↵)
Zoutliers  Zstat[Zstat > Zhigh|Zstat < Zlow]
outliers  Index(Zoutliers)
for o 2 outliers do

for contig 2 coordinates do
start,end  coordinates[contig]
if |o� start|  � then

Delink the predecessors of contig
if |o� end|  � then

Delink the successors of contig
end

end

end

2

Figure 5.3: Pseudocode describing the change-point detection algorithm. The al-
gorithm takes in two parameters α and β denoting the threshold for identifying
outliers and the cutoff parameter to delink contigs, respectively.

if the change point coincides with its end β = read length). We also note that there

are a few change points identified by our algorithm that do not coincide with the

start or end of a contig. These could be due to either statistical artifacts or errors

introduced by the assembler, but we do not currently address these in Binnacle.

This change point detection algorithm can work with both contig and scaffold

coverages. We note that 40% of the time, a change point coincides with the beginning

or end of a contig. When this happens, we delink the contig in the scaffold (i.e.,

remove the connections between the contig and its neighbors, resulting in multiple

scaffolds). The remaining 60% of change points either occur too close to a previously
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Figure 5.4: The mis-assembly detection algorithm in Binnacle. This is a scaffold
from HMP sample SRS012902. The plot on the top shows the position of contigs
along the scaffold span. The plot at the bottom shows the per-base depth of coverage
across the scaffold span. The locations detected by the change point detection
algorithm are highlighted by vertical red lines.
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delinked contig or occur in the middle of contigs, revealing potential assembly errors.

The handling of such situations requires further research that goes beyond the scope

of this manuscript. The algorithm is described in detail in Figure 5.3. An example

of the algorithm applied to a scaffold in the HMP dataset is shown in Figure 5.4.

In the HMP dataset, an average of 4% of all the scaffolds were broken by change

point detection.

After correcting potential scaffolding errors, Binnacle generates files reporting

the per-base coverage for all scaffolds, describing the global coordinate information

and describing the mean and standard deviation in coverage for all the scaffolds.

In addition, we also provide a FASTA file of the final set of scaffolds after the mis-

assembly detection routine. The abundance file and the scaffolds file provided by

Binnacle can be readily used by existing binning algorithms. We currently provide

interfaces to MetaBAT2 [120], MaxBin 2.0 [111], and CONCOCT [121].

5.2.5 Estimating scaffold coverage across multiple samples

The procedure described above is used when estimating scaffold coverage

within the sample from which the scaffold is derived. If multiple samples are avail-

able, binning algorithms can leverage coverage information from all the samples to

identify contigs/scaffolds that co-vary in abundance. When using multiple samples,

the reads from each sample are mapped to the contigs/scaffolds of all of the sam-

ples and the mean abundance of each contig/scaffold is reported on a per sample

basis. This approach produced fewer high contamination bins than binning with-
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Figure 5.5: Binning using coverage information from all samples produces fewer high
contamination bins for the HMP dataset. Comparing bins generated by MetaBAT2
with graph scaffolds (1), contigs (2), and linear scaffolds (3) for the HMP dataset.
A) Cumulative base pairs binned when using coverage from the single sample (yellow
dotted line), and when using coverage information from all samples (blue solid line).
Bins are ordered in decreasing order of their size. The upper curve corresponds to
higher contiguity for the same number of bins. B) Bins are ordered in decreasing
order of their completeness value from CheckM evaluation. The upper curve indi-
cates that more bins are contained at the same or higher level of completeness. C)
Bins are ordered in the increasing order of their contamination value from CheckM
evaluation. The higher curve indicates that more bins are contained at the same or
lower level of contamination.
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out combining coverage information from multiple samples (Figure 5.5). Identifying

and comparing contigs across samples is challenging. Determining how to best use

abundances estimated from multiple samples remains an active area of research.

5.2.6 Analysis of metagenomic datasets

To benchmark Binnacle, we first relied on a known-composition mock dataset

described in [122], which is referred to as “simulated data” in the remainder of

this paper. The corresponding data were obtained from the GigaDB database

(http://dx.doi.org/10.5524/100719). We also evaluated our method on three real

metagenomic datasets: (1) a time series of 18 fecal samples from a single premature

infant (infant 31) from Sharon et al. study [123] referred to as the “infant gut data”

in the remainder of this paper, (2) 20 complex stool samples from the Human Mi-

crobiome Project [124] referred to as the “HMP gut data”, and (3) a time series of

12 samples from subject HV12 in a skin microbiome study [125] referred to as the

“skin longitudinal data”. All three datasets are complex, human-associated micro-

biomes. The infant gut data was selected because there is good understanding of

the underlying community structure and the study assembled and published several

reference genomes1 of organisms identified within these samples. For the three real

metagenomic datasets, we downloaded reads from the NCBI read archive.

For the HMP gut dataset, we used IDBA-UD assemblies provided by the

HMP consortium. For all other datasets, we assembled the reads into contigs us-

ing MEGAHIT (version 1.1.2) [126]. For all datasets, we generated scaffolds using
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MetaCarvel [31]. Both MetaCarvel and MEGAHIT were run with default parame-

ters. MetaCarvel outputs both variation-aware graph scaffolds and optimized linear

sequences as linear scaffolds. Through Binnacle, a mis-assembly detection and cor-

rection routine was used to break up any mis-joined scaffolds, and then scaffold

coverages were estimated. We refer to scaffolds obtained through the Binnacle step

as “graph scaffolds” and linear sequences from MetaCarvel as “linear scaffolds”.

To assess the quality of binning, in the simulated data set we relied upon the

known genome sequences from which this dataset was constructed. Similarly, the

publication describing the infant gut dataset identified a set of 33 reference genomes

that were present in these samples, which we use as a reference for validation. In both

datasets, we aligned the binned contigs to the reference genomes using minimap2

(version 2.1) [127]. Each bin was assigned to the genome to which the majority

of base pairs aligned. We compute completeness as the percentage of the assigned

genome represented in the bin, and contamination as the percentage of base pairs in

the bin that did not align to the assigned genome. For the HMP gut data and the

skin longitudinal data, where reference genomes were not available, we used CheckM

(version 1.0.11) [128] to compute the completeness and contamination of the bins.

In the simulated dataset, we tested three binning methods —MaxBin 2.0 (ver-

sion 2.2.5) [111], COCACOLA [112], and MetaBAT2 (version 2.12.1) [120] focusing

on three features: contigs, linear scaffolds, and graph scaffolds. All methods employ

a different threshold on the length of contigs used for binning. To make comparisons

across binning methods fair, we ran MaxBin 2.0, COCACOLA, and MetaBAT2 with

the same contig threshold (> 2500 bp). COCACOLA can use paired-end informa-
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tion to assist binning. To assess the effectiveness of this feature we ran COCACOLA

in paired-end mode on the assembled contigs. When applied to graph scaffolds and

linear scaffolds, we disabled COCACOLA’s paired-end processing.

MetaBAT2 generated bins with lower contamination than both MaxBin 2.0

and COCACOLA (discussed later in results). Hence, for the three real metagenomic

datasets, we only show results obtained with MetaBAT2 [120] (default parameters).

MetaBAT2 uses the abundances and sequence composition information to bin ge-

nomic sequences. We estimated the coordinates, span, and abundance of scaffolds

using Binnacle for each sample with its own set of reads. We then estimated abun-

dances for each scaffold along the scaffold span using the reads of all other samples

in the dataset as additional features. Similarly, while binning with contigs and bin-

ning with linear scaffolds, we computed mean and variance of coverages from all

samples.

To examine bins in the skin longitudinal dataset, we focused on bins that be-

longed to the Cutibacterium (Propionibacterium) genus, as identified by CheckM

[128]. We extracted the contigs within each bin and aligned them to the Cutibac-

terium acnes KPA171202 reference genome (GCA 000008345.1) using MetaQUAST

[129]. Contigs within linear and graph scaffolds were used (instead of the scaffold

sequences) to prevent misalignment of structural variant features. For pangenome

analyses, a total of 27 complete C. acnes reference genomes were downloaded from

NCBI. Genes were predicted from these references using Prokka [130] and the

pangenome was calculated using Roary [131]. Genes found in all 27 references

were considered “core” genes and those found in at least 2 samples were considered
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“accessory.” Genes were predicted in the MAGs using Prodigal [132] with the “-p

meta” option and were aligned using BLAST [45] against the pangenome reference

sequences (E-value 1e-3, percent identity 75). BLAST hits with a query and subject

coverage of at least 50% were retained and annotated as either “core” or “accessory”

genes. Genes with multiple hits were assigned to the hit with the greatest align-

ment length and percent identity. Genes identified in the metagenomic assemblies

but not found in the reference genomes were flagged as “putative-accessory” genes.

CRISPR/Cas elements were detected within the bins using CRISPRCasFinder on

the web [133]. Contigs in MET0773 were annotated using Prokka v 1.12 [130] and

visualized with the R package genoPlotR [134].

5.3 Results

To determine whether graph scaffolds can improve binning quality, we ana-

lyzed one simulated dataset and three sets of real metagenomic samples: infant

gut samples, HMP gut samples, and skin longitudinal samples, described further in

Methods. For samples from each of these datasets, we assembled and binned contigs

and scaffolds with Binnacle and MetaBAT2.

5.3.1 Impact of accurate estimation of scaffold coverage/abundance

Depth of coverage information is one of the key features used by binning al-

gorithms. Correctly estimating this information is difficult, particularly in metage-

nomic datasets where genomic variants and highly conserved regions confound the
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Figure 5.6: An example scaffold with coverage estimated with Binnacle. The plot
at the top shows the position of contigs along the scaffold span. Contigs within
the red dotted box are part of a bubble (signature of strain variation) detected
by MetaCarvel. Only three contigs (highlighted in blue color) were binned by
MetaBAT2 when contigs rather than scaffolds were provided as input. The plot
at the bottom shows the cumulative per-base depth of coverage across the scaffold
span as estimated by Binnacle.
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signal. As described in Methods, Binnacle leverages information about the relative

placement of contigs inside of a scaffold to better estimate abundance. As seen in

Figure 5.6, the coverage signal estimated by Binnacle across the scaffold span of a

single scaffold from the HMP stool sample SRS023829 is fairly uniform. This signal

takes into account the overlap between multiple contigs, aggregating the coverage

information within the overlapping region. The contigs from this scaffold can be

assigned to organisms from the Bacteroides genus through a BLAST [45] search

against the nt database. When using contigs alone for binning, only three of these

contigs were binned (highlighted in blue color in Figure 5.6). Some of the unbinned

contigs may have been excluded due to their size as, by default, MetaBAT2 only

bins contigs greater than 2,500 base pairs. However, there were also several long

contigs that remained unbinned despite having strong paired-end read connections

to the rest of the contigs.

