
ABSTRACT

Title of Dissertation: Composing and Decomposing OS Abstractions

James Benjamin Litton
Doctor of Philosophy, 2021

Dissertation Co-directed by: Professor Bobby Bhattacharjee
Professor Peter Druschel
Department of Computer Science

Operating systems (OSes) provide a set of abstractions through which hard-

ware resources are accessed. Abstractions that are closer to hardware offer the

greatest opportunity for performance, whereas higher-level abstractions may sacri-

fice performance but are typically more portable and potentially more secure and

robust. The abstractions chosen by OS designs impose a set of trade-offs that will

not be well-suited for all applications.

In this dissertation, we argue the following thesis: Supporting novel hardware

such as non-volatile RAM (NVRAM) and new abstractions like fine-grained isola-

tion while maintaining efficiency, usability, and security goals, requires simultaneous

access to both high-level OS abstractions and compatible access to their low-level de-

compositions. We support this thesis by offering two new abstractions, PTx and

light-weight-contexts (lwCs), as well as the null-Kernel, a new OS architecture.

PTx is a new high-level abstraction for persistence built on top of NVRAM, a new

form of persistent byte addressable memory, whereas lwCs are a new OS abstraction

that enables fine-grained intra-process isolation, snapshots and reference monitor-

ing. Due to the efficiency requirements of both PTx and lwCs, both abstractions

required access to low-level decompositions of higher-level abstractions, while in-

teroperability requirements dictated that both low and high-level abstractions were

exposed simultaneously. The null-Kernel is an OS architecture that enabled the

simultaneous exposure of multiple abstractions for the same underlying hardware in

a safe way, which, if adopted, would accelerate the development and deployment of

abstractions such as PTx and lwCs.

Composing and Decomposing OS Abstractions

by

James Benjamin Litton

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2021

Advisory Committee:
Professor Bobby Bhattacharjee, Chair/Advisor
Professor Peter Druschel, Chair/Advisor
Professor Neil Spring
Professor Dave Levin
Professor Mark Shayman

c© Copyright by
James Benjamin Litton

2021

Acknowledgments

The work in this dissertation was not a lone effort, but was instead aided by

too many to mention explicitly. All the same, I would like to acknowledge the role a

few individuals have played in this work and my life more broadly over this period.

First, I must thank the staff at the University of Maryland and the Max Planck

Institute for Software Systems. To Brigitta, Claudia, Tom, Maria-Louise, Annika,

and many others, thank you for your patience when dealing with my administra-

tive incompetence and shepherding me through various bureaucratic and logistic

obstacles that I ran into along the way.

I must also thank my advisors, Bobby Bhattacharjee and Peter Druschel.

Bobby plucked me out of one of his courses and urged me to quit my inane job

and start down this journey. All of this is his fault. It was a privilege to work

with someone who understood where my mind was heading, even when I wasn’t

quite prepared to articulate it clearly. Peter, on the other hand, always offered a

steady hand that kept my more fanciful ideas grounded and offered expert advice

on framing and improving our work. Both contributed to my personal and profes-

sional development and this dissertation would not have been possible without their

guidance. It has been an honor to be advised by both of them.

Beyond my advisors, there are a number of other researchers who helped me

on this journey. Matthew Lentz often liked to give life advice (thankfully not all of

it followed) and our frequent conversations about culinary pursuits and wine were

a welcome distraction. Deepak Garg was a frequent collaborator who brought a

ii

different perspective to our work, which I appreciate. Dave Levin, who I collaborated

on a paper with and had many discussions with, was ceaselessly and infectiously

optimistic about our capabilities and is a fountain of good advice. Neil Spring, who

was a leader in our group, contributed to the rigor of our group and always had

an incisive, interesting and thoughtful perspective when discussing our work or the

work of others. I benefited greatly from these varied perspectives and am grateful

to have had the opportunity to learn from all of them.

Additionally, I would like to thank my advisors, Neil, Dave, and Mark Shay-

man, who all served on my committee and improved this dissertation.

I would also like to thank the following colleagues for their role as collab-

orators and friends. In alphabetical order: Paarijaat Aditya, Mohamed Alzayat,

Theophilus Benson, Björn Brandenburg, Frank Cangialosi, Eslam Elnikety, Neal

Gupta, Stephen Herwig, Mike Hicks, Pete Keleher, Zhihao Li, Andrew Miller, Alan

Mislove, Aastha Mehta, Ramakrishna Padmanabhan, Richie Roberts, Roberta de

Vita, Anjo Vahldiek-Oberwagner, and Liang Zhang.

Finally, most importantly, I’d like to thank my northern star, my wife Sarah.

When Bobby suggested this path, she didn’t hesitate and endorsed my pursuit of

the Ph.D., and despite my occasional doubts, she remained my biggest cheerleader

and defender. In more ways than I could ever articulate, she is the best thing in my

life.

This dissertation was supported by the National Science Foundation (TWC

1314857, NeTS 1526635, and CNS 1840902), the European Research Council (ERC

Synergy imPACT 610150), and the German Science Foundation (DFG CRC1223).

iii

This dissertation involved collaborative efforts with the following people:

Chapter 3: My co-authors for PTx were Deepak Garg, Peter Druschel, and

Bobby Bhattacharjee. We are appreciative of the feedback we received from from

Isaac Sheff, Roberta de Viti, Mohamed Alzayat, and Matthew Lentz.

Chapter 4: My co-authors for Light-Weight Contexts [1] were Anjo Vahldiek-

Oberwagner, Eslam Elnikety, Deepak Garg, Bobby Bhattacharjee, and Peter Dr-

uschel. We offer additional thanks to the following for their helpful feedback: Paar-

ijaat Aditya, Björn Brandenburg, Mike Hicks, Pete Keleher, Matthew Lentz, Dave

Levin, Neil Spring, anonymous reviewers, and KyoungSoo Park, who shepherded

our conference submission.

Chapter 5: My co-authors for the Composing Abstractions using the null-

Kernel [2] were Deepak Garg, Peter Druschel, and Bobby Bhattacharjee. We would

like to thank the anonymous reviewers, Pete Keleher, Matt Lentz and Dave Levin.

iv

Table of Contents

Acknowledgements ii

Table of Contents v

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Thesis . 5
1.2 Contributions . 7

2 Background and Related Work 10
2.1 Abstractions for NVRAM . 10
2.2 Decoupling Process Abstractions . 16
2.3 Improving OS Flexibility . 22

3 PTx 24
3.1 Introduction . 24
3.2 PTx design . 27

3.2.1 Requirements . 27
3.2.2 PTx colors and operations . 29
3.2.3 PTx Semantics . 30
3.2.4 PTx storage . 31
3.2.5 PTx primitives . 32
3.2.6 Tracking Write Sets . 39
3.2.7 Non-atomic NVRAM block writes 41

3.3 Evaluation of PTx . 42
3.3.1 Experimental setup . 43
3.3.2 PTx versus PDMK . 45
3.3.3 PTx on existing data structures 50
3.3.4 Multi-core scalability . 52
3.3.5 Applications with persistent state 53
3.3.6 Persistent key-value store performance 57

3.4 Conclusion . 61

v

4 Light-weight Contexts 63
4.1 Introduction . 63
4.2 lwC design . 66

4.2.1 Creating lwCs . 67
4.2.2 Switching between lwCs . 69
4.2.3 Static resource sharing . 69
4.2.4 Dynamic resource sharing . 70
4.2.5 Access capabilities . 71
4.2.6 System call interposition/emulation 71
4.2.7 Signal handling . 72
4.2.8 System call semantics . 73
4.2.9 lwC isolation . 73
4.2.10 lwC security . 74

4.3 Common lwC usage patterns . 76
4.4 Evaluation of lwCs . 83

4.4.1 lwC switch . 83
4.4.2 lwC creation . 84
4.4.3 Reference monitoring . 85
4.4.4 Apache . 86
4.4.5 Nginx . 90
4.4.6 Isolating OpenSSL keys . 95
4.4.7 FCGI fast launch . 96

4.5 Conclusion . 98

5 The null-Kernel 99
5.1 Introduction . 99
5.2 The null-Kernel . 101

5.2.1 null-Kernel Capabilities . 104
5.2.2 null-Kernel Structures . 107

5.3 null-Kernel in Practice . 109
5.4 NVRAM and the null-Kernel . 113
5.5 Isolation Abstractions and the null-Kernel 117
5.6 Conclusion . 121

6 Conclusion and Future Work 123
6.1 Future Work . 125

6.1.1 Extensions to PTx . 125
6.1.2 Persistent lwCs . 127
6.1.3 Implementing a null-Kernel 128

6.2 Concluding Thoughts . 130

Bibliography 132

vi

List of Tables

3.1 Auxillary functions used in PTx . 32
3.2 Queries/second achieved with 1 second persistence for Redis, persist-

ing its write-ahead log to disk, Redis-pmem, Redis using PTx as a
backend, and a custom key value server using PTx and the C++ hash
table implementation. Lines is the source code lines changed relative
to stock Redis. 59

4.1 API for interacting with lwCs. Parameters in italics new, caller, . . .
are lwC descriptors. Arguments args are passed during lwC switches;
resource-spec denotes resources (e.g. memory pages, file descriptors)
that can be shared or narrowed. 66

4.2 Median switch time (in microseconds) and standard deviation over
ten trials. 84

4.3 Average requests per second over 60 seconds with 24 concurrent re-
quests. 97

vii

List of Figures

3.1 Overview of PTx: Applications allocate persistent data structures using

“colored” parts of the heap. PTx tracks changes to the colored regions,

and atomically updates persistent copies in NVRAM upon commit. Details

of the NVRAM structure and atomic update are described in the text. . . 40
3.2 Queries per second (in thousands) as a function of write frequency,

with the PMDK provided red black tree implementation and Zipf
distributed workload,commit every 100 ms 46

3.3 Queries per second (in thousands) with the PMDK provided red black
tree implementation and Zipf distributed workload with 2% clustered
by writes per snapshot or milliseconds per snapshot. 48

3.4 Queries per second (in thousands) with the PMDK provided red black
tree implementation and Zipf distributed workload with 5% clustered
by writes per snapshot or milliseconds per snapshot. 49

3.5 Queries per second with the C++ red-black tree implementation from
a Zipf distributed workload with 2% writes. 51

3.6 Queries per second with the C++ hashtable implementation from a
Zipf distributed workload with 2% writes. 52

3.7 Queries per second with the C++ and PMDK-provided red-black tree
implementation, 2% write workload, with 500 writes between commit

calls . 54
3.8 Queries per second with 500 writes / commit from a uniformly dis-

tributed workload varying write proportion. 55
3.9 Queries per second (relative to DRAM) with the C++ STL hashtable,

dirty bits tracker with a 25% write workload generated from uniformly
distribution keys. For comparison, we also include the throughput of
PMDK and LMDB, both of which require manual annotation, and of
the Redis hash table, without persistence. 57

3.10 Queries per second (in thousands) of our custom key-value server as
a function of commit frequency and value distribution 60

4.1 Cost of 10,000 monitored system calls in seconds (log scale). Error
bars show standard deviation. 87

viii

4.2 Apache throughput in (GETs/sec) of 128 concurrent clients, 45 byte
docs, over HTTP. Error bars show standard deviation, which was
below 3.7%. 88

4.3 Apache throughput in (GETs/sec) of 128 concurrent clients, 45 byte
docs, over HTTPS. Error bars show standard deviation, which was
below 3.7%. 89

4.4 Throughput of different Apache reference monitoring configurations
in (GETs/sec) of 128 concurrent clients, 45 byte docs. Error bars
show standard deviation, which was below 2%. 91

4.5 Nginx throughput in GETs/sec for HTTP requests with 10 workers,
45B documents, 300 concurrent requests. Error bars show standard
deviation, which was below 0.9%. 92

4.6 Nginx throughput in GETs/sec for HTTPS requests with 10 workers,
45B documents, 300 concurrent requests. Error bars show standard
deviation, which was below 0.9%. 93

4.7 Nginx cumulative throughput in GETs/sec with 10 workers, session
length 256, 45B and 900B documents, increasing number of concur-
rent clients. Error bars show standard deviation. 94

5.1 An overview of the null-Kernel showing system components: the null-

Kernel, abstract machines, and callers. 102
5.2 A representation of a file system AM built on top of and exposing capa-

bilities for a disk AM. 108
5.3 Architecture for retrofitting the null-Kernel into a BSD system to expose

include safe exokernel like AM. 110
5.4 Achieving direct access / layer bypass with a deconstructed linux

null-Kernel . 116

ix

Chapter 1: Introduction

An operating system (OS) provides a set of abstractions through which access

to hardware resources may be granted or multiplexed (virtualized). The design of

this set of abstractions is informed by performance, isolation/security, portability,

and ease of use constraints. These constraints are often at tension with one an-

other. For instance, maximizing performance, whether it be throughput or latency,

and simultaneously maximizing security is difficult if not impossible. Security is

typically provided by isolating actors on the system and their data from one an-

other, yet crossing isolation boundaries has a performance cost, which implies an

inherent trade-off between performance and security. Similarly, portability, the fea-

ture whereby programs can run with little to no modification on different hardware,

OS versions, or even different OSes that maintain compatibility, is also at odds with

performance and, in some cases, security. Each significant branch of OS architec-

ture discussed below effectively chooses abstractions that impose different priority

orderings of these constraints and impose these trade-offs on users. The question

we ask is not which OS architecture offers the best abstractions, but rather whether

an OS ought to be constrained to a fixed set of abstractions at all.

OSes are often designed to favor one constraint over others. An OS that fa-

1

vors performance above all else will offer abstractions that give direct or near-direct

access to hardware. At the extreme, no OS (or just the hardware interface) is the

best OS for performance. The abstractions offered in this case (i.e., the hardware

interfaces) impose no overhead or unnecessary abstractions that may inhibit perfor-

mance, but suffer from three drawbacks: they are non-portable, offer little isolation,

and rarely provide a virtualized hardware interface to enable resource sharing. OSes

that favor isolation and security will limit the amount of software that runs with ele-

vated privileges and separate as many components as possible into separate domains

that may only interact through some supervisory process. In addition to security,

isolation may also be used to improve the robustness of the system: the effects of a

fault may more easily be contained to the isolated domain, which simplifies recovery.

Kernels that prioritize isolation may or may not be portable, but isolation cannot

be achieved without some performance cost. Finally, OSes that favor portability

necessarily have higher level abstractions, as their abstractions must remain con-

stant as hardware evolves and thus, tend to be represented by high-level models for

system resources. This implies both a performance cost, due to mismatches between

the hardware and its higher-level abstraction, as well as a cost to security, since the

need to maintain abstractions indefinitely hampers improvements in security that

may result from improving abstractions to fix deficits or adapt to new hardware and

application demands. Exokernels, microkernels, and the monolithic architectures ex-

emplified by UNIX and its descendants tend to prioritize, respectively, performance,

isolation, and portability. We discuss these kernels next.

The Exokernel [3] architecture prioritize performance over all other factors.

2

The interface exokernels provide is often non-portable and very closely matches the

hardware, which as argued by Clark et. al [4], enables the widest possible set of

application specific optimizations. All other design goals are sacrificed, with ease

of use, portability, and isolation sacrificed unless layered with a set of libraries that

define high-level abstractions, termed a “library OS,” that applications rely on. At

the limit, a library OS that prioritizes design goals other than performance will ulti-

mately recapitulate design choices and trade-offs made by other kernel architectures.

Microkernels [5], on the other hand, preference isolation as the over-riding

design principle. Liedtke explicitly argues that an abstraction should only be im-

plemented within the kernel (i.e., have direct access to hardware) if the desired

functionality cannot otherwise be achieved, leaving performance only as a secondary

consideration [6]. Microkernels offer relatively high-level abstractions that are built

as a set of userspace services that access hardware via interprocess communication

(IPC) with a small privileged kernel. The isolation and high-level abstractions may

hamper performance, but microkernels can be portable if the interface provided by

the user space services is preserved. Note that user space services are analogous to

library OSes, in that both are theoretically replaceable so long as portability is not

a concern.

Monolithic kernels, best exemplified by the descendants of UNIX, favor porta-

bility. POSIX [7], a standardization of a common set of OS abstractions and basic

utilities, specifies a set of abstractions supported by monolithic kernels that remain

largely unchanged for over 25 years. These abstractions, which are meant to support

a very broad set of hardware and application needs, tend to offer one-size-fits-all ab-

3

stractions for hardware and applications. A cost of this portability is less flexibility

in meeting new application demands that were not considered when the abstractions

were standardized, as well as performance loss due to overhead from the OS abstrac-

tions that the applications must use. Monolithic kernels do make compromises to

mitigate performance costs. They limit isolation, which they may do without af-

fecting portability, which is a practice that leads to their name: almost the entirety

of the kernel runs within a single monolithic address-space at increased privilege.

Practical concerns do necessitate occasional violations of portability, such as near-

direct access to new hardware through an exokernel like interface (e.g., an interface

to an ASIC that accelerates machine learning calculations). These exceptions are

ad-hoc and do not always interact well with the other abstractions offered by the

OS

Each major OS architecture meets its design goals through a set of abstractions

that reflect and impose onto applications the priorities of the OS. Applications that

want to maximize performance may choose to run on an OS offering direct hardware

access (e.g., an exokernel), whereas applications with strong security requirements

might be best deployed on OS with stronger isolation (e.g., a microkernel).

New hardware and changing application requirements have given rise to ap-

plications with needs that cannot be met with any current OS architecture. Appli-

cations can subvert the restrictions of the OS while preserving compatibility, but

traditionally this may only be done if the OS itself is modified. Our own work in

developing new abstractions has suggested that the trade-off between constraints

is not inherent and can be avoided, not by choosing a single ideal abstraction, but

4

instead by simultaneously exposing multiple abstractions for each available resource.

1.1 Thesis

Supporting novel hardware such as NVRAM and new abstractions like

fine-grained isolation while maintaining efficiency, usability, and security

goals, requires simultaneous access to both high-level OS abstractions and

compatible access to their low-level decompositions.

Next I will describe the terms in my thesis statement and discuss how they

affect OS design.

While there is no precise definition of low-level and high-level abstractions, for

the purpose of this dissertation we use low-level abstractions to refer to abstractions

that are more similar to the hardware than a higher level abstraction. We consider

direct hardware access as a low-level abstraction,and consider all high-level abstrac-

tions to be composed of one or more low-level abstractions. High-level abstractions

are built on top of one or more low-level abstractions and typically provide greater

ease of use, increased portability, or stronger isolation guarantees, but may sacrifice

performance. A decomposition of a higher-level abstraction is then the set of all

lower-level abstractions upon which the higher-level abstraction is built. Simulta-

neous access to both a high-level abstraction and its lower-level decomposition thus

implies that that a high-level abstraction may be exposed, but each of the lower-

level abstractions from which it is built should also be exposed and accessible to

applications.

5

In the context of the architectures we discussed above, we then describe exoker-

nels as an OS with low-level abstractions and the monolithic kernels discussed above,

on the other extreme, as an OS with high-level abstractions. Neither OS consistently

exposes both high-level abstractions and their low-level decompositions. This im-

plies that exokernels may be arbitrarily adaptable, but at the cost of usability due

to significant implementation effort and loss of portability. Whereas the monolithic

kernels and their high-level abstractions give us portability, but at the cost of effi-

ciency that the end-to-end principle suggests is inherent with high-level abstractions.

An OS that exported both low and high-level abstractions accommodates a wider

set of applications, but care must be taken to do this safely.

The difficulty in exposing low and high-level abstractions simultaneously is one

of interference. With few exceptions, all abstractions have a set of invariants that

must be maintained for the abstraction to offer a useful contract with its callers. If

multiple high-level abstractions are built on top of the same low-level abstraction

(e.g., two separate file systems using the same block device) we need some mechanism

to prevent interference between different high-level abstractions. A traditional OS

achieves this by specifying how abstractions may be used a priori and requiring a

supervisory process (i.e., the kernel) to enforce usage. A priori specifications cannot

possibly meet the needs of all applications and must have embedded within them

their own design trade-offs.

6

1.2 Contributions

As part of the work in evaluating the abstractions necessary to accommodate

new hardware and changing application demands, we developed two new abstrac-

tions, PTx (Chapter 3) and Light-Weight Contexts (Chapter 4. We also introduced

a new OS architecture, the null-Kernel (Chapter 5). Both PTx and Light-Weight

Contexts (lwCs) were designed and implemented on production operating systems

(FreeBSD and Linux respectively) and required access to traditional high-level OS

abstractions, as well as access to non-traditional low-level abstractions to meet their

performance goals. Building on our experiences in designing and implementing lwCs

and PTx, we propose the null-Kernel architecture, which is an architecture that en-

ables the simultaneous exposure of multiple abstractions for the same underlying

resources in a safe way. Under the null-Kernel, the development of new abstractions

such as lwCs and PTx would be accelerated, improving application performance and

security. The dissertation is structured as follows:

Chapter 2: Background and Related Work

We contextualize PTx and lwCs in relation to other work that provides similar

functionality. In addition to discussing the abstractions and capabilities of existing

systems, we note if and when related work relies on or provides different lower-

level OS abstractions than PTx and lwCs rely upon. We also discuss common

OS architectures and kernel extension mechanisms and discuss the problems these

systems are meant to solve and discuss the trade-offs inherent in each of these

architectures.

7

Chapter 3: PTx

We describe PTx, which uses a new form of non-volatile memory (NVRAM)

to efficiently persist in-core data structures to persistent media. We discuss the con-

sistency and performance challenges one faces when using NVRAM, and how PTx

solves these challenges. We evaluate PTx and show that it enables high performance

persistence of standard C++ data structures that exceed the performance of data

structures explicitly annotated for NVRAM. We also show that PTx can be used to

provide persistence to Redis [8], a popular key-value server, with comparable over-

head to custom solutions and minimal modification, or provide a compatible server

with superior performance within 430 lines of source code.

Chapter 4: Light-weight Contexts

We describe Light-weight contexts, which decouples memory isolation, exe-

cution state, and privilege separation from within a process. lwCs can be used to

provide snapshots, session isolation, reference monitoring, and protected compart-

ments within a process. We evaluate lwCs with a series of micro-benchmarks and

application scenarios and show that lwCs can provide enhanced security with low

overhead or improve performance with its snapshot facility.

Chapter 5: The null-Kernel

PTx and lwCs both showed that existing OS abstractions were insufficient

to deal with new hardware and increased security demands. We found that both

systems could be implemented by exposing and then making use of lower-level ab-

stractions, while portability concerns dictated that we preserve existing higher-level

abstractions. To generalize the constraints that we observed while building these

8

systems, we developed the null-Kernel, a model for describing existing OS archi-

tectures and suggest new OS paradigms to support the simultaneous exposure of

low-level and high-level abstractions. We discuss how simultaneous exposure of ab-

stractions provides new opportunities for improving performance and security and

place PTx and lwCs in the null-Kernel context.

Chapter 6: Conclusion and Future Work

We conclude by revisiting the contributions of this work. We discuss future

opportunities for improving PTx, both in terms of optimizations, as well as exten-

sions to functionality. We also discuss combining PTx and lwCs to create a form of

persistent lwC. Finally, we discuss the steps we have taken towards exposing lower-

level abstractions within FreeBSD to userspace and thus, bring FreeBSD closer in

line to a null-Kernel architecture.

9

Chapter 2: Background and Related Work

In this chapter we discuss related work for persisting state to NVRAM, decou-

pling process primitives, such as isolation, and improving OS flexibility to hasten

the development of new abstractions for differing application requirements and new

hardware.

2.1 Abstractions for NVRAM

The price/performance characteristics of NVRAM make it an attractive new

point in the storage hierarchy. Currently available NVRAM can be operated in one

of two modes: memory and direct. In memory-mode, conventional DRAM is used

as a cache for data stored in NVRAM, affording several TB of main memory at

reasonable cost with performance close to DRAM for workloads with good locality.

In this mode, NVRAM is used for its byte addressability and low cost per byte; the

memory controller actively defeats persistence in this mode for security reasons, by

encrypting data and destroying the keys during a system restart.

