
ABSTRACT

Title of Thesis: REFINEMENT ACTING VS.
SIMPLE EXECUTION GUIDED
BY HIERARCHICAL PLANNING

Yash Bansod
Master of Science, 2021

Thesis Directed by: Professor Dana Nau
Department of Computer Science
and Institute of Systems Research

Humans have always reasoned about complex problems by organizing them

into hierarchical structures. One approach to artificial intelligence planning is to

design intelligent agents capable of breaking complex problems into multiple levels

of abstraction so that at any one level, the problem becomes small and simple.

However, for an agent to reason at multiple levels of abstraction, it needs knowledge

at those abstraction levels. Hierarchical Task Network (HTN) planning allows us

to do precisely that. This thesis presents a novel HTN planning algorithm that

uses iterative tree traversal to refine HTNs. We also develop a purely reactive HTN

acting algorithm using a similar procedure. Preserving the hierarchy in HTN plans

can be helpful during execution. We make use of this fact to develop an algorithm

for integrated HTN planning and acting. We show through experiments that our

algorithm is an improvement over a widely used approach to planning and control.

Refinement Acting vs. Simple Execution
Guided by Hierarchical Planning

by

Yash Bansod

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2021

Advisory Committee:
Professor Dana Nau, Chair/Advisor
Professor Michael Otte
Professor Pratap Tokekar

© Copyright by
Yash Bansod

2021

Acknowledgments

I would like to thank my thesis advisor, Professor Dana Nau, for his guidance

and mentorship throughout my thesis research. He established an environment

where I was encouraged to freely express my ideas and discuss them without hesi-

tation. I am especially thankful for everything he has taught me and the wonderful

technical discussions we had, which were crucial to this thesis research. He has

always been patient with me, welcomed my opinions, and inspired me to devise

creative ways of solving problems.

I am also thankful to Dr. Sunandita Patra for her assistance. This research

would not have been possible without her valuable feedback on my work. The techni-

cal discussions that we had helped cement many concepts used for the development

of this thesis.

I am incredibly grateful to Dr. Muralikrishna Sridhar, who encouraged me to

pursue thesis research for my master’s education. I value his mentorship a lot, and

I thank him for his role in sculpting me as my present self.

Lastly, I am thankful to my parents for always encouraging me and supporting

me in my pursuit to improve myself. And for always expecting higher standards

from me than I ever did for myself. This work would have been impossible without

the sacrifices they made to shield me from all the hindrances I would have faced

otherwise.

ii

Table of Contents

Acknowledgements ii

Table of Contents iii

List of Tables v

List of Figures vi

List of Abbreviations vii

Chapter 1: Introduction 1
1.1 Motivation . 3
1.2 Contributions of the Thesis . 5
1.3 Thesis Organization . 7

Chapter 2: Related Work 9
2.1 AI Planning . 9
2.2 AI Acting . 10
2.3 Integrating AI planning and acting 11

Chapter 3: Planning and Acting Algorithms 13
3.1 HTN Planning Formulation . 14
3.2 HTN Planning in Pyhop . 18
3.3 HTN Planning in IPyHOP . 20
3.4 RAE-lite - A purely reactive HTN Actor 23
3.5 Integrating IPyHOP with an Actor 26

3.5.1 Run-Lazy-Lookahead . 26
3.5.2 Run-Lazy-Refineahead . 30

Chapter 4: Experimental Evaluation 36
4.1 RoboSub Domain . 36
4.2 Experimental Setup . 40
4.3 Results . 42
4.4 Summary . 50

Chapter 5: Conclusion 53
5.1 Limitations and Future Work . 55

iii

Appendix A: RoboSub Domain in IPyHOP 58
A.1 Method Definitions . 58
A.2 Action Definitions . 63

Bibliography 68

iv

List of Tables

4.1 Overview of results obtained using Dmean exp 50
4.2 Overview of results obtained using Dequivalent 50

v

List of Figures

1.1 Deliberative acting architectures: (a) Planner uses descriptive models
while actor uses operational models; (b) Planner and actor both use
the same operational models. 4

3.1 Task network visualizations: (a) Visualization of a task, method, pre-
conditions, sub-tasks, and operators. (b) Compressed visualization of
a task network used for visualizing larger networks. 16

3.2 Actor architectures: (a) Interaction of RAE with execution platform.
(b) Interaction of RAE-lite with execution platform. 24

3.3 Refinement of task t1 using m1 t1 and m2 t1. And refinement of task
t2 using m1 t2 and m2 t2. (Example 1). 28

3.4 Task network visualizations: (a) After first planning attempt. (b)
Re-planning after failure in execution of o6. 28

3.5 (a) Solution task network after initial planning. (b) Modified task
network after failure in execution of o7. (c) Modified task network
after backtracking from o7 on the modified task network in (b). (Ex-
ample2). 32

4.1 An illustration of a sample planning problem for the RoboSub 2019
competition. 37

4.2 Results of metric - Total nodes expanded (a) Distribution visualized
using histograms (b) Relation visualized by fitting a line on the scatter
plot. 45

4.3 Results of metric - Total actions planned (a) Distribution visualized
using histograms (b) Relation visualized by fitting a line on the scatter
plot. 46

4.4 Results of metric - Total iterations taken (a) Distribution visualized
using histograms (b) Relation visualized by fitting a line on the scatter
plot. 47

4.5 Results of metric - Total action cost (a) Distribution visualized using
histograms (b) Relation visualized by fitting a line on the scatter plot. 48

4.6 Results of metric - Final state reward (a) Distribution visualized using
histograms (b) Relation visualized by fitting a line on the scatter plot. 49

vi

List of Abbreviations

A-H

AI Artificial Intelligence
AUV Autonomous Underwater Vehicle
BFS Breadth First Search
DFS Depth First Search
GNPyhop Goal Network Python Hierarchical Ordered Planner
GOAP Goal Oriented Action Planning
HGN Hierarchical Goal Network
HTN Hierarchical Task Network