5.3.2 Binnacle improves contiguity, completeness, and contamination

of bins

To assess the effectiveness of different types of information in binning, we pro-

vided binning algorithms with three sources of data: (i) contigs (the most common

usage); (ii) linear scaffolds; and (iii) graph scaffolds that preserve the ambiguity

introduced in the assembly graph by genomic variation. The comparison between

linear scaffolds and graph scaffolds allows us to determine whether any improve-

ment in binning effectiveness is due to the longer sequences provided to binning
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algorithms, or if there is a real benefit in accounting for the structure of the graph

in regions of genomic variation.

We compared results from three binning methods, MaxBin 2.0, COCACOLA,

and MetaBAT2 each supplied with contigs, linear scaffolds, or graph scaffolds. For

all three methods, bins generated with graph scaffolds comprised more base pairs,

and had higher completeness and lower contamination than bins generated with

contigs or with linear scaffolds (Figure 5.7). The simulated dataset contained 100

genomes. We aligned contigs from each bin to the known reference genomes and

taxonomically annotated bins with the genome for which the majority of base pairs

aligned. To ensure only one bin per reference genome, we only considered bins that

were at least 50% complete. Graph scaffolds, linear scaffolds, and contigs recovered

40, 38, and 21 putative genomes on average, respectively. In the case of COCA-

COLA, a tool that can leverage paired-end information natively, we observed that

its handling of this information was less effective than that provided by scaffolding

approaches such as MetaCarvel (the basis for the scaffolds used in Binnacle) (sec-

ond row in Figure 5.7). Moreover, when using paired-end information, contiguity

and completeness were comparable; only contamination of the bins was improved.

Irrespective of the binning method employed, graph scaffolds improved the conti-

guity, completeness, and contamination of the resulting bins. However, we used

MetaBAT2 as the binning method for the remaining analyses in this paper.

We assessed both the completeness and level of contamination of the resulting

bins from all three real metagenomic datasets. For the infant gut dataset, we com-

puted completeness and contamination of the bins based on a set of 33 reference
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Figure 5.7: Binning with graph scaffolds improves contiguity, completeness, and con-
tamination in genome bins from the simulated dataset. Comparing bins generated
by MetaBAT2 (solid lines) (1), COCACOLA (dotted lines) (2), and MaxBin 2.0
(dashed-dotted lines) (3) using contigs (yellow), linear scaffolds (black), and graph
scaffolds (blue) for the simulated dataset. COCACOLA contigs were binned both
with and without paired end information. (A) Cumulative base pairs binned with
contigs, linear scaffolds, and graph scaffolds. Bins are ordered in decreasing order
of their size. The upper curve corresponds to higher contiguity for the same num-
ber of bins. (B) Completeness is defined as the percentage of the assigned genome
represented in the bin. Bins are ordered in decreasing order of their completeness
value. The upper curve indicates that more base pairs are binned by graph scaffolds
at the same or higher level of completeness. (C) Contamination of a bin is defined
as the percentage of base pairs that did not align to the assigned genome. Bins
are ordered in the increasing order of their contamination value. The higher curve
indicates that more base pairs are binned by graph scaffolds at the same or lower
level of contamination.
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Figure 5.8: Binning with graph scaffolds improves contiguity, completeness, and
contamination in genome bins from the infant gut dataset. Comparing bins gener-
ated by MetaBAT 2 using contigs, linear scaffolds, and graph scaffolds for the infant
gut dataset. A) Cumulative base pairs binned with contigs, linear scaffolds, and
graph scaffolds. Bins are ordered in decreasing order of their size. The upper curve
corresponds to higher contiguity for the same number of bins. B) Completeness is
defined as the percentage of the assigned genome represented in the bin. Bins are
ordered in decreasing order of their completeness value. The upper curve indicates
that more bins are contained in graph scaffolds at the same or higher level of com-
pleteness. C) Contamination of a bin is defined as the percentage of base pairs that
did not align to the assigned genome. Bins are ordered in the increasing order of
their contamination value. The higher curve indicates that more bins are contained
in graph scaffolds at the same or lower level of contamination.
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Figure 5.9: Graph scaffolds bin more contigs and reduce bin contamination in the
HMP gut dataset. Comparing bins generated by MetaBAT2 using contigs, linear
scaffolds, and graph scaffolds for the HMP gut dataset. The completeness and con-
tamination of bins were evaluated with CheckM. (A) Cumulative base pairs binned
with contigs, linear scaffolds, and graph scaffolds. Bins are ordered in decreasing
order of their size. The upper curve corresponds to higher contiguity for the same
number of bins. (B) Bins are ordered in decreasing order of their completeness value
from CheckM evaluation. The upper curve indicates that more bins are at the same
or higher level of completeness. (C) Bins are ordered in the increasing order of their
contamination value from CheckM evaluation. The higher curve indicates that more
bins are at the same or lower level of contamination.

genomes that were identified to be present in these samples (See section “Materi-

als and Methods”). Similar to the performance on simulated data, bins generated

with graph scaffolds contained more base pairs than bins generated with contigs

and linear scaffolds (Figure 5.8). Moreover, bins from graph scaffolds had higher

completeness and lower contamination than bins generated with contigs and linear

scaffolds.

We next analyzed complex metagenomic samples from the HMP gut study.

We did not have prior information about the community structure and genomes

present, so we used CheckM [128] to evaluate the bins. CheckM uses sets of highly

prevalent single-copy genes to assess the overall quality of genomes or genome bins,

including their completeness, contamination, and strain heterogeneity. Bins gener-
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ated from linear scaffolds grouped more base pairs than bins generated with contigs

(Figure 5.9A). They also had comparable completeness and generally lower contam-

ination (Figures 5.9B,C). When using graph scaffolds that include potential strain

variants, the contiguity of the resulting bins improved, and a majority of bins have

low contamination level (Figure 5.9, solid blue line).

Samples in the HMP gut dataset contained an average of 70 million reads.

Binnacle took an average of 7.75 min to run (min = 2.7, max = 96.75, SD = 31.75

min) and had a peak memory usage of less than 3GB on average (min = 1.6, max =

10, SD = 2.57 GB). We ran these samples on a Linux computing cluster specifying a

memory limit of 36 GB using a single processor. Given that these jobs took less than

10 GB of memory to run, they should run efficiently on most modern computing

hardware.

5.3.3 Binnacle recovers Cutibacterium acnes bins from sebaceous skin

samples

To further evaluate Binnacle’s performance, we used it to bin the skin longi-

tudinal dataset with multiple samples from two sebaceous, or oily, skin sites —the

back of the head (occiput) and the external auditory canal of the ear —as well as

two moist body sites —the toe web and plantar heel —all from the same healthy

volunteer. Within these samples, there were similar improvements in bin contiguity,

completeness, and level of contamination when binning graph scaffolds compared to

when binning contigs and linear scaffolds (Figure 5.10).
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Figure 5.10: Binning with graph scaffolds improves contiguity, completeness, and
contamination in genome bins from the skin longitudinal study dataset. Comparing
bins generated by MetaBAT 2 using contigs, linear scaffolds, and graph scaffolds for
the skin longitudinal study dataset. A) Cumulative base pairs binned with contigs,
linear scaffolds, and graph scaffolds. Bins are ordered in decreasing order of their
size. The upper curve corresponds to higher contiguity for the same number of bins.
B) Bins are ordered in decreasing order of their completeness value from CheckM
evaluation. The upper curve indicates that more bins are at the same or higher level
of completeness. C) Bins are ordered in the increasing order of their contamination
value from CheckM evaluation. The higher curve indicates that more bins are at
the same or lower level of contamination.
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Body Site Timepoint Sample Method # contigs # contigs (>1,000 bp) Total length Total aligned length Genome fraction (%) # of bubble contigs

External auditory canal
(Ea)

1 MET0308
contig 367 367 2,290,385 2,136,612 80.191 12

linear scaffold 591 493 2,475,611 2,390,694 87.702 43
graph scaffold 669 520 2,606,365 2,475,094 88.404 52

2 MET0749
contig 237 237 2,601,507 2,452,477 93.375 4

linear scaffold 288 256 2,662,358 2,502,296 94.439 7
graph scaffold 305 260 2,680,429 2,514,146 94.495 7

3 MET0768
contig 136 136 2,548,346 2,444,275 94.219 2

linear scaffold 120 108 2,506,265 2,447,111 94.6 3
graph scaffold 160 137 2,370,487 2,262,214 86.668 4

Occiput (Oc)

2 MET0754
linear scaffold 1059 671 1,711,485 1,559,541 57.717 0
graph scaffold 972 625 1,606,432 1,463,457 54.226 0

3 MET0773
contig 365 365 1,850,617 1,782,219 67.091 5

linear scaffold 742 546 2,342,529 2,183,639 77.716 41
graph scaffold 966 677 2,777,243 2,460,422 81.625 73

Table 5.1: Cutibacterium bins detected in the skin longitudinal samples.

Cutibacterium acnes, formerly referred to as Propionibacterium acnes, is a

known prominent bacterial community member at sebaceous skin sites because it

utilizes the fatty acids in the sebum (the oily substance produced by sebaceous

glands) for energy. Different strains of the commensal C. acnes have been associated

with acne vulgaris [135]. Because of its prominence on the skin and its implications

for skin health, we searched for this organism in the skin longitudinal dataset; we

were able to recover bins belonging to the Cutibacterium genus from five of the six

sebaceous samples (Table 5.1). These bins contained contigs belonging to C. acnes.

We mapped the Cutibacterium bins to the reference genome for C. acnes and found

that bins generated with graph scaffolds generally covered a greater proportion of the

reference genome than bins generated with contigs and linear scaffolds. Furthermore,

both linear and graph scaffolds were able to recover a Cutibacterium bin from sample

MET0754 that was not identified when binning with contigs alone.

A common concern with binning algorithms is that they largely capture the

core genome of organisms, omitting potentially relevant accessory genes. We classi-

fied C. acnes genes into core, accessory, and putative-accessory genes as described in

Methods. As seen in Figure 5.11, bins constructed from graph scaffolds captured a
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Figure 5.11: Cutibacterium bins generated by graph scaffolds capture more auxiliary
genome elements. Genes predicted from C. acnes bins were mapped to genes from
the C. acnes pangenome and characterized as core, accessory, or putative-accessory.
The x-axis denotes the number of genes in all of the C. acnes bins and the y-axis
denotes the method by which each gene was binned. The label denotes the total
number of genes in each bar. In (A) all genes binned by each method are included
in the bars, while in (B) they are separated by how they are shared across binning
methods.

larger fraction of accessory and putative-accessory genes, while bins constructed

from contigs (the most commonly used approach) contained mostly core genes.

Among the accessory and putative accessory genes identified in the metagenomic as-

semblies, 86.9% were binned within graph scaffold bins (10.5% were uniquely binned

by graph scaffolds and no other methods).