In direct mode, NVRAM appears directly in the system’s physical address

space and can be accessed with conventional load and store operations, albeit at

10

reduced performance compared to DRAM. Note that in this mode, once a NVRAM

page is mapped, loads and stores can be completed without OS intervention (i.e.,

without any abstraction overhead). Current commercially available NVRAM has

higher latency (3.7x slower) and lower bandwidth when the bus is saturated (1/3

and 1/6 of DRAM read and write bandwidth respectively) [9].

Operating systems expose direct-mode NVRAM in one of two configurations.

In the first configuration, the OS wraps NVRAM in a block device abstraction,

which is then accessed through a filesystem interface. Applications access the data

through the usual filesystem API, which has no bearing on the application other

than increased performance. In the second configuration, which PTx relies on, the

OS maps NVRAM directly into an application’s address space through the mmap

interface and applications modify persistent state through memory operations. This

latter form is a lower-level interface, which allows for higher performance.

Directly-mapped NVRAM by itself, however, does not provide immediate nor

atomic persistence. NVRAM accesses are subject to the same caching layers as

DRAM. Writes to mapped NVRAM are not automatically flushed to NVRAM and

thus, not persisted, until evicted from the CPU caches. A process may evict (and

thus persist) cache lines as needed, or applications may explicitly push writes to

NVRAM either via flush and fence instructions or via special instructions that by-

pass the cache. In either case, temporally proximate and spatially contiguous writes

are combined by the hardware and written to NVRAM with an effective block size

of 256 bytes. Regardless of the method chosen, persistence must be programmed

carefully to ensure that the persisted structure is in a consistent state, and thus

11

fault-tolerant, at all times, and that the NVRAM accesses are efficient. Failure to

do so can lead to very subtle, hard-to-detect and hard-to-recover-from bugs.

While an application can use the lower level direct-mapped NVRAM directly

to implement persistent data structures in principle, doing so is challenging both in

terms of performance and correctness. The application needs to carefully manage

data access locality and write amplification for performance, as well as use explicit

barriers and cache flush instructions carefully throughout. Failure to use these

instructions appropriately may result in inconsistent persistent states where the

program fails in specific states, which is very difficult to debug. Our work will offer

a higher-level abstraction that is different from the file system interface and reliant

on access to lower-level abstractions.

In the rest of this section, we describe prior work on using NVRAM, both as

a filesystem and for providing persistence. We also discuss existing solutions for

persistence, and compare them to PTx.

NVRAM file systems Several file systems take advantage of the performance

characteristics and byte addressability of NVRAM [10–12]. Just as file systems act

as a namespace to provide a handle to disk resources, an NVRAM file system can be

used to label NVRAM resources that can be mapped into the process address space.

The file system interface is a familiar one for programmers seeking persistence, but it

does impose overhead. At minimum, reading and writing to an NVRAM file require

system calls that copy data from NVRAM to and from DRAM.

Both NOVA-Fortis [10] and PMFS [11] allow applications to map the NVRAM

12

data pages for a file directly into the application’s address space. This feature, which

the Linux EXT and XFS file systems also provide, is known as “direct-access,”

(DAX). DAX allows applications to modify file contents directly through CPU load

and store directions, and as such grant lower-level access to the hardware. NVRAM

file systems that do not support or are not DAX mapped support memory mapping

like traditional file systems: with a buffer cache. The OS pages data onto DRAM

from NVRAM on demand and writes all modified DRAM pages to NVRAM either

opportunistically or when msync is called. Implementing persistent data structures

through file system mappings shares the challenges described above. PTx, which

offers an alternate high-level abstraction, relies on DAX mappings to read and write

to NVRAM internally but does not expose the mappings directly to applications.

NVRAM aware data structures Many prior systems have provided persistence

using bespoke NVRAM aware data structures [13], such as customized b+-trees [14,

15], radix trees [16], key value stores [17, 18], hash tables [19, 20], and write-ahead

logging [21, 22]. PTx instead enables efficient persistence for legacy data structure

implementations without annotation or modification to the data structure source

code.

Transactional Memory and Semantics Transactional memory was introduced

as a method of concurrency control. In this context, serializability and isolation

between threads are key requirements, while durability is irrelevant because trans-

actions are performed on volatile DRAM. Similarly, transactions for concurrency

13

control tend to be short to enable fine-grained concurrency (e.g., add an item to a

data structure).

More recently, transactional memory has been used as an abstraction for

atomic updates to persistent memory, such as NVRAM. Here, atomicity with re-

spect to failures is the key property: updates to persistent state must be applied in

their entirely or not at all. Isolation between threads for concurrency control may

or may not be provided. In this context, transactions tend to be larger as they

may include updates to multiple data structures that must be applied atomically to

maintain invariants application-wide, not just within a single data structure

Many persistent memory systems use a transaction abstraction [23–30] or

an atomic keyword [31] to delineate state changes that must be persisted atomi-

cally. Some of these systems operate much like transactional memory systems for

concurrency control, and provide concurrent consistency [23, 25, 27], whereas oth-

ers [26,28,31], like PTx, expect applications to use external concurrency primitives

for thread isolation within a process.

Transactional memory systems implement crash atomicity using logging. Sys-

tems that use undo logging [25–27] copy to-be-modified state to persistent memory

before allowing modifications to occur. Applications then make modifications in

place (i.e., directly in NVRAM) within a transaction. The undo log is only used to

recover from a fault. Other systems use redo logging [31] and write updates to a

redo log, to be applied to the main persistent store upon commit. Within a trans-

action, reads are redirected so that they read the proper values from the redo log.

Pronto [32] wraps operations on data structures and asynchronously logs operations

14

and their arguments that may be replayed against the data structure API in the

event of a failure.

Intel’s persistent memory toolkit (PMDK) [26] provides a transactional inter-

face that uses a combination of undo and redo logs to provide atomicity. Like PTx,

PMDK does not provide isolation between threads, but unlike PTx, PMDK writes

directly to NVRAM and requires programmer annotations to indicate the write set.

DudeTM [23] attempts to limit both the overhead caused by modifying NVRAM

within a transaction, as well as the overhead incurred from the redo log indirection.

Towards this end, DudeTM performs modifications on shadow DRAM pages and

writes a redo log in volatile memory. As part of commit, the volatile redo log is

flushed to NVRAM and subsequently, the persistent redo log is applied to the persis-

tent data. PTx also makes all modifications to volatile shadow pages, but does not

maintain an explicit redo or undo log. Instead, the PTx log structure enables writ-

ing a comparatively succinct undo log as a set of updates to the mapping between

DRAM and NVRAM addresses.

Ni et al. [28] propose a design that also eliminates explicit undo logs, by atom-

ically updating mapping information upon commit, but their approach relies on

hardware modifications. Hu et al. [33] also use a log structure for data in NVRAM.

New allocations are appended to the log and reads and writes are intercepted and

redirected so that they act directly on the log. PTx does not require interception

of reads and writes, and PTx’s log does not require periodic cleaning due to frag-

mentation. Correia et al. [34] present a persistent transactional memory system

based on universal constructions. Their work eliminates blocking transactions, but

15

either requires code annotation or flushing all the memory where the data structure

resides upon commit. This over-approximation of the write set is prohibitive for

transactions over large data structures.

2.2 Decoupling Process Abstractions

Privacy-compromising exploits, such as Heartbleed [35], suggest that existing

isolation abstractions, such as processes, either do not meet current isolation require-

ments, or do not meet them with sufficient expressiveness of performance. lwCs take

the process abstraction, and decouples the isolation, scheduling, and privilege prop-

erties traditionally provided by a process and uses them to offer new abstractions

that provides for strong, finer-grained isolation with minimal performance overhead,

as well as snapshots and reference monitoring. Other systems also revisit lower-level

aspects of the process abstraction and put them to new use, which we discuss now.

Wedge [36] provides privilege separation and isolation among sthreads, which

are a new unit of encapsulation for an application. The program is split up into a

series of sthreads, which by default share little to no state, and regions of computa-

tion gated by callgates. Each callgate is associated with an sthread, and whenever

another sthread attempts to invoke a callgate (i.e., enter a protected region of com-

putation), the caller thread is blocked and the sthread associated with the callgate

is scheduled to execute the gated code, potentially while accessing protected state,

and return a value back to the calling thread. Unlike lwCs, scheduling and isolation

are still coupled in Wedge, but sthreads are a finer unit of isolation than a process

16

and have a similar goal of protecting sensitive parts of a program’s execution. lwCs

are orthogonal to threads and therefore avoid the cost of scheduling when switching

contexts. Moreover, lwCs can snapshot and resume an execution in any state, while

a sthread can only revert to its initial state. Wedge provides a software analysis tool

that helps refactor existing applications into multiple isolated compartments. lwCs

could benefit from a such a tool as well.

Shreds [37] builds on architectural support for memory domains in ARM

CPUs, a compiler toolchain, and kernel support to provide isolated compartments of

code and data within a process. Like lwCs, shreds provide isolated contexts within

a process. lwCs, however, are fully independent of threads, require no compiler sup-

port, and rely on page-based hardware protection only. lwCs also provide protection

rings and snapshots, which shreds do not.

In SpaceJMP [38], address spaces are first-class objects separate from pro-

cesses, which demonstrates broader utility for lower-level address space abstractions

that are decoupled from the process. While both systems can switch address spaces

within a process, SpaceJMP and lwCs provide different abstractions, capabilities,

and are motivated by entirely different applications. SpaceJMP supports applica-

tions that wish to use memory larger than the available virtual address bits allow,

wish to maintain pointer-based data structures beyond process lifetime, and share

large memory objects among processes. A SpaceJMP context switch is not associ-

ated with a mandatory control transfer and, therefore, SpaceJMP does not support

applications that require isolation or privilege separation within a process. lwCs, on

the other hand, provide in-process isolated contexts, privilege separation, and snap-

17

shots. It should be noted, however, that the SpaceJMP address space abstraction

is a low-level abstraction that is similar to the address space abstraction proposed

in Section 5.5 for supporting new isolation abstractions in the null-Kernel, and in

concert with other abstractions for managing control flow, could be used to provide

isolation.

In Trellis [39], code annotations, a compiler, run time, and OS kernel module

provide privilege separation within an application. The kernel and runtime ensure

that functions can be called and data accessed only by code with the same or

higher privilege level. lwCs provide privilege separation without language/compiler

support, and can switch domains at lower cost. Moreover, lwCs additionally support

snapshots.

Switching among lwCs is similar to migrating threads in Mach [40], where

they were implemented to optimize local RPCs. Migration of threads across address

spaces is also an element of the model described by Lindström et al. [41] and the

COMPOSITE OS [42]. In single address space operating systems (SASOS) like

Opal [43] and Mungi [44], all processes as well as persistent storage share a single

large (64-bit) address space. Unlike lwCs, these systems do not provide privilege

separation, isolation, or snapshots within a process.

Mondrian Memory Protection (MMP) [45] and Mondrix [46] use hardware ex-

tensions to provide protection at fine granularity within processes. The CHERI [47,

48] architecture, compiler, and operating system provides hybrid hardware-software

object capabilities for fine-grained compartmentalization within a process. lwCs

provide in-process isolation at page granularity without specialized hardware or

18

language support.

Resource containers [49] separate the unit of resource accounting from a pro-

cess and account for all resources associated with an application activity, even if

the activity requires processing in multiple processes and the kernel. Resource con-

tainers decompose task accounting from processes. lwCs are orthogonal to resource

containers and as such, do not make use of accounting decomposition.

The Corey [50] OS provides fine-grained control over the sharing of memory

regions and kernel resources among CPU cores to minimize contention. These lower-

level abstractions are orthogonal to the capabilities of in-process isolation, privilege

separation, and snapshots provided by lwCs.

Light-weight isolation, privilege separation, and snapshots can be provided also

within a programming language. Functional languages like Scheme and ML provide

closures through the primitive call/cc, which can be used to record a program state

and revert to it later, and to implement co-routines. Typed object-oriented lan-

guages like C++ and Java provide static isolation and privilege separation through

private and protected class fields but do not isolate objects of the same class from

each other. Dynamic language-based protection, often implemented as object ca-

pabilities [51–53], provides fine-grained isolation and privilege separation but has

considerable runtime overhead. lwCs instead provide in-process isolation, privilege

separation, and snapshots at the OS level, independent of a programming language.

In low-level languages like C, isolation and privilege separation can be attained

using binary rewriting and compiler-inserted checks as in CFI [54], CPI [55] and

secure compilation [56]. All these techniques rely on dynamic checks that have

19

runtime overhead. Techniques such as CPI and secure compilation rely on OS

support for the isolation of a reference monitor, which lwCs can provide at low cost.

ERIM [57] uses binary inspection in concert with Intel’s memory protection keys to

provide memory isolation between contexts with minimal overhead. While ERIM

provides similar virtual memory isolation, it does not provide isolation for file tables

or privilege.

Software fault isolation (SFI) [58] and NaCl [59] rely on static checking and

instrumentation of binaries to isolate memory within applications running on un-

modified operating systems. SFI and NaCl do not selectively protect system calls

and file descriptors. lwCs instead allow fine-grained control over memory, file de-

scriptors and other process credentials, and provide snapshots as part of an OS

abstraction.

Process checkpoint facilities create a linearized snapshot of a process’s state [60–

63]. The snapshot can be stored persistently and subsequently used to reconstitute

the process and resume its execution on the same or a different machine. Checkpoint

facilities are used for fault-tolerance and load balancing. lwCs instead provide very

fast in-memory snapshots of a process’s state.

The Determinator OS [64] relies on a private workspace model for concurrency

control, which enables deterministic execution on multi-core platforms. To support

the model, Determinator provides spaces, in which programs mutate private copies

of shared objects. Like lwCs, spaces provide isolated address spaces. Unlike a lwC,

however, a space is tied to one thread, does not have access to I/O or shared memory,

and can interact only with its parent and only in limited ways.

20

Intel’s Software Guard Extensions (SGX) [65] provide ISA support to isolate

code and data in enclaves within a process. By mapping contexts to enclaves, SGX

could be used to harden lwCs against a stronger threat model (untrusted OS) and

to provide hardware attestation of contexts. However, enclaves have no access to

OS services, so some lwC applications would need considerable re-architecting to

run on SGX.

NOVA [66] provides protection domains (separate address spaces) and execu-

tion contexts (an abstraction similar to threads) in a micro hypervisor. NOVA’s goal

is to isolate VMMs and VMs from the core hypervisor, which is different from lwC’s

goal of providing isolation, privilege separation, and snapshots within processes.

Dune [67] provides a kernel module and API that export the Intel VT-x archi-

tectural virtualization support safely to Linux processes. This is akin to a form of

layer bypassing supported by null-Kernel that allows low-level access to hardware,

but this access is virtualized. The low-level interface granted is not a decomposition

of abstractions used by higher-level abstractions, but is instead disjoint from the

higher-level abstractions. Consequently, while privilege separation, reference moni-

tors, and isolated compartments can be implemented within a process using Dune,

these abstractions cannot be seamlessly integrated with the kernel’s existing abstrac-

tions. lwCs, by contrast, instead provide a unified abstraction and API for these

capabilities, and their implementation does not rely on virtualization hardware, the

use of which could interfere with execution on a virtualized platform.

21

2.3 Improving OS Flexibility

VINO [68] and SPIN [69] offer mechanisms to safely extend monolithic ker-

nels. Both systems require extensions to be written against a restricted, internal

interface that maintains kernel invariants. These systems can be thought of as a

limited instantiation of the hybrid system presented earlier, but access to the inter-

nal interface cannot be shared in a structured manner. This limits how extensions

(AMs) relate:for instance, layer bypassing is not possible in either.

Microkernels [6] seL4 [70] and Barrelfish [71] export kernel objects to user

space as capabilities. Capability types exported by the system are static. As a

result, layer bypassing via delegated capabilities is not supported.

Exokernels [3] provide a minimal, non-portable hardware-like interface. Ex-

okernel abstractions allow for the allocation and revocation of hardware resources

in a manner similar to capability allocation, but unlike capabilities, these resources

cannot be shared or reduced except by proxying through the resource owner.

EROS [72], derived from KeyKOS [73], is a stateless kernel that maps hard-

ware into a set of capabilities. Applications use the operations permitted by these

capabilities to construct higher level abstractions. EROS is equivalent to a specific

instantiation of the null-Kernel that only exports a low level AM. HiStar [74] also

exposes a limited set of kernel objects to user space, limiting access to those objects

by tracking information flow.

The Cal timesharing system [75], Cambridge CAP computer [76] and Fluke [77]

all allow an interface’s operations to be implemented and over-ridden in a nested

22

manner that is similar to subclasses. This layering is constrained by capabilities.

Unlike the null-Kernel, the interface for these interfaces is fixed.

23

Chapter 3: PTx

In this chapter we discuss PTx, a new abstraction for efficiently persisting in-

core data structures to a new form of byte addressable and persistent non-volatile

RAM (NVRAM).

3.1 Introduction

Non-volatile RAM (NVRAM) is a newly available memory technology that

may have profound impact on both system hardware and software structure. The

reason for this impending shift is that NVRAM has a cost/byte and speed between

DRAM and Flash memory, is byte-addressable via unprivileged CPU instructions,

and persistent. Thus NVRAM promises to combine the best features of DRAM

(directly addresseable/memory mapped, performance) with those of disk/solid state

memory (persistence, relatively low cost per byte).

We focus on the potential for NVRAM to enable persistent data structures.

For example, an in-memory database could persist on NVRAM, obviating the need

to save modified data on an external storage device for persistence. As a result,

NVRAM has the potential to significantly reduce the cost of persisting state, en-

24

abling higher performance for a given granularity of transactions, or enabling more

fine-grained transactions at a given level of performance.

There are two primary challenges when using NVRAM for persisting process

state. First, performance: when saturated, NVRAM writes are ∼6x slower than

DRAM writes [9], which generally precludes using NVRAM as a direct replacement

for DRAM. Instead, NVRAM is used as a backing store for DRAM and writes to

NVRAM must be minimized for efficiency. Minimizing extraneous NVRAM writes

is simple for some specific data structures, such as an append-only log. In general,

however, it requires appropriate techniques for determining which parts of a process’s

state need to be persisted and which parts of that state were modified as part of

a transaction. Performance also requires a design that minimizes NVRAM write

amplification, i.e., modified data should have to be written only once per commit in

the common case.

The second challenge is consistency: Processes may crash at any point in

their execution, and even if all memory writes are saved, the restored state may

not be consistent if the failure occurs when invariants on the application’s state

don’t hold. For instance, an application-level transaction may involve modifications

to multiple data structures that need to be performed atomically. Restored state

must satisfy not only the individual data structures’ invariants, but also invariants

across the application state. Moreover, without additional information about the

failed operation, it may be impossible to return to a consistent state without loss of

information.

We introduce PTx, a userspace persistence library specialized for the perfor-

25

mance and atomicity needs to persist data structures to NVRAM. PTx enables

programs to achieve failure atomicity for arbitrary code sequences simply by brack-

eting them with primitives to begin and end a transaction. No further annotation is

required on code executing inside a transaction; in particular, existing unmodified

data structure libraries can be invoked as part of a transaction, thus transparently

persisting these data structures. While executing inside a transaction, the program

can access data at DRAM speed. When ending the transactions, PTx persists the

transaction atomically while minimizing the number of NVRAM writes required.

As discussed in Section 2.1, state-of-the-art, high-performance persistent data

structures require manual annotation of individual memory writes, so that these

changes can be written to persistent storage efficiently. We introduce several high

performance automatic change trackers, which relieve the programmer from having

to annotate source code to track changes. PTx trackers are akin to existing compiler-

based mechanisms, such as those developed for Software Transactional Memory [78,

79], but provide much higher performance.

Because data accesses within a PTx transaction proceed at DRAM speed,

existing data structures not designed for the reduced access speed of NVRAM

may be used without penalty and subsequently persisted efficiently. Finally, PTx

persists data in NVRAM using a data structure that supports non-destructive

writes, avoiding unnecessary and costly NVRAM writes and the need for log clean-

ing/compaction. The combination of automatic, language independent write-set

tracking, DRAM-speed data access within a transaction, and low NVRAM write

amplification enables PTx to efficiently persist existing data structure implementa-

26

tions, without modifying their source code and even when transactions are large.

We experiment with persisting the standard C++ STL data structures [80].

With PTx automatic tracking, these structures can be made transparently persis-

tent, and perform close to their native DRAM speeds. This allows PTx to match or

exceed the query throughput of custom, hand optimized systems, such as LMDB,

Redis, pmem-Redis, and previously developed NVRAM data structures, all of which

require manual annotations to track changes.

This chapter is organized as follows: we provide a technical background on

NVRAM and discuss related work in Section 2.1. The design of PTx, including

its persistent data structures and algorithms is presented in Section 3.2. We dis-

cuss implementation specifics in Section 3.3. Section 3.3 contains a comprehensive

evaluation of PTx and a comparison to several other persistence libraries and ap-

plications.

3.2 PTx design

3.2.1 Requirements

PTx aims to enable persistent in-core data structures for existing systems and

applications, without requiring extensive changes to code. An application should be

able to link to the PTx library, map persistent memory objects into the application’s

address space using PTx’s API, use the PTx memory allocator to allocate addi-

tional persistent memory dynamically. The programmer should be able to bracket

sequences of operations on state that should be persisted atomically with transac-

27

tion start and commit primitives as required. Any existing persistence mechanism

within the application can be disabled. (Such a mechanism typically serializes and

explicitly writes its persistent state to an external storage device, or invokes sync

operations on memory-mapped files at appropriate points in its execution.) Due

to the greater efficiency afforded by PTx and NVRAM, the application can benefit

from increased performance, or persist its state more frequently. To realize this

vision, PTx has the following design constraints:

DRAM-speed data access: Existing data structure implementations designed

for DRAM may perform poorly on NVRAM. For instance, fine-grained writes get

amplified to 256-byte block writes. Therefore, accesses within a transaction should

be performed on DRAM.

Automatic write set tracking: Since existing data structure implementations

don’t explicitly state their write sets, we need to rely on automatic techniques

to determine them. These techniques must reliably capture all modified state for

correctness, without significantly over-approximating the write set.

Low write amplification: Applications are typically interested in persisting states

that correspond to completed application-level transactions, not mutations of indi-

vidual data structures. Therefore, transactional updates to persistent state are

typically larger than memory transactions used for concurrency control. Efficiently

supporting such transactions requires low amplification of NVRAM writes, i.e., mod-

ified data should be written only once per commit and at the 256 byte granularity

of NVRAM.

28

3.2.2 PTx colors and operations

PTx supports multiple memory pools called colors. Each color is backed by

an NVRAM file with separate access permissions. An application can map multiple

colors for which it holds permissions into its address space. Each color has a separate

dynamic memory allocator. PTx transactions operate on a single color, allowing

applications to persist data of any one color atomically. Applications may also

allocate memory in different colors and transact on them separately.

The PTx library exports four operations that each operate on a color c:

ptx malloc (c) allocates persistent memory associated with a particular color. ptx begin

(c) starts a transaction on a color, ptx commit (c) commits a transaction, and

ptx restore (c) rolls back the color to the last committed state. Note that ptx restore

(c) can be used at the start of a program execution to reinstate the last committed

state of a color, or during execution to abort an uncommitted transaction on a color.

We call the data of a given color persisted via a commit a snapshot. Later instanti-

ations of the application or other applications may restore the latest snapshot of a

given color into their address space by calling ptx restore().

At runtime, PTx stores persistent data in main memory, which the application

may read or write at DRAM speed. The “write set” represents the set of locations

within a color that were modified within a transaction. PTx uses “trackers” to

determine the write set, as described in Section 3.2.6. When the application invokes

ptx commit(), the write set is written to NVRAM atomically.

At any time, the application, a later instantiation of the same application, or

29

a different application with appropriate permissions may restore the last committed

state of a memory pool into its address space using ptx restore (c).

3.2.3 PTx Semantics

PTx transactions are committed atomically with respect to failures of appli-

cations and systems. From an application’s perspective, a persistent memory pool

(“color”) is either updated entirely or not at all as part of a commit. Critically, this

implies that as long as a memory pool’s invariants hold at the time of a commit call,

those invariants will hold after a system fault/recovery. An application may per-

sist multiple data structures by allocating them using the same color, and different

processes may simultaneously map the same color into their address spaces.1

PTx provides atomicity, durability, and consistency/isolation between pro-

cesses (but not threads). The semantics provided by PTx are similar to ACID

transactions at the level of processes. However, PTx transactions do not provide

concurrency control among different threads of a process. Such synchronization

normally occurs at a different granularity as PTx transactions and doesn’t require

atomic persistence. To synchronize among threads of the same process, an appli-

cation must use a separate mechanism, such as locks or conventional transactional

memory.

