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A universally quantified sentence like every frog is green is standardly thought

to express a two-place second-order relation (e.g., the set of frogs is a subset of the

set of green things). This dissertation argues that as a psychological hypothesis

about how speakers mentally represent universal quantifiers, this view is wrong in

two respects. First, each, every, and all are not represented as two-place relations,

but as one-place descriptions of how a predicate applies to a restricted domain (e.g.,

relative to the frogs, everything is green). Second, while every and all are represented

in a second-order way that implicates a group, each is represented in a completely

first-order way that does not involve grouping the satisfiers of a predicate together

(e.g., relative to individual frogs, each one is green).

These “psycho-logical” distinctions have consequences for how participants

evaluate sentences like every circle is green in controlled settings. In particular,

participants represent the extension of the determiner’s internal argument (the cir-



cles), but not the extension of its external argument (the green things). Moreover,

the cognitive system they use to represent the internal argument differs depend-

ing on the determiner: Given every or all, participants show signatures of forming

ensemble representations, but given each, they represent individual object-files.

In addition to psychosemantic evidence, the proposed representations provide

explanations for at least two semantic phenomena. The first is the “conservativity”

universal: All determiners allow for duplicating their first argument in their second

argument without a change in informational significance (e.g., every fish swims has

the same truth-conditions as every fish is a fish that swims). This is a puzzling gen-

eralization if determiners express two-place relations, but it is a logical consequence

if they are devices for forming one-place restricted quantifiers.

The second is that every, but not each, naturally invites certain kinds of generic

interpretations (e.g., gravity acts on every/#each object). This asymmetry can po-

tentially be explained by details of the interfacing cognitive systems (ensemble and

object-file representations). And given that the difference leads to lower-level con-

comitants in child-ambient speech (as revealed by a corpus investigation), children

may be able to leverage it to acquire every ’s second-order meaning.

This case study on the universal quantifiers suggests that knowing the meaning

of a word like every consists not just in understanding the informational contribu-

tion that it makes, but in representing that contribution in a particular format.

And much like phonological representations provide instructions to the motor plan-

ning system, it supports the idea that meaning representations provide (sometimes

surprisingly precise) instructions to conceptual systems.
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Chapter 1: Introduction

This dissertation is about the representations that serve as the meanings of

universal quantifiers, given a mentalistic view of meaning. In particular, the goal is

to discriminate between representations that have the same truth-conditions. There

are many plausible truth-conditionally equivalent specifications of a determiner like

every. We might imagine that a sentence like every frog is green serves as an in-

struction to create the thought the frogs are among the green things, or the thought

the frogs are such that they are green, or the thought any thing that’s a frog is such

that it is green. The focus in this dissertation will be on two “psycho-logical” dis-

tinctions that can be drawn between the possible specifications alluded to above:

relational versus restricted quantification and first-order versus second-order quan-

tification. The main question will be this: Which specifications most accurately

describe speakers’ mental representations?

Posing this question assumes a mentalistic conception of linguistic meaning.

In contrast, a popular tradition in semantics treats expressions as names for things

in speakers’ environments (e.g., Frege 1892; Davidson 1967b; Montague 1973; Lewis

1975; Heim and Kratzer 1998). On this view, a common noun like frog might be

thought of as the name for a set (i.e., the set of frogs). Likewise, a quantificational

1



determiner like every might be thought of as the name for a relation between two

sets (e.g., the set of frogs and the set of green things, in a sentence like (1a)).

Theorists might choose to specify the relation expressed by every in any number of

ways, including those in (1b) - (1e).

(1) a. Every frog is green

b. ∀x(frog(x))[green(x)]

≈ each thing that is a frog is green

c. ¬∃x(frog(x))[¬green(x)]

≈ no thing that is a frog is not green

d. {x : frog(x)} ⊆ {x : green(x)}

≈ the set of frogs is a subset of the set of green things

e. {x : frog(x)} = {x : frog(x) & green(x)}

≈ the set of frogs is identical to the set of green frogs

These specifications are all logically equivalent, so they all do an equally fine

job of capturing the truth-conditions of (1a). In that sense, each one of them can be

thought of as a notational variant of the others, no different than writing the fancy

EVERY FROG IS GREEN instead of the italicized every frog is green.

But while these specifications may be equivalent for purposes of describing

truth-conditions, they are not equivalent as descriptions of how competent speakers

understand a sentence like (1a). That is, (1b) - (1e) can be taken to represent dis-

tinct psychological hypotheses about how speakers mentally represent the sentence

2



in question. For example, (1b) could be represented by a mind incapable of rep-

resenting negation; (1c) could not. Likewise, (1d) could be represented by a mind

without the identity relation; (1e) could not. On the standard view, these differences

in representational format are disregarded. The formalisms deployed by theorists

are not meant to be related to the mental vocabulary that humans use to represent

semantic properties of linguistic expressions (Dowty, 1979).

This is not, by itself, a criticism. Abstracting away from psychological con-

siderations can be useful for certain purposes (e.g., exploring the compositional

properties of meanings). But to the extent that natural language is a product of

human minds and linguistics is a part of cognitive science, understanding the mental

representations that serve as meanings in speakers’ minds is a worthwhile project in

its own right. This dissertation is an investigation into one corner of that project:

the mental representation of the universal quantifiers each, every, and all.

The starting point will be a “psychologized” version of the standard view

in semantics – Generalized Quantifier Theory – which holds that quantificational

determiners are understood as two-place second-order relations (e.g., the frogs are

among the green things). This dissertation argues that this view is wrong in two

respects. First, universal quantifiers are not relational: Every and all are mentally

represented as devices for creating one-place restricted quantifiers that are second-

order (e.g., the frogs are such that they are green). And second, not all determiners

are second-order: Each is mentally represented as a device for creating a one-place

restricted quantifier that is first-order (e.g., any individual that’s a frog is such that

it is green). These proposed representations receive empirical support from psy-

3



cholinguistic experiments, offer explanations for linguistic phenomena, and suggest

a novel path forward for studying language acquisition.

Zooming out, this investigation into the mental representation of universal

quantifiers informs larger questions concerning the relationship between linguistic

meanings and non-linguistic cognition. Meanings can be situated in mental grammar

as the things that syntax connects with pronunciations (Chomsky, 1964). Pronun-

ciations can be thought of as instructions to motor planning systems (Halle, 2003;

Liberman and Mattingly, 1985; Poeppel et al., 2008). For example, the phonemic

representation of every frog is green can be understood to be a collection of details

about how to position the lips and tongue and how to regulate airflow. Meanings,

on analogy, can be thought of as instructions to cognitive systems (Pietroski, 2018).

For example, the semantic representation of every frog is green can be understood

to be a collection of details about how to assemble a thought by combining certain

concepts in a particular way.

Given this unabashedly mentalistic picture, we can ask questions like: What

sorts of instructions do meanings provide to cognition? At what grain-size are these

instructions shared by competent speakers? To what extent do the instructions

supplied by the meaning constrain the contours of the resulting thought? This

dissertation supports the idea that, at least in the context of “logical” vocabulary

like quantificational determiners, meanings can offer surprisingly precise constraints

on thought-building. And in doing so, it supplies grist for the mill of the mentalistic

project.

4



1.1 Semantic claims as psychological hypotheses

As noted above, semantic claims often abstract away from details concerning

mental representation. In particular, formal semantic theories focus on capturing the

truth-conditional content of expressions (in a compositional way) and rarely make

claims about the format in which that content is represented. For example, consider

a common noun like frog. On standard treatments (e.g., Frege 1892; Davidson 1967b;

Montague 1973; Lewis 1975; Heim and Kratzer 1998), frog is taken to express a

function from entities to truth values, returning true if the entity is a frog and

false otherwise. The extension of that function is the set of input/output pairs

in (2a). Or, restricting our attention to just the cases where the function outputs

true, we can say that its extension is the set of frogs in (2b).

(2) a. {..., 〈Kermit,true〉, 〈Mr.Toad,true〉, 〈Gritty1, false〉, ...}

b. {..., Kermit, Mr.Toad, ...}

This claim – that frog expresses a function that has (2b) as its extension –

says nothing about how the extension is determined. It says nothing about what

makes an entity count or fail to count as a frog. And in principle, there might be

various different ways of stating the necessary and sufficient conditions.

This point is perhaps easier to see with a mathematical example. Consider the

functions in (3a) and (3b). For any value of x, both functions will yield the same

output, the set of ordered pairs in (3c).

1Gritty is an orange creature (see tylerknowlton.com/images/gritty.jpg)
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(3) a. F (x) = sin(x)

b. F (x) = 1
2
ie(−ix) − 1

2
ie(ix)

c. {..., 〈π, 0〉, 〈π
2
, 1〉, 〈0, 0〉, ...}

As Church (1941) put it, (3a) and (3b) name identical functions in extension, but

they name different functions in intension. That is, while the outputs are identical,

the procedure for getting from input to output differs.

Chomsky (1986) discussed this same distinction in the context of shifting the

focus away from studying E(xternal)-language – the target of inquiry in structuralist

linguistics and behaviorist psychology – and toward studying I(interal)-language

(Pietroski, 2017). Whereas E-language refers to the set of sentences produced by

a grammar, I-language refers to the system for producing them. As Chomsky and

others stressed, the child’s task in acquiring a grammar is not one of memorizing

an infinite list of sentences or a set of speech behaviors, but one of internalizing

a system for producing all and only the possible sentences of that language (see

Lidz and Perkins (2018) and Lidz (2020) for helpful primers on language acquisition

research explicitly situated in this framework).

In this context, imagine a child acquiring the meaning of and. Suppose they

have a mind with two primitive concepts: conjunction (&) and “norjunction” (↓).

These operations give rise to the truth table in Table 1.1 (P & Q can be glossed P

and Q ; P ↓ Q can be glossed neither P nor Q). As the table makes clear, P & Q

and (P ↓ P ) ↓ (Q ↓ Q) are extensionally equivalent.

Given that our hypothetical learner has a primitive concept of conjunction and
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P Q P&Q P↓Q P↓P Q↓Q (P↓P)↓(Q↓Q)
1 1 1 0 0 0 1
1 0 0 0 0 1 0
0 1 0 0 1 0 0
0 0 0 1 1 1 0

Table 1.1: Truth table for conjunction and norjunction

a primitive concept of norjunction, we could ask which concept they pair with the

pronunciation of and. Do they learn that P and Q is an instruction to conjoin P

and Q or that it is an instruction to norjoin P with itself, norjoin Q with itself, and

norjoin the result? On its face, the answer seems obvious: Surely (4a) is a better

description of the meaning of and than (4b).

(4) a. P & Q

b. (P ↓ P ) ↓ (Q ↓ Q)

But these only correspond to distinct hypotheses if we focus on the function in in-

tension. Otherwise, (4a) and (4b) are just two different names for the same function

and the choice between them is merely a notational one.

This state of affairs represents one version of a problem raised by Foster

(1976): There are many distinct but equally true theorems that capture a given

truth-condition, not all of which are equally plausible meaning specifications. If the

expression P and Q is true if and only if (4a), then it’s true iff (4b), and it’s

likewise true iff P & Q & 2 + 2 = 4. But, as Larson and Segal (1995) put it, “is

true iff” and “means that” are two different relations. It certainly seems wrong to

say that the expression P and Q means that P & Q & 2 + 2 = 4.
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To take another example, consider two ways of specifying the meaning of the

sentence in (5a):

(5) a. Four frogs are green

b. |{x : Green(x) & Frog(x)}| = 4

c. ∃w∃x∃y∃z : Frog(w) & Frog(x) & Frog(y) & Frog(z) &

Green(w) & Green(x) & Green(y) & Green(z) &

(w 6= x) & (w 6= y) & (w 6= z) & (x 6= y) & (x 6= z) & (y 6= z) &

∀v : (Frog(v) & Green(v))[(w = v) ∨ (x = v) ∨ (y = v) ∨ (z = v)]

The more familiar (5b) reports the cardinality of the set of green frogs. The more

cumbersome (5c) encodes the same content in a completely first-order way, by saying

that there are four distinct individuals – w, x, y, and z – each of which is a frog, is

green, and is not identical to any of the others; and that those four are the only

individuals that meet these criteria (any v that’s a green frog is either w, x, y, or z).

Abstracting away from the contributions of frog and green, we might say that

four expresses a function that, given an internal predicate I (the first one it combines

with, syntactically) and an external predicate E (the second one it combines with,

syntactically), outputs true just in case there are four things in the relevant domain

that satisfy both predicates. We could then choose to specify that function as (6a)

or (6b).

(6) JfourK =

a. λI.λE.|{x : I(x) & E(x)}| = 4
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b. λI.λE.∃w∃x∃y∃z : I(w) & I(x) & I(y) & I(z) &

E(w) & E(x) & E(y) & E(z) &

(w 6= x) & (w 6= y) & (w 6= z) & (x 6= y) & (x 6= z) & (y 6= z) &

∀v : (I(v) & E(v))[(w = v) ∨ (x = v) ∨ (y = v) ∨ (z = v)]

Both are extensionally equivalent: Given some domain, some I predicate, and some

E predicate, both (6a) and (6b) will yield the same output.

But what does knowing the meaning of the lexical item four consist in? We

could imagine many possible answers. It might be that what a speaker knows

when they know the meaning of four is just the truth-conditional contribution it

makes to a sentence. On this view, whether a particular speaker mentally represents

(6a) or (6b) might be subject to random variation or to variation depending on

the context. Maybe when a speaker learns the meaning of four, they learn to

associate the pronunciation with an equivalence class of functions, all of which have

identical extensions. This would make either choice – (6a) or (6b) – an equally good

theoretical description of how speakers understand four.

Another possibility is that speakers’ representations of four share more in

common than expressing the same truth-conditional content. It’s not implausible to

think that (6b) is far too cumbersome for humans to lexicalize. Maybe then, every

competent English speaker has a concept like (6a) connected with the pronunciation

of four and it is only after taking a logic class that we come to recognize something

like (6b) as extensionally equivalent. At the same time, we could imagine a mind

without any concept of cardinality. Such a mind would be unable to represent (6a),
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but could still represent (6b). Speakers with both minds could learn a word that we

might translate as four and they would never disagree in conversation about, say,

whether there were four green frogs. If either one of these possibilities turned out

to be true, (6b) and (6a) would not be equally good theoretical descriptions of how

a certain mind understands four.

The above example illustrates the relevant sense in which formal semantic

claims about lexical meanings can be treated as psychological hypotheses. Namely,

instead of treating a lambda expression like (6a) as a theorist’s choice about how

to write down a specification of some function in extension, we can treat it as a

representation of a particular function in intension, which might share an extension

with any number of other functions. Then we can ask whether one of these “psycho-

logical forms” is a better description of the expression as represented in the minds

of speakers. And we can say that a formula is a better description than alternatives

to the extent that it explicitly encodes the operations that are necessarily mentally

represented by speakers in the course of mentally representing the expression.

This leaves open the possibility that the right “psycho-logical form” of some

grammatically atomic expression might itself be atomic (Fodor, 1998). It might

be, for example, that there is a primitive concept four – which has no internal

structure – that serves as the meaning of the expression four. But, in the more

interesting cases, proposals about representational format will involve some amount

of semantic decomposition. That is, they will involve claims of a grammatically

atomic expression being represented in terms of multiple (inaudible) parts (e.g., (6a)

involves notions of cardinality and equality; (6b) involves existential quantification,
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conjunction, non-identity, universal quantification, and identity).

Williams (2015) helpfully distinguishes three flavors of semantic decomposi-

tion. The weakest decompositional claim is metasemantic: The formula is merely a

way for a theorist to regiment a meaning. As discussed above, this is how the differ-

ences between extensionally equivalent specifications, like (6b) and (6a), are usually

understood. Choosing one over the other may make it easier for the theorist to state

a generalization, but the choice is a notational one and it does not correspond to

any sort of psychological hypothesis.

A stronger decompositional claim is a representational one: The meaning of

the expression itself does not decompose, but representing it does routinely trigger

representation of other concepts. For example, imagine that the meaning of frog is

just (an instruction to access) the atomic concept frog but that every time you

token the concept frog, you also token the concept animal. Then we might claim

that while the meaning of frog itself does not have any internal structure, there is

still some sense in which the lexical item frog has animal as a constituent part.

A stronger claim still is one of strict semantic decomposition: The meaning

is made up of smaller parts that are not themselves expressed. For example, imag-

ine that not only does frog routinely cause animal to be tokened, but that the

meaning of the expression genuinely is built, in part, from the animal concept.

The claim here is that representing the expression frog necessarily requires, among

other things, tokening the concept animal. It would not be possible, given strict

semantic decomposition, to understand the meaning of frog without having the an-

imal concept. This last flavor, strict decomposition, is the relevant one for thinking
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about an expression’s representational format. But it is also the hardest to support

empirically (by a large margin), as discussed below.

Before getting to possible sources of evidence though, it is important to note

that questions about representational format along these lines can be posed inde-

pendent of questions about how meanings compose. The compositional semantics

is unchanged between, for example, (6a) and (6b). So we can still say, in keeping

with standard semantic theory, that four has a meaning that combines with the

meanings of two predicates (I and E), both of which are supplied by function ap-

plication. What changes between (6a) and (6b) is what comes after the lambda

expressions. As Wellwood (2020) puts it, we can think of these representations

as tracking “morphosyntactic structure on the left” of the lambdas and tracking

“conceptual structure on the right” (p.8).

Since this dissertation will have nothing to say about the compositional seman-

tics of universal quantifiers, we can remain agnostic about whether having lambdas

“on the left” is the right way to track morphosyntactic structure. It is certainly

not the only possibility.2 Instead, the focus of this dissertation will only be what

happens “on the right side” of lambda expressions. So when lambdas appear in pro-

posed representations, they are not intended to be read as part of the psychological

claim (though what comes after “λI.λE.” is intended to be read as a claim about

the meaning’s representational format).

2 Alternatively, we might adopt a view that dispenses with truth-values and avoids treat-
ing predicates as relations; see Chapter 7 of Pietroski (2018). And instead of a categorematic
specification for each like λI.λE.∀x(Ix)[Ex], we might propose a syncategorematic rule for how
truth-conditions of sentence frames like [S [D each [N ...]]i [S ...ti..]] are specified; see section 2.1 of
Chapter 2. The same questions about representational format arise regardless.
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1.2 Probing representational format linguistically

Claims that expressions have parts that are silent but meaningful are not un-

common in semantics (see Engelberg (2011) for a helpful review). They have been

popular in work on causative verbs (e.g., Lakoff 1966; Fillmore 1968; Rappaport Ho-

vav and Levin 1998; Pietroski 2003b; Levin and Rappaport Hovav 2005; though see

Fodor 1970), event semantics (e.g., Davidson 1967a; Parsons 1989; Kratzer 1996;

Pietroski 2005), and quantification (e.g., Geurts and Nouwen 2007; Hackl 2009;

Pietroski et al. 2009; Lidz et al. 2011), to name a few places.

Some proposals resolve semantic decomposition syntactically. That is, they

treat what appears on the right side of lambda expressions as atomic, but decompose

the “word” in question into smaller units of syntactic composition. For example,

Zeijlstra (2011) argues that the German negative quantifier keine decomposes into a

negative operator and an indefinite, which are syntactically separable. In particular,

a modal can scope between the negative operator and the indefinite, suggesting that

keine is semantically and syntactically complex.3

But syntactic arguments of this sort cannot be made to support strict semantic

decomposition of some (syntactically atomic) lexical item. Providing evidence for

this sort of decomposition – evidence that an expression with no syntactic parts

nonetheless has a meaning with structure – has proven notoriously difficult. The

main reason is that most of the non-syntactic generalizations can be captured by

3 The relevant examples are sentences like du must keine Krawatte anziehen ≈ “you must wear
no tie”, which can give rise to the “split-scope” reading: It is not required that you wear a tie
(¬ > 2 > ∃).
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appealing to the weaker notion of representational decomposition. To borrow an

example from Williams (2015), since ewes are female sheep, anything that falls

under the concept ewe also falls under the concept female. Accordingly, the

inference from (7a) to (7b) is compelling.

(7) a. Eunice is a ewe

b. Eunice is female

We might describe this by saying the truth of (7b) is entailed by the truth of (7a).

This observation makes it tempting to suppose that ewe has as its meaning a struc-

tured representation made up of the concepts female and sheep (perhaps among

other things). This would put the inference from (7a) to (7b) on par with the

inference from (8a) to (8b), which holds in virtue of the logical structure alone.

(8) a. Eugene is a white sheep

b. Eugene is a sheep

But the claim that the lexical item ewe is in part composed of the concept fe-

male would not be justified, since the inference from (7a) to (7b) might reflect what

we know about ewes without reflecting the meaning of ewe. As Fodor and Lepore

(1998) put it, echoing Quine, “What distinguishes linguistic knowledge from world

knowledge? What distinguishes lexical entailment from mere necessity?” (p.274).

These same questions can be asked about any case of proposed lexical de-

composition, at least for common nouns. Bachelors are necessarily unmarried, but

does the lexical item bachelor have the concept unmarried as a constituent? Not
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necessarily. Especially if the null hypothesis is that meanings are atomic (i.e., un-

structured), what seem like analytic inferences (Kermit is a bachelor → Kermit

is unmarried) might be accommodated by appealing to strongly associated world

knowledge instead of lexical decomposition (Fodor et al., 1975). It might be that

people know that bachelors are unmarried, independently of being able to under-

stand the lexical item.

This argument – call it “Fodor’s challenge” – urges caution when probing

representational format linguistically. For any proposed semantic decomposition

(of a syntactically atomic lexical item), retreating to world knowledge is always

a logical possibility. But as the examples in sections 1.2.1 and 1.2.2 will illustrate,

there may be some inferential patterns that are more compelling than ewe → female

and bachelor → unmarried.

1.2.1 Action sentences and compelling inferences

Action sentences potentially provide one such example of compelling infer-

ences. Davidson (1967a) was concerned with the patterns of inferences that can be

made between related sentences, like those in (9).

(9) a. Kermit watched baseball with Gritty in Philly

b. Kermit watched baseball with Gritty

c. Kermit watched baseball in Philly

d. Kermit watched baseball
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In particular, these sentences give rise to what later came to be known as the

diamond pattern of inferences in (10).

(10)

(9b)

(9b) & (9c)(9a)

(9c)

(9d)

From (9c), for example, it follows that (9d): If Kermit watched baseball in Philly,

then Kermit watched baseball.

Davidson pointed out that treating sentence like those in (9) as distinct two-

place relations, like those in (11), fails to explain the generalization about inferences

stated in (10).

(11) a. Watched-with-Gritty-in-Philly(Kermit, baseball)

b. Watched-with-Gritty(Kermit, baseball)

c. Watched-in-Philly(Kermit, baseball)

d. Watched(Kermit, baseball)

Why should the relation in (11a), for example, bear any particular relationship to,

say, the relation in (11d)? And do we really understand the sentences in (9) as

distinct relations?

Instead, he proposed treating (9a) more like (12), where watched expresses

a three-place relation between an event e, the watcher (Kermit), and the thing

watched (baseball). The adverbial modifiers – with Gritty and in Philly – are treated

as separate conjuncts.
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(12) ∃e[Watched(e, Kermit, baseball) & withGritty(e) & inPhilly(e)]

≈ There was a watching of baseball by Kermit and it was with Gritty and it

was in Philly

Given this sort of three-place relation, getting from (9a) to the other sentences in

(9) is just a matter of eliminating conjuncts. This explains the generalization in

(10) as a matter of logical syntax, much like white sheep → sheep.

Fodor’s challenge looms large. As it was with common nouns, it might be that

watch has as its meaning an unstructured representation watch and that we know,

independent of language, that watchings with someone are watchings. But unlike

the situation with common nouns, the network of inferences in (10) do not appear to

be specific to world knowledge (compare them to Kermit watched baseball → A frog

watched baseball, which relies on knowing that Kermit is a frog). As Pietroski (2005)

puts it, conditionals like Kermit sang if Kermit sang loudly “seem to be risk-free in

a way that other conditionals are not” (p.15). These inferences remain compelling

even if the particular lexical items are changed. And it is hard to imagine a speaker

knowing the meaning of watch without knowing that the pattern in (10) holds.4

That makes the inference from (9a) to (9b), (9c), or (9d) feel more like the inference

from white sheep to sheep, which even Fodor agrees is compelling in virtue of logical

structure alone.

Since Davidson (1967a), there have been many advances in event semantics

4 In fact, the inferences remain compelling even if one does not know the meaning of watch.
For example, if watch were replaced with a nonce word, the inference from Kermit gleebed baseball
in Philly to Kermit gleebed baseball seems on a par with the inference from Kermit is a green florp
to Kermit is a florp.
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(e.g., Parsons 1989; Kratzer 1996; Landman 2000; Pietroski 2005; Schein 2012;

Williams 2021). For example, instead of treating watch as a three-place predicate,

as in (12), at least agent, and sometimes also patient, are severed from the event

predicate, yielding representations more like (13) (see section 1.4.2).

(13) Kermit watched baseball

∃e[Watched(e) & agent(e,Kermit) & patient(e, baseball)]

And, to be sure, this structure might not reflect decomposition of the verb itself. It

might not be that watch decomposes into something with agent as a constituent;

agent might instead reflect the contribution of a covert syntactic operator (e.g.,

Kratzer 1996). Davidson’s own position was that the structure in (12) is syntacti-

cally derived (because each conjunct is syntactically separate from the rest of the

clause).

Regardless of the specifics, the point here is just that a retreat to strongly asso-

ciated world knowledge, though logically possible, threatens to miss a generalization

about inferences that speakers find compelling. So these sorts of generalizations can

offer initial – though far from dispositive – evidence for a particular representational

format.

It is worth noting that Davidson himself did not go so far, as he was not con-

cerned with the psychology of speakers. His aim was to show that, as a theorist,

truth-conditions of action sentences can be stated in a way that makes entailments

follow for principled reasons. The proposed decomposition was therefore intended

to be metasemantic: It was meant as a way for the theorist to state generalizations,
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not as a claim about speakers’ mental representations. Whether this was the right

approach is related to whether the facts in question are better thought of as general-

izations about what sorts of sentences preserve truth in a model or as generalizations

about what sorts of inferences speakers naturally find compelling (see e.g., Chapter

5 of Pietroski (2018) for discussion).

1.2.2 Complex superlative quantifiers and inference interference

Geurts and Nouwen (2007) provide another example of using linguistic evi-

dence to argue for one particular representational format over another.5 And unlike

the case of transitive verbs considered above, the proposed decomposition here is

not syntactically resolved. Geurts and Nouwen’s main concern is the meanings of

composite superlative quantifiers like at least n or at most n and composite compar-

ative quantifiers like more than n or fewer than n. We might be tempted to specify

these complex quantifiers in terms of notions like greater-than and less-than

(as Keenan and Stavi (1986) and others since them have). For example, consider

the representations in (14),6 which only differ in whether they use the symbol “≥”,

“>”, “≤”, or “<”.

5 They never explicitly state that the target of inquiry is representational format, but Geurts
et al. (2010) summarize their view by saying: “Contrary to the standard model, G&N’s analysis
predicts that the logic of quantifiers like at least/most 3 is different from that of quantifiers like
more/fewer than 3 ” (p.131). We might understand “logic” here to mean natural logic or “psycho-
logic”. They later go on to say that “The principal tenet of G&N’s theory is that the meanings
of quantifiers are not homogeneous: even if they appear to be closely related, the meanings of
superlative quantifiers are essentially richer than those of their comparative counterparts, and not
expressible in basic set theory” [i.e., as instances of generalized quantifiers] (p.147).

6 In (14), the second-order variable X can either be thought of as ranging over plural entities,
like sets, or as ranging over individuals and taking on more than one value at a time; see Chapter
3 for discussion of the distinction. In any case, the second-order X is meant to be contrasted with
the first-order x, which can be thought of as ranging over individuals and as taking on only a single
value at a time.
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(14) a. At least n frogs are green

∃X[Frog(X) & Green(X) & |X| ≥ n]

≈ There exist some thingsX s.t. theyX are frogs and theyX are green

and theyX number n or more

b. More than n frogs are green

∃X[Frog(X) & Green(X) & |X| > n]

≈ ...and theyX number more than n

c. At most n frogs are green

∃X[Frog(X) & Green(X) & |X| ≤ n]

≈ ...and theyX number n or fewer

d. Fewer than n frogs are green

∃X[Frog(X) & Green(X) & |X| < n]

≈ ...and theyX number fewer than n

Psychologically speaking, we might suspect that these symbols correspond to prim-

itive concepts like greater-than and less-than.

In any case, given the representations in (14), we can see why relationships

hold between the two sentences in (15a) and the two sentences in (15b).

(15) a. At least 3 frogs are green ↔ More than 2 frogs are green

|X| ≥ 3↔ |X| > 2

b. At most 2 frogs are green ↔ Fewer than 3 frogs are green

|X| ≤ 2↔ |X| < 3
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But Geurts and Nouwen point out that superlative and comparative quantifiers do

not pattern together with respect to all patterns of inference.

For example, from (16) it follows that (17a), but it seems less obvious that

(17b) follows.

(16) Kermit ate exactly three hot dogs

(17) a. Kermit ate more than two hot dogs

b. Kermit ate at least three hot dogs

Judgments here are subtle, but Geurts et al. (2010) support them with experimental

semantics evidence. Their data suggest that, at least, the inference (16) → (17a)

and (16) → (17b) are not on a par. What seems to be at issue in the latter case is

that (17b) more strongly suggests the possibility that Kermit had more than three

hot dogs, which we know to be false from (16). This possibility is consistent with

(17a) as well – both (17b) and (17a) entail that it’s possible that Kermit ate four

hot dogs – but more than two doesn’t seem highlight this possibility in the same

way. As a consequence, the inference (16)→ (17b) is not as compelling as we might

expect it to be.

The issue cannot just be that three is mentioned in (17b) but not (17a), because

the same effect arises in (18a) and (18b), neither of which mention the actual number

of hog dogs Kermit ate.

(18) a. Kermit ate fewer than five hot dogs

b. Kermit ate at most four hot dogs
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In particular, from (16) it clearly follows that (18a), but it less clearly follows that

(18b). Again, both (18a) and (18b) entail the possibility that Kermit ate four

hot dogs, but somehow, (18b) foregrounds this possibility more strongly. And by

foregrounding this possibility, the inference from (16) to (18b) is impeded.

To account for this pattern of inferences (along with some additional data

not yet discussed), Geurts and Nouwen propose doing away with “≤” and “<”

altogether and, instead of treating “≥” as an atomic symbol, separating it into

“>” and “=”. They then propose introducing “= n” and “> n” in two separate

conjuncts. Importantly, each conjunct is said to have a different epistemic modal

status. For at least, the “= n” conjunct must necessarily hold, whereas the “> n”

conjunct is possible, but not necessary. For at most, the “= n” is possible, but not

necessary, whereas the “> n” conjunct is not possible.

So instead of the specifications in (14), this yields specifications more like (19),

where the complex superlative quantifiers at least n and at most n are treated as

modal expressions with two separate conjuncts and (less importantly) neither at

most n nor fewer than n are specified in terms of a less-than concept, like “<”.

(19) a. At least n frogs are green

2∃X[Frog(X) & Green(X) & |X| = n] &

3∃Y [Frog(Y ) & Green(Y ) & |Y | > n]

≈ It’s necessary that there exist some thingsX s.t. theyX are frogs and

theyX are green and theyX number n, and it’s possible that there exist

some thingsY s.t. ...theyY number more than n
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b. More than n frogs are green

∃X[Frog(X) & Green(X) & |X| > n] (same as (14b))

≈ ...and theyX number more than n

c. At most n frogs are green

3∃X[Frog(X) & Green(X) & |X| = n] &

¬3∃X[Frog(X) & Green(X) & |X| > n]

≈ It’s possible that there exist some thingsX s.t. theyX are frogs and theyX

are green and theyX number n, and it’s not possible that there exist some

thingsY s.t. ...theyY number more than n

d. Fewer than n frogs are green

¬∃X[Frog(X) & Green(X) & |X| = n]

≈ There do not exist some thingsX s.t. theyX are frogs and theyX are

green and theyX number n

Given these representations, the superlative at least n and at most n both make

explicit the possibilities that seemed to lead to the problematic inferences above.

Namely, on this view, Kermit ate at least three hot dogs is represented in a way that

explicitly encodes the possibility that Kermit ate more than three, whereas Kermit

ate more than two hot dogs is not. And likewise, Kermit ate at most four hot dogs

is represented in a way that explicitly encodes the possibility that Kermit ate four,

whereas Kermit ate fewer than five hot dogs does not. So while all representations

entail the problematic possibility, only the complex superlative quantifiers make it

explicit in the representation.
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The idea that at least and at most have modal meanings may also help explain

their distributional restrictions. In particular, complex comparative quantifiers, but

not complex superlative quantifiers, can appear under the scope of negation, as seen

in (20).

(20) a. Kermit didn’t have {?at least three / more than two} hot dogs

b. Kermit didn’t have {?at most three / fewer than four} hot dogs

This makes superlatives similar to some epistemic modals, like might and perhaps,

which also resist scoping under negation, as in (21).

(21) a. Kermit might not have had three hot dogs 3 > ¬; ?¬ > 3

b. ?Kermit didn’t have perhaps three hot dogs

Geurts and Nouwen (2007) and Geurts et al. (2010) provide other sources of

data supporting the proposed specifications in (19). Though, to be sure, it remains

a possibility that the standard specifications in (14) are correct and data pointing

to the contrary can be accommodated pragmatically (see Coppock and Brochhagen

(2013a,b) for one such proposal). If a pragmatic approach turns out to be right,

then the data reviewed here will ultimately not provide evidence for complex su-

perlative quantifiers having a meaning with one particular representational format

over another.

Of course, the aim of this section has not been to take a hard line in favor

of Geurts and Nouwen’s account or any other, but to offer another example of how

linguistic evidence (e.g., inferential and distributional) might be leveraged to probe
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a meaning’s representational format. Having seen these linguistic examples, we now

turn to potential psycholinguistic sources of evidence.

1.3 Probing representational format psycholinguistically

As with traditional linguistic evidence, psycholinguistic evidence for strict se-

mantic decomposition has been hard to come by. For one thing, Fodor’s challenge

needs to be met by any experiment purporting to provide evidence for decomposi-

tion. Imagine an experiment – perhaps using a futuristic brain imaging technique –

showing that every time a participant processes the expression Kermit is a bachelor,

they token the concept unmarried. This might reflect the lexical item bachelor de-

composing into ...unmarried man..., but it also might reflect a strong association

between thoughts about bachelors and the knowledge that they are all unmarried.

Put another way, it wouldn’t be all that surprising to find out that people

think unmarried when they process an expression that contains bachelor. If you

grew up in America watching football, you probably can’t avoid thinking about

Sunday when someone mentions the Super Bowl (and if you’re only a causal ob-

server of American football, maybe you can’t avoid thinking about advertisements

when someone mentions the Super Bowl). But this alone hardly suggests that the

expression superbowl has the concept sunday (or advertisements) as part of its

meaning. It might just be that superbowl has superbowl as its meaning and indi-

vidual speakers strongly associate that concept with some others, perhaps including

snacks, advertisements, february, and, in my case, philadelphia-eagles.
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To make matters worse, experiments in this area have been largely unsuccess-

ful. As Fodor (1998) puts it: “It’s an iron law of cognitive science that, in ex-

perimental environments, definitions always behave exactly as though they weren’t

there” (p.46). By “definitions,” Fodor has in mind strict semantic decomposition

of the sort at issue here. And the experimental failures motivating this iron law

do not involve futuristic brain scans, but participants being shown, via behavioral

measures, to process terms like bachelor with no more difficulty than terms like

not married. In one such case, Fodor et al. (1975) asked participants to evaluate

arguments like (22).

(22) If practically all of the men in the room are {not married / bachelors}, then

few of the men in the room have wives

Participants were faster to judge (22) (and sentences like it) as a valid or invalid

argument given bachelor than given not married. This would be surprising, the

reasoning goes, if bachelor decomposed into the concepts not married and man.7

Fodor et al. (1980) report similar failed experiments that do not use reaction time

as the dependent measure.

In light of these concerns, strong psycholinguistic evidence for a particular

representational format must satisfy at least two criteria. First, it must try to meet

Fodor’s challenge. Given that a retreat to associated world knowledge is always

a logical possibility, meeting this challenge is difficult. Clearly, evidence that rep-

7 Fodor (1998) notes that it could still be true that the decomposition gets “compiled” in a
way that would preclude reaction time experiments from detecting it. He suggests this possibility
is too post-hoc to be taken seriously. But, more charitably, if increased processing difficulty was
the wrong linking hypothesis in the first place, then these experiments had no hope of revealing
underlying semantic structure.
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resenting a given expression leads to representing a prominent entailment of that

expression (e.g., that representing the expression bachelor leads to tokening the con-

cept unmarried) could straightforwardly be predicted by association alone. And

to the extent that association alone predicts a result, it is unable to meet Fodor’s

challenge. This makes open-class lexical items like common nouns (and, to a lesser

extent, causative verbs) more difficult cases to consider. As we will see in section

1.3.2, experiments probing the logical vocabulary (e.g., determiners) provide results

that do a better job of resisting explanation in terms of association.

Second, given past experimental failures leading to Fodor’s iron law, the link-

ing hypothesis from a decompositional claim to the supporting data must be more

sophisticated than the idea that greater complexity leads to greater processing dif-

ficulty. Section 1.3.1 presents an alternative that will be used to motivate the

experiments on most reported in section 1.3.2 and the experiments on the universal

quantifiers reported in Chapters 2 and 3.

1.3.1 Interface transparency as a linking hypothesis

In terms of a more sophisticated linking hypothesis about how semantic rep-

resentations are related to observable behavior, Lidz et al. (2011) propose (23).

(23) Interface Transparency Thesis (ITT): The verification procedures employed

in understanding a declarative sentence are biased toward algorithms that

directly compute the relations and operations expressed by the semantic rep-

resentation of that sentence.
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In other words, all else equal, people will evaluate a sentence with a procedure

that transparently reflects that sentence’s meaning. If meanings are thought of as

providing instructions to conceptual systems, then the thought behind the ITT is

that the “path of least resistance” is to follow that instruction as it’s written.

This is not to say people will always use a certain strategy to evaluate a given

sentence. In ordinary (i.e., uncontrolled) situations, there are many factors that

can be relevant for choosing a verification strategy. The claim of the ITT is just

that the details of the semantic representation carry some weight in determining

the strategy used and that its weight can be detected in carefully controlled con-

texts (see Pietroski et al. (2011) and Hunter et al. (2017) for more discussion on

this point). Only when other considerations are held equal can inferences about

the expression’s semantic representation be made from evidence about verification

procedures naturally deployed to evaluate it.

This idea is in the spirit of Marr (1982), who discussed how the representational

format of a given thought can highlight the applicability of certain computational

procedures and background others. To borrow Marr’s example, thirty seven can

be represented by some computing device using the Arabic (24a) or the binary (24b).