I-R

IPyHOP Iterative Python Hierarchical Ordered Planner
NOAH Nets of Action Hierarchies
O-Plan Open Planning Architecture
PDDL Planning Domain Definition Language
PRS Procedural Reasoning System
Pyhop Python Hierarchical Ordered Planner
RAE Refinement Acting Engine
RAE-lite Refinement Acting Engine lite

S-Z

SeRPE Sequential Refinement Planning Engine
SHOP Simple Hierarchical Ordered Planner
SHPE Simple Hierarchical Planning Engine
SIPE System for Interactive Planning and Execution
STRIPS Stanford Research Institute Problem Solver
UMCP Universal Method Composition Planner

vii

Chapter 1: Introduction

Artificial Intelligence (AI) planning or Automated planning is a rich tech-

nical field. Planning can be defined as an abstract, explicit deliberation process

that chooses and organizes actions by anticipating their expected outcomes. In AI

planning, we study this deliberation process computationally [1]. In practical ap-

plications, however, planning alone is rarely the ultimate objective. It is usually

followed by acting. The integration of planning and acting, or deliberative acting

is a crucial area of study in our view. Deliberation for acting consists of deciding

which actions to undertake and how to perform them to achieve an objective. It

refers to a reasoning process, both before and during acting [2]. Here we study the

computational deliberation capabilities that allow an artificial agent to reason about

its actions, choose them, organize them purposefully, and act deliberately to achieve

an objective.

Planning can mean different things in different contexts. Examples include

path and motion planning, perception planning and information gathering, naviga-

tion planning, mission planning, manipulation planning, communication planning,

and several other social and economic planning forms.

AI Planning is a process whereby a system attempts to figure out a sequence

1

of actions that will achieve a distant goal set upon it by the user. This sequence of

actions is called a plan.

Classical planning refers generically to planning for restricted state-transition

systems. To do this, we model the problem in some language or encoding that tells

us all the information that can be true about the world at that time. These bits

of information are known as facts or predicates. Predicates tell us things we might

need to know at a later point in time in our planning. We store all of the predicates

we have representing how the world looks like at any point in time within a state.

We design operators capable of modifying the state. Operators when instantiated

are called actions. Actions are usually broken into three parts: the objects - things

that are involved in the action, the preconditions - predicates that must be true

before we apply the action, and the effects - which represent how the world changes

as a result of completing the action, adding new information to the world state or

deleting existing facts that are no longer true.

Hierarchical Task Network (HTN) planning [1, Chapter 11] is a branch of AI

planning that represents and handles hierarchies. In some aspects, HTN planning

is like classical planning in that a set of atoms represents each state of the world,

and each action corresponds to a deterministic state transition. However, HTN

planners differ from classical planners in what they plan for and how they plan for

it. In an HTN planner, the objective is not to achieve a set of goals but to perform

some set of tasks. The input to the planning system includes a set of operators

similar to classical planning and a set of methods, each of which is a prescription

for decomposing some tasks into some set of sub-tasks (smaller tasks). Planning

2

proceeds by decomposing non-primitive tasks in the initial task network recursively

into smaller and smaller sub-tasks until primitive tasks are reached. The primitive

tasks can be performed directly using the planning operators at the given initial

state.

1.1 Motivation

Hierarchies are one of the most common structures used to understand and

conceptualize the world. The intuitive hierarchical representation used by HTN

planners allows the often available expert knowledge about a domain to be in-

cluded with relative ease to guide the search process. This expressive power of

HTN methods is beneficial for the development of planners for various practical

applications [3–5]. In practice, the inclusion of such search control knowledge can

make HTN planning faster than classical planning, and a good set of methods can

enable an HTN planner to perform well on benchmark problems [6]. HTN planning

has especially seen wide adoption for mission planning in robotics [4, 5] and Game

AI development [3, 7].

In AI planning and acting, there are two main ways of defining action models,

descriptive and operational models. Descriptive models of actions specify the state

or set of possible states that may result from performing an action. In contrast,

operational models describe how to perform an action: what commands to execute

in the current context and how to organize them to achieve the action’s intended

effects.

3

Planner

Descriptive
Models

Actor

Operational
Models

Plans

Queries

(a)

Planner

Operational
Models

Actor

Operational
Models

Plans

Queries

Identical

(b)

Figure 1.1: Deliberative acting architectures: (a) Planner uses descriptive mod-
els while actor uses operational models; (b) Planner and actor both use the same
operational models.

HTN planners use descriptive models of actions tailored to compute the next

states in a state transition system efficiently. Plans generated using descriptive mod-

els execute well with closed, static, and deterministic world assumptions. However,

executing the plan in open, dynamic, and non-deterministic/probabilistic domains

(characteristic of many practical problems) eventually leads to failure. The plan-

ning domain will rarely be an entirely accurate model of the actor’s environment,

and the execution of the plan may fail due to (i) failure in execution of actions, (ii)

occurrence of unexpected events, (iii) because the planning was done with incor-

rect/partial information, et cetera.

As argued above and by many prominent authors, plans are needed for acting

deliberately, but they are not sufficient for deliberative acting [8]. Many deliberative

4

acting approaches seek to combine the descriptive models used by the planner with

the operational models used by the actor [9]. In contrast, others seek to directly

integrate planning and acting using operational representations [10,11]. A schematic

diagram showing these approaches is shown in figure 1.1.

We aim to develop an efficient HTN based deliberative acting algorithm.

1.2 Contributions of the Thesis

The most significant contribution towards the popularization of HTN plan-

ning has emerged after the proposal of the Simple Hierarchical Ordered Planner

(SHOP) [12], and its successors SHOP2 and SHOP3 [13, 14]. However, SHOP and

its successors are written in the LISP programming language, which limits its adop-

tion. Python is a much more popular language and is widely adopted by roboticists,

game developers, machine learning engineers, and AI engineers. A quick search of

the number of repositories using Python vs. the number of repositories using LISP

on GitHub makes the popularity of Python apparent. However, there are very few

implementations of HTN planners in Python.