1Our PTx prototype does not currently support concurrent mappings of a color by multiple
processes.

30

3.2.4 PTx storage

Next we describe the storage components of PTx’s design, namely the data

layer, the log, and the map.

PTx data layer: The data layer stores persistent data and associated metadata in

NVRAM. It must do so efficiently and maintain the ability to recover in the event

of system failures. Towards this end, the store performs non-destructive data writes

and minimizes write-amplification by allowing modified data to be written only once

per transaction.

The data layer is organized as an array of fixed sized blocksets in NVRAM.

Each blockset contains space for 41 data blocks of 256 bytes each, plus an additional

256 bytes for metadata. During a commit, PTx writes modified data into available

data blocks in the data layer. The unit of allocation is a data block, although PTx

seeks to allocate entire blocksets when possible. Note that the blocks of a data

structure are typically stored non-contiguously in the data layer. Because NVRAM

can sustain random block accesses with little or no performance degradation, there

is no need for cleaning or compaction, which would create overhead and increase

write amplification.

PTx log: A small, persistent circular log is used to support atomic transactions

whose write set does not fit into a single blockset. The log holds metadata about

a transaction during a commit; specifically, the transaction’s sequence number, and

the set of data blocks written as part of the transaction, followed by a hash. In case

of a system failure before the hash is written, the information in the undo log is

31

used to free uncommitted data blocks in the data layer and add them to the free

list.

PTx map: The map associates virtual addresses of data blocks in an application’s

address space with addresses in the data layer, where the last committed state of the

block is stored. In the NVRAM, the map is distributed over the metadata blocks

of the data layer. During execution, a copy of the map, organized as a range tree

for efficiency, resides in main memory for efficiency. During a system restart, the

in-memory range tree is reconstituted from metadata in the data layer.

PTx free list: The free list is an in-memory data structure that indicates which

blocks in the data layer are free. Like the in-memory map, it is reconstituted during

a system (re-)start from the data layer metadata.

3.2.5 PTx primitives

Function Description
BlockLocation ←getFreeBlock() returns free BlockLocation
⊥ ←freeBlock(BlockLocation) sets BlockLocation to be empty
⊥ ←copyToBlock(VAddr, BlockLocation) copies Data from VAddr into BlockLocation
⊥ ←copyToVAddr(BlockLocation, VAddr) copies Data from BlockLocation into VAddr
⊥ Object.persist() Flushes calling object to NVRAM

Table 3.1: Auxillary functions used in PTx

Next, we describe the PTx primitives. Basic data types and global structures

are defined in Algorithm 1, auxiliary functions are defined in Table 3.1. Here, we

assume that a write of an individual data block to the NVRAM (Object.persist()

in Table 3.1) is atomic with respect to system failures. We discuss in Section 3.2.7

32

Algorithm 1 PTx Basic Data Types and Global Structures

1: type BlockSet
2: Header = {seqNum, VAddr[41]} . Seq. #, 41 VAddrs
3: BlockData = Data[41] . 41 Data items
4:

5: type BlockLocation
6: blockID . ID of BlockSet in NVRAM
7: blockIndex . index within BlockSet
8:

9: type UndoLogEntry
10: Locations = ¡BlockLocation¿ . sequence of BlockLocations
11: SequenceNum . sequence number of commit
12: Hash . Hash of commit
13:

14: type CommitEntry
15: VAddr . Virtual Address
16: Data . Data (256 bytes)
17:

18:

19: Global Structures
20: BlockStore . Sequence of BlockSets; stored in NVRAM
21: UndoLog . Seq. of UndoLogEntry(ies); stored in NVRAM
22:

23: WriteSet . Seq. of CommitEntries; generated by App./tracker
24: InMemoryMap . DRAM map of VAddr → BlockLocation
25: SeqNum . In-memory copy of last Sequence Number

how to generalize the design in case the NVRAM controller does not provide this

guarantee.

ptx commit: The commit operation atomically persists the write set of the current

transaction on a given color. The pseudocode for commit is shown in Algorithm 2.

(i) The transaction’s write set is determined using one of the methods described in

Section 3.2.6 and passed as an argument to commit.

(ii) We write all data in the transaction’s write set into currently unused blocks in

the data layer, relying on the free list to identify such blocks. To ensure Invariant

1 (see below), we choose blocks such that the current and any previous version of

33

Algorithm 2 PTx commit Schematic

1: function writeData(WriteSet C)
2: bMap ←{} . temp. map from BlockLocation → VAddr
3: u ←UndoLogEntry.new . new empty UndoLog entry
4: UndoLog �u . Append to undoLog
5: Cc . iterate over each WriteSet entry
6: b ←getFreeBlock
7: copyToBlock(c.Vaddr, b)
8: u.Locations �b
9: bMap[b] ←c.Vaddr

10: b.persist . write data to NVRAM
11: return bMap
12: function updateUndoLog
13: u ←UndoLog.last
14: u.SequenceNumber ←SeqNum
15: u.Hash ←Hash(u.Locations)
16: u.persist . flush the undoLog entry to NVRAM
17: function updateMap(bMap)
18: U ←UndoLog.last
19: U.Locationu . for BlockLocation in the last undoLog
20: b ←BlockStore[u.blockID]
21: vAddr = bMap[b]
22: b.Header.seqNum ←U.SeqNum
23: b.Header[blockIndex].VAddr ←vAddr
24: b.persist
25: InMemoryMap[vAddr] ←u
26: function Commit(WriteSet C)
27: SeqNum++
28: bMap ←writeData(C)
29: updateUndoLog()
30: updateMap(bMap)

34

Algorithm 3 PTx restore Schematic

1: function verifyUndoLog
2: u ←UndoLog.last
3: return u ? Hash(u.Locations) = u.Hash : true
4: function verifyLastSync
5: u ←UndoLog.last
6: u.Locationse
7: b ←BlockStore[e.blockID]
8: return false if (b.Header.seqNum 6= u.SequenceNum)
9: return true

10: function rollBack
11: u ←UndoLog.last
12: u.Locationsb
13: freeBlock(b)
14: b.persist
15: UndoLog.discardLast . remove last entry from UndoLog
16: function restoreDRAM
17: for b ∈seq BlockStore
18: . traverse by BlockSet sequence numbers, highest first
19: b.Header.VAddrvaddr
20: . iterate over virtual addresses in header
21: continue if vaddr = ⊥
22: continue if InMemoryMap[vaddr] . already restored
23: copyToVAddr(vaddr, b.BlockData[vaddr.index])
24: . vaddr.index is index of vaddr in Header.VAddr
25: InMemoryMap[vaddr] ←{b.index, vaddr.index}
26: . b.index is index of block b in BlockStore
27: function Restore
28: if ¬ verifyUndoLog
29: UndoLog.discardLast
30: elsif ¬ verifyLastSync
31: rollBack
32:

33: SeqNum ←UndoLog.last ? UndoLog.last.SequenceNum : 0
34: restoreDRAM

the same memory location don’t end up in the same blockset. Whenever possible,

we use as few data layer blocksets with as many free blocks as possible to reduce

overhead and write amplification. At this point, the write set is in NVRAM but

the associated blocks are considered unused and their content ignored in case of a

failure.

35

(iii) We append to the undo log the transaction’s sequence number, followed by the

list of data layer blocks that were written in step (ii).

(iv) We rewrite the headers of blocksets that contain newly written data blocks. The

header of each blockset is modified in three ways. First, the sequence number is set

to the current transaction’s. Second, we inspect all previously allocated blocks in

the set to see if they have been superseded by a committed transaction, as indicated

by the in-memory map, and then we set the address fields of all obsolete blocks to

⊥. This ensures that the most recently committed value of a data block resides

in a blockset with a higher sequence number than any previous version of that

block. Third, the address fields of newly written blocks are changed from ⊥ to their

virtual offset, thereby allocating the blocks and associating them with an offset in

the application’s address space. At this point, the write set of the uncommitted

transaction is allocated in the data layer. This is safe, because the undo log has

the information required to deallocate the blocks in case of a failure before the

transaction commits.

(v) We append a hash of all information related to the transaction to the undo log

and flush the log entry to NVRAM. At this point, the transaction is committed.

(vi) We update the in-memory map and free list with the newly allocated blocks

and their mappings.

The implementation of commit maintains

Invariant 1: When traversing blocksets in the data store in decreasing order of

sequence numbers, the first occurrences of a block’s virtual address represents the

most recent version of the block (if it was ever written).

36

System shutdown: During an orderly system shutdown, PTx writes the in-

memory map and free list to NVRAM, followed by the latest transaction sequence

number and hash.

ptx restore: The restore operation executes upon every system restart. The

pseudocode for restore is shown in Algorithm 3.

(i) We check if the restart follows an orderly system shutdown, indicated by the

presence of complete, consistent copies of the map and free list in NVRAM. If so,

it loads the map and free list into main memory and skips the remaining steps.

(ii) We find the end of the undo log by searching for the entry with the highest

sequence number. Due to the presence of hashes, we can reliably find sequence

numbers even though the entries in the undo log have variable length.

(iii) If the last transaction recorded in the log has committed, as indicated by a valid

hash at the end of the record, we skip to step (v).

(iv) To roll back an uncommitted transaction, restore iterates over the list of block

ids in the undo log, finds the associated data layer blocksets, and sets the address

fields of blocks written by the uncommitted transaction to ⊥.

(v) We reconstitute the in-memory map and free list by traversing the data layer

blocksets in order of decreasing sequence number. We know that the block with

a given address first encountered during this traversal is the last committed block

(see Invariant 1); we add it to the map and mark it as allocated in the free list.

If we encounter blocks with the same address again during the traversal, we set its

address field in the blockset header to ⊥ and mark it as free in the free list.

37

There is also an API version of restore that can be invoked by applications

to map the persistent memory pool of a given color into an application’s address

space.

Write amplification PTx’s data structures and commit are optimized the reduce

write amplification. During a commit, each modified block is written only once to

NVRAM, which is optimal since a block is the smallest writable unit. However, the

metadata in the data layer as well as the undo log add extra writes that we must

consider.

The data layer stores one metadata block for each blockset of 41 data blocks;

the block must be written (eventually) whenever one or more data blocks in the set

are newly allocated or superseded by a transaction. The undo log requires a sequence

number, a hash, and a 9-byte record for each blockset written (30bit blockset id;

41bit block bitmap).

Depending on the average number of blocks per blockset written by a transac-

tion, the amplification can range from 5.2% (41 blocks per set in a large transaction

of 1MB) to 313% in the worst case (a tiny one-block transaction). This shows that

allocating as few blocksets as possible is important. Since PTx is optimized for

medium- to large transactions, the main requirement for low write amplification is

that we update as few blocksets as possible with a high average number of blocks

written. PTx achieves an average write amplification of 8.4% in our experiments

(see Section 3.3.6).

38

3.2.6 Tracking Write Sets

Next, we briefly review approaches to tracking the write set within a trans-

action. The write set must be complete for correctness and should not vastly over-

approximate the true write set for performance. Approaches broadly fall into three

categories:

Source code annotation Data structure source code can be annotated to keep

track of modifications. While conceptually simple, the application programmer has

to be diligent to mark all possible updates to the data structure, without errors,

and ideally, not overestimate the write set.

Compiler/Runtime tracking With appropriate runtime/compiler support, the

write set can be automatically generated without programmer input. In our eval-

uation, we use compiler annotations for Software Transactional Memory (STM) in

gcc [81] to automatically trap and record writes within a colored region.

Hardware-assisted tracking MMU-hardware provides page write protections

and dirty bits, and either can be used to track writes to a colored region. Operating

systems offer APIs to use both methods: write-protect a region and receive notifi-

cation about the first write to a page; or, reset the dirty bits in a region and inspect

the bits as part of the commit2. In our implementation, we use trackers based on

page faults and on dirty bits.

2We use a custom kernel module for dirty-bit tracking that improves upon the kernel provided
functionality within Linux.

39

NVRAM

Process A
Process B

. . .

vmspace vmspace

in
-c

o
re

d
a
ta

 s
tru

c
t.

in-core

data struct.

PTx Persistent Snapshot

L L

Log Data Sets

n h b
n
→v

n
’

PTx Undo Log

hash of updates

sequence number

b
0
→v

0
’ b

1
→v

1
’ …

pending updates list

hdr

PTx Data Set

header

d41d0 …

42x 256 byte blocks

d1 d2 d3

n

Data Set Header

seq. #

v41v0 …

42x virtual addresses

v1 v2 v3

Figure 3.1: Overview of PTx: Applications allocate persistent data structures using
“colored” parts of the heap. PTx tracks changes to the colored regions, and atomically
updates persistent copies in NVRAM upon commit. Details of the NVRAM structure and
atomic update are described in the text.

Diffing Because NVRAM writes are slower than NVRAM and DRAM reads, it

can make sense to compare the content of a page to be committed with its last

committed state in order to narrow down the write set and minimize NVRAM

writes. In our evaluation, we use this approach in combination with page-based

modification tracking to narrow down which 256-byte blocks within a page were

modified. We have found that this optimization often reduces the number of blocks

that need to be written by up to 60%.

40

3.2.7 Non-atomic NVRAM block writes

Our design and prototype assume that writes of individual NVRAM blocks

are atomic with respect to failures. Existing software, including Intel’s PMDK

SDK [26], appears to rely on this assumption. However, we were unable to find any

direct confirmation of this guarantee in Intel’s documentation of Optane NVRAM

memory. In case that Optane, or any future NVRAM product, does not provide

atomic block writes, the PTx design can be extended as follows: in the absence

of atomic block writes, we have to avoid destructive writes of blockset headers,

because a failed write could leave a header in an arbitrary state. Instead, the

blockset headers can be placed into a separate circular log, where each block has an

additional blockset id and a hash value to be able to verify its integrity. Updated

headers are appended to the end of the log. After a restart, the most recent version

of a blockset’s header can be found by traversing the log in order of decreasing

sequence numbers.

41

3.3 Evaluation of PTx

PTx is implemented as a userspace library and includes the components de-

scribed in Section 3.2. PTx is written in C++ (with a C compatibility layer) and

relies on the NVRAM support provided by the Linux 5.3 kernel. The core of the

library itself is comprised of 8629 source lines of code, with an additional 7504 source

lines of code for workload generation and testing. The malloc-like allocator provided

by PTx is a modified form of Doug Lea’s malloc [82] and is not counted in the line

count above.

The mechanism provided by the Linux 5.3 kernel to directly map NVRAM

pages into the address space is to by configuring NVRAM as a block device, format-

ting it with ext3 or XFS, and mounting it with “direct-access” enabled. We chose

XFS as our file system because it performed better under preliminary evaluation.

PTx used it to directly mapped NVRAM into our process’s address space.

In Intel Optane NVRAM hardware, writes smaller than 256 bytes are ampli-

fied to 256 bytes, and there is no performance advantage to more granular writes.

Consequently, PTx is designed to operate largely in terms of 256 byte increments, as

we have described in the previous section. PTx uses non-temporal stores, which by-

pass the write-back cache,to write blocks into NVRAM in 256 byte increments with

an AVX instruction (VMOVNTDQ), which bypasses the cache and does not need

an additional flush operation (writes to NVRAM are not persistent until evicted

from the cache, either implicitly or via a flush call. Non-temporal stores make the

flush unnecessary). Since PTx rarely reads from NVRAM (except during restore

42

and, for some trackers, commit), using non-temporal stores reduces cache pollution.

3.3.1 Experimental setup

We evaluate PTx by measuring the cost of persisting different in-memory data

structures, including b-trees, red-black trees, and hash tables. The data structures

we use are either the standard C++ library constructs, or the NVRAM specific struc-

tures developed for PMDK. (We use the latter for comparing directly with PMDK,

as PMDK requires these bespoke implementations.) Along with microbenchmarks

over these data structures, we compare PTx persistence against Lightning Memory-

Mapped Database (LMDB) [83], which is a database designed for high performance

and persistence, to Redis [8], a high performance key-value store, and to Pmem-

Redis [84], a custom port of Redis for use with NVRAM.

Our evaluation server has two 2.4 GHz Intel Xeon Platinum 8260 24 core

CPUs, 384 gigabytes of RAM, and 3 terabytes of NVRAM. We mounted a 1.5 TB

NVRAM backed XFS file system in “direct access” mode, which disabled the page

cache and allows NVRAM to be directly mapped into a process address space via

the mmap call. All of the memory used (NVRAM and DRAM) was local to one CPU,

to which we bound all process execution and memory allocation.

There are two critical aspects to the performance of any persistence scheme:

the overhead of write set tracking, and the efficiency of the writeback to persistent

storage. For tracking, PMDK requires manual annotation of source code, whereas

PTx provides automated trackers. In our comparison, we evaluated the four PTx

43

automatic trackers described in Section 3.2.6, and also a manual tracker for PTx.

(While not a generic persistence platform, LMDB manually tracks changes for the

dictionary data structure it implements).

PTx, PMDK, LMDB all implement their own writeback mechanism, and all

provide data structure consistency and persistence. We evaluate all three, and in

addition, as a reference, we also compare against a directly mapped NVRAM region.

The latter provides persistence but does not provide atomicity or consistency by

itself.

When using PTx with the PMDK data structures, we replace the PMDK

writeback mechanism with PTx’s when the driver application invokes commit. The

PMDK data structure implementations explicitly state the write set, since that

is required by PMDK, but PTx’s automated trackers are not provided with this

information.

Experiment Design In each experiment, we populate the data structures with

1,000,000 integer keys and 2500 byte values. Insertion operations allocate a 2500

byte array and overwrite it with zeroes. We then insert this value into the data

structure. Lookup operations lookup a previously inserted key and read all of the

bytes associated with the value. Deletion operations free previously inserted keys

and free (but do not read) the value. These operations are performed sequentially by

a single process. Our sequence of insertions and deletions ensure that approximately

1,000,000 keys are present in the dictionary at all times. needs to

44

Parameter Space The performance of all systems depends on the frequency of

snapshotting, the read vs. write mixture of the workload, and the access distribu-

tion. Towards this end, we evaluate performance while varying all of these parame-

ters. For snapshot frequency, we either performed a commit after a certain number

of insert or delete operations are performed (10, 500, or 1000 writes) or a period

of time has passed (100, 500, or 1000 milliseconds). We also varied the fraction of

write operations (0% . . . 50%) during the experiments.

We vary the workload by choosing keys either uniformly at random or from

the a Zipf distribution. The code that generates the Zipf distribution and its default

parameter are both taken directly from memcached benchmarks [85]. Finally, we

also experimented with varying the number of cores that simultaneously try to

persist data.

Our full evaluation spanned the Cartesian product of multiple snapshot fre-

quencies, write proportions between commit calls, trackers employed, key distri-

butions, thread count, and data structure implementations. In the following, we

present representative results from both microbenchmarks and end-to-end applica-

tion evaluations. We frame the results around a set of high-level questions, which

we pose and address in each of the following sections.

3.3.2 PTx versus PDMK

The first set of questions we seek to address is “How does PTx compare to

Intel’s PMDK, on data structures designed for PMDK? While taking advantage

45

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0% w 2% w 5% w 10% w 25% w 50% w

R
e

q
u

e
s
ts

 p
e

r
s
e

c
o

n
d

 (
x
1

0
6
)

QPS with respect to write proportion (rbtree, 100 ms/S zipf)

mmap unsafe
page faults

dirty bits

ptx manual
pmdk manual

dram

Figure 3.2: Queries per second (in thousands) as a function of write frequency,
with the PMDK provided red black tree implementation and Zipf distributed work-
load,commit every 100 ms

of PMDK data structures’ explicit write set specifications? While instead using

automated write set tracking techniques?” To answer these questions, we perform

micro-benchmarks of the NVRAM-specific data structures provided by PMDK.

In the following, the “mmap unsafe” configuration is one where NVRAM is

mapped directly into application memory and the commit call is mapped to the

POSIX msync call. This configuration is unsafe as msync does not provide atomic

writes, which can lead to inconsistent data if the process faults or the machine

crashes during the msync. The “pmdk manual” configuration is stock PMDK, which

requires manual annotation of write sets. The PTx configurations replace the PMDK

writeback mechanism. ‘ptx manual” uses PMDK’s manual annotations, whereas the

other PTx configurations uses automatic write set trackers.

Figure 3.2 shows the queries per second with the PMDK red black tree while

46

varying the write proportion and choosing keys from a Zipf distribution. Commits

are performed every 100 ms. The read-only workload shows the base overhead of

using a persistence library and performing periodic snapshots when no data is ac-

tually being modified. The DRAM column in the figure shows the throughput of

the PMDK red black tree without NVRAM, i.e., the data structure is mapped to

DRAM and commit is not invoked. (We have performed similar experiments with

other PMDK data structures and access distributions: these results are representa-

tive.)

For the read-only workload, all PTx configurations provide 2X or more through-

put than either pmdk manual or mmap unsafe. In fact, query throughput of PTx

configurations are on par with DRAM since, by design, PTx performs read op-

erations entirely in DRAM. Both pmdk manual and mmap unsafe map NVRAM

directly into application memory, and read-only throughput suffers due to the 3.7X

higher read latency of NVRAM. Performance degrades by only 2X (not 3.7X) be-

cause caching masks read latency, especially with a skewed workload. The result

also shows that invoking commit every 100 milliseconds does not appreciably degrade

performance when no data is modified.

As the fraction of writes increases, the slower NVRAM writes make the query

throughput fall behind the throughput achieved with DRAM. Depending on the

workload and application requirements/semantics, however, a persistent data struc-

ture can approach the performance of DRAM. While not shown in the figure, e.g., 2%

writes and a snapshot once per second performs on par with DRAM. We also observe

that the overhead of some automatic trackers can be significant when transaction

47

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

10 w/S 500 w/S 1000 w/S 100 ms/S 500 ms/S 1000 ms/S

DRAM (no persistence)

R
e

q
u

e
s
ts

 p
e

r
s
e

c
o

n
d

 (
x
1

0
6
)

QPS with respect to configuration (rbtree, 2% writes zipf)

mmap unsafe
page faults

dirty bits

hybrid
logtx manual

pmdk manual

Figure 3.3: Queries per second (in thousands) with the PMDK provided red black
tree implementation and Zipf distributed workload with 2% clustered by writes per
snapshot or milliseconds per snapshot.

write sets are very small (e.g., dirty bits for 10 writes/snapshot). In particular,

while determining the write set, dirty bits iterates over the page tables for the entire

allocated region and flushes the TLB, making it unsuitable for this type of workload.

In general, less frequent snapshots allow automatic trackers to amortize the cost of

finding write sets. With dirty bits, PTx outperforms or matches the performance

of PMDK and even the unsafe mmap, and nearly matches the performance of PTx

with manual tracking even for small write sets on this workload.

Figure 3.3 and Figure 3.4 show queries per second with the PMDK red black

tree while varying snapshot frequency and choosing keys from a Zipf distribution

with 2% and 5% writes respectively. With 2% writes, page faults have the higher

throughput for very frequent transactions. This is unsurprising. Detecting modifi-

cations via dirty bits is a function of the total size of the persistent region and is

48

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

10 w/S 500 w/S 1000 w/S 100 ms/S 500 ms/S 1000 ms/S

DRAM (no persistence)

R
e

q
u

e
s
ts

 p
e

r
s
e

c
o

n
d

 (
x
1

0
6
)

QPS with respect to configuration (rbtree, 5% writes zipf)

mmap unsafe
page faults

dirty bits

hybrid
logtx manual

pmdk manual

Figure 3.4: Queries per second (in thousands) with the PMDK provided red black
tree implementation and Zipf distributed workload with 5% clustered by writes per
snapshot or milliseconds per snapshot.

thus, constant. Detecting modifications via page faults is a function of the number

of modified pages. This form of detection is expensive (two context switches and

system call must be invoked per page written). The implication is that frequent

transactions with few writes may have higher throughput when using page faults

to detect modifications, but as transaction frequency increases the constant cost of

dirty bit detection is amortized and performs better than all other automated forms

of tracking.