(24) a. 37

b. 100101

As with the examples discussed in section 1.1, both of these alternatives have identi-

cal content, but that content is represented in a different format. While (24a) makes

decomposition into powers of 10 explicit, (24b) makes decomposition into powers of
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2 explicit. As a consequence, the Arabic system makes it easy to know whether a

number is a power of 10: Just check to see if there is a 0 in the 100 position. At the

same time, whether the number in question is a power of 2 is not directly encoded

in the representation, so further computations are required. The situation is exactly

reversed for the binary system: Figuring out whether the number is a power of 2 is

easy – just check to see whether there is a 0 in the 20 position – figuring out whether

it is a power of 10 takes some work.

In the same way, the idea behind the ITT in (23) is that certain ways of

evaluating the thought built by executing an expression’s meaning will be more

natural than others (Pietroski et al., 2011). So if evidence suggests that partici-

pants routinely use strategy1 to evaluate some expression even when strategy2 is

cognitively available, one explanation is that strategy1 is a more transparent re-

flection of the expression’s meaning. Better still, if participants use strategy1 to

verify expression1 and use strategy2 to evaluate the minimally-different expression2,

this variation in verification strategy can be reasonably attributed to a difference in

meaning between expression1 and expression2. And if these expressions make identi-

cal truth-conditional contributions, then the result can be reasonably attributed to

a difference in representational format. This is exactly the situation in the example

discussed in section 1.3.2 below.

Before getting to that example, a caveat is in order. Section 1.3 questioned

the linking hypothesis underlying the failed experiments Fodor (1998) used for the

basis of his iron law, and the ITT in (23) can be questioned just the same. Given

any result, we find ourselves in the unfortunate position of having to use that result
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to defend the linking hypothesis (that meaning and verification are related in the

way described above) and the lexical semantic hypothesis (that an expression is

represented in one particular format as opposed to another).

But being in this position is not unique. As Fodor (1998) reminded readers,

in the context of conceding that no one has proven that there aren’t any defini-

tions: “Cognitive science doesn’t do proofs; it does empirical, non-demonstrative

inferences” (p.46). And any inference from empirical findings requires a linking hy-

pothesis. Some linking hypotheses have been around for a while, and consequently

have received a good deal of empirical support (e.g., duration of eye gaze as an index

of processing difficulty; acceptability as an index of grammaticality). Others, like

the ITT, are more nascent. But like any linking hypothesis, (23) will ultimately

be vindicated to the extent that it leads to the discovery of various phenomena as

opposed to a single cul-de-sac of results.

The case study on most described in section 1.3.2 provides an example of one

such phenomenon, and the remainder of this dissertation, focusing on the universal

quantifiers, presents another. For others in the same vein, see Odic et al. (2018) on

the count/mass distinction and Wellwood (2020) on degree semantics.

1.3.2 The case study of most

As with the examples from section 1.1, the meaning of an expression like most

frogs are green can be specified in many ways, including those in (25).

(25) a. |{x : Frog(x) & Green(x)}| > 1
2
|{x : Frog(x)}|
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b. |{x : Frog(x) & Green(x)}| > |{x : Frog(x) & ¬Green(x)}|

c. |{x : Frog(x) & Green(x)}| > |{x : Frog(x)}|−|{x : Frog(x) & Green(x)}|

d. OneToOneP lus({x : Frog(x) & Green(x)}, {x : Frog(x) & ¬Green(x)})

The first three representations, (25a) - (25c), specify most in terms of cardinality.8

The “more than half” specification in (25a) explicitly encodes the proportion of frogs

that must be green. In contrast, the “negation” version in (25b) relies on predicate

negation and the “subtraction” version in (25c) instead relies on representing all

frogs (in the relevant domain) and subtracting the green ones. Lastly, the “one-to-

one-plus” specification in (25d) says that the green frogs and the non-green frogs

correspond one-to-one with at least one leftover green frog. So most can be specified

with or without a proportion like 1
2
, with or without predicate negation, and with

or without appeal to cardinality. The question is whether one of these specifications

is a better description of how speakers mentally represent most.

Note that the question of how most is specified, as framed above, is a question

of semantic decomposition. This does not preclude the possibility that most is also

subject to syntactic decomposition. For example, Bobaljik (2012) provides cross-

linguistic evidence for the idea that superlatives decompose along the following lines:

[[[ adj ] -er ] -est ]]]. On this view, most would not be a syntactic atom but might

syntactically decompose into something like (26).

8 For ease of exposition, the specifications in (25) assume combination with a count noun, like
frog or dot. See Odic et al. (2018) for details concerning mass nouns. In general, the bars || in
|{x : P(x)}| might represent a more general notation for measurement that serves as an instruction
to the Approximate Number System when the predicate P is supplied by a count noun and to the
Approximate Area System when the predicate P is supplied by a mass noun. So speaking of the
specifications implicating cardinality can be understood as shorthand for “implicating cardinality
or a measure of continuous extent, depending on the presence of a count/mass feature.”
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(26) [[[ many ] -er ] -est ]]]

One way to bring these two claims – syntactic and semantic decomposition –

into alignment is to assume that not all syntactic atoms have an interpretation, just

as not all syntactic atoms have a pronunciation (Preminger, 2020).9 On this view,

(26) may be a syntactically complex “LF formative” that has a meaning, even if its

elements do not each, on their own, have a semantic interpretation. Another way

would be to resolve some of the proposed semantic decomposition syntactically. If it

turns out that one of the representations in (25a) - (25c) are the right specification

of most, maybe the symbol “>” is supplied by the syntactic atom -er. The point

here is just that the two claims are not mutually exclusive.

As the rest of this section will only be concerned with semantic decomposition,

we can remain agnostic about the possibility of syntactically decomposing most. The

same is true for the rest of this dissertation when discussing the proposed semantic

decompositions of each, every, and all. That said, for the universal quantifiers,

there have been few – if any – claims of syntactic complexity. Therefore, if we find

evidence of structured meaning representations, we likely have evidence for pure

(i.e., not syntactically derived) strict semantic decomposition.

With this codicil out of the way, we can return to the possible specifications

of most in (25). To get at the question of which of these possibilities is a better

9 As evidence for this architectural claim, Preminger points to cases of partial overlap between
pronunciation and interpretation like past go off (i.e., went off ). On the meaning side, go and
off have an idiomatic interpretation (“explode” or “be triggered”) to the exclusion of past. But
on the pronunciation side, past and go get pronounced (as went) to the exclusion of off. So it
need not be the case that each syntactic atom has an interpretation and a pronunciation. Instead,
some combination of syntactic atoms serve as pronounceable “PF formatives,” whereas potentially
different combinations of the same syntactic atoms serve as meaningful “LF formatives.”
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description of how speakers understand most, Pietroski et al. (2009) asked partici-

pants to verify sentences like most of the dots are blue with respect to various types

of blue and yellow dot-displays. On most display types, participants showed signs

of using a cardinality-based strategy. That is, their ability to correctly answer was

dependent on the ratio of blue dots to yellow dots (see section 2.2.2 in the following

chapter for a review of the Approximate Number System).

Importantly, participants used cardinality even given displays where the blue

and yellow dots were paired, making it easy to identify any leftover dots. To confirm

the ease of identifying leftovers, participants were shown these same displays and

asked to find the loaner dot. Sure enough, participants were better at finding leftover

blue dots (when explicitly asked to do so) than they were at determining whether

most of the dots were blue (when shown the same display and asked to evaluate the

most-sentence). So a one-to-one correspondence strategy is psychologically available

and would lead to better performance. Even so, participants opt for an inferior

cardinality-based strategy.

These results point to most being specified in terms of cardinality (as in (25a)

- (25c)), not correspondence (as in (25d)). If it were specified in terms of correspon-

dence, the reasoning goes, more would need to be said to explain why participants

avoid using a cognitively-available correspondence-based strategy to evaluate most-

sentences in favor of using a sub-optimal cardinality-based strategy.

As noted in section 1.3.1, this conclusion is not challenged by showing that par-

ticipants use other (non-cardinality-based) strategies to evaluate most-sentences in

other contexts. Nothing about the hypothesis that most has a particular representa-
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tional format precludes participants from using strategies that do not transparently

reflect that representation. Sometimes, non-linguistic pressures urging a particular

verification strategy are too great to ignore.

Pietroski et al. (2009) report and discuss one such case: When blue dots were

lined up on one side of the screen and yellow dots were lined up on the other,

participants used line length as a proxy for whether most of the dots were blue.

If the blue line was longer, they answered true; if the blue line was shorter, they

answered false. But because line length can be estimated far more accurately

than cardinality, nothing can be concluded about the meaning of most from this

result. On these trials, participants were wisely resorting to an easy and accurate

strategy. If it had turned out that participants successfully used line length when

asked to evaluate blue is longer than yellow but nonetheless used cardinality when

asked to evaluate most of the dots are blue, this would have provided more evidence

in favor of a cardinality-based specification. Conversely, if it had been the case that

line length computations were inferior to cardinality computations and participants

nonetheless used line length, then this result would tell against most being specified

in terms of cardinality. But as it stands, this particular condition turned out not to

be of any importance for claims about most ’s representational format.10

To put the point more generally: The ITT contends that the representational

10 The condition was worth running because we often don’t know in advance which strategies
will be superior but nonetheless dispreferred. Finding the “sweet spot” where the weight of the
representational format can be detected is difficult. Moreover, the finding that participants can
use line length as a proxy for numerosity is interesting in the context of questions about what sorts
of verification procedures people can use and how flexibly they can shift between them. It might
be that there are some superior verification procedures – e.g., one-to-one correspondence – that
participants cannot be pressured to adopt by altering properties of the visual display.
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format carries some weight in determining the verification procedure used, but it

is obviously not the only consideration. If you don’t speak English and someone

asks you to verify whether most of the dots are blue, you might do well to adopt a

verification strategy of asking your English-speaking friend to tell you the answer.

If, in a crude experiment, the statement was true whenever the blue dots appeared

on the left and false whenever the blue dots appeared on the right, you might do

well to adopt a verification strategy that relied on the left/right distinction. From

these cases we would conclude nothing about the representational format of most.

The interesting cases are the ones in which participants avoid using a cognitively-

available strategy that would lead to better responses in favor of a strategy that is

sub-optimal but more closely aligns with a plausible representational hypothesis.

With that in mind, Pietroski et al. (2009) provide strong evidence for ruling out

a correspondence specification like (25d). Taking this conclusion as a starting point,

Lidz et al. (2011) extend the paradigm to argue against a negation specification

like (25b). Participants in their task were asked to evaluate sentences like most

of the dots are blue, but this time, displays contained up to five colors. Spelling

out the predictions of the negation view is a bit more complex than it was for the

correspondence view. Though the visual system can isolate a single color even in

displays with many colored dots, it cannot direct attention to a heterogenous group,

like the non-blue dots (see Wolfe (1998) for a helpful review of visual search). In

a slogan: Negation of a visual feature is not itself a visual feature. So (25b) does

not transparently map onto a possible strategy that treats the set defined using

predicate negation as a visual ensemble defined by negation of a visual feature.
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Instead, a participant wanting to enumerate the non-blue dots would have to

do so by adding the estimated cardinality of each non-blue group (e.g., #(yellowDots)+

#(greenDots) + #(redDots) + ...). Given just blue and yellow dots, this strategy

is perfectly reasonable. In fact, as discussed below, it is the superior strategy. But

even adding a third color reduces the viability of this strategy from the visual sys-

tem’s point of view. In particular, participants can only enumerate three groups of

dots – two colors and the superset of all dots – in parallel (Halberda et al., 2006).

So the “independently estimate then add” strategy suggested by (25b) predicts per-

formance to decrease as the number of colors increases.

In contrast with this prediction, Lidz et al. (2011) observe identical perfor-

mance regardless of the number of colors on screen. This does not appear to be a

quirk of English: Tomaszewicz (2011) replicates this effect in Polish and Knowlton

et al. (2018) observe the same effect in Cantonese (in both cases participants were

asked to evaluate sentences containing a majority quantifier analogous to English

most). These results suggest that participants are using a strategy more in line with

a representation like (25c), where no reference is made to groups defined in part by

predicate negation (e.g., the non-blue dots or the non-green frogs). For that reason,

(25c) suggests a strategy that would remain comfortably under the 3-group limit

regardless of the number of different colored groups presented on screen.

In the same vein, Knowlton et al. (2021a) offer more evidence against (25b).

They report a series of experiments with adults and children that compared most-

sentences to more-sentences (which have a meaning more in line with (25b)). Par-

ticipants preferred to match sentences like most of the dots are blue with spatially-
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intermixed pictures that made it easy to identify the superset of all dots, and sen-

tences like more of the dots are blue with spatially-separated pictures where iden-

tifying the blue and the non-blue (i.e., the yellow) was easier. Moreover, when

given the opportunity to create their own images – “make it true that more/most of

the dots are blue” – participants created spatially-intermixed images for most but

spatially-separated images for more. Likewise, when asked to recall properties of

the blue and yellow dots, children who answered a most question were only able to

remember the location of the blue dots, whereas those asked a truth-conditionally

equivalent more question could recall the location of both blue and yellow.

Perhaps the most striking evidence comes from their final experiment. Adult

participants were shown displays containing partially-intermixed blue and yellow

dots, designed to make both a blue-yellow comparison strategy and a blue-total

comparison strategy viable. But as mentioned above, a blue-yellow comparison

strategy – like the one suggested by (25b) – is superior given only two colors. To

see why, consider a display consisting of 20 blue dots and 10 yellow dots. Either

strategy ultimately results in making the judgement that 20 > 10. The negation

strategy (in line with (25b)) does so directly, by representing the blue dots (20)

and the non-blue dots (10). The subtraction strategy (in line with (25c)) does so

indirectly, by comparing the number of blue dots (20) and the result of a subtraction

(30− 20 = 10). The end result is the same, but because the Approximate Number

System represents larger numerosities with more “noise” (see section 2.2.2 of Chapter

2), deriving 10 by subtracting 20 from 30 introduces more uncertainty to the system

than representing 10 directly. The same is true for any two-color display: The
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superset of all dots will always outnumber the yellow dots. So the direct blue-yellow

comparison will always result in better performance than the analogous blue-total

comparison.

Despite this, participants showed better performance when asked to evaluate

more-sentences than when shown identical images and asked to evaluate truth-

conditionally equivalent most-sentences. This is another case of participants es-

chewing a cognitively available and empirically superior strategy (direct blue-yellow

comparison) in favor of a sub-optimal strategy (blue-total comparison). This result

has a natural explanation if most has a meaning more like (25c) than (25b). That

is, these results make sense if most of the dots are blue serves as an instruction to

compare the cardinality of the blue dots against the cardinality of a subtraction as

opposed to an instruction to compare the cardinality of the blue dots against the

cardinality of the non-blue dots.

Finally, Hackl (2009) argues against a “more than half” specification, like

(25a), using a novel “self-paced counting” task. Participants in one such experiment

either heard sentences like most of the dots are blue or more than half of the dots

are blue and were asked to verify the sentence by pressing “space” to reveal the

color of masked dots, two or three at a time. Accuracies did not differ based on

expression but reaction times did: Participants revealed dots at faster intervals

when evaluating the most-sentence than when evaluating the truth-conditionally

equivalent more-sentence. It remains unclear why reaction time differed in this task

(see Talmina et al. (2017) for follow-up experiments using the “self-paced counting”

paradigm and Steinert-Threlkeld et al. (2015) for follow-up experiments using a
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paradigm closer to Pietroski et al. (2009) and Lidz et al. (2011)). But the finding

that participants behave differently given truth-conditionally equivalent expressions

is at least suggestive that most is not specified identically to more than half.11

Taken together, the evidence reviewed in this section points to most being

specified in terms of subtraction, as in (25c) (abstracting away from the particular

contributions of frog and is green). To repeat what this claim amounts to: The

lexical item most has as its meaning a structured representation that combines

with an internal predicate I and external predicate E and that makes reference to

concepts like cardinality and subtraction, as in (27).

(27) λI.λE.|{x : I(x) & E(x)}| > |{x : I(x)}| − |{x : I(x) & E(x)}|

As always, Fodor’s challenge is present: It might be that most just points to

an atomic most concept which entails (27). But this atomic concept would also

need to entail the other possible specifications in (25), repeated here as (28).

(28) Most of the frogs are green

a. |{x : Frog(x) & Green(x)}| > 1
2
|{x : Frog(x)}|

b. |{x : Frog(x) & Green(x)}| > |{x : Frog(x) & ¬Green(x)}|

c. |{x : Frog(x) & Green(x)}| > |{x : Frog(x)}|−|{x : Frog(x) & Green(x)}|

d. OneToOneP lus({x : Frog(x) & Green(x)}, {x : Frog(x) & ¬Green(x)})
11 Knowlton et al. (2021a) did not discuss “more than half”, but data from their final experiment

can be used to argue against a “more than half” specification. Namely, although most leads to
worse performance than more, it does not lead to performance that is as bad as the division-based
strategy suggested by (25a) would predict. Still, a more convincing case would require setting
up the experiment such that more than half -sentences suggest a strategy that leads to superior
performance and showing that, given most-sentences, participants nonetheless resort to the sub-
optimal subtraction strategy suggested by (25c).
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If most frogs are green, then the green frogs outnumber half of the frogs, they

outnumber the non-green frogs, and they correspond one-to-one with the non-green

frogs with at least one remainder. So if most has as its meaning an unstructured

representation like most, one needs to say more to explain why participants seem to

verify sentences like most of the frogs are green with a strategy transparent to (28c)

even when superior alternatives corresponding to (28b) and (28d) are cognitively

available.

A possible answer might be that (28c) is privileged in a way that other entail-

ments are not. Certainly some entailments must be privileged, given that there are

infinitely many of them (see Wellwood et al. (2015); Williams (2015) for discussion

of this point in the verbal domain). To take an example, 2 + 2 = 4 is entailed by

most of the frogs are green, but it is unlikely that this particular mathematical fact

is represented in the course of representing the expression. It might be that (28c) is

different from 2 + 2 = 4 in that it has special status as not only an entailment but

a psychologically privileged one.

The question then becomes: What does it mean to be privileged? In the case

of the lexical item ewe and the concept animal or the lexical item bachelor and

the concept unmarried, “privileged” might just mean “very strongly associated”

(which would put them on a par with superbowl and sunday, which also share a

strong association in many speakers’ minds). As discussed in section 1.3, for this

reason it would be unsurprising to find that participants in an experiment token the

concept unmarried any time they hear the word bachelor. But there doesn’t seem

to be any sense in which (28c) is very strongly associated with most of the frogs are
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green. So evidence that participants often seem to think (28c) when representing

the relevant sentence is striking. And it suggests that “privileged” here more likely

means “explicitly part of the representation.”

Keeping this example in mind as a guide, we turn to the main topic of this

dissertation: the mental representation of universal quantifiers. The initial hypoth-

esis will be a psychologized version of the standard view, summarized in section 1.4.

The alternative hypotheses considered here are presented in section 1.5.

1.4 Quantificational determiners as generalized quantifiers

Since Barwise and Cooper (1981), it has been standard to treat quantificational

determiners like every, most, and some as instances of generalized quantifiers (see

Westerst̊ahl (2019) for a helpful review). On this view, a determiner like every

expresses a two-place second-order relation, like (29), where I is the determiner’s

internal argument and E is its external argument.

(29) JeveryK(I)(E) = true ⇐⇒ {x : I(x)} ⊆ {x : E(x)}

≈ true iff the set of I-things is a subset of or is identical to the set of E-things

The specification in (29) is second-order because it relates two sets of individuals –

one defined by I and one defined by E – as opposed to relating two individuals. And

it’s a relation because those two sets are individuated completely independently of

one another and related by “⊆”.

Generalized quantifiers were developed independently from concerns about

natural language meaning (Mostowski, 1957). But applying the tools of General-
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ized Quantifier Theory (GQT) to natural language has provided a useful framework

for stating various generalizations (most prominently, those found in Barwise and

Cooper (1981), Higginbotham and May (1981), and Keenan and Stavi (1986)). Sec-

tions 1.4.1 - 1.4.3 discuss some of the historical motivations for adopting GQT, and

review some reasons for thinking they no longer hold. Section 1.4.4 recasts the GQT

treatment of universal quantifiers (i.e., (29)) in overtly mentalistic terms so that it

can serve as an initial hypothesis about their mental representation.

1.4.1 Expressive power and proportional quantifiers

Proportional quantifiers like most played a large role in the adoption of GQT.

The reason is that while quantifiers like every and some can be easily modeled

without invoking set theory, as in (30), most resists definition in first-order predicate

logic (Rescher, 1962; Wiggins, 1980).

(30) a. JeveryK(I)(E) = true ⇐⇒ ∀x[I(x)→ E(x)]

≈ true iff for each thing, if it is I then it is E

b. JsomeK(I)(E) = true ⇐⇒ ∃x[I(x) & E(x)]

≈ true iff there exists some thing that is I and E

That is, we cannot invent a first-order quantifier “Mx” that can be used

to model most along the lines of “∀x” and “∃x” in (30). Replacing the general

“JmostK(I)(E)” with a specific example, we can consider two attempts to model the

truth-conditions of most frogs are green in (31).

(31) Most frogs are green = true ⇐⇒
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a. Mx[Frog(x)→ Green(x)]

≈ Most things are such that if they are a frog, they are green

b. Mx[Frog(x) & Green(x)]

≈ Most things are such that they are a frog and they are green

Both are insufficient. In the former case, (31a) is made incorrectly true by a

domain that includes a disproportionate number of non-frogs. Given 100 dogs, 1

green frog, and 10 blue frogs, most frogs are green is clearly false, but (31a) is

vacuously true. And (31b) is made incorrectly false in the same way. Given 100

dogs, 10 green frogs, and 1 blue frog, most frogs are green is true, but (31b) is

false (most things aren’t even frogs, let alone green ones).

One way out of this predicament would be to restrict the domain of quan-

tification to just those things that satisfy the determiner’s internal argument; just

the frogs, in this case (Higginbotham and May, 1981). That is, determiners like

most could be treated as devices for creating one-place restricted quantifiers (the

main contention of Chapter 2 is that they should be, or at least that the universal

quantifiers should be). Namely, although most cannot be specified with either (31a)

or (31b), it can be specified as in (32).

(32) Mx(Frog(x))[Green(x)]

≈ Most things that are frogs are such that they are green

In (32), frog combines with “Mx” to form a restricted quantifier, “Mx(Frog(x))”,

which restricts the domain over which x ranges to just the (contextually relevant)
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frogs.12 Other quantifiers, like every and some, can be given analogous restricted

specifications, as in (33).

(33) a. ∀x(Frog(x))[Green(x)]

≈ Each thing that is a frog is such that it is green

b. ∃x(Frog(x))[Green(x)]

≈ Some thing that is a frog is such that it is green

Another solution – the one that was pursued more fervently – is to turn to

set theory. Instead of treating every frog as a one-place restricted quantifier, it can

be thought of as a predicate of predicates whose extension is a set of sets (or, as

Barwise and Cooper (1981) put it, a “family of sets”). For example, every frog is

said to denote the set of sets whose members are all frogs (so if given a set, every

frog returns true if that set is in the mentioned set of sets, and false if it is not).

Then the determiner every can be thought of as a device for relating two sets, those

provided by its internal and external arguments, as in (29), repeated here as (34a).

This also allows for modeling proportional determiners like most, more than half,

and two thirds along the same lines (e.g., in (34c)).

(34) a. JeveryK(I)(E) = true ⇐⇒ {x : I(x)} ⊆ {x : E(x)}

≈ true iff the set of I-things is a subset of or is identical to the set of

E-things

12 The contribution of the experiments on most discussed in section 1.3.2 is to cash out how
“M” should be specified. That is, given that “things” is restricted to frogs, what does it mean
for “most things” to be green? Does it mean that they correspond one-to-one-with-a-remainder
to the non-green things? Or does it involve cardinality and subtraction? Put another way, the
question of whether a quantifier should be specified in relational or restricted terms is a question
at a higher level than the questions being asked in section 1.3.2.
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b. JsomeK(I)(E) = true ⇐⇒ {x : I(x)} ∩ {x : E(x)} 6= ∅

≈ true iff the intersection of the set of I-things and the set of E-things

is non-empty

c. JmostK(I)(E) = true ⇐⇒

|{x : I(x)} ∩ {x : E(x)}| > |{x : I(x)} − {x : E(x)}|

≈ true iff the cardinality of the intersection of the set of I-things and

the set of E-things is greater than the cardinality of the set of I-things

minus the set of E-things

In formal semantics, the set-theoretic approach has been preferred over the

restricted quantification approach. Barwise and Cooper (1981) based their work

exploring the linguistic consequences of GQT on ideas laid out in Montague (1973)’s

influential paper, “The Proper Treatment of Quantification in Ordinary English”.

It’s worth mentioning, in this context, that as far as Montague was concerned, the

proper treatment of quantification was decidedly not a psychological treatment. In a

history of semantics, Partee (2018) notes that Montague’s theory was intended to be

general enough to cover both natural and invented languages and that “Montague

was surprised to learn that the linguists’ notion of Universal Grammar was meant

to capture all and only possible human languages; that struck him as parochial”

(p.180). So, for followers of Montague, including Barwise and Cooper, generalized

quantifiers had the virtue of being general.

To get a sense of how general, consider a few generalized quantifiers that have

no natural language counterpart (at least among determiners), where A and B are
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shorthand for {x : A(x)} and {x : B(x)}:

(35) a. Q(A)(B) = true ⇐⇒ A = B

b. Q(A)(B) = true ⇐⇒ |A| > |B|

c. Q(A)(B) = true ⇐⇒ A ∩B 6= ∅ & |B| > 2

d. Q(A)(B) = true ⇐⇒ |A| − 1 = |B| & |B| is prime

There are infinitely many others. In other words, whereas standard first-order pred-

icate logic is insufficient to model determiners like most, GQT provides far more

expressive power than is needed for modeling natural language determiners. This

was by design, but whether it should be considered a desirable feature depends on

the target of inquiry.

1.4.2 An analogy to transitive verbs

One initial point in favor of treating determiners under GQT was that it fit

nicely with the largely relational conception of meaning that linguistics adopted

from Frege (1879, 1893). An analogy to transitive verbs helps make the intuition

clear: The verb saw in (36) can be thought of as expressing the saw relation between

two individuals, Kermit and Gritty. Likewise, the determiner every in (37) can be

thought of as expressing the every relation between two sets of individuals, the

frogs and the green things.
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(36) Kermit saw Gritty S

NP

Kermit

VP

V

saw

NP

Gritty

(37) Every frog is green S

DP

D

Every

NP

frog

VP

is green

More formally, if proper nouns like Kermit and Gritty are names of entities

(type e), then a transitive verb like saw can be thought of as a function from entities

to a function from entities to truth values. That is, saw expresses the function of

type 〈e, 〈e, t〉〉 in (38a).

(38) a. JsawK = λxe.λye.true ⇐⇒ saw(y, x)

b. JeveryK = λX〈e,t〉.λY〈e,t〉.true ⇐⇒ every(X, Y )

Quantificational determiners can then be thought of as the same sort of func-

tions, but with an extra level of abstraction, as in (38b). Namely, if common nouns
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like frog and stative predicates like is green denote functions from entities to truth

values (type 〈e, t〉), then a determiner like every can be thought of as a function

from a type 〈e, t〉 function to a function from another type 〈e, t〉 function to truth

values (i.e., every expresses the function of type 〈〈e, t〉, 〈〈e, t〉, t〉〉 in (38b), where

every is a generalized quantifier that relates X and Y via “⊆”). So every is just

like saw except that the entities of type e are replaced with functions of type 〈e, t〉

and that the order of the arguments is switched on the right side of the lambdas.13

With the rise of event semantics though, this analogy no longer goes through.

In particular, on modern “Neo-Davidsonian” views (alluded to in section 1.2.1),

transitive verbs like saw are not thought of as expressing relations between individ-

uals. And on some variants they are not thought of as expressing relations at all.

There are different approaches, but a common theme is separating NP arguments

from verbs (see Chapter 9 of Williams (2015) for discussion of arguments in favor

of such separation and Williams (2021) for a helpful review of event semantics).

Kratzer (1996), for example, advocates severing the external argument of the

verb (e.g., Kermit in (39)) and instead using a distinct functional head (v) to intro-

duce it as an argument of the silent operator ag (short for agent). So (39) would

be analyzed as (40).

13 The switch is a result of every being said to correspond to “⊆” not “⊇”. In keeping with the
convention that the external argument of a relation appears first, as in Kermit saw Gritty being
regimented as saw(K, G), every frog is green should really be written every(G, F). But then
every would correspond to “⊇”, not “⊆”, as is traditionally assumed.
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(39) Kermit saw Gritty vP

NP

Kermit

v̄

v

ag

VP

V

saw

NP

Gritty

(40) ∃e[agent(e,Kermit) & saw(e,Gritty)]

≈ there exists an event s.t. Kermit is its agent and it was a seeing of Gritty

Instead of being a function from entities to a function from entities to truth

values (type 〈e, 〈e, t〉〉), a transitive verb like saw is treated as a function from entities

to a function from events (type v) to truth values (type 〈e, 〈v, t〉〉), as in (41) (which

combines with Gritty through function application and with agent(e,Kermit)

through conjunction to yield (40)).

(41) JsawK = λxe.λev.true ⇐⇒ saw(e, x)

Given (41), we can no longer say that the verb saw expresses a relation between

individuals. Instead, it expresses a relation between an individual and an event. Of

course, any event that is a seeing involves a relation between a seer and a seen, so

“saw(e, x)” entails these relations. Still, the verb itself does not denote a relation

between two entities.
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Other approaches go further. Schein (1993) and Krifka (1992), for example,

offer evidence for severing both the internal and the external argument from the verb.

One possibility for spelling out this view is saying that NP arguments come marked

with thematic features (e.g., Kermitagent and Grittypatient) and that these

features determine the thematic predicate with which they combine (Hornstein,

2002). Assuming complete separation between a verb and its arguments means that

a sentence like Kermit saw Gritty would be analyzed as (42).14

(42) ∃e[agent(e,Kermit) & patient(Gritty) & saw(e)]

≈ there exists an event s.t. Kermit is its agent and Gritty is its patient and it

was a seeing

On such a view, a transitive verb like saw doesn’t take any NP arguments and

can’t be said to express a relation at all. Instead, it expresses a monadic predicate

of events, as in (43).

(43) JsawK = λev.true ⇐⇒ saw(e)

Again, this is not to deny that any event of seeing involves a relation between

seer and seen. We can say that “saw(e)” entails such a relation without saying that

the verb itself denotes a relation. Any event that is a seeing also involves a location

in space and a time, but this hardly motivates treating saw as a four-place relation

between a seer, a seen, a location, and a time (see Williams (2015), in particular

14 Given this view, a rule of interpretation rooted in predicate conjunction seems more natural
for combining the verbal predicate and its thematic predicates than a rule of interpretation rooted
in function application (Pietroski 2005; LaTerza 2014). Though both are in principle possible.
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Chapter 4). It is enough to notice that these roles are entailed, without the further

commitment of explicitly encoding them in the representation.

On modern approaches, then, transitive verbs either don’t express relations

between individuals or don’t express relations at all. To the extent that these ap-

proaches are on the right track, the analogy between quantificational determiners

as relations and transitive verbs as relations no longer seems as compelling. This

is not itself an argument against GQT; just an argument against using the analogy

to transitive verbs to motivate it. But if it turns out that relationality in gen-

eral is less prevalent in natural language than has been assumed (e.g., as Pietroski

(2018) argues), then it may be preferable to consider non-relational treatments of

quantification as well.

1.4.3 Mismatch between grammatical and logical form

Another point often used to motivate GQT is, as Barwise and Cooper (1981)

put it, “the notorious mismatch between the syntax of noun phrases in a natural

language like English and their usual representations in traditional predicate logic”

(p.164). For example, consider the syntax of every frog is green and its predicate

logic treatment in (44).

(44)

Every frog
is green ∀x

[F (x) → G(x)]

The mismatch Barwise and Cooper have in mind is twofold. One issue is that even if
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“∀x”, “F (x)”, and “G(x)” can each be thought of as corresponding to a grammatical

constituent (each, frog, and is green), the connective “→” cannot. There is no node

in the tree on the left that corresponds to “→”. A second issue is that no aspect

of the predicate logic treatment corresponds to the grammatical constituent every

frog. Instead, “F (x)” and “G(x)” play the same logical role: There is no sense in

which “∀x” is more closely related to “F (x)” than it is to “G(x)”.

At least with respect to the first issue, GQT does a better job of reflecting the

syntax, as in (45).

(45) Generalized Quantifier Theory S

DP

D

Every

⊆

NP

frog

{x : F (x)}

VP

is green

{x : G(x)}

That is, there is no logical connective in the GQT treatment in (45), so the prob-

lematic “→” has been dealt with.

The second issue however – that every frog is not a constituent in the predicate

logic treatment – does not seem to be solved by invoking the relational notion “⊆”,

since “⊆ ({x : F (x)},” is no more a constituent than “∀x[F (x)”. But given that

every frog is taken to denote a function from sets of individuals to truth values, it can

be thought of as a family of sets to which the set denoted by is green is related. As
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Barwise and Cooper put it, on GQT “the sentences [{some person/every man/most

babies} sneeze] will be true just in case the set of sneezers ... contains some person,

every man, or most babies” (p.165). In this sense, the quantificational DP can be

thought of as a constituent in the logical form as well.

Of course, GQT is not the only way out of the apparent mismatch. Invoking

restricted quantification as in (46) has the effect of (i) removing the problematic

“→” and (ii) treating the internal argument (frog) as logically more closely related

to every than the external argument (is green).

(46) Restricted quantification S

DP

D

Every

∀x

NP

frog

(F (x))

VP

is green

[G(x)]

The second point requires some elaboration. Restricted quantification was

alluded to in section 1.4.1 and will be discussed at length in Chapter 2, but in short,

its defining feature is that the two arguments of the determiner play different logical

roles. In this case, F initially restricts the values of x, whereas G functions more like

a normal predicate, returning true just in case the value taken on by x is green.

So the symbols in the logical form corresponding to the DP – “∀x(F (x))” – can be

thought of as a prefix to the sentence specified by the external argument: “G(x)”.
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In this way, every and frog are more closely related logically than every and is green.

Having said that, the point may be moot. Assuming categorematic meanings

for determiners, like “λI.λE.every(I,E)”, what appears “on the right side” of the

lambdas doesn’t matter as far as the syntax is concerned. If the predicate logic or

GQT treatment is viewed not as a logical form, but as a specification of every,

then the details of this specification have no relation whatsoever to syntax. That

is, cashing out “every(I,E)” in (47) as “I ⊆ E” is no better or worse a reflection

of grammatical form than cashing it out as “∀x[Ix→ Ex]” or as “∀x(Ix)[Ex]”.

(47) S

DP

D

Every

λI.λE.every(I,E)

NP

frog

λx.Frog(x)

VP

is green

λy.Green(y)

This is true regardless of whether the details of how to specify every are taken to

be a theorist’s choice about how to specify a function in extension or a psychological

hypothesis about the format of a mental representation.

So, from the point of view of matching grammatical and logical form, GQT

and restricted quantification are on a par.
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1.4.4 Psychologizing Generalized Quantifier Theory

Given its popularity, it seems reasonable to use the GQT treatment of universal

quantifiers, repeated in (48), as our initial hypothesis about how those quantifica-

tional determiners are mentally represented.

(48) Jeach/every/allK(I)(E) = true ⇐⇒ {x : I(x)} ⊆ {x : E(x)}

≈ true iff the set of I-things is a subset of or is identical to the set of E-things

The two main features of this view are that determiners are devices for relating

two things (e.g., as opposed to being devices for creating restricted quantifiers) and

that the relation is second-order (e.g., between sets of individuals instead of between

individuals).

In principle, the GQT treatment might be an accurate description of how

speakers mentally represent quantificational determiners along one of these dimen-

sions but not the other. It might be that speakers represent every frog as a second-

order restricted quantifier, for example. But set theory and second-order relations

go hand-in-glove. So the use of set theory in (48) makes these two notions – rela-

tional vs. restricted and first-order vs. second-order – hard to disentangle. This is

not a problem if the goal is to articulate a specification of truth in a model, since the

choice of how to write (48) is merely a notational one. But when the target of in-

quiry is a lexical item’s representational format, divorcing the notion of relationality

from the notion of second-order quantification becomes important.

To that end, this dissertation will formulate GQT in terms of plural logic
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instead of set theory. Intuitively, this amounts to replacing “the set of I-things”

with “the Is” and “the set of E-things” with “the Es”. Not only will this allow us

to more naturally distinguish along both dimensions of interest, it will also allow us

to remain agnostic about how second-order representations should be understood.

Chapter 3 discusses this point in more detail, but in short: The plural notion “the Is”

can be taken to implicate a plural entity like a set or it can be taken to implicate

a plurality of individuals that is not itself an entity. Remaining agnostic on this

point is preferable. While it is widely agreed in cognitive science (and supported

by intuition) that human minds can form some kind of group representation (see

section 3.2 of Chapter 3), there is no reason to think these representations have all

of the formal properties that would make them sets.

Formally, instead of treating the satisfiers of a predicate P as constituting the

set of P-things, as in (49a), we can group them under a second-order variable G

(for “group”), as in (49b). This second-order variable in (49b) could be understood

as ranging over sets – in which case it would be a notational variant of (49a) – or

as ranging over individuals but allowing more than one value to be assigned to a

single variable per assignment (Boolos, 1984).

(49) a. {x : Px} (“the set of P-things”)

≈ the set of things that meet the P condition

b. ιG(∀x[Gx ≡ Px]) (“the Ps”)

≈ the one or more thingsG s.t. for each thingx, itx is one of themG iff itx

meets the P condition
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This change might be relevant for future work aimed at distinguishing hy-

potheses that differ with respect to whether they rely on a conjunctive description,

like (50a), or intersecting two groups, like (50b).

(50) a. {x : Ix & Ex}

b. {x : Ix} ∩ {x : Ex}

In one sense, these two seem different. But given standard set theory, both

(50a) and (50b) are names for a single set. The set of things that are frogs and

green, for example, just is the intersection of the set of frogs and the set of green

things. On the other hand, the plural logic versions in (51a) and (51b) make the

distinction clearer: The former only has quantification into one second-order variable

position, “ιG(...G...)”, whereas the latter has quantification into two such positions,

“ιG(...G...)” and “ιG′(...G′...)”. Put another way, whereas (51a) implicates only one

group, (51b) clearly implicates two groups.