5.3.4 Binnacle captures structural genomic variation

By using scaffolds that include structural variants, we intended to capture

genes and genomic elements that are typically missed by contig-based analyses. As

shown in Table 5.1, many contigs identified within variant regions by MetaCarvel

appeared only in bins constructed from these scaffolds, i.e., the information typically

used by binning algorithms was not able to associate these contigs with the C. acnes
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Figure 5.12: Cutibacterium bins in sample MET0773. (A) Ordered lengths of graph
scaffolds (top), linear scaffolds (middle) and contigs (bottom) included in C. acnes
bins, highlighting the greater fragmentation in the bin generated using contigs. Red
boxes highlight graph scaffolds depicted in parts (B-D). In (B-D), the large arrows
represent contigs in a single graph scaffold. Lines connecting contigs denote paired-
end read support. Contigs are colored to indicate the methods that include them
in the C. acnes bins. Scaffold plots were generated by MetagenomeScope [136]
but updated and modified to improve visualization in Illustrator. Genes in contigs
uniquely binned by graph scaffolds are depicted below the scaffold as thin arrows.
Genes were predicted and annotated by Prokka [130] and visualized with the R
package genoPlotR [134].
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genome.

In sample MET0773, all three scaffolding methods detected a C. acnes bin

(Table 5.1), however, the C. acnes bin generated using graph scaffolds was more

contiguous and had less fragmentation than the bin generated using contigs (Figure

5.12A). Furthermore, a total of 32 variant contigs (2 indels, 20 simple strain variants,

and 10 complex strain variants) were uniquely identified in the C. acnes bin gener-

ated using graph scaffolds. One such variant contained elements of the subtype I-E

CRISPR-Cas system (Figure 5.12B) that has previously been characterized in C. ac-

nes [137]. Within this same sample, a contig that was not in a structural variant but

was uniquely binned using graph scaffolds contained a CRISPR array with five spac-

ers, one of which had close similarity to the Cutibacterium phage PAVL21 genome

(Supplementary Table 3). Another indel that was only binned by graph scaffolds

contains genes involved in the degradation of myo-inositol into acetyl-CoA (Figure

5.12C). In Corynebacterium glutamicum, genes involved in this pathway allow the

bacterium to use myo-inositol as a carbon and energy source [138]. This indel also

contains genes encoding two HTH-type transcriptional regulators (galR and degA).

A contig uniquely binned by graph scaffolds in a complex strain variant contains a

gene annotated as mptA (Figure 5.12D); in Mycobacterium tuberculosis and C. glu-

tamicum, this gene is involved in the biosynthesis of cell-wall associated lipomannan

that has several immunomodulatory properties mishra2011lipoarabinomannan.
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5.4 Discussion

Binning (based on sequence composition and depth of coverage) and scaffolding

(based on paired-end information) provide complementary approaches for grouping

together contigs from metagenomic samples that likely originate from the same

organism. At the outset of our study, we hypothesized that combining the two

approaches would yield improvements in the contiguity and quality of the resulting

bins. While others have used paired-end read or scaffold information to augment

binning, we identified a major overlooked factor —the computation of depth of

coverage at a scaffold level, computation that can be impacted by scaffolding errors

and strain variation. To our knowledge this contribution is novel, and as we have

shown, providing binning algorithms with depth of coverage information derived

from linear and non-linear (graph) scaffolds improves the quality of the bins over

what can be achieved by binning contigs alone.

We attribute the improvements we have demonstrated to three factors. The

first is, as already mentioned, a more accurate estimation of scaffold depth of cov-

erage, information used by the binning algorithm to determine which contigs or

scaffolds should be grouped together. The second is simply the longer-range infor-

mation available in scaffolds as opposed to individual contigs. A third factor is the

use of variation-aware scaffolds which were referred to as “graph scaffolds” in the

manuscript.

Binning algorithms rely on depth of coverage and sequence composition infor-

mation, and accurately estimating this information requires long genomic segments.

112



As a result, small contigs get excluded from binning either by design or because of

incorrect estimates of coverage or sequence composition. The longer genomic con-

text of scaffolds provides an opportunity for binning algorithms to more accurately

estimate the information necessary for binning. Furthermore, certain genomic re-

gions, such as mobile elements, usually have a different sequence composition from

the rest of the genome (this is in fact one of the signals used to detect such regions)

and may, therefore be missed. Paired-end information, however, can link together

contigs irrespective of length and sequence composition, thereby capturing a larger

fraction of the sequence from the assembly. These links are generally accurate; in

the simulated dataset over 99% of the paired-end reads linked contigs belonging to

the same species.

Typically, metagenome assemblers and scaffolders attempt to construct a sin-

gle linear sequence representing a segment from the chromosome of an organism

in the sample. In many cases, however, such a linear representation ignores the

presence in the sample of multiple variants of an organism, not unlike the presence

of multiple isoforms of genes in eukaryotic transcriptomes. By explicitly modeling

this variation, Binnacle is able to more accurately estimate the depth of coverage of

scaffolds, thereby improving the efficacy of the binning process. When considering

only a linear representation of a contig or scaffold, conserved genomic regions would

appear to have higher depth of coverage than the variant regions. We examined the

distribution of coverage across contigs, linear scaffolds, and graph scaffolds. In the

human metagenomic datasets analyzed here, the median coverage of contigs binned

was 4.2 (Sharon), 19.5 (skin), and 23 (HMP). We found that graph scaffolds are not
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biased toward contigs that are more highly abundant. In fact, graph scaffolds have

the ability to bin variants that are usually lower coverage, simply because variants

are linked to higher coverage neighbors.

We observed that binning results varied widely across samples. When samples

had great strain diversity, like the mock community that contains over 100 different

taxa, using graph scaffolds significantly improved the contiguity and quality of the

bins. However, when samples were less diverse, like those in the Sharon dataset, all

binning approaches produced similar results. The complexity and strain diversity

of a sample have a significant impact on the effectiveness of binning, and on the

improvement that can be obtained by leveraging variation-aware scaffolds.

Another advantage of working with variation-aware scaffolds in Binnacle is

that the resulting bins contain a better representation of the genic content of the

organisms from the sample. In our investigation of C. acnes in the skin microbiome,

bins constructed from graph scaffolds contain a larger number of accessory genes

than bins constructed from linear scaffolds or contigs. Furthermore, graph scaf-

fold bins uniquely identified contigs in structural variants that were related to the

CRISPR-Cas system, catabolic processes, transcriptional regulation, and cell wall

biosynthesis; traditional binning approaches missed the association of these variants

with this genome. We hope that this observation will further strengthen the case

for the development and use of tools that explicitly model strain variation when

analyzing metagenomic data sets.

It is important to note that while read-based binning approaches exist [122,

139], many metagenome binning methods, including Binnacle, can only work with
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assembled sequences from the sample. It has been shown that assembled sequences

improve taxonomic classification [140]. Generally, reads from rare species and low-

coverage regions do not assemble well. Thus, binning methods may not be effective

for low abundance species. Another important but often overlooked point is the

variable resolution of bins obtained. Even though one would like to obtain all bins

as species-level metagenome assembled genomes, this goal is rarely achieved in prac-

tice. First, it is important to note that the concept of a bacterial species is not well

defined. Second, the level of sequence divergence between closely related organisms

varies widely across the bacterial taxonomy and even across the length of genomes.

This may explain the somewhat surprising observation that Binnacle maintains low

bin contamination even when using graph scaffolds that include sequence variation.

CheckM relies on the number of multicopy marker genes to compute contamina-

tion, and these genes are more likely to be conserved among the strains forming

the pangenome represented by Binnacle bins. In mock communities, we were able

to compute contamination more precisely by mapping contigs to the relevant ref-

erence genome sequences. Even in this setting, the use of graph scaffolds did not

result in higher contamination levels. As we have noted earlier, the paired end in-

formation we used accurately linked together contigs from the same organism, i.e.,

the underlying scaffold information itself has a low level of contamination. We hy-

pothesize that the longer context provided by scaffolds allows binning algorithms to

more accurately detect relationships between sequences derived from a same organ-

ism, thereby leading to lower levels of contamination than when using contigs as a

substrate for binning.
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In its current implementation, Binnacle does not attempt to resolve the mul-

tiple strains/haplotypes represented in its bins. A number of algorithms developed

for haplotype phasing [141, 142], viral quasi-species estimation [143, 144, 145], and

species estimation in metagenomics [146] can be applied here to estimate the num-

ber of species in a bin, and to split bins into multiple MAGs. We intend to pursue

this line of research in future iterations of our tool.

We would also like to argue for the importance of effective visualization tools

that can provide researchers with more information about the relative placement

of contigs within a bin along a chromosome as well as variation information. Tools

for visualizing assembly graphs, such as Bandage [147] and MetagenomeScope [136]

are a first step in this direction, but these tools are still cumbersome to use in large

data sets. Further opportunities for future research include new approaches for

estimating depth of coverage, particularly when using data from multiple samples.

While substantial progress has been made in the field of RNA-seq quantification [e.g.,

Salmon [148]], metagenomic approaches still rely on fairly simplistic assumptions.

We believe that Binnacle represents a first step toward the development of ef-

fective metagenomic analysis tools that can leverage all the information contained in

one or more samples to reconstruct nearly complete genomic sequences, approaching

the goal of automated reconstruction of MAGs.
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Chapter 6: A critical assessment of gene catalogs for metagenomic

analysis

This chapter contains material previously published in A critical assessment

of gene catalogs for metagenomic analysis [149]. This project was joint work with

Seth Commichaux, Jay Ghurye, Alexander Stoppel, Jessica A. Goodheart, Guillermo

G. Luque, Michael P. Cummings, and Mihai Pop. This project was conceived and

initiated at the 2017 Bioinformatics Exchange for Student and Teachers (BEST)

summer school in Heiligkreuztal, Germany. MP conceived this project. All authors

helped initiate the project. SC, NS, and MP were involved in the design and execution

of all experiments. JG, AS, and JAG contributed to initial data analysis. SC, NS,

and MP wrote the manuscript with contributions from all authors.

6.1 Introduction

Increasingly, studies of microbial communities rely on metagenomics —the se-

quencing of DNA extracted directly from a microbial mixture. Assembling metage-

nomic reads into longer contiguous sequences (contigs) is still a computationally

challenging problem, because of repeated sequences within and among genomes, un-

even abundances of organisms, sequencing errors, and strain-level variation. Due to
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these challenges, and to limitations of sequencing technology, reconstructing com-

plete and accurate genomes for all organisms in a single, complex metagenomic

sample is still challenging. Given enough samples, metagenome assembled genomes

can be reconstructed for many, but often not all, of the species comprising a micro-

biome. Regardless, metagenomic assemblies typically comprise many small contigs

of unknown taxonomic origin.