While PTx performs well in these experiments, perhaps its most enabling

feature is its ability to seamlessly persist any existing data structure without source

code change, including those that were not developed with persistence as a goal. We

explore this aspect of PTx next.

49

3.3.3 PTx on existing data structures

The next question we seek to answer is “How does PTx perform when used to

provide persistence for unmodified data structures from the standard C++ library?”

PTx can atomically persist existing data structures without changing or even nec-

essarily having access to the source code. Any data structure library that takes

a memory allocator as input can be persisted without source code change or even

re-compilation. The application passes the library an allocator for a colored region,

and invokes commit as application semantics demand. The C++ standard template

library can be parameterized with an allocator, and we use it evaluate PTx using

the C++ red black tree and hash tree structures.

In addition to the automatic trackers we evaluated previously, this set of eval-

uations also include gcc-STM, which is source compatible with the C++ STL. gcc-

STM uses GCC’s built in STM support modified to supply compiler-generated an-

notations to PTx.

Figure 3.5 shows the performance of the C++ red black tree with 2% writes

and keys chosen from the Zipf distribution described earlier. We varied the commit

frequency and corresponding write set sized from 10 to 1000 writes and then from

100ms to 1000ms, respectively. The trends are similar to the earlier results using

the PMDK structures but the absolute query throughput is up to 2.5X higher. This

is likely because the C++ STL data structures are highly optimized, and PTx is

able to take advantage of these optimizations without any modification to the source

code. We also evaluated the same workload over the C++ hash table with similar

50

 0

 0.2

 0.4

 0.6

 0.8

 1

10 w/S 500 w/S 1000 w/S 100 ms/S 500 ms/S 1000 ms/S

DRAM (no persistence)

R
e

q
u

e
s
ts

 p
e

r
s
e

c
o

n
d

 (
x
1

0
6
)

QPS with respect to configuration (rbtree++, 2% writes zipf)

gcc-STM
mmap unsafe

page faults

dirty bits

Figure 3.5: Queries per second with the C++ red-black tree implementation from
a Zipf distributed workload with 2% writes.

results, shown in Figure 3.6.

Write set tracking based on dirty bits performs best except for very small

write sets of 10, where page faults are fastest. gcc-STM performs best for very small

transactions but is not competitive otherwise. This is because once a transaction is

started, gcc-STM tracks every load and store, not just accesses to the colored region.

Once again, with larger snapshots (500ms or longer), the cost of PTx automatic

marking is amortized, and PTx provides ∼90% of DRAM throughput. There is no

free lunch however, as write heavy or snapshot heavy workloads expose inherent

NVRAM bottlenecks.

In summary, PTx can provide persistence for existing, unmodified standard

data structures with high performance, approaching that of DRAM for large trans-

actions. Moreover, dirty bits outperform other methods of write set tracking, except

51

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

10 w/S 500 w/S 1000 w/S 100 ms/S 500 ms/S 1000 ms/S

DRAM (no persistence)

R
e

q
u

e
s
ts

 p
e

r
s
e

c
o

n
d

 (
x
1

0
6
)

QPS with respect to configuration (hasht++, 2% writes zipf)

gcc-STM
mmap unsafe

page faults

dirty bits
hybrid

Figure 3.6: Queries per second with the C++ hashtable implementation from a Zipf
distributed workload with 2% writes.

for very small transactions, where gcc-STM is best.

3.3.4 Multi-core scalability

We have also performed experiments to evaluate “How does PTx’s performance

scale with concurrent threads?” The single core experiments we have discussed are

affected by the longer NVRAM read/write latency, but a single core is unable to

saturate the NVRAM bandwidth. To determine whether or not PTx suffered from

any unexpected scaling anomalies, we evaluate the same data structures as before

with varying numbers of threads bound to different cores. Each thread executes the

same workload and operates independently.

The query performance of PTx and PMDK as the number of cores/threads is

increased is linear. When using a 5% mix of writes, and a commit every 500 writes,

52

PTx scaled with a normalized co-efficient of 1 for the PMDK provided red-black tree

and the C++ red-black tree, regardless of the workload distribution. However, Zipf

distributed workloads did have higher absolute throughput by roughly 40%. PMDK

also scaled linearly, but with a co-efficient of .91 for a uniformly distributed workload

and a co-efficient of .86 for Zipf distributed workloads, with Zipf outperforming

PMDK by 40-50%.

There are two key points: First, PTx shows no unexpected scaling anomalies,

with performance increasing essentially linearly up to 24 cores on this workload.

Second, PTx scales better than PMDK: we hypothesize this is is due to PMDK’s

increased interactions with the NVRAM memory bus. Also, as expected, the Zipf

distributions for both PMDK and PTx are able to benefit from DRAM caching,

and provide higher absolute performance. (Even though our test machine has 48

cores, we did not scale beyond 24 since each CPU only has 24 cores, and both the

NVRAM and DRAM were local to the CPU we ran the tests on.)

3.3.5 Applications with persistent state

Next, we address the question “How does PTx, when used to provide persis-

tence for a standard C++ library hashtable, compare to a custom PMDK hashtable,

and to LMBD, on the same workload? How is the comparison influenced by how of-

ten state is persisted?” Our previous evaluations have focused on microbenchmarks

of data structure libraries. We compare PTx’s performance to mature application

software designed to provide high throughput and native persistence: Lightning

53

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 1 2 4 8 16 24

R
e

q
u

e
s
ts

 p
e

r
s
e

c
o

n
d

 (
th

o
u

s
a

n
d

s
)

Number of threads

Normalized QPS with respect to threads
(red-black trees, 2% writes, 500 w/S)

logtx rbtree uniform
logtx rbtree zipf

logtx rbtree++ uniform
logtx rbtree++ zipf

pmdk rbtree uniform
pmdk rbtree zipf

Figure 3.7: Queries per second with the C++ and PMDK-provided red-black tree
implementation, 2% write workload, with 500 writes between commit calls

Memory-Mapped Database (LMDB) [83], version 1.8. LMDB is a database de-

signed for read-heavy workloads, permitting only a single writer at a time. Inter-

nally, LMDB stores data as a memory mapped b-tree. Reads operate directly over

this memory mapped tree, whereas writes are propagated to the underlying file in

a ACID compliant manner. We ran LMDB on an SSD, on a NVRAM file system

with direct mapping, and on a NVRAM filesystem without direct mapping. The

last configuration allows LMDB’s memory mapped btree to be cached in DRAM,

and had the best query throughput, faster than the direct mapped version by 20%

and 3X-5X faster than LMDB over SSD (state of the art without NVRAM.)

Figure 3.8 shows the best performing configuration of LMDB and PTx with

manual and automatic marking using the C++ hashtable, on a workload with 500

writes per commit. The result with PMDK’s custom hashtable was included for

54

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2% w 5% w 10% w 25% w

R
e

q
u

e
s
ts

 p
e

r
s
e

c
o

n
d

 (
x
1

0
6
)

QPS with varying fraction of writes (500 w/S, uniform)

pmdk manual
ptx manual

ptx auto
lmdb

Figure 3.8: Queries per second with 500 writes / commit from a uniformly distributed
workload varying write proportion.

comparison. We performed these experiments with varying query distributions and

write fractions, and the results presented are representative. (In all cases, the test

inputs are identical for each system, and the information persisted is also the same

for each configuration.) For PMDK and ptx manual, the results show the PMDK

hash table data structure as it had the highest throughput for both systems. For au-

tomatic tracking, the C++ hash table data structure had highest throughput using

the dirty bits marking. LMDB internally uses a btree tree with manual annotation.

LMDB performs well in the low write-mix scenarios it is optimized for (2%

writes), outperforming PTx with manual marking by about 10% in both configura-

tions. As the write mix increases, PTx with manual marking performs similar to

LMDB. Invoking commit every 10 mutations (not shown), with very small modified

sets, over a large data structure with 1M keys, represents an extreme worst case

55

for automatic tracking, and it lags manual marking by 20-30%. (PTx automatic

tracking remains competitive with PMDK manual marking, however.) With larger

write sets, PTx with automatic tracking performs much better, and is comparable

to both LMDB and PTx manual marking.

We parameterized the experiment in Figure 3.8 to focus on the absolute worst

case scenarios for PTx: no query locality, very small write sets, and very frequent

commits. It is interesting that PTx remains competitive even under these constraints,

especially since both PMDK and LMDB have the advantage of implementing manual

marking and writeback over a custom-built, optimized data structure, while PTx is a

generic persistence library applied in this experiment to a standard C++ data struc-

ture not designed for persistence. The small write sets in these experiments cause

a commit to be invoked multiple times per millisecond , providing very fine-grained

persistence at the cost of query throughput. Next we consider how performance is

affected when the persistence requirements are less fine-grained.

Figure 3.9 compares the performance of PTx, PMDK, LMDB, to two DRAM-

only data structures: Redis’ dictionary, and the C++ STL hashtable. Redis is a key

value store, but in this experiment we only evaluated its hash table separate from the

network front-end and query processor. (We present an evaluation of full end-to-end

Redis and variants in the next section.) PTx uses the C++ STL hashtable, with

dirty bits automatic tracking. PMDK uses its hashtable, LMDB its btree, and both

employ manual marking. The commit interval ranges from 100 ms to 32 seconds.

PTx with fully automatic marking is competitive with the Redis data structure

with no persistence if we commit every two seconds, and far outperforms Redis for

56

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.4 1 2 4 8 16 32

Redis HT (no persistence)
N

o
rm

a
liz

e
d

 Q
P

S

seconds/sync

QPS relative to DRAM

ptx
pmdk
lmdb

Figure 3.9: Queries per second (relative to DRAM) with the C++ STL hashtable,
dirty bits tracker with a 25% write workload generated from uniformly distribution
keys. For comparison, we also include the throughput of PMDK and LMDB, both of
which require manual annotation, and of the Redis hash table, without persistence.

longer commit intervals. For all commit intervals in the plot, PTx with automatic

marking outperforms PMDK and LMDB, both of which are optimized for manual

marking. In fact, if we persist every 8 seconds, PTx with automatic marking, for the

same data structure, with no source code changes, provides 90% the query throughput

of running directly on DRAM, and achieves over 98% of DRAM throughput with 32

second commits. (As we’ve shown earlier, PTx can approach DRAM much quicker

if the proportion of writes in a transaction is smaller.)

3.3.6 Persistent key-value store performance

Next, we address the question “How does PTx, when used as a persistence

backend for Redis, compare to native Redis, to Pmem-Redis (a version of Redis

57

designed for use with NVRAM), and to a simple custom kvs servers that relies on a

standard C++ hashtable, backed by PTx for persistence?” Our previous evaluation

showed the performance of persisting state for various data structures used within

a single process. We next evaluate the performance of a key value server that

receives operations from a client and periodically persists the data structure. We

evaluated five different systems, stock Redis with no persistence, stock Redis with

an append-only log written to an NVRAM file system, Redis-pmem, Redis-PTx,

and a custom written key value server that uses C++ hash tables and PTx for

persistence. Redis-pmem is a version of Redis modified to store large values in

persistent memory. Redis-PTx is our modified version of Redis, which uses PTx as

its persistence backend.

Table 3.2 shows the performance of each system under a uniform key distri-

bution with 2500 byte values. 25% of operations modified the data structure. Each

system was pinned to a single core and persisted state once per second. Redis-PTx

used dirty-bit based automatic tracking. We also evaluated other configurations

(different key sizes, access distributions, read-write mix), and these results are rep-

resentative.

Stock Redis using NVRAM as the file system was the best performing variant.

Under this configuration, Redis writes each operation to an append-only disk and

periodically calls fsync. Pmem-Redis also writes an append-only log to disk, but

it writes larger values to NVRAM. This reduces memory pressure by removing

large values from DRAM, but absent memory pressure, similar performance can be

achieved by just storing the Redis append-only log on the NVRAM file system and

58

writing to it through the file system API.

System QPS lines
Redis (no persistence) 166,471 0
Redis (NVRAM disk) 108,485 0
Redis-pmem 106,074 4,382
Redis-PTx 106,808 291
custom-PTx 345,881 428 (full server SLOC)

Table 3.2: Queries/second achieved with 1 second persistence for Redis, persisting
its write-ahead log to disk, Redis-pmem, Redis using PTx as a backend, and a
custom key value server using PTx and the C++ hash table implementation. Lines
is the source code lines changed relative to stock Redis.

In our experiments, Redis’ overhead was dominated by request parsing. To

fully expose the overhead of persisting state, we wrote a custom key value server

with a compatible C client API and similar semantics. Our custom protocol al-

lowed for higher throughput without persistence (649K RPS), which gave us more

headroom to evaluate PTx in an integrated application. With one second commit

intervals, PTx significantly outperform every other configuration. We performed

additional experiments with more frequent commits and found that Redis-PTX ex-

ceeds or meets Redis-pmem’s performance even when committing every 10 millisec-

onds (100X as frequently as Redis-pmem) between key modifications. Our custom

key-value server also enables easy instrumentation to measure write amplification.

(Such a measurement is otherwise difficult, e.g., in pmem-redis, because of how per-

vasive the source code changes are, and the various different parts of the code where

NVRAM is accessed.) For the configurations we evaluated, regardless of commit

interval, PTx achieved an average write amplification of approximately 8.4%.

We also tested our custom key value server with values that were either ran-

59

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.01 0.015 0.025 0.05 0.1 0.25 0.5 1

Q
P

S
 (

th
o

u
s
a

n
d

s
)

seconds/sync

Queries per second of a custom KV server

const-vals
rand-vals

Figure 3.10: Queries per second (in thousands) of our custom key-value server as a
function of commit frequency and value distribution

domized or constant. The results are shown in Figure 3.10. With constant values,

areas of the heap that are reused are more likely to be written but unmodified.

PTx will detect that the pages have not been modified and will not write the writ-

ten pages to NVRAM. With fully randomized values, little to no NVRAM writes

will be prevented by deduplication. As expected, constant values result in higher

throughput, but this difference narrows as commit frequency increases. We expect

that with constant values, the probability that the allocator will allocate memory

that has not been modified between transactions increase as transaction size in-

creases. In all cases, the throughput between random and constant values is within

the margin of error.

PTx offers strong performance, when compared to DRAM and to existing ma-

ture systems, such as Redis and LMDB, is a remarkable result in context. Conven-

60

tional wisdom, based on microbenchmarks, points to NVRAM as a storage medium

that is faster than SSDs; in contrast, we show that NVRAM used with PTx promises

an alternative that provides throughput comparable to DRAM, and often faster than

existing customized protocols, while simultaneously providing consistency and per-

sistence, without onerous programmer effort to ensure correctness. NVRAM with

PTx can be thought of as executing at a configurable fraction of native DRAM

speeds, with a commensurate “lag” in persistence. This observation enables a pre-

viously unavailable form of programming “durable” data structures that are at once

performant, and relieving the development cycle from being burdened by the rigors

of “annotating” changes, or optimizing data structures for different storage media.

3.4 Conclusion

PTx provides a powerful, high-level abstraction, but its implementation re-

quires access to low-level abstractions that are not provided by POSIX. The pri-

mary high-level abstraction that PTx needs to circumvent is the buffer cache used

for memory mapped files. The buffer cache loads file state into DRAM for reading

or writing by the application before flushing to disk either when driven by some OS

heuristic (e.g., memory pressure) or when explicitly flushed via a msync call. This

abstraction is not suitable for PTx, both due to correctness and performance limita-

tions. Data is flushed to persistent media (in this case, NVRAM) at unpredictable

times, making it difficult to provide atomic semantics, and data corresponding to

the same region of memory is potentially flushed multiple times within a transac-

61

tion and at inappropriate granularities, hampering performance. PTx circumvents

this by taking advantage of a new low-level abstraction introduced specifically for

NVRAM: direct access to the data pages for a memory mapped file. This solution

is safe, so long as the file system does not reallocate data blocks while the file is

memory mapped. Maintaining this restriction requires some care for the file system,

such as ensuring that all blocks are pre-allocated and fixed when a file is memory

mapped, but this low-level access is sufficient to implement PTx efficiently. We dis-

cuss further optimizations that would be possible under the null-Kernel architecture

in Section 5.4.

62

Chapter 4: Light-weight Contexts

In this chapter we discuss Light-Weight Contexts (lwCs), which is a new ab-

straction that decouples memory isolation, execution state, and privilege separation

from within a process.

4.1 Introduction

Processes abstract the unit of isolation, privilege, and execution state in general-

purpose operating systems. Computations that require memory isolation, privilege

separation, or continuations at the OS level must be run in separate processes1.

Unfortunately, switching and communicating between processes incurs the cost of

invoking the kernel scheduler, resource accounting, context-switching, and IPC. The

actual hardware-imposed cost of isolation and privilege separation, however, is much

smaller: if the TLB is tagged with an address space identifier, then switching context

requires as little as a system call and loading a CPU register.

Just as threads separate the unit of execution from a process, we assert that

there is benefit to decoupling memory isolation, execution state, and privilege sepa-

1Language runtimes can provide these properties at the expense of additional overhead, lan-
guage dependence, and an increased trusted computing base.

63

ration from processes. We show that it is possible to isolate memory and privileges,

and maintain multiple execution states within a process with low overhead, thus

streamlining common computation patterns and enabling more efficient and safe

code.

We introduce a new first-class OS abstraction: the light-weight context (lwC).

A process may contain multiple lwCs, each with their own virtual memory mappings,

file descriptor bindings, and credentials. Optionally and selectively, lwCs may share

virtual memory regions, file descriptors and credentials.

lwCs are not schedulable entities: they are completely orthogonal to threads

that may execute within a process. Thus, a thread may start in lwC a, and then

invoke a system call to switch to lwC b. Such a switch atomically changes the

VM mappings, file table entries, permissions, instruction and stack pointers of the

thread. Indeed multiple threads may execute simultaneously within the same lwC.

lwCs maintain per-thread state to ensure a thread that enters a lwC resumes at the

point where it was created or last switched out of the lwC.

lwCs enable a range of new in-process capabilities, including fast roll-back,

protection rings (by credential restriction), session isolation, and protected com-

partments (using VM and resource mappings). These can be used to implement

efficient in-process reference monitors to check security invariants, to isolate com-

ponents of an app that deal with encryption keys or other private information, or

to efficiently roll back the process state.

We have implemented lwCs within the FreeBSD 11.0 kernel. The prototype

shows that it is possible to implement lwCs in a production OS efficiently. Our

64

experience with implementing and retrofitting large applications such as Apache and

nginx with lwCs has taught us that it is possible to introduce many new capabilities,

such as rollback and secure data compartments, to existing production code with

minimal overhead.

In this chapter we do the following:

• We introduce lwCs, a first-class OS abstraction that extends the POSIX API,

and present common coding patterns demonstrating its different uses.

• We describe an implementation of lwCs within FreeBSD, and show how lwCs

can be used to implement efficient session isolation in production web servers, both

process-oriented (Apache, via roll-back) and event-driven (nginx, via memory iso-

lation). We show how efficient snapshotting can provide session isolation while

improving performance on web-based applications using a PHP-based MVC ap-

plication on nginx. We show how cryptographic libraries such as OpenSSL can

efficiently create isolated data compartments within a process to render sensitive

data (such as private keys) immune to external attacks (e.g., buffer overruns a la

Heartbleed [35]). Finally, we show how lwCs can efficiently implement in-process

reference monitors, again for industrial-scale servers such as Apache and nginx, that

can introspect on system calls and memory.

• We evaluate lwCs using a range of micro-benchmarks and application scenarios.

Our results show that existing methods for session isolation are often slower than

lwCs. Other common uses such as lwC-supported sensitive data compartments and

reference monitoring have little to negligible overhead on production servers. Finally,

65

Function Return Value System Call
Create lwC {new, caller, args} ← lwCreate(resource-spec, options)

Switch to lwC {caller, args} ← lwSwitch(target, args)

Resource access status ← lwRestrict(l, resource-spec)
status ← lwOverlay(l, resource-spec)
status ← lwSyscall(target, mask, syscall, syscall-args)

Table 4.1: API for interacting with lwCs. Parameters in italics new, caller, . . .
are lwC descriptors. Arguments args are passed during lwC switches; resource-
spec denotes resources (e.g. memory pages, file descriptors) that can be shared or
narrowed.

we show that using the lwC snapshot capability to quickly launch an initialized PHP

runtime can improve the performance of a production server.

The rest of this chapter is organized as follows: we discuss related work in

Section 2.2 and describe the lwC abstraction, API, and design in Section 4.2. We

present common lwC coding patterns in Section 4.3. We describe our FreeBSD

implementation of lwCs in Section 3.3, and present an experimental evaluation in

Section 4.4.

4.2 lwC design

lwCs are separate units of isolation, privilege, and execution state within a

process. Each lwC has its own virtual address space, set of page mappings, file

descriptor bindings, and credentials. Threads and lwCs are independent. Within a

process, a thread executes within one lwC at a time and can switch between lwCs.

lwCs are named using file descriptors. Each process starts with one root lwC, which

has a well-known file descriptor number.

66

Table 4.1 shows the lwC API. A lwC may create a new (child) lwC using the

lwCreate operation and receive the child’s file descriptor. If a context a has a valid

descriptor for lwC c, a thread executing inside a may switch to c using the lwSwitch

operation. A lwC c is terminated (and its resources released) when the last lwC with

a descriptor for c closes the descriptor. Common usage patterns of the lwC API will

be shown in Section 4.3.

4.2.1 Creating lwCs

The lwCreate call creates a new (child) lwC in the current process. The

operation’s default semantics are similar to that of a POSIX fork, in that the child

lwC’s initial state is an identical copy of the calling (parent) lwC’s state, except

for its descriptor. Unlike with fork, however, child and parent lwC share the same

process id, and no new thread is created. No execution takes place in the new lwC

until an existing thread switches to it.

lwCreate returns the descriptor of the new child lwC new to the parent lwC

with the caller descriptor set to -1. When a thread switches to the new lwC (new)

for the first time, the lwCreate call returns with the caller’s lwC descriptor in caller

and the parent’s lwC descriptor in new, along with any arguments from the caller

in args.

By default, the new lwC gets a private copy of the calling lwC’s state at the

time of the call, including per-thread register values, virtual memory, file descriptors,

and credentials. Shared memory regions in the calling lwC are shared with the new

67

lwC. The parent lwC may modify the visibility of its resources to the child lwC using

the resource-spec argument, described in Section 4.2.3.

The implementation does not stop other threads executing in the parent lwC

during an lwCreate. To ensure that the child lwC reflects a consistent snapshot

of the parent’s state, all threads that are active in the parent at the time of the

lwCreate therefore should be in a consistent state. The application may achieve

this, for instance, by barrier synchronizing such threads with the thread that calls

lwCreate. A thread that does not exist in the parent lwC at the time of the

lwCreate may not switch to the child in the future.

The lwCreate call takes several option flags. LWC SHAREDSIGNALS controls sig-

nal handling in the child lwC, as described in Section 4.2.7. LWC SYSTRAP indicates

that any system calls for which the child does not hold the required OS capability

should be redirected to its parent. This feature enables a parent to interpose and

mediate its child’s system call activity, as described in Section 4.2.6.

The fork semantics of lwCreate enable the convenient, language independent

creation of lwCs based on the current state of the calling lwC. No additional APIs

are required to initialize a new lwC. The new lwC can be viewed also as a snapshot

of the state of the caller at the time of invoking lwCreate, enabling the caller to

revert to this state in the future.

68

4.2.2 Switching between lwCs

The lwSwitch operation switches the calling thread to the lwC with descriptor

target, passing args as parameters. lwSwitch retains the state of the calling thread

in the present lwC. When this lwC is later switched back into by the same thread,

the call returns with the switching lwC available as caller and arguments passed in

args.

Note that returns from a lwSwitch and lwCreate, any signal handlers that

were installed, and the instruction pointer locations of threads in a parent lwC at

the time of a lwCreate define the only possible entry points into a lwC. (The root

lwC has an additional one-time entry point when the process is launched.)

lwSwitch is semantically equivalent to a coroutine yield. In fact, as far as

control transfer is concerned, lwCs can be viewed as isolated and privilege separated

coroutines. Recall that a procedure is a special case of a coroutine. To achieve

a (remote) procedure call among lwCs, the called procedure, when done, simply

switches to its caller and then loops back to its beginning. This functionality can

be provided easily as part of a library.