(51) a. ιG(∀x[Gx ≡ Ix & Ex])

≈ the one or more thingsG s.t. for each thingx, itx is one of themG iff itx

meets the I condition and the E condition

b. ιG(∀x[Gx ≡ Ix]) ∩ ιG′(∀x[G′x ≡ Ex])

≈ the one or more thingsG s.t. for each thingx, itx is one of themG iff itx

meets the I condition intersected with the one or more thingsG′ s.t. for

each thingx, itx is one of themG′ iff itx meets the E condition

This particular distinction is not explored in this dissertation. But that the plural
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logic formulation can more easily highlight the difference is a point in its favor, at

least for the purposes of theorizing about mental representations.

To be sure, the main claims of this dissertation could be recast in set theoretic

terms. The simplest way to do so would be to interpret quantification into second-

order variable positions – like “ιG(...G...)” – as quantification over sets (i.e., to read

it as “the set G s.t. ...”). But putting things in the slightly more cumbersome terms

of plural logic has at least a few virtues. It allows us to more easily distinguish the

dimensions of interest, prevents us from making an extra ontological commitment,

and reminds us that the symbols represent mentalistic hypotheses.

One quick note about notation is in order. Brackets – (...), [...], {...} – will be

used interchangeably and alternated or omitted for readability. So the difference

between, for example, (52a) and (52b) is merely a notational difference and the two

specifications do not correspond to distinct psychological hypotheses.

(52) a. Qx[I(x)]{E(x)}

≈ Q thing that is an I is s.t. it is an E

b. Qx(Ix)(Ex)

≈ Q thing that is an I is s.t. it is an E

With all of this in place, we can specify a psychologized version of the GQT

treatment of universal quantifiers in (53).

(53) ιG(∀x[Gx ≡ Ix]){ιG′(∀y[G′y ≡ Ey])[G ⊆ G′]} (SO relational, 2G)

≈ the one or more thingsG

(s.t. for each thingx, itx is one of themG iff itx meets the I condition)
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are s.t. the one or more thingsG′

(s.t. for each thingx, itx is one of themG′ iff itx meets the E condition)

are s.t. theyG are among themG′

This makes explicit the central claims of GQT: (53) is a second-order relation be-

tween two groups (SO relational, 2G). We can then formulate alternative hypotheses

that differ wither respect to (i) whether the representation is first-order or second-

order, (ii) whether the representation is a relation, and (iii) how many groups are

implicated. This is taken up in section 1.5.

1.5 Ungeneralizing the universal quantifiers

As noted above, one way for a specification to differ from (53) is for it to be

restricted instead of relational. Consider (54). Instead of specifying the quantifica-

tional content by relating two independent groups, G and G′, (54) does so by first

restricting the values of G to just the things that meet the I condition, then noting

that “the Is” (i.e., the one or more thingsG) also meet the E condition.

(54) ιG(∀x[Gx ≡ Ix])[E(G)] (SO restricted, 1G)

≈ the one or more thingsG

(s.t. for each thingx, itx is one of themG iff itx meets the I condition)

are s.t. theyG meet the E condition

This way of specifying restricted quantification is still second-order, because it im-

plicates a group G (see Chapter 3 for discussion of the distinction between first-order

and second-order quantification).
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Of course, (54) also differs from (53) in that it makes reference only to a

single group. We could instead imagine a version more similar to (53) that makes

reference to two groups but is nonetheless restricted in the relevant sense. For

example, consider (55).

(55) ιG(∀x[Gx ≡ Ix]){ιG′(∀y[G′y ≡ Gy & Ey])[G = G′]} (SO restricted, 2G)

≈ the one or more thingsG

(s.t. for each thingx, itx is one of themG iff itx meets the I condition)

are s.t. the one or more thingsG′

(s.t. for each thingx, itx is one of themG′ iff itx is one of themG and itx meets

the E condition)

are s.t. theyG are identical to themG′

This specification is restricted because the values of the second group, G′, are re-

stricted by the values of the first group, G. So “ιG(...G...)” and “ιG′(...G′...)” are

not independent selections from some domain; only “ιG(...G...)” is. The quantifi-

cational content is specified in terms of identity: “[G = G′]”. To the extent that

identity is a relation, perhaps we should distinguish restricted vs. unrestricted from

relational vs. non-relational. But in the sense relevant for this dissertation, the

representation in (55) is restricted, not relational. It differs from the restricted (54)

in that it implicates two groups instead of only one.

Lastly, we can consider a restricted specification – (56) – that implicates zero

groups, and consequently is completely first-order.
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(56) ∀x(Ix)[Ex] (FO restricted, 0G)

≈ each thingx that meets the I condition is s.t. itx meets the E condition

This specification will be familiar from section 1.4.1. It is restricted because the val-

ues of x limited just to things that meet the I condition. This makes it importantly

different from the more familiar unrestricted (57).

(57) ∀x[Ix→ Ex] (FO unrestricted, 0G)

≈ each thingx is s.t. if itx meets the I condition, itx meets the E condition

1.6 Chapter summary and dissertation overview

Semantic hypotheses are often not treated as claims about what speakers men-

tally represent. But speakers do mentally represent linguistic meanings, and those

representations must be encoded in some format. This chapter discussed how to

treat formal semantic claims as psychological hypotheses, and reviewed some exam-

ples from linguistics and psycholinguistics.

Probing representational format can be difficult. The evidential standards are

high and the alternative hypotheses are ubiquitous. But compelling cases can be

made for thinking a given lexical item has one particular “psycho-logical form” over

another. Hopefully this dissertation provides one such case.

The main question will be how the universal quantifiers are represented. Sup-

posing a quantificational determiner like every in some sense relates two predicates,

as in (58), we can ask: How should we specify what occurs on the right side of the

lambda expressions?
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(58) JeveryK = λI.λE.every(I,E)

This chapter introduced a few hypotheses, given again below:

(59) ιG(∀x[Gx ≡ Ix]){ιG′(∀y[G′y ≡ Ey])[G ⊆ G′]} =(53) SO relational, 2G

(60) ιG(∀x[Gx ≡ Ix]){ιG′(∀y[G′y ≡ Gy & Ey])[G = G′]} =(55) SO restricted, 2G

(61) ιG(∀x[Gx ≡ Ix])[E(G)] =(54) SO restricted, 1G

(62) ∀x(Ix)[Ex] =(56) FO restricted, 0G

As a starting point, we will treat the standard semantic account of quantifiers

– Generalized Quantifier Theory – as a psychological hypothesis about their mental

representation. To be sure, this account was not originally intended to be understood

as a claim about mental representation. Nonetheless, it can easily be recast in

mentalistic terms. This “psychologized” version of GQT in (59) holds that sentences

like every frog is green are mentally represented as two-place second-order relations.

This dissertation puts that hypothesis to the test and ultimately argues against it.

Chapter 2 considers the “psycho-logical” distinction between relational and

restricted quantification (i.e., (59) vs. (60) - (62)). Evidence in support of the latter

view comes in large part from a series of psycholinguistic experiments in which

participants are asked to evaluate sentences like every big circle is blue. These

experiments demonstrate that participants mentally represent the group picked out

by the quantifier’s internal argument (the big circles, in this example) but not the

group picked out by its external argument (the blue things, in this example). Given

that the visual system supports encoding multiple groups in parallel, this strategy
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would be surprising if participants understood the sentence to express a relation

between two groups.

The proposed non-relational alternative also receives support from more tra-

ditional linguistic evidence. In particular, it offers a satisfying explanation of the se-

mantic universal “conservativity.” This robust cross-linguistic generalization seems

to hold of all natural language determiners: their internal argument can be du-

plicated within their external argument without a change in truth-conditions. For

example, if every frog is green is true, then every frog is frog that is green will

likewise be true. Plenty of relations fail to be “conservative” in this sense (e.g.,

identity; we can imagine a situation in which the frogs are identical to the green

things is false but the frogs are identical to the green frogs is true). So if de-

terminers express relations, more needs to be said to explain why they are only

able to express certain relations. Alternatively, if determiners are tools for combin-

ing with an argument to form one-place restricted quantifiers, the “conservativity”

generalization follows as a logical consequence.

Chapter 3 considers the “psycho-logical” distinction between first-order (i.e.,

individual-implicating; (62)) and second-order (i.e., group-implicating; (59) - (61))

quantification. Again, evidence comes in part from a series of psycholinguistic ex-

periments in which participants are asked to evaluate quantificational statements.

Though they always seem to represent the extension of the internal argument, they

do so in different ways depending on the particular quantifier used. Sentences in

which universal quantification is indicated by every or all encourage participants

to rely on psychological systems for representing groups (ensemble representations).
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In the very same situations though, sentences in which universal quantification is

indicated by each lead participants to instead rely on their psychological system for

representing individuals (object-file representations).

This distinction between first-order and second-order quantification is also

argued to explain certain purely linguistic phenomena. First, it can help make

sense of why each always gives rise to distributive interpretations in which the

predicate applies to each individual, even in cases where every and all can give

rise to a collective interpretation in which the predicate applies to the group as a

whole. To be sure, this is not to say that facts pertaining to distributivity can be

wholly explained by the first-order/second-order distinction (notions of distributive

predicates and a distributivity operator are still required).

Second, the first-order/second-order distinction offers a new way to view subtle

judgments about the ability of each and every to allow for certain kinds of generic

interpretations. For example, gravity acts on every object can naturally be under-

stood as a general claim that projects beyond the local domain, whereas gravity acts

on each object feels odd, as if we were talking about each individual object in the

universe, rather than stating a principle. This is argued to result from properties of

the cognitive systems (ensemble and object-file representations) that first-order and

second-order representations naturally interact with. If right, these sorts of generic

interpretations have been misdiagnosed as purely linguistic facts, and actually have

explanations that lie outside of grammar.

If the proposed representations for each, every, and all are on the right track,

they suggest that knowing the meaning of these quantifiers requires associating,
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with each pronunciation, a representation specified in a particular format (as op-

posed to, for example, associating them with universal truth-conditions). This raises

an acquisition question: What information in their input would lead a learner to as-

sociate each with a first-order restricted universal concept and every with a logically-

equivalent second-order restricted universal concept?

To begin to answer this question, Chapter 4 provides an initial sketch of how

learners might acquire each and every (all is left for future work). In particular,

an examination of corpora of child-ambient speech reveals relatively low-level dis-

tributional differences between uses of each and every. Most notably, parents often

quantify over times with every (e.g., every time we go to the store, you cry! ) and

individuals with each (e.g., pour milk into each cup). This is argued to result from

the genericity asymmetry discussed in Chapter 3 and an outline for how learners

may be able to use these cues to select the correct representation to pair with every

is presented.

This case study also informs bigger picture questions concerning how meanings

are related to non-linguistic cognition. Much like phonological representations can

be thought of as providing instructions to the motor-planning system, the present

results support the theoretical idea that meaning representations can be thought of

as providing instructions to conceptual systems. Methodologically, the results lend

support to the linking hypothesis – the Interface Transparency Thesis – discussed

in section 1.3.1. And more generally, to the extent that this sort of investigation

is fruitful, it supports the idea that formal approaches to linguistic meaning can

benefit from embracing, instead of avoiding, details of human psychology.
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Chapter 2: Relational vs. restricted quantification

Quantificational determiners are standardly thought to express second-order

relations (see section 1.4 of the previous chapter). This chapter takes on the re-

lational component of this standard view, contrasting it with the alternative that

determiners are devices for creating restricted quantifiers. It argues that restricted

quantification is preferred both on semantic and psychosemantic grounds.

Section 2.1 discusses the logical distinction between relational and restricted

quantification, which comes down to the logical role played by the two arguments.

Section 2.2 presents a series of seven experiments aimed at determining which of

the two arguments participants explicitly represent. In particular, the experiments

use cardinality knowledge as a proxy for argument representation, so the psycho-

logical system for representing cardinality – the Approximate Number System – is

introduced before discussing the results. To preview, when verifying sentences like

every big circle is blue, participants only seem to represent the internal argument

(big circle), not the external argument (blue things), and not the group named

by the conjunction of both arguments (big blue circles). These results points to-

ward quantificational determiners like every having restricted meanings. Section 2.3

then discusses the universal generalization that all determiners in natural language
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have “conservative” meanings. Whereas relational quantification creates difficulties

for explaining this phenomenon, restricted quantification has “conservativity” as a

logical consequence.

2.1 The logical distinction

As discussed in Chapter 1, sentences like every frog is green and Kermit saw

every frog have the structure in (63), where every combines with two arguments,

an internal argument I (e.g., frog) and an external argument E (e.g., t is green or

Kermit saw t, assuming quantifier raising).

(63) S

DP

D

Every

NP

I

VP

E

Both arguments name predicates, and the determiner, in some sense, contributes

details about how the two predicates are related. The question at issue here is how

to specify that relation between predicates.

The standard view, discussed in section 1.4 of the preceding chapter, is that

determiners like every are tools for expressing genuine relations between the two

predicates (i.e., they are special cases of generalized quantifiers). This raises the
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question of why only a small fraction of all possible relations get lexicalized (an

issue raised last chapter in section 1.4.1 and taken up again in this chapter in section

2.3). The alternative, older view, is that determiners are tools for creating restricted

quantifiers. That is, the condition supplied by the internal predicate restricts the

domain in which the expression is evaluated and the condition supplied by the

external predicate adds a further condition that some quantity of the restricted

domain must meet (e.g., all of them, some of them, none of them, most of them,

half of them).

At least since Barwise and Cooper (1981), the relational view has been more

popular in semantics. On this view, quantificational determiners like every express

relations between groups.1 Formally, this idea is often captured in set-theoretic

terms, as in (64), leading to the meaning for every frog is green in (65).

(64) JEveryK = λI.λE.{x : Ix} ⊆ {x : Ex}

≈ the set of I-things is a subset of the set of E-things

(65) {x : frog(x)} ⊆ {x : green(x)}

≈ the set of frogs is a subset of the set of green things

Following the notational conventions established in Chapter 1, we can state

the same idea with the representation of universal quantification in (66).

1 As noted in Chapter 1, the use of “group” instead of “set” is to remain agnostic between
two ways of interpreting second-order variables (like G and G′ in (66)). The relevant distinction
is discussed at length in Chapter 3. In short, “group” can be understood to mean “some sort of
plural entity, like a set” or “a way of grouping the relevant predicate by allowing more than one
value to be assigned to a single variable per assignment.”
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(66) λI.λE.ιG(∀x[Gx ≡ Ix]){ιG′(∀y[G′y ≡ Ey])[G ⊆ G′]}

≈ the thingsG that are I are among the thingsG′ that are E

This representation explicitly groups and relates the predicates named by the two

arguments. The things that satisfy the I condition are grouped under the variable

G (with “ιG(∀x[Gx ≡ Ix])”). The things that satisfy the E condition are grouped

under the variable G′ (with “ιG′(∀y[G′y ≡ Ey])”). And the quantificational content

is specified by requiring that theGs be among/be a subset of theG′s (“[G ⊆ G′]”). In

other words, the representation in (66) specifies the relation between the predicates

supplied by the internal and external arguments in genuinely relational terms. Both

arguments are treated as independent groups and the determiner itself is treated as

a device for relating those groups in a particular way.

But the relation between the predicates supplied by I and E can also be spec-

ified without appealing to a relational notion like “⊆”. Instead, as Higginbotham

and May (1981) put it, the internal argument of the determiner can be thought of as

“restrict[ing] the domain over which the variable bound by [the quantifier] ranges”

(p.54). As Lepore and Ludwig (2007) similarly say: The internal argument of all in

the sentence all men are mortal “functions as if it were a variable restricted to tak-

ing on as values only men” whereas in all things are mortal, the internal argument

things “functions as a variable which can take on anything as a value” (p.61).

There are many ways of cashing out this restricted quantification idea. In set-

theoretic terms, the difference between relational and restricted quantification can

be thought of as the difference between making two independent selections from a
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universe of evaluation and making an initial selection that limits the universe from

which the second selection is made. To illustrate, consider two ways of specifying

every frog is green in (67a) and (67b) (where the “hook” notation “� u” signifies

relativization to a particular universe of evaluation (Westerst̊ahl, 2019)).

(67) a. everyx({x : frog(x)}, {x : green(x)}) � universe

≈ Relative to the universe, everything in the set of frogs is also in the set

of green things

b. everyx({x : green(x)}) � {x : frog(x)}

≈ Relative to the set of frogs, everything is in the set of green things

In (67a), every supplies a two-place relation, which is evaluated with respect to the

entire universe (which may be contextually restricted). In (67b) though, every is a

monadic quantifier akin to everything, but evaluated only with respect to the set of

frogs (plus any relevant contextual restriction). In that way, the internal argument –

frog – restricts the values over which x can range. Both notions involve two sets, but

only on the relational view is the second set (the set of green things) independent

of the first (the set of frogs).

Moving away from set theory, the same intuition about restricted quantifica-

tion can be stated in terms of quantifying over sequences of assignments of values to

variables (Tarski, 1956). Suppose a sequence satisfies (68) iff it assigns x something

green.

(68) green(x)

≈ x is green
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(69) a. 〈x← Kermit; y ←Mr.Toad; z ← Gritty〉 satisfies (68)

b. 〈x← Gritty; y ←Mr.Toad; z ← Kermit〉 doesn’t satisfy (68)

To keep things simple, imagine a domain that only includes Kermit (a green frog),

Mr. Toad (another green frog), and Gritty (an orange creature). The sequence

in (69a) then satisfies (68), because it assigns something green to x; whereas the

sequence in (69b) does not, because it assigns something orange to x.

We can form a new sentence, (70), by adding the prefix “∀x” to (68). This

sentence is satisfied if everything in the domain is green. Formally: (70) is satisfied

by a sequence iff each x-variant of that sequence – i.e., each sequence that is just

like it except with regard to what it assigns to x – assigns x something green.

(70) ∀x[green(x)]

≈ everything is green

(71) a. 〈x← Kermit; y ←Mr.Toad; z ← Gritty〉 doesn’t satisfy (70)

b. 〈x←Mr.Toad; y ←Mr.Toad; z ← Gritty〉 an x-variant of (71a)

c. 〈x← Gritty; y ←Mr.Toad; z ← Gritty〉 an x-variant of (71a)

So assuming the same domain, the sequence in (71a) fails to satisfy (70) because

of the problematic x-variant in (71c). Intuitively, there’s something in the domain

that isn’t green, so (70) isn’t satisfied.

But it is true that all the frogs in the domain are green. So we could imagine

a restricted version of (70) that uses the prefix “∀x(frog(x))” instead of “∀x”.
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Namely, (72) is satisfied by a sequence iff each x-variant of that sequence that

assigns a frog to x also satisfies (70).

(72) ∀x(frog(x))[green(x)]

≈ everything that is a frog is green

(73) a. 〈x← Kermit; y ←Mr.Toad; z ← Gritty〉 satisfies (72)

b. 〈x←Mr.Toad; y ←Mr.Toad; z ← Gritty〉 an x-variant of (73a)

c. 〈x← Gritty; y ←Mr.Toad; z ← Gritty〉 an x-variant of (73a)

This extra restriction – “(frog(x))” – means that the previously problematic

x-variant in (73c) is not considered, because it does not assign a frog to x. After

eliminating this x-variant, the sentence (72) is satisfied by the sequence (73a). In

effect, the domain is restricted to the frogs (just as the universe of evaluation was

restricted to the set of frogs in (67b)).

In a sense, the idea of restricted quantification goes back to Aristotle, who

focused on syllogisms like (74) and (75) (see Parsons (2014) for review).

(74) No frog is orange

Kermit is a frog

∴ Kermit isn’t orange

(75) Every frog is an animal

Every animal is mortal

∴ Every frog is mortal
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For Aristotle, the propositions that serve as the premises and conclusions in the

above syllogisms had a subject/predicate structure (see Chapter 2 of Pietroski

(2018)). Predicates like is orange, is a frog, is an animal, and is mortal were

treated as ways of categorizing different subjects. And quantificational terms like

every frog and no frog played the same logical role as singular terms like Kermit. So

determiners like every and no were not treated as tools for relating two predicates,

but as terms that combine with a noun to yield a subject, to which the predicate

then applies (see section 2.1.1 regarding quantifiers in object position).

In a translation of a commentary on Aristotle, Hodges (2012) puts the point

like this: “Determiners ... combine with the subject terms and indicate how the

predicate relates to the number of individuals under the subject; ... Every man is

an animal signifies that animal holds of all individuals falling under man” (p.247).

With these three ways of thinking about restricted quantification in mind, we

can capture the idea using the formalism introduced in Chapter 1. In particular,

(76) is a possible representation for every that eschews relations in favor of restricted

quantification.

(76) λI.λE.ιG(∀x[Gx ≡ Ix])[E(G)]

≈ the thingsG that are I are such that they are E

Here, only the things that satisfy the I condition are grouped (under the variable

G). The E predicate does not name an independent group, it supplies a further

condition that the group G must meet. That is, the whole sentence obtains when

the things that meet the I condition also meet the E condition. For example, Every
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frog is green holds just in case the frogs all meet the additional condition of being

green. The representation in (76) is thus not relational, but restricted.2

In sum, the main difference between relational and restricted quantification

is in how the arguments are treated. For relational quantification, the quantifier’s

two arguments are logically on a par. The internal and the external arguments are

both terms in a relation. The determiner specifies which relation. On the restricted

view, the quantifier’s arguments serve different logical roles. The internal argument

restricts the domain of quantification in some sense, and the external argument

supplies a further condition that some quantity of this restricted domain needs to

meet. The determiner specifies the quantity.

Chapter 1 discussed some of the initially promising motivations for the rela-

tional view and how they are undercut by current developments in semantic theory.

We saw in section 1.4.1 that the need for increased expressive power to deal with

proportional quantifiers like most can be provided by restricted quantification as well

as generalized quantifiers (and that the latter over-generates by design). And we

saw in section 1.4.2 that event semantics tells against an analogy between verbs-as-

relations and determiners-as-relations. Likewise, section 1.4.3 showed that restricted

2 A representation could still be restricted in the relevant sense even if it relates two groups.
For example, (77) is genuinely relational way to represent universal quantification, through the
identity relation, but (78), which also uses identity, is restricted in the relevant sense.

(77) λI.λE.ιG(∀x[Gx ≡ Ix]){ιG′(∀y[G′y ≡ Iy & Ey])[G = G′]} (relational)
≈ the thingsG that are I are identical to the thingsG′ that are I and E

(78) λI.λE.ιG(∀x[Gx ≡ Ix]){ιG′(∀y[G′y ≡ Gy & Ey])[G = G′]} (restricted)
≈ the thingsG that are I are identical to the thingsG′ that are both one of themG and E

In particular, the second group (G′) in (78) is not an independent group, but one that is in part
defined by the first group, G. In other words, G′ is restricted by G in (78) but is completely
independent of G in (77).
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quantification creates no mismatch between logical and grammatical form. After a

brief discussion of dealing with quantifiers in object position (section 2.1.1), the

remainder of this chapter offers some positive reasons for returning to the hypoth-

esis that natural language determiners – or, at the least, that every and all – are

mentally represented as devices for creating restricted quantifiers.

2.1.1 Quantifiers in object position

As discussed above, restricted quantification preserves the Aristotelian idea of

a subject/predicate distinction. In a sentence like every frog is green, the subject

every frog sets the domain and the predicate is green is predicated exhaustively of

that restricted domain. Relational quantification jettisons this idea in favor of the

Fregean alternative that both arguments – frog and is green – are logically on a par.

Of course, quantifiers like every frog can appear in sentences like Kermit saw

every frog. This might at first seem like an issue for the restricted view: Can we

retain the idea that every frog is the subject even when it appears inside of a pred-

icate like saw every frog? In short, yes, assuming quantifier raising (Higginbotham

and May 1981; May 1985).

In particular, assume that when the quantifier is in subject position, like in

(79), every ’s internal argument is frog and its external argument is ti is green.

Likewise, when the quantifier is in object position, like in (80), every ’s internal

argument is frog and its external argument is Kermit saw ti. In both cases, ti is the

trace of displacement left by quantifier raising, which is co-indexed with the raised
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quantifier every frog.

(79) Every frog is green S

DPi

D

Every

NP

frog

VP

ti is green

(80) Kermit saw every frog S

DPi

D

Every

NP

frog

VP

Kermit saw ti

Given these logical forms, we can still treat every frog as a restricted quantifier

– and consequently as the subject of the sentence – even when it initially occurs

within a predicate. The indexed trace ti is treated as a variable, so Kermit saw ti

is analogous to Kermit saw iti or Kermit saw x. The trick is to say, as part of the

rule of interpretation, that because ti is co-indexed with the displaced quantifier,

the values of this variable are restricted by every ’s internal argument as well. That

is, ti = x.

Taking the approach of quantifying over sequences of assignments of values to
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variables, (80) can be treated the same way as (72) from earlier. Namely, (80) is

represented as (81).

(81) ∀x(frog(x))[KermitSaw(x)]

≈ everything that is a frog is s.t. Kermit saw it

The whole sentence is true, relative to an assignment A, just in case every x-variant

of that assignment makes the embedded open sentence Kermit saw x true. And

the embedded sentence by itself is true, relative to A, just in case Kermit saw the

value assigned to x. Put another way, the values that x can take on are restricted

to frogs, and the whole sentence is true just in case Kermit saw x is true for any

value of x.

In sum, the fact that determiners often appear in object position creates no

issues for the idea that they are devices for creating restricted quantifiers so long as

quantifiers raise, as is standardly assumed (though see Jacobson 1999, 2014). We

now turn to psycholinguistic and linguistic reasons for preferring the restricted view.

2.2 Psychosemantic evidence: Which arguments are represented?

Given the linking hypothesis discussed in section 1.3.1 of the previous chapter

(Lidz et al. (2011)’s Interface Transparency Thesis), these two views make different

predictions about how participants will verify quantificational sentences. If quan-

tifiers like every have relational meanings (like (66), the GQT treatment), then

participants should be biased to verify every-sentences by representing and relating

both arguments. The relational representation in (82), for example, implicates two
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independent groups, the big circles (G) and the blue things (G′), and relates them

with “⊆”.

(82) Every big circle is blue

= ιG(∀x[Gx ≡ big-circle(x)]){ιG′(∀y[G′y ≡ is-blue(y)])[G ⊆ G′]}

This suggests a straightforward verification procedure: represent the big circles and

the blue things and check whether the former is a subset of the latter. Behaviorally

then, this predicts that participants will treat the two arguments symmetrically, as

big circles and is blue play the same logical role in the semantic representation.

On the other hand, if quantifiers have restricted meanings that treat the ar-

guments as logically asymmetric (like (76) from earlier), then participants should

be biased to treat the extensions of those arguments as psychologically asymmet-

ric. For example, the particular restricted representation in (83) implicates just one

group, the big circles (G).

(83) Every big circle is blue

= ιG(∀x[Gx ≡ big-circle(x)])[is-blue(G)]

It does not call for treating the blue things as an independent group to which the big

circles are related. This suggests a verification strategy that involves representing

the big circles, then checking if they meet the condition supplied by the second

predicate (i.e., checking if they are blue).

To be sure, there could also be a restricted representation that implicates more

than one group – see note 2 above – but even so, the external argument, on its own,

would not be predicted to be explicitly represented.
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In terms of strategies they suggest then, the crucial difference between the re-

lational (82) and the restricted (83) is whether the external argument is represented.

The following seven experiments test this prediction. We will see that evaluating

sentences with every or all causes participants to represent the determiner’s in-

ternal argument, but not its external argument. This suggests that the semantic

representations are restricted, not relational. We will also see, perhaps surprisingly,

that participants do not represent the conjunction of the determiner’s internal and

external arguments (e.g., the big blue circles). So in addition to being restricted in

the relevant sense, the semantic representations of every and all seem to implicate

only a single group.

2.2.1 Cardinality knowledge as a proxy for argument representation

These experiments, some of which were first reported in Knowlton et al.

(2021b), use cardinality knowledge as proxy for whether participants mentally repre-

sented a given argument during sentence evaluation. The idea is that if the argument

is represented as an independent group, participants should be able to estimate the

number of members in that group. This is consistent with how groups are under-

stood in cognitive psychology, a topic discussed at length in Chapter 3.

In particular, participants in these experiments were shown dot-displays like

the one in Figure 2.1. They were asked to evaluate sentences like every big circle

is blue with respect to these displays. After answering true or false, the image

disappeared, and participants were asked to recall the cardinality of some group of
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circles from the display (e.g., how many big circles were there? ).

How many 
big circles 

were there? 

How many 
blue circles 
were there? 

How many 
big blue circles 

were there? 

Every big circle 
is blue

Every big circle 
was blue

F=FALSE            J=TRUE

Figure 2.1: Trial structure of Experiment 1 (and subsequent experiments in this
chapter). Some follow-up cardinality questions probed the internal argument (big),
others probed the external argument (blue), and others probed the conjunction of
the two (big blue).

Some follow-up cardinality questions targeted the internal argument (e.g., big

circles, in this case), others targeted the external argument (e.g., blue circles), and

others targeted the conjunction of both arguments (e.g., big blue circles). Partic-

ipants’ performance on these cardinality questions was compared to their perfor-

mance on a baseline task, using the design in Halberda et al. (2006). Participants

were shown the same sorts of dot-displays and asked to estimate the cardinality of

some group from the display, but they were told which group to focus on prior to

being shown the image. They might be asked, for example, how many big circles

are there?, then view the image and submit their response. Performance on this

“probe-before” baseline task represents the best possible cardinality estimates the

visual system can afford, given the details of these displays. Moreover, comparing

responses to a baseline task controls for the possibility that different groups are dif-
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ferentially difficult (e.g., given the vibrant colors used, color is likely a more salient

cue than size for grouping circles in these experiments).

To the extent that participants represent an argument, they should show sim-

ilar cardinality-estimation performance on the baseline task and the sentence ver-

ification task. That is, if a participant is able to estimate the cardinality of, say,

the big circles just as well after evaluating a sentence like every big circle is blue

as they are when they are told ahead of time to estimate the cardinality of the big

circles, it strongly suggests that they attended to and represented the big circles

when evaluating the sentence. And since participants are able to enumerate up to

three groups of circles in parallel (Halberda et al., 2006), there is no non-linguistic

pressure that would prevent them from accurately estimating the cardinalities of

the big circles and the blue circles if they had adopted a verification strategy that

relied on representing and relating the internal and external arguments.

Experiment 1 (section 2.2.3) shows that after evaluating sentences with an

internal argument defined by a size and an external argument defined by a color (e.g.,

every big circle is blue), participants know the cardinality of the group defined by

that size (e.g., big) as well as their visual systems will allow. But after evaluating the

same sentence, they do not know the cardinality of the group defined by that color

(e.g., blue) or the cardinality of the group defined by the conjunction of both features

(e.g., big blue). Experiment 2 (section 2.2.4) replicates this result in sentences with

all instead of every. Experiment 3 (section 2.2.5) shows that the effect goes away

when participants are asked to evaluate sentences in which the focus operator only

replaces every or all, suggesting that the effect may be unique to quantificational
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determiners.

Experiment 4 (section 2.2.6) replicates the finding that only the determiner’s

internal argument is represented using sentences in which the arguments are flipped

such that the internal argument is defined by a color and the external argument

is defined by a size (e.g., following every blue circle is big, participants know the

cardinality of the blue circles but not the big circles or the big blue circles). In

a similar vein, Experiment 5 (section 2.2.7) replicates the result with only using

sentences that swap size and color in a similar way (e.g., evaluating only blue circles

are big leads to below-baseline cardinality estimation performance across the board).

Experiment 6 (section 2.2.8) controls for the possibility that the way the pred-

icates are introduced is responsible for the effect, by testing sentences in which the

relevant portion of the internal argument is introduced by a relative clause, as in

every circle that is big is blue.

Experiment 7 (section 2.2.9) then replicates the initial result in a paradigm

that offers participants the ability to opt out of particular cardinality questions by

pressing an “I don’t know!” button. Participants opt out at higher-than-baseline

rates when cardinality questions probe the external argument or the conjunction of

the internal and external arguments, but they opt out at the baseline rate when

asked about the internal argument.
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2.2.2 Measuring cardinality knowledge

Accurately measuring cardinality knowledge requires understanding details of

the cognitive system that underpins numerical estimation: the Approximate Number

System (ANS; for review, see Feigenson et al. (2004) and Dehaene (2011)). The ANS

is an evolutionarily ancient system for representing and comparing numerosities.

The representations that this system generates are standardly modeled as Gaussian

tuning curves ordered along an internal scale – the “mental number line” – as in

Figure 2.2.3 Perceived numerosities (e.g., a certain number of shapes presented

on a computer monitor) “activate” different parts of the scale, which is linearly

ordered such that larger numerosities are represented farther to the right. Numerical

estimates of a given numerosity can be thought of as a sample from the relevant

“activation pattern.” So if the participant modeled by Figure 2.2 were shown nine

items, they would most often respond “nine,” less often respond “eight” or “ten,”

and less often still, “seven” or “eleven”.

The standard deviation of these “activation patterns” increases linearly with

the mean. The distribution resulting from being shown nine things, for example, is

wider than the distribution resulting from being shown four things. This property

of the model is known as scalar variability and it captures the fact that ANS repre-

sentations are ratio-dependent (e.g., 9 and 10 are just as difficult to distinguish as 90

and 100, despite the latter having a larger absolute difference). It also explains why

3 The ANS shares a representational format with many other systems. As such, this model
can be applied to other psychological dimensions, like loudness, brightness, and distance (see Odic
et al. (2016) for a helpful review).
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Figure 2.2: The standard model of Approximate Number System representations.
Numerals in squares represent the numerosity presented (e.g., the number of shapes
presented in an experiment), the distributions below each numeral represent the
level of “activation” along each point of the mental number line.

participants are more confident about smaller numerosities: A narrower distribution

means less overlap with nearby numbers on the mental number line.

The rate of increase of the standard deviation is subject to a good deal of

individual variation, and individuals’ precision correlates with their performance on

the math portion of college-entrance exams (Libertus et al., 2012). It also develops

throughout the lifespan, such that young adults have more precise ANS represen-

tations than children (Halberda and Feigenson, 2008) and peak in their precision

around age 30 (Halberda et al., 2012). So, in practice, some individuals have nar-

rower “activation patterns” than others (though both would, on average, offer the

same response if shown some given numerosity many times).

Figure 2.2 is also an idealization in another important sense: The relevant
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signal from the environment is often compressed in the process of building a rep-

resentation of numerosity, leading to underestimation (Krueger, 1984; Odic et al.,

2016; Stevens, 1964). That is, individuals usually show some degree of inaccuracy,

even on average. The distribution of activation that results from being shown, say,

nine things may be centered on a value below 9 on the mental number line, as in

Figure 2.3.4 So instead of answering “nine” on average, participants may system-

atically underestimate and answer “six”. The degree of underestimation increases

with the numerosity based on the psychophysical power law: estimate = signalβ,

where β is the level of accuracy (in Figure 2.2, β = 1; in Figure 2.3, β = 0.8).

Taking both the internal “noise” and signal compression into account, numer-

ical estimates (y) in response to some numerosity (x) are modeled as the Gaussian

distribution in (84), where β is the “accuracy” parameter that represents the degree

of signal compression, σ is the rate of growth of the standard deviation (i.e., an

individual’s precision), and α is a scaling factor.

(84) y ∼ N
(

mean = αxβ

stdev = σ ×mean

)

In all of the experiments reported below, we use participants’ accuracy – β – as the

dependent measure. An accuracy closer to 1 reflects better cardinality estimation,

whereas an accuracy below 1 reflects some degree of underestimation. As noted

above, cardinality estimation accuracy on the critical sentence verification task can

4 Instead of thinking of underestimation as reflecting signal compression, it may be thought of
as reflecting a larger response bin for each numerosity (Izard and Dehaene, 2008). For example,
the distribution of activation that results from being shown nine things may still be centered over
9 on the mental number line, but 9 on the mental number line may be incorrectly mapped to the
verbal response “seven”.
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Figure 2.3: The standard model of ANS representations, given an internal β of .8.
Numerals in squares represent the numerosity presented (e.g., the number of shapes
presented in an experiment), the distributions below each numeral represent the
level of “activation” along each point of the mental number line. Because accuracy
is below 1, the signal is compressed (e.g., presenting nine items leads to a pattern
of activation centered on a mental number line value below 9).

be compared against accuracy on a baseline task that indexes the visual system’s

best possible performance given these particular displays (i.e., the expected rate of

signal compression).

2.2.3 Experiment 1: every [size] circle is [color]

Participants: 53 participants were recruited online using Amazon Mechan-

ical Turk. All passed an English-screener prior to the actual task. Two partici-

pants were excluded from further analysis for performing at chance or below on the

true/false portion of the experiment and three were excluded for taking longer

than five seconds, on average, to respond to cardinality questions. This left 48
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participants.

Materials: Sentences in the verification task had the form in (85).

(85) Every {big/medium/small} circle is {red/yellow/blue}

Half of these sentences were true with respect to the display and half were false.

Displays consisted of a grey background with red, yellow, and blue circles that

could be big, medium, or small, as in Figure 2.1. Medium circles had grey holes

in the middle, to make them more distinguishable from the other two sizes (Chen,

1982, 2005). The circle sizes and colors were labeled during the instructions to

ensure that they could be correctly identified by participants.

Each display contained up to 48 circles of from the nine possible size/color

combinations. Each size/color combination contained up to 10 circles, and there

were always six size/color combinations for which at least one circle was present.

On trials that were false, there were between one and three disconfirming circles

and most of the circles confirmed the statement (i.e., there were no cases where the

sentence to evaluate was every big circle is blue and the display contained no big

blue circles). The baseline cardinality estimation task used images generated with

these same constraints.

Follow-up cardinality questions in the verification task were distributed in the

following way. Four probed the target size (e.g., big circles if the initial sentence

was every big circle is blue). Four probed the target color (e.g., blue circles). Four

probed the target size/color combination (e.g., big blue circles). Six filler questions

were included as well: Two probed a distractor size (e.g., small circles), two probed

87



a distractor color (e.g., yellow circles), and two probed a distractor conjunction (e.g.,

medium red circles).

Procedure: Participants first completed 15 trials of the baseline cardinality

estimation task. They were first presented with a question that named a color, size,

or color/size combination (e.g., how many big circles are there? ). After pressing

“space,” the circles were displayed for one second, followed by a reiteration of the

question (e.g., how many big circles were there? ). Participants could then type their

answer and move on to the next trial.

After completing the baseline task, participants were then given 18 trials of

the verification task. They were presented with a statement (e.g., every big circle

is blue) and after pressing “space,” were shown a display of circles for one second.

The statement then returned to the screen and participants evaluated it as true

or false relative to the display by pressing “J” or “F” on their keyboard. After

offering their true/false response, they were given a follow-up cardinality question

(e.g., how many big circles were there? ) and typed in their guess before moving to

the next trial.