One of the most popular implementations is Pyhop1 [15], a Python adaptation

of the SHOP algorithm. However, Pyhop uses recursion for task refinement, and

the generated planning solutions do not preserve the hierarchy of the underlying

task network. This lack of hierarchical information in the planning solution limits

development of efficient replanning algorithms that could take advantage of the

hierarchical nature of HTN plans. Here, we present an iterative, tree traversal-based

1An open-sourced version of Pyhop available at: https://bitbucket.org/dananau/pyhop

5

https://bitbucket.org/dananau/pyhop

variant of Pyhop, namely IPyHOP, that preserves the hierarchy in the planning

solution and provides users with a solution task network, or simply a solution tree,

rather than a simple plan. Since IPyHOP iteratively generates a solution tree for

task refinement, the structure of the solution tree represents the state of the planner.

This representation allows developers to re-enter and continue planning from any

desired planner state for the replanning process.

We also present an iterative hierarchical actor, RAE-lite, that uses task re-

finement to implement purely reactive acting. RAE-lite was inspired by Refinement

Acting Engine (RAE)2 [2, Chapter 3] and IPyHOP. RAE uses a hierarchical task-

oriented operational representation with an expressive, general-purpose language

offering rich control structures for closed-loop online decision-making. A collec-

tion of refinement methods describes alternative ways to handle tasks and react to

events. Each method has a body that can be any complex algorithm. In addition to

the usual programming constructs, the body may contain sub-tasks, which need to

be refined recursively, and sensory-motor commands, which query and change the

world non-deterministically. Additionally, RAE supports parallel refinement and

execution of tasks. However, RAE-lite’s methods for task refinement and execution

are derived from IPyHOP; hence many functionalities offered by RAE’s methods are

limited/unavailable, and parallel task execution is impossible. However, RAE-lite is

much simpler than RAE and can prove to be a better alternative for many practical

scenarios.

Finally, we develop an efficient algorithm to integrate an HTN planner with

2An open-sourced version of RAE available at: https://bitbucket.org/sunandita/rae

6

https://bitbucket.org/sunandita/rae

an actor. A naive way of doing this would be to use repeated planning and replan-

ning algorithms like Run-Lazy-Lookahead [2, Chapter 2]. However, this algorithm

was initially designed for goal-based planners and did not take advantage of the

hierarchical nature of HTN plans. We take inspiration from the execution of Re-

finement Acting Engines (RAE) [2, Chapter 3] and develop a repeated planning and

replanning algorithm, Run-Lazy-Refineahead, that takes advantage of the hierarchi-

cal nature of HTN plans.

1.3 Thesis Organization

In chapter 2, the related work is discussed mainly concerning three areas: AI

planning approaches, AI acting approaches, and systems that integrate AI planning

with acting. In chapter 3, we begin by explaining the theory behind HTN planning

and explain how it is implemented in Pyhop. We state some of its limitations and

then explain how IPyHOP attempts to resolve them. We proceed by presenting

the acting algorithm, RAE, and an HTN acting algorithm RAE-lite to describe a

purely reactive HTN acting. We describe the Run-Lazy-Lookahead algorithm and

its use in integrating HTN planning and acting or deliberative HTN acting. Based

on the concepts developed so far, we present the Run-Lazy-Refineahead algorithm

for deliberative HTN acting and conclude the chapter 3 by performing some an-

alytical comparisons between Run-Lazy-Lookahead and Run-Lazy-Refineahead for

deliberative HTN acting. In chapter 4 we describe an experimental domain for HTN

planning. Furthermore, we discuss the design and setup of experiments to practically

7

compare Run-Lazy-Lookahead and Run-Lazy-Refineahead algorithms for delibera-

tive HTN acting. We provide the results and explain how the results support our

analytic comparisons stated earlier. Finally, in chapter 5 we summarize our work

and conclude the thesis. We also state the limitations of this work and provide some

future research directions.

8

Chapter 2: Related Work

This chapter discusses the available scientific literature on different work areas

related to deliberative acting. In section 2.1 we discuss various AI planning ap-

proaches relevant to this study. Then in section 2.2, we look at several approaches

developed for AI acting. Finally, in section 2.3 we explore the numerous approaches

developed for integrating AI planning and acting.

2.1 AI Planning

In the last decade, many commercial video games have used planners instead

of classical behavior trees or finite-state machines to define agent behaviors. Plan-

ners allow looking ahead in time and prevent many problems of purely reactive sys-

tems. Goal-Oriented Action Planning (GOAP) [16] refers to a simplified Standford

Research Institute Problem Solver (STRIPS) [17] -like planning architecture specifi-

cally designed for real-time control of autonomous character behavior in games. It is

one of the earliest approaches to using an AI planner for a character’s AI in a game.

GOAP has continued to have a lasting impact within the video games industry.

However, over time GOAP and its STRIPS-style approaches are now being adopted

less frequently, with more contemporary titles adopting HTN planning. HTN plan-

9

ning is a widely adopted approach to AI planning in the gaming industry [18].

One of the first HTN planners was Nets of Action Hierarchies (NOAH) [19]. Since

then, numerous HTN planners have been developed. Some of the best-known ones

are Nonlin [20], System for Interactive Planning and Execution (SIPE) and SIPE-

2 [21], Open Planning Architecture (O-Plan) [22] and its successor O-Plan2 [23],

Universal Method Composition Planner (UMCP) [24], SHOP [12] and its successor

SHOP2, and SHOP3 [13,14], and SIADEX [25]. Additionally, there are various HTN

planners like Simple Hierarchical Planning Engine (SHPE) [26] that are specifically

developed for AI planning in video games. A wide body of literature also exists on

Monte Carlo tree search based planning. Monte Carlo tree search refers to simu-

lated execution [27, 28], sampling outcomes of action models [29, 30], and hindsight

optimization [31].