4.2.3 Static resource sharing

When a lwC is created using lwCreate, the child lwC receives a copy-on-

write snapshot of all its parent’s resources by default. The parent can modify

this behavior using the resource-spec argument in the lwCreate operation. The

resource-spec is an array of C unions: each array element specifies either a range of

69

file descriptors, virtual memory addresses, or credentials. For each range, one of the

following sharing options can be specified. LWC COW: the child receives a logical copy

of the range of resource (the default). LWC SHARED: the range of resources is shared

among parent and child. LWC UNMAP: the range of resources is not mapped from the

parent into the child. (The child may subsequently map different resources in the

address range.)

When restricting the resources inherited by the child, care must be taken to

minimally pass on the stacks, code, synchronization variables, and other dependen-

cies of all threads in the parent lwC, to ensure predictable behavior if these threads

switch to the child in the future.

4.2.4 Dynamic resource sharing

A lwC may dynamically map (overlay) resources from another lwC into its

address space using the lwOverlay operation. The caller specifies which regions of

a given resource type (file descriptor or memory) are to be overlayed, and whether

the specified region should be copied or shared, in the resource-spec parameter. The

lwOverlay call will only succeed if the caller lwC holds access capabilities (described

below in Section 4.2.5) for the requested resources. A successful lwOverlay opera-

tion unmaps any existing resources at the affected addresses in the caller’s address

space.

70

4.2.5 Access capabilities

Access capabilities are associated with lwC file descriptors. Each lwC holds

a descriptor with a universal access capability for itself. When a lwC is created,

its parent receives a descriptor with a universal access capability for the child. A

parent lwC may grant a child lwC access capabilities for the parent lwC selectively

by marking resource ranges as LWC MAY ACCESS in the resource-spec argument passed

to the lwCreate call.

Access capabilities may be restricted on a lwC descriptor with the lwRestrict

call. The resource-spec parameter restricts the set of resources that may be overlayed

or accessed by any context that holds the lwC descriptor l. The valid resource types

are file descriptors, virtual memory addresses, and syscall numbers. Subsequent to

the call, the descriptor will allow lwOverlay to succeed for any file descriptors and

memory addresses, and lwSyscall for any syscalls, respectively, that are within the

intersection of the resource-spec set and whatever capabilities l had previous to the

call.

4.2.6 System call interposition/emulation

Consider an lwC C that was created with the LWC SYSTRAP flag. If a thread

in C invokes a system call for which C does not hold a capability according to the

OS’s sandboxing mechanism, the thread is switched to its parent lwC instead, if

the thread exists in the parent (if the thread does not exist in the parent, the call

fails with an error). When the thread is resumed in the parent lwC as a result of

71

a faulting syscall by the child, the arguments in the switch contain the system call

number attempted and the arguments passed to it. The parent can choose to decline

the syscall and return an error to the child, or perform a syscall on behalf of the

child, possibly with different arguments (see below). To signal the completion of

the child’s system call, the thread executing in the parent lwC switches back to the

child with the return value and any error code as arguments to the switch call.

An authorized lwC may perform a syscall on behalf of another lwC target

using the lwSyscall operation. The lwSyscall succeeds if the lwC calling the

operation holds an access capability (see Section 4.2.5) for the target and syscall,

and holds the OS credentials required to perform the requested syscall. The effects

of a successful execution of lwSyscall are as if the target had executed the requested

syscall, except that it returns to the calling context. The mask parameter allows

the caller to modify this behavior by specifying aspects of its own context that are

to be put in place for the duration of the system call. Specifically, the caller may

specify that the target’s file table, memory space, credentials, or any combination

be replaced by the caller’s equivalent for the duration of the call. This allows the

efficient implementation of useful patterns, such as enabling a untrusted lwC to read

(or append) a fixed number of bytes from (to) a protected file without having access

to the file descriptor.

4.2.7 Signal handling

lwCs modify the standard POSIX signal handling semantics in the following

72

way. We distinguish between attributable signals, which can be attributed to the

execution of a particular instruction in a lwC, and non-attributable signals, which

cannot. Attributable signals, such as SIGSEGV or SIGFPE, are delivered to the lwC

that caused the signal immediately. Non-attributable signals, such as SIGKILL or

SIGUSR1, are delivered to the root lwC and any lwCs in the process that were created

with the LWC SHARESIGNALS option by a parent lwC that is able to receive such

signals. A non-attributable signal is delivered to a lwC upon the next switch to the

lwC.

4.2.8 System call semantics

lwCs modify the behavior of some existing POSIX system calls. During a

fork, all lwCs in the calling process are duplicated in the child process. Any mem-

ory regions that were mmap’ed as MAP SHARED in some lwCs of the calling process

are shared with the corresponding lwCs in the new child process, within and across

the two processes. Any memory regions that are shared among lwCs in the parent

process using the LWC SHARED option in lwCreate are shared among the corre-

sponding lwCs within the child process only. An exit system call in any lwC of a

process terminates the entire process.

4.2.9 lwC isolation

Because lwCs do not have access to the state of each others’ memory, file de-

scriptors, and capabilities unless explicitly shared, they can provide strong isolation

73

and privilege separation within a process. Since lwCs share executable threads,

however, an application needs to make certain assumptions about the behavior of

other lwCs in the same process, even if they don’t share resources and don’t have

overlay capabilities for each other. Specifically, a lwC can block or execute a thread

indefinitely or terminate the process prematurely by invoking exit.

We believe these assumptions are reasonable in practice because the lwCs of a

process are part of the same application program. Denial-of-service within a process

is self-defeating. On the other hand, lwCs can reliably prevent accidental leakage of

private information across user sessions, isolate authentication credentials and other

secrets, and ensure the integrity of a reference monitor.

A lwC can learn about certain activities of other lwCs by registering for non-

attributable signals. An application that wishes to limit information flow across

lwCs should create lwCs without the LWC SHARESIGNALS option (the default).

4.2.10 lwC security

lwCs provide isolation and privilege separation within a process, but include

powerful mechanisms for sharing and control among the lwCs of a process. There-

fore, it is important to understand the threat model and the security properties

provided by the lwC abstraction.

Threat model We assume that the kernel is trustworthy and uncompromised,

and that the tool chain used to build, link, and load the application does not have

exploitable vulnerabilities that can be used to hijack control before main() starts.

74

When a lwC is created, its parent has universal privileges on the lwC. Consequently,

the security of a lwC assumes that its parent (and, by transitivity, all its ancestors)

cannot be hijacked to abuse these privileges. In practice, the parent should drop

all unnecessary privileges on the child immediately after the child is created, so

this assumption is needed only with respect to the remaining privileges. When an

application uses dynamic sharing, the same assumption must be extended to all

lwCs that obtain privileges indirectly. The lwC API does not enable any inter-

process communication or sharing beyond the standard POSIX API. Consequently,

no new assumptions regarding lwCs in other processes are needed.

Security properties The properties of a lwC are constrained by the properties

of the process in which it exists. A lwC cannot attain privileges that exceed those

of its process, and the confidentiality and integrity properties of any lwC cannot

be weaker than those of its process. The properties of the root lwC are those of

the process. In applications that do not use dynamic sharing, the privileges of a

non-root lwC are bounded by those of its parent and, transitively, by those of its

ancestors; its integrity and confidentiality cannot be weaker than those of any of its

ancestors. In applications that use dynamic sharing through the exchange of access

capabilities via a common ancestor, the integrity (confidentiality) of a lwC depends

on all siblings and descendants that have write (read) rights to it. For this reason,

dynamic sharing should be used with caution.

In typical patterns of privilege separation, the root lwC should run a high-

assurance component, i.e., one that is simple, heavily scrutinized, and exports a

75

narrow interface. A component that protects sensitive state is at or near the root,

to minimize its dependencies. More complex, less stable, network or user-facing

components should be encapsulated in de-privileged lwCs at the leaves of a process’s

lwC tree and should execute with the least privileges required.

4.3 Common lwC usage patterns

In this section, we illustrate lwC use patterns for snapshots, isolation and

protection rings. For some of the patterns, we use a web server as an illustrative

setting. However, all the patterns are broadly applicable.

Snapshot and rollback A common lwC use pattern is snapshot and rollback,

where a service process (such as a server worker process) initializes its state to the

point where it is ready to serve requests (or sessions), snapshots this state, serves

a request and rolls its state back to the snapshot before serving the next request.

As compared to a setup where the process manually cleans up request-specific state

after each request, the snapshot and rollback can improve performance by efficiently

discarding the request-specific state with a single call, and also improves security by

isolating sequential requests served by the same task from each other.

Algorithm 4 shows the pseudocode of a small library containing two functions—

snapshot() and rollback()—and a main() server function illustrating their use. The

server initializes its state and calls snapshot() on line 12 to create a snapshot. snap-

shot() duplicates the current lwC (copy-on-write) using lwCreate on line 2. The

descriptor of the duplicated snapshot, called new, is returned at line 4 and stored in

76

the variable snap. The program serves the request and then, to reset its state, calls

rollback(). Control transfers to line 2 in the snap (the child) and then immediately

to line 6 where the original lwC is closed (its resources are reclaimed). The snap

recursively calls snapshot() (line 7). At line 2, it creates a duplicate of itself and

returns that duplicate to main() at line 12. The cycle then repeats, with snap and

its duplicate having taken the roles of the original lwC and the snap, respectively.

Algorithm 4 Snapshot and rollback

1: function snapshot()
2: new,caller,arg = lwCreate(default spec, . . .)
3: if caller = -1 then . parent
4: return new
5: else
6: close(caller)
7: return snapshot()
8: function rollback(snap) . never returns
9: lwSwitch(snap, 0)

10: function main()
11: initialize state
12: snap = snapshot()
13: serve request
14: rollback(snap)

. kills current lwC, continues at line 12 in snap

In our evaluation, we use this pattern to roll back the state of pre-forked worker

processes after each session in the Apache web server.

Isolating sessions in an event-driven server High throughput servers like

nginx handle several sessions in single-threaded processes using event-driven multi-

plexing. However, they provide no isolation among sessions within a process. This

shortcoming can be addressed using lwCs. Algorithm 5 illustrates the usage pattern.

The program defines a set of network socket descriptors to poll, one for each

77

Algorithm 5 Event-driven server with session isolation

1: function serve request(retlwc, client)
2: loop
3: if would block(client) then
4: lwSwitch(retlwc, 0);
5: else if finished(client) then
6: lwSwitch(retlwc, 1);
7: else
8: serve(client)
9: function main

10: descriptors = { accept descriptor }
11: file2lwc map = { accept descriptor =¿ root }
12: loop
13: next = descriptors.ready()
14: if next = accept descriptor then
15: fd = accept(next)
16: descriptors.insert(fd)
17: specs = { ... } . Share fd descriptor only
18: new,caller,arg = lwCreate(specs, ...)
19: if caller = -1 then . context created
20: file2lwc map[fd] = new
21: else
22: serve request(root, fd)
23: else
24: lwc = file2lwc map[next]
25: from, done = lwSwitch(lwc, ...)
26: if done = 1 then
27: close(next);close(from)
28: descriptors.remove(next)
29: file2lwc map.unset(next)

client connection, on line 10 and sets a mapping of the listening socket descriptor

to the current lwC on line 11.

Once a descriptor is ready the program moves past line 13 and either accepts

and encapsulates a new descriptor in a worker lwC or resumes execution of a previous

one that is now ready. In the former case, the worker’s lwC is created on line 18 such

that no descriptor other than fd is passed to it (line 17), the created lwC descriptor

is mapped on line 20 and the loop resumes. In the latter case, the previously mapped

78

worker lwC is retrieved on line 24. This lwC is now immediately switched into on

the subsequent line. At this point execution resumes on line 18 in the worker. As a

result, it enters the serve request function on line 22.

When the worker is done executing it switches back into the root lwC. It uses

the lwSwitch argument to indicate whether it is done with its work (arg = 1) or

not (arg = 0). When it switches back to the root, control flow resumes at line 25.

Depending on the argument passed in from the worker, the root lwC either closes

the socket and the worker or leaves them intact for later service.

Since all worker lwCs obtain a private copy of the root’s state, no worker sees

session-specific state of other workers. This isolates the sessions from each other.

Sensitive data isolation A third common use pattern isolates sensitive data

within a process by limiting access to a single lwC that exposes only a narrow

interface. As an illustration, Algorithm 6 shows how to isolate a private signature

key that is available to a signing function, but kept hidden from the rest of the

(large and network-facing) program.

The main function initializes the program and loads the private signing key

into the variable privkey (line 11). Next, it calls lwCreate to create a second lwC

with the same initial state (line 13). The child lwC, which will become the isolated

compartment with access to the privkey, is granted the privilege to overlay any

part of the parent’s virtual memory.

The parent lwC continues executing on line 16, where it deletes its copy of the

private signing key and then revokes its privilege to overlay any part of the child

79

Algorithm 6 Sensitive Data Isolation

1: function sign(key, data, out buffer)
2: function sign sstub(caller,arg)
3: loop
4: lwOverlay(caller,{VM,arg,sizeof(arg),SHARE})
5: sign(privkey, arg.in, arg.out)
6: lwOverlay(caller,{VM,arg,sizeof(arg),UNMAP})
7: caller,arg = lwSwitch(caller, 0)
8: function sign cstub(buf)
9: caller,res = lwSwitch(child, buf)

10: function main
11: initialization, load privkey
12: child,caller,arg =
13: lwCreate({VM,0,MAX,MAY OVERLAY}, 0)
14: if caller != -1 then
15: sign sstub(caller,arg)
16: privkey = 0 . erase key
17: lwRestrict(child, {VM,0,MAX,NO ACCESS})
18: loop
19: ...
20: sign cstub(buf)
21: ...

lwC’s memory. Any code executed in the parent after this point (line 17) has no way

to access the private key. When this code wishes to sign data, it calls SIGN CSTUB

passing as argument a structure that contains the data to sign and a large enough

buffer to hold the returned signature.

The SIGN CSTUB function performs a lwSwitch to the child lwC, passing a

pointer to the buffer as the argument. The first time the child is switched to, it

returns from lwCreate with caller != -1 and calls SIGN SSTUB (line 15), from which

it does not return.

SIGN SSTUB now uses lwOverlay to map the buffer from the parent lwC as a

shared region into its own address space (line 4), calls the SIGN function with the

private key, and then unmaps the buffer from its address space. Finally, the function

80

calls lwSwitch to return control to the parent lwC, which resumes by returning from

the lwSwitch in line 9. Upon future invocations of SIGN CSTUB, the child lwC returns

from the lwSwitch in line 7 and loops back.

In our evaluation with web servers, we use this pattern to isolate parts of

the OpenSSL library that handle long-term private keys, thus protecting the keys

from vulnerabilities like the widespread Heartbleed bug [35]. (Heartbleed remains a

threat even after global key revocations and reissues [86,87].)

Protected reference monitor Next, we describe a pattern that allows a parent

lwC to intercept any subset of system calls made by its child and monitor those

calls. In our evaluation, we use this pattern to implement a reference monitor for

system calls made by the web server.

Algorithm 7 Reference Monitor

1: function monitor(child)
2: ,call = lwSwitch(child, NULL)
3: loop
4: if is allowed(call) then
5: spec = { type = CRED, SANDBOX }
6: rv = lwSyscall(child, spec,

call.num, call.params)

7: out.err,out.rv = errno, rv;
8: else
9: out.err,out.rv = EPERM, -1;

10: ,call = lwSwitch(child, out)
11: function main
12: specs = { ... } . Share (COW) all but private data

13: child,c, = lwCreate(specs, LWC SYSTRAP)
14: if c = -1 then . parent becomes refmon
15: monitor(child) . Never returns
16: privdrop() && run() . Child starts here

Algorithm 7 shows the pseudocode of the pattern for the case where the mon-

81

itoring parent is the root lwC. On line 13, the root creates a child lwC but reserves a

private region, which may contain secrets (e.g., encryption keys) of which the child

is not allowed to get a copy. The child is created with the flag LWC SYSTRAP, so

any system calls that the child lacks the capability for trap to the root lwC. Once

the child lwC is created, the root lwC enters the monitoring function, which never

returns.

Within the monitoring function, the root, now acting as the reference monitor,

yields to the child immediately (line 2). The reference monitor regains control when

the child makes a system call that it does not have the capabilities for. The reference

monitor checks whether the call should be allowed (line 4) and, if so, makes the call

in the context of the child (line 6). It yields to the child with the system call’s result

and error code. If the system call should be disallowed, the reference monitor yields

to the child with error code EPERM. The reference monitor loops to handle the

next system call.

The child starts execution on line 16 where it immediately drops privileges for

all system calls that should be monitored. This causes all these system calls to trap

to the reference monitor, which handles them as described above.

For simplicity, our example reference monitor merely filters system calls, a

capability already provided by many operating systems. A more interesting mon-

itor could inspect the system call arguments or other parts of the child’s state by

overlaying in the appropriate regions, or perform arbitrary actions and system calls

on behalf of the child.

82

4.4 Evaluation of lwCs

In this chapter, we evaluate lwCs using micro-benchmarks, and when applying

the usage patterns discussed in Section 4.3 in the context of the Apache and nginx

web servers. Our experiments were performed on Dell R410 servers, each with 2x

Intel Xeon X5650 2.66 GHz 6 core CPUs with both hyperthreading and SpeedStep

disabled, 48GB main memory, running FreeBSD 11.0 (AMD64) and OpenSSL 1.0.2.

The servers were connected via Cisco Nexus 7018 switches with 1Gbit Ethernet links.

Each server has a 1TB Seagate ST31000424SS disk formatted under UFS.

4.4.1 lwC switch

Table 4.2 compares the time to execute a lwSwitch call compared to context

switching between processes (using a semaphore), between kernel threads (using a

semaphore, which we found to be faster than a mutex), and user threads. The

user threads use the getcontext and setcontext calls specified by POSIX.1-2001.

A lwC switch takes less than half the time of a process or kernel thread switch.

The reason is that a lwC switch avoids the synchronization and scheduling required

for a process or thread context switch, instead requiring only a switch of the VM

mapping. Somewhat surprisingly, a kernel thread switch is on par with a process

context switch when both use the same form of synchronization. The reason is that

the kernel code executed during a switch between two kernel threads in the same

process or in different processes is largely the same.

User threads are only moderately faster than lwC switches, because in FreeBSD

83

11, the user context switch is implemented by a system call. In Linux glibc, it is

instead implemented in userspace assembly. In an experiment with Linux 3.11.10

on the same hardware, user thread switches run in 6% of the time required by

semaphore-based kernel thread switches.

lwC process k-thread u-thread
2.01 (0.03) 4.25 (0.86) 4.12 (0.98) 1.71 (0.06)

Table 4.2: Median switch time (in microseconds) and standard deviation over ten
trials.

4.4.2 lwC creation

Next, we measured the total cost of creating, switching to, and destroying

lwCs with default arguments (all resources shared COW with the parent) within a

single process. When no pages are written in either the parent or child lwC during

the lifetime of the child, the system is able to create, switch into once, and destroy

an lwC in 87.7 microseconds on average, with standard deviation below 1%. This

result is independent of the amount of memory allocated to the process. Each page

written in either parent or child, however, causes a COW fault, which requires a

page frame allocation and copy. When 100, 1000, 10000, and 100000 pages are

written in the child during the experiment described above, the average total time

taken per lwC increases to 397, 3054, 35563, and 34182 microseconds, respectively.

Standard deviation was below 7% in all cases. The cost of maintaining a separate

lwC is approximately linearly dependent on the number of unique pages it creates,

and is lowest when lwCs in a process share most of their pages.

84

The results of our microbenchmarks can be used to estimate the cost of using

lwCs in an application, given an estimate of the rate of lwC creations and switches,

and the number of unique pages in each lwC. Later in this section, we evaluate the

overhead of lwCs in the context of specific applications: Apache and nginx.

4.4.3 Reference monitoring

Following the pattern described in Section 4.3, we have implemented an in-

process reference monitor using lwCs. When a process starts, the reference moni-

tor gains control first and creates a child lwC, which executes the server applica-

tion. The child lwC is sandboxed using FreeBSD Capsicum and disallowed from

using certain system calls, which are instead redirected to the parent lwC using

the LWC SYSTRAP option. Our reference monitor restricts access to the filesys-

tem, though other policies that restrict any system call or inspect memory (using

lwOverlay) can readily be implemented within our basic schema. We compare the

lwC reference monitor (lwc-mon) to two other techniques:

Inline Monitoring (inline) This is a baseline scheme where the reference moni-

tor checks are inlined with the application code. The monitored process is LD PRELOADed

with a library that intercepts each system call and checks arguments. Inlining pro-

vides a lower bound on overhead, but does not provide security since the monitored

process can overwrite the checks or otherwise bypass the interception library.

85

Process Separation (procsep) This method provides a secure reference monitor

in a separate process. The monitored process runs in a sandbox based on FreeBSD

Capsicum [88]: the sandbox ensures that the monitored process is unable to issue

prohibited system calls (e.g. open). At initialization, but prior to entering the

sandbox, the monitored process connects to the reference monitor process over a

Unix domain socket, which it can subsequently use to communicate with the refer-

ence monitor, even while sandboxed. All open calls (which the sandbox restricts)

must be vectored through this socket, which allows the reference monitor to inspect

and restrict the access as necessary. If the access is to be granted to the sandboxed

application, the reference monitor shares a file descriptor over the socket.

Figure 4.1 shows the overhead of monitoring open, read and write system

calls, while an application is accessing a file stored in an in-memory file system.

The application calls each system call 10,000 times and we report the average of

5 runs. Faster system calls have higher relative overhead since the fixed cost of

redirecting the system call has to be paid. lwc-mon does not require data copying

or IPC and hence outperforms procsep by a factor of two or more.

4.4.4 Apache

Modern web servers are designed to efficiently map user sessions to available

processing cores. For instance, the popular Apache HTTP server provides multi-

threading using kernel threads (threads) in one configuration and pre-forked pro-

cesses that map to different cores (prefork) in another. Higher performance servers,

86

 0.01

 0.1

 1

open 4K
read

4K
 write

128K
read

128K
write

T
im

e
 i
n
 s

e
c
o
n
d
s
 (

lo
g
)

inline procsep lwc-mon

Figure 4.1: Cost of 10,000 monitored system calls in seconds (log scale). Error bars
show standard deviation.

such as nginx, use an event loop (based on kqueue or epoll) within a process, and

have the option of spawning multiple processes that map to cores, each with their

own event loop.

Consider the problem of isolating individual user sessions to separate the priv-

ileges of different user sessions or to implement per-user information flow control.

None of the above mentioned server configurations provide such isolation: multi-

threaded and event-driven configurations serve different sessions concurrently in

the same process; pre-forked processes sequentially share among different sessions.

Apache can be configured to fork a new process for each user session (fork), which

provides memory isolation and privilege separation. As our results demonstrate,

however, this configuration has low performance for small session lengths, due to

the overhead of forking processes2.

2In fact, we had to patch Apache (in server/mpm common.c) to continuously check the status
of child processes (rather than at 1s intervals) to get this configuration to perform at all at small
to modest session lengths.

87

 0

 10

 20

 30

 40

 50

 60

 70

1 4 16 64 256 1024 4096 ∞

T
h

ro
u

g
h

p
u

t
(G

E
T

s
/s

e
c
 x

1
0

0
0

)

Session length

threads
prefork

fork
lwc

Figure 4.2: Apache throughput in (GETs/sec) of 128 concurrent clients, 45 byte
docs, over HTTP. Error bars show standard deviation, which was below 3.7%.

lwCs can provide memory isolation, privilege separation, and high perfor-

mance. We have augmented the pre-fork mode in Apache (version 2.4.18) to provide

session isolation using the snapshot and rollback pattern from Section 4.3. Within

each Apache process, we create a lwC that serves a user session; when the session

ends, the lwC switches (reverts) to its initial (untainted) state before serving the

next user session, thereby ensuring the isolation property.