Predictions: As discussed above, relational and restricted meanings suggest

different verification strategies. If every has a relational meaning, then both argu-

ments should be treated on a par, so when evaluating a sentence like every big circle

is blue, participants should be biased to represent and relate the big circles and the

blue circles.5 As a consequence, participants should have high accuracy when asked

5 More accurately, the relational view predicts that they should represent the blue things. But
in this experimental context, all of the relevant things are circles.
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about the cardinality of a group defined by the target size or the target color. That

is, they should be close to their baseline accuracy for the relevant type of group.

In contrast, if every has a restricted meaning, the arguments should be treated

asymmetrically. In particular, the things picked out by the external argument (the

blue circles) should not be explicitly represented. As a consequence, participants

should have lower accuracy on the verification task than baseline when asked about

the cardinality of a group defined by the target color. On the other hand, the

things picked out by the internal argument (the big circles) should be explicitly

represented if the representation proposed in (83) is the meaning of every big circle

is blue.6 Participants should thus have high accuracy (relative to baseline) when

asked about the cardinality of the group of circles picked out by the target size.

Predictions are less clear when it comes to the conjunction of both target

features (e.g., the big blue circles). A representation might still be restricted even if

it implicates a group whose members are the satisfiers of both the predicate supplied

by the internal argument and the predicate supplied by the external argument (see

note 2). Of course, there are could also be a genuinely relational representation that

relates the big circles and, as an independent group, the big blue circles in a sentence

like every big circle is blue (see section 2.3.3 for a proposal along these lines). So

6 The prediction of restricted quantification in general is that the internal argument will be
represented to the exclusion of the external argument, not that the internal argument will be
mentally grouped. It is also possible for a representation to be restricted but to not predict that
the things picked out by the internal argument will be represented in a way that supports cardinality
estimation. In particular, the representation in question might lack any variables that group the
satisfiers of a predicate together (e.g., the first-order “λI.λE.∀x(Ix)[Ex]”). This possibility is
discussed at length in Chapter 3, which argues that while a restricted second-order representation
is the meaning of every, a restricted first-order representation is the meaning of each. This makes
the prediction that each-sentences, unlike every-sentences, will lead participants to represent the
internal argument as individual objects, but like every-sentences, that the external argument will
not be explicitly represented.
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finding that participants accurately recall the cardinality of the conjunction group

would leave the relational or restricted question unsettled.

On the other hand, finding that participants are able to recall the cardinality

of the group named by the internal argument but unable to recall the cardinality

of the conjunction group would constitute a striking result. After all, whenever the

sentence under evaluation is true, the answers to these two cardinality questions

will be identical. If there are nine big circles and it’s true that every big circle is

blue, then there are nine big blue circles. But if participants represent these every-

sentences as the restricted second-order single-group representation in (83), then the

conjunction group will not be explicitly implicated in their mental representation of

the sentence. Consequently, they should not be expected to have a good estimate

of its cardinality readily available in memory (though they may be able to reason

their way to the answer if given enough time to reflect on it). Such a result would

offer strong evidence in favor of the particular restricted representation in (83).

Results: On the true/false portion of the verification task, participants

correctly evaluated 74% of the sentences. On the cardinality estimation portion,

their responses, plotted in Figure 2.4, bear out the predictions of the restricted

quantification hypothesis.

In particular, a difference score for each question type was calculated by tak-

ing participants’ cardinality estimation accuracy following sentence verification and

subtracting their baseline cardinality estimation accuracy. Each difference score

was compared against 0 with a Wald test, so a significant difference indicates that

participants were worse than their visual system would allow when asked to give
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Figure 2.4: Cardinality estimation difference scores from Experiment 1. A difference
score of 0 reflects best possible performance given these displays. Accuracies when
asked about groups named by size, color, or both after evaluating sentences of the
form every [size] circle is [color] were calculated and subtracted from accuracy in a
baseline number estimation task using the same dot-displays. Error bars reflect the
square root of the sum of squared errors around both accuracies.

cardinality estimates of the relevant circles. We find that participants know the

cardinality of the group picked out by the internal argument (e.g., big circles): their

difference score is not significantly lower than 0 (χ2 = 0.007, p = .93). However,

participants were significantly less accurate than baseline when asked about the

cardinality of the group picked out by the external argument (e.g., blue circles)

(χ2 = 13.13, p < .001) and when asked about the group picked out by the relevant

conjunction of features (e.g., big blue circles) (χ2 = 27.09, p < .001).

As noted above, the conjunction result is especially impressive. It shows that

after evaluating a sentence like every big circle is blue participants know the cardi-

nality of the big circles but not the cardinality of the big blue circles. In half the
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trials of the experiment, the sentence under evaluation was true so the cardinality

of these two groups was identical. Even so, considering just the true trials, we find

the same result, as seen in Figure 2.5. Participants knew the cardinality of the group

picked out by the internal argument (χ2 = 0.205, p = .65) but not the conjunction

group (χ2 = 15.41, p > .001) (and, not the cardinality of the group picked out by

the external argument (χ2 = 9.87, p < .01)).
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Figure 2.5: Cardinality estimation difference scores from Experiment 1 on the true
trials. In these cases, the correct answer when asked about the internal argument and
the conjunction of the internal and external arguments was identical. A difference
score of 0 reflects best possible performance given these displays. Accuracies when
asked about groups named by size, color, or both after evaluating sentences of the
form every [size] circle is [color] were calculated and subtracted from accuracy in a
baseline number estimation task using the same dot-displays. Error bars reflect the
square root of the sum of squared errors around both accuracies.

In sum, after evaluating a sentence like every big circle is blue, participants

know the cardinality of the big circles as well as their visual systems will allow; just

as well as when they were instructed ahead of time to attend to and enumerate
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the big circles. But after evaluating the same sentence and seeing the same image,

participants were unable to accurately report the cardinality of the blue circles or the

cardinality of the big blue circles. These results suggest that participants are only

representing the internal argument, in line with the predictions of every having a

restricted meaning, not a relational one. Moreover, the lack of representation of the

conjunction of internal and external arguments provides support for the particular

restricted representation that only implicates a single group. And as noted in section

2.2.1, this pattern of performance is likely not due to a constraint from the visual

system: Halberda et al. (2006) show, using a similar task, that participants are able

to enumerate up to three groups of circles in parallel with no additional working

memory cost.7

While these results support the proposed restricted meaning for every, it might

be that every is an outlier in this respect and that other quantifiers are relational.

As a step toward answering the question of how far to generalize the restricted

quantification hypothesis, Experiment 2 substitutes every with all.

2.2.4 Experiment 2: all [size] circles are [color]

Participants: 50 participants were recruited online using Amazon Mechanical

Turk. All passed an English-screener prior to the actual task. One participant was

excluded from further analysis for performing at chance on the true/false portion

7 One thing that has not yet been empirically tested is whether participants are able to enumer-
ate, in parallel, multiple groups with overlapping membership. In Halberda et al. (2006)’s displays,
each group was defined by a different color, meaning each group was composed of distinct mem-
bers. Here, membership overlaps: A small red circle counts toward the number of small circles,
red circles, and small red circles.
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of the experiment and one was excluded for taking longer than five seconds, on

average, to respond to cardinality questions. This left 48 participants.

Materials: Materials were identical to Experiment 1 except that every was

replaced by all, so sentences had the form in (86).

(86) All {big/medium/small} circles are {red/yellow/blue}

Procedure: The procedure was identical to that of Experiment 1.

Predictions: If all is like every in having a restricted meaning, we should

observe the same results: high accuracy when asked to estimate the cardinality of

a group defined by size and low accuracy when asked to estimate the cardinality of

a group defined by color.

Results: As seen in Figure 2.6, this prediction was borne out: The same

pattern of results is observed in Experiment 2 as was observed in Experiment 1. In

particular, participants’ difference score did not significantly differ from 0 on cardi-

nality questions that probed the target size (χ2 = 0.788, p = .375). But participants

were significantly less accurate than baseline when a cardinality question probed

the target color (χ2 = 24.67, p < .001) or the relevant combination of size and color

(χ2 = 25.44, p < .001). Less importantly, their performance on the true/false

portion of the verification task was comparable as well (74.1% correct).

This replication with a second quantifier suggests that a restricted represen-

tation is not unique to every. Whether it generalizes beyond universal quantifiers

to other determiners will be an interesting avenue for future research. As discussed

in section 2.3, all determiners having restricted representations as their meanings
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Figure 2.6: Cardinality estimation difference scores from Experiment 2. A difference
score of 0 reflects best possible performance given these displays. Accuracies when
asked about groups named by size, color, or both after evaluating sentences of the
form all [size] circles are [color] were calculated and subtracted from accuracy in a
baseline number estimation task using the same dot-displays. Error bars reflect the
square root of the sum of squared errors around both accuracies.

would have important linguistic consequences.

In the meantime, alternative explanations for the present results loom large.

Perhaps, for example, participants always represent the first noun phrase they en-

counter in a sentence, regardless of the sentence’s semantic representation. To rule

out this possibility, Experiment 3 replaces the determiner with the focus operator

only, which does not take arguments like determiners.

2.2.5 Experiment 3: only [size] circles are [color]

Participants: 52 participants were recruited online using Amazon Mechanical

Turk. All passed an English-screener prior to the actual task. Four participants were
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excluded from further analysis for performing at chance or below on the true/false

portion of the experiment and 1 was excluded for taking longer than five seconds,

on average, to respond to cardinality questions. This left 47 participants.

Materials: Materials were identical to Experiment 1 except that every was

replaced by only, so sentences had the form in (87).

(87) Only {big/medium/small} circles are {red/yellow/blue}

Procedure: The procedure was identical to that of Experiments 1 and 2.

Predictions: If the results of Experiments 1 and 2 arise because [size] circle(s)

is the first argument of a determiner that has a restricted meaning, then those results

should not replicate here. This is because only is not a quantificational determiner,

but a focus operator (see Herburger (2000) for discussion and comparison with even).

Unlike a determiner, only can be inserted at any point in a sentence like (88) (cf.

every, which could only be added by removing a the).

(88) The cat thought that the dog found the bone

Moreover, only is focus-sensitive in a way that determiners like every are

not. For example, (89a), with focus on coffee, cannot describe a situation in which

students also ordered tea or soda. Likewise, (89b), with focus on ordered, cannot

describe a situation in which students also brewed or paid for coffee.

(89) a. Students only ordered coffeeF

b. Students only orderedF coffee

(90) a. Every student ordered coffeeF
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b. Every student orderedF coffee

But the every-variants in (90) say nothing about the alternatives: (90a) may describe

a situation where every student ordered coffee and some also ordered tea. And (90b)

may describe a situation where every student ordered and paid for their coffee. So

even though the experimental sentences in (87) look similar to the every- and all -

sentences used in Experiments 1 and 2, they are not sentences in which [size] circles

serves as the internal argument of a determiner.

This allows only-sentences to serve as a control. If the results of Experiments 1

and 2 merely arise because participants always represent the first NP they encounter

in a way that supports cardinality estimation, and have nothing to do with the

semantic representation of the sentence, then parallel results should be observed

here. That is, participants should have high accuracy when asked to enumerate a

group defined by a size, but low accuracy when asked to enumerate a group defined

by a color or the conjunction of both features.

Results: Contra the predictions of this deflationary account, participants

showed low cardinality estimation accuracy across the board, as seen in Figure

2.7. They performed significantly worse than baseline on questions probing size

(χ2 = 10.67, p < .01), color (χ2 = 62.08, p < .001), or a size/color combination

(χ2 = 14.99, p < .001).

This poor performance on the cardinality estimation portion of the task does

not reflect overall task difficulty, as participants showed a similar level of accuracy

at evaluating the initial true/false question as in Experiments 1 and 2 (73.6%).
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Figure 2.7: Cardinality estimation difference scores from Experiment 3. A difference
score of 0 reflects best possible performance given these displays. Accuracies when
asked about groups named by size, color, or both after evaluating sentences of the
form only [size] circles are [color] were calculated and subtracted from accuracy in
a baseline number estimation task using the same dot-displays. Error bars reflect
the square root of the sum of squared errors around both accuracies.

These results militate against an alternative explanation for the results of

Experiments 1 and 2: participants simply represent the first NP they encounter

in these sorts of experimental contexts. Instead, it seems that there is something

important about being the internal argument of a determiner. Of course, in both

Experiments 1 and 2, this argument was defined by size. Experiment 4 further

generalizes the paradigm by switching the internal and external arguments.

2.2.6 Experiment 4: every [color] circle is [size]

Participants: 51 participants were recruited online using Amazon Mechani-

cal Turk. All passed an English-screener prior to the actual task. Three participants
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were excluded for taking longer than five seconds, on average, to respond to cardi-

nality questions. This left 48 participants.

Materials: Materials were identical to Experiment 1 except that the internal

argument was defined by color and the external argument was defined by size. This

meant that sentences had the form in (91).

(91) Every {red/yellow/blue} circle is {big/medium/small}

Procedure: The procedure was identical to that of Experiments 1-3.

Predictions: As noted above, in both Experiments 1 and 2 the internal

argument was defined by a size and participants had accurate cardinality estimates

of groups defined by that size. But to the extent that the results reflect restricted

quantification, they should flip when the arguments are flipped: If the internal

argument is defined by a color and the external argument is defined by a size,

participants should instead represent the group defined by the relevant color.

Results: Consistent with this prediction, participants did not significantly

differ from baseline when asked a cardinality question probing target color (χ2 =

2.53, p = .112), but they were significantly less accurate when asked about the

target size (χ2 = 16.16, p < .001) or the relevant conjunction of color and size

(χ2 = 23.69, p < .001). These results can be seen in Figure 2.8.

Participants seemed to find this task easier than the task in Experiments 1

and 2, as evidenced by their higher accuracy on the true/false portion of the

verification task (86.3% correct). This is likely because color is a more salient cue

than size in these stimuli (see Experiment 7 in section 2.2.9 for corroboration of this
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Figure 2.8: Cardinality estimation difference scores from Experiment 4. A difference
score of 0 reflects best possible performance given these displays. Accuracies when
asked about groups named by size, color, or both after evaluating sentences of the
form every [color] circle is [size] were calculated and subtracted from accuracy in a
baseline number estimation task using the same dot-displays. Error bars reflect the
square root of the sum of squared errors around both accuracies.

point).

In any case, the present results further confirm that the results in Experiments

1 and 2 did not reflect something special about size. That is, given the poor accuracy

for size questions in Experiments 3 and 4, it is not the case that participants always

represent groups defined by size given these displays. Instead, they seem to represent

the internal argument of determiners. To complete the paradigm, Experiment 5

again tests only-sentences, but with the order of the NPs flipped.
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2.2.7 Experiment 5: only [color] circles are [size]

Participants: 55 participants were recruited online using Amazon Mechanical

Turk. All passed an English-screener prior to the actual task. Six participants were

excluded from further analysis for performing at chance or below on the true/false

portion of the experiment and one was excluded for taking longer than five seconds,

on average, to respond to cardinality questions. This left 48 participants.

Materials: Materials were identical to Experiment 3 except that the color was

mentioned first and size was mentioned second (as in Experiment 4). This meant

that sentences had the form in (92)

(92) Only {red/yellow/blue} circles are {big/medium/small}

Procedure: The procedure was identical to that of Experiments 1-4.

Predictions: Given the conclusions drawn from Experiments 3 and 4, par-

ticipants here should show a lack of cardinality knowledge across the board.

Results: In line with this prediction, participants were significantly less

accurate than baseline when asked about a color (χ2 = 30.15, p < .001), size

(χ2 = 5.14, p < .05), or color/size combination (χ2 = 8.34, p < .01), as seen in

Figure 2.9. Accuracy on the true/false portion was comparable to that in the

preceding experiments (73%).

This experiment serves as a conceptual replication of Experiment 3. While

evaluating sentences with every or all drives participants to mentally represent the

internal argument, evaluating similar (at least on the surface) sentences with only
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Figure 2.9: Cardinality estimation difference scores from Experiment 5. A difference
score of 0 reflects best possible performance given these displays. Accuracies when
asked about groups named by size, color, or both after evaluating sentences of the
form only [color] circles are [size] were calculated and subtracted from accuracy in
a baseline number estimation task using the same dot-displays. Error bars reflect
the square root of the sum of squared errors around both accuracies.

does not lead to the same behavior.

Still, a remaining concern is that in the quantificational sentences used in Ex-

periments 1, 2, and 4, there is a surface-level asymmetry between the two predicates.

The internal argument is introduced as an NP (e.g., big circle or blue circle) whereas

the external argument is introduced as a VP (e.g., is big or is blue). Perhaps the

differences in how these predicates are introduced plays a role in driving attention

to the internal but not the external argument. To control for this possibility, Ex-

periment 6 equates the predicates by introducing the relevant part of the internal

argument with a relative clause.
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2.2.8 Experiment 6: every circle that is [size] is [color]

Participants: 53 participants were recruited online using Amazon Mechanical

Turk. All passed an English-screener prior to the actual task. Five participants were

excluded from further analysis for performing at chance or below on the true/false

portion of the experiment. This left 48 participants.

Materials: Materials were identical to Experiment 1 except that the relevant

predicate in the first argument was introduced with a relative clause, so sentences

had the form in (93).

(93) Every circle that is {big/medium/small} is {red/yellow/blue}

In these sentences, the internal argument is circle that is {big/medium/small}. By

adding a relative clause, the relevant predicate – is {big/medium/small} – is intro-

duced in the same way, on the surface, as the relevant predicate in the external

argument (is {red/yellow/blue}). In this way, the two arguments are equated in

terms of their surface syntax.8

Procedure: The procedure was identical to that of Experiments 1-5.

Predictions: If the surface-level differences are responsible for the asymmetry

in terms of how participants treat the two arguments, then the result should disap-

pear as both predicates are introduced in the same way (e.g., is big for the internal

argument and is blue for the external). But if a restricted meaning is responsible

for the asymmetry, then this manipulation fail to make a difference. We should find

8 Another way to achieve this would be to test sentences of the form Every big one is a blue
one, given contextual support that one is anaphoric to circle. This version is currently underway.
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the same effect as in Experiment 1: Participants should have high accuracy on size

questions and low accuracy on color and conjunction questions.

Results: Results from the follow-up cardinality questions are plotted in Figure

2.10. As predicted, there was no significant difference between baseline performance

and post-verification performance on questions that probed size (χ2 = 0.407, p =

.524). Moreover, participants did not know the cardinality of the group picked out

by the external argument, color (χ2 = 23.41, p < .001), nor did they know the

cardinality of the group picked out by the conjunction of both target features (χ2 =

11.16, p < .001). On the true/false portion of the verification task, participants

correctly evaluated 74.8% of the sentences, similarly to those in Experiment 1.
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Figure 2.10: Cardinality estimation difference scores from Experiment 6. A differ-
ence score of 0 reflects best possible performance given these displays. Accuracies
when asked about groups named by size, color, or both after evaluating sentences
of the form every circle that is [size] is [color] were calculated and subtracted from
accuracy in a baseline number estimation task using the same dot-displays. Error
bars reflect the square root of the sum of squared errors around both accuracies.
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Aside from providing a conceptual replication of Experiment 1, the relative

clause manipulation controls for surface-level differences in how the two predicates

are introduced. Despite this, we still see the same effect: participants know the

cardinality of the group picked out by the determiner’s internal argument, but not

the the cardinality of the group picked out by the determiner’s external argument.

As always, there are still possible alternative explanations that await further

empirical exploration. To take one example, the internal argument in the above ex-

periments was always in subject position. Knowlton et al. (2021b) report a version

where the external argument is in subject position instead, though the results were

inconclusive: While participants were well below baseline for cardinality questions

targeting the external argument, they were also below baseline for questions tar-

geting the internal argument. Future work will further explore the role of syntactic

position (including information structural concerns like topichood). In the mean-

time, Experiment 7 offers another conceptual replication using a different dependent

measure: rate of opting out of cardinality questions.

2.2.9 Experiment 7: Adding an “I don’t know!” button

Participants: 56 participants were recruited online using Amazon Mechanical

Turk. All passed an English-screener prior to the actual task. Four participants were

excluded from further analysis for performing at chance or below on the true/false

portion of the experiment and four were excluded for taking longer than five seconds,

on average, to respond to cardinality questions. This left 48 participants.
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Materials: The materials were identical to Experiment 1, with one exception:

On both the baseline task and the sentence verification task, participants were given

the option to opt out of answering the relevant cardinality question. Underneath

the question (e.g., How many big circles were there? ) there was a large red button

labeled “I don’t know!” Participants could, without penalty, press this button

instead of making a guess.

Procedure: The procedure was identical to that of Experiments 1-6.

Predictions: In this version of the task, the main dependent measure is the

rate of opting out (i.e., pressing the “I don’t know!” button). The rate of opting

out during the baseline task serves as an indication of how visually difficult it is

to enumerate each type of group. Following sentence verification, if participants

represent a particular group, they should opt out no more often than baseline. If

they do not represent that group, they should opt out more often than the baseline

rate. Building off of the past results then, participants here should be more likely

than baseline to opt out given a question that probes a group picked out by the

external argument (color) or by the conjunction of both arguments (a size/color

combination).

Results: Participants’ rate of pressing the opt-out button is given in Figure

2.11. The relatively higher baseline rate of opting out for size compared to color

suggests that color is a more salient cue in these stimuli. The low baseline rate

of opting out of answering conjunction questions may be due to the fact that, on

average, these questions probed smaller cardinalities.

Importantly though, participants were no more likely than baseline to opt out
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Figure 2.11: Participants’ average rate of pressing the opt-out button labeled “I
don’t know!” instead of offering a cardinality estimate during the baseline task
(black squares) and following sentence verification (blue circles).

of size questions (t47 = 0.47, p = .64). On the other hand, they were significantly

more likely than baseline to opt out of questions probing color (t47 = 3.07, p < .01)

or a size/color combination (t47 = 2.91, p < .01). This is a confirmation of the

original result: Participants know the cardinality of the group defined by the internal

argument as well as their visual system allows, but don’t know the cardinalities of

the groups defined by the external argument or the conjunction of both arguments.

As a result, they opt out of answering more often than their baseline rate for those

latter two types of questions.

Fitting the models to only the trials in which participants did not opt out yields

the results in Figure 2.12. They were not significantly less accurate than baseline on

size questions (χ2 = 0.94, p = .332) but they were significantly less accurate on color

questions (χ2 = 19.83, p < .001) and conjunction questions (χ2 = 4.19, p < .05).
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So even excluding the trials where participants knew they did not have a good

estimate of the cardinality (and consequently opted out of answering), we find that

participants still have poor estimates of cardinality when the external argument or

the conjunction of both arguments is probed.
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Figure 2.12: Cardinality estimation difference scores from Experiment 7. A differ-
ence score of 0 reflects best possible performance given these displays. Accuracies
when asked about groups named by size, color, or both after evaluating sentences of
the form every [size] circle is [color] were calculated and subtracted from accuracy
in a baseline number estimation task using the same dot-displays. Error bars reflect
the square root of the sum of squared errors around both accuracies.

These results reveal a new, straightforward signature of the effect. Interest-

ingly, they also suggest that participants are only somewhat aware of their epistemic

limitations. In any case, rates of opting out of cardinality questions and performance

on cardinality questions not opted out of both point in the same direction: Partic-

ipants only know the cardinality of groups picked out by the determiner’s internal

argument.
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2.2.10 General discussion

Taken together, the results of these seven experiments suggest that partici-

pants explicitly represent every ’s internal argument but not its external argument

(and likewise for all). This would be surprising if every had a genuinely relational

meaning. Why would participants avoid representing both arguments? As discussed,

there is no reason to suspect a constraint from the visual system, so the apparent

fact that participants treat the two arguments asymmetrically calls for explanation.

On the other hand, these results are well-explained if every (along with all) has a

restricted meaning that only calls for grouping the quantifier’s internal argument.

Moreover, the results suggest that participants do not explicitly represent the

conjunction of every ’s (or all ’s) internal and external arguments. This supports the

particular restricted representation in (83), which implicates only a single group. It

also provides an example where the semantic representation can have a powerful and

unexpected effect on thought. Participants do not encode and remember every ele-

ment of a scene; they focus their attention to the the particular group(s) highlighted

by the meaning. So even in cases where two group descriptions are extensionally

equivalent (e.g., the big circles and the big blue circles in a case where every big

circle is blue is true), participants may represent the relevant objects under one

description (big circles) but not under the other (big blue circles).

As always, possible alternative explanations remain. Information structural

concerns are of particular interest for future research to explore, as noted above. It

might be, for example, that representation of a given argument is dependent on it
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being the sentence topic.

It also remains a logical possibility that participants understand every to ex-

press a genuine relation between two groups, but nonetheless adopt a strategy, in

these experiments, of only mentally grouping the extension of the internal predi-

cate. But given that the visual system can represent three groups in parallel with

no apparent cost to performance (Halberda et al., 2006), there is no obvious sense

in which representing only one is an easier strategy. There is also no sense in which

it is a superior strategy for this task. Participants know that a follow-up cardinality

question is on the horizon, and Experiment 7 shows that they are at least somewhat

conscious of their epistemic limitations. A two-group comparison strategy would

lead to better performance on those cardinality questions, so it would be sensible

for participants to adopt one.9 Instead, they seem to avoid representing two groups.

This would be hard to explain if every had a relational meaning.

2.3 Semantic evidence: Explaining “conservativity”

In addition to the psychosemantic evidence presented above, there is at least

one compelling semantic reason to prefer restricted over relational quantification.

As mentioned in section 2.1 (and section 1.4.1 of the previous chapter), if quantifi-

cational determiners are devices for relating predicates, a question arises: Why are

9 An even stronger way to show that every is not understood as a relation would be to find
evidence that adopting a two-group comparison strategy would, in fact, lead to superior perfor-
mance, even at evaluating the initial quantificational statement. Pietroski et al. (2009) ran an
analogous control experiment, discussed in Chapter 1. There, participants avoided a one-to-one
correspondence strategy when asked to evaluate most-sentences with respect to dot-displays; but
if asked to find the leftover dot with respect to the same displays, they were more accurate. Given
that the one-to-one strategy was available and superior, it is striking that participants avoided it.
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only certain relations lexicalized? Natural languages make use of only a small corner

of the space of possible two-place relations. If every F is G expresses the relation

“F ⊆ G”, why does no natural language determiner express the converse relation

“F ⊇ G”?

Of particular interest since Barwise and Cooper (1981), Higginbotham and

May (1981), and Keenan and Stavi (1986) has been the robust generalization that

all natural language determiners are “conservative,” described in section 2.3.1. The

relational conception of determiner meanings allows for one way of stating the gener-

alization – all determiner meanings R are such that R(X, Y ) ≡ R(X ∩Y, Y ) – but it

makes the generalization difficult to explain. On the other hand, while the “conser-

vativity” universal is mysterious given a relational view, it is a logical consequence of

restricted quantification. So while there are ways of retaining relationality and cap-

turing conservativity (sections 2.3.2 and 2.3.3), abandoning relationality altogether

offers a simple explanation of this cross-linguistic universal (section 2.3.4).

2.3.1 The “conservativity” universal

The central observation is this: For any determiner, repeating its internal

argument within its external argument is logically insignificant. For example, the

meanings of (94a) and (94b) are logically equivalent (i.e., (94a) and (94b) pattern

together with respect to truth/falsity).

(94) a. Every frog is green

b. Every frog is a frog that is green
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More generally, an instance of (95a), where PRED can be a verbal or adjectival

predicate, is logically equivalent to the corresponding instance of (95b), allowing

variations in morphology and word order. If (95a) is true, (95b) will be true, and

vice versa.

(95) a. [[ DET NP ] PRED ]

b. [[ DET NP ] [ be NP that PRED ]]

This phenomenon has been described in various ways, but is often called the

“conservativity” constraint. Importantly, all natural language determiners seem to

obey this constraint.10

That all determiners follow the “conservativity” constraint is surprising, as

it’s easy to imagine hypothetical determiners that fail to be “conservative.” For

example, suppose that equi meant “equal in number” so that (96a) means that

there are the the same number of frogs and green things, and (96b) means that

there are the same number of frogs as green frogs.

(96) a. Equi frogs are green

≈ the frogs and the green things are equal in number

b. Equi frogs are frogs that are green

≈ the frogs and the green frogs are equal in number

These two sentences are not logically equivalent. Imagine a domain consisting of

10 Reverse proportional readings of sentences like many Scandinavians have won the Nobel prize
in literature have been used to argue that many is a possible counter example to this generalization
(Westerst̊ahl, 1985). But Romero (2015) argues that these readings result from combining a
conservative determiner with degree operator.

112



one green frog, one blue frog, and one green apple. This situation could be accu-

rately described by (96a) (2 frogs = 2 green things) but not by (96b) (2 frogs 6=

1 green frog). Taking the domain to be the actual world, (96a) seems obviously

false, since there are more green things than there are frogs; but (96b) would be

true if not for the existence of non-green frogs. In any case, the fact that that

these two sentences fail to be logically equivalent means that equi does not have a

“conservative” meaning. And, in line with the generalization, no natural language

has a determiner that means “equal in number.”

To take another example of an imaginary “non-conservative” determiner, sup-

pose yreve meant “includes” so that (97a) means that the frogs include all green

things, and (97b) means that the frogs include all the green frogs.

(97) a. Yreve frogs are green

≈ the frogs include the green things

b. Yreve frogs are frogs that are green

≈ the frogs include the green frogs

To a first approximation, this is the meaning that only would have if it were a

determiner (though as discussed in section 2.2.5, only is a focus operator). Like

the equi -sentences, these two yreve-sentences are not logically equivalent. Imagine

a domain with a green frog and a green apple; (97a) cannot be used to describe such

a situation (because there is a green non-frog), though (97b) can (in fact, regardless

of the domain, (97b) will always be true).

Both of these hypothetical determiners have seemingly simple meanings and
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would potentially be communicatively useful, so it’s striking that English and other

languages lack them. This does not appear to be a historical accident either. Hunter

and Lidz (2013) were able to teach 5-year-olds a novel quantifier when it had a

conservative but cross-linguistically unattested meaning, like not all. But they were

unable to teach 5-year-olds a novel quantifier in the same experimental set-up if the

intended meaning was the non-conservative not only.

In particular, children were asked to help sort scenes depicting boys and girls

on the beach and at the park based on the preferences of a picky puppet. The

experimenter told children that the puppet likes it when (98), and that it was their

job to figure out what gleeb means.

(98) Gleeb girls are on the beach

a. ≈ not all of the girls are on the beach

b. ≈ not only girls are on the beach

When the puppet liked cards in which (98a) was true, 5-year-olds were able

to correctly sort new scenes according to whether gleeb girls were on the beach

after seeing just five examples. But when the puppet liked cards in which (98b)

was true, participants trained and tested using the same procedure were at chance

performance on novel scenes (though see Spenader and de Villiers (2019), who found

no learning in either condition in a similar task).

In this task at least, learners did not seem to consider the non-conservative “not

only” as a possible determiner meaning. This impressive finding awaits empirical

replication. But to the extent that it generalizes, it suggests that conservativity is a
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deep fact about the language faculty: Non-conservative determiners are conceivable

but not possible lexical items for humans. Semantic theory should aim to explain

this robust and seemingly deep cross-linguistic constraint.

2.3.2 Retaining relationality: Lexical filtering

Holding fixed the idea that quantificational determiners express relations, the

task is to explain why only a small fraction of the possible relations are available

for lexicaliztation. If every F is G means “F ⊆ G”, then the hypothetical equi F is

G (in (96a)) means “F = G” and the hypothetical yreve F is G (in (97a)) means

“F ⊇ G”. What rules out relations like “=” and “⊇”, which prima facie seem

conceptually related to “⊆”?

One straightforward approach would be to forbid the problematic relations

at the lexical level. Keenan and Stavi (1986) offer one version of this approach.

First, they define a store of “basic” relations that are conservative (including the re-

lations purportedly expressed by every, at least four/at most three, and a/some

NPsingular/at least 1 ). Then, they combine this set of relations with a set of

conservativity-preserving operators such that more complex relations (e.g., the one

expressed by most or the one expressed by seventeen) can be constructed by com-

bining the primitives with the operators. If these are the only relations available for

lexicaliztation, then only conservative relations can be lexicalized.

This is not to say that relations like identity or equality are absent from cogni-

tion, just that “X = Y ” and “|X| = |Y |” are not among the primitives available for
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lexicaliztation and cannot be constructed out of the primitives and operations that

are available. In a sense then, this way of accounting for the phenomena amounts to

a redescription of the facts in terms of the idea that determiners express relations.

Moreover, an approach that “filters” out the problematic relations at the lex-

ical level does not itself explain the asymmetry between the determiner’s two ar-

guments. If determiners are tools for expressing relations, then the internal and

external argument of a determiner have the same logical status: Both are just terms

in a relation. Why, then, does every F is G mean “F ⊆ G” and not “G ⊆ F”?

We might suspect the blame should be placed on the syntax of the expression.

After all, in a sentence like every frog is green in (99), every combines with its

internal argument (frog) first and (assuming quantifier raising) its external argument

(t is green) contains a trace of displacement.

(99) S

DP

D

Every

NP

frog

VP

t is green

But the relational view obscures this distinction, treating both the internal and the

external argument as names for groups that are related by the determiner (the frogs

and the green things). As a result, it is only an accident that the grammatically

internal argument ends up occupying the position on the lefthand side of the rela-
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tion. So while the “lexical filtering” approach may ultimately be right, it is more

stipulative than we might like.

2.3.3 Retaining relationality: Interface filtering

In an attempt to embrace the syntactic distinction between internal and ex-

ternal arguments but preserve the relational conception of determiner meanings,

Romoli (2015) offers an alternative (that builds off of suggestions from Chierchia

(1995), Fox (2002), Ludlow (2002), and Sportiche (2005)). Essentially, the idea is

that a sentence pronounced as every frog is green actually means something more

like every frog is a frog that is green.

More formally, the idea relies on the ancillary hypothesis that in a sentence

like (99), the trace is interpreted as a second instance of the noun phrase frog. The

displaced determiner is not interpreted in the same way, but is converted into an

instance of the. For example, (100a) ends up with the logical form in (100b).

(100) a. [ Every frog [ every frog is green ]]

b. [ Every frog [ the frog is green ]]

c. {x : frog(x)} ⊆ {x : frog(x) & green(x)}

If the second instance of frog (the one in the external argument) is interpreted

conjunctively, then (given a relational meaning for every), (100a) has the meaning

in (100c). On this view, every can still be said to express the same relation as is

traditionally assumed (“⊆”), but instead of relating the set of frogs and the set of
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green things, it relates the set frogs and the set of green frogs.11 This leaves the

truth-conditions unchanged (if this were not the case, then “⊆” would fail to be a

conservative relation). It is worth noting, however, that the experiments reported

in section 2.2 tell against this hypothesis, as the group defined by the conjunction

of both arguments is never explicitly represented by participants.

In any case, given this way of interpreting traces, quantificational sentences

effectively end up with a second instance of the internal argument in the external

argument. Consider what this would mean for a non-conservative determiner like

equi (i.e., the equal-in-number relation) from (96a). A sentence like (101a) would

end up with the logical form in (101b) and the interpretation in (101c).

(101) a. [ Equi frog [ equi frog is green ]]

b. [ Equi frog [ the frog is green ]]

c. {x : frog(x)} = {x : frog(x) & green(x)}

But (101c) is truth-conditionally equivalent to (100c). So when used in a sentence,

equi ends up being truth-conditionally indistinguishable from every. In fact, Romoli

(2015) notes that this leads to the possibility that every might in fact express the

“=” relation, not the “⊆” relation (see note 11). In any case, the non-conservative

“the frogs and the green things are equal in number” interpretation never arises.

11 While every can be said to express “⊆”, this is somewhat redundant since “=” does all the
work and “⊂” never comes into play. That is, while it’s impossible for the frogs to be a proper
subset of the green frogs, every frog is green obtains when the frogs are identical to the green frogs.
So if the external argument of every really is a conjunction of what we thought was the external
argument and the internal argument, it seems more parsimonious to say that every expresses the
identity relation. Given that “=” is not conservative, this would be an unexpected conclusion.
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This reasoning holds for a subset of the would-be-non-conservative determin-

ers: Given the interpretation of traces discussed above, sentences with such de-

terminers would end up being truth-conditionally equivalent to sentences with a

conservative determiner. So, contra the “lexical filtering” view, lexical items that

express non-conservative relations might exist, but, in practice, they never lead to

non-conservative sentence meanings.

This reasoning does not apply to all potential non-conservative determiners,

however. Consider another class of problematic hypothetical quantifiers, that in-

cludes yreve (i.e., only as a determiner) from (97a). After trace conversion, the

resulting interpretation – given in (102c) – is not truth-conditionally equivalent to

that of any conservative determiner.

(102) a. [ Yreve frog [ yreve frog is green ]]

b. [ Yreve frog [ the frog is green ]]

c. {x : frog(x)} ⊇ {x : frog(x) & green(x)}

In fact, (102c) will always be true, since the set of frogs must be a superset of or

be identical to the set of green frogs.

To rule out yreve, a filter on trivial sentence meanings – sentences that are

either tautologies or contradictions, given any substitution of lexical content – is

posited (Fox and Hackl, 2006; Gajewski, 2002). If yreve existed, any sentence

with it would be declared ungrammatical given such a filter. In that way, Ro-

moli (2015)’s approach “filters out” problematic determiners thanks to details of

the syntax-semantics interface.
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There are other hypothetical non-conservative determiners about which this

“interface filtering” view is silent. Consider a determiner onemore that means “out-

numbers by one.” So (103a) means that the frogs outnumber the green things by

one and (103b) means that the frogs outnumber the green frogs by one.

(103) a. Onemore frog is green

≈ the frogs outnumber the green things by 1

b. Onemore frog is a frog that is green

≈ the frogs outnumber the green frogs by 1

Onemore is not conservative, since we can imagine a situation where (103a) is true

but (103b) is not. For example, if there were two blue frogs and a green apple,

the frogs would outnumber the green things by one (2 vs. 1) but the frogs would

outnumber the green frogs by two (2 vs. 0). So onemore must be ruled out as a

possible determiner.

Given the interpretation of traces discussed above, (104a) would have the

meaning in (104c).

(104) a. [ Onemore frog [ onemore frog is green ]]

b. [ Onemore frog [ the frog is green ]]

c. |{x : frog(x)}| − 1 = |{x : frog(x) & green(x)}|

The meaning in (104c) is not truth-conditionally equivalent to any existing conser-

vative determiner, but it also is not trivial. The example above shows that it can

be false (2 blue frogs and 0 green frogs). But it can also be true: In a context
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consisting of one blue frog and one green frog, the frogs outnumber the green frogs

by one (2 vs. 1). So onemore is not conservative but fails to be ruled out by either

of the two approaches posited by the “interface filtering” view.