2.2 AI Acting

RAE [2, Chapter 3] is a popular acting algorithm, which in turn is inspired

from Procedural Reasoning System (PRS) [32]. However, RAE and PRS are purely

reactive systems. If they need to choose among several suitable refinement methods

for a given task or event, they choose without trying to plan ahead. This lack of

deliberation can lead to weird behavior of agents, where agents perform actions that

will lead to their failure shortly. The purely reactive approach to acting has been

extended with some planning capabilities in PropicePlan [33] and SeRPE [2, Chap-

ter 3]. The basic idea in these approaches is to augment the acting procedure with

10

predictive lookahead of the possible outcome of commands that can be chosen. This

augmentation can be done, for example, by substituting the commands of actors

with descriptive models of a planner. Various acting approaches similar to PRS and

RAE have also been proposed [34–39]. Some with refinement capabilities and hierar-

chical models [40–42]. While such systems offer expressive acting environments, e.g.,

with real-time handling primitives, most do not perform reasoning about alternative

refinements.

2.3 Integrating AI planning and acting

In [43] authors propose a way to do online planning and acting. The old

plan is executed repeatedly in a loop while the planner synthesizes a new plan

(which the authors say can take a significant amount of time), and the new plan is

not installed until planning has been finished. This way of repeated planning and

acting is similar to the Run-Concurrent-Lookahead algorithm defined in [2, Chapter

2]. Run-Concurrent-Lookahead is a procedure in which the acting and planning

processes run concurrently. Each time an action is performed, the action comes

from the most recent plan that Lookahead has provided. Other similar algorithms

like Run-Lookahead and Run-Lazy-Lookahead are also defined in [2, Chapter 2].

Here Lookahead is any online planning algorithm in the mentioned procedures. The

online nature of a planner means that at a given instance, the plan returned might

not guarantee to solve the planning problem; however, it has to provide at least a

partial solution. Each time Run-Lookahead calls the Lookahead planner, it performs

11

only the first action of the plan that Lookahead returned. This way of execution is

effective, for example, in unpredictable or dynamic environments in which some of

the states are likely to be different from what the planner predicted. In contrast,

Run-Lazy-Lookahead executes each plan as far as possible, calling Lookahead again

only when the plan ends, or a plan simulator says that the plan will no longer work

properly.

Much work has been done in robotics to integrate planning and acting. In [44]

show how HTN planning can be used in robotics. In [45] authors describe the inte-

gration of task and motion planning using an HTN approach. Motion primitives are

assessed with a specific solver through sampling for cost and feasibility. An algo-

rithm called SAHTN extends the usual HTN search with a bookkeeping mechanism

to cache previously computed motions. In comparison to this work, our approach

does not integrate specific constructs for motion planning. However, it is more

generic regarding the integration of HTN planning and acting.

12

Chapter 3: Planning and Acting Algorithms

This chapter first defines the HTN planning formulation in section 3.1. Some

of the essential terms and representations are defined, and an abstract HTN plan-

ning algorithm is stated. In section 3.2 we present some details about the planner

Pyhop and summarize its HTN planning algorithm. Some limitations of Pyhop are

recognized, and the planner IPyHOP is presented as a solution in section 3.3. The

crucial differences between Pyhop and IPyHOP are pointed out, and the modified

algorithm is summarized. In section 3.4 we describe a purely reactive HTN actor,

RAE-lite, that was derived from IPyHOP’s HTN refinement algorithm and RAE’s

style of task refinement and execution. Finally, in section 3.5 we describe ways of

integrating an HTN planner with an actor. We describe the Run-Lazy-Lookahead

algorithm and its use in deliberative HTN acting. And then, based on the concepts

developed so far, we present the Run-Lazy-Refineahead algorithm for deliberative

HTN acting. We conclude this chapter by performing some analytical comparisons

between Run-Lazy-Lookahead and Run-Lazy-Refineahead for deliberative HTN act-

ing.

13

3.1 HTN Planning Formulation

We follow the HTN formulation as described in [1, Chapter 11]. However, we

reiterate some key concepts from their HTN formulation in this section for precise-

ness and completeness. Understanding these concepts is vital to understanding the

subsequent discussions in this thesis.

We borrow the definitions of terms, literals, operators, actions, and plans from

classical planning. The plan is usually represented as the symbol π throughout

this text. The definition of the prediction function γ(s, a), which tells the result of

applying an action a to a state s, is also the same as in classical planning. However,

the language also includes tasks, methods, and task networks used in defining a

planning problem and its solutions.

One new kind of symbol is a task symbol. Every operator symbol is also a

task symbol, and there are some additional task symbols called non-primitive task

symbols. A task is an expression of the form t(r1, ..., rk) such that t is a task symbol,

and r1, ..., rk are terms. If t is an operator symbol, then the task is called a primitive

task ; otherwise, the task is called a non-primitive task. In classical planning, a literal

is ground if it contains no variables, and unground otherwise. Therefore, a task is

ground if all of the terms are ground; otherwise, it is unground. Ground primitive

tasks are accomplished by using an action.

An action a is a 3-tuple

a = (name(a), precond(a), effects(a))

14

which accomplishes a ground primitive task t in a state s if name(a) = t and a is

applicable to s. The state should satisfy the precond(a) before the action is executed

and the action modifies the state so that it satisfies the effects(a) after its execution.

A task network is a pair

w = (U,C)

where U is a set of task nodes and C is a set of constraints. Each constraint in C

specifies a requirement that must be satisfied by every plan that is a solution to a

planning problem.

An HTN method is a 4-tuple

m = (name(m), task(m), subtasks(m), constr(m))

in which the elements are described as follows.

• name(m) is an expression of the form n(x1, ..., xk), where n is a unique method

symbol (i.e., no two methods in the planning domain can have the same

method symbol), and x1, ..., xk are all of the variable symbols that occur any-

where in m.

• task(m) is a non-primitive task.

• (subtasks(m), constr(m)) is a task network.

A task can have multiple methods where each method defines a possible way of

refining that task.

Figure 3.2 visualizes the above formulated representation of a task network.