In the following set of experiments, we use ApacheBench (ab) to issue HTTP

and HTTPS requests to our Apache server. We modified ab to support varying

client session lengths by using HTTP Keepalive and terminating a session after

a certain number of requests. We launch a single ApacheBench instance which

repeatedly makes up to 128 concurrent requests for a small 45 byte document.

We chose small document requests to make sure the results are not I/O-bound.

88

 0

 10

 20

 30

 40

 50

1 4 16 64 256 1024 4096 ∞

T
h

ro
u

g
h

p
u

t
(G

E
T

s
/s

e
c
 x

1
0

0
0

)

Session length

threads
prefork

fork
lwc

Figure 4.3: Apache throughput in (GETs/sec) of 128 concurrent clients, 45 byte
docs, over HTTPS. Error bars show standard deviation, which was below 3.7%.

Figure 4.2 and Figure 4.3 show the number of GET requests served per second by

the different Apache configurations at different session lengths, and for HTTP and

HTTPS respectively. For HTTPS, the server uses TLSv1.2, ECDHE-RSA-AES256-

GCM-SHA384 with 4096 bit keys. The results were averaged over five runs of 60

seconds each.

At session length ∞, each client maintains a session for the duration of the

experiment. The threads and prefork configurations, which provide no isolation,

perform comparably for all session lengths and protocols. fork and lwc configura-

tions provide isolation: lwc has better throughput in all cases, and has a significant

advantage for short sessions (256 and below), particularly for HTTP. (In HTTPS,

the high CPU overhead for session establishment dominates overall cost; however,

emerging hardware support for crypto will diminish these costs, exposing once again

89

the costs of isolation.) Moreover, lwc achieves performance comparable to the best

configuration without isolation for sessions lengths of 256 and larger.

We also repeated the experiment with GET requests for 900 byte documents.

These documents are 20x larger but still small enough not to saturate the network

link. The trends and relative throughput between the different configuration were

very close to those in Figure 4.2 and Figure 4.3, with the absolute peak throughput

within 10%.

We have integrated reference monitoring within Apache (and nginx). Fig-

ure 4.4 shows the throughput of Apache prefork in different reference monitor

configurations when used to serve short (45 byte) documents. The results were av-

eraged over five runs of 20 seconds each. In this experiment, the open and stat

system calls are monitored and checked against a whitelist of allowed directories.

These results show that a reference monitor implementation based on in-process lwC

incurs lower overhead than an implementation based on process separation even for

large applications where the monitored system calls constitute only part of what the

applications do. The overhead of reference monitoring increases with session length

due to the increase in relative number of reference monitored system calls (open and

stat) compared to other system calls (accept, read, send, close).

4.4.5 Nginx

To enable session isolation in nginx (version 1.9.15), we allocate a lwC for

each new connection: each event for a single connection is isolated within the lwC,

90

 0

 10

 20

 30

 40

 50

 60

 70

1 4 16 64 256 1024 4096 ∞

T
h

ro
u

g
h

p
u

t
(G

E
T

s
/s

e
c
 x

1
0

0
0

)

Session length

inline
procsep
lwc-mon

Figure 4.4: Throughput of different Apache reference monitoring configurations in
(GETs/sec) of 128 concurrent clients, 45 byte docs. Error bars show standard
deviation, which was below 2%.

following the session isolation pattern from Section 4.3. Note that in the nginx

case, each process may serve many different connections simultaneously, and our

implementation creates a lwC per active connection within the process. We have

also integrated a reference monitor with nginx.

We experiment with different nginx configurations: the stock nginx, lwc-

event augments nginx’s event loop to create a new lwC per connection, and lwc-

event-mon combines a reference monitor with the per-connection lwC. In each case

we configured nginx to use 10 worker processes, as we found that this had the best

performance. We launch four ApacheBench instances, each of which repeatedly

makes up to 75 concurrent requests for a small 45 byte document.

Figures 4.5 and 4.6 shows the average number of queries served by each of the

configurations over five runs of 60 seconds each for HTTP and HTTPS respectively.

91

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 4 16 64 128 256 ∞

T
h

ro
u

g
h

p
u

t
(G

E
T

s
/s

e
c
 x

1
0

0
0

)

Session length

nginx
lwc-event

lwc-event-mon

Figure 4.5: Nginx throughput in GETs/sec for HTTP requests with 10 workers, 45B
documents, 300 concurrent requests. Error bars show standard deviation, which was
below 0.9%.

The standard deviation did not exceed 0.9%.

nginx is considered the state of the art high-performance server. It uses a

highly optimized event loop and is about 2.88x quicker than Apache. Introducing

lwCs in this base configuration (named lwc-event in the results) has no significant

impact on the throughput of this high-performance configuration. Similarly, refer-

ence monitoring adds only minimal overhead. For both HTTP and HTTPS, with

isolation and reference monitoring, lwC-augmented nginx performs comparably to

native nginx.

Large scale servers may need to maintain tens of thousands of concurrent

user sessions. Using lwCs for session isolation increases the amount of per-session

state. Therefore, our next experiment explores how using lwCs for session isolation

affects nginx’s performance under a large number of concurrent client connections.

92

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 4 16 64 128 256 ∞

T
h

ro
u

g
h

p
u

t
(G

E
T

s
/s

e
c
 x

1
0

0
0

)

Session length

nginx
lwc-event

lwc-event-mon

Figure 4.6: Nginx throughput in GETs/sec for HTTPS requests with 10 workers,
45B documents, 300 concurrent requests. Error bars show standard deviation, which
was below 0.9%.

We experimented with two configurations: in the first, we use between 6 and 76

ApacheBench instances, and each instance issues 250 concurrent requests for a 45

byte document. The session length was 256 and we used 10 nginx workers. The

second configuration is identical except the ApacheBench instances request 900 byte

documents.

Figure 4.7 shows the average number of requests served, over 5 runs of the

experiment, as a function of the number of client sessions for stock nginx and lwc-

event for both file sizes.

For small documents, lwc-event matches the performance of native nginx up

to 6500 clients. Beyond, the performance of both configurations declines following

the same trend, but the absolute throughput of lwc-event falls below that of nginx

by up to 19% at 19,500 concurrent clients. In investigating this result further,

93

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5000 10000 15000 20000

T
h

ro
u

g
h

p
u

t
(G

E
T

s
/s

e
c
 x

1
0

0
0

)

Number of concurrent clients

nginx (45B)
lwc-event (45B)

nginx (900B)
lwc-event (900B)

Figure 4.7: Nginx cumulative throughput in GETs/sec with 10 workers, session
length 256, 45B and 900B documents, increasing number of concurrent clients. Error
bars show standard deviation.

we find that FreeBSD kernel threads, in particular, the interrupt handler thread,

gets CPU bound after 6500 clients, and the CPU consumption of the nginx worker

threads reduces with higher numbers of clients as the nginx worker threads block

waiting for the kernel to demultiplex packets. The lwc-event configuration further

pays an extra cost of lwC switches, which reduces performance compared to stock

nginx. However, given that lwc-event provides session isolation, this is a still a

strong result.

For 900 byte documents, the performance of stock nginx and lwc-event remain

similar until ∼12000 simultaneous clients. Performance of stock nginx is not affected

by increasing numbers of clients: this is because the rate of incoming requests is

lower, which means the kernel threads do not saturate the CPU. With increasing

numbers of clients, eventually the cost of lwC switches, which were amortized over

94

serving a larger document, become a measurable factor.

Overall, our results show that using lwCs, it is possible to implement features

such as session isolation and reference monitoring at low cost for both HTTPS and

HTTP sessions, and even in a high-performance server under a challenging workload.

4.4.6 Isolating OpenSSL keys

lwCs provide a particularly effective way to isolate sensitive data from network-

based attacks such as buffer overflows or over-reads. The sensitive data is stored in

a lwC, within the process, such that the network-facing code has no visibility into

pages that store the sensitive data. In this way, unless the kernel is compromised,

the data is guaranteed safe, but access to functions that require the data can be

rapid, using a safe lwC-crossing interface.

As an example, we have isolated parts of the OpenSSL library that manipulate

secret information within Apache and nginx. In our case, the web server certificate

private keys are isolated; note that such a scheme would have rendered attacks such

as Heartbleed completely ineffective since the buffer over-read that Heartbleed relied

on would not have visibility into the memory storing the private keys. We evaluate

this scheme using the following configurations:

In-process LwC Sensitive data is stored in a lwC within the process, following

the pattern from Algorithm 6 in Section 4.3. The network-facing code within the

process has no visibility into the sensitive data; access is through a narrow interface

exported via lwC switch entry points. The isolated lwC has a copy of the original

95

process at the time of creation and may call whatever functions are available within

its address space. Our encapsulated OpenSSL library takes advantage of this fact

because the isolated lwC hosts a COW copy of the OpenSSL code and global state

and need not be aware that it is running in a restricted environment. None of the

changes in the sensitive lwC are visible to the network facing code.

We evaluate the cost of providing this isolation by performing SSL handshakes

(TLSv1.2,ECDHE-RSA-AES256-GCM-SHA384 with 4096 bit keys) with the nginx

web server. The server was configured to spawn four worker processes. We used

ApacheBench with concurrency level 24 and a session length of 1. In our experi-

ments, native nginx required 99.7 seconds to complete ten thousand SSL handshakes,

whereas the configuration with a lwC isolated SSL library required 100.4 seconds.

With lwCs, isolating SSL private keys is essentially free.

Our prototype isolates only the server certificate private key, but not session

keys or other sensitive information. More fine-grained isolation of the OpenSSL

state, such as that described in [36], can be implemented readily using lwCs.

4.4.7 FCGI fast launch

We demonstrate the utility of lwC snapshotting by adding a “fast launch”

capability to a PHP application. When a PHP request is served, a PHP script is read

from disk, compiled by the interpreter, and then executed. During execution, other

PHP files may be included and executed. We modified the PHP 7.0.11 programming

language to add a pagecache call that allows the script to “fast-forward” using

96

previous snapshots. Our implementation augments PHP-FPM [89], which functions

as a FCGI server for nginx. Our test application is based on the MVC skeleton

application that is included with the Zend PHP framework [90], which provides

the core functionality for creating database-backed web-based applications such as

blogs.

Before a PHP script performs any computation that depends on request-

specific parameters (e.g., cookie information), the script may invoke the pagecache

call, which implements the snapshot pattern (Algorithm 4). The first time a pagecache

is invoked, we take a snapshot and then revert to it on subsequent requests to the

same URL, effectively jumping execution forward in time. We use a shared memory

segment to store data that must survive a snapshot rollback, including request-

specific data and network connection information.

Our experiments run PHP-FPM with 11 workers. PHP itself includes an

opcode cache (which caches the compilation of each script in memory) and our

results include configurations where the PHP opcode cache is enabled and not.

When combining the opcode cache and the lwC snapshot, we warm up the opcode

cache before taking the snapshot. The results in Table 4.3 are an average of five

runs and overall standard deviation was less than 2%.

stock php lwC php stock php lwC php
no cache no cache cache cache

226.1 615.8 1287.5 1701.4

Table 4.3: Average requests per second over 60 seconds with 24 concurrent requests.

With or without the opcode cache, the lwC snapshot is able to skip over much

97

of the initialization of the runtime and whatever PHP execution would otherwise

occur before the pagecache call. This result is remarkable in that it shows lwCs can

provide significant performance benefit to highly optimized end-to-end applications

such as web frameworks, while adding isolation between user requests.

4.5 Conclusion

The abstraction provided by lwCs enables higher security when used for iso-

lation or reference monitoring and better performance when used for memoization

with OS supported snapshots, yet lwCs could not be efficiently implemented with the

abstractions provided by FreeBSD. Instead, an efficient implementation of lwCs re-

quires access to new, low-level abstractions that decouple isolation, execution state,

and privilege separation from the process abstraction. These low-level abstractions

can then be composed in novel ways to create new high-level abstractions, such as

lwCs. To maintain compatibility with traditional process isolation, the only require-

ment is that the low-level abstractions do not expose information that would not

otherwise be available to a calling process. In Section 5.5, we show how lwCs could

be implemented in the null-Kernel architecture, which allows both low and high-level

abstractions to be safely exposed simultaneously by codifying this restriction.

98

Chapter 5: The null-Kernel

In this chapter, we present a null-Kernel, a new OS architecture that supports

applications and abstractions with efficiency, usability, and security goals that may

at times be in conflict. The null-Kernel achieves this by providing a safe way to

simultaneously expose both low and high-level OS abstractions simultaneously.

5.1 Introduction

Abstractions imply choice, one that OS designers must confront when de-

signing a programming interface to expose. Traditional monolithic kernel designers

choose a high-level portable interface that necessarily hides many hardware details.

On the other extreme, designs such as the Exokernel optimize for performance and

low-level hardware access. Abstraction choices have further implications in how

easily and quickly new hardware and application models can be supported. In this

chapter, we describe the null-Kernel, a new model for structuring system software

that attempts to relieve OS designers of this choice and enable access to and com-

position of OS interfaces at different levels of abstraction.

The null-Kernel is designed to address the growing need to easily provide

99

high-level programming interfaces to new hardware, such as GPUs, crypto/AI ac-

celerators, smart NICs/storage devices, NVRAM etc., and to efficiently support

new application requirements for functionality such as transactional memory, fast

snapshots, fine-grained isolation, etc., that demand new OS abstractions that can

exploit existing hardware in novel and more efficient ways.

At its core, the null-Kernel derives its novelty from being able to support and

compose across components, called Abstract Machines (AMs) that provide program-

ming interfaces at different levels of abstraction. The null-Kernel uses an extensible

capability mechanism to control resource allocation and use at runtime. The abil-

ity of the null-Kernel to support interfaces at different levels of abstraction accrues

several benefits: New hardware can be rapidly deployed using relatively low-level

interfaces; high-level interfaces can easily be built using low-level ones; and applica-

tions can benefit from being able to use interfaces, and compose abstractions using

more than one if necessary, as appropriate.

The null-Kernel capability system can also be used to partition hardware be-

tween different components (AMs) that provide different abstractions. For instance,

the null-Kernel can be used to simultaneously support a traditional OS that pro-

vides a system call interface, and an exokernel that provides low-level access to new

hardware. Such a system could easily enable optimizations not possible now: for

instance, the BSD Socket interface necessarily implies copying incoming data from

kernel to user space memory, and typically an additional copy is incurred when the

data is initially copied from the NIC. Zero copy stacks exist, but do not eliminate the

initial copy. A null-Kernel that combines a BSD-like AM and an exokernel interface

100

for Smart NICs can be programmed to assemble incoming TCP segments and copy

them directly into process memory, bypassing the BSD AM entirely. Applications

can use the BSD interface for traditional high-level services while simultaneously

benefiting from a very high performance networking stack.

We describe design principles for AMs that go beyond strict partitioning, and

enable cooperating AMs to provide additional functionality. These design princi-

ples can be used to retrofit existing kernels, allowing applications to simultaneously

use the high-level interface they provide while benefiting from additional access to

low-level hardware features that were previously hidden by the traditional OS. For

instance, cooperating high- and low-level AMs can simultaneously provide virtual

memory (high-level) and access to page-access bits (low-level, currently unavail-

able). Such a facility could be used to implement new primitives (e.g., software

transactional memory) or optimize existing (e.g., garbage collection).

In the next section, we describe the null-Kernel structure, its capability system,

and how interfaces provided by AMs can be composed using the null-Kernel. In

Section 5.3 we discuss how an existing kernel can be retrofitted to interface with an

exokernel, and provide examples of how new types of application primitives such a

hybrid system can support. We discuss related work in Section 2.3.

5.2 The null-Kernel

Figure 5.1 shows a high-level schematic of the null-Kernel. The null-Kernel ar-

chitecture decomposes the system into three components: abstract machines (AMs),

101

AM 0 AM 1

AM 2

Hardware AM

Null Kernel

Caller

Figure 5.1: An overview of the null-Kernel showing system components: the null-Kernel,
abstract machines, and callers.

callers, and the null-Kernel itself.

Abstract machines are software layers that provide specific functionality, and

expose a set of operations that callers may invoke. In a traditional OS, the kernel is

the AM, and this set of operations is the system call interface. Callers are processes

or threads, as recognized by the kernel. In a null-Kernel architecture, there may be

other layers of software (i.e., different AMs) that provide different interfaces, which

would also be available to eligible callers, which may include other AMs.

The null-Kernel, shown in green in the figure, controls access to AM operations

by only allowing invocations when the caller presents capabilities with sufficient

access rights. The capability structure supported by the null-Kernel is extensible:

AMs define new capabilities and specify which access rights are required for any

given AM operation. Since the capability system is extensible, the null-Kernel can

102

recognize new operations (and indeed complete AMs) at runtime.

null-Kernel Structure Figure 5.1 shows how OS software in the null-Kernel

model is structured. The hardware presents a programming interface, which we term

the Hardware-AM1. The other AMs in the figure export different sets of operations

that ultimately make use of the Hardware-AM. AMs can be layered, e.g., AM-2

is partially built using AM-1’s operations. In a null-Kernel, callers, with proper

capabilities, may invoke operations exported by a “high-level” AM such as AM-2,

or by “low-level” AMs such as AM-0, or any combination simultaneously. This is the

key insight behind the null-Kernel: as long as a caller has proper capabilities, they

may invoke operations at any level of abstraction, and thus the OS architecture

is not confined to one model. More importantly, if the underlying resources are

disjoint, or if the AMs cooperate (as described next), these calls compose, and can

safely be executed in parallel or in any combination.

AMs structured with the null-Kernel capabilities permit many patterns of re-

source access and optimizations that are either cumbersome or impossible otherwise.

These include “bypassing” layers by delegating capabilities and controlled sharing of

resources between “peer” AMs. Next we describe the capability subsystem in more

detail followed by examples demonstrating these access and optimization patterns.

1Obviously, the Hardware-AM is not “abstract” but we (ab)use the term for uniformity.

103

5.2.1 null-Kernel Capabilities

In this section, we describe the null-Kernel capability system in more detail.

AMs, including the Hardware-AM, define “objects” and “access rights” on objects.

The null-Kernel capability system is extensible in that it operates over (dynamically

defined) AM objects and rights. Capabilities are unforgeable references to a pair

consisting of an AM object and a set of access rights on that object. Operations

defined by AMs refer to one or more pairs of objects and access rights. For example,

the Hardware-AM may define a memory page as an object, and read and write as

access rights. A DMA operation that copies data onto a page would require the

write access right on that page object. This requirement is reflected to the null-

Kernel as described below; a caller may invoke an operation (DMA-write) only if

they have the capabilities associated with the operation (in our example, the caller

must have a capability that grants the write right to that memory page).

The null-Kernel capability system derives directly from prior work in capabili-

ties [72,91]. Like existing systems, in the null-Kernel, capabilities can be associated

with object, rights pairs, delegated to others, derived to produce weaker capabilities

(by reducing the rights set), and revoked. In the null-Kernel, when a capability is

revoked, all derived capabilities are also revoked. Much like other capability sys-

tems, the basic security of the null-Kernel requires that a principal (a caller or AM)

can only get access to a capability by either being granted the capability explicitly

or deriving it from a stronger capability. In particular, colluders cannot grow their

collective set of capabilities beyond what is explicitly granted to them.

104

Extensibility The novelty of null-Kernel capabilities derives from the fact that

null-Kernel itself does not associate capabilities to the operations they guard. This

association is made by AMs and is, therefore, extensible. Specifically, AMs can

define new objects at their level of abstraction (e.g., the Hardware-AM can de-

fine memory pages as objects, whereas a higher-level VM-AM that provides virtual

memory can define address-spaces and memory regions as objects). AMs also de-

fine custom rights on objects, and this set too is extensible at runtime. Again, as

an example, both the Hardware-AM and the VM-AM can define read and write

as rights on their respective objects (physical pages for the Hardware-AM, mem-

ory regions and address spaces for the VM-AM). The operations supported by the

low-level Hardware-AM mirror those of the access rights (the read/write operation

succeeds only if the caller has read/write access to a memory page). The VM-AM

can associate much richer semantics with operations: for example, it may define a

mapReadable function that takes an address space and a memory region as input,

and the caller may only map a memory region into an address space if they have

capabilities that provide write on the address space and read on the memory region.

The null-Kernel provides an API that allows AMs to express capability requirements

for each call. As long as the capabilities are delegated correctly any caller at any

‘layer’ of the system may use operations exported by an AM. The invoked AM main-

tains its correctness as long as the capabilities are checked prior to the operation

being executed.

105

Capability hierarchies and delegation The null-Kernel naturally allows AMs

to build and, in turn, export interfaces based on capabilities received from lower

layers. These exported interfaces (and their associated capabilities) implicitly form

a capability hierarchy. Hierarchical capabilities are different from simple delegation

in which an AM directly grants received capabilities to others. (Delegation is useful

for the layer bypassing model we discuss later.) For both hierarchical and delegated

capabilities, AMs should follow two basic principles to ensure correctness for higher-

layers:

• Logical separation: An AM should give potentially conflicting capabilities

(e.g., write capabilities to the same object) to mutually trusting principals

only (principals who understand each other’s invariants).

• Essential capability hiding: A higher-level AM should not give out any capa-

bility it has on a lower-level AM, if the capability can be used to violate the

higher-level AM’s own invariants.

Capability Checks It is crucial to note that the null-Kernel, as described, is

a schematic for how OSs should be structured. This schematic does not specify

how capability checks are implemented, only that operations across AMs should be

guarded by checks. This lack of specificity of implementation is on purpose since it

provides unconstrained latitude in how (and when) the checks are implemented. For

example, capability checks could be implemented in hardware (using the ISA [47,92],

MMU, processor protection rings [3,72]), with programming language techniques (a

106

safe compiler only generates code for capabilities it is provided [69]), using virtual-

ization (guest OSs implement AMs constrained using the hypervisor interface [93]),

and so on. Similarly, capability unforgeability can also be implemented using dif-

ferent mechanisms: EROS [72] protects capabilities using protection rings, whereas

Amoeba [94] uses random placement of capabilities in a sparse address space. Other

systems [95] [96] protect capabilities with cryptography primitives. The null-Kernel

could employ any or all of these methods.

5.2.2 null-Kernel Structures

We conclude this section with two examples of how null-Kernel capabilities can

be used to create interesting optimizations and sharing structures between AMs.

Layer Bypassing Consider a system (Figure 5.2) that exposes both a high-level

filesystem AM (fs-AM) that operates on the level of files and directories, as well

as a low-level disk AM (d-AM) that operates at the level of blocks. The fs-AM

is implemented on top of the d-AM using raw block read/writes exported by the

d-AM.

Most callers may prefer to use the file system through the fs-AM. However,

applications, such as high performance databases, that want low level control over

how data is arranged, may use the d-AM directly. With a null-Kernel, both these

cases can be supported simultaneously by exposing both AMs to callers, subject

to constraints of hierarchical and delegated capabilities. In particular, following

the principle of “logical separation”, the d-AM should give the direct callers and

107

fs-AM

d-AM

Hardware AM

Null Kernel

C0 C1

Figure 5.2: A representation of a file system AM built on top of and exposing capabilities
for a disk AM.

the fs-AM capabilities to disjoint disk blocks to ensure that they do not overwrite

the other’s data. Indeed, in existing systems, raw disks or partitions are often

provided exclusively to high performance applications for exactly this reason (and

with exactly this constraint).

A more interesting use-case is that the fs-AM itself can delegate block capa-

bilities it receives from the d-AM to its callers. This would enable applications to

write to file-system managed data blocks directly without going through the fs-AM.

The null-Kernel enables such layer bypassing since it allows any caller with the ap-

propriate capabilities to call any AM (the d-AM in this case). In this case, the

fs-AM must adhere to the principle of “essential capability hiding” by never dele-

gating write capabilities that pertain to file system metadata blocks to guarantee

file system integrity.

108

AM peering The null-Kernel also supports non-hierarchical, peering structures

between AMs. We illustrate this using VM paging as an example. Consider the

virtual memory AM (VM-AM). Upon memory pressure, the VM-AM writes pages

to disk. To accomplish this, we assume that the VM-AM has been delegated write

capabilities to a set of disk blocks by the disk AM (d-AM). The VM-AM uses these

capabilities to write pages to disk as needed. To page these items back in, the VM-

AM invokes an operation in the d-AM that requires a block capability with read

access and a page capability with write access. The d-AM may then asynchronously

write into the page from the block and notify the VM-AM when the operation

has completed. This peer-to-peer interaction between cooperating AMs is natively

supported by the null-Kernel.