To be sure, one could argue that this kind of non-conservative determiner is

ruled out on other grounds. For example, onemore runs afoul of another general-

ization: Morphologically simple determiners are monotonic (Barwise and Cooper,

1981). That is, either a subset → superset or a superset → subset inference is li-

censed in each argument. Given every frog is green, we can infer every big frog is

green (superset→ subset) and every frog has a color (subset→ superset). But from

the fact that the frogs outnumber the green things by 1 (onemore frog is green), it

follows neither that the big frogs outnumber the green things by 1 (imagine 2 small

blue frogs and 1 big green frog) nor that the amphibians outnumber the green things

by 1 (imagine 2 blue frogs and 1 green tadpole). So if the hypothetical onemore is

morphologically simple, it might be ruled out by failing to be monotonic.

But morphologically complex determiners can fail to monotonic. For example,

consider all but one. From all but one frog is green, we can infer neither all but one

big frog is green (imagine 2 small green frogs, 1 small blue frog, and 2 big green

frogs) nor all but one amphibian is green (imagine 2 small green frogs, 1 small blue

frog, and 1 blue tadpole). So if onemore were morphologically complex, it could not

be ruled out on grounds of being non-monotonic.

We might, then, be tempted to say that onemore is ruled out on the basis

of communicative uselessness. Perhaps it’s just not the sort of thing people would

ever want or need to say. It could get lexicalized, but it turns out that it doesn’t.
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But this begins to make conservativity look less like a deep fact about the language

faculty and more like a conspiracy of various independent factors.

2.3.4 Abandoning relationality: Ordered predication

In contrast, the non-existence of non-conservative determiners is a logical con-

sequence of restricted quantification. This intuition has been cashed out in various

ways: By Pietroski (2005, 2018) in a framework where the basic semantic opera-

tion is conjunction, and meanings instructions to retrieve and assemble concepts; by

Westerst̊ahl (2019) in set-theoretic terms; and by Lasersohn (2021) in a framework

that treats common nouns like frog as restricted variables instead of as predicates.

The crucial point is that all conservative determiners can be stated as restricted

quantifiers, but non-conservative determiners cannot.

The reason is that restricted quantification enforces what we might call “or-

dered predication.” Namely, the internal predicate first restricts the domain, then

the external predicate supplies a further condition that gets predicated of the re-

stricted domain. The determiner itself specifies how that further condition should

apply. This creates no problems for conservative determiners, as all of them can

be stated relative to a restricted domain. To see this, consider the following para-

phrases of every frog is green, most frogs are green, and no frogs are green, using the

“hook” notation from section 2.1 to signify relativization:

(105) a. everyx(greenx) � frogx

≈ Relative to the frogs, everything is green
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b. mostx(greenx) � frogx

≈ Relative to the frogs, most things are green

c. nox(greenx) � frogx

≈ Relative to the frogs, no things are green

Any conservative determiner can be relativized in this way. But non-conservative

determiners cannot. For example, recall that yreve is a hypothetical non-conservative

determiner that has the meaning that only would have if it were a determiner. So,

abstracting away from focus sensitivity, yreve frogs are green means the same thing

as only frogs are green. But as (106) should make clear, this meaning cannot be

paraphrased in the same way.

(106) onlyx(greenx) � frogx

≈ Relative to the frogs, only things are green

The problem is that the meaning of yreve requires making reference to the

external argument independently of the internal argument. It cannot be stated

in terms of how the predicate is green applies to the frogs. The same is true for

other non-conservative determiners. In equi frogs are green – which has the intended

meaning that the frogs and the green things are equal in number – the cardinality

of the green things, independent of the frogs, needs to be taken into account. If the

domain is restricted to just the frogs, this cardinality is inaccessible.

In sum, restricted quantification respects the syntax by maintaining that the

two predicates apply in a certain order and play different logical roles. That re-

stricted quantifiers are conservative follows as a logical consequence.
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2.4 Chapter summary

This chapter provided linguistic and psycholinguistic reasons for thinking that

every and all have semantic representations that are restricted, like (107). This

stands in contrast to the standard view that determiners are special cases of gener-

alized quantifiers and have semantic representations that are relational, like (108).

(107) λI.λE.ιG(∀x[Gx ≡ Ix])[E(G)]

(108) λI.λE.ιG(∀x[Gx ≡ Ix]){ιG′(∀y[G′y ≡ Ey])[G ⊆ G′]}

The main difference, discussed in section 2.1, is in the logical role played by the

two arguments. In restricted representations, the internal and external arguments

serve distinct logical roles. The internal argument restricts the domain in some way,

whereas the external argument provides an additional predication. On the relational

view, both serve identical roles: terms in a relation.

In support of the restricted view, section 2.2 presented seven experiments

showing that participants asked to evaluate sentences like every big circle is blue

explicitly represent the group named by the internal argument, but not the group

named by the external argument. Avoiding a relate-two-groups verification strategy

makes sense if every has a restricted representation like (107) but would be hard

to explain if it had a relational representation like (108). Participants also avoided

representing the group named by the conjunction and the internal and external argu-

ments, which supports the single-group restricted representation (107), as opposed

to some other restricted representation.
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On the semantic side, section 2.3 discussed the robust cross-linguistic universal

that all determiners are “conservative.” The relational view makes this generaliza-

tion somewhat mysterious, as many relations fail to be “conservative” and must be

ruled out as possible meanings in order to explain the cross-linguistic constraint. Ap-

proaches that aim to explain conservativity while retaining a relational conception

of determiner meanings were considered in sections 2.3.2 and 2.3.3. But abandon-

ing relationality provides a simple explanation: No determiners in natural language

express “non-conservative” relations because no determiners express relations in the

first place.
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Chapter 3: First-order vs. second-order quantification

Chapter 2 argued that quantificational determiners are restricted, not rela-

tional. But there are many ways to be a restricted quantifier. This chapter will

provide some reasons for thinking that each has a first-order representation whereas

every and all have second-order representations. Though it builds off of the results

of the previous chapter, the first-order/second-order distinction is independent of

the restricted quantification hypothesis.

Section 3.1 describes the logical distinction in greater detail and shows that

the proposed representations for the universal quantifiers align with the fact that

each differs from the other universals in being strongly distributive. Section 3.2

discusses independently-supported psychological systems that parallel the logical

first-order/second-order distinction. Section 3.3 then leverages known properties of

these representations in a series of experiments. To preview the results: Adults

and children encode group-properties (cardinality and center of mass) of the first-

argument when evaluating every-sentences. But when every is replaced with each,

they instead encode individual-properties (color). Section 3.4 argues that the pro-

posed representations offer a novel explanation for the observation that every is

compatible with certain kinds of generic interpretations that each resists.
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3.1 The logical distinction

The first-order/second-order distinction is, in the first place, a distinction in

logical syntax. The difference is in which variable position gets quantified into.

First-order representations only quantify into object (i.e., lowercase) variable po-

sitions whereas second-order representations can also quantify into predicate (i.e.,

uppercase) variable positions. By way of illustration, suppose that (109a) represents

the proposition kermit is green. If we take (109a) as a premise, we can make the first-

order inference in (109b) that there is something that is green and the second-order

inference in (109c) that there is some property that applies to kermit.

(109) a. Gk

b. ∃x(Gx) (first-order inference)

c. ∃X(Xk) (second-order inference)

In (109b), the first-order quantifier “∃x” binds the first-order variable x in

“Gx”. In (109c), the second-order quantifier “∃X” binds the second-order variable

X in “Xk”.

To be sure, there are different views about how to interpret second-order vari-

ables. For Frege (1879, 1893), a predicate like is green corresponds to the function

that maps all and only green things to truth. So (109c) might be glossed there exists

some function that maps kermit to truth. In set-theoretic terms, (109c) might be

glossed there exists some set such that kermit is an element of it. Alternatively, Boo-

los (1984) argues for treating second-order variables as plural variables that range
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over the same values as first-order variables. They differ only in that they can take

on multiple such values at once. On this view, (109c) would be glossed there exist

some things such that kermit is one of them.1

The fact that there are different interpretations of second-order variables is

worth dwelling on. Second-order logic is often interpreted set-theoretically. But we

can separate the claim that a representation is second-order from the claim that a

representation implicates a set (or any other plural entity, like a mereological sum).

Given the plural logic way of interpreting second-order variables described above, a

representation containing a second-order quantifier need not imply any additional

ontological commitments beyond those implied by a first-order representation. So,

(109c) does not necessarily imply that the domain includes a set X.

Likewise, on the plural logic understanding, the second-order (110) does not

imply that the domain includes the set of green things.

(110) ∃X(∀y[Xy ≡ Green(y)])

≈ There are some thingsX such that each thingy is one of themX iff ity is green

But, by virtue of it being second-order, (110) does allow for grouping the green

things in the sense that all of them can be considered at once. That is, instead of

1 One of Boolos’ main reasons for proposing a plural logic understanding of second-order vari-
ables is that it avoids Russell’s paradox (for more discussion on this point, see Schein (1993),
Pietroski (2003a), and Pietroski (2005)). If the expression ∃X∀y[Xy ≡ y /∈ y] is understood to
mean there is a set X whose members are all and only the things that are not members of them-
selves, paradox ensues. Namely, is the set X a member of itself? If it is self-elemental, then
it cannot be an element of X by definition, meaning it isn’t self-elemental. But if it isn’t self-
elemental, then it is by definition an element of X, meaning it is self-elemental. For a “real-world”
example, consider a barber X who shaves all and only the barbers who don’t shave themselves.
Does X shave themself? As Boolos pointed out, no paradox arises if ∃X does not imply a separate
object X. If the expression in question is understood as there are some thingsX that have the
following property: Each thingy is one of themX iff ity is non-self-elemental, then it is simply true,
since there are plenty of things that aren’t elements of themselves (e.g., me, you, this dissertation).

128



saying that the variable X has one value – the set of green things – we can say that

this variable has multiple values: all of the individual green things.

The dissociation between sets and second-order quantification runs in the other

direction as well: Implicating a set does not make a representation second-order.

Suppose we explicitly include the set of green things in our domain. We can still

describe kermit is a member of the set of green things in a completely first-order way,

as in (111), which doesn’t rely on representing the elements of the set collectively.

(111) ∃s(s = {x : x is green} & kermit ∈ s)

≈ There exists a set, identical to the set of green things, and kermit is an

element of it

Even some relations between sets can be specified in completely first-order

terms. Suppose we assume that frog denotes the set of frogs and is green denotes the

set of green things. We can describe every frog is green with restricted quantification

as in (112), which doesn’t rely on representing the elements of either set collectively.

(112) ∀x(x ∈ {x : x is a frog})[x ∈ {x : x is green}]

≈ each thing that is a member of the set of frogs is such that it is a member

of the set of green things

In sum, at issue with the first-order/second-order distinction is what type

of variable the quantifier targets. First-order representations contain only quanti-

fiers that bind lowercase variables. Second-order representations allow for binding

uppercase variables as well. Whether quantification into a second-order variable
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position implicates the existence of plural entities like sets depends on how upper-

case variables are interpreted. To remain agnostic on this point, we can say that

a representation implicates a “group”. This is not intended to be understood as a

technical term, for example, in the sense of Landman (1989a,b) (for whom groups

are entities that are quite detached from their members). Instead, “group” is in-

tended to be neutral between two understandings: “some sort of plural entity, like

a set/sum/aggregate/lattice” or “a way of grouping the relevant predicate in the

Boolos (1984) sense.”

3.1.1 First-order and second-order universal quantifiers

As discussed in the preceding chapters, quantificational determiners like each

and every combine with two arguments. The first – the internal argument I – is

nominal, like frog in (113) and (114). Assuming quantifier raising, the second – the

external argument E – is sentential, like t is green in (113) or kermit saw t in (114).

(113) Every frog is green S

DP

D

Every

NP

frog

VP

t is green
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(114) Kermit saw every frog S

DP

D

Every

NP

frog

VP

Kermit saw t

Both the internal and the external argument name predicates and, in some

sense, the determiner relates these two predicates. The question at issue here is how

to specify the determiner’s contribution. We can adopt the standard assumption

that the determiner every is specified in terms of abstractions from the meanings of

the two predicates with which it combines, as in (115).

(115) λI.λE.every(I,E)

In a sense, (115) is a second-order representation, because the lambda expres-

sions bind uppercase variable positions. However, as discussed in Chapter 1, “λI”

and “λE” for present purposes are meant as technical devices, not psychological

hypotheses.2 The psychological question is how to specify what occurs on the right

side of the lambda expressions, “every(I,E)”. Consider again the four hypotheses

introduced in Chapter 1, (116) - (119).

2 We could instead give a syncategorematic treatment of every that avoids lambda expressions.
On this way of doing things, the entire specification could be taken as a psychological hypothesis.
Or, we could treat the lambda expressions as part of the psychological hypothesis and consider
alternative hypotheses about how composition proceeds. The current proposal is agnostic about
these questions.
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(116) ∀x(Ix)[Ex] (FO restricted, 0G)

(117) ιG(∀x[Gx ≡ Ix])[E(G)] (SO restricted, 1G)

(118) ιG(∀x[Gx ≡ Ix]){ιG′(∀y[G′y ≡ Gy & Ey])[G = G′]} (SO restricted, 2G)

(119) ιG(∀x[Gx ≡ Ix]){ιG′(∀y[G′y ≡ Ey])[G ⊆ G′]} (SO relational, 2G)

The representation in (116) – for each thingx such that itx is I, itx is E –

is completely first-order, since only a lowercase variable (x) is quantified into. In

contrast, (117)-(119) are second-order since they each contain “ιG”, which binds the

second-order (“group”) variable G. This variable groups together the satisfiers of

the internal predicate I. As discussed above, there are multiple ways of interpreting

the second-order quantifier “ιG(∀x[Gx ≡ Ix])”. If assignments of values to variables

allow only one value to be assigned to G, then G ranges over plural entities of some

sort (e.g., sets) and it can be read as (120a). If multiple values are allowed, then G

ranges over the same entities as first-order variables and it can be read as (120b).

(120) ιG(∀x[Gx ≡ Ix])[...G...]

a. ≈ the set of things that meet the I condition is such that it...

b. ≈ the one or more things that meet the I condition are such that they...

On the former view, “Ix” is shorthand for set inclusion: x ∈ {x : Ix}. But on the

latter view, “Ix” is shorthand for x is one of the Is.

In any case, in (117), “ιG(∀x[Gx ≡ Ix])” is the only second-order quantifier,

where G is the group that meets the I condition. The universality is specified
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by saying that this group G meets the E condition: “[E(G)]” (e.g., the frogs are

green).3 In (118), there are two second-order variables quantified into: the group

that meets the I condition, G, and the group that meets both the I condition and

the E condition, G′. The universality is specified by saying that these groups are

identical: “[G = G′]” (e.g., the frogs are the green frogs). Likewise, in (119), there

are two second-order variables quantified into. As before, G is the group that meets

the I condition, but in this case, G′ is the independent group that meets the E

condition. The universality is specified by saying that the former is a subset of/is

among the latter: “[G ⊆ G′]” (e.g., the frogs are among the green things).

Because (119) groups and relates the satisfiers of both predicates indepen-

dently, it is relational in the sense of Chapter 2. In contrast, (116)-(118) are all

restricted. This is clearest for (116), as only things that meet the I condition are

considered with respect to the E condition. The same is true in (117), save for the

difference that the things that meet the I condition are grouped under the variable

G. Things are less clear with (118), which implicates two groups – G and G′ – and

relates them. This specification is nonetheless restricted because G′ is not indepen-

dent of G. Rather, G′ is an additional selection made against a restricted domain

that only includes G.

In any case, the experiments reported in Chapter 2 tell against every hav-

ing a representation that implicates two groups, like the restricted (118) or the

3 What exactly it means for a set of things or for one or more things to meet the E condition
depends on what the E condition is. In general, since E will be an open sentence (e.g., t is green),
we can think of G as filling the open slot left after displacement (e.g., G is green). But when
the predicate in question is lexically distributive (like be green), each individual must meet the
condition; see section 3.1.2. Thanks to Roman Feiman for helpful discussion on this point.
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unrestricted (i.e., relational) (119).4 Building on those findings, this chapter will

argue that every has a representation that implicates one group, like the second-

order (117), whereas each has a representation that implicates zero groups, like the

first-order (116).

3.1.2 Dealing with distributivity

Before coming to the semantic and psychosemantic arguments for the pro-

posed representations, it is worth considering how these representations interact

with distributivity. Accounting for data related distributivity is not the main rea-

son for thinking that some determiners have first-order representations and others

have second-order representations. The main reason is the proposed interface with

known psychological systems, discussed starting with section 3.2. But distributivity

is perhaps the most-discussed topic surrounding the universal quantifiers so it is

important that the proposed distinction is consistent with the basic facts in this

domain.

A common theme in the literature since Vendler (1962) is that each forces

distributivity: The predicate in question must apply to each individual, not to the

group as a whole. This makes each incompatible with certain collective predicates

like gather and surround, which necessarily apply to the entire group. At the same

time, all and (arguably) every can combine with these predicates, as in (121).

4 If being a device for creating restricted quantifiers is a universal property of determiners, then
(119) should not be a possible determiner meaning. But (118) remains a plausible hypothesis. It
may turn out to be the meaning of all (though the experiment in section 2.2.4 of the previous
chapter provides some initial reason to doubt this possibility). For simplicity, this chapter will
often group every and all together and will focus more on every, as it constitutes a true minimal
pair with each.
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(121) a. All (of the) frogs gathered in the forest

b. Every frog gathered in the forest

c. #Each frog gathered in the forest

To be sure, (121a) is preferred over (121b) for expressing the relevant thought.

Perhaps as a result of this relative preference, many authors go so far to report (121b)

with a #, ?, or even * (e.g., Gil 1992; Beghelli and Stowell 1997; Tunstall 1998;

Winter 2002; Champollion 2020). This seems wrong. At the least, the acceptability

of (121b) is an open question that should be subject to a controlled acceptability

judgement experiment. That said, some collective predicates, like (122), do seem to

be incompatible with every despite being compatible with all.

(122) a. All the elms clustered in the forest

b. ?Every elm clustered in the forest

And other collective predicates, like those in (123), are bad with any universal

quantifier, including all (Dowty 1987; Winter 2002; Champollion 2020).

(123) #All the frogs in the forest {are numerous/are a good team}

Whatever the status of every and all and certain collective predicates though,

it is clear that each always gives rise to distributive interpretations whereas every

and all do not. To take an example with an ambiguous predicate, in (124a) there

were as many piano-lifting events as there were students. But while (124a) cannot

describe a situation where the students worked together to collectively accomplish

the task, it seems that (124b) and (124c) can.
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(124) a. Each student lifted the piano (#together/by themselves)

b. Every student lifted the piano (together/by themselves)

c. All (of the) students lifted the piano (together/by themselves)

Again, we should be careful to separate preference from compatibility. Clearly

(124c) is preferred for expressing the collective thought in which the piano got

lifted one time by the whole group. And (124a) is preferred for expressing the

distributive thought in which the individual students each got a turn. This calls for

explanation. But at issue here is the asymmetry: (124b) and (124c) have distributive

and collective interpretations, whereas (124a) has no collective interpretation.

If a second-order representation underlies every and all, it needs to be compat-

ible with both distributive and collective interpretations. Likewise, if a first-order

representation underlies each, it needs to be incompatible with collective interpre-

tations and collective predicates. The remainder of this section aims to show that

the proposed representations in (116) and (117) meet these requirements.

3.1.2.1 Manifestly distributive or collective predicates

Predicates like smile, blink, take a deep breath, see the photo, and be green are

always interpreted distributively. As noted above, this is true regardless of the sub-

ject (e.g., each student smiled is no more distributive than all the students smiled or

the explicitly “group-denoting” the whole class smiled). These manifestly distribu-

tive predicates are often referred to as cases of L(exical)-distributivity (e.g., Winter
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1997; de Vries 2015).5 L-distributivity can be captured by building distributivity

directly into the lexical specification of the predicate, or with an associated meaning

postulate (e.g., Hoeksema 1983; Scha 1984; Roberts 1987; Champollion 2017). For

example, we might stipulate that what it means for smile to apply to a group of

individuals X is for it to apply to each one of them, as in (125).

(125) Smile(X) ≡ ∀y(Xy)[Smile(y)]

More needs to be said about which predicates come with meaning postulates

like (125) and why (see Glass (2021) for a survey of distributivity inferences arising

from a variety of predicates). But regardless, meaning postulates of this sort are

often invoked to deal with L-distributivity. Formally, we can say that the E condition

is normally understood to apply to the group, as in (126). But when the E condition

is an L-distributive predicate like smile or blink, “E(G)” is understood distributively,

as in (127).

(126) λI.λE.ιG(∀x[Gx ≡ Ix])[E(G)] =(117)

(127) λI.λE.ιG(∀x[Gx ≡ Ix])[E(G) ≡ ∀y(Gy)[Ey]] (if E is L-distributive)

This yields the desired representations for sentences like each/every/all stu-

dent(s) smiled in (128). The first-order case in (128a) can be glossed as for each

thing such that it is a student, it smiled. And the second-order case in (128b) can

be glossed as the things that are students are such that each one of them smiled. In

either case, the predicate is forced to distribute down to the individual students.

5 Lexical-distributivity is sometimes also called Predicate-distributivity, since the distributivity
is generated in virtue of what the predicate means and without the need for a covert operator. This
is meant to stand in contrast with Phrasal-distributivity (sometimes also called Quantificational-
distributivity), which is argued to require a covert quantificational operator.
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(128) a. ∀x(Student(x))[Smile(x)] (each)

b. ιG(∀x[Gx ≡ Student(x)])[Smile(G) ≡ ∀y(Gy)[Smile(y)]] (every/all)

Turning to the manifestly collective predicates, like gather, the only difference

is that there is no distributive meaning postulate present. Everything else remains

the same. In the first-order case in (129a), the predicate is always forced to distribute

down to the individuals, since there is no device for grouping them. This leads to an

anomaly, because the predicate gather must apply to multiple individuals at once

(i.e., there is no distributive way to gather). The second-order (121b), on the other

hand, allows for the predicate to apply collectively (i.e., the things that are students

are such that they gathered).

(129) a. ∀x(Student(x))[Gather(x)] (#each)

b. ιG(∀x[Gx ≡ Student(x)])[Gather(G)] (every/all)

In sum, the first-order/second-order distinction creates no problems for cap-

turing the basic data regarding manifestly distributive and manifestly collective

predicates. A first-order representation is not compatible with collective predicates,

as the condition is only applied to individuals. This is in line with the fact that

each is not compatible with collective predicates. A second-order representation

is compatible with both distributive and collective predicates, though the former

requires invoking a meaning postulate associated with the predicate. This is in line

with the data regarding every and all.
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3.1.2.2 Ambiguous predicates

As noted above, predicates like lifted the piano or sang happy birthday are

ambiguous between collective and distributive readings (or, at least, underspecified

as to which reading is intended). Neither reading entails the other. It can be

true that it took all the students to get the song sung but false that each student

sang happy birthday themselves (e.g., if they took turns and each sang only one

line). Conversely, it can be true that each student sang happy birthday individually

without it being true that there was a single event of singing in which all the students

collectively participated (e.g., in the context of auditioning for the school musical).

Ambiguous predicates like these are often referred to as P(hrasal)-distributivity.

Unlike L-distributivity, P-distributivity is usually argued to require more than a

meaning postulate (Champollion, 2020; Landman, 2012; Winter, 2000). This is be-

cause P-distributivity is exemplified by predicates like formed a circle, in which case

it is the whole verb phrase, not just the verb, that optionally has a distributive

interpretation. The standard approach is to posit a covert distributivity opera-

tor, essentially with the semantics of adverbial each (Lasersohn, 1995; Link, 1991;

Roberts, 1987). On this view, predicates like sang happy birthday are ambiguous

between two readings because they are ambiguous between two structures: one

without the distributivity operator D and one with it, as in (130).

(130) a. [V P sang happy birthday]

b. [V P D [V P sang happy birthday]]
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There are many ways of implementing D. For our purposes, we can assume

that it has the same semantics as each and the L-distributivity meaning postulate

(though see LaTerza (2014) for an event-based distributivity operator that can help

explain further distinctions). Namely, D in (131) adjoins to the VP and takes two

arguments: the verb phrase V and a second argument X that will be supplied by

the subject when [D [V P ...]] composes with it.

(131) JDK = λV.λX.∀y(Xy)[Vy]

Given the semantics of D in (131), the distributive version of sang happy

birthday in (130b) is represented as in (132).

(132) λX.∀y(Xy)[sang-happy-birthday(y)]

The distributive VP in (132) then serves as the E argument of a quantifier in a

sentence like each/every student sang happy birthday. In the each case, the presence

of D is redundant. The sentence already has a distributive interpretation by virtue

of the overt each. This is captured by the fact that the inclusion of D leads to

redundancy in the first-order (133b): each thingx that satisfies Student is such that

for each thingy identical to itx, ity satisfies Sang-happy-birthday.6

(133) a. Each student [ sang happy birthday ]

= ∀x(Student(x))[Sang-happy-birthday(x)]

b. Each student [D [ sang happy birthday ]]

= ∀x(Student(x))[∀y(y = x)[Sang-happy-birthday(y)]

6 The X in (132) saturated by x. This yields x(y), glossed y is x. For readability, “y = x”
replaces “x(y)” in (133b). When a second-order variable saturates X, yielding Xy, this would
instead be glossed y is (an) X or ity is one of themX , and this substitution would be inappropriate.
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In either case, the predicate is forced to apply to each individual student.

So whether or not the distributivity operator D is present, each student sang happy

birthday only receives the distributive interpretation that there were as many events

of singing happy birthday as there were students.

In the second-order case, the presence or absence of the distributive operator

makes a difference. WhenD is absent, the collective reading is achieved, as in (134a):

the studentsG are such that theyG satisfy Sang-happy-birthday. But when D is

present, the predicate is forced to apply to each student, as in (134b): the studentsG

are such that each oney of themG satisfies Sang-happy-birthday.

(134) a. Every student [ sang happy birthday ]

= ιG(∀x[Gx ≡ Student(x)])[Sang-happy-birthday(G)]

b. Every student [D [ sang happy birthday ]]

= ιG(∀x[Gx ≡ Student(x)])[∀y(Gy)[Sang-happy-birthday(y)]

In sum, the first-order/second-order distinction is compatible with the stan-

dard approach to P-distributivity (a covert distributive operator in the syntax) in

addition to the standard approach to L-distributivity (distributive meaning postu-

lates). To be sure, the above discussion has abstracted away from the meanings of

VPs (including, importantly, event semantics) and is by no means a full account

of universal quantifiers and distributivity. But importantly, every and all having

second-order representations creates no new problems in this domain. Moreover,

each having a first-order representation is enough to explain why it only gives rise

to distributive interpretations.
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3.2 The corresponding psychological distinction

Having established the logical distinction between first-order and second-order

quantifiers, we can turn to the corresponding psychological distinction between a

system of individual representation (object-files) and a system of group representa-

tion (ensembles). The rest of this chapter will argue that the logical and psycho-

logical distinctions correspond in the following sense: First-order quantification like

“∀x(...x...)” is an instruction to cognition to initiate object-file (i.e., individual) rep-

resentations whereas second-order quantification like “ιG(...G...)” is an instruction

to cognition to initiate an ensemble (i.e., group) representation.

3.2.1 Object-file representations

An object-file is essentially a pointer to an individual object in the world. The

term originated with Kahneman and Treisman (1984), which introduced the idea

of a representation responsible for linking successive experiences of the same object

over time. When watching a ball fly through the air, for example, we represent a

single entity in motion, not merely a series of perceptually-similar time-slices.

To take an empirical example, Kahneman et al. (1992) asked participants to

watch videos of boxes containing letters moving around the screen. Suppose box1

started on the left and contained an “L” and box2 started on the right and contained

an “R”. After participants took note of their contents, the boxes closed, occluding

the letters. At this point, the boxes were perceptually identical. Then, box1 and box2

switched places and one of them opened, revealing the letter inside. Participants
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were asked to recall whether that letter was one of the initial letters or a new one

they hadn’t seen before. Perhaps surprisingly, participants performed best when

box2, now on the left side, opened to reveal an “R”. They performed worse if the

letter appeared in its original spatial location but was contained within a different

box, for example if box2 opened to reveal an “L”. This suggests that participants

represented each box as an object, bound a feature to that object (e.g., “contains

an R”), and held the object in working memory. That is, they represented each box

as a separate object-file, despite the boxes being irrelevant to the task.

Since Kahneman et al. (1992), object-files have been well-researched both in

adults and infants. Carey (2009) brings together these two literatures and argues

that the system responsible for representing object-files is a system of core cogni-

tion.7 As Carey discusses, this system exhibits three crucial properties.

The first such property is that object-files privilege spatio-temporal informa-

tion over kind or property information. Intuitively, imagine someone looking up

at the sky and exclaiming: It’s a bird; no, it’s a plane; no, it’s superman! Their

experience is not one of three separate objects but of a single object (it) that they

view under three different concepts in rapid succession. Notice that this is still true

if their reason for revising their claim is because they updated every aspect of their

perceptual representation (e.g., because superman was flying closer to them).

7 Spelke (2000) identifies at least four systems of core cognition: systems for representing
objects, actions, number, and space (see Spelke and Kinzler (2007) for a brief review). The contents
of core cognition representations are often conceptual, in that they cannot be reduced to sensory
primitives and they can play an inferential role in general reasoning. But the representations
themselves are often created by perceptual input analyzers that are modular in the sense of Fodor
(1983). Namely, these systems consist of highly structured domain-specific innate mechanisms. In
this way, representations in core cognition straddle the boundary between perception and belief
(Jenkin, 2020).
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Empirically, the importance of spatio-temporal information for object-file rep-

resentations can be seen clearly in multiple object tracking experiments (Pylyshyn,

2001; Pylyshyn and Storm, 1988). In this paradigm, participants are asked to track

three or four objects moving around the screen while ignoring similar-looking dis-

tractor objects. Altering properties of the objects (e.g., changing their color, shape,

or size) while they are in motion does not impact participants’ tracking ability.

Moreover, if one of the objects disappears, participants can accurately identify its

last known position and direction of motion but not properties like its shape or color

at the time of disappearance (Scholl et al., 1999). This suggests that object-files are

created/indexed based on spatial location and that binding features to an existing

object-file representation is a secondary process. Kahneman et al. (1992) describe

this as a distinction between seeing and identifying ; Xu and Chun (2009) similarly

distinguish object individuation from object identification and specify different neu-

ral correlates of these processes.

The same privilege for spatio-temporal information can be seen in infants. For

example, Xu and Carey (1996) showed 10-month-olds a scene in which one object –

a red metal truck – emerged from behind an occluder on the left, lingered in view

for a moment, and moved back behind the occluder. Then a second object – a blue

rubber elephant – emerged from the occluder on the right, lingered in view for a

moment, and retreated. Then the occluder was lifted. In one condition, a single

object was revealed; in another condition, both objects were revealed. Surprisingly,

infants didn’t seem to care if there turned out to be only a single object (they showed

the same looking-patterns in either condition as they did in baseline controls). This

144



suggests that they were unable to use the kind information (truck vs. elephant) or

the property information (metal, red vs. rubber, blue) to infer that there were two

objects behind the occluder. On the other hand, when infants were given a simple

spatial cue – both the truck and the elephant were shown on-screen simultaneously

before being hidden behind the occluder – they were able to infer the presence of

two objects.

To be sure, while spatio-temporal information is privileged for individuating

object-files, it is not the only way to trigger their representation. Xu (2002), for

example, shows that 9-month-old infants succeed at the Xu and Carey (1996) task

if the two objects are labeled upon emerging from behind the screen. Labeling even

helped infants represent two object-files when the objects and labels were completely

novel. At the same time, non-linguistic tones and emotional expressions paired with

the two objects did not support individuation.

The second crucial property of object-files is that multiple object-files can

be represented simultaneously, but only up to a working memory limit of three

or four items. This is perhaps best exemplified by Feigenson and Carey (2005),

which demonstrated that infants can represent up to three objects in parallel but

catastrophically fail at four. In one of their tasks, 12-month-olds were shown some

number of balls placed inside a box, one at a time. Infants were then allowed to

search the box themselves, and they always retrieved one ball. Hidden from the

infants’ view, the experimenter surreptitiously removed all remaining balls from a

trap door in the back of the box. Infants were then allowed to search the box again,

with the dependent measure being the amount of time spent searching. As expected,
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if infants initially saw only one ball placed in, they would not continue searching the

box after retrieving it. If they initially saw two or three balls placed in, they would

continue searching after retrieving the first ball. But if they initially saw four balls

placed in, infants would not search the box for the remaining three. They treated a

box containing four balls the same way they treated a box containing only one.

Feigenson and Carey (2005) further demonstrated infants’ failure to simulta-

neously represent four individuals using a task introduced in Feigenson et al. (2002).

The experimenter placed graham crackers into two opaque buckets while 11-month-

olds watched from the other side of a small room. Infants were then allowed to

crawl to one of the buckets to retrieve the crackers (the buckets were far enough

apart that infants could only pick one). Participants in this study reliably chose the

bucket with two crackers over the bucket with only one, and they reliably chose the

bucket with three crackers over the bucket with two. But surprisingly, if given the

choice between four crackers and one cracker, 11-month-olds were at chance, picking

the bucket with only one cracker half of the time.

This result is especially impressive because the four-versus-one comparison is

confounded with overall mass of cracker and with the time that the experimenter

spent near each bucket. Infants fail to use these cues. Instead, they seem to be

attempting to “open” a new object-file for each individual cracker, which puts them

up against their working memory limit. Going beyond this limit seems to have

catastrophic effects. We might have expected infants to open three object files and

then stop (in which case they would succeed at a 4 vs. 1 comparison as if it were a 3

vs.1 comparison). But instead, infants seemingly attempt to open a fourth and end
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up losing track of the initial three. Infants were able to succeed at this task when

given the choice between four and zero crackers, suggesting that when their working

memory capacity is exceeded, they nonetheless represent that there is something in

the bucket. But they do not retain their original three object-files.

A similar working memory limit on representing object-files is present in

adults. For example, a common result from the multiple object tracking paradigm

mentioned above is that the task becomes very difficult when participants are re-

quired to track five or more objects. And results from change detection paradigms –

in which participants are briefly shown two images of objects and asked to identify

which object changed in the second image – show that performance sharply declines

when there are more than four items in the initial display (Vogel et al., 2001). Of

course, adults do not fail as catastrophically as infants. Presumably, this is because

other strategies are available to us (e.g., verbally counting or refraining from even

trying to create more object-files than we can reasonably track). So while there may

not be a fixed upper limit of three items for adults, representing multiple object-files

at once is capacity-limited in some sense (Alvarez and Franconeri, 2007).

The third crucial feature of the system for representing object-files is the ca-

pacity to track individual objects through occlusion. Scholl and Pylyshyn (1999)

show that adult participants can successfully track multiple dots, even when they

are briefly hidden by a barrier. In another condition, the dots instead “imploded”

out of existence before subsequently “exploding” back into existence (i.e., the dot in

question shrank until it disappeared completely; then, maintaining the same trajec-

tory, a new dot grew from nothing). In this “implosion” case, tracking is interrupted
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despite the fact that the dots to-be-tracked were removed from participants’ visual

fields for the same amount of time as in the occlusion case. Perhaps surprisingly,

whether an object-file representation survives perceptual absence depends on how

the object disappears.

Cheries et al. (2005) extended this finding to 10-month-olds. Infants who

watched videos of two balls moving behind occluding barriers were surprised to see

three balls when the barriers were removed in the test phase. Likewise, infants who

watched videos of three balls moving behind occluding barriers were surprised to

see two balls when the barriers were removed. But infants who watched balls in

the “imploding” condition were not surprised to see a different number of balls in

the test phase. In the same vein, Kaufman et al. (2005) show that 6-month-olds

distinguish occlusion from disintegration and exhibit a brain response associated

with representing objects only in the former case.

In sum, object-file representations are mental pointers to objects in the world.

They individuate objects on the basis of spatio-temporal information and, after in-

dividuation, allow for binding of individual properties. They can be tracked through

occlusion, but there is a limit to how many object-files can be represented at once,

likely owing to working memory.

3.2.2 Ensemble representations

If an object-file is a pointer to an individual object, an ensemble can be thought

of as a pointer to potentially many objects at once. Due to the capacity limits dis-
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cussed above, indexing multiple objects at once requires abstracting away from the

individuals and their particular properties. Instead, ensembles are represented in

terms of summary statistics like cardinality, center of mass, average size, density,

perimeter, average hue, average orientation, and so on (for helpful reviews, see:

Alvarez 2011; Haberman and Whitney 2012; Whitney and Yamanashi Leib 2018).

These summary statistics are rapidly extracted and do not require precise represen-

tation of the individuals over which they are computed.

To take an influential example, consider participants’ ability to extract aver-

age size. Ariely (2001) showed participants displays of between four and sixteen

different-sized circles for 500 milliseconds. After each display, they were imme-

diately shown a single circle in the center of the screen. When asked to decide

whether or not a circle with that particular size had been present in the previous

display, participants performed essentially at chance. This effect was replicated with

a two-alternative-forced-choice version, in which participants were at chance picking

between two circles, one of which had been present in the previous display. But when

asked whether a single circle was bigger or smaller than the mean circle size from

the previous display, participants were able to offer surprisingly precise judgments.

Chong and Treisman (2003) provide further support for our impressive ability

to extract the average size summary statistic. Even with exposure times as short as

50 milliseconds, participants in their experiments were able to judge which of two si-

multaneously presented arrays of 12 circles had a larger average size. They were able

to do so just as well as they were able to judge which of two simultaneously presented

circles was larger. A variety of control conditions ruled out alternative strategies
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not based on computing the average (e.g., if a homogenous array of medium circles

is pitted against a bimodal array of small and large circles, participants cannot ar-

rive at the answer merely by matching individuals). Adapting this task for children,

Sweeny et al. (2015) show that 4- to 5-year-olds can also rapidly extract average size.

In particular, participants were able to decide which of two trees had larger oranges

on average despite showing poor precision when asked to discriminate individual

orange sizes.

It seems then, that even in the absence of representing individuals as such,

participants are able to represent the entire group of circles in terms of the summary

statistic average size. Based on comparisons of the variance of estimates of average

size and estimates of individual size, Im and Halberda (2013) moreover argue that

participants do not compute the summary statistic by sampling from the individuals

constituting the ensemble. Instead, they suggest that extracting a summary statistic

like average size is akin to texture processing.

In addition to point-estimates like average size, ensemble summary statistics

also include measures of the range. For example, while Ariely (2001) found that

participants were generally bad at discerning whether a particular circle was present

in a display, they were able to correctly reject circles that were larger or smaller

than any circle in the initial display. Demeyere et al. (2008) replicate this result in

a patient with simultanagnosia, who is unable to focus his attention on individual

objects (e.g., he cannot count more than one or two objects in complex displays, and

he reports that he is only guessing despite showing signs of computing the average

size). Likewise, Ward et al. (2016) showed that participants can accurately judge
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the color diversity of an array of letters even in the absence of knowledge about the

individual letters’ colors.