15

t1(r1, ..., r_k)

m1_t1(r1, ..., r_k)

preconditions

t2(r_i, ..., r_j)

Representation of a non-primitive task
node t1.

tk(r_m, ..., r_n)

Representation of the first method m1_t1
applicable to the task t1.

Preconditions that must be satisfied for
refinement of the task using m1_t1.

Subtasks t2, ..., tk that are refined from the
parent task t1.

Representation of a
primitive task node tk.

(a)

m1_t1

m3_t2

m2_t5

m1_t3

o2 o3o1

o4 o5Compressed representation of a task network used
for representing larger task networks.

(b)

Figure 3.1: Task network visualizations: (a) Visualization of a task, method, precon-
ditions, sub-tasks, and operators. (b) Compressed visualization of a task network
used for visualizing larger networks.

16

1 Abstract-HTN(s, U, C,O,M):
2 if (U,C) can be shown to have no solution then
3 return failure
4 else if U is primitive then
5 if (U,C) has a solution then
6 nondeterministically let π be any such solution
7 return π

8 else
9 return failure

10 else
11 choose a primitive task node u ∈ U
12 active ← {m ∈M | task(m) is unifiable with tu}
13 if active 6= ∅ then
14 nondeterministically choose any m ∈ active
15 σ ← an mgu for m and tu that renames all variables of m
16 (U ′, C ′)← δ(σ(U,C), σ(u), σ(m))
17 (U ′, C ′)← apply-critic(U ′, C ′) \\ this line is optional
18 return Abstract-HTN(s, U ′, C ′, O,M)

19 else
20 return failure

Algorithm 1: The Abstract-HTN procedure. [1, Chapter 11]

Suppose that w = (U,C) is a task network, u ∈ U is a task node, tu is its task,

m is an instance of a method in M , and task(m) = tu. Then m decomposes u into

subtasks(m′), producing the task network

δ(w, u,m) = ((U − u) ∪ subtasks(m′), C ′ ∪ constr(m′)),

where C ′ is a modified version of C.

An HTN planning domain is a pair

D = (O,M)

And an HTN planning problem is a 4-tuple

P = (s0, w,O,M),

17

where s0 i sthe initial state, w is the inital task network, O is a set of operators, and

M is a set of HTN methods.

HTN planning procedures must both instantiate operators and decompose

tasks. Because there are several different ways to do both of these things, the

number of different possible HTN planning procedures is quite large. Abstract-

HTN shown in algorithm 1 is an abstract procedure that includes many (but not

necessarily all) of them.

3.2 HTN Planning in Pyhop

Pyhop is a domain-independent HTN planning system written in Python. Py-

hop plans for tasks in the same order that they will later be executed. This behavior

helps avoid some of the goal-interaction issues that arise in other HTN planners,

making the planning algorithm relatively simple. The planning algorithm is sound

and complete over a large class of problems. Since Pyhop knows the complete

world-state at each step of the planning process, it can use highly expressive domain

representations. The planning algorithm is like the one in SHOP, but with several

differences that make it easier to integrate it with ordinary computer programs:

• Pyhop represents states of the world using ordinary variable bindings, not

logical propositions. A state is just a Python object that contains the variable

bindings. For example, you might write s.loc[′v′] =′ d′ to say that vehicle v is

at location d in state s.

• To write HTN operators and methods for Pyhop, you do not need to learn a

18

specialized planning language. Instead, you write them as ordinary Python

functions. The current state (e.g., s in the above example) is passed to them

as an argument.

If the initial tasks to be planned are totally ordered, we can sometimes dispense

with the graph notation for the task network w = (U,C), and instead write w as

the sequence of tasks, namely, w = 〈t1, ..., tk〉 where t1 is the task in the first node of

U , t2 is the task in the second node of U , and so forth. Pyhop uses this convention

for defining its tasks. The HTN planning algorithm used by Pyhop is presented in

algorithm 2.

1 Pyhop(s, w, π,O,M):
2 if w is empty then
3 return π
4 t← first task in w
5 if t is primitive then
6 s′ ← t(s, r1, ..., rk)
7 if s′ is valid then
8 w′ ← w\t
9 π′ ← π ∪ t

10 solution ← Pyhop(s′, w′, π′, O,M)
11 if solution is valid then
12 return solution

13 if t is non-primitive then
14 foreach m ∈ {methods relevant to t} do
15 t′ ← m(s, r1, ..., rk)
16 if t′ is valid then
17 w′ ← t′ ∪ w\t
18 solution ← Pyhop(s, w′, π, O,M)
19 if solution is valid then
20 return solution

21 return failure

Algorithm 2: HTN Planning in Pyhop.

It can be observed that Pyhop uses recursion for task refinement. Writing

19

the algorithm as a recursive algorithm is intuitive, and it follows the Abstract-HTN

algorithm described in algorithm 1. The algorithm is also simple to implement, and

the recursion stack efficiently handles the refinement and backtracking during task

planning. However, in practice, this limits the level of control the user has over the

refinement process.

Also, tasks are represented as a sequence of tasks rather than a task net-

work, and the generated planning solution π is a sequence of primitive tasks. Even

though the recursion stack of the algorithm implicitly represents the task network,

explicit representation as an acyclic digraph is not available to the user. Thus the

hierarchical representation of the underlying refined task network is lost to the user.

3.3 HTN Planning in IPyHOP

IPyHOP is very similar to Pyhop with two key differences:

• IPyHOP uses an iterative tree traversal/generation routine for task refinement.

However, writing the HTN planning algorithm as an iterative algorithm is more

complicated and less intuitive than writing it as a recursive algorithm. We also

need to define the refinement and backtracking as tree traversal algorithms

explicitly. However, it provides immense control to the user over how the

algorithm executes the refinement process.

• Even though the tasks are totally ordered, they are represented as a task

network rather than a sequence of tasks. The task network is represented as

an acyclic digraph as initially suggested in the HTN planner formulation in

20

section 3.1. This representation also means that the plans are represented as

a solution tree, a refined task network, rather than a sequence of primitive

tasks.