5.3 null-Kernel in Practice

In the previous section, we outlined the basic structure of the null-Kernel and

described use cases where the relevant subsystems were written to conform to our

model. Many null-Kernel ideas, however, are applicable to current OSs as well; in

this section, we describe how salient parts of the null-Kernel can be integrated into

production kernels and the types of optimizations this can enable.

Figure 5.3 depicts a standard OS, such as FreeBSD, extended to recognize the

null-Kernel as we describe next. The system also includes a new AM, the EXO

AM, which exports a low-level interface to hardware, similar to that provided by

exokernels. FreeBSD is not structured as a null-Kernel AM and there are several

109

Hardware AM

P0

 BSD AM

EXO AM

P1

Null Kernel

User

Kernel

Figure 5.3: Architecture for retrofitting the null-Kernel into a BSD system to expose
include safe exokernel like AM.

options as to how an EXO AM could co-habit with FreeBSD. One option to give

the EXO AM access to the hardware is to let it run in supervisor mode, alongside

the BSD AM.

Callers in this hybrid system are BSD processes, augmented with capabilities

which can be used to access the EXO AM. Processes (which run in processor ring-

3) calling into the EXO AM must incur a processor ring switch, and hence the

“user-kernel boundary” separates processes from the EXO AM as well.

In this structure, the BSD AM and the EXO AM cooperate, and must share

the hardware capabilities without conflict. For instance, the BSD AM could choose

to not use its hardware capabilities for certain devices. The EXO AM can safely

export its minimal interface and be used as a base for higher level abstractions on

these devices. With more cooperation, the EXO AM could also provide read-only

access to hardware primitives that are used by the BSD AM (e.g., by exporting

110

processor status and memory reference bits). Such hybrid access to high- and low-

level interfaces enables new use patterns that are not possible with either interface

in isolation.

Access to new hardware The EXO AM can provide low-level access to new

hardware such as GPUs, FPGAs, or smart-NICs for which the BSD kernel does not

have support. New devices added to the machine would add additional hardware

AMs to the system. Hardware vendors or kernel developers would then write a thin

abstraction of the hardware AM and expose it via the EXO AM. At this point, the

new hardware could be directly used by processes (with proper capabilities).

New Abstractions The ability to layer AMs would give us the opportunity to

build higher level AMs in terms of the EXO AM. These higher level AMs would offer

different abstractions that might be suitable for the hardware, and each application

that wanted to use the new hardware could choose the AM that best meets its needs.

New abstractions need not be limited to new hardware. For instance, in co-

operation with the BSD AM, the EXO AM could expose hardware features such as

page reference bits in page tables which are usually hidden by the BSD AM. These

tracking bits could be used by applications to augment the BSD VM subsystem and

implement novel features such as efficient software transactional memory (TM) or

fast garbage collection. Currently, a generic software implementation of TM requires

compiler augmentation of every single memory access [97]. This overhead can be

entirely avoided if page reference bit were made available through the EXO AM.

111

Simultaneous high- and low-level access The hybrid BSD/EXO AM system

can be used to implement layer bypassing as discussed earlier. The BSD AM could

provide capabilities for disk blocks to processes, which could then use the EXO

AM to implement their own optimizations within the blocks allocated by the BSD

filesystem.

High-level AM over different low-level AMs The hybrid system would allow

different AM’s functionality to enable new use cases. For example, suppose new

hardware in the form of NVRAM storage devices is available, and the EXO AM

exports a low-level block interface to these devices. A higher-layer AM could provide

a memory-mapped file interface to the NVRAM storage, and process logic could

use this facility to implement efficient crash recovery. Here the null-Kernel allows

programmers to use a high-level, well-understood paradigm (memory-mapped files)

to program their application logic, and integrate it with low-level access to new

hardware to implement new functionality (efficient crash recovery).

AM composition The examples above assume that either AMs partition re-

sources, or are able to expose safe “enough” interfaces such that composite services,

that use operations from multiple AMs do not cause deadlock or fault the system

in some other manner. A sufficient condition to ensure both safety and progress is

for each exported AM call to run to completion upon invocation, and for the AM

to maintain all of its safety and progress invariants (e.g., release held locks) prior to

call return (including for calls that it services in parallel). The OS system call inter-

112

face maintains such an invariant, but internal kernel interfaces, that assume specific

locking sequences and at times undocumented pre-conditions, do not , thereby mak-

ing kernel modifications fraught with danger. To support composability, AMs could

simply implement the sufficient condition we have described. Articulation of more

precise and efficient criteria is likely feasible and remains part of our future work.

5.4 NVRAM and the null-Kernel

In this section, we will discuss how NVRAM can be supported in a null-Kernel

in a way that makes PTx possible with lower overhead and more flexibility than

offered in existing systems.

PTx, discussed in Chapter 3, acts as an abstraction for efficiently persisting

in-core data structures over NVRAM hardware. To persist efficiently, PTx relied

on newly added Linux support for direct hardware access, which is a form of layer

bypass in terms of the null-Kernel architecture. PTx uses direct access to persist to

NVRAM without the intervention or overhead of other software layers.

Existing POSIX abstractions do not support direct access, so stock Linux was

modified to support direct access via a modified mmap system call. In addition to the

mmap system call, maintainers modified the block device, file system, and virtual

memory system. In this section, we discuss how PTx could have been implemented

in a null-Kernel architecture with lower overhead and less programmer intervention.

Note that kernel subsystems already export interfaces that, in effect, act as

AMs. Interoperability between subsystems depend on programmer discipline: so

113

long as the interface is used as expected, the kernel can be extended, but unspoken

contracts and requirements make doing so difficult. We consider those interfaces our

starting point as the AM interface, but note that in a null-Kernel, these interfaces

would be exposed to users and safety and compatibility constraints would be en-

forced by capabilities, rather than the use of convention and programmer discipline.

There are multiple ways to interact with these new AMs, but performance

likely requires that abstractions built in terms of subsystem AMs be executed in su-

pervisor mode. Towards that end, we posit that users have the ability to inject small

programs that are written in a memory safe language and have progress guarantees

that are then injected into the kernel’s address space. These programs could invoke

internal AMs and can expose new abstractions to user space by adding entries to

the system call AM. The enforcement of capabilities and progress guarantees will

be ensured by the invoked AMs and programming language restrictions guarantee

memory safety.

To support direct access, the virtual memory AM must be modified to support

capabilities for NVRAM. This call may be as simple as allocate-nvram-region(size),

which allocates a region of NVRAM pages that may then be mapped into an address

space with a map-region(region,aspace, offset), that maps either NVRAM or

DRAM pages at a given address space and offset. So long as the virtual memory

system does not allocate the same NVRAM regions to multiple callers, this call is

safe and is the only modification necessary in a null-Kernel. To gain direct access to

hardware, a caller requests an NVRAM capability from the virtual memory system

and then requests that this capability be mapped in an address space. This form of

114

direct access significantly lowers the bar in supporting new hardware.

However, the form of direct access differs from that offered in Linux, which

makes NVRAM accessible through the filesystem. In this form, the access control

mechanism and namespace for NVRAM is specified by the filesystem abstraction.

With the null-Kernel, we have the flexibility to define a new abstraction that provides

a namespace and access control that may better fit a specific use case, but if the file

system abstraction is useful the null-Kernel architecture can support it through the

mmap call.

To support direct access mmap, we need to consider how file systems would

likely handle the buffer cache in a deconstructed Linux null-Kernel. The buffer

cache is a cache of file contents in system memory that can be mapped or copied

into a process’s address space in response to a read fault over a memory mapped

region. A reasonable null-Kernel file system could either 1., request pages from

the memory AM and copy file contents into those pages whenever requested by the

memory AM in response to a read fault within the memory mapped region or 2.,

fill in a buffer that will be copied into user space by the memory AM in response

to a read fault within the memory mapped region. In the former case, shown in

Figure 5.4, the file system AM can support direct access by providing AM backed

pages to the memory AM in response to page in requests by the memory AM. In

the latter case, both the memory and file system AM would need to be modified to

support direct mapping.

Note that existing in-kernel abstractions were nearly capable enough to sup-

port layer bypass for NVRAM, but users had to wait until kernel developers were

115

NV-AM

m-AM

fs-AM

HW-AM

NV-AM d-AM

C

l
o
a
d
(
…
)

s
t
o
r
e
(
…
)

mmap(nv)

tx sync

wb cache

Figure 5.4: Achieving direct access / layer bypass with a deconstructed linux null-
Kernel

able to make more significant modifications. Furthermore, the abstraction offered

was one size fits all and introduces additional overhead. For instance, the file system

must provide a mapping between file offsets and “blocks,” yet PTx also provides a

mapping between virtual address and NVRAM offsets. A PTx mapping between

virtual addresses and NVRAM physical page offsets would eliminate one layer of

mapping.

It is also important to note that a null-Kernel architecture supports both a

minimal abstraction, where NVRAM pages are directly mapped without interven-

tion of a block device and file system AM, as well as a higher level file system

representation. So long as the memory system adheres to logical separation and

gives out NVRAM capabilities exclusively, both lower and high level abstractions

are available simultaneously.

116

5.5 Isolation Abstractions and the null-Kernel

In this section, we will discuss how higher level isolation abstractions, such as

process isolation, can be built in a null-Kernel architecture by defining higher level

constructs that contain and limit access to sets of lower-level capabilities.

The process, a high level abstraction, encapsulates several lower level abstrac-

tions for isolation (address spaces), privilege (user credentials), and execution state

(threads). Processes are a successful abstraction and have worked well for decades,

but increased security demands are leading to new proposals for intraprocess iso-

lation, such as Wedge [36], ERIM [57], and lwCs. Each of these proposals could

be built on top of the high level process abstraction, but performance requirements

necessitate unsafe kernel modifications to access lower level primitives.

Each of the newly proposed intraprocess isolation abstractions make different

choices that impose alternate security, usability, and design sensibilities on their

users, but this is an unnecessary imposition. Each of these systems could have

been simultaneously implemented in a null-Kernel that provided safe access to the

same lower abstractions. This implies that merely changing the composition of

low level abstractions affords significant flexibility in offering different visions for

how to address similar application requirements. We focus on how lwCs would be

implemented in a null-Kernel, but note that Wedge could be built with the same

lower level AMs discussed below, whereas ERIM, which relies on new hardware,

would require an additional modification to the virtual memory AM to provide

access to new isolation instructions.

117

In a null-Kernel, abstractions should be decomposed into the lowest level set

of primitives that can be exposed while maintaining compatibility with high level

abstractions. Under this model, the decomposition of the process abstraction would

consist of AMs that provide capabilities and corresponding instructions for manip-

ulating execution state, memory isolation, and privilege.

Execution state and memory isolation are represented with capabilities defined

by the scheduling and virtual memory AM, respectively, whereas privilege is defined

by the set of capabilities that a caller can reach. The scheduling AM represents

execution context with an OS context capability. A scheduling AM exposes instruc-

tions through which a OS context may be have its registers modified or scheduled

to run on a core. Later we will see that these registers may be used to define the

address space in which the OS context executes. Address space and memory region

capabilities are granted by the virtual memory AM and provide memory isolation.

To generalize capabilities, we suggest capabilities be represented by uniformly

distributed pseudo-random integers from a large namespace that cannot be guessed.

Capabilities can thus be stored or passed through registers, address spaces, files,

or sockets. By convention, capabilities may be effectively passed between AMs by

storing capabilities at predetermined locations that have meaning in certain contexts

(e.g., the address space a scheduled OS context executes within is stored in the CR3

register).

In terms of a null-Kernel, a POSIX process is a set of threads (i.e., a OS

context whose CR3 register is constant) that share all capabilities except for the OS

context capability itself. The set of open files and sockets (i.e., the file table) and the

118

credentials of the process (e.g., the user id, group id, quotas, etc) are represented

as a collection of capabilities granting access to system resources and are passed

as a set whenever system calls are invoked via the high level system call AM. For

simplicity we will assume the set of capabilities that a OS context may access are

only accessible through a pointer that is stored in a special register we will call the

capability register. Under this assumption, the high level system call AM is always

passed the capability register by the caller.

The lwC AM introduces the lwC abstraction and a set of calls for manipulating

or switching contexts, the primary purpose being to partition a process’s capabilities

into potentially disjoint and mutually untrusted actors. Under the stipulation that

capabilities are only accessible by a OS context through the capability register,

switching lwCs is equivalent to atomically modifying the registers for the OS context

so that switches manifest coroutine semantics and switch the capability register

pointer to another capability set to provide isolation. Critically, the lwC capability

is a derived capability that encloses a capability set that is inaccessible to a OS

context and can only be accessed through the lwC AM. The only way to switch

the capability register to the lwC capability set is through the lwC AM, which is

necessary to provide the higher level security invariants promised by the abstraction.

We will now describe how the lwC AM is implemented in terms of the null-Kernel.

lwCreate The lwC AM exports a new capability type: the lwC. This call takes

a resource specifier and the capability set of the caller. The newly created lwC

contains a capability set that is derived by filtering the passed in capability set with

119

the constraints specified by the resource specifier. The newly created context also

contains register values set such that it can resume execution at the point of its

creation when lwSwitch is first called.

lwSwitch Switching an lwC is an operation that replaces the context executing

on an OS context by performing three tasks atomically. First, it saves the state of

the current execution (i.e., saves the register values for the OS context). Second,

it switches the capability register to the capability set enclosed by the target lwC.

And lastly, it changes the OS context registers such that execution resumes where

the target lwC left off.

lwOverlay Capabilities are passed between lwCs during creation and with the

lwOverlay call. With this call, one lwC requests access to capabilities housed in the

capability set of another target lwC. So long as the target lwC has not restricted

the caller, the specified capabilities of the target will be imported into the caller’s

capability set.

lwRestrict The lwRestrict call allows the caller to downgrade a lwC capability

such that it may not be used to overlay a set of specified resources. The set of

restricted resources is associated with the lwC capability internally and consulted

whenever a lwOverlay is attempted.

lwSyscall The lwSyscall allows a more privileged lwC to perform a system call

on behalf of a lesser privileged lwC. lwSyscall works in concert with Capscicum, a

120

sandboxing mechanism present in FreeBSD that blocks system calls for sandboxed

processes, which is a form of privilege dropping that we extended for lwCs. The

ability to prohibit system calls is equivalent to requiring system call capabilities

to successfully invoke any calls on the system call AM. Under this equivalence,

lwSyscall may be implemented by creating a new capability set that is the union

of the necessary system call capability and the capability set of the target lwC and

then subsequently using this newly created capability set to invoke the system call.

The lwC AM is a fairly simple composition of lower level AMs that would

likely be exposed in any null-Kernel implementation. This is driven be hardware:

fundamentally, any performant form of isolation will rely on the same underlying

primitives that are available on the hardware (i.e., the lowest level AM). While we

did not show it above, other security proposals such as Wedge are similarly trivial to

implement with the same AMs used above. Where the null-Kernel shines relative to

an exokernel, which would also expose low level primitives, is the use of capabilities

to provide compatibility between abstractions. With a null-Kernel architecture, it is

possible to simultaneously expose lwCs, the Wedge abstraction, process sandboxing

(Seccomp or Capscicum), and the MPK abstraction within the same OS instance.

5.6 Conclusion

The null-Kernel is a new structure for system software that enables abstrac-

tions for efficient access to new hardware and admits new optimizations for existing

hardware. The key enabling feature is its ability to codify the safe co-existence

121

of potentially competing abstractions for the same underlying hardware resources.

The null-Kernel achieves this with an extensible capability mechanism and a set of

principles that allow each abstraction to define their own invariants such that both

a high-level abstraction as well as the low-level abstractions that it may encapsulate

may be exposed to users simultaneously.

122

Chapter 6: Conclusion and Future Work

In this dissertation, we described two systems abstractions, PTx and lwCs,

as well as the null-Kernel architecture, a new OS architecture that simplifies the

development of and compatibility of competing abstractions. Our contributions

include the design and implementation of PTx and lwCs, the design of the null-

Kernel architecture, and a discussion of how PTx and lwCs, which both require

access to low and high-level abstractions for performance and functionality, could

be more easily constructed within a null-Kernel architecture. These contributions

support the following thesis: Supporting novel hardware such as NVRAM and new

abstractions like fine-grained isolation while maintaining efficiency, usability, and

security goals, requires simultaneous access to both high-level OS abstractions and

compatible access to their low-level decompositions.

PTx is a high-level abstraction that enables the persistence of standard, un-

modified data structures without the use of a specific programming language or

manual annotation. The performance of PTx is dependent on lower level abstrac-

tions: it relies on direct-access to persistent media (NVRAM), bypassing traditional

memory-mapped file abstractions, and a lower-level virtual memory interface that

provides access to hardware-set page-modified bits. PTx operates on data structures

123

within DRAM and optionally tracks modifications through the page-modified bits

before directly and atomically persisting volatile state to an NVRAM-optimized data

structure resident on NVRAM. Our results showed strong performance, PTx often

outperforms Redis and LMDB, which are production systems, as well as manual-

annotation systems proposed by researchers. Further, our results show that coarse-

grained persistence on the order of a second approaches the execution performance

of native DRAM.

lwCs are a new OS abstraction that provides units of isolation, privilege, and

execution state independent of processes and threads. The lwC abstraction is built

on top of lower-level abstractions than are traditionally available and provide new

intra-process isolation functionality while maintaining compatibility with existing

abstractions. In addition to intra-process isolation, lwCs provide fast OS-level snap-

shots and co-routine control transfer between contexts. Our results show that fast

roll-back, compartmentalization of secrets, isolation, and monitoring of user sessions

can be used within production Apache and nginx web servers to improve security

while nearly maintaining or even exceeding the performance of unmodified Apache

and nginx.

The null-Kernel is a new structure for system software that enables abstrac-

tions for efficient access to new hardware and admits new optimizations for ex-

isting hardware. The null-Kernel posits an extensible capability mechanism that

distributes system resources across software that provides programming interfaces

at different layers of abstraction. Equipped with proper capabilities, callers, such

as user processes, can simultaneously program to any or all of these abstractions as

124

appropriate. We describe requirements of the null-Kernel’s basic capability mecha-

nism and show how the null-Kernel can be used to implement new abstractions and

optimizations.

6.1 Future Work

PTx and lwCs both address specific problems relating to persisting unmodified

in-core data structures and providing intra-process isolation and snapshots respec-

tively. The null-Kernel, on contrast, suggests a new way to structure a system to

hasten the development of new abstractions. Our work on these systems has raised

some additional research questions about potential extensions to PTx and lwCs, as

well as how the null-Kernel may be implemented in practice.

6.1.1 Extensions to PTx

The basic PTx design can be optimized and extended relatively easily, which

discuss next.

Versioning PTx only stores a single valid snapshot, but can be extended to

store/restore an arbitrary number. Supporting multiple active snapshots would

require PTx to associate a sequence number with each mapped address in the data

header and only free blocks when no retained snapshot refers to the associated se-

quence number. (This design would only accommodate a linear history, i.e. it would

not support forks).

125

Paging To support colored regions that exceed the size of DRAM, PTx would have

to support paging. A rudimentary form of paging is implicitly supported already,

in that the OS should page out DRAM pages from the colored region as necessary

when under memory pressure, but this is not ideal. With OS support, the kernel

could unmap unmodified colored pages under memory pressure and fault them back

in from NVRAM when accessed. Similarly, if data blocks in NVRAM were the

size of a page, NVRAM blocks could be mapped as read-only when under memory

pressure.

Optimistic write-ahead When we write from the modified set to NVRAM, we

do so non-destructively. An implication of this is that we could write this data

either in parallel during the commit call, or even between commit calls (using a

free CPU core). The former case is a potential optimization that would be part

of a more advanced implementation. The latter would benefit from hints from the

programmer that modified data in the colored region is unlikely to be written again,

and thus, could be written to NVRAM. Critically, hints should be conservative:

incorrectly hinting that an object will not be rewritten during a transaction does

not affect correctness, but it would lead to unnecessary writes to NVRAM and be

a counter-productive optimization.

Small transactions Transactions whose write set fits into a single blockset can be

committed without using the undo log. Instead, the write of the blockset’s header

serves an an atomic commit point. This optimization works for transactions of

126

up to 41 ∗ 256 = 10, 496 bytes, increases performance, and further reduces write

amplification.

6.1.2 Persistent lwCs

Applications may use PTx to persist data structures, but when restarted,

the application itself must re-initialize all other application state and invoke the

PTx restore operation for each colored region. It would reduce startup time and

simplify use if the application could be restarted from the last successful commit

call and resume execution where it left off. This could be achieved if we combined

two abstractions: lwCs and PTx.

lwCs are not currently persistent, but may function as a persistent snapshot

mechanism when combined with PTx and modified slightly. The virtual memory

of the context is easily persisted: whenever lwSwitch is invoked, the memory and

registers of the yielding lwC is optionally persisted to NVRAM via commit and the

target lwC is restored via the restore operation. Similarly, lwCreate would create

a persistent snapshot of the memory of the currently executing lwC. The best way

to handle other lwC state, such as open sockets and file descriptors could be handled

similar to existing checkpointing systems, such as CRIU [98]1, but we suggest that

instead whenever an operation on a restored file is first invoked, a callback is invoked

that may set up and restore the descriptor or socket as appropriate. Sufficient

low-level access to the process file table that allows alternate file operations to be

1CRIU itself functions by the selective exposure of low-level abstractions for querying and
setting process state, such as socket state.

127

associated with any given descriptor makes this possible. This flexibility would

allow file descriptor restoration to be done in an application specific way, whether it

attempt to restore network connections, replay the results of a previous invocation

(e.g., in testing or debugging), or invalidate the descriptor. In some cases, such as

preserving application histories, active connections may never need to be restored,

whereas in others connection end-points may have moved and a new connection may

need to be established.

lwC snapshots can be used to checkpoint and restore state, but they can also be

used to build an application’s history, which would be useful for auditing, debugging,

and other contexts where history may want to resumed at arbitrary points, such

as fuzzing [99]. The history of an application (or context) would be collected by

periodically invoking lwCreate and proceeding with the execution. Due to the

deduplication built into PTx, each snapshot would be relatively small.

6.1.3 Implementing a null-Kernel

Monolithic kernels already have well defined interfaces that are available for

extending the kernel with a kernel module. Modules, which execute with full privi-

lege, are intended to use these interfaces but they may call any kernel symbol and

read or write arbitrary regions in the kernel’s address space. Kernel modules work

because they are constrained by convention to only call symbols in predetermined

ways and not read or write memory for which they should not have access. However,

if the constraints that safe modules generally follow can be codified with capabili-

128

ties, the interface exposed to kernel modules is a natural starting point for exposing

lower-level AMs in a manner consistent with a null-Kernel.

Wrapping these interfaces with capability checks and exposing them via the

system call interface would provide the functionality we desire, but performance

would likely be unacceptable. High-level AMs built in terms of these low-level AMs

may require many calls to the lower-level AMs to represent a single higher level

abstraction. If each call to the lower-level AMs requires a switch into and out of

supervisor mode, high performance higher-level abstractions could not be built that

are compositions of many calls to the lower-level AMs without inducing significant

overhead. Instead, we propose giving users the ability to inject into the kernel new

abstractions that are written in a restricted language that provides memory safety

and guarantees that capability checks are performed.

We have begun extending FreeBSD to act more like a null-Kernel and expose

lower and higher-level abstractions simultaneously. We have provided lower-level

AMs for virtual memory and OS tasks and allow users to access this via a safe

subset of the Rust programming language that executes within supervisor mode.

Significant work remains to fulfill the full null-Kernel vision, though even a minimal

set of lower-level abstractions enables new higher-level such as lwCs and PTx, as

discussed in Section 5.5 and Section 5.4 respectively. Working from a monolithic

kernel, new hardware and existing abstractions can be safely decomposed and made

available to users with the aide of proper capability checks on an incremental basis.