Going beyond lower-level features, ensemble representations can be formed at

higher-level of visual processing as well. A surprisingly counterintuitive case comes

from Haberman and Whitney (2011), which presented participants with an array of

sixteen greyscale faces with varying levels of happiness. After viewing this display

for one second, participants were exposed to a second array of sixteen. Twelve of the

faces were the same as in the initial display, but the four most emotionally extreme

faces (i.e., the four happiest or the four saddest) were replaced with faces from the

other end of the emotional spectrum. Participants were first asked to click on one of

the four faces that changed. They were then asked whether the first or second array

was happier on average. The most interesting cases are trials in which participants

failed to correctly identify one of the four changes. On these trials, participants

were nonetheless well above chance when asked about the average happiness. This

result suggests that encoding individual properties is not a prerequisite for encoding

ensemble summary statistics, even when the dimension in question is as high-level

as emotion.

Two summary statistics in particular will be important for the experiments

reported in section 3.3. The first is center of mass (which is also sometimes called

centroid or mean location). In one study probing center of mass, Alvarez and Oliva

(2008) asked participants to complete a multiple object tracking task with eight

homogenous dots, four of which they were told to track. At a random point, the

display was masked for 200 milliseconds before either the four target dots or the
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four distractor dots returned. Participants’ task was to identify the center of mass

of the missing group of four. They performed well above chance in either case.

Surprisingly, their performance was identical regardless of whether they were asked

to recall the center of mass of the group being tracked or the distractor group. In

contrast, when seven dots reappeared and participants were asked to identify the

location of the missing eighth dot, they showed better performance if that dot was

one of the targets. This again demonstrates that ensemble summary statistics can be

represented even when individual features (of the sort that get bound to object-files)

are not.

The second particularly relevant summary statistic is cardinality. Estimates of

cardinality are supported by the Approximate Number System, which was discussed

in Chapter 2 (section 2.2.2). Cardinality is unlike the other summary statistics

discussed so far in that it is not an average or a measure of variability. As Alvarez

(2011) points out though, cardinality, like other summary statistics, can be extracted

rapidly from multiple groups simultaneously. In particular, Halberda et al. (2006)

show that participants suffer no decrement in performance when three groups of

dots (including the superset) are flashed on screen simultaneously. For example,

participants shown red dots and blue dots can reliably report the cardinality of the

red dots, the blue dots, and the superset of all dots just as well as if there had been

only a single color.8 Zosh et al. (2011) replicate this result in 9-month-old infants.

8 At four groups, performance begins to deteriorate. This suggests that while the number of
individual objects that go into one ensemble is unlimited, the number of ensembles that can be
simultaneously represented is limited to three. Interestingly though, the superset is always one
of the ensembles represented. That is, even when six colors were present, adult participants in
Halberda et al. (2006) accurately estimated the number of all dots. And even when four colors
were present, infants in Zosh et al. (2011) noticed a change in the total number of dots on screen.
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Moreover, Burr and Ross (2008) argue that cardinality, like other summary

statistics, is a “primary visual property.” In particular, they show that number is

adaptable: repeatedly presenting participants with large numerosities in one area

of their visual field led to vastly increased underestimation of arrays presented in

the area. These findings motivate including approximate cardinality among the

ensemble summary statistics.9

One final caveat is in order. Unlike with object-files, there is not as strong of a

consensus in the literature about how exactly to understand ensembles. At the start

of this section, ensemble representations were described as “pointers to potentially

many objects at once.” This description makes the analogy to second-order variables

as plural variables especially clear (as discussed in section 3.1, the plural logic way

to understand “∃X(...X...)” is there exists one or more thingsX such that theyX ...).

However, it might turn out that ensemble representations are better understood as

analogous to representations of sets.10 Given that nothing in the rest of this chapter

turns on the distinction, we can remain agnostic on this question.

That said, there are reasons for doubting the idea that representing an en-

semble should be understood as representing a set. For one thing, sets preserve the

identity of their members whereas the hallmark of ensembles is that they abstract

9 An alternative to approximate cardinality being an ensemble summary statistic is that the
ANS takes ensemble representations as input and uses them to generate cardinality estimates.
This is an interesting distinction, but it is not one that has any bearing on the experiments
in section 3.3.1. There, cardinality knowledge is used as a signal of ensemble representation.
Whether cardinality is an ensemble summary statistic or ensembles are a prerequisite for obtaining
cardinality estimates, the link between the two seems clear.

10 Some authors colloquially refer to ensembles as sets, including Ariely (2001) and Halberda
et al. (2006). However, nowhere in the literature on ensembles is an argument made for under-
standing ensembles in terms of the mathematical notion of a set.
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away from individual-properties.11

Moreover, it is not clearly sensible to talk about a set as having a center of

mass or a perimeter (as opposed to saying that its members have a center of mass

or perimeter). The same is true for many other summary statistics. Cardinality

is one exception: It makes sense to talk about a set having a cardinality, but only

because the cardinality of any set is one. The relevant notion of cardinality – the

one that plays the role of a summary statistic in an ensemble representation – is

the cardinality of the set’s members, not that of the set itself. But if all summary

statistics are computed over the members, is there any theoretical role left for the

set itself to play?

3.3 Psychosemantic evidence: How are arguments represented?

In Chapter 2, we used cardinality-knowledge as a proxy for argument represen-

tation and saw that evaluating sentences with every or all leads participants to rep-

resent the extension of the determiner’s first argument. But cardinality-knowledge

signals more than just representing an argument. It also signals that the argument in

question was represented in a particular way, namely, as an ensemble as opposed to

as independent object-files. Here, we will see that every leads to better cardinality-

knowledge (section 3.3.1) and center-of-mass-knowledge (section 3.3.3) than each,

but that each leads to better individual-color-knowledge than every (section 3.3.2).

This suggests that while participants treat the first argument of every and all as an

11 They do so likely because of working memory constraints: Representing a plurality by repre-
senting each individual would be too costly.
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ensemble, they treat the first argument of each as independent object-files.

There are likely many factors that go into determining whether someone will

treat the extension of a quantifier’s first argument as an ensemble or a number

of independent object-files. Low-level visual properties of the scene will matter

(e.g., spreading out objects to an extreme degree will probably discourage ensemble

representation), as will higher-level properties (e.g., grouping five lemons into an

ensemble is more natural than grouping two lemons, a fruit bowl, a cutting board,

and a knife).

A central claim of this chapter is that another factor that goes into determining

how an argument is represented is whether the meaning representation is first-order

or second-order. In particular, the claim here is that a representation that contains

a first-order quantifier like “∀x(...x...)” provides an instruction to create individual

object-file representations (in this case, of each x). On the other hand, a representa-

tion that contains a second-order quantifier like “ιG(...G...)” provides an instruction

to create an ensemble representation (in this case, of the Gs). These are two in-

stantiations of the Interface Transparency Thesis (ITT) in (135), as discussed in

Chapter 1 (section 1.3.1).

(135) Linking hypothesis (ITT): The verification procedures employed in under-

standing a declarative sentence are biased towards algorithms that directly

compute the relations and operations expressed by the semantic representa-

tion of that sentence (Lidz et al., 2011).

a. first-order semantic representation → object-files
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b. second-order semantic representation → ensemble

Given these linking hypotheses, the results of the experiments reported below sup-

port the pair of lexical semantic hypotheses in (136).

(136) Lexical semantic hypotheses

a. each has a first-order representation: λI.λE.∀x(Ix)[Ex]

b. every has a second-order representation: λI.λE.ιG(∀x[Gx ≡ Ix])[E(G)]

The methodological strategy in these experiments will be to hold the scenes

and truth-conditions (and sometimes the participants) constant and vary only the

determiner. Otherwise unexplained variation in verification can then reasonably be

attributed to the semantic representations under evaluation. In particular, (136a)

predicts that, all else equal, when evaluating a sentence like each circle is green,

participants will treat the circles as independent object-files. Conversely, (136b)

predicts that, all else equal, when evaluating a sentence like every circle is green

participants will treat the circles as a single ensemble.

Spelling out the exact details of the object-file-based and ensemble-based veri-

fication strategies that participants use to evaluate universally quantified statements

is a topic for future work. In the object-file case, it might involve cycling through

each individual object. In the ensemble-case, one possibility is that participants rely

on summary statistics indexing the level of homogeneity, like color diversity (Ward

et al., 2016). For example, if every big circle is blue is true, then the big circles

will have a low level of color diversity. But if every big circle is blue is false, then

156



the big circles will include a larger range of hues.12 For present purposes, we can

remain agnostic about the precise details of the strategy and focus on evidence that

participants represent ensembles or object-files.

3.3.1 Experiments 1 & 2: Probing cardinality knowledge in adults

These experiments were first reported in Knowlton et al. (accepted). Similar

to the experiments in Chapter 2, participants here were shown dot-displays like the

one in Figure 3.1. They were asked to evaluate sentences like every big dot is blue.

After answering true or false, the image disappeared, and they were asked to

recall the cardinality of some group of dots from the display. Sometimes they were

asked about a distractor set, which was not mentioned in the initial sentence (small

or medium dots, in this example). Other times they were asked about the target set

(i.e., the one denoted by the quantifier’s internal argument; big dots, in this case).

Regardless of details about the quantifier’s representation, performance on car-

dinality questions is predicted to be better when those questions probe the target

set than when they probe a distractor set (if only because the former was mentioned

and is relevant for arriving at the answer). However, a first-order representation,

like the one proposed for each, should, by hypothesis, lead to less ensemble rep-

resentation compared to a second-order representation, like the one proposed for

12 Given that some color categories contain more hues than others, this strategy raises an inter-
esting question: Will participants be more likely to tolerate exceptions for smaller color categories?
Or are they able to adjust the acceptable range depending on the predicate? It is also a possibility
that participants use the range as a first-pass measure. With a small range and and an average
solidly within the desired category, the sentence is likely true; but a large range may necessitate
looking for disconfirming instances. This might predict, for example, longer reaction times on
false trials with large ranges. Thanks to Sandy LaTourrette for helpful discussion on this point.
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every. Consequently, evaluating a sentence with each is predicted to lead to worse

performance when asked to recall the cardinality of the target set, compared to eval-

uating an otherwise identical sentence with every or all. Experiment 1 finds this

advantage for every over each (section 3.3.1.1). In a separate group of participants,

Experiment 2 finds similar (though less conclusive) results when every is replaced

with all (section 3.3.1.2).

Each big dot is blue How many big dots 
were there?

How many 
{medium/small} dots 

were there?

Distractor set probed

Target set probed

Every big dot is blue

F=FALSE J=TRUE

F=FALSE J=TRUE

Every-sentence

Each-sentence

Figure 3.1: Trial structure of Experiment 1. Both manipulations – quantifier (each
vs. every) and set probed (target vs. distractor) – were within-subjects, but quan-
tifier was blocked.

3.3.1.1 Experiment 1: Cardinality, Each vs. Every

Participants: 30 University of Maryland undergraduates participated for

course credit. All were native speakers of English. Participants were removed if they

(a) scored below 85% accuracy on the true/false portion of the task, (b) reported

that they used an explicit strategy, or (c) failed to complete both blocks of the

experiment in the allotted hour. In this case, two participants were excluded from

analysis for reason (b) and four were excluded for reason (c), leaving 24 participants.
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Materials: Sentences had one of two forms, given in (137).

(137) a. Each {big/medium/small} dot is {red/yellow/blue}

b. Every {big/medium/small} dot is {red/yellow/blue}

Half of these sentences were true with respect to the display and half were false.

Dot-displays consisted of a black background with red, yellow, and blue dots that

could be big, medium, or small (e.g., Figure 3.1). Medium dots had black holes

in the middle, to make them more distinguishable from the other two sizes (Chen,

1982, 2005). The dot sizes and colors were named during the training portion of the

experiment to ensure that they could be correctly identified by participants (and

participants were happy to refer to the circles with holes as “dots”).

Each display contained between 24 and 48 dots. Out of the nine possible

size/color combinations (e.g., big blue dots), six were always present. Each size/color

combination present contained a minimum of 3 and a maximum of 9 dots. One dif-

ference between these experiments and those in Chapter 2 is that here, no follow-up

questions probed the conjunction of both predicates. Instead, they were distributed

as follows: 30 questions probed the target size, 30 probed a distractor size, 30 probed

the target color, 30 probed a distractor color, and 16 probed the total number of

dots. This led to 136 trials for each quantifier (272 total trials per participant). Only

the target and distractor size questions were analyzed (the others were included as

fillers).

Procedure: The experiment was conducted in a small, sound-attenuated

room at the University of Maryland. On each trial, participants read a quantifica-
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tional sentence. Quantifier was blocked and the initial condition was counterbal-

anced, such that half of the participants started with each-sentences and half of the

participants started with every-sentences. After reading the sentence and pressing

“space,” they viewed a dot-display and evaluated whether the sentence was true

or false with respect to the display by pressing “J” or “F” on their keyboard. Dis-

plays remained on-screen until participants offered their judgement (though they

were told to respond as quickly as possible, to discourage explicit counting). After

offering their true/false judgement, the screen went blank and participants were

asked to recall the cardinality of one of the groups present in the display by typing

in a number and pressing “enter”. Participants were allowed a short break between

blocks.

Predictions: As discussed above, distractor questions are predicted to lead

to worse overall performance than target questions. If asked whether every big dot

is blue, for example, participants have no reason to know the number of small dots.

These distractor questions serve as a baseline measure of poorest possible cardinality

estimation performance.

If every has a second-order representation, participants should be biased to

represent the big dots as an ensemble. As a consequence, they should perform well

on target questions. If each has a first-order representation, participants should be

biased to represent the big dots as object-files when evaluating a sentence like each

big dot is blue. This bias to represent object-files should result in worse performance

on target questions than every. So despite the fact that these sentences are truth-

conditionally equivalent, participants should, by hypothesis, have better estimates
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of the cardinality of the internal argument (e.g., big dots) after evaluating the every-

variant than after evaluating the each-variant.

Results: On the true/false portion of the task, participants correctly eval-

uated 96.9% of the each-sentences and 97.2% of the every-sentences. Time spent

viewing the display in the two blocks did not significantly differ (t = 0.55, p = .589).

Participants’ responses on the cardinality portion of the task bore out the

predictions above. Figure 3.2 plots participants’ performance in terms of percent

error (lower error indicates better performance).

●

●30

35

40

45

50

distractor target
Set probed

A
ve

ra
ge

 %
 E

rr
or

●

Each
Every

Percent error − "each" vs. "every"

Figure 3.2: Percent error on cardinality questions in Experiment 1. Higher percent
error reflects poorer cardinality estimations. For example, if the actual number of
dots shown was 10, a response of 8 or 12 would result in 20% error; a response of 6
or 14 would result in 40% error.

To analyze responses on the cardinality portion, data were fit to different

versions of the standard cardinality estimation model, discussed in Chapter 2 (see

also Odic et al. (2016) and citations therein). To reiterate: Numerical estimates (y)

161



in response to being shown some number of objects (x) are modeled as a Gaussian

distribution. The mean of this distribution is the number of objects (x) raised to

the power of participants’ accuracy (β) and multiplied by a scaling factor (α). The

standard deviation scales linearly with the mean at a rate given by participants’

precision (σ). This yields the basic model in (138).

(138) Basic cardinality estimation model:

y ∼ N
(

mean = αxβ

stdev = σ ×mean

)

Building off of (138), the models in (139) allow the scaling factor, accuracy,

and precision to vary as a function of either the set probed, the quantifier, or both.13

The “set probed only” model, (139a), allows the values of α, β, and σ to vary only

based on the set probed (for target: S = 1; for distractor S = 0). The “main effects”

model, (139b), allows these values to vary based on the set probed and the quantifier

(for every Q = 1; for each Q = 0). The “interaction” model, (139c), allows them

to vary based on the set probed and an interaction between the set probed and the

quantifier. Lastly, the “full” model, (139d), includes terms for a main effect of set

probed, a main effect of quantifier, and their interaction.

(139) a. Set probed only:

y ∼ N
(

mean = (α0 + α1S)xβ0+β1S

stdev = (σ0 + σ1S)×mean

)
13 This is a different analytical strategy than the one used in Chapter 2, where accuracies were

independently fit and compared against a baseline. The absence of an ideal-performance baseline
for these experiments makes that approach impossible. However, the same pattern of results is
obtained if accuracies from the trials in each cell of the 2× 2 design are computed and compared:
the β value of a model fit to every target trials is higher than the β value for each target trials,
and both are higher than the β values for distractor trials.
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b. Main effects:

y ∼ N
(

mean = (α0 + α1S + α2Q)xβ0+β1S+β2Q

stdev = (σ0 + σ1S + σ2Q)×mean

)

c. Interaction:

y ∼ N
(

mean = (α0 + α1S + α3SQ)xβ0+β1S+β3SQ

stdev = (σ0 + σ1S + σ3SQ)×mean

)

d. Full:

y ∼ N
(

mean = (α0 + α1S + α2Q+ α3SQ)xβ0+β1S+β2Q+β3SQ

stdev = (σ0 + σ1S + σ2Q+ σ3SQ)×mean

)

The set probed only model in (139a) corresponds to the null hypothesis that

the quantifier used has no effect on participants’ cardinality estimates. The other

three models are three different ways of spelling out the alternative hypothesis that

the quantifier does have an impact on participants’ cardinality estimation ability.

The “interaction” model in (139c) is most in line with the predictions outlined

above. Namely, participants should perform better on target questions than on dis-

tractor questions regardless of quantifier, but every-sentences should lead to better

performance on target questions than each-sentences.

Models were fit using maximum likelihood estimation. To compare them,

we can consider their relative Akaike Information Criterion (AIC) and Bayesian

Information Criterion (BIC) values, both of which reward models for capturing the

data and penalize them for including greater numbers of parameters (Akaike, 1998;

Schwarz, 1978; Stone, 1979). Lower values are indicative of striking a better trade-

off between fit and complexity. As seen in Table 3.1, both the AIC and BIC values
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favor the predicated interaction model. This means that regardless of quantifier,

participants had better knowledge of cardinality of groups that were mentioned in

the sentence. But more importantly, every-sentences lead to better estimates of the

internal argument’s cardinality than truth-conditionally equivalent each-sentences.

Model AIC BIC
Set probed only 15687.75 15723.48

Main effects 15653.59 15707.18
Interaction 15636.82 15690.41

Full 15640.33 15711.79

Table 3.1: Model comparisons for Experiment 1. Lowest values are in bold.

The result is most pronounced among the 12 participants who completed the

each condition first, as seen in Figure 3.3 (Table 3.2 likewise shows a same statistical

result in the same direction as the whole-group analysis).

Given that every, in this task, leads to a superior strategy – in that it leads to

better responses to subsequent cardinality questions – it would come as no surprise

if participants who started in that condition were sometimes prone to retain this

strategy upon encountering each instead of switching to an inferior alternative.

Considering the each-initial participants, though, allows us to get a better sense

of participants’ unadulterated performance. That is, these participants were not

linguistically biased to use an ensemble-based strategy prior to completing the each

block (in which sub-optimal performance was predicted).

Overall, these results are well-explained if every (but not each) has a second-

order representation and if second-order representations in turn encourage ensemble

representation.
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Figure 3.3: Percent error on cardinality questions for Experiment 1 participants who
completed the each condition first. Higher percent error reflects poorer cardinality
estimations. For example, if the actual number of dots shown was 10, a response of
8 or 12 would result in 20% error; a response of 6 or 14 would result in 40% error.

Model AIC BIC
Set probed only 8001.43 8033.00

Main effects 7918.65 7966.00
Interaction 7873.30 7920.65

Full 7879.27 7942.41

Table 3.2: Model comparisons for Experiment 1 participants who completed the
each condition first. Lowest values are in bold.

3.3.1.2 Experiment 2: Cardinality, Each vs. All

Participants: 27 University of Maryland undergraduates participated for

course credit. All were native speakers of English. Participants were removed fol-

lowing the same criteria as in Experiment 1. In this case, three participants were

excluded for being unable to complete the experiment in the allotted hour, leaving

24 participants.
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Materials: Materials were identical to Experiment 1 save for the change from

every-sentences to the all -sentences in (140b).

(140) a. Each {big/medium/small} dot is {red/yellow/blue}

b. All {big/medium/small} dots are {red/yellow/blue}

It is worth noting that this change introduces a confound that was not present in

Experiment 1: plurality. Because the plural dots may also be reasonably expected

to encourage representing the relevant dots as an ensemble, the sentences in (140)

do not constitute a true minimal pair.

Procedure: The procedure was identical to that of Experiment 1.

Predictions: As before, distractor questions are predicted to lead to worse

overall performance than target questions. If all, like every, has a second-order

representation, all -sentences should lead to better performance on target questions

than each-sentences.

Results: On the true/false portion of the task, participants correctly eval-

uated 96.7% of the all -sentences and 96.4% of the each-sentences. Time spent

viewing the display in the two blocks did not significantly differ (t = 1.33, p = .197).

Participants’ responses on the cardinality portion of the task were analyzed

in the same way as in Experiment 1. Figure 3.4 plots participants’ performance in

terms of percent error and Table 3.3 presents the model comparison values. Both

the AIC and the BIC values favor the full model.

This suggests again that the difference in quantifier matters for cardinality

estimation ability in the predicted direction of all leading to better performance
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Figure 3.4: Percent error on cardinality questions in Experiment 2. Higher percent
error reflects poorer cardinality estimations. For example, if the actual number of
dots shown was 10, a response of 8 or 12 would result in 20% error; a response of 6
or 14 would result in 40% error.

Model AIC BIC
Set probed only 15861.37 15897.07

Main effects 15802.18 15855.72
Interaction 15813.46 15867.00

Full 15757.98 15829.38

Table 3.3: Model comparisons for Experiment 2. Lowest values are in bold.

than each. As in Experiment 1, this is well-explained if all (but not each) has a

second-order representation and if second-order representations encourage ensemble

representation. However, the observation that the full model is a better fit than

the interaction model is surprising. This means that the benefit afforded by all is

present even on distractor questions, where the set probed was not even mentioned

in the initial sentence. However, this is likely a spurious result.

As with Experiment 1, the result is especially pronounced among participants
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who completed the each condition first, as seen in Figure 3.5. Moreover, as seen in

Table 3.4, while one measure of model comparison prefers the full model (as in the

full sample), the other prefers the interaction model (as in Experiment 1).
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Figure 3.5: Percent error on cardinality questions for Experiment 2 participants who
completed the each condition first. Higher percent error reflects poorer cardinality
estimations. For example, if the actual number of dots shown was 10, a response of
8 or 12 would result in 20% error; a response of 6 or 14 would result in 40% error.

Model AIC BIC
Set probed only 7997.06 8028.56

Main effects 7950.58 7997.82
Interaction 7945.04 7992.28

Full 7941.99 8004.98

Table 3.4: Model comparisons for Experiment 2 participants who completed the
each condition first. Lowest values are in bold.

Broadly speaking, the results of these first two experiments suggest that every-

sentences (and all -sentences) encourage participants to represent the determiner’s

internal argument as an ensemble more often than truth-conditionally equivalent
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each-sentences do. Given the linking hypothesis discussed above, these findings

support the lexical semantic hypotheses outlined above: Both every and all have

second-order representations whereas each has a first-order representation.

3.3.2 Experiments 3 & 4: Probing color knowledge in adults

The previous two experiments probed cardinality, an ensemble summary statis-

tic. Experiments 3 and 4 instead probe a property that can be bound to object-

files, individual color. Participants were shown displays containing three circles,

each with a different hue, as in Figure 3.6. They were asked to evaluate sentences

like each/every circle is green. After answering true or false, the circles disap-

peared briefly before reappearing with one circle having potentially changed its hue.

Participants’ task was to say whether they detected the change.

Each circle is green

One circle 
changed its color

300 milliseconds

F=FALSE J=TRUE

F=FALSE J=TRUE

Every circle is green
F=FALSE J=TRUE

Figure 3.6: Trial structure of Experiment 3. Participants were always shown three
circles, each of which was a unique shade of green, orange, or blue. In this case the
follow-up statement is true because the middle circle is a different hue. Quantifier
was varied between-subjects.

Given that ensembles abstract away from individuals and their properties,
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representing the circles in this task as an ensemble should lead to inferior perfor-

mance on the subsequent change-detection task relative to representing the circles as

object-files. So while the experiment in section 3.3.1.1 found superior performance

on an ensemble-based follow-up question for every, the experiments here predict

superior performance on an individual-based follow-up question for each. Experi-

ment 3 finds this difference in a standard change detection task (section 3.3.2.1).

Experiment 4 replicates this finding in a staircased change detection task, where the

difficulty varies as a function of participants’ performance (section 3.3.2.2)

3.3.2.1 Experiment 3: Color, constant difficulty

Participants: 43 participants were recruited online using Amazon Mechanical

Turk. All passed an English-screener prior to the actual task. Seven participants

were removed from further analysis either for achieving below 50% accuracy on the

true/false portion of the task (five) or for having response times longer than three

standard deviations above the mean response time (two). This left 36 participants.

Materials: Sentences had one of two forms, given in (141).

(141) a. Each circle is {green/blue/orange}

b. Every circle is {green/blue/orange}

Unlike Experiments 1 and 2, quantifier was a between-subjects manipulation in

Experiments 2 and 3. Half of the participants evaluated each-sentences and the

other half evaluated every-sentences.

Displays consisted of a grey background with three circles. The circles’ colors
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were randomly selected from an independently normed color wheel with a constant

luminance and 180 equally-spaced hues (Bae et al., 2015). According to empirically-

determined color categories, in half of the trials the sentences were true with respect

to the display and in half of the trials they were false.14

For the follow-up change detection task, half of the trials were “no change”

trials, in which the original three circles reappeared after a 300 millisecond grey

screen. Half of the trials were “change” trials, in which one circle changed its hue in

second display (after the 300ms grey screen). In these cases, one circle was randomly

selected to change. A new color was then sampled from a Gaussian distribution with

a mean of the original hue and a standard deviation of 17 (selection of the original

hue was not permitted, however). Participants completed 84 trials in total.

Procedure: During the instructions, participants were led to believe the task

was about color categories. On each trial, they read a quantificational sentence

presented alongside three circles. They were given as long as they wanted to inspect

the circles and decide whether they agreed with the sentence. After they evaluated

the sentence as true or false by pressing “J” or “F” on their keyboard, the display

disappeared for 300 milliseconds. Then three circles reappeared in the same spatial

positions, alongside the text One circle changed its color, which participants could

judge as true or false by pressing “J” or “F”. Participants had unlimited time to

respond.

14 To be sure, participants differ in their judgments about color category boundaries. Some hues
in Bae et al. (2015) were overwhelmingly categorized as a particular color (e.g., hue 83 was called
green by all 60 participants asked) whereas others were borderline (e.g., hue 93 was judged to be
green by 30 participants and to be blue by the other 30 participants). For these experiments,
we considered a hue a member of a given color category if it was the modal response when adult
participants were asked to name it.
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It is potentially worth noting that the wording of this follow-up statement

leaves the question somewhat open. In particular, color could be understood to

mean color category, in which case many deviations in hue will still elicit the response

false, or particular hue, in which case any deviation at all makes the statement

true. Because colors were randomly sampled, some trials had changes that crossed

color category boundaries whereas others had changes taken from within the same

category. This did not seem to confuse participants, as they were generally willing

to answer true to within-category changes. That said, in subsequent versions of

this task (not included in this dissertation) participants were warned that sometimes

the changes would be large and other times the changes would be small.

Predictions: As discussed above, if each has a first-order representation (and

if first-order representations are instructions to represent object-files), participants

should be biased to treat the circles as individual object-files. Likewise, if every has

a second-order representation (and if second-order representations are instructions

to represent ensembles), participants should be biased to abstract away from the

individual circles and treat them as an ensemble. As a consequence, participants

should show better performance on the change detection task after evaluating an

each-sentence than a truth-conditionally equivalent every-sentence.

Results: On the true/false portion of the task, participants correctly eval-

uated 67% of the each-sentences and 69.7% of the every-sentences (these values

appear low, though see note 14). Time spent viewing the display did not signifi-

cantly differ across conditions (t = 0.71, p = .486).

Participants’ accuracy in the change detection portion of the task is plotted in
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Figure 3.7: Percent correct on the change detection question in Experiment 3.

3.7. In line with the predictions discussed above, participants who first evaluated an

each-sentence were more accurate than participants who first evaluated an every-

sentence (t = 2.34, p < .05).

3.3.2.2 Experiment 4: Color, staircased difficulty

Participants: 37 participants were recruited online using Amazon Mechanical

Turk. All were required to pass an English-screener before participating in the actual

task. One participant was removed from further analysis for having response times

longer than three standard deviations above the mean response time. This left 36

participants.

Materials: Materials were identical to Experiment 3 with one exception: the

distribution from which new colors were chosen differed. Instead of relying on a

constant standard deviation (17 in Experiment 3), the standard deviation of this
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distribution started at 20. Any time the participant correctly detected a change,

this value was decremented by one, making subsequent trials harder (i.e., the new

hue was more likely to be close to the original). Any time the participant missed

a change, this value was incremented by one, making subsequent trials easier (i.e.,

the new hue was more likely to be distant from the original).

Procedure: The procedure was identical to that of Experiment 3.

Results: On the true/false portion of the task, participants correctly eval-

uated 65.9% of the each-sentences and 65.4% of the every-sentences. Time spent

viewing the display did not significantly differ across conditions (t = 1.73, p = .093).

Because the difficulty of the change detection task varied based on perfor-

mance, participants in both conditions achieved the same accuracy (each: 71.8%;

every : 71.2%). Instead, the dependent measure of interest is the difficulty level

required to achieve this degree of accuracy. As seen in Figure 3.8, participants who

evaluated each-sentences on average had a smaller standard deviation – reflecting

harder trials – than participants who evaluated every-sentences (t = 11.65, p <

.001). That is, for participants to achieve 70% accuracy, change detection trials

following every had to be easier than those following each.

In sum, Experiments 3 and 4 tested the prediction that each-sentences will

lead to object-file representations, and consequently, memory for individual prop-

erties like color, whereas every-sentences will lead to ensemble representation, and

consequently, degraded memory for individual properties. These predictions were

borne out. In line with Experiments 1 and 2, these results are well-explained if each

has a first-order representation and every has a second-order representation.
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Figure 3.8: The standard deviation of the distribution from which the new color was
chosen on each trial. A larger standard deviation corresponds to an easier trial, on
average (since the new hue is less likely to be similar to the original). All participants
started the task with the SD set to 20.

3.3.3 Experiment 5: Probing center of mass knowledge in children

Experiments 1-4 show that adults have a bias to use different verification

strategies to evaluate each- and every-sentences, even when the scene remains con-

stant. This variation in verification strategies was taken to reflect a representational

difference. That difference amounts to the claim that knowing the meaning of every

consists in having paired its pronunciation with a second-order universal concept

and knowing the meaning of each consists in having paired its pronunciation with a

first-order universal concept. A strong test of this conclusion would be to show that

the same strategies used by adults are also deployed by children as early as they can

be said to know the meanings of each and every.

Experiment 5 tests this prediction with a task appropriate for a wide age
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range. Participants (3- to 8-years-old) were shown an iPad with a display like the

one in Figure 3.9. They were either asked whether each or every circle was blue.

After answering “yes” or “no”, the circles disappeared and participants were asked

to remember where the center of the circles was. They could record their guess by

tapping a location on the iPad.

“Where was the 
middle of the circles?” 

“Is each 
circle blue?” 

“Is every 
circle blue?” 

Figure 3.9: Trial structure of Experiment 5. Quantifier was varied between subjects.
The center of the circles was always offset from the center of the screen in both the
x and y directions.

Since center of mass is an ensemble summary statistic, children who answered

the every-question should have better estimates of the center of mass than children

who answered the each-question.

Participants: 175 children between 3- and 8-years-old participated. They

were recruited at the University of Maryland and Johns Hopkins University. Prior

to any analysis, 25 children were excluded for the following reasons: needing to tap

the screen multiple times to record their guess (14), parental/sibling interference (5),

failing to understand the task (5), or equipment failure (1). This left 150 children.

Of these, 41 incorrectly answered the initial question and were removed from further
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analysis (as they either did not yet know the meaning of the quantifier or were not

paying attention to the task). This left 109 children (age range: 3;2 - 7;11, mean

age: 5;8).

Materials: Each child participated in a single trial. Questions were identical

save for the quantifier, which was manipulated between-subjects (see the full script

in (142a)). Displays consisted of nine circles, nine triangles, and nine squares on a

black background. There were always seven blue circles, one yellow circle, and one

red circle. This means that the correct answer to the question is each/every circle

blue? was always “no” (a correct rejection is a stronger test of knowledge, given

children’s “yes”-bias). Shapes appeared in a large cluster either on the left or right

side of the screen to ensure that average position of the shapes and the average

position of the circles was never the center of the screen. Eleven different images

were randomly generated with these constraints and participants were shown one at

random (meaning the each and every conditions used identical images).

Procedure: Participants were shown an all-black screen on an iPad. The

researcher then followed the script in (142a). After the participant answered “yes”

or “no”, the researcher agreed with their response before advancing to the blank

screen and following the script in (142b).

(142) a. Let’s play a game! I’m going to show you a picture with different shapes.
Can you say whether {each/every} circle is blue? Are you ready?

click to reveal shapes

Is {each/every} circle blue? What do you think? Is {each/every} circle
blue? (repeat again if child does not respond.)

agree with response and click to remove shapes
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b. Where was the middle of the circles? Can you tap where the middle of
the circles was?

Predictions: As discussed above, if the different verification procedures for

each- and every-sentences reflect the semantic representation of those sentences,

then the asymmetry should be present as soon as the meaning of these expressions

is known (i.e., as soon as learners have paired the pronunciation of each with a first-

order universal concept and the pronunciation of every with a second-order universal

concept). Because center of mass is an ensemble summary statistic, children in the

every condition should perform better than those in the each condition.

On the other hand, children might go through a stage of, for example, thinking

that each and every are synonymous and have both pronunciations paired with the

same second-order concept. That is, they might understand that these determiners

both express universal content before understanding exactly how that content is

represented by adults. In this case, we should expect the effect of every leading

to better performance than each not to be present at the youngest end of the age

range, but to emerge over time (i.e., we expect an interaction between quantifier

and age).

Results: As noted above, not all of the participants correctly answered the

initial “yes”/“no” question (i.e., some incorrectly answered “yes”). Accuracy is

broken down by age in Figure 3.10. The low accuracy at the lower end of our age

range may result from some of the 3- to 5-year-olds not yet knowing the meaning

of each or every. To be sure, the age of acquisition is still debated (see Chapter 4)

and this experiment is not intended to make a strong claim on this point. It might
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also reflect the amount of information participants were expected to process: The

task could likely be made easier by removing the distractor shapes (the squares and

triangles) or by presenting children with fewer shapes overall.
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Figure 3.10: Percent correct on the initial “yes”/“no” question (Is {each/every}
circle blue? ), separated by age group. The correct response was always “no”.

Only the children who correctly answered the initial question were included

in analysis of the center of mass question. For these 109 children, those who first

answered the every-question recalled the center of mass with greater accuracy than

those who first answered the each-question (t = 2.6, p < .05). Figure 3.11 plots the

error distance for each participant (i.e., the distance from their guess to the true

center of mass). There was no significant interaction between age and quantifier

(F1,105 = .001, p = .971), suggesting that participants use the predicted verification

strategies as early as we can find evidence that they know the meanings of the

determiners.
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Figure 3.11: Each participant’s error distance on the center of mass question (i.e.,
distance in millimeters from the participant’s guess to the true center of mass of the
circles). Smaller error distance reflects better memory for the center of mass.

This result is similar to that of Experiment 1 in that every leads to superior

performance when participants are asked a follow-up question about an ensemble

summary statistic. Though the current experiment probes a different summary

statistic and uses children instead of adults, it shows a similar advantage for every

over each. One benefit of this task over the other four experiments is that children

did not know in advance that they would be asked a follow-up question.

That children show the result as early as they seem to know the meaning of the

quantifiers is important. If younger children had correctly responded to the ques-

tion but not shown the effect, we might be tempted to conclude that the propensity

to represent ensembles for every and object-files for each is a learned strategy or

that learners first understand both determiners as universals before understanding

exactly which universal concept goes with which pronunciation. The results of Ex-
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periment 5 tell against both possibilities. Instead, the lack of interaction between

quantifier and age supports the idea that this effect reflects a fundamental detail

about these quantifiers’ meanings. In particular, if the proposed semantic represen-

tations are right, then acquiring the meaning of each or every is a matter of pairing

these representations with the relevant pronunciations.

3.3.4 General discussion

Broadly, the five experiments reported in this section point to the same con-

clusion. Sentences with each bias participants to represent the internal argument of

the determiner as a series of independent object-files. As a consequence, they recall

individual properties but have degraded knowledge of group properties. Sentences

with every (and all) bias them to abstract away from individuals and represent the

internal argument as an ensemble. As a consequence, they recall summary statistics

but have degraded knowledge of individual properties.

Importantly, we observe these differences despite the fact that visual displays

and truth-conditions were held constant. In the absence of an alternative explana-

tion, details of the semantic representation can be held responsible for the observed

variation in verification. In this case, the results are well-explained if each is repre-

sented in first-order terms, which serve as instructions to create object-files and if

every is represented in second-order terms, which serve as instructions to create an

ensemble.

As always though, there are potential alternative explanations. For example,
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what if each and every (and all quantificational determiners) in fact have second-

order representations but each moreover has a meaning that entails distributivity?

Perhaps this would look something like (143), which is still second-order in quantify-

ing over G, but which also says (in the second conjunct) that each individual must

independently satisfy E, perhaps owing to the presence of a strong distributivity

feature, dist (Beghelli and Stowell, 1997).

(143) ιG(∀x[Gx ≡ Ix])[E(G)] & ∀y(Gy)[Ey] (SO each & dist)

Maybe, given such a representation, participants would forgo forming an ensemble

representation of the Gs even though G is quantified into. This is a version of

Fodor’s challenge from Chapter 1. The idea is that the actual meaning is second-

order (or, for Fodor, atomic) and the thing that drives behavior in the task is a

separate entailment (or, for Fodor, a strongly associated bit of world knowledge).

But here the use of a distributive predicate in the experiments is crucial. All

of the sentences tested used predicates like be green. So if the distributivity of each

were responsible for the results, then the distributivity of the predicates should have

led to the same pattern of performance given every or all.

Put another way, consider the first-order, second-order, and second-order-plus-

dist specifications of each/every circle is green in (144).

(144) a. ∀x(Circle(x))[Green(x)] (FO each)

b. ιG(∀x[Gx ≡ Circle(x)])[∀y(Gy)[Green(y)]] (SO every)

c. ιG(∀x[Gx ≡ Circle(x)])[∀y(Gy)[Green(y)] & (SO each &

∀z(Gz)[Green(z)] dist)
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As discussed in section 3.1.2, when a distributive predicate like be green takes the

place of E, it is part of that predicate’s meaning that it distributes: ∀y(Gy)[Green(y)].