Deriving from the formulation stated in section 3.1, let u represent a grounded

task node. Then,

• task(u) defines the grounded task t = t(r1, ..., rk) corresponding to u.

• refined(u) ∈ {true, false} represents if the node has been refined.

• operator(u) represents the operator o ∈ O that is relevant to task t if the task

was primitive.

• visited(u) ∈ {true, false} represents if the node has been visited.

• state(u) represents the state when the node was first visited.

• methods(u) represents the methods applicable to the task t that haven’t been

used for refinement of u, given that the task is non-primitive.

The HTN planning algorithm used by IPyHOP is presented in algorithm 3.

backtrack(w, u) is a subroutine that modifies the task network given that refinement

of node u failed. After backtracking, the non-primitive task node u′, the node refined

before the current task node u, is again marked for refinement. The backtracking

algorithm is described in algorithm 4. add nodes(u, t′) adds the sub-tasks t′ as nodes

to the refined node u.

21

1 IPyHOP(s, w,O,M):
2 p← root(w)
3 while true do
4 u← first unrefined node in BFS Successors(p)
5 if u = ∅ then
6 if p = root(w) then
7 break
8 else
9 p← parent(p)

10 continue

11 t← task(u)
12 if t is primitive then
13 o← operator(u) \\here o ∈ O
14 s′ ← o(s, r1, ..., rk)
15 if s′ is valid then
16 s← s′

17 refined(u)← true

18 else
19 w, u← backtrack(w, u)
20 p← parent(u)

21 if t is non-primitive then
22 if visited(u) then
23 s← state(u)
24 else
25 visited(u)← true
26 state(u)← s

27 foreach m ∈ methods(u) where m ∈M do
28 t′ ← m(s, r1, ..., rk)
29 methods(u)← methods(u)\m
30 if t′is valid then
31 refined(u)← true
32 add nodes(u, t′)
33 p← u
34 break;

35 if not refined(u) then
36 w, u← backtrack(w, u)
37 p← parent(u)

38 return w

Algorithm 3: HTN Planning in IPyHOP.

22

1 backtrack(w, u):
2 p← parent(u)
3 Wp ← Preorder DFS(p)
4 foreach v ∈ reversed(Wp) do
5 refined(v)← false
6 if v is non-primitive then
7 Wv ← descendants(v)
8 w ← w\Wv

9 return w, v

10 w ← {root(w)}
11 return w, root(w)

Algorithm 4: IPyHOP Backtracking.

3.4 RAE-lite - A purely reactive HTN Actor

RAE-lite is a purely reactive HTN actor that takes its inspiration from RAE [2,

Chapter 3] and IPyHOP. RAE uses a library of methods M to address new tasks the

actor has to perform and new events it has to react to. The input to RAE consists

of (i) a set of facts reflecting the current state of the world ξ , (ii) a set of tasks to

be performed, and (iii) a set of events corresponding to exogenous occurrences to

which the actor may have to react. These three sets change continually. Tasks come

from task definition sources, for example, a planner or a user. Events come from the

execution platform, for example, through a sensing and event recognition system.

Facts come either from the execution platform, as updates of the perceived state of

the world, or from RAE, as updates of its reasoning state. RAE is a well-defined

acting algorithm capable of handling the refinement of multiple tasks at the same

time. However, this makes RAE quite challenging to implement.

In section 3.3 we discussed an iterative graph traversal based algorithm for

23

Actor

Opearational Models

RAE

Execution Platform

StateActions/Commands Events

Environment

Actuation Sensing

Planner /
UserTasks

(a)

Actor

Limited - Operational
Models

RAE-lite

Execution Platform

StateActions/Commands Events

Environment

Actuation Sensing

Planner /
UserTasks

(b)

Figure 3.2: Actor architectures: (a) Interaction of RAE with execution platform.
(b) Interaction of RAE-lite with execution platform.

HTN planning. In this section, we will discuss an iterative graph traversal-based

algorithm for HTN acting. RAE’s task methods use a hierarchical task-oriented op-

erational representation with an expressive, general-purpose language offering rich

control structures for closed-loop online decision-making. RAE-lite, on the other

hand, uses task methods similar to the ones used in HTN planners for task refine-

ment of non-primitive tasks. You are allowed to have any general-purpose code in

these methods; however, the task refinement function of these methods follows that

of HTN methods. Furthermore, like RAE, RAE-lite does not use descriptive models

for operators. Operators can be any general-purpose code or a command to the

execution platform. The interaction between RAE and execution platform is illus-

trated in figure 3.2(a). The interaction between RAE-lite and execution platform is

illustrated in figure 3.2(b).

The HTN acting algorithm used by RAE-lite is presented in algorithm 5.

24

1 RAE-lite(s, w,M):
2 p← root(w)
3 while true do
4 u← first unrefined node in BFS Successors(p)
5 if u = ∅ then
6 if p = root(w) then
7 break
8 else
9 p← parent(p)

10 continue

11 t← task(u)
12 if t is primitive then
13 send-request-to-execution-platform(request-type, w, u)
14 {s, w, status, events} ← execution-platform-response()
15 refined(u) ← true
16 handle-events(events)
17 if status = failure then
18 w, u← retry-parent(w, u)
19 p← parent(u)

20 if t is non-primitive then
21 foreach m ∈ methods(u) where m ∈M do
22 {s, t′} ← m(s, r1, ..., rk)
23 methods(u)← methods(u)\m
24 if t′ is valid then
25 refined(u)← true
26 add nodes(u, t′)
27 p← u
28 break;

29 if not refined(u) then
30 w, u← retry-parent(w, u)
31 p← parent(u)

32 return w

Algorithm 5: HTN Acting in RAE-lite.

1 retry-parent(w, u):
2 p← parent(u)
3 refined(p)← false
4 Wp ← descendants(p)
5 refined(Wp)← invalid
6 return w, p

Algorithm 6: RAE-lite retry-parent algorithm.