The fragmented nature of metagenomic assemblies complicates data analysis,

both because it is difficult to associate genomic fragments with individual taxa, and

because it is difficult to identify related genomic fragments across samples. For

these reasons, the earliest metagenomic studies focused on genes (and their inferred

functions) found within assembled fragments, ignoring their precise taxonomic ori-

gin. Even in fragmented data, genes can be fairly effectively identified [150]. A

gene-centric approach was used in the first large scale metagenomic study of ocean

bacteria [39]. To prevent overcounting due to sequencing and assembly errors, or

due to small differences in gene sequences within closely related organisms, Yooseph

et al. [39] clustered the protein sequences based on similarity and focused their anal-

ysis on the representative sequence of each cluster. This gene “catalog” revealed the

tremendous diversity of bacterial functions in the ocean, with the newly predicted

protein sequences doubling the number of known proteins. The MetaHIT project

[40] constructed a similar catalog in order to characterize the functional composition

of the human gut microbiome. Qin et al. [151] leveraged a gene catalog as the basis

for a microbiome association study in type 2 diabetes, and introduced the concept

of metagenomic linkage groups —groups of genes that co-vary in abundance across
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samples. The gene catalog thus represents the basis for grouping together genes

that likely originate from a single organism, an idea further extended by Nielsen et

al. [109] to help reconstruct partial genome sequences from metagenomic data.

Following these initial studies, gene catalogs have become ubiquitous in the

analysis of metagenomic datasets, and have been created for the gut microbiota of

multiple animals (e.g., mouse [152], rat [153], pig [154, 155], dog [156], cow [157],

macaque [158], chicken [159], lion, leopard and tiger [160], ocean bacteria [161],

soil bacteria [162], and the human vagina [163] and respiratory tract [164]. Gene

catalogs are commonly used to: i) reduce redundancy in the data, thereby improving

estimates of diversity [39]; ii) act as a common frame of reference across samples and

studies; iii) serve as a basis for metagenomic-wide association studies [165]; and iv)

guide the binning of metagenomic contigs into organism-specific groups [109, 166].

Such analyses may be confounded by the specific properties of the catalog

being used. Yet, to our knowledge, the structure and construction of gene catalogs

have not been critically evaluated. Because the processes for constructing and using

gene catalogs are broadly the same across studies, generalizable observations can be

obtained from the analysis of any of the catalogs referenced above. We focus here

on the Integrated Gene Catalog (IGC) [167], which seeks to provide a nearly com-

prehensive collection of the gene sequences identified in the human gut microbiome.

We chose the IGC because it provides all the supporting metadata and intermediate

files necessary to conduct a critical analysis of the structure of the resulting clusters.
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6.1.1 The construction and use of gene catalogs

Catalog construction starts by identifying genes within metagenomic data.

The gene sequences are then clustered together based on similarity in order to re-

move trivial differences between sequences due to fragmentary data (e.g., genes that

miss the start or stop codons), sequencing errors, or small, strain-level variations.

The clustering can be performed at the DNA level (e.g., the IGC [167]), or at the

amino acid level (e.g., the Global Ocean Survey [39]). Analysis at the DNA level

provides greater resolution for taxonomic classification, whereas the amino acid level

is better suited for functional analysis and is more able to group together distantly-

related but functionally-similar sequences. The implied, but often unstated, goal

of the clustering process is to reproducibly group together sequences that have the

same function and/or taxonomic origin, thereby defining the gene from which the

sequences are derived in a way that is consistent across samples. Each cluster

is typically represented by one sequence, either a representative selected from the

sequences clustered together, or a sequence that represents the consensus of the

clustered sequences. Beyond the obvious use of these sequences in a broad range of

sequence-based analyses (e.g., database searches, function or structure prediction),

the cluster representatives can also be used to estimate the relative abundance of

the corresponding genes within microbiome samples.
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6.1.2 Historical context

Clustering of biological sequences that share a common function or taxonomic

origin has been at the core of biological research long before the first metagenomic

experiment. Databases such as the Clusters of Orthologous Groups (COG) [168] and

Pfam [169] date back to the late 1990s and were developed to organize the rapidly

accumulating protein sequence information. To define the boundary of clusters,

these databases used reciprocal best hit links (COG), or hidden Markov models

built upon multiple alignments of related proteins (Pfam), approaches that rely on

statistical significance measures instead of arbitrary thresholds based on sequence

similarity. At the same time, taxonomic analyses based on housekeeping genes relied

on careful phylogenetic analyses to define species boundaries [170].

In the early 2000s, metagenomic studies yielded much larger data sets than

previously seen. The challenge of effectively scaling analyses to cope with increas-

ingly larger data sets led to the development of new approaches that emphasized

speed over the accuracy or comprehensiveness of the analysis. CD-HIT [38], for

example, a greedy clustering approach we briefly describe below, was developed to

address the challenges encountered when analyzing the data from the Global Ocean

Survey. Although CD-HIT and some other clustering tools developed [79, 171] relied

on fixed thresholds to determine the boundaries of clusters, it was already recog-

nized that such thresholds were not consistent with biologically relevant entities

[41, 172]; for a given threshold, some clusters contained sequences from multiple

species, whereas other species were represented in multiple clusters.
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The estimation of abundances from sequencing reads is a relatively new devel-

opment in metagenomic studies but has been used extensively in the study of gene

expression in eukaryotes. A number of factors have been identified that confound

abundance estimation including multi-mapped reads, uneven depth of coverage, and

sequence composition biases. Computational and statistical approaches have been

developed to address such challenges [148, 173, 174, 175].

6.1.3 Overview of the Integrated Gene Catalog

The Integrated Gene Catalog comprises 9,879,896 annotated gene clusters that

were constructed from a combination of 511 prokaryotic reference genomes from

species known to occur in the human gut, and 1,267 gut metagenome data sets from

Chinese, American, and European cohorts. The IGC has been used to discover cor-

relations between gut microbiome composition and resistance to immune checkpoint

inhibitors in cancer patients [176], to observe that microbiome composition is mod-

ulated to a greater degree by environmental factors than by human genetics [177],

to correlate glycemic response after meals with microbiome composition [178], and

to identify signs of human fecal contamination in a river with sewage input [179].

The IGC was created through a multistep clustering process [167]. First, sepa-

rate gene catalogs were created from the metagenomic data derived from each cohort:

American (AGC), Chinese (CGC), and European (EGC), and for the sequenced

prokaryotic reference genomes collection (SPGC). The three cohort-specific gene

catalogs were then clustered together into a larger gene catalog called the 3CGC,
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which was then clustered with the SPGC catalog to create the IGC. Gene clustering

was performed with CD-HIT [38]. As employed in the construction of the IGC, this

tool operates in an iterative fashion, processing the gene sequences in decreasing or-

der of length. The longest gene sequence is selected to be the representative of the

first cluster. The next longest sequence is then assigned to the cluster if it matches

the representative sequence with ≥ 95% sequence identity over ≥ 90% of the length

of the query sequence, or becomes the representative of a new cluster. In the follow-

ing iterations, query sequences either become representatives of new clusters or are

added to an existing cluster if they match the corresponding representative sequence

sufficiently well. For most applications, only the set of representative sequences is

used, however the IGC project also provides the full assignment of individual genes

to clusters. Each representative gene sequence in the IGC is assigned, if possible,

taxonomic and functional labels, however, only 16.3% of the sequences are assigned

a genus-level annotation and only 60.4% have functional annotations.

6.2 Results

6.2.1 Inconsistent fidelity of clustering

That a 95% sequence identity cut-off is used throughout the multiple rounds of

clustering in the construction of the IGC appears to imply that the final clusters are

consistent with this threshold. However, the multiple rounds of clustering used to

construct the IGC may yield clusters with a (much) lower identity than the intended

threshold. We call this methodological artifact transitive clustering error (Figure
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A Br r r

Figure 6.1: The circles represent three clusters from three distinct catalogs. Within
each catalog, the sequences within a cluster (represented by points of different
shapes) are guaranteed to be within a distance r (5% divergence in the case of
the IGC) from the corresponding cluster representative (solid shape). When merg-
ing multiple catalogs, only the representative sequences are clustered together (also
within the same tolerance r), while the sequences contained within each cluster are
implicitly assigned to the same cluster as the corresponding representative. In this
figure, after clustering the representatives in one round, the triangle cluster rep-
resentative is the representative of a meta-cluster (dashed line) that includes the
representative sequences of the square and circle clusters. Within this cluster, the
maximum distance between two sequences (marked with A and B in the figure),
may be as high as 4r, or 20% sequence divergence in the case of the parameters
used in the IGC. The distance between a sequence and its corresponding cluster
representative may be as high as 2r, or 10% sequence divergence.
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6.1), which occurs when different gene catalogs are sequentially clustered. Although

each clustering step guarantees the 95% threshold for the sequences being clustered,

this threshold does not constrain the similarity between sequences that were clus-

tered in prior iterations. The result of transitive clustering error is an unintended

increase in the effective radius of the new cluster with respect to the representative

sequence (see Appendix for a detailed explanation of transitive clustering error).

When the three cohorts were clustered into the 3CGC, individual gene sequences

could potentially share as low as 90% identity to the new representative gene se-

quences, while two sequences within a cluster may share as little as 80% sequence

identity. The final clustering of the SPGC and the 3CGC, could potentially have

clustered sequences with only 85% identity to the representative sequence and as

low as 70% identity between sequences assigned to the same cluster.

To evaluate the actual impact of transitive clustering error within the IGC,

we focused on the 255,191 IGC gene clusters that contained at least 100 sequences

each. Among these clusters, 29.6% contained sequences that differed from the clus-

ter representative by more than the intended 95% identity cut-off (Figure 6.2A).

Furthermore, 8.2% of the clusters contained sequences that are different by 50% or

more from the corresponding cluster representative. This difference is much higher

than the expected error due to transitive clustering. An explanation is that the

construction of the IGC did not require full length alignments to each cluster rep-

resentative, but rather allowed matches that cover as little as 90% of the clustered

sequence. In the worst case, after two or more rounds of clustering, sequences

within an IGC cluster may not overlap with the selected representative sequence at
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Figure 6.2: Data shown refer to the 255,191 IGC clusters that contain 100 sequences
or more. A) The distribution of CD-HIT percent identity between the representative
and the most divergent cluster member. The vertical red line indicates the 95%
identity clustering threshold used to create the IGC. Note that many sequences are
below the target threshold of 95%. B) Relationship of percent of the representative
gene aligned to the shortest cluster member and the length of the representative
gene.

all (Figure 6.3).