So the distributive conjunct in (144c) is redundant. If its addition causes partici-

pants to neglect the instruction to form an ensemble representation of the circles

given by “ιG(∀x[Gx ≡ Circle(x)])”, then the same should happen when partic-

ipants evaluate every circle is green, which is represented as in (144b). But this

doesn’t happen. The distributivity of the predicate does not cause participants to

neglect G following every. So it seems implausible to think the distributivity of

each causes them to neglect G. Instead, it seems preferable to say that each never

implicated G in the first place.

Moreover, in this context it is worth remembering that every is often described

in the literature as a distributive universal (see section 3.1.2). That is, though every

is not as strongly distributive as each, the two often patten together with respect

to distributivity. This may be a pragmatic fact, resulting from the existence of all,

which takes plural agreement and is preferred for expressing collective thoughts.

But given that each and every often pattern together, if the linking hypothesis were

that distributivity triggers object-file representation, it would be strange to then

predict that every should not trigger object-file representation. That we find each

and every come apart in this respect suggests that the result, at its core, does not

reflect distributivity.

Another potential alternative explanation is that these results reflect some-

thing about usage, not meaning. There are, of course, plenty of robust usage facts

that seem not to matter in experimental contexts. For example, English most is
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very rarely used in situations where the relevant proportion is close to 1
2

(Solt, 2016).

This usage fact reflects something that speakers know about most and it likely influ-

ences the felicity of most-claims in everyday discourse. But despite this knowledge,

participants in experiments like those reported in section 1.3.2 of Chapter 1 readily

accept displays in which 55% of the dots are blue as perfectly fine instances of most

of the dots are blue. So deciding which usage facts should matter is not trivial.

Still, one might wonder if the frequency of each and every plays a role. The

former is likely less frequent in speech (at least, it seems to be slightly less frequent

in speech to children; see Chapter 4). If so, processing each may, in some sense,

take more cognitive effort than processing every. That extra effort might have been

spent encoding the cardinality or encoding the center of mass, leading to inferior

performance following each. This might be a concern, if not for the results of

Experiments 3 and 4, which showed superior performance following each.

Lastly, there is the question of whether existing accounts of each and every

could be said to predict the above results. Tunstall (1998), for example, proposes

that each, every, and all differ with respect to the conditions they place on sub-parts

of events, which she calls subevents. For instance, if Kermit lifted box1 and put it

down, then lifted box2 and box3 simultaneously and put them down, Kermit lifted

the boxes is said to refer to an event of Kermit lifting the relevant boxes, which is

made up of two subevents: the lifting of box1 and the lifting of the other two.

Tunstall proposes that each requires each individual in the denotation of

its internal argument to be associated with its own subevent, every requires only

that there be at least two distinct subevents, and all has no such requirement on
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subevents. This predicts a truth-conditional difference between the sentences in

(145). Restricting the domain to the contextually relevant boxes, this proposal pre-

dicts that (145a) is true so long as Kermit lifted all of them, (145b) is true just

in case Kermit lifted all of them but not all at once, and (145c) is true just in case

Kermit lifted all of them but never more than one at a time.

(145) a. Kermit lifted all the boxes

b. Kermit lifted every box

c. Kermit lifted each box

This prediction seems far too strong. But assuming some version of Tunstall’s pro-

posal is on the right track, we might wonder if subevent differentiation can account

for the above results.

Here, the details of the linking hypothesis are important. The linking hy-

pothesis invoked above – the Interface Transparency Thesis in (135) – maintains

that algorithms used during verification will reflect the operations expressed by the

representation being evaluated. And one of the main claims here has been that

object-files reflect first-order quantification whereas ensembles reflect second-order

quantification. By contrast, it is not clear how different amounts of subevent differ-

entiation would be related to either of these two non-linguistic systems. Why would

a representation that treats events potentially partially distinct and potentially fully

distinct – like Tunstall (1998)’s every – trigger an ensemble representation instead

of several object-file representations? This is not to say that Tunstall’s proposal

can’t, in principle, account for the above results. However, for it to do so, a new
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linking hypothesis would need to be articulated and tested.

Consider one other possible alternative explanation based on an existing ac-

count: It is not a particular representational format that gives rise to the present

results, but differing presuppositions. In an account aimed at giving a unified

treatment of distributivity, aspect, and measurement, Champollion (2017) proposes

slightly different presuppositions for different universals. Abstracting away from

many details, one one component of the proposal is that when used in sentences like

(146a), each and every come with the presupposition in (146b), whereas all comes

with the presupposition in (146c).

(146) a. Each/Every/All the frogs sang

b. Presupposition of each/every : Any singing event e can be divided into

one or more singing events whose agents are each atoms

c. Presupposition of all : Any singing e can be divided into one or more

singing events whose agents are each small in number compared to the

agent of e

Since Champollion does not differentiate each and every with respect to this pre-

supposition, it cannot, on its own, account for our results.

That said, perhaps we could imagine a slightly different presupposition for

every that would differentiate it from both each and all. If each is said to presuppose

subdivisions into atomic agents, and all is said to presuppose subdivisions into small

sets of agents, perhaps every could be said to presuppose subdivisions into sets of

agents each containing a single member. Articulating this post-hoc modification

186



and spelling out what it would mean for Champollion’s proposal and for the linking

hypothesis is left for future work.

3.4 Semantic evidence: The genericity asymmetry

In addition to the behavioral evidence, the proposed first-order and second-

order representations may also help explain an asymmetry between each and the

other universals with respect to genericity. Section 3.4.1 describes the contrast and

a scope-based proposal for capturing the relevant data. Section 3.4.2 argues for an

alternative explanation, which is rooted in the proposed first-order and second-order

representations and their associated cognitive systems, ensembles and object-files.

The proposed explanation is unorthodox in that it relies on details of the interfacing

cognitive systems. If right, the genericity asymmetry with respect to each and

every/all is a distinction that resides in thought, not in grammar.

3.4.1 The data and a scope-based explanation

The relevant facts are that every and all are compatible with certain generic

thoughts whereas each seems to resist generic interpretations altogether. As Beghelli

and Stowell (1997) put it, a sentence like (147a) can be understood as a claim about

dogs in general. The same seems to be true for all in (147b).15 But each does not

give rise to this sort of interpretation (in this section, I will use “#” to signal the

15 It is worth noting, though, that all only has generic import when it takes a bare NP. When it
occurs with a definite plural or partitive – e.g., all (of) the dogs love bacon – it no longer suggests
a generic interpretation. The same is true for every : a sentence like every one of the dogs loves
bacon has no generic interpretation.
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lack of any generic interpretation). Instead, the each-version in (147c) seems to be

a claim about contextually salient dogs.16

(147) a. Every dog loves bacon

b. All dogs love bacon

c. #Each dog loves bacon

Beghelli and Stowell (1997) also discuss examples like those in (148) and (149),

which they attribute to Gil (1992).

(148) After a lifetime of investigation, Suzie came to a striking discovery:

a. Every language has over twenty color words

b. All languages have over twenty color words

c. #Each language has over twenty color words

(149) Suzie just discovered four new languages and interestingly,

a. #Every language has over twenty color words

b. #All languages have over twenty color words

c. Each language has over twenty color words

The observation is that every and all in some sense allow for a larger domain of

quantification. In (148), they both are consistent with the intended interpretation

16 Italian, which also has three universal quantifiers, gives rise to similar judgments: ogni and
tutti allow for this sort of generic interpretation, whereas ciascun does not (Nicolò Cesena-Arlotti,
pc and Martina Abbondanza, pc). A series of studies currently underway is exploring the possibility
that ogni, tutti, and ciascun also pattern together with respect to English every, all, and each in the
sorts of experiments presented in section 3.3 (in collaboration with Martina Abbondanza, Florian
Schwarz, Francesca Foppolo, Marco Marelli, and Jeremy Zehr).
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that Suzie only studied a handful of languages but feels confident enough to gen-

eralize beyond them. What makes the each version anomalous is that her striking

discovery generalizes no further than the particular languages she studied (making it

not so striking after all). Replacing striking discovery with universal generalization

may help to bring out the same intuition. A universal generalization can be made

over every language or all languages, but not over each language.

On the other hand, every and all can sometimes lead to anomaly when the

claim is meant to be restricted to a very local and contextually-determined domain,

like the four new languages in (149). Using every or all gives the sense that the

speaker is generalizing far too broadly given Suzie’s discovery. In this case though,

each is perfectly at home.

To capture this distinction, Beghelli and Stowell (1997) appeal to a proposed

difference in the scope positions of each and every, driven by feature-checking move-

ment. The former is said to have a strong distributive feature, dist, causing it to

move to the specifier of a distributive projection, which is situated relatively high

in the tree. The latter is said to only have a weak distributive feature, allowing it

to optionally remain lower in the tree.

Then, taking inspiration from Szabolcsi (1997), they assume that DPs headed

by each or every introduce discourse referents in the form of variables that range

over sets. These “set variables” can be bound by other operators (though not by

the distributive operator, as they note: “this operator applies at a different level,

that of the elements of the set” (p.17)). Generic contexts like (148) are argued to

result from the presence of a covert generic operator, gen. Putting all the elements
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together: A DP like every language introduces a set variable that can optionally

get bound by gen, but a DP like each language must move above gen to check its

strong dist feature, and its set variable thus cannot be bound by gen.

Some of the theoretical machinery invoked in the above proposal is indepen-

dently supported. The notion of a set variable, for instance, is borrowed from

Discourse Representation Theory (though it should be noted that the experimental

results in section 3.3 potentially tell against the idea that each introduces a set

variable). And the idea of features triggering movement is not uncommon. But

the particular features proposed (e.g., strong and weak dist) and the functional

projections targeted for movement (e.g., DistP) are largely sui generis (see Larson

(2021) on the explanatory adequacy of cartographic approaches). The same can be

said about the generic operator gen, whose semantics has been notoriously difficult

to cash out in a way that will capture the wide range of data that falls under the

header of “genericity” (see Leslie and Lerner (2016) for a helpful review).

To be sure, the genericity asymmetry represents only a fragment of the data

that Beghelli and Stowell’s scope-based approach aims to capture. For example,

movement to the specifier of a distributive projection is also proposed to account

for the strong distributivity of each, discussed in Chapter 1. That is, DistP is said to

house the distributive operator with which each always associates (and with which

every only optionally associates).

Surányi (2003) brings up a number of problem with this analysis, including

the fact that each gives rise to extra-clausal distributive readings, whereas every

appears to be clause-bounded. For example, in cases like (150) every can give rise
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only to a single yes/no answer whereas each can give rise to a pair-list response,

seemingly scoping outside of a whether island. And in (151), an example from

Szabolcsi (2010), every cannot occur but each seemingly scopes outside of a relative

clause island.

(150) Determine whether {each/every} number in this list is odd

(151) A timeline poster should list the different ages/periods (Triassic, Jurassic, etc.)

and some of the dinosaurs or other animals/bacteria that lived in {each/

*every one}

This distinction is not predicted given Beghelli and Stowell’s taxonomy and it is

not immediately clear how it should be accommodated. As a solution, Szabolcsi

floats the following idea: “Perhaps the distributivity operator is part of the lexical

semantics of each, in contrast to every” (p.127). This is in line with the current

proposal that each has a first-order representation.

Beghelli and Stowell (1997) also aim to explain other scope preferences. For ex-

ample, the relationship between each/every and negation is discussed and contrasts

like (152) are captured.

(152) Kermit didn’t eat {??each/every} apple (with non-focused intonation)

It is worth noting, though, that this judgement is not universally agreed upon, and

Beghelli and Stowell acknowledge that it “depart[s] from what is generally assumed

about such data” (p.27).
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Gagnon and Wellwood (2011) extend their proposal to cover an interesting

asymmetry with respect to epistemic containment. Namely, every seems unable

take scope over epistemic modals like might in (153a), but each can (both can take

scope over root modals like could, as in (153b)).

(153) a. {Each/??Every} student in this room mightepistemic be the smartest (as

far as I know)

b. {Each/Every} student in this room couldability be the smartest (if they

studied)

Given independent evidence that epistemic modals scope relatively high compared

to root modals, and independent evidence that modals can bind free variables, this

data seems to fit nicely with a taxonomic view.

Of course, as Gagnon and Wellwood note, the strict scope taxonomy proposed

in Beghelli and Stowell (1997) predicts a number of scope orderings to be impossible,

and these predictions may not be borne out. For example, Beghelli and Stowell

predict that “A CQP [e.g., fewer than four frogs ] in object position should never

be able to take inverse scope over a GQP [e.g., a frog ] or DQP [e.g., each frog ]

occurring in subject position” (p.11). Brendel (2019) reports experimental evidence

against this strong prediction. And considering the subtlety of other judgments used

to motivate the view – like (152), for instance – additional controlled judgement

studies along these lines are necessary.

In any case, the alternative account of the genericity asymmetry proposed

below is not intended to explain all of the data that has been captured on the
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taxonomic view or argue against a hierarchy of fixed scope positions for different

determiners. The aim is more modest: to suggest that the genericity asymmetry

between each and every does not arise because of a scope difference with respect

to gen. It is left for future work to determine whether the first-order/second-order

distinction plays a role in explaining other apparent facts captured by appealing to

different scope positions. But it is worth noting that the claim that different deter-

miners have different scope positions and the claim that different determiners have

different representational formats are not mutually exclusive. Following Szabolcsi

(2010)’s suggestion, it might ultimately be best to combine the two views.

3.4.2 An extralinguistic alternative

The crux of the idea is this: The second-order meaning of every (and all) is an

instruction to form an ensemble representation, and ensembles have properties that

make them compatible with the sort of generic thoughts at issue here. On the other

hand, each’s first-order meaning is an instruction to form object-file representations,

and object-files do not support generic thoughts.

To be clear, the claim is not that every in any sense has a “generic meaning.”

Both each and every express universal generalizations. The difference is in how

they express that generalization (in first-order or second-order terms) and, crucially,

in what cognitive systems are implicated as a consequence. The first-order each

represents the universal generalization in a way that promotes object-file thoughts,

which do not support projecting beyond the local domain. The second-order every
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represents the same generalization in a way that promotes ensemble thoughts, which

do support projecting beyond it.

As observed above, the sorts of generics at issue here are ones that require

projecting beyond the local domain. What goes wrong with each in (148) is that

it seems to be about the local domain (i.e., the languages that Suzie studied) and

doesn’t allow for predictions about new instances. The versions with every or all, in

contrast, support predictions about new languages: They too will have over twenty

color words. This same distinction arises with examples like (154), where each leads

to a far weaker claim about gravity acting on some particular objects.

(154) a. Gravity acts on every object

b. Gravity acts on all objects

c. #Gravity acts on each object

But there are other cases that fall under the header of “genericity” for which

the each/every asymmetry does not arise. The each-, every-, and all -versions of

(155), for example, all seem equally false, whereas a bare plural NP can be under-

stood generically given the same predicate, as in (155a).

(155) a. Ticks carry Lyme disease

b. #Each tick carries Lyme disease

c. #Every tick carries Lyme disease

d. #All ticks carry Lyme disease
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This sort of example presents an issue for Beghelli and Stowell (1997)’s account.

If gen is responsible for the generic interpretation of (155a), then what precludes

it from binding every ’s set variable in (155c) and likewise giving rise to a generic

interpretation?

The present account is that the genericity asymmetry between every/all and

each arises because ensembles, but not object-files, support projecting beyond the

local domain. Projection is not at issue in (155), attributing a property to a kind

is. However, if the example is rephrased, the asymmetry seems to return:

(156) a. #Each tick can carry Lyme disease

b. Every tick can carry Lyme disease

c. All ticks can carry Lyme disease

In (156), the property of being able to carry Lyme disease is attributed to ticks as

opposed to the natural kind tick. So the relevant fact to explain seems to be that

every supports projecting beyond the local domain whereas each does not. The

proposal is that this difference results from details of the cognitive systems related

to their first-order or second-order representations.

Why do ensembles, but not object-files, support projecting beyond the local

domain? As discussed in section 3.2.2, ensembles represent a collection of individ-

uals by abstracting away from the individuals themselves and encoding summary

statistics. In other words, ensemble representations support generalization by ab-

stracting away from individual instances. On the other hand, as discussed in section

3.2.1, object-files are first and foremost indices. The properties bound to object-files
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are secondary. What makes an object-file an object-file is not its color or shape or

size. Representations created by this system do not, on their own, support gener-

alization. That two object-files share some properties is an accident as far as the

object-file system is concerned.

These differences suggest a difference in these two systems’ abilities to license

predictions about new items (i.e., to project). Imagine being presented with four

green circles. If you represent these circles as an ensemble, you will have extracted

their average hue and the range of hues. This naturally licenses a prediction about

the next circle you’ll encounter (assuming it will also be a member of the current

ensemble). On the other hand, if you formed four object-file representations, you

will have encoded the individual circles’ spatial positions and bound each individual

hue to the relevant index. You might be able to predict that the next circle would

also be green. But to do so, you would have to rely on separate systems (e.g.,

pattern recognition or a process of induction). This prediction would not come for

free by virtue of representing independent object-files.

To be sure, this difference with respect to projecting beyond the local domain

awaits empirical support. It does make a number of testable predictions. For one

thing, if participants are encouraged to represent some objects as an ensemble, they

should be more willing to make a prediction about a new object than if they are

encouraged to represent the very same objects as independent object-files. This

difference should, by hypothesis, be present whether participants are encouraged to

represent the objects in a particular way for linguistic reasons (e.g., because each

or every was used) or non-linguistic reasons (e.g., because the level of homogeneity

196



in the visual display was small or large). Moreover, when participants make a

prediction in the object-file case, they should do so not on the basis of summary

statistics but on the basis of pattern recognition. For example, if three circles –

one big, one medium, and one small – are represented as a series of object-files,

participants might expect the next circle to be tiny, in keeping with the pattern.

But representing them as an ensemble instead suggests using the average size for

setting future expectations. These empirical predictions will be tested in future

work.

For the time being though, assume that ensembles, but not object-files, sup-

port projection. Connecting back to the genericity asymmetry, the idea is that the

each and every sentences in (148) have the truth-conditionally equivalent semantic

representations in (157).

(157) a. Each language has over twenty color words

∀x(language(x))[has-over-20-color-words(x)]

b. Every language has over twenty color words

ιG(∀x[Gx ≡ language(x)])[has-over-20-color-words(G)]

The reason that (157b) is compatible with a generic interpretation is that its seman-

tic representation serves as an instruction to create an ensemble representation of

the languages. This representation, call it G, supports projecting beyond the local

domain in the way discussed above. In particular, if the predicate has-over-20-

color-words applies to G, a prediction about new members of G is licensed for free

because G is an ensemble representation. If a new language is one of the Gs, it will
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likely share properties with the other Gs.

On the other hand, the semantic representation in (157a) provides an instruc-

tion to consider the languages as independent object-files. These representations

do not support predictions about new languages, at least not for free. A prediction

that the next language should be similar would have to be the result of induction

(e.g., the predicate held of language 1, language 2, and language 3, ... maybe it

holds of every language).

In sum, the asymmetry between each and every/all in examples like (148)

and (149) may owe its existence more to the details of non-linguistic cognition than

to the details of grammar. That is, while details about their meanings explain the

link between the quantifiers and ensembles or object-files, it is the details of those

non-linguistic representations that explain why only every and all are compatible

with certain generic interpretations. The cognitive system called upon by every and

all supports the relevant type of generic thought, but the cognitive system called

upon by each does not.

This correctly predicts that the asymmetry between each and every/all arises

only when projecting beyond the local domain is at issue. It does not arise when,

for example, properties are attributed to kinds (as natural kind concepts are not en-

semble representations). So this account does not suggest that all cases of genericity

will be explained by appeal to ensembles and object-files. But it does reduce the

explanatory task of other theories of genericity slightly: They need not explain why

certain quantificational determiners are compatible with certain generic interpreta-

tions. Given that overtly quantified sentences are rarely the main target of inquiry
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of work on genericity, this may come as a welcome conclusion.

3.5 Chapter summary

This chapter provided some reasons for thinking that each has a first-order

semantic representation along the lines of (158) whereas every has a second-order

representation along the lines of (159).

(158) λI.λE.∀x(Ix)[Ex] (FO restricted, 0G)

(159) λI.λE.ιG(∀x[Gx ≡ Ix])[E(G)] (SO restricted, 1G)

As discussed in section 3.1, the difference between these specifications is, in the first

place, a matter of logical syntax: First-order representations allow quantification

into lowercase variable positions (e.g., “∀x”) whereas second-order representations

also allow quantification into uppercase variable positions (e.g., “ιG”). So while

(158) implicates only individual things – each x – that meet the conditions supplied

by the internal and external arguments, (159) also implicates a group – the Gs –

made up of all the things that meet the internal condition.

Section 3.1.2 showed that, at least for the basic cases, these representations are

compatible with the standard approach to distributivity. The proposed first-order

representation only allows distributive interpretations, whereas the proposed second-

order representation makes available both distributive and collective interpretations.

Distributivity in the second-order case is achieved either by a covert distributivity

operator (e.g., for ambiguous predicates like sing happy birthday) or by a distributive

meaning postulate (e.g., for predicates like smile).
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This logical distinction between first-order and second-order representations

neatly corresponds to the well-established psychological distinction between object-

files and ensembles, discussed in section 3.2. Like first-order variables, object-files

are pointers to individuals (to which properties like color or size may be bound).

Like second-order variables, ensembles can be thought of as pointers to many indi-

viduals at once. Given working memory limitations, this is cognitively achieved by

abstracting away from the individuals and encoding the group in terms of summary

statistics like cardinality, center of mass, and average size.

Leveraging this link, the experiments in section 3.3 find that participants have

better memory for ensemble summary statistics (cardinality, center of mass) af-

ter evaluating every-sentences than after evaluating truth-conditionally equivalent

each-sentences. On the other hand, they have better memory for individual prop-

erties (hue) after evaluating each-sentences. These results suggest that, from a

young age, every encourages representation of ensembles whereas each encourages

representation of object-files. Given a link between the psychological and the logi-

cal representations, these results are well-explained by the proposed first-order and

second-order representations.

Finally, section 3.4 proposed a novel account of judgments pertaining to gener-

icity. In particular, while every can be used to project beyond the local domain in

sentences like every dog loves bacon, each does not as naturally give rise to the

same generic thought. As opposed to situating this contrast in the grammar (e.g.,

scope positions relative to a covert generic operator), the difference was proposed

to reside in the related cognitive systems. In particular, ensemble representations
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support projecting beyond the local domain, whereas object-files do not. Though

this analysis requires further empirical support, it could potentially explain the

genericity asymmetry as a consequence of non-linguistic cognition.
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Chapter 4: Acquiring each and every

If the preceding chapters are on the right track, they suggest that knowing

the meaning of a quantificational determiner consists in representing its (truth-

conditional) content in a particular format. For each, this means representing a

restricted first-order universal concept, like (160a), and for every, it means repre-

senting a restricted second-order universal concept, like (160b).

(160) a. ∀x(Ix)[Ex] each

b. ιG(∀x[Gx ≡ Ix])[E(G)] every

This naturally raises an acquisition question: What leads learners to pair one pro-

nunciation (“each”) with one universal concept and another pronunciation (“every”)

with logically-equivalent but subtly different universal concept?

This acquisition question only gets more complicated when all is added to the

mix. For simplicity though, this chapter will focus on each and every and leave

all for future work. One motivation for doing so is their grammatical similarity

(e.g., they both require singular agreement). Another reason for focusing first on

each and every is that they occur in child-ambient speech at relatively the same

rate, which is an order of magnitude less often than all. For example, in the corpus

analysis reported in section 4.1, each occurred 542 times in a sample of over 1.7
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million child-ambient utterances, every occurred 768 times, but all occurred 20,558

times.

Assuming that children hear between 900,000 and 2.5 million utterances per

year (Hart and Risley, 1995, 2003), they likely hear each somewhere between 286

and 794 times per year, every somewhere between 405 and 1,125 times per year, and

all somewhere between 10,843 and 30,119 times per year. For comparison, consider

how often children hear mommy, which 98% of twenty-four-month-olds produce

according to Wordbank (Frank et al., 2017). Based on an estimate from the same

corpora used here, children hear mommy between 5,942 and 16,505 times per year

(i.e., less frequently than all). On the other hand, each and every are on a par with

the verb pour, which children likely hear between 407 and 1,130 times per year and

which only 25% of twenty-four-month-olds produce.

The high frequency with which learners encounter all does not answer the

question of how they infer its meaning. But it does mean they have more opportu-

nities to do so. On the other hand, given their relative infrequency, it is no surprise

that learners are often said to achieve an adult-like understanding of each and every

relatively late in development. For one thing, children generally start to produce

each and every later than they start to produce all, as seen in Figure 4.1.

To be sure, production generally follows comprehension, making it only a rough

tool for pinpointing age of acquisition. But in terms of comprehension, many studies

that present four- to eight-year-old children with universally quantified sentences

report failures of various sorts (e.g., Donaldson and Lloyd 1974; Philip 1994; Brooks

and Braine 1996; Musolino et al. 2000; Drozd 2001; Syrett and Musolino 2013;
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Figure 4.1: Proportion of 16- to 30-month-olds producing each, every, and all. Words
with similar production trajectories are included for comparison. Data from Word-
bank (Frank et al., 2017).

Achimova et al. 2017).1 Of course, some accounts argue that these failures reflect

performance limitations and task effects (Crain et al. 1996; Musolino and Lidz 2006;

Minai et al. 2012). But even in the relatively simple (albeit one-trial) task reported

in section 3.3.3 of the previous chapter, children below age five were below 75%

correct.

This chapter will not contribute to the debate over what non-adult-like per-

formance in certain experimental situations reflects. As a result, it will not make

1 “Quantifier spreading” errors have been of particular interest, going back to Inhelder and
Piaget (1958). In a typical quantifier spreading task, a child might be shown four umbrellas, three
of which are held by turtles, and asked whether they think every turtle has an umbrella. They
often incorrectly answer “no,” as if they understand the sentence to mean every umbrella is being
held by a turtle. These results are robust and have been well-replicated. Some accounts attribute
these errors to non-adult-like understandings of e.g., every (Philip 1994; Drozd 2001; Roeper et al.
2011). But there are also reasons for thinking that these results reflect pragmatic details of the
task and not an underlying difficulty understanding (Crain et al., 1996). For example, if there are
three un-held umbrellas instead of just one in the above case, children are more likely to correctly
respond “yes” (Sugisaki and Isobe 2001; Minai et al. 2012).
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any claims about the age of acquisition of the universal quantifiers. Instead, its aim

will be to get the the “how” question on the table – what information do learners

use to infer the correct meanings for each and every? – and to offer some initial

evaluations of possible directions.

In a sense, identifying the target of learning with a particular representational

format makes this question more difficult than it would be if the target of learning

were particular truth-conditions, represented in any format. If the target of learning

were universal truth-conditions, independent of format, then learners might plau-

sibly notice that whenever parents use each or every, they exhaustively predicate

something of some domain. This is not to say acquiring the right truth-conditions

would be easy. Any time it’s true that every I is E, it’s also true that, for ex-

ample, some I is E. So more needs to be said about why learners don’t settle on

the hypothesis that every means some (see Piantadosi et al. (2008) and Rasin and

Aravind (2021) for potential solutions to this “subset problem”).

But even assuming a solution to the challenge of how to acquire universal truth-

conditions, the further question of how to acquire the right representational format

remains. Since (160a) and (160b) are truth-conditionally equivalent to one another

and to many other ways of specifying universal content, no amount of true each-

or every-claims will allow the learner to decide between the possibilities. Something

more subtle in their input must signal the difference between each and every.

Section 4.1 considers three possibilities, based on three linguistic phenomena:

(i) that every but not each can occur with certain collective predicates, (ii) that

each but not every gives rise to pair-list readings, and (iii) that every but not each
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encourages projecting beyond the local domain. While information about (i) and

(ii) are not robustly available in child-ambient speech, information about (iii) seems

to be. That is, parents use every, but not each, to make broad generalizations

that project beyond the local domain. This difference in usage leads to lower-

level concomitants, including a large difference in what routinely gets quantified

over. Section 4.2 spells out one proposal for how learners might use these low-level

differences to infer the correct meanings. And section 4.3 discusses future work that

will test each element of this proposal.

4.1 How parents use universal quantifiers: Corpus findings

Data from this corpus investigation – first reported in Knowlton and Lidz

(2021) – consists of utterances containing each and every from a segment of the

North American English portion of CHILDES. This sample includes both child-

directed and overheard speech, so the broader term “child-ambient” is used, where

appropriate. Only corpora that contained speech to typically-developing children

under eight were included (see Appendix A for the list of corpora used and associated

citations).

Setting the cutoff at eight-years-old assumes that the resolution to the age

of acquisition question raised above will not be that children acquire adult-like

competence with each and every at, say, age nine. But it may turn out that children

know the meanings of these determiners far earlier than eight-years-old, in which

case our age range extends too high. Just as importantly, our age range likely also
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extends too low. The youngest child in this sample is 7-months-old, and there is

no guarantee a that 7-month-old is developmentally equipped to begin acquiring

each and every. This initial corpus investigation consequently idealizes away from

the role of development in language acquisition (Perkins, 2019). But given how

infrequently each and every appear in child-ambient speech, age constraints were

kept loose to include as many utterances as possible.

For similar reasons, cases of each in non-canonical determiner positions were

not excluded. These include examples like (161a) from the Soderstrom corpus

(Soderstrom et al., 2008) and (161b) from the Warren corpus (Warren-Leubecker

and Bohannon, 1984) (the age in parentheses is the age of the child at the time of

their parent’s utterance).

(161) a. No, the pillows each stay where they belong, please (0;08)

b. We got thirty [points] each! (6;02)

There is debate over whether “floating each” examples like (161a) are cases of a

determiner being stranded after movement (Sportiche 1988; Benmamoun 1999) or

an adverbial modifier that never forms a constituent with a noun phrase (Dowty and

Brodie 1984; LaTerza 2014). And “binomial each” examples like (161b) are more

clearly cases of adverbial quantification (Safir and Stowell, 1987). So including

these instances of each – which together make up approximately 13% of all each

utterances, as seen in Table 4.1 – may not be an innocent choice. But assuming

learners treat determiner and adverbial each as univocal (as opposed to treating

them as homophonous or polysemous), it’s reasonable to assume that children will
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use these non-canonical instances as evidence about each’s meaning.

Total Determiner Floating Binomial Unknown
each 542 465 61 12 4

Table 4.1: Occurrences of determiner and adverbial each as standalone lexical items
in child-ambient speech.

In fact, given that every does not float or get used binomially, the fact that

each does might provide some evidence to learners as to its meaning. Maybe learners

reason that floating quantifiers are likely to signal distributivity, perhaps by noticing

that the parent uttering (161a) put the pillows back in their respective positions one

at a time. Consequently, maybe learners can then infer that each must have a first-

order meaning (since a first-order representation would enforce distributivity, as

discussed in Chapter 3).

On the other hand, all can be used in non-canonical positions (e.g., the pillows

all stay where they belong, please). And by hypothesis, all and every are alike in

having restricted second-order representations (though likely not the same represen-

tations). So if floating and binomial each are crucial pieces of evidence that push

learners toward a first-order representation, more would have to be said about why

they don’t likewise push learners in that direction for all. For now, the role of each

in non-canonical positions will be set aside.

There were some constraints on the data considered. Children’s production

was not included in this sample; Only parents’ utterances were examined. Moreover,

only cases where each and every were transcribed as standalone items were consid-

ered (e.g., lexicalized quantifiers like everybody and everyone were not included).
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As noted above, this yielded 542 instances of each and 768 instances of every.

We are now in a position to ask: Are the differences in the idealized distri-

bution identified by linguists also reflected in speech to children? In particular,

the sections below consider the each/every asymmetries with respect to distributiv-

ity and genericity, both of which were discussed in Chapter 3. If these differences

are present in child-ambient speech, then they could potentially be used to drive

learning. But if they aren’t, they won’t play a role in acquisition.

4.1.1 Collective predicates and pair-list readings

As discussed in section 3.1.2, each is strongly distributive. One consequence of

its distributivity is that a quantificational DP headed by each is unable to combine

with certain collective predicates – like lifted the piano together or gathered in the

hall – that are able to combine with every, as seen in (162).

(162) a. {Every/#Each} student lifted the piano together

b. {Every/#Each} student gathered in the hall

This suggests a natural usage difference between each and every that, if present in

a sufficient quantity, could be informative for learners.

But in the 1,310 each- and every-utterances considered, there was only a single

unambiguously collective predicate: (163) from the HSLLD corpus (Dickinson and

Tabors, 2001).

(163) Don’t we watch it like every week together? (4;11)
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And in this case, every is not the head of a subject DP that combines with the

collective predicate watch it together. Instead, every is part of a temporal adjunct

that would have allowed each as well (e.g., Didn’t we watch that show together each

night of vacation? ). This makes it implausible that ability to appear with collective

predicates explains how children acquire every.2

Still, each’s strong distributivity surfaces in other ways. One such way is that

it supports pair-list responses to questions even in cases where every does not, as in

(164) (Beghelli, 1997).

(164) a. Which book did you loan to each student?

Aspects to Annie, Syntactic Structures to Shirley, and SPE to Pierce

b. Which book did you loan to every student?

#Aspects to Annie, Syntactic Structures to Shirley, and SPE to Pierce

Of course, for facts like this to be useful, learners would need to be exposed not

only to the question, but to the corresponding answer (e.g., perhaps in overhead

conversation between two adults).

This possibility is unlikely. In our sample, there were only 11 instances of

each co-occuring with a WH-question and only 19 instances of every co-occurring

with a WH-question. Of these, only two utterances were questions that could have

plausibly received a pair-list response and both were directed toward a child. The

relevant examples are (165a), from the Snow corpus (MacWhinney and Snow, 1990),

and (165b), from the HSLLD corpus (Dickinson and Tabors, 2001).

2 It may be more useful when it comes to all. Preliminary coding of all -utterances reveals a
few cases of collective predicates – e.g., let’s all sing a song together – though these are still rare
(out of 1,000 randomly sampled utterances, there were 13 collective predicates).
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(165) a. Father: What do you think each animal is about to do?

Child (3;04): Clean up that mess

b. Mother: What did you play every day while you were there?

Child (4;11): ...the water game

In response to (165a), a pair-list response could have been given (e.g., “the tiger is

about to hunt, the zebra is about to run, and the frog is about to laugh”). The

same could be said of (165b), if not for the use of every instead of each. In neither

case did the child offer a pair-list response (and in the former case, the father did

not make them aware of this possibility after the fact). Therefore, pair-list answers

to each-questions cannot be the critical information that children use to learn its

meaning (at least insofar as the corpus is representative in this respect).

These are not the only imaginable correlates of the distributivity asymmetry.

Scope may also play a role, given that adults generally prefer each to take wide

scope more often than other quantifiers in scopally-ambiguous sentences (Ioup 1975;

Kurtzman and MacDonald 1993; Feiman and Snedeker 2016). On the other hand,

children often opt for surface-scope interpretations of such sentences, and seem to

have difficulty revising this initial commitment (Lidz and Musolino 2002; Musolino

and Lidz 2003). So useful learning instances will likely consist in cases where each

takes wide scope and appears before other operators on the surface. Determining

the prevalence of these cases is left for future work. In the meantime, the present

results suggest that each’s strong distributivity may not be what differentiates it

from every in child-ambient speech.
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4.1.2 Encouraging projecting beyond the local domain

Another possibility is that the genericity asymmetry discussed in section 3.4

of the previous chapter drives differences in how parents use each and every. In

particular, they may use every to convey broad generalizations that project beyond

the local domain and use each to generalize only over the local domain. Whether

an utterance was intended to convey a generic thought of this sort is an abstract

notion that can be difficult to judge. Moreover, learners do not have direct access

to their parents’ intention to produce a generic thought. For both of these reasons,

features that might reflect detectable footprints of genericity were coded instead of

genericity itself. The particular lower-level differences considered are in (166).

(166) a. Quantifying over times vs. individuals

b. Explicitly vs. contextually restricting the domain

c. Occurring in a clause in present tense vs. other tenses

d. Appearing in an adjunct vs. in a verb’s argument

Subsequent sections will discuss why these lower-level differences plausibly reflect

the higher-level difference between one quantificational determiner (every) being

used to convey a thought that projects beyond the local domain and another (each)

being used to generalize over a local domain.

But first, it may be useful to consider some examples of parents using every

to get across thoughts that are meant to project beyond the local domain. To take

one example, consider (167), which is found in the Peters/Wilson corpus (Wilson
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and Peters, 1988).

(167) Father: Do you want a cookie?

Seth (1;05): No

Father: Every time I give you one, you throw it

Presumably, Seth’s father was not intending to highlight each past event of cookie-

giving but to make a larger claim about what happens, in general, when he gives his

son a cookie. This generalization projects beyond the local domain in the sense that

what it quantifies over – events of cookie-givings – are not present at the time of

utterance. And moreover, it licenses a prediction about the future: Seth will throw

the next cookie he receives. This is exactly the sort of generic generalization that

every naturally supports, but each resists.

Similar examples are common; consider those in (168) (the first two are also

from the Peters/Wilson corpus and the last two are from the Weist corpus (Weist

and Zevenbergen, 2008)).

(168) a. You turn into a wild man every time we get out (1;10)

b. I’m just tired of fighting with you about every damn thing (2;00)

c. Every time I ask a question, you say you don’t know (2;10)

d. Don’t you draw like every day pretty much? (4;09)

These utterances seem to project beyond the local domain in the same way

as (167). They quantify over things that are certainly not present (events of going
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out, possible things to fight about, events of asking questions, days) and they li-

cense predictions (the child will misbehave, the next thing will be fought about, the

child will say they don’t know the answer to the next question, the child will draw

tomorrow). Compare these to some example each-utterances drawn from the same

two corpora:

(169) a. How are you gonna walk when you got a Teddy in each hand? (1;06)

b. In fact you have five fingers and five spiders; you could put one spider on

each finger (2;04)

c. Is it one dollar for all nineteen lizards or one dollar for each lizard? (4;05)

d. Well tell me about each one, so I can decide which one (4;07)

The utterances in (169) appear to express generalizations about very local domains

(the child’s hands, the child’s fingers, toy lizards in a shopping game, toy dinosaurs

in a shopping game). And they don’t license predictions about anything beyond

what’s immediately being quantified over.

The next four sections report on the potential distributional footprints of

genericity in (166). Having found these features in child-ambient speech, sections

4.2 and 4.3 discuss how and whether children could use them in acquisition.