25

retry-parent(w, u) is a subroutine that modifies the pointer to the current task in

the task network given that the execution of node u failed. After retry-parent, the

non-primitive task node u′, the node which is the parent of the current task node u,

is again marked for refinement. The retry-parent algorithm is described in algorithm

6. add nodes(u, t′) adds the sub-tasks t′ as nodes to the refined node u.

3.5 Integrating IPyHOP with an Actor

As explained in section 2.3, a popular way of integrating a planner and an actor

is by using algorithms like Run-Lazy-Lookahead. In sub-section 3.5.1 we describe

the Run-Lazy-Lookahead algorithm and some of its features. We explain its use in

deliberative HTN acting and point to some of its limitations. In subsection 3.5.2

we describe the Run-Lazy-Refineahead algorithm for deliberative HTN acting. We

also provide an analytic comparison between Run-Lazy-Lookahead and Run-Lazy-

Refineahead for deliberative HTN acting.

3.5.1 Run-Lazy-Lookahead

Algorithm 7 presents the Run-Lazy-Lookahead algorithm as presented in [2,

Chapter 2]. (Σ, s, g) is a planning problem, and Lookahead is an online planning

algorithm.

Run-Lazy-Lookahead executes each plan π as far as possible, calling Looka-

head again only when π ends or a plan simulator says that π will no longer work

properly. This way of execution can help in environments where it is computation-

26

1 Run-Lazy-Lookahead(Σ, g):
2 s← abstraction of observed state ξ
3 while s 6|= g do
4 π ← Lookahead(Σ, s, g)
5 if π = failure then
6 return failure
7 while π 6= 〈〉 and s 6|= g and Simulate(Σ, s, g, π) 6= failure do
8 a← pop-first-action(π)
9 perform(a)

10 s← abstration of observed state ξ

Algorithm 7: Run-Lazy-Lookahead [2, Chapter 2]

ally expensive to call Lookahead, and the actions in π are likely to produce the

predicted outcomes. Simulate is the plan simulator, which may use the planner’s

prediction function γ or may do a more detailed computation (e.g., a physics-based

simulation, a Monte-Carlo simulation, et cetera.) that would be too time-consuming

for the planner to use. Simulate should return failure if its simulation indicates that

π will not work correctly. For example, if it finds that an action in π will have an

unsatisfied precondition, or if the simulation indicates that the π will not achieve

the goal g when it is supposed to.

We can use IPyHOP as the Lookahead planner in Run-Lazy-Lookahead to

integrate HTN planning and acting. However, this repeated planning and acting

procedure does not work well with HTN planners. The problem can be visualized

with the following abstract example.

Example 1. Suppose we want to plan for a task network consisting of two tasks

t1 and t2. Let there be two methods m1 t1 and m2 t1 that are applicable to t1.

And two methods m1 t2 and m2 t2 that are applicable to t2. Let primitive tasks

27

m1_t1

o2o1

m2_t1

o5o3

m2_t2

o8o7

o4

m1_t2

o6o4 o5

Figure 3.3: Refinement of task t1 using m1 t1 and m2 t1. And refinement of task
t2 using m1 t2 and m2 t2. (Example 1).

m1_t1

o2o1

m1_t2

o6o4 o5

ROOT

(a)

m1_t1

o2o1

ROOT

m2_t2

o8o7

(b)

Figure 3.4: Task network visualizations: (a) After first planning attempt. (b) Re-
planning after failure in execution of o6.

28

be represented in syntax o〈i〉, ex. o1, o2 et cetera. Let m1 t1 refine t1 into o1 and

o2. Let m2 t1 refine t1 into o3, o4, and o5. Let m1 t2 refine t2 into o4, o5 and o6.

And let m2 t2 refine t2 into o7 and o8. Also, for the sake of this example assume

that all tasks, methods, and operators defined here are grounded. These individual

refinements can be visualized in figure 3.3. In this example, for the sake of simplicity,

lets assume that all the methods and operators have no pre-conditions, and all are

applicable anytime in the planning process. Also, assume that the HTN planner

always prioritizes refinement of tasks using the first method over second.

The solution tree that IPyHOP will return is visualized by figure 3.4(a). This

solution implies that the plan represented in the form of a primitive task sequence

will be π = 〈o1, o2, o4, o5, o6〉. The primitive task sequence is found by performing

a Depth First Search (DFS) tree traversal on the solution tree. Let us assume that

while executing this plan, o6 non-deterministically fails. We update our model of

o6 ∈ O (if required) used by the planner and perform re-planning again. The new

solution tree that IPyHOP will return is visualized by figure 3.4(b). The actor

will now execute the plan π = 〈o1, o2, o7, o8〉. This means that the action sequence

executed by our actor is α = 〈o1, o2, o4, o5, o6, o1, o2, o7, o8〉, when in fact it should

have been α = 〈o1, o2, o4, o5, o6, o7, o8〉 for the given scenario. This action sequence

was executed because we did re-planning for the completed task t1 along with the

failed task t2. �

Technically, it is possible to prevent weird executions like in example 1 from

happening by cleverly designing methods that consider failures or having some flags

29

in the state that gets modified. However, as the complexity of the task network

increases, this approach quickly becomes intractable. One of the most significant

limitations of HTN planning is the enormous domain engineering effort required

in writing HTN methods. Domain authoring is especially hard because the HTN

formalism requires users to provide methods to cover every possible scenario that

the agent could encounter. If the HTN planner finds itself in a situation the user

had not anticipated, it will behave unexpectedly or fail without returning a solu-

tion. Moreover, there are many scenarios where it is impossible to account for such

occurrences while authoring the domain.

3.5.2 Run-Lazy-Refineahead

The problems explained in sub-section 3.5.1 mainly happen because of the

incompatibilities between the definition of the Lookahead planner and the definition

of an HTN planner. The signature of the Lookahead planner is (Σ, s, g), whereas

the signature of HTN planners is (s, w,O,M). Here Σ is the planning domain,

which is modeled by {O,M} for an HTN planner. However, the goal g and task

network w are notably different. The goal for a planner might stay unchanged as

the plan is executed. However, the task network is constantly modified. Replacing

the Lookahead planner with IPyHOP leads to repeated planning for some of the

completed tasks from the original task network w in a new state s′.