The process used to construct the IGC does not constrain the fraction of the

representative sequence that needs to match the sequences within the cluster. This

choice makes it possible for two sequences to both align to the cluster representative

perfectly without sharing any sequence with each other. As an example, cluster 303

contains four sequences of different lengths –16,111 nt (representative), 7,122 nt,

3,012 nt, and 2,982 nt. All of these genes are complete, spanning from start codon to

stop codon, and originate from the SPGC (genes found in nearly-complete reference

genomes). The alignment between the three genes to the cluster representative

(Figure 6.4) demonstrates the lack of overlap between the individual sequences,

suggesting that they align to distinct domains of the representative sequence, rather
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Figure 6.3: A schematic example of how, in a worst-case scenario, clustering sep-
arate gene catalogs with CD-HIT can recruit sequences that do not overlap with
the representative sequence given the IGC clustering parameters. The sequences
within each gene catalog are aligned. Here * denotes the representative sequence of
the catalog. Gene A and Gene B were clustered together to create Gene Catalog
1. Gene A is the representative sequence because it is the longest sequence (default
of CD-HIT). In this case 100% of the length of Gene B aligns to 10% the length of
Gene A with 100% identity. Gene C is a representative sequence in Catalog 2 with
no clustered sequences. Gene A and Gene C were clustered to create the Combined
Catalog. Gene C becomes the new representative, because it is longer than Gene A,
and Gene A and Gene B become cluster members. In the Combined Catalog, 90%
of the length of Gene A aligns to Gene C with 100% identity and Gene B has no
overlap with Gene C at all.
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Figure 6.4: BLASTN alignment of the IGC Cluster 303 representative sequence,
MH0244 GL0138579 (16,611 nt), and the three cluster members x (469585.HM-
PREF9007 02027, 2,982 nt), y (469585.HMPREF9007 02028, 3,012 nt), and z
(469585.HMPREF9007 02029, 7,122 nt). All were predicted as complete genes (from
start to stop codon), yet each cluster member only partially aligns to the represen-
tative with a small overlap between x and y and no overlap between y and z.

than representing variants of this gene. This artifact may be wide-spread within

the IGC - within the 255,191 IGC clusters with a minimum of 100 members, the

mean difference between longest and shortest gene length is 590 nt, representing an

average of 14.4% of the length of the cluster representative (Figure 6.2B).

6.2.2 Taxonomic inconsistency of clusters

The 95% identity threshold selected by the IGC was intended to create clusters

with taxonomic homogeneity at the species level [167]. Taxonomic homogeneity

is desirable for analyses with the IGC, however, as we briefly described above, it

has long been recognized that no specific threshold can universally and accurately

capture biologically meaningful boundaries [41, 172].

This can be demonstrated by clustering the genes of genera like Bacteroides

and Lactobacillus comprising multiple species within which many strains have been

sequenced. We separately clustered the RefSeq genes from 167 Bacteroides (5,355,696

genes) and 166 Lactobacillus species (1,876,284 genes) using the IGC clustering pa-
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Figure 6.5: A and B show the taxonomic heterogeneity of 200 IGC clusters (the
100 largest clusters and 100 randomly chosen clusters with at least 100 sequences).
A) The minimum number of species such that each sequence in a cluster had at
least one significant Diamond hit to one of these species B) Number of species per
cluster if each sequence is assigned the label of the top Diamond result. C) The
distribution of CD-HIT percent identity between the representative and the most
divergent gene sequence for the 818 core genes of Escherichia coli identified from
86,830 assemblies. The red vertical line denotes 95% identity, the IGC clustering
threshold.

rameters. Of the resulting 438,106 Bacteroides and 256,949 Lactobacillus clusters,

32% and 24% were composed of multiple species, respectively.

The taxonomic homogeneity of the IGC clusters can be most readily assessed

within the SPGC because this gene catalog has well-defined taxonomic labels; how-

ever, we note that the SPGC only contains 200 species with sparse representation

per species (a mean of 2.6 reference genomes). Still, we found that 42,208 (6.4%) of

all clusters in the SPGC grouped together sequences from multiple distinct species,

with a maximum of 21 species in a single cluster.

To estimate the number of species within the IGC clusters derived from se-

quences with unknown taxonomic origin (namely, the three country-specific cata-

logs), we focused on a subset of 200 IGC clusters: the 100 largest clusters and 100
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randomly chosen clusters from those with at least 100 sequences each. We aligned

each sequence within an IGC cluster to the NCBI nr database (version 5) using

Diamond [180] (version 0.9.29). We used the same alignment thresholds as those

used by the IGC, requiring at least 95% sequence identity and 90% query coverage.

We retained all database entries that matched each query sequence within these

thresholds. We conservatively inferred the number of species per gene cluster using

a minimum set cover approach. Specifically, we identified the smallest number of

species such that each sequence had at least one hit to a database sequence from

one of these species. As seen in Figure 6.5A, 73% of clusters (57% of the largest and

89% of the randomly-selected clusters) are covered by a single species. If we used

just the top database hit for each sequence, the most commonly-used approach in

practice, only 20.5% of clusters (5% of the largest and 36% of the randomly-selected

clusters) were composed of a single species (Figure 6.5B).

To explore the converse, the possibility that variants of a gene from a single

species may be distributed across multiple clusters, we analyzed a collection of 86,830

Escherichia coli genomes obtained from the GenomeTrakr database [181]. When

focusing on just the 818 core genes of the E. coli pan-genome (genes found in all of

the genomes), the mean sequence identity between the representative and the most

divergent clustered sequence was 87.7% which is lower than the 95% threshold used

by the IGC. In fact, only 63 core genes met or exceeded the 95% threshold and

would have been clustered properly by the IGC (Figure 6.5C).
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6.2.3 Hidden species within the IGC

A direct consequence of multi-species clusters is the possibility that genes

from an individual species may be “hidden” by representative sequences belonging

to a different species. A species for which no gene is selected as a representative

for a cluster in the catalog becomes effectively undetectable in the samples being

analyzed.

To explore the extent of this problem, we focused on just the SPGC (genes

from complete and near complete genomes) because these genes have well defined

taxonomic labels. Within the SPGC, the number of representative genes per species

ranged from 139 (Escherichia sp. 1 1 43 ) to 28,404 (Escherichia coli). We simulated

reads from 507 genomes from the same species (or strain, if known) as the SPGC

reference genomes, and mapped these reads to the SPGC using Bowtie2 [116]. As

expected, the rate of assigning reads to a species was correlated with the number

of representative genes for the species (Figure 6.6). A possible confounding factor

might be the fraction of reads that map ambiguously to multiple species, however

the median fraction of multi-mapped reads was only 3% across species. Only 129 of

the 201 species in the SPGC had an assignment rate of 90% or higher, i.e., 90% of

the reads originating from these genomes would be assigned a correct species-level

taxonomic label. At one extreme, Escherichia sp. 1 1 43, had the lowest number

of representative genes and the lowest assignment rate at 2%. Despite having a

large number of representative genes, E. coli only had an assignment rate of 83%,

because of the large number of closely related species in the SPGC. All four Shigella
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Figure 6.6: The relationship between the number of representative genes (normal-
ized by the mean number of genes per genome) per species and their assignment rate
in a simulated metagenomic dataset of the SPGC genomes. The assignment rate is
the percent of simulated reads from a species that map to the corresponding rep-
resentative sequences for that species in the SPGC. For most species in the SPGC,
the number of representative genes (normalized by the mean number of genes per
genome) is 1 or less (orange). The assignment rate for these species has a positive
correlation (orange least squares line) with the number of representatives. For some
species, however, the number of representative genes normalized by the mean num-
ber of genes per genome can be greater than 1 (blue). These species have genes from
multiple genomes and are effectively represented as a pangenome in the SPGC. For
example, E. coli has 28,404 representative genes and 124 genomes in the SPGC. For
these species there is a weak negative correlation (blue least squares line) between
the assignment rate and the number of representatives.
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Toxin/Virulence factor
Genus of most similar
gene in IGC

Percent identity of the
top BLAST hit in IGC

ShiA Shigella 100.00
ShiB Shigella 94.41
ShiC Shigella 100.00
ShiD Shigella 100.00
ShiE Shigella 99.43
ShiF Shigella 99.75
ShiG Escherichia 84.44
IucA Escherichia 99.83
IucB Escherichia 99.37
IucC Escherichia 96.38
IucD Shigella 99.78
IutA Escherichia 99.45
Pic Shigella 99.64
GtrA Shigella 99.34
GtrB Shigella 98.15
SigA Shigella 97.67
set1A Not found NA
set1B Not found NA
Stx1A Escherichia 100.00
Stx1B Escherichia 100.00

Table 6.1: Taxonomic annotation of twenty virulence/toxin genes of Shigella sonnei
when aligned to the SPGC catalog.

sp. within the SPGC had low assignment rates: 17%, 11%, 8% and 7% for S.

flexneri, S. dysenteriae, S. boydii, S. sonnei, respectively. This is because the reads

from Shigella sp. often map to clusters with an E. coli representative sequence.

Due to the importance of Shigella sp. for human health, we further analyzed

20 known virulence/toxin genes of S. sonnei [42-44] (Table 6.1). Only 11 of the 20

genes were taxonomically labelled as Shigella, seven were labelled as Escherichia,

and two, set1A and set1B, were not found at all. Notably, Shiga toxins Stx1A and

Stx1B are labelled as Escherichia, even though they are part of a mobile prophage

genome, which has been horizontally transferred among many Enterobacteriaceae

[182], highlighting the difficulty of annotating a mobilome.
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Read Datasets BLASTN Bowtie2 BWA-MEM
Illumina 100 nt 74.31 86.44 96.22
Illumina 250 nt 43.98 76.49 98.97
454 Roche 225 nt (mean) 64.48 77.82 98.18

Table 6.2: The percent of simulated Illumina and 454 Roche reads, from 507
prokaryotic reference genomes, that map to the IGC with BWA-MEM, Bowtie2,
and BLASTN. For BLASTN, only those alignments with ≥ 95% identity and ≥
90% read coverage are considered. BWA-MEM and Bowtie 2 were run with default
parameters requiring full length matches.

6.2.4 Using the IGC as a reference for metagenomic analyses –simu-

lated data

The primary strategy for using the IGC as a reference when analyzing metage-

nomic data sets involves mapping sequencing reads to the representative sequences

of the clusters. Although a seemingly straightforward bioinformatics task, the se-

lection of mapping tools, parameters of the mapping process, and characteristics

of the reads themselves (e.g., read length) may have a significant impact on the

results. To evaluate the effects of such features on the use of the IGC for metage-

nomic analysis, we simulated three metagenomic samples composed of the species

in the SPGC. Two samples simulated Illumina reads (100 nt, 250 nt), and the other

simulated 454/IonTorrent reads (225 nt). We compared mapping statistics for tools

that are widely used in metagenomic analyses, BWA-MEM [183] and Bowtie2 [116]

with default parameters, and BLASTN [45] with thresholds of 95% identity, 90%

read coverage, and default values for all other parameters (Table 6.2).