4.1.3 Quantifying over individuals vs. times

Utterances were coded for the types of things that were quantified over. Ex-

amples for each category are given in (170).
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(170) a. Individuals: each toy ; every painting

b. Times: every year ; every time

c. Locations: every place we went ; each corner of the room

d. Degrees: all clean; every little bit

e. Events: every move you make; every step you take

As seen in Table 4.2, parents most often use each to quantify over individuals

(e.g., you need to eat each piece of broccoli if you want dessert! ), whereas they most

often use every to quantify over times (e.g., every time we have broccoli, you leave

leftovers! ). Statistically, every is more likely to be used to quantify over times than

each (χ2 = 264.6, p < .001) and each is more likely to be used to quantify over

individuals than every (χ2 = 150.7, p < .001).3

Det Total Individuals Times Locations Degrees Events N/A
each 542 406 32 102 0 0 2
every 768 212 486 28 10 20 12

Table 4.2: What gets quantified over in child-ambient speech. Particularly relevant
values are in bold.

Why should this robust difference in what gets quantified over reflect the

genericity asymmetry discussed above? If parents do use each to generalize only

over local domains, it should come as no surprise that they mostly quantify over

individuals. Toys, drawings, fingers, and the like are more likely to be in the local

3 Expected values were calculated using the rate of quantifying over individuals and times in
parents’ utterances with either each or every. Future work will use rate of quantifying over a
particular type in quantified statements more generally.

215



domain – and, moreover, to be physically present at the time of utterance – than,

for example, events of dinner-eating.

Of course, individuals quantified over need not be in the local domain. Parents

can and do use every to make projectable generalizations about individuals (e.g.,

every painting you do is that color). But they more often use every to generalize

over times. Perhaps this is because situations are more useful things to generalize

over in a way that projects beyond the local domain. This would not reflect a fact

about language, but about what sorts of things parents want to communicate to

their children. A phrase like every raven is black is perhaps the canonical example

of a quantified expression with a generic interpretation (Hempel, 1937, 1945). But

it doesn’t seem to be the sort of thing that parents are likely to use every to express.

And given that parents’ preference leads to a large low-level difference in what gets

quantified over linguistically, perhaps it is pedagogically useful in an unintended

way (i.e., for signaling the difference between each and every).

4.1.4 Explicit restriction with a relative clause

Since parents often quantify over times, and since every time without further

qualification picks out a large swath of situations, we might expect them to explicitly

restrict the domain (e.g., you turn into a wild man every time we get out). To this

end, utterances were coded for whether the NP being quantified over was modified

with a relative clause (e.g., every time (that) we get out as opposed to just every

time). As seen in Table 4.3, occurrences of Q NP by and large are not modified by
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a relative clause. However, parents are more likely to use a relative clause to modify

NPs quantified over by every than by each (χ2 = 80.6, p < .001).

Det Total No Yes N/A
each 542 530 11 1
every 768 604 152 12

Table 4.3: Number of times a relative clause is used to modify the quantifier phrase,
explicitly restricting the domain of quantification. Particularly relevant values are
in bold.

Perhaps surprisingly, this result is not solely driven by the fact that parents

most often quantify over times with every. The result holds even when considering

just cases in which individuals are quantified over: Parents are more likely to modify

every NPindividual with a relative clause than each NPindividual (χ2 = 43.8, p < .001;

Table 4.4).

QP Total No Yes N/A
each NPindividual 406 399 6 1
every NPindividual 212 177 33 2

Table 4.4: Restricted to cases of quantifying over individuals, number of times a
relative clause is used to modify the quantifier phrase, explicitly restricting the
domain of quantification. Particularly relevant values are in bold.

One possible explanation for this difference is that when parents use each,

any intended domain restriction is already contextually salient. This would make

explicit restriction with a relative clause unnecessary. For example, in (171), which

comes from the Hall corpus (Hall and Tirre, 1979), the domain of quantification is

understood to be restricted just to the children in the relevant class, not each child

in existence.
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(171) Each child was asked to bring in different kind of bread and she kept raving

about french (4;09)

It would be somewhat redundant to highlight this restricted domain with a relative

clause. So the reason parents rarely linguistically restrict the domain in utterances

with each NP may be due to the fact that each is used to quantify over local domains

that are already contextually restricted.

4.1.5 Tense

The tense of the clause in which the quantifier appears may also be relevant. As

seen in Table 4.5, most utterances are in present tense. But the rate of utterances in

present tense is higher when universal quantification is indicated by every than when

it is indicated by each (χ2 = 17.2, p < .005). In each-utterances, the quantifier is

more likely to appear in a clause in past tense (χ2 = 10.1, p < .01) or in a “tenseless”

clause (χ2 = 54.1, p < .001), a category that includes future-oriented imperatives

like put sugar in each coffee.

Det Total Present Past Tenseless Future N/A
each 542 291 103 117 27 4
every 768 556 93 52 19 48

Table 4.5: Tense of the phrase in which the quantifier phrase appears in child-
ambient speech. Particularly relevant values are in bold.

The prevalence of every in present tense is relevant to the genericity asymmetry

in the following sense: Past tense is generally not used to express generic generaliza-

tions (perhaps due to the low likelihood of observing patterns that no longer hold
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in the present).4 For example, while (172a) is naturally understood to be a claim

about dogs in general, (172b) is not. Instead, it is more naturally understood as a

claim about some particular dogs in a contextually restricted domain.

(172) a. Every dog barks

b. Every dog barked

The same can be said of “tenseless” imperatives. Requests like those in (173),

which all come from the Sachs corpus (Sachs and Nelson, 1983), are instructions to

the child to change something about a very local domain, not to project beyond it.

(173) a. Put a flower on each of the plates (1;10)

b. Put sugar in each coffee (1;10)

c. Put one leg in each side (1;11)

So if parents tend to use every for expressing generalizations that project and tend

to use each for expressing local generalizations, it makes sense that every most often

occurs in present tense and that each is used relatively more frequently for reporting

on past events and making requests.

4.1.6 Syntactic position of the quantifier phrase

Finally, the syntactic position of the quantifier phrase was coded. As seen in

Table 4.6, each most often appears as part of an argument of a verb (e.g., each

4 To be sure, past tense can be used with generic interpretations. Since dinosaurs are extinct,
dinosaurs laid eggs can be understood as a statement about dinosaurs in general. Though as
discussed in section 3.4, these sorts of kind attributions are not the sort of generics at issue here.
Examples more relevant for the current topic include Spartans valorized warriors and every Spartan
was trained in battle, both of which are naturally understood as generic in the relevant sense. In
any case, these sorts of generalizations are not the norm in child-ambient speech.
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toy needs to be put away or put away each of your toys). In contrast, every most

often appears as part of an adjunct (e.g., every time you play, you leave a mess).

Statistically, each is more likely than every to appear as part of a verb’s argument

(χ2 = 182.0, p < .001) and every is more likely than each to appear within an

adjunct (χ2 = 253.1, p < .001).

Det Total Argument Adjunct N/A
each 542 488 36 18
every 768 254 482 32

Table 4.6: Syntactic position of the quantifier phrase in child-ambient speech. Par-
ticularly relevant values are in bold.

This effect is in large part driven by parents’ propensity to use every to quan-

tify over times, in which case every NP surfaces as a temporal adjunct. But the

asymmetry between each and every persists even when all cases of quantification

over times are excluded from analysis. That is, every is still more likely than each

to appear inside of an adjunct (χ2 = 39.7, p < .001; Table 4.7).

QP Total Argument Adjunct N/A
each NP¬ time 510 483 10 17
every NP¬ time 282 227 38 17

Table 4.7: Excluding cases of quantifying over times, syntactic position of the quan-
tifier phrase in child-ambient speech. Particularly relevant values are in bold.

This relative likelihood of using every NP as an adjunct may reflect parents

using it to highlight projectable generalizations. Consider, for example, (174), from

the NewmanRatner corpus (Newman et al., 2016), where the addition of the adjunct

containing every other baby introduces a generalization that projects beyond the
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local domain.

(174) Mother: Look here’s a spoon.

M: What are we going to put on the spoon?

Child (0;11): [vocalizes]

M: You don’t know but you’ll stick it in your mouth just like every other baby

In contrast, if each is most often used to quantify over and predicate something

of individuals in a very local domain, it makes sense that each NP should most often

appear as an argument of a verb.

4.2 Sketching a learning story

To summarize the preceding section: There are low-level differences between

each and every that are present in child-ambient speech. These include differences

in what gets quantified over, how often the domain is explicitly restricted with a

relative clause, tense, and syntactic position. These concomitants plausibly stem

from parents using each to express generalizations over things in a local domain and

using every to express generalizations that project beyond it. And if learners are

sensitive to these differences, they might be able to use them to infer the correct

meanings of each and every. This section sketches a proposal for how. It involves

the elements listed in (175).

(175) a. Meaning representations

each: First-order universal concept (i.e., ∀x(Ix)[Ex])

every : Second-order universal concept (i.e., ιG(∀x[Gx ≡ Ix])[E(G)])
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b. Supporting cognitive systems

each: Object-file representations

every : Ensemble representations

c. Parents’ intended message

each: Generalize over local domain

every : Project beyond local domain

d. Surface-level differences

each: e.g., Quantify over individuals

every : e.g., Quantify over times

In a nutshell, the idea is as follows. From the parents’ point of view, the

goal in uttering a universally quantified statement is to convey some message (i.e.,

the speaker meaning, (175c)). Because ensembles better support projecting beyond

the local domain – as discussed at the end of Chapter 3 – and because every ’s

meaning is an instruction to create an ensemble representation, they choose every

if the intended message is a generic one. The low level differences, (175d), arise as

a result of the nature of the intended message (e.g., situations are more likely to be

generalized over in a way that projects; individuals are more likely to be generalized

over in a way that remains local).

Upon hearing a universally quantified sentence, learners’ task is to infer both

their parents’ intended message (i.e., the speaker meaning, (175c)) and the semantic

representation of the quantifier used (i.e., the relevant universal concept, (175a)).

Regarding the first goal, learners make inference from (175d) to (175c), which causes
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them to represent the domain of quantification using one of the two cognitive systems

in (175b). Regarding the second goal, they notice that utterances of each correlate

with representing the domain as object-files whereas utterances of every correlate

with representing the domain as an ensemble. This difference leads them to pair

each with a pre-existing first-order universal concept and every with a pre-existing

second-order universal concept.

At this point, it is worth noting that this sort of learning story (and cog-

nitivism about meanings in general) requires a certain conception of the seman-

tics/pragmatics distinction that is not universally adopted. On cognitive views of

meaning, sentences don’t determine (or have) truth-conditions, they just provide

some constraints on thought-building. As Carston (2008) puts it, the meaning,

at best, often offers a “gappy” proposition or a “schema or template for building

propositions” (p.324). Pragmatics – in a broad sense that includes theory of mind,

coordination of social behavior, and world knowledge – must work alongside mean-

ing to “fill in the gaps.” The end result is a thought. Its contours are shaped both

by the semantic representation and the pragmatics.5

With that in mind, we can consider the links in the proposed chain of infer-

ence: (175d) → (175c), (175c) → (175b), and (175b) → (175a). Each link requires

elaboration, to which we now turn. Each link also requires empirical defense, about

which some suggestions are offered in section 4.3.

Regarding the first link, this chapter discussed reasons for thinking the ob-

5 Compare this picture to one in which semantics yields a full truth-evaluable proposition and
the role of pragmatics is to enable further inferences about the speakers’ mental state, given that
they conveyed that proposition and not some other proposition.
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served surface-level differences are related to a difference in intended speaker mean-

ing. Learners may reason along the same lines. If a learner hears their parents

quantify over times, for example, they may be biased toward a generic understand-

ing of the utterance more than they would be if they hear their parents quantify over

locally-present objects. Here, work arguing that preschoolers “default” to generic

thinking (Gelman 2009; Leslie and Gelman 2012; Leslie 2012) may be relevant. If

right, this work suggests that learners’ null hypothesis is one compatible with pro-

jection. So children may use cues like quantification over times as a confirmation

of an initial guess that their parent intended to project beyond the local domain.

Likewise, quantification over a small number of locally-present individuals may serve

to disconfirm that pre-potent hypothesis about their parents’ intended message.

In forming a guess about their parents’ intended message, learners will rely

either on object-file or ensemble representations.6 As discussed in section 3.4, ensem-

ble representations allow for projecting beyond the local domain whereas object-file

representations do not. Namely, ensembles are initiated based on homogeneity and

to be a member of an ensemble is to contribute to its summary statistics. This

naturally licenses predictions about potential new members: They will contribute

in the same way (e.g., be a similar color, be a similar size, be a similar orientation,

6 Given the frequency of quantification over times with every, this proposal assumes that en-
semble representations are formed when representing large collections of events. Event perception
and ensemble representation have not yet been studied in tandem. But given the wide range of
things that routinely are represented as ensembles – objects, faces, sounds – there is reason to think
the same format of representation may apply to events as well. The idea of representing events
as ensembles accords with intuition as well. Try to recall every time you went grocery shopping.
You likely don’t recall individual episodic memories (unless something exceptional happened at
the grocery store). Instead, you likely remember summary statistics: the average duration of the
trips, your average average mood while shopping, etc.
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etc.). Object-files, in contrast, are pointers to individuals. Two object-files are

two distinct pointers, and that the objects they point to share any properties is an

accident from this system’s point of view.

So representing an intended message – i.e., building a thought – that suggests

projection beyond the local domain will implicate the system of ensemble repre-

sentation. On the other hand, object-file representations are well-suited for use in

representing an intended message in which something is predicated of individuals

in a local domain. Shared-attention to what is being quantified over may play a

role in triggering the relevant representational system perceptually. For instance,

if a parent says put a napkin next to each plate in the presence of a dinner ta-

ble, the child may represent the plates as object-files, which may itself support a

local understanding of the request in addition to providing an excellent learning

opportunity.

It seems less likely that perceptual information of this sort will trigger ensemble

representations when a parent says e.g., every time we eat, we use napkins. But

perceptual triggering of ensemble representations may happen in cases where every

is used to quantify over individuals in a way that is meant to project (e.g., if the

parent said every picture you drew this week was that color in the presence of a

dozen finger paintings). In the absence of such perceptual cases, one possibility

is that ensemble representations are required for thinking generic thoughts. This

constitutes a substantive hypothesis about the relationship between ensembles and

projection, which has not yet been explored (see note 6).

The final link – between the supporting cognitive systems and the meaning
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representations – was the main contention of Chapter 3. In a sense, this is the eas-

iest link from the learner’s perspective, as it is baked into the proposed first-order

and second-order representations that serve as the meanings of each and every.

The first-order universal concept is an individual-based thought, and consequently,

it naturally interfaces with object-file representations. The second-order universal

concept is a group-based thought, and consequently, it naturally interfaces with en-

semble representations. The present account assumes that both of these concepts

are available pre-linguistically (and in another line of work, we have begun to in-

vestigate how early these concepts are available to infants (Cesana-Arlotti et al.,

2020)).

But even assuming these two concepts are in the learner’s initial hypothesis

space, more needs to be said about why those concepts are the main hypothe-

ses under consideration. Learners likely narrow their hypothesis space initially

through Syntactic Bootstrapping (Gleitman, 1990). In particular, distributional

syntactic information can help them infer that each and every are determiners that

express quantity-information as opposed to, say, adjectives that specify property-

information (Syrett et al. 2012; Wellwood et al. 2016).

Perhaps, in line with Chapter 2, the hypothesis space is further limited by

a universal constraint on possible determiner meanings: They are restricted. This

would exclude some possible second-order hypotheses that might otherwise be con-

sidered for every (e.g., “⊆”). (In fact, Chapter 2 predicts that no determiners express

relations, which constrains learners’ hypothesis space not just for the universals but

for quantificational determiners in general.)
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In addition, learners will need some way of ruling out possible determiner

meanings that make the wrong truth-conditional contribution (e.g., an existential

or proportional representation). This may require coordination of linguistic evidence

with the co-present referent world, which has been shown to play an important role

in acquiring other abstract words, including mental state verbs (Papafragou et al.,

2007) and negation (Gomes et al., 2020).

The above proposal has been concerned with the question of how learners

decide between a restricted first-order universal concept and a restricted second-

order universal concept when acquiring each and every. As noted, many aspects

of this proposal await empirical support. This highlights a number of potential

research avenues, some of which are discussed in the following section.

4.3 Future directions: Testing the proposal

One obvious question raised by this proposal is whether learners actually are

sensitive to these particular linguistic cues. And if so, which ones are particularly

important for learning? It might be, for example, that the times vs. individual

distinction serves as a strong signal to learners, but that the difference in tense does

not. Alternatively, it might be that the past tense or future-oriented imperatives

with each are crucially important. If learners do start with a bias to expect that

their parents will project – in line with the “generics as default” hypothesis noted

above (Gelman 2009; Leslie and Gelman 2012; Leslie 2012) – then cases of quan-

tification over individuals might serve as a sort of “eureka moment” for learners,
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forcing them to abandon their initial hypothesis and consider the possibility that

the generalization was intended to be locally bounded.

In this context, the role for non-linguistic cues may be especially important.

As discussed in section 3.2 of the previous chapter, object-files are subject to work-

ing memory limits whereas ensembles are not.7 And if a small number of objects

are present, object-file representations are likely to be perceptually triggered. So

instances of parents quantifying over small numbers of locally present objects might

serve as “perceptual gems” (Carey and Bartlett 1978; Heibeck and Markman 1987;

Medina et al. 2011) that push learners to consider the first-order universal concept

as a hypothesis about each’s meaning.

These possibilities all correspond to distinct hypotheses about (175d), the

surface-level differences that arise from the different uses of each and every. One

potential route for exploring them further would be a novel quantifier learning ex-

periment with children (Hunter and Lidz 2013; Wellwood et al. 2016). One group

of participants might be asked to learn a nonce word – gleeb – presented an each

context, like (176a), while another group is asked to learn the same word from an

every context, like (176b).

(176) a. The teacher gave gleeb one of the kids a snack (each)

b. Gleeb time they eat, the teacher gives the kids a snack (every)

Assuming children successfully learn the truth-conditions, we can ask whether they

7 That is, while the number of ensembles that can be represented simultaneously is subject to
working memory limitations (Halberda et al., 2006), the number of objects that constitute a single
ensemble is not.
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paired gleeb with a first-order or a second-order concept by following-up this ex-

periment with a gleeb version of the center-of-mass experiment from section 3.3.3

of Chapter 3. The exact details of the context could then be varied – e.g., includ-

ing or excluding relative clauses, tense differences, or quantification over times – to

determine which combination of cues best supports learning.

Similar conclusions about which cues matter in principle could be drawn from a

series of Human Simulation Paradigm experiments on adults (Gillette et al., 1999).8

In these tasks, adult participants view short vignettes of parents uttering a sentence

(containing each or every, in this case), with the video muted. A tone is heard during

the duration of the sentence, and the participant is asked to guess what they think

the parent said during that beep. The rate at which participants type sentences

containing each or every can be taken as an estimate of the extent to which an

observer, armed only with the referent world and the time of the utterance, could

ever infer the presence of quantification in the message.

The usefulness of various linguistic cues could then be estimated by including

a version of the sentence with the critical quantifier removed. To simulate younger

stages of development, the content words could also be replaced by meaningless

novel words. In a scene where the parent said (177a), for example, participants

might be presented with something like (177b).

(177) a. Pick up each toy in your room!

b. Meech up zeb in lo fendle!

8 This possibility is currently being explored in collaboration with Victor Gomes.
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This method allows for controlling which aspects of the linguistic stimulus partici-

pants have access to. For example, one version might grant participants access to

information about what is being quantified over by replacing zeb with toy. To the

extent that a cue is in principle helpful for learners, its inclusion will be helpful for

adults trying to guess the message.

Of course, the low-level differences that ultimately matter in English may

not be the same differences that matter cross-linguistically. That is, distributional

footprints of projecting beyond the local domain may differ language-to-language.

What is predicted by the proposed account is just that if a language has a second-

order universal quantifier, it should be compatible with the relevant class of generic

generalizations. Likewise, if a language has a first-order universal quantifier, it

should not support projecting beyond the local domain. But how exactly these

projectable or local thoughts routinely get expressed may be subject to variation.

This raises questions about the relationship between the surface-level differ-

ences and parents’ intended message (the (175d) → (175c) link). Initially, at least,

one way forward on this front would be to conduct corpus analyses of child-ambient

speech in other languages. Findings could be paired with experiments like those

reported in Chapter 3, to support particular hypotheses about different determin-

ers’ mental representations (for example, Spanish cada is often translated as each,

but if it systematically causes ensemble representation, it may be better thought

of as analogous to every, which would lead to different predictions about a corpus

analysis of Spanish).

Moving up the chain, future work might also aim to provide support for the
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proposed relationship between the intent to project beyond the local domain and the

supporting cognitive systems (the (175c)→ (175b) link). Section 3.4 in the previous

chapter hinted at some predictions pertaining to this connection. For example, if

participants are encouraged to represent a group of objects as an ensemble – e.g.,

a group of green circles – they should be more likely to project beyond the initial

domain and make a prediction about the next object they will encounter (e.g.,

that it will be green). If they are instead encouraged to treat the same group

as a series of object-files, they should be less willing to make the same prediction.

Though controlling for adults’ ability to recognize patterns in this sort of task may be

difficult, a result along these lines would provide strong evidence for this particular

component of the acquisition proposal.

Lastly, the focus on the genericity asymmetry may offer a new window onto the

age of acquisition debate mentioned at the beginning of this chapter. In particular,

we might ask: How early are learners sensitive to the fact that every but not each

supports projectable generalizations? To address this, children might be shown

novel objects labeled with a novel noun (e.g., dax ) that is either quantified over by

each or every, as in (178).

(178) a. Each dax has green hair

b. Every dax has green hair

Children who hear something like (178b) are predicted to generalize that the next

dax they encounter will also have green hair.

This propensity to generalize might be pitted against children’s strong bias
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to generalize novel labels on the basis of shape (Landau et al., 1998, 1992, 1988).

For example, imagine that the original daxes are circles with green hair, and that a

child is presented with a square with green hair and a circle with no hair and asked

“Which one is also a dax?” They may be more inclined to violate the shape bias

(and pick the green-haired square) if the daxes were introduced with (178b) than

if they were introduced with (178a). Figuring out when children show this effect

could help fix an upper bound on the age of acquisition.9

In sum, the learning story sketched in section 4.2 relies on an idea that is

not common in work on language acquisition: using the extralinguistic systems

(object-files and ensembles) connected with sentences as a source of evidence for

inferring meaning. This proposal makes a range of rich predictions that will be (or

are currently being) explored. So while it is too early to say the proposed first-order

and second-order representations for each and every are supported by a fully-fledged

account of their acquisition, it at least seems fair to say that thinking about their

meanings at this level of detail reveals a vista of new empirical directions.

4.4 Chapter summary

This chapter considered the acquisition of each and every. Given the represen-

tations proposed in the preceding chapters, learners’ task in acquiring these terms

is to pair one pronunciation with one universal concept and another pronunciation

with a logically-equivalent but representationally distinct universal concept. This

9 This possibility is currently being explored in collaboration with John Trueswell and Anna
Papafragou
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places a larger burden on the child and on the theorist than a view on which the

target of acquisition is the truth-conditional content of the determiner, represented

in no particular format.

Of course, determining how children arrive at universal truth-conditions is a

difficult question in its own right. In fact, determining when children correctly rep-

resent these truth-conditions is difficult enough, and is the subject of much debate.

Abstracting away from both of these questions, this chapter asked what data might

be available in speech to children that could signal the relevant difference between

each and every and how that data might be used by learners.

Section 4.1 reported results of a corpus analysis suggesting that the genericity

asymmetry discussed in Chapter 3 is particularly relevant for language acquisition.

Parents seem to use each to express local generalizations (e.g., you’ve got a glove

on each hand) and every to make generalizations that project beyond the local

domain (e.g., every time we go outside, you forget your gloves). This difference in

intended message leaves low-level distributional footprints (e.g., in terms of what

gets quantified over and whether the quantifier phrase appears within an adjunct or

as a verb’s argument).

Section 4.2 then sketched a proposal for how learners might use these observ-

able differences to ultimately infer the right meanings of each and every. The chain

of inference starts with low-level differences and transits through parents’ intended

messages and the cognitive systems that support them, which are linked to the pro-

posed first-order and second-order meaning representations. The proposal assumes

that learners have access to the relevant concepts pre-linguistically and that their
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hypothesis space is also narrowed in more traditional ways (e.g., thanks to syntactic

bootstrapping and universal grammar).

At the moment, the proposal outlined above is just that. But as section 4.3

laid out, thinking about the mental representations of each and every in this way

opens the door for a variety of new empirical explorations. To the extent that they

produce the predicted results, the proposed representations for each and every will

be supported. And at the least, focusing on representational format has allowed for

thinking about the acquisition question in a new light.

In particular, the question of how sentences relate to extralinguistic cognition

has not generally been taken to be relevant to language acquisition. It is often

assumed that a large aspect of learning meanings is tracking situational context:

that parents say dog in the presence of dogs and frog in the presence of frogs and

that learners track these co-occurrences (Smith and Yu, 2008).10 Since Gleitman

(1990), the importance of syntactic cues, working in concert with the situational

context, has also been clear (e.g., Naigles 1990; Lidz et al. 2003; Yuan and Fisher

2009). Moreover, Hacquard and Lidz (2018) raise the possibility that pragmatic

factors – in particular connections between sentence meaning and speaker meaning

– can supplement syntactic bootstrapping. And in a similar vein, Dudley (2017)

discusses the role of speakers’ conversational goals in the inferences learners draw

about meanings.

The above proposal can be thought of as adding a new dimension to this list:

10 With quantifiers the situation is more complex, but nonetheless, the focus has been on learning
the right truth-conditions and, for example, distinguishing universals from existentials.
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details about how sentences are related to the cognitive systems with which they

interface. This type of information can be considered when other avenues (i.e., the

type of information mentioned above) are insufficient to lead learners to the target

meaning. And importantly, this addition to the acquisitionist’s arsenal is a direct

result of treating the target of learning as not just truth-conditional content, but

content represented in a particular format.
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Chapter 5: Conclusion

This dissertation has been concerned with the mental representation of the

universal quantifiers each and every (and, to a lesser extent, all). Their truth-

conditional contribution can be specified by theorists in many ways. Chapter 1

argued that these logically equivalent formalisms should be treated as psychologi-

cally distinct hypotheses.

For example, on a psychological interpretation of Generalized Quantifier The-

ory (Barwise and Cooper, 1981), quantificational determiners might be said to ex-

press relations between groups. On this view, the mental representation of every

frog is green would be something like the frogs are among the green things. In con-

trast, the same sentence might be represented in a non-relational way that doesn’t

implicate the green things as an independent group, as in the frogs are such that they

are green. Moreover, it might be represented in a non-relational way that doesn’t

implicate the frogs or the green things as a group, as in any individual that’s a frog

is such that it is green.

Chapter 2 argued that quantificational determiners are better thought of in

non-relational terms. The psychosemantic evidence marshaled in support of this

claim was that in evaluating sentences like every big circle is blue, participants only
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represent the big circles as a group. Neither the blue circles nor the big blue circles

are treated in the same way. This result is not predicted if every is represented as

a device for relating two groups. If both groups are logically on a par, they should

be treated psychologically on a par as well. But the result is predicted if every is

represented as a device for combining with an internal argument to form a restricted

quantifier, as this view makes it clear that the two arguments – big circle and is

blue – play distinct logical roles.

Semantically, this non-relational alternative was argued to be preferable be-

cause it allows for a simple explanation of the “conservativity” constraint (Barwise

and Cooper 1981; Higginbotham and May 1981; Keenan and Stavi 1986). This

cross-linguistic universal states that all determiners permit duplicating their inter-

nal argument in their external argument without a change in truth-conditions. For

example, every frog is green iff every frog is a frog that is green. Given that there

are plenty of relations that disobey this constraint, this is a puzzling generalization

if determiners express relations. But it is a logical consequence if every frog and the

like express restricted quantifiers (Pietroski 2005, 2018; Westerst̊ahl 2019; Lasersohn

2021).

Chapter 3 argued that while every and all have representations that implicate

a group, each has a representation that is completely first-order in that it impli-

cates only individuals. A parallel was drawn between first-order and second-order

quantification in language – a distinction in what types of variable positions are

quantified into – and individuals and groups in non-linguistic cognition. In particu-

lar, first-order quantification was proposed to serve as an instruction to cognition to
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represent the domain as independent object-files whereas second-order quantifica-

tion was proposed to serve as an instruction to cognition to represent the domain as

an ensemble. This connection was leveraged in a series of experiments showing that

when evaluating sentences like every circle is green, adults and children represent the

circles as an ensemble. But when evaluating each circle is green with respect to the

same image, adults and children instead treat the circles as independent object-files.

This first-order/second-order distinction was argued to explain a genericity

asymmetry between each and every (Beghelli and Stowell, 1997). In particular,

every frog is green can be understood as a claim about frogs in general, whereas

each frog is green seems to be unable to project beyond the local domain. Instead

of situating this distinction in grammar, it was argued that this distinction is a

result of the connection between each’s first-order representation and object-files

and every ’s second-order representation and ensembles. Properties of these systems

make ensembles more conducive to projecting (i.e., licensing predictions) beyond

the local domain.

Chapter 4 built on the proposed difference between each and every and asked

how they might be acquired by children. Investigating a corpus of child-ambient

speech revealed that parents use each to state generalizations over local domains

(e.g., make sure you have shoes on each foot) and use every to state broader gen-

eralizations that project beyond it (e.g., every time we get your shoes on, you cry).

These differences in intended message leave low-level footprints. For example, each

is far more likely to be used to quantify over individuals, whereas every is more

likely to be used to quantify over times.
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Given this data, an acquisition story was sketched. It relied on learners using

details of extralinguistic cognition – object-files and ensembles – to help make the

inference from the observed surface-level differences to the right universal concepts

to pair with each and every. This represents a new source of evidence that learners

might use, one that is not usually discussed in research on language acquisition. The

proposal also suggested a range of follow-up experiments, aimed at testing various

novel predictions.

5.1 Methodological implications

Finding evidence for one particular representation over another is difficult.

Claims of semantic decomposition are not only hard to support experimentally, they

are also are hard to shield from alternative explanations. The preceding chapters

highlighted methodological strategies for dealing with both of these issues.

In terms of supporting decomposition experimentally, the right linking hypoth-

esis is crucial. All of the experiments reported above rely on – and provide further

support for – the Interface Transparency Thesis (Lidz et al., 2011). This is the

idea that details of a sentence’s semantic representation carry detectable weight in

determining which strategies competent speakers will use to evaluate that sentence.

For this linking hypothesis to work as a methodological strategy, the interfacing

systems need to be well-understood. The fact that notions like object-files, ensem-

bles, and cardinality are so well-established has made quantificational determiners

an especially fertile testing ground for this linking hypothesis.
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In terms of fending off alternative explanations, the first task is meeting Fodor’s

challenge: A retreat to strongly associated world knowledge is always available

(Fodor et al. 1975; Fodor and Lepore 1998; Fodor 1998). For example, an experiment

finding that participants represent animal any time they represent frog would not

be compelling evidence that the meaning of frog in part decomposes into animal.

The lexical item frog might just have the atomic concept frog as its meaning, with

the fact that frogs are animals being a bit of associated world knowledge. Why

think the situation is any different for frog and animal or doe and deer than it

is for the hypothetical finding that participants routinely represent pepper upon

hearing salt? It’s plausible that the two differ only in our understanding of the

relation between the extensions of the two concepts: necessary inclusion in the first

case, frequent co-occurence in the second.

Cases of “logical” vocabulary, like every and most, are able to avoid this prob-

lem because the proposed decompositions implicate concepts that we would not

otherwise expect to be strongly associated with the lexical item. A retreat to asso-

ciated world knowledge is still available, but “restricted second-order quantification”

is at least a less likely candidate for a strong association than something like “does

are deer.” After all, you might encounter “does are deer” when you learn the word

doe, or when you look it up in a dictionary, or when you sing the song. But the

same is clearly not true for each and every.

In sum, good candidates for semantic decomposition will meet at least the

following two criteria. First, the proposed decomposition will interface with cog-

nitive systems whose properties are well-understood. And second, the proposed
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decomposition will be in terms of concepts that are not be predicted by association

alone.

5.2 Theoretical implications

Language connects pronunciations and meanings. From the outset, this dis-

sertation adopted a mentalistic view of what pronunciations and meanings are: Pro-

nunciations relate to motor-planning systems and articulators and meanings relate

to non-linguistic cognitive systems and concepts (Chomsky, 1964). In particular, a

meaning representation provides instructions to cognition for assembling a thought

(Pietroski, 2018).

Chapter 1 raised some initial questions that arise when thinking about mean-

ings in this mentalistic way: What sorts of instructions do meanings provide to

cognition? At what grain-size are these instructions shared by competent speak-

ers? And to what extent do the instructions supplied by the meaning constrain the

contours of the resulting thought?

We can imagine a number of possible answers to this family of questions, even

restricting our attention to the “logical” vocabulary. One possibility is that speakers

share an understanding of the informational contribution that lexical items make,

but they represent this contribution in various ways depending on the situation. In

other words, a lexical item like every is represented as an equivalence class of truth-

conditionally equivalent specifications, so its meaning restricts thought-building only

insofar as it restricts truth-conditions.
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Another possibility is that speakers each represent the informational contri-

bution of lexical items in one particular format, but individuals differ with respect

to which format. Whereas you might represent every in restricted terms, maybe I

represent it in relational terms. The two of us never disagree in conversation, but

our mental lives differ. In other words, the meaning of a lexical item like every offers

a precise but idiosyncratic instruction to cognition, which differs for each speaker.

A third possibility is that speakers represent the informational contribution in

a shared representational format, but that format is unstructured. For example, ev-

ery just means every and so it’s no surprise that everyone represents it in the same

way. In this case, the meaning representation provides an extremely constraining

instruction to cognition, but a relatively uninteresting one.

Given any of these answers, we might be tempted to abstract away from the

psychological details of meaning representations, or to treat these details as sec-

ondary phenomena when constructing theories of meaning.

But the results presented here paint a different picture. What serves as the

meaning of every is a representation with a very particular format. Competent

speakers seem to share this representation. This is surprising because, in principle,

two speakers could have acquired a different representation that made the same in-

formational contribution, and they would never disagree in conversation. Perhaps

even more surprising is that the apparently shared meaning representation has in-

ternal structure and is not (an instruction to access) an atomic concept. So in this

case at least, the meaning seems to provide a precise instruction to cognition (e.g.,

about which and how many groups to represent) that is shared by speakers and that
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has discoverable internal structure.

This suggests that representational format is not a secondary phenomenon,

but one that is crucial to consider in giving a full account of linguistic meaning.
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Appendix A: Corpora used in Chapter 4

The following corpora from the North American English portion of CHILDES

were included in the analysis reported in Chapter 4. For each corpus, the number

of children, age range, and citation (when applicable) is included.

• Bates: 27 children (1;8 & 2;4) Bates et al. (1991)

• Bernstein Ratner: 9 children (1;1 - 1;11) Bernstein (1982)

• Bliss: 7 children (2;3, 2;5, 3;4, 4;3, 4;6, 5;4, 6;1) Bliss (1988)

• Bloom 1970: 3 children (1;1 - 3;2) Bloom (1970); Bloom et al. (1974, 1975)

• Bloom 1973: 1 child (1;4 - 2;10) Bloom (2013)

• Bohannon: 2 children (2;8 & 3;0) Bohannon III and Marquis (1977)

• Braunwald: 1 child (1;0 - 6;0) Braunwald (1971)

• Brent-Siskind: 16 children (0;6 - 1;0) Brent and Siskind (2001)

• Brown: 3 children (1;6 - 5;1) Brown (1973)

• Clark: 1 child (2;2 - 3;2) Clark (1978)

• Cornell: 8 children (1;6 - 4;0)

• Demetras-Trevor: 1 child (2;0 - 3;11) Demetras (1989b)

• Demetras-Working: 3 children (2;0 - 2;6) Demetras (1989a)

• EllisWeismer: 138 children (2;6, 3;6, 4;6, & 5;6) Heilmann et al. (2005)

• Evans: 44 children (2;1 - 2;9)

• Feldman: 1 child (0;5 - 2;9) Feldman (1998)

• Garvey: 48 children (2;10 - 5;7) Garvey and Hogan (1973)
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• Gathercole: 8 children (2;9 - 6;6) Gathercole (1986)

• Gelman: 118 children (1;6 - 7;0) Gelman et al. (1998, 2004)

• Gleason: 24 children (2;1 - 5;2) Gleason (1980); Masur and Gleason (1980)

• Haggerty: 1 child (2;6) Haggerty (1930)

• Hall: 39 children (4;6 - 5;0) Hall and Tirre (1979)

• Higginson: 3 children (0;11 - 2;11) Higginson (1985)

• HSLLD: 83 children (2;0 - 6;0) Dickinson and Tabors (2001)

• Kuczaj: 1 child (2;4 - 4;1) Kuczaj II (1977)

• MacWhinney: 2 children (0;7 - 8;0) MacWhinney (1991)

• McCune: 9 children (1;0 - 3;0) McCune (1995)

• McMillan: 2 children (3;0)

• Morisset: 205 children (2;6 - 3;6) Morisset et al. (1990)

• Nelson: 1 child (1;9 - 3;0) Nelson (1989)

• New England: 52 children (1;2, 1;8, & 2;3) Ninio et al. (1994)

• NewmanRatner: 121 children (0;7 - 2;0) Newman et al. (2016)

• Nicholas: Normal Hearing: 45 children (1;0 - 4;0) Nicholas and Geers (1997)

• Peters/Wilson: 1 child (1;7 - 4;1) Wilson and Peters (1988)

• POLER (control): 26 children (5;0 - 7;0) Berl et al. (2005); Gaillard et al.
(2007); Mbwana et al. (2009)

• Post: 3 children (1;7 - 2;8) Demetras et al. (1986)

• Rollins: 12 children (0;6 - 1;0) Rollins and Trautman (2011); Rollins (2003);
Rollins and Greenwald (2013); Trautman and Rollins (2006)

• Rondal: Normal: 21 children (1;8 - 2;8) Rondal (1976)

• Sachs: 1 child (1;1 - 5;1) Sachs and Nelson (1983)

• Sawyer: 20 children (3;6 - 4;11) Sawyer (2013)

• Snow: 1 child (2;5 - 3;9) MacWhinney and Snow (1990)

• Soderstrom: 2 children (0;6 - 0;10) Soderstrom et al. (2008)

• Suppes: 1 child (1;11 - 3;3) Suppes (1974)
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• Tardiff: 25 children (1;6 - 1;9)

• Valian: 21 children (1;9 - 2;8) Valian (1991)

• VanHouten: 28 children (2;0 & 3;0) Van Houten (1986)

• Van Kleeck: 20 children (3;0 - 4;0)

• Warren: 20 children (1;6 - 6;2) Warren-Leubecker (1982)

• Weist: 6 children (2;1 - 5;0) Weist and Zevenbergen (2008)
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