129

6.2 Concluding Thoughts

Changing application requirements and the accelerating pace of hardware ad-

vances increase the needed rate of iteration for OS abstractions. Increasing security

requirements have driven the need for abstractions that promote greater security

and isolation. A raft of new security proposals, including lwCs, Capsicum [100],

Pledge [101], ERIM [57], and many others have been proposed in recent years. Some

of these systems have been adopted, but often when adopted, they are adopted hap-

hazardly. Owing to the fact that we still lack a unified mechanism to enable the

adoption of new abstractions, many compelling proposals are not adopted or are

only adopted haphazardly and with heroic effort. Critically, many of these systems

rely on the same lower-level abstractions, even though they make different trade-

offs and design decisions that may suit different kinds of applications. Systems for

managing NVRAM, such as PTx, tell a similar story. We have a raft of new pro-

posals, none of which are the best for all circumstances, but all of which rely on the

same fundamental low-level abstractions. It would be better to expose to users the

low-level abstractions alongside the high-level abstractions that depend on them.

When new hardware is introduced, the lowest-level abstraction possible should be

exposed. Whenever a higher-level abstraction is offered, the lower-level abstractions

upon which it is built should be left accessible, with safety provided by following

the principles and structure of the null-Kernel. This vision for future systems de-

velopment will speed the pace of innovation by providing a low-level substrate upon

which new abstractions may always be built, without eliminating the portability

130

that time-tested higher-level abstractions provide.

131

Bibliography

[1] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg,
Bobby Bhattacharjee, and Peter Druschel. Light-Weight Contexts: An OS
abstraction for safety and performance. In OSDI, pages 49–64, 2016.

[2] James Litton, Deepak Garg, Peter Druschel, and Bobby Bhattacharjee. Com-
posing abstractions using the null-kernel. In Proceedings of the Workshop on
Hot Topics in Operating Systems, pages 1–6, 2019.

[3] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: An operating
system architecture for application-level resource management. In Proceedings
of the Fifteenth ACM Symposium on Operating Systems Principles, SOSP ’95,
pages 251–266, New York, NY, USA, 1995. ACM.

[4] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system
design. ACM Trans. Comput. Syst., 2(4):277–288, November 1984.

[5] Kevin Elphinstone and Gernot Heiser. From l3 to sel4 what have we learnt
in 20 years of l4 microkernels? In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, pages 133–150. ACM, 2013.

[6] J. Liedtke. On micro-kernel construction. In Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles, SOSP ’95, pages 237–250, New
York, NY, USA, 1995. ACM.

[7] Stephen R Walli. The POSIX family of standards. StandardView, 3(1):11–17,
1995.

[8] Redis Labs. Redis. https://redis.io, 2020.

[9] Joseph Izraelevitz, Jian Yang, Lu Zyang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor,
Jishen Zhao, and Steven Swanson. Basic performance measurements of the
Intel Optane DC persistent memory module, 2019.

132

[10] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah, Amit
Borase, Tamires Brito Da Silva, Steven Swanson, and Andy Rudoff. NOVA-
Fortis: A fault-tolerant non-volatile main memory file system. In Proceedings
of the 26th Symposium on Operating Systems Principles, pages 478–496, 2017.

[11] Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz,
Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. System software for per-
sistent memory. In Proceedings of the Ninth European Conference on Computer
Systems, pages 1–15, 2014.

[12] Jeremy Condit, Edmund B Nightingale, Christopher Frost, Engin Ipek, Ben-
jamin Lee, Doug Burger, and Derrick Coetzee. Better I/O through byte-
addressable, persistent memory. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, pages 133–146, 2009.

[13] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, Roy H
Campbell, et al. Consistent and durable data structures for non-volatile byte-
addressable memory. In FAST, volume 11, pages 61–75, 2011.

[14] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong,
and Bingsheng He. NV-tree: Reducing consistency cost for NVM-based single
level systems. In 13th USENIX Conference on File and Storage Technologies
(FAST 15), pages 167–181, 2015.

[15] Shimin Chen and Qin Jin. Persistent B+-trees in non-volatile main memory.
Proc. VLDB Endow., 8(7):786–797, February 2015.

[16] Se Kwon Lee, K Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H Noh.
WORT: Write optimal radix tree for persistent memory storage systems. In
15th USENIX Conference on File and Storage Technologies, pages 257–270,
2017.

[17] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. Hikv: A hybrid index
key-value store for dram-nvm memory systems. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pages 349–362, Santa Clara, CA,
July 2017. USENIX Association.

[18] Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsidas. Reaping the per-
formance of fast NVM storage with uDepot. In 17th USENIX Conference on
File and Storage Technologies (FAST 19), pages 1–15, 2019.

[19] Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B. Morrey III,
Dhruva R. Chakrabarti, and Michael L. Scott. Daĺı: A Periodically Per-
sistent Hash Map. In Andréa W. Richa, editor, 31st International Symposium
on Distributed Computing (DISC 2017), volume 91 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 37:1–37:16, Dagstuhl, Germany,
2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

133

[20] Pengfei Zuo, Yu Hua, and Jie Wu. Write-optimized and high-performance
hashing index scheme for persistent memory. In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), pages 461–476,
2018.

[21] Wook-Hee Kim, Jinwoong Kim, Woongki Baek, Beomseok Nam, and Youjip
Won. NVWAL: Exploiting NVRAM in write-ahead logging. ACM SIGOPS
Operating Systems Review, 50(2):385–398, 2016.

[22] Seunghee Shin, Satish Kumar Tirukkovalluri, James Tuck, and Yan Solihin.
Proteus: A flexible and fast software supported hardware logging approach
for NVM. In Proceedings of the 50th Annual IEEE/ACM International Sym-
posium on Microarchitecture, pages 178–190, 2017.

[23] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei Wu,
Weimin Zheng, and Jinglei Ren. DudeTM: Building durable transactions with
decoupling for persistent memory. In ACM SIGARCH Computer Architecture
News, volume 45, pages 329–343. ACM, 2017.

[24] Amirsaman Memaripour, Anirudh Badam, Amar Phanishayee, Yanqi Zhou,
Ramnatthan Alagappan, Karin Strauss, and Steven Swanson. Atomic in-
place updates for non-volatile main memories with kamino-tx. In Proceedings
of the Twelfth European Conference on Computer Systems, EuroSys ’17, page
499–512, New York, NY, USA, 2017. Association for Computing Machinery.

[25] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M Chen, and Thomas F
Wenisch. High-performance transactions for persistent memories. In Proceed-
ings of the Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 399–411, 2016.

[26] Intel Corporation. Persistent memory programming. https://pmem.io/pmdk,
2020. Accessed 25-May-2020.

[27] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M Grupp, Rajesh K
Gupta, Ranjit Jhala, and Steven Swanson. NV-heaps: making persistent
objects fast and safe with next-generation, non-volatile memories. ACM
SIGARCH Computer Architecture News, 39(1):105–118, 2011.

[28] Yuanjiang Ni, Jishen Zhao, Daniel Bittman, and Ethan Miller. Reducing
NVM writes with optimized shadow paging. In 10th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage 18), 2018.

[29] Dhruva R Chakrabarti, Hans-J Boehm, and Kumud Bhandari. Atlas: Lever-
aging locks for non-volatile memory consistency. ACM SIGPLAN Notices,
49(10):433–452, 2014.

[30] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L Scott, Sam H Noh,
and Changhee Jung. iDO: Compiler-directed failure atomicity for nonvolatile

134

https://pmem.io/pmdk

memory. In 2018 51st Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 258–270. IEEE, 2018.

[31] Haris Volos, Andres Jaan Tack, and Michael M Swift. Mnemosyne:
Lightweight persistent memory. ACM SIGARCH Computer Architecture
News, 39(1):91–104, 2011.

[32] Amirsaman Memaripour, Joseph Izraelevitz, and Steven Swanson. Pronto:
Easy and fast persistence for volatile data structures. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’20, page 789–806, New
York, NY, USA, 2020. Association for Computing Machinery.

[33] Qingda Hu, Jinglei Ren, Anirudh Badam, Jiwu Shu, and Thomas Moscibroda.
Log-structured non-volatile main memory. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pages 703–717, 2017.

[34] Andreia Correia, Pascal Felber, and Pedro Ramalhete. Persistent memory and
the rise of universal constructions. In Proceedings of the Fifteenth European
Conference on Computer Systems, EuroSys ’20, New York, NY, USA, 2020.
Association for Computing Machinery.

[35] CERT Vulnerability Note VU#720951: OpenSSL TLS heartbeat extension
read overflow discloses sensitive information. http://www.kb.cert.org/

vuls/id/720951.

[36] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. Wedge: Split-
ting applications into reduced-privilege compartments. In Proceedings of the
5th USENIX Symposium on Networked Systems Design and Implementation,
NSDI’08, pages 309–322, Berkeley, CA, USA, 2008. USENIX Association.

[37] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang Sun, and Long Lu.
Shreds: Fine-grained execution units with private memory. 2016 IEEE Sym-
posium on Security and Privacy, SP 2016, San Jose, CA, USA, May 23-25,
2015, pages 20–37, 2016.

[38] Izzat El Hajj, Alexander Merritt, Gerd Zellweger, Dejan Milojicic, Reto
Achermann, Paolo Faraboschi, Wen-mei Hwu, Timothy Roscoe, and Karsten
Schwan. SpaceJMP: programming with multiple virtual address spaces. In
Proceedings of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’16,
pages 353–368, New York, NY, USA, 2016. ACM.

[39] Andrea Mambretti, Kaan Onarlioglu, Collin Mulliner, William Robertson,
Engin Kirda, Federico Maggi, and Stefano Zanero. Trellis: Privilege separa-
tion for multi-user applications made easy. In International Symposium on
Research in Attacks, Intrusions, and Defenses, pages 437–456. Springer, 2016.

135

http://www.kb.cert.org/vuls/id/720951
http://www.kb.cert.org/vuls/id/720951

[40] Bryan Ford and Jay Lepreau. Evolving Mach 3.0 to a migrating thread
model. In Proceedings of the USENIX Winter 1994 Technical Conference on
USENIX Winter 1994 Technical Conference, WTEC’94, Berkeley, CA, USA,
1994. USENIX Association.

[41] A. Lindstrom, J. Rosenberg, and A. Dearle. The grand unified theory of
address spaces. In Proceedings of the Fifth Workshop on Hot Topics in Op-
erating Systems (HotOS-V), HOTOS ’95, Washington, DC, USA, 1995. IEEE
Computer Society.

[42] Gabriel Palmer. The case for thread migration: Predictable IPC in a customiz-
able and reliable OS. In Proceedings of the Workshop on Operating Systems
Platforms for Embedded Real-Time applications (OSPERT ’10), 2010.

[43] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D. La-
zowska. Sharing and protection in a single-address-space operating system.
ACM Trans. Comput. Syst., 12(4):271–307, November 1994.

[44] Germont Heiser, Kevin Elphinstone, Jerry Vochteloo, Stephen Russell, and
Jochen Liedtke. The Mungi single-address-space operating system. Softw.
Pract. Exper., 28(9):901–928, July 1998.

[45] Emmett Witchel, Josh Cates, and Krste Asanović. Mondrian memory protec-
tion. In Proceedings of the 10th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS X, pages
304–316, New York, NY, USA, 2002. ACM.

[46] Emmett Witchel, Junghwan Rhee, and Krste Asanovic. Mondrix: Memory
isolation for Linux using Mondriaan memory protection. In Proceedings of the
20th Symposium on Operating Systems Principles (SOSP ’05), Brighton, UK,
October 2005.

[47] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W. Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert
Norton, and Michael Roe. The CHERI capability model: Revisiting RISC
in an age of risk. In Proceeding of the 41st Annual International Symposium
on Computer Architecuture, ISCA ’14, pages 457–468, Piscataway, NJ, USA,
2014. IEEE Press.

[48] Robert N. M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W.
Moore, Jonathan Anderson, David Chisnall, Nirav H. Dave, Brooks Davis,
Khilan Gudka, Ben Laurie, Steven J. Murdoch, Robert Norton, Michael Roe,
Stacey Son, and Munraj Vadera. CHERI: A hybrid capability-system archi-
tecture for scalable software compartmentalization. In 2015 IEEE Symposium
on Security and Privacy, S&P 2015, San Jose, CA, USA, May 17-21, 2015,
pages 20–37, 2015.

136

[49] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Resource containers: A
new facility for resource management in server systems. In Proceedings of the
Third Symposium on Operating Systems Design and Implementation, OSDI
’99, pages 45–58, Berkeley, CA, USA, 1999. USENIX Association.

[50] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, Frans Kaashoek,
Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yuehua Dai, Yang
Zhang, and Zheng Zhang. Corey: An operating system for many cores. In
8th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2008.

[51] Mark Miller. Robust composition: Towards a unified approach to access control
and concurrency control. PhD thesis, Johns Hopkins University, 2006.

[52] Adrian Mettler, David Wagner, and Tyler Close. Joe-e: A security-oriented
subset of java. In NDSS, volume 10, pages 357–374, 2010.

[53] Google Caja Team. Google-Caja: A source-to-source translator for securing
javascript-based web. http://code.google.com/p/google-caja.

[54] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow
integrity. In Proceedings of the 12th ACM Conference on Computer and Com-
munications Security (CCS), pages 340–353, 2005.

[55] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea,
R. Sekar, and Dawn Song. Code-pointer integrity. In 11th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI), pages 147–
163, 2014.

[56] Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs, Dave Clarke, and
Frank Piessens. Secure compilation to protected module architectures. ACM
Transactions on Programming Languages and Systems, 37(2), April 2015.

[57] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Samm-
ler, Peter Druschel, and Deepak Garg. ERIM: Secure, efficient in-process isola-
tion with protection keys (mpk). In Proceedings of the 28th USENIX Confer-
ence on Security Symposium, SEC’19, page 1221–1238, USA, 2019. USENIX
Association.

[58] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham.
Efficient software-based fault isolation. SIGOPS Oper. Syst. Rev., 27(5):203–
216, December 1993.

[59] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth,
Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullager. Native
Client: A sandbox for portable, untrusted x86 native code. 2009 IEEE Sym-
posium on Security and Privacy, SP 2016, Berkeley, CA, USA, May 17-20,
2009, pages 79–93, 2016.

137

http: //code.google.com/p/google-caja

[60] Michael Litzkow, Todd Tannenbaum, Jim Basney, and Miron Livny. Check-
point and migration of UNIX processes in the Condor distributed process-
ing system. Technical Report UW-CS-TR-1346, University of Wisconsin—
Madison CS Department, April 1997.

[61] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent check-
pointing under Unix. In Usenix Winter Technical Conference, pages 213–223,
January 1995.

[62] William R. Dieter and James E. Lumpp, Jr. User-level checkpointing for
LinuxThreads programs. In Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference, pages 81–92, Berkeley, CA, USA,
2001. USENIX Association.

[63] Hua Zhong and Jason Nieh. CRAK: Linux checkpoint/restart as a kernel
module. Technical Report CUCS-014-01, Columbia University CS Depart-
ment, November 2001.

[64] Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. Efficient system-
enforced deterministic parallelism. In Proceedings of the 9th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI’10, pages
193–206, Berkeley, CA, USA, 2010. USENIX Association.

[65] Intel Corp. Intel 64 and IA-32 Architectures Software Developer’s Manual:
Vol. 3D, June 2016.

[66] Udo Steinberg and Bernhard Kauer. NOVA: A microhypervisor-based secure
virtualization architecture. In Proceedings of the 5th European Conference on
Computer Systems, EuroSys ’10, pages 209–222, 2010.

[67] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières,
and Christos Kozyrakis. Dune: Safe user-level access to privileged CPU fea-
tures. In Presented as part of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12), pages 335–348, Hollywood,
CA, 2012. USENIX.

[68] Christopher A Small and Margo I Seltzer. Vino: An integrated platform for
operating system and database research. 1994.

[69] Brian N Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gün Sirer,
Marc E Fiuczynski, David Becker, Craig Chambers, and Susan Eggers. Exten-
sibility safety and performance in the SPIN operating system. ACM SIGOPS
Operating Systems Review, 29(5):267–283, 1995.

[70] Dhammika Elkaduwe, Philip Derrin, and Kevin Elphinstone. Kernel design
for isolation and assurance of physical memory. In Proceedings of the 1st
Workshop on Isolation and Integration in Embedded Systems, IIES ’08, pages
35–40, 2008.

138

[71] Adrian Schüpbach, Simon Peter, Andrew Baumann, Timothy Roscoe, Paul
Barham, Tim Harris, and Rebecca Isaacs. Embracing diversity in the barrelfish
manycore operating system. In Proceedings of the Workshop on Managed
Many-Core Systems, volume 27, 2008.

[72] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. Eros: A fast
capability system. SIGOPS Oper. Syst. Rev., 33(5):170–185, December 1999.

[73] Norman Hardy. Keykos architecture. SIGOPS Oper. Syst. Rev., 19(4):8–25,
October 1985.

[74] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières.
Making information flow explicit in histar. In Proceedings of the 7th Sym-
posium on Operating Systems Design and Implementation, OSDI ’06, pages
263–278, Berkeley, CA, USA, 2006. USENIX Association.

[75] Butler W Lampson and Howard E Sturgis. Reflections on an operating system
design. Communications of the ACM, 19(5):251–265, 1976.

[76] R. M. Needham and R. D.H. Walker. The cambridge cap computer and its
protection system. In Proceedings of the Sixth ACM Symposium on Operating
Systems Principles, SOSP ’77, pages 1–10, New York, NY, USA, 1977. ACM.

[77] Bryan Ford, Mike Hibler, Jay Lepreau, Patrick Tullmann, Godmar Back, and
Stephen Clawson. Microkernels meet recursive virtual machines. In Proceed-
ings of the Second USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’96, pages 137–151, New York, NY, USA, 1996. ACM.

[78] T. Harris, A. Cristal, O. S. Unsal, E. Ayguade, F. Gagliardi, B. Smith, and
M. Valero. Transactional memory: An overview. IEEE Micro, 27(3):8–29,
2007.

[79] Nir Shavit and Dan Touitou. Software transactional memory. Distributed
Computing, 10(2):99–116, 1997.

[80] P.J. Plauger, Meng Lee, David Musser, and Alexander A. Stepanov. C++
Standard Template Library. Prentice Hall PTR, USA, 1st edition, 2000.

[81] Torvald Riegel. Transactional Memory in GCC. Available at https://gcc.

gnu.org/wiki/TransactionalMemory, 2012.

[82] Doug Lea. A memory allocator. http://gee.cs.oswego.edu/dl/html/

malloc.html, 2020. Accessed 21-April-2020.

[83] Howard Chuh. http://www.lmdb.tech/doc/, 2020. Accessed 27-May-2020.

[84] Intel Corporation. Pmem redis. https://github.com/pmem/pmem-redis, 2020.

139

https://gcc.gnu.org/wiki/TransactionalMemory
https://gcc.gnu.org/wiki/TransactionalMemory
http://gee.cs.oswego.edu/dl/html/malloc.html
http://gee.cs.oswego.edu/dl/html/malloc.html

[85] memcachd. https://github.com/memcached/mc-crusher/blob/

bba6b5cb46603e4c0f04f4aa4ea43ffaa3f7d6c0/test-suites/

test-nvdimm, 2020. Accessed 27-May-2020.

[86] Liang Zhang, Dave Choffnes, Tudor Dumitraş, Dave Levin, Alan Mislove,
Aaron Schulman, and Christo Wilson. Analysis of SSL Certificate Reissues
and Revocations in the Wake of Heartbleed. In ACM Internet Measurement
Conference (IMC), 2014.

[87] Zakir Durumeric, James Kasten, Frank Li, Johanna Amann, Jethro Beekman,
Mathias Payer, Nicolas Weaver, J. Alex Halderman, Vern Paxson, and Michael
Bailey. The matter of Heartbleed. In ACM Internet Measurement Conference
(IMC), 2014.

[88] Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway.
A taste of Capsicum: Practical capabilities for unix. Commununications of
the ACM, 55(3), March 2012.

[89] The PHP Group. FastCGI Process Manager (FPM). http://php.net/

manual/en/install.fpm.php, 2016.

[90] Zend. MVC Skeleton Application. https://framework.zend.com/

downloads/skeleton-app, 2016.

[91] Adam Lackorzynski and Alexander Warg. Taming subsystems: Capabilities as
universal resource access control in l4. In Proceedings of the Second Workshop
on Isolation and Integration in Embedded Systems, IIES ’09, pages 25–30,
2009.

[92] Nicholas P. Carter, Stephen W. Keckler, and William J. Dally. Hardware
support for fast capability-based addressing. In Proceedings of the Sixth In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS VI, pages 319–327, New York, NY, USA,
1994. ACM.

[93] Anil Madhavapeddy and David J Scott. Unikernels: the rise of the virtual
library operating system. Communications of the ACM, 57(1):61–69, 2014.

[94] Andrew S Tanenbaum, Sape J Mullender, and R van Renesse. Using sparse
capabilities in a distributed operating system. 1986.

[95] Mark Anderson, RD Pose, and Chris S. Wallace. A password-capability sys-
tem. The Computer Journal, 29(1):1–8, 1986.

[96] Jerry Vochteloo, Stephen Russell, and Gernot Heiser. Capability-based pro-
tection in the mungi operating system. In Object Orientation in Operating
Systems, 1993., Proceedings of the Third International Workshop on, pages
108–115. IEEE, 1993.

140

https://github.com/memcached/mc-crusher/blob/bba6b5cb46603e4c0f04f4aa4ea43ffaa3f7d6c0/test-suites/test-nvdimm
https://github.com/memcached/mc-crusher/blob/bba6b5cb46603e4c0f04f4aa4ea43ffaa3f7d6c0/test-suites/test-nvdimm
https://github.com/memcached/mc-crusher/blob/bba6b5cb46603e4c0f04f4aa4ea43ffaa3f7d6c0/test-suites/test-nvdimm
http://php.net/manual/en/install.fpm.php
http://php.net/manual/en/install.fpm.php
https://framework.zend.com/downloads/skeleton-app
https://framework.zend.com/downloads/skeleton-app

[97] Gokcen Kestor, Luke Dalessandro, Adrián Cristal, Michael L Scott, and Os-
man Unsal. Interchangeable back ends for stm compilers. In Proceedings of
the 6th ACM SIGPLAN Workshop on Transactional Computing, 2011.

[98] CRIU Project. CRIU: Checkpoint and restore in userspace. https://criu.

org/Main_Page, 2020. Accessed 19-November-2020.

[99] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. Designing new
operating primitives to improve fuzzing performance. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 2313–2328, 2017.

[100] Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway.
Capsicum: practical capabilities for unix. In Proceedings of the 19th USENIX
Security Symposium, 2010.

[101] OpenBSD Foundation. Pledge(2) - OpenBSD manual pages. https://man.

openbsd.org/pledge.2, 2020. Accessed 22-November-2020.

141

https://criu.org/Main_Page
https://criu.org/Main_Page
https://man.openbsd.org/pledge.2
https://man.openbsd.org/pledge.2

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Thesis
	Contributions

	Background and Related Work
	Abstractions for NVRAM
	Decoupling Process Abstractions
	Improving OS Flexibility

	PTx
	Introduction
	PTx design
	Requirements
	PTx colors and operations
	PTx Semantics
	PTx storage
	PTx primitives
	Tracking Write Sets
	Non-atomic NVRAM block writes

	Evaluation of PTx
	Experimental setup
	PTx versus PDMK
	PTx on existing data structures
	Multi-core scalability
	Applications with persistent state
	Persistent key-value store performance

	Conclusion

	Light-weight Contexts
	Introduction
	lwC design
	Creating lwCs
	Switching between lwCs
	Static resource sharing
	Dynamic resource sharing
	Access capabilities
	System call interposition/emulation
	Signal handling
	System call semantics
	lwC isolation
	lwC security

	Common lwC usage patterns
	Evaluation of lwCs
	lwC switch
	lwC creation
	Reference monitoring
	Apache
	Nginx
	Isolating OpenSSL keys
	FCGI fast launch

	Conclusion

	The null-Kernel
	Introduction
	The null-Kernel
	null-Kernel Capabilities
	null-Kernel Structures

	null-Kernel in Practice
	NVRAM and the null-Kernel
	Isolation Abstractions and the null-Kernel
	Conclusion

	Conclusion and Future Work
	Future Work
	Extensions to PTx
	Persistent lwCs
	Implementing a null-Kernel

	Concluding Thoughts

	Bibliography