The fraction of reads mapped by different tools, and across different read

lengths, varied substantially (Table 6.3). BLASTN consistently mapped fewer reads
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Mapping tool Dataset Unmapped reads
Reads mapped
exactly once

Multi-mapped
reads

Total reads

BLASTN
454 Roche
225 nt

12,046,662
(35.52%)

20,607,264
(60.76%)

1,259,937
(3.72%)

33,913,863

Bowtie2
454 Roche
225 nt

7,523,531
(22.18%)

12,727,602
(37.53%)

13,662,730
(40.29%)

33,913,863

BWA-MEM
454 Roche
225 nt

615,080
(1.81%)

17,789,182
(52.45%)

15,509,601
(45.73%)

33,913,863

BLASTN Illumina 100 nt
24,590,586

(25.69%)
63,782,504

(66.64%)
7,339,930

(7.67%)
95,713,020

Bowtie2 Illumina 100 nt
12,977,730

(13.56%)
42,142,225

(44.03%)
40,593,065

(42.41%)
95,713,020

BWA-MEM Illumina 100 nt
3,618,165

(3.78%)
49,637,777

(51.86%)
42,457,078

(44.36%)
95,713,020

BLASTN Illumina 250 nt
21,407,600

(56.03%)
16,112,369

(42.17%)
690,019
(1.81%)

38,209,988

Bowtie2 Illumina 250 nt
8,984,244
(23.51%)

14,631,373
(38.29%)

14,594,371
(38.20%)

38,209,988

BWA-MEM Illumina 250 nt
392,069
(1.03%)

20,811,950
(54.47%)

17,005,969
(44.50%)

38,209,988

Table 6.3: Read mapping statistics for different tools (BLASTN, Bowtie2, BWA-
MEM) for the reads simulated by ART simulator for 454 Roche technology and
Illumina (100 nt, 250 nt) technology. For BLASTN, only those alignments that
have ≥ 95% identity and ≥ 90% read coverage are considered.

Read Length BWA-MEM vs Bowtie2 BWA-MEM vs BLASTN Bowtie2 vs BLASTN
Illumina 100 nt 2.68× 10−251 1.12× 10−39 2.45× 10−25

Illumina 250 nt 3.27× 10−07 0.0 3.84× 10−123

Table 6.4: P-values from Mann Whitney U Test comparing the gene abundance
profiles generated by different mapping tools when mapping simulated reads, of
varying lengths, to the IGC.
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Read Length
Percent of reads
mapped to IGC

Percent of reads mapped
to correct genus

Illumina 100 nt 86.4 81.7
Illumina 250 nt 76.5 82.1

Table 6.5: Read mapping statistics for testing the taxonomic classification perfor-
mance of the IGC on data simulated from genomes with the same taxonomy as the
SPGC reference genomes.

than the other tools. The gene abundance profiles estimated from these mappings

differed significantly across different mapping tools (Mann Whitney U test, p-value

< 0.001) at every read length, suggesting the choice of mapping tool may confound

abundance estimates and, therefore, the associations derived from the data (Table

6.4). Furthermore, nearly half of the reads multi-mapped, i.e., mapped equally well

to multiple IGC clusters. Multi-mapped reads can confound taxonomic classification

and estimates of abundance, as previously highlighted in RNA-seq studies [184]. Our

results suggest the need for abundance estimation algorithms that can account for

mapping ambiguity [148, 174, 175], which are rarely used in metagenomic studies.

Together, multi-mapped reads and the poor visibility of some species within

the catalog, led to 20% of the reads mapping to gene clusters classified as a different

genus than that from which the reads originated (Table 6.5). This raises concerns

about the accuracy of taxonomic profiles derived from real metagenomic data given

that these reads were generated from the genomes used in the construction of the

IGC.
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6.2.5 Using the IGC as a reference for metagenomic analyses –real

data

In addition to the read mapping artifacts discussed previously, genes that are

not represented in the IGC but are present in a sample can confound the analysis of

metagenomic data. Prior studies have demonstrated the IGC is not a comprehensive

representation of the diversity of the human gut microbiome, lacking many genes

found in the gut of infants [50], patients suffering from various diseases such as gout

[185] or diabetes [186], adults from India (only 61% of their gene catalog mapped to

the IGC) [187], and even adult twins from the UK (in which a putative 1.5 million

genes were not present in the IGC) [188].

To investigate how read mapping artifacts and genes not represented in the cat-

alog impact analyses based on the IGC, we used a human gut sample from a 61 year-

old Cameroonian male with a hunter gatherer diet (SRA accession ERR2619707)

[189]. We assembled the data with MEGAHIT [126] and predicted genes using

Prokka [130]. Only 66.6% of the predicted genes from this sample clustered to an

IGC gene representative, genes to which we refer as the clustered predicted genes.

The other genes predicted from the sample could not be confidently assigned to IGC

clusters (and thus are likely not represented in the IGC), and we refer to these genes

as the unclustered predicted genes.

We separately mapped the reads from the Cameroon data set with Bowtie2 to

the two sets of genes predicted from the sample and the IGC clusters, respectively

(Figure 6.7). The percent of reads mapping to the predicted genes and the IGC was
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2) Number of reads mapping to Clustered
predicted genes

10,032,192 (52.5%) reads mapped concordantly

3) Number of reads mapping to Unclustered
predicted genes

9,058,978 (47.5%) reads mapped concordantly

4) Number of reads that mapped
to corresponding IGC genes

(True positive)
8,586,178 (85.6%) reads mapped

to 92,127 genes

6) Number of reads that mapped to
other IGC genes
(False positive)

2,138,788 (23.6%) reads mapped
to 74,013 genes

5) Number of reads that mapped
to other IGC genes

(False positive)
1,198,786 (11.9%) reads mapped

to 72,586 genes

 1) Cameroon Gut Sample
 Total number of reads: 49,399,939
 Number of predicted genes: 178,701
 Number of clustered predicted genes: 119,015 (66.6%) 
 Number of unclustered predicted genes: 59,686 (33.4%) 

Figure 6.7: Analysis of reads from Cameroonian human gut metagenome sample.
Box 1 shows the general statistics of the sample. 66.6% of the predicted genes could
be assigned to IGC gene clusters clustered predicted genes. 33.4% of the predicted
genes could not be confidently mapped to the IGC clusters unclustered predicted
genes. 19,091,170 reads mapped concordantly to the predicted genes (52.5% to the
clustered predicted genes and 47.5% to the unclustered predicted genes). Among the
10,032,192 reads that mapped concordantly to the clustered predicted genes (Box
2), 11.9% mapped to a different IGC gene than expected (false positives denoted
by dashed line Box 5). Of the 9,058,978 reads that mapped concordantly to the
unclustered predicted genes (Box 3), 23.6% mapped to IGC genes (false positives
denoted by dashed line Box 6).
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similar (59.0% to the predicted genes and 55.3% to the IGC), but the percent of

multi-mapped reads was much higher for the IGC (24.1%) compared to the predicted

genes (3.8%). The reads also mapped to an order of magnitude more IGC clusters

(1,369,981) than predicted genes (177,745). Together this suggests a high false

positive rate, i.e., that reads from unclustered predicted genes are mapping to IGC

clusters representing potentially unrelated genomic sequences and/or functions.

To determine the IGC clusters to which the reads from the clustered predicted

genes and the unclustered predicted genes were aligned, we focused our analysis on

the read pairs that mapped concordantly to both the predicted genes and to the

IGC clusters (24.1% of all reads). A read pair is considered concordantly mapped

when the forward and reverse reads of the pair map to a gene with the correct insert

size and orientation. Such concordant mappings are less likely to represent mapping

artifacts. Given that each clustered predicted gene has a corresponding IGC cluster,

we would expect the reads mappings to also be shared between the gene and the

cluster to which it is related. Among the 10,032,192 reads that concordantly mapped

to clustered predicted genes, 11.9% mapped to a different IGC gene than expected.

Conversely, we would expect few read pairs which map to the unclustered predicted

genes to map to any IGC clusters given that these genes do not share sufficient

similarity with any IGC cluster. Of the 9,058,978 reads that concordantly mapped

to the unclustered predicted genes, 23.6% mapped to IGC genes (Figure 6.7).
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Gene
catalog

Year
published

Transitive
clustering

error

Clusters
sequences
of highly
different
lengths

Taxonomic
inconsistency

Hidden
species

Clustering criteria

Human gut
(cirrhosis
study) [190]

2014 Yes Yes Yes Yes

- Pairwise comparison of all genes with
BLAT: > 95% identity and > 90%
of the shorter gene length.
- Merged genes from three catalogs using
the same clustering technique.

Mouse gut [152] 2015 No Unclear Yes Yes
- Pairwise comparison of all genes with
BLAT: > 95% identity and overlap > 90%

Human gut
(infants) [185]

2015 No Yes Yes Yes
-Pairwise comparison of all genes with BLAT:
> 95% identity and > 90% of the
shorter gene length.

Human gut
(diabetes) [186]

2015 No Yes Yes Yes

- Predicted protein-coding genes with
a minimum length of 100 bp were clustered
at 95% sequence identity using CD-HIT
with parameters set to:
-c 0.95, -G 0 -aS 0.9, -g 1, -r 1.

Pig gut [154] 2016 No Unclear Yes Yes
- Pairwise comparison of all genes with
BLAT: > 95% identity and overlap > 90%

Human gut
(gout) [191]

2016 No Yes Yes Yes
- Genes were clustered with CD-HIT using a
sequence identity cut-off of 0.95 and a minimum
coverage cut-off of 0.9 for the shorter sequences.

Human gut
(diabetes) [188]

2016 Yes Yes Yes Yes

- Genes were clustered using CD-HIT of the
MOCAT pipeline (95% identity, 90% overlap).
- Merged the gene set with the IGC catalog
using CD-HIT.

Chicken gut [159] 2018 Unclear Yes Yes Yes
- Gene catalog was constructed using
CD-HIT-EST with parameters
set to: -c 0.95 -n 10 -G 0 -aS 0.9

Rat gut [153] 2018 No Yes Yes Yes

- Gene ORFs were clustered using CD-HIT
with a criterion of 95% identity > 90% of the
shorter ORF length with default parameter
except “-G 0 -n 8 -aS 0.9 -c 0.95 -d 0 -g 1”.

Dog gut [156] 2018 No Unclear Yes Yes
- Genes were clustered at 95% identity
using CD-HIT.

Macaque gut [158] 2018 No Unclear Yes Yes
- Pairwise comparison of all genes using
CD-HIT with identity of > 95% and
overlap of > 90%

Human gut
(children) [192]

2018 Yes Yes Yes Yes

- Clustered gene based on sequence similarity
at 95% identity and 90% coverage of the
shorter sequence using CD-HIT.
- Merged with the IGC using the same
CD-HIT clustering technique to form
a comprehensive catalog.