By visualizing the planning problem as a graph, however, the solution seems

apparent. We compute the modified task network based on the location of the

30

failure in the task network. Then modify the task network again using the backtrack

feature of the planner. And then resume the planning process. During re-planning,

the planner marks the nodes that were refined because of this re-planning process.

The task network described in example 1 is simplistic, and finding the modified

task network is trivial. We compute the parent task node of the failed primitive task

node and only re-plan for the computed task node. However, for a more complicated

task network, this will not work. We will have to come up with a more sophisticated

algorithm. Let us understand this with another example.

Example 2. We want to plan for a task network with tasks t1, t2, and t3. Let us

assume that the planner generated the solution task network represented in figure

3.5(a). We start implementing the primitive tasks in this solution tree as encoun-

tered in a DFS tree traversal from the root node. The primitive task sequence or the

plan is π = 〈o1, o2, ..., o10, o12〉. However, while executing this plan, assume that

o7 non-deterministically fails. We need to find the new task network our planner

should use for re-planning. Unlike the previous example, replanning just for the

parent task node t4 of the failed primitive task node o7 is incorrect because the

failure in executing o7 means that o11’s preconditions will not be satisfied later in

the plan. Thus, additional replanning will be needed in order to prevent the entire

plan from failing.

In the above explained scenario, we should modify the solution task network by

removing refinements of all the tasks that come after the failed node o7 in the Pre-

ordered DFS traversal. Alternatively, this could be done more efficiently using the

31

ROOT

m1_t1

o9

m1_t2

m2_t4 m1_t5 m1_t5

o8

m1_t4

m1_t6o3 o4o1 o2

o6o5

m2_t3

o10

o7's effects are o11's preconditions

m2_t4

o11 o12o7

(a)

ROOT

m1_t1 m1_t2

m2_t4 m1_t5 t5m1_t4

m1_t6o3 o4o1 o2

o6o5

t3

o7 Unrefined Nodes

(b)

ROOT

m1_t1 m1_t2

m2_t4 m1_t5 t5m1_t4

t6o3 o4o1 o2

t3

o7

Unrefined Nodes

(c)

Figure 3.5: (a) Solution task network after initial planning. (b) Modified task
network after failure in execution of o7. (c) Modified task network after backtracking
from o7 on the modified task network in (b). (Example2).

32

algorithm Un-Refine-Post as described in algorithm 8. At this point, the modified

task network should look like figure 3.5(b). Now, we again modify this task network

by backtracking on the failed node o7. At this point, the modified task network

should look like Figure 3.5(c). We update our model of o7 ∈ O (if required) used

by the planner and perform re-planning again. The planner marks the nodes it

refines in this re-planning problem and returns another solution task network for us

to execute.

Note that during execution, we only execute the primitive tasks that the plan-

ner marked during re-planning. We compute the marked primitive tasks in this

solution tree by performing a DFS tree traversal from the root node. �

1 Un-Refine-Post(w, u):
2 while true do
3 p← parent(u)
4 foreach v ∈ BFS Successors(p) s.t. v after u do
5 refined(v)← false
6 if v is non-primitive then
7 Wv ← descendants(v)
8 w ← w\Wv

9 u← p
10 if u = root(w) then
11 break

12 return w

Algorithm 8: Un-Refine-Post. Algorithm used to modify a task network w
after failure at u.

This way of repeated planning and acting leads to the formulation of the Run-

Lazy-Refineahead algorithm described in algorithm 9.

Run-Lazy-Refineahead is a repeated planning and acting algorithm for inte-

grating HTN planning and acting. Here, Refineahead is any online HTN planner

33

1 Run-Lazy-Refineahead(Σ, w):
2 s← abstraction of observed state ξ
3 while true do
4 w ← Refineahead(Σ, s, w)
5 if w = failure then
6 return failure
7 π ← marked primitive tasks in DFS(w)
8 a← first action in π
9 while π 6= 〈〉 and Simulate(Σ, s, π) 6= failure do

10 a← pop-first-action(π)
11 perform(a)
12 s← abstration of observed state ξ

13 if π 6= 〈〉 then
14 w ← Un-Refine-Post(w, a)
15 w, a← Backtrack(w, a)

16 else
17 break

Algorithm 9: Run-Lazy-Refineahead.

that provides the solution as a refined task network and provides control over its

backtracking feature.

Run-Lazy-Refineahead executes each plan π as far as possible, calling Refinea-

head again only when π ends or a plan simulator says that π will no longer work

properly. This way of execution can help in environments where it is computation-

ally expensive to call Refineahead, and the actions in π are likely to produce the

predicted outcomes. Simulate is the plan simulator, which may use the planner’s

prediction function γ or may do a more detailed computation (e.g., a physics-based

simulation, a Monte-Carlo simulation, et cetera.) that would be too time-consuming

for the planner to use. Simulate should return failure if its simulation indicates that

π will not work correctly. For example, if it finds that an action in π will have an

unsatisfied precondition.

34

On failure in executing the plan, the tasks refined after the failed task a in the

task network w are un-refined using the Un-Refine-Post algorithm 8, and backtrack-

ing is performed using the Backtrack algorithm of an HTN planner, ex. algorithm

4. The resulting task network obtained after these modifications is re-used for the

next re-planning process.

Intuitively, deliberative HTN acting implemented in Run-Lazy-Refineahead

is more efficient than in Run-Lazy-Lookahead. Since for every re-planning, the

Refineahead needs to re-plan only for a subset of the task network, compared to the

entire task network for Lookahead, the planning time on average will be lower. Also,

since the actions corresponding to the tasks that have already been executed are

no longer planned for during re-planning, repetition of already executed tasks will