South China
soil [162]

2019 No Unclear Yes Yes

- Nucleic acids longer than 100bp were translated
into amino acid sequences. Pairwise comparison
of all genes using CD-HIT with parameters > 95%
identity and > 90% overlap.

Pig gut [193] 2019 Yes Unclear Yes Yes

- Predicted genes were clustered at the nucleotide
level using CD-HIT with > 95% identity
and > 90% overlap.
- Combined the catalog with an earlier
Pig gut catalog to create a comprehensive catalog.

Human lung [164] 2019 No Yes Yes Yes

- Genes with a length ≥ 100 bp and without
Ns (unidentified nucleotides) were selected to
construct non-redundant gene sets using CD-HIT
with criteria of > 95% identity and > 90% alignment
of shorter sequence (-c 0.95 -aS 0.9).

Human gut
(Indian cohort) [187]

2019 Yes Unclear Yes Yes

- Pair-wise alignment of genes using BLAT
and the genes that had an identity > 95%
and alignment coverage > 90% were clustered
into a single set of non-redundant genes.
- The gene catalog constructed from Indian
samples was combined with the IGC to construct
a non-redundant gene catalog (using identity
≥ 95% and alignment coverage ≥ 90%).

Rat gut [194] 2019 No Yes Yes Yes
- Predicted ORFs were clustered using CD-HIT with
criteria of > 95% identity and > 90% alignment of
shorter ORF. (-c 0.95, -G 0, -aS 0.9, -g 1, -d 0).

Panthera
gut [160]

2020 No Yes Yes Yes

- Predicted genes from contigs and from the top
abundant microbial species were clustered using
CD-HIT using a sequence identity cutoff of 0.95
and minimum coverage cutoff of
0.9 for shorter sequences.

Cow gut [157] 2020 No Yes Yes Yes

- Predicted genes were clustered using CD-HIT
with ≥ 95% identity and ≥ 90% overlap of the
shorter sequence (-n 8 -d 0 -g 1 -T 6
-G 0 -aS 0.9 -c 0.95).

Mouse gut [195] 2020 No No Unclear No
- Predicted ORFs were taxonomically annotated
at different levels, i.e., ORF, contig, and bin.

Human dental
caries [196]

2020 No No Yes Yes
- Predicted ORFs were clustered using CD-HIT
default parameters.

Human vagina [163] 2020 No Yes Yes Yes

- Genes and gene fragments that were at least 99 bp
long, with greater than 95% identity over 90% of the
shorter gene length were clustered
together by CD-HIT-EST.

Rhizosphere
soil [197]

2020 No Yes Yes Yes
- Predicted genes were clustered using CD-HIT
with > 95% sequence identity.

Sheep
rumen [198]

2020 No Yes Yes Yes
- CD-HIT tool with the similarity threshold of 95%
was used to remove redundant genes

Table 6.6: A non-exhaustive list of microbial gene catalogs created in the last few
years, and the issues —identified in our analysis of the IGC —that likely affect
them based upon a review of the written methods. The columns of the table list:
1) the gene catalog; 2) the year it was published; 3) if the clusters are affected by
transitive clustering error; 4) if the clusters contain sequences of highly different
lengths; 5) if the clusters contain sequences from different species; 6) if species have
genes hidden by the genes of other species; 7) the clustering criteria employed to
create the catalog. 140



6.2.6 Analysis of other gene catalogs

A survey of 24 gene catalog studies from the last few years highlights that

many were created using a similar clustering algorithm as the IGC and thus likely

share many of the same issues as those identified above (Table 6.6). While none of

these catalogs provided all the necessary metadata and intermediate files to perform

the same analyses as done for the IGC, we were able to predict which issues likely

affect the catalogs based upon the description of the methods used to construct these

catalogs. We note that 5 of the 24 catalogs were affected by transitive clustering

error. Additionally at least 15 catalogs allowed genes of highly divergent lengths

to be clustered together. Further, taxonomic inconsistency and hidden species also

likely affect 23 of the catalogs.

6.3 Discussion

Gene catalogs help organize the vast volumes of data generated in metage-

nomic experiments. If carefully constructed, they provide a valuable resource for

the analysis of metagenomic samples. Through our analysis of the IGC —one of

the largest gene catalogs available to scientists today —we have highlighted how the

design and construction of a gene catalog can affect downstream analyses in unin-

tended ways. These issues affected a large percent of the gene catalogs we found in

the literature because many were constructed using similar methods as the IGC.

Perhaps the most prevalent and important source of error for gene catalogs is

caused by clustering gene sequences with a fixed threshold, creating clusters com-
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posed of sequences with variable levels of taxonomic relatedness. Our observation

recapitulates the finding that no specific sequence similarity threshold can be used to

consistently capture a particular taxonomic level or functional category. This find-

ing has been well documented previously in the context of 16S rRNA sequencing

[41, 172]. Clustering in this manner effectively hides the taxonomic origin of all but

the gene sequences selected as cluster representatives. As a result, each species in a

catalog might have a different proportion of genes that are not represented (that are

hidden by the genes of other species), genes that are represented once and genes that

are represented in multiple copies. This can introduce bias in downstream analyses

that aim to explore the presence or abundance of taxa across samples, a bias already

noted in the community [199]. For example, if a catalog contains multiple variants

of a gene from a species, metagenomic reads from that gene and species might map

to multiple variants in the catalog either uniquely or by multimapping. Through

our analysis of the hidden species of the SPGC and the E. coli core genes, we have

shown that this effect is non-uniform across taxonomic groups and can result in the

biased recruitment of reads across taxa.

Another common source of error for gene catalog construction is the clustering

of genes of widely different lengths. This can result in clusters where there is little

or no overlap between cluster members. While it is not currently possible to confirm

the functional consistency of all clusters in a gene catalog, if cluster members share

little sequence similarity with the representative (which is treated as the functional

homolog of all cluster members) it is likely that they do not share the same function.

Furthermore, assessing the relationship between sequence and functional similarity
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is non-trivial [200] even in the absence of the confounding information introduced

by the co-clustering of sequences with widely-divergent lengths.

The iterative clustering of catalogs can further exacerbate all of the previously

mentioned issues by amplifying the differences between sequences assigned to a clus-

ter. Among the gene catalogs we have explored (Table 6.6), the use of a multi-step

clustering process is typically used for two purposes: to mitigate computational

costs, and/or to update an old catalog by merging it with a newer one. However,

none of the studies we analyzed took into account the amount of error introduced

by iterative clustering. It is certainly desirable to develop computationally-efficient

catalog construction methods as data sets increase in size, as well as to efficiently

incorporate new data into existing catalogs. Our analysis, however, suggests that it

is important to ensure that the fidelity of the clusters is not impacted by computa-

tional convenience, and highlights the need for additional research in this field.

Coupled with the issues arising from the structure of the clusters themselves,

we have shown that the use of the IGC to analyze a real metagenomic sample in-

duces many analytical artifacts, including a high false positive rate —IGC clusters

that are not actually found in a sample, but which “recruit” many reads nonethe-

less. Conversely, as the number of species and the number of their gene variants

represented in the catalog increases, so will the number of reads that map ambigu-

ously [90]. As a result, using gene catalogs that are constructed similarly to the IGC

for metagenomic studies will likely introduce analytical artifacts that outweigh the

benefit of the common frame of reference these catalogs provide.

While raising these concerns, we agree with the authors of the IGC that prop-
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erly constructed gene catalogs can be an effective reference for metagenomic studies.

However, to maximize their usefulness, gene catalogs should either be created di-

rectly from the samples being analyzed or from closely related samples. Our findings

indicate that the goal of tracking individual clusters across studies is not met by

the IGC and other similarly constructed catalogs. We believe that universal taxo-

nomic identifiers and gene ontologies represent a better approach for relating findings

across gene catalogs and metagenomic studies. For gene catalogs to be used as global

resources for metagenomic data analysis, new methods for updating catalogs and

accounting for biases introduced by read mapping tools need to be researched. For

now, we believe the best use case for gene catalogs is within the narrow context of

the samples used to create them.

Our results highlight pitfalls that need to be avoided when constructing such

catalogs and reveal several best practices:

1. The iterative integration of clusters should be avoided as it amplifies the errors

inherent to the clustering process. A multi-step clustering process may be

necessary to mitigate computational costs, however we recommend limiting

the number of rounds and accounting for the growth in cluster diameter that

is due to the multi-round process.

2. Arbitrary similarity thresholds should be avoided, and instead researchers

should use approaches that are able to dynamically tune clustering param-

eters [41, 201, 202, 203, 204].

3. The clustering procedure should ensure all sequences within a cluster are of
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similar length.

4. The construction of gene catalogs should not exclusively rely on data from

metagenomic experiments, but rather should be augmented with genomic se-

quences from organisms that are commonly found at low abundance in the

samples of interest (including eukaryotes and viruses), as such organisms are

unlikely to be assembled sufficiently well within the metagenomic data.

5. The alignment of sequences to the catalog, as well as estimation of gene abun-

dances from the alignments, should be conducted in a way that adequately

addresses non-specific mapping. Several approaches have been developed for

RNA-seq analysis that effectively handle multi-mappings in an alignment-free

manner [148, 174, 175], though it remains to be seen whether these are suffi-

ciently effective in metagenomic settings or whether the underlying algorithms

need to be adapted.

During the preparation of our manuscript, a new catalog was published [205],

which partly addresses some of the issues we have highlighted above. The un-

derlying data being clustered were derived from cultured genome sequences and

metagenome-assembled sequences, potentially ensuring a higher quality protein cat-

alog (the Unified Human Gastrointestinal Protein catalog). Gene-level clustering

was performed at the protein level in one round of clustering, thereby avoiding tran-

sitive clustering error. Notably, the authors of this new study re-clustered the genes

from the IGC and appear to be unaware of the blow-up in divergence caused by

the iterative process used by the IGC: “We clustered the IGC only at 90% and
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50% protein identity, as it was originally de-replicated at 95% nucleotide identity”

[205]. The Unified Human Gastrointestinal Protein catalog was provided as mul-

tiple catalogs constructed with different similarity thresholds, acknowledging that

no threshold is appropriate for all analyses. Some of the pitfalls identified above,

however, still apply to the new catalog. When clustering protein sequences, Almeida

et al. only control the fraction of the clustered sequence that needs to match the

cluster representative (80% in this case), raising the possibility of artifacts such as

that highlighted in Figure 6.4. Furthermore, the new catalog includes the Unified

Human Gastrointestinal Genome catalog which is constructed in a two-step pro-

cess to address the computational cost of clustering. The paper does not indicate

that the authors are aware of the additional sequence divergence introduced by this

process.

A full-fledged analysis of the new catalog, similar to what we have described

above, is beyond the scope of this manuscript. However, as discussed here, it is

apparent that issues such as those we have described are not widely appreciated in

our community. We hope that our manuscript provides readers with an appreciation

for the complexity of sequence clustering, particularly as it relates to metagenomic

sequence analysis, and leads to a more thoughtful consideration of the pitfalls we

have identified when using gene catalogs as a reference for data analysis.
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6.4 Appendix

6.4.1 Transitive Clustering error

Clustering a large number of sequences can require impractical amounts of

computing time and memory. One technique for addressing the computational cost

of clustering uses a divide and conquer paradigm: disjoint subsets of the sequences

are clustered separately, then the cluster representatives are clustered together in

one or more additional rounds of clustering. When representative sequences from

different subsets are clustered together, all members of the corresponding clusters

implicitly become part of the resulting cluster. In the IGC, this process was con-

ducted in three rounds. Sequences from each of three distinct geographic regions

(American, Chinese, and European) were clustered separately, as were sequences

extracted from isolate genomes within the NCBI and EMBL databases, resulting

in four distinct catalogs: AGC, CGC, EGC, and SPGC, respectively. In a second

round, the three geographically defined catalogs were clustered together, yielding a

new catalog, 3CGC, which were then clustered together with the SPGC in a third

round of clustering. Each round of clustering used the same cut-offs for the percent

identity between a sequence and the cluster representatives, and for the fraction of

the sequence that needs to align to the cluster representative in order for it to be

assigned to a cluster.

In the following, we discuss the implications of using such an iterative clus-

tering process on the size of the resulting clusters. We focus on two measures of
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the “tightness” of clusters: the radius (maximum distance between a sequence and

the cluster representative); and the diameter (maximum distance between two se-

quences within a cluster). For the purpose of this discussion, we ignore the impact

of partial alignments between a sequence and the cluster representative, and focus

exclusively on percent identity as a measure of distance between sequences.

The percent identity cut-off provided to CD-HIT controls the radius of the

clusters. After a single round of clustering, the maximum effective radius, R, of

the clusters is exactly the same as the cut-off, r, that was given as a parameter

to CD-HIT. The maximum effective diameter, D, is exactly 2r. Below, we will

show that, with each round of clustering, both the maximum effective radius and

diameter of the resulting clusters increases despite using the same cut-off, r, when

clustering the representative sequences of clusters generated in a prior round. We

call this unintended increase in the effective radius and diameter of clusters transitive

clustering error.

6.4.1.1 A general formulation for transitive clustering error

We will start by assuming a set of clusters already constructed, C1, C2, · · · , Cn,

which have the effective radii R1, R2, · · · , Rn. We explore here the impact of cluster-

ing together the representative sequences of the clusters contained in C1, C2, · · · , Cn,

as defined by the effective radius and diameter of the resulting clusters. Before we

proceed, it is important to note that our analysis focuses on the worst-case scenario,

i.e., we show that it is possible that at least one of the resulting clusterings can have
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Figure 6.8: An example cluster, C, with the maximum possible effective radius when
clustering the representatives from C1, C2, · · · , Cn with tolerance r.

the values for R and D as defined below. Whether such a worst-case situation may

occur depends on the characteristics of the data.

Lemma 1. The maximum effective radius, R, of the resulting clusters is,

R = max(R1, R2, · · · , Rn) + r

Proof. Refer to figure 6.8. Without loss of generality, we can assume one resulting

cluster, C. By definition, the representative sequence of this cluster must be the

representative sequence of one of the clusters in C1, C2, · · · , Cn. Without loss of

generality we assume that this is the same as the representative sequence s1 of

the cluster C1. Further, assume that there is another cluster whose representative

sequence was clustered together with s1. This cluster cannot come from the same

catalog as C1 since its representative sequence is within distance r of s1 and thus

would have been clustered with s1 already, and therefore could not have seeded
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Figure 6.9: An example cluster, C, with the maximum possible effective diameter
when clustering the representatives from C1, C2, · · · , Cn with tolerance r.

its own cluster. Without loss of generality, we can assume that the second cluster

is C2 and that its representative sequence is s2. To define the radius R of the

cluster C we need to compute the maximum distance between a sequence within the

selected cluster and its representative s1. Without loss of generality, let us assume

that R2 = max(R1, · · · , Rn). Given the above, the maximum distance between a

sequence within the cluster defined by s1 and s1 is the sum of r, the maximum

distance between s1 and s2, and R2, the maximum distance between a sequence

within the cluster defined by s2 and its cluster representative, thereby proving the

lemma.

Lemma 2. The maximum effective diameter D, is,

D = 2 ∗max(R1, R2, · · · , Rn) + 2r = 2R

Proof. Refer to figure 6.9. The proof follows the same template as that for the radius,
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Figure 6.10: Clustering strategy used in creating the IGC. Each block represents
catalogs created in the process, and shows the worst-case radius and diameter of
clusters in the catalog.

except that the selected cluster, C, is assumed to be clustered with an additional

cluster, C3, where R3 = R2 = max(R1, · · · , Rn) and the representative of C3, s3, is

2r divergent from s2.

Given the two lemmas, we can now explore the impact on R and D of the

number of iterative clustering steps.

6.4.1.2 Transitive clustering error in the IGC

The diagram in figure 6.10 highlights the clustering strategy used by the IGC.

At each stage, the clustering cut-off, r, was set to 5% divergence (95% identity).

Using the formulas derived above, we demonstrate the increase in effective radius and

diameter that occurs at each clustering stage, reaching a maximum radius of 15% for

the IGC. In other words, within the IGC it is theoretically possible that a sequence

may share as little as 85% identity with the corresponding cluster representative,
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Figure 6.11: Example topologies to combine sequences from four catalogs (grey
squares) into one final catalog. The order of combining catalogs can impact the
effective radius and diameter of the clusters in the final catalog. For each topology,
the effective radius of the final catalog is displayed.

and two sequences that are co-clustered may share as little as 70% identity with

each other. These values exceed the nucleotide identity assumed to define a species

for the IGC i.e. 95% identity.

6.4.1.3 Impact of clustering strategy on cluster radius

In figure 6.11 we compare five different approaches for constructing a catalog

from four different catalogs. These range from a single round of clustering that joins

all catalogs together in one round (A), to a four-round process that iteratively adds

an additional catalog to the previously clustered ones (E). The process used by the

IGC is in panel (B). As can be seen in the figure, the final effective radius ranges
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from 2r (A) to 4r (E), demonstrating how different clustering strategies impact the

effective radius of clusters in the final catalog.
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Chapter 7: Conclusions

In this dissertation, we presented new methods for large-scale metagenomic

data analysis. The tools and algorithms will help extract meaningful information

from these datasets. We have demonstrated the efficiency and capability of our tools

on several real metagenomic datasets.

For taxonomic classification tasks, with BLAST outlier detection and ATLAS,

we provide a similar level of accuracy as phylogenetic approaches while retaining

computational efficiency. Even though we use the BLAST outlier detection algo-

rithm to identify the top database hits when working with DNA sequences, it can

be easily extended to other biomolecular sequences such as RNA and amino acid

sequences. ATLAS deviates from traditional classification methods that use “most

recent common ancestor” (MRCA) to encompass all the possible annotations of a

sequence. We have shown that ATLAS is able to automatically discover taxonomic

groupings that are relevant to the interpretation of the data but that do not match

pre-defined taxonomic levels. The majority of partitions identified by ATLAS are at

the subgenus level, replacing higher-level annotations with specific groups of species.

These more precise partitions improve our detection power in determining differen-

tial abundance in microbiome association studies. In the abundance estimation
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task, we presented TIPP2, an updated version of the original method. TIPP2 out-

performs commonly used taxonomic profiling tools, especially when datasets contain

genomes that are not closely related to the reference sequences used by these pack-

ages. These improvements will enable a more precise characterization of microbial

communities, particularly those that contain species that are not well characterized

in public databases.

For reference database-dependent tasks such as taxonomic and abundance pro-

filing, it is important to recognize the importance of the choice of the database [90].

Oftentimes, biologists work with custom, environment-specific databases to improve

the accuracy of results. Thus, it is important to release code or protocol that can

help users create their own databases or update databases when more data is avail-

able. Consequently, we have made database construction steps available for both

ATLAS and TIPP.

One of the major benefits of metagenomics is that it can sequence previ-

ously unknown organisms. Thus, reference independent methods that help recover

genomes of understudied organisms from metagenome samples are extremely im-

portant. We developed Binnacle to explore how to best reconstruct genomes from

the sample. We show that combining scaffolding and binning steps together im-

proves the contiguity and quality of the resulting bins. Moreover, our experiments

show that by using variation-aware scaffolds for binning, the resulting bins contain

a better representation of the genic content of the organisms.

It is important to note that the bins (clusters) generated by Binnacle can be

of variable resolution. Even though one would like to obtain all bins as species-level
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metagenome assembled genomes, this goal is rarely achieved in practice. An interest-

ing future direction would be to resolve the multiple strains/haplotypes represented

in the bins. Ideas from haplotype phasing [141, 142], viral quasi-species estimation

[143, 144, 145], and species estimation in metagenomics [146] can be applied here

to estimate the number of species in a bin, and to split (refine) bins into multiple

metagenome assembled genomes (MAGs).

We would also like to highlight the importance of effective visualization tools

that can provide researchers with more information about the relative placement

of contigs within a bin along a chromosome as well as variation information. This

is particularly important for identifying mis-assemblies and polishing MAGs. Few

tools such as Bandage [147] and MetagenomeScope [136] exist, but there are still

opportunities for future research to create tools that combine contig placements,

coverage, and annotation information together and can scale to large metagenomic

datasets.

Last, our assessment of the Integrated Gene Catalog reveals several pitfalls

that need to be avoided when constructing such catalogs. We recommend best

practices should one need to construct such a catalog. Current catalogs do not meet

the goal of tracking individual clusters across studies. We believe that universal

taxonomic identifiers and gene ontologies represent a better approach for relating

findings across gene catalogs and metagenomic studies. For gene catalogs to be

used as global resources for metagenomic data analysis, new methods for updating

catalogs and accounting for biases introduced by read mapping tools need to be

researched. Until then, the best use case for gene catalogs may be to analyze the
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samples used to create them.

However, we would like to argue that organizing metagenomic data in a way

that can provide useful information to others would be extremely beneficial. Right

now, we work with genes because they are easy to identify based on their well-

defined boundaries, but it would be interesting to see whether non-geneic regions

contain important functions and how to effectively identify such regions. Moreover,

clustering large sets of sequences efficiently is still an open computational problem

and an important future research direction.

With rapidly growing metagenome sequencing studies, we believe our ideas

and methods will be a useful resource for the metagenomics community.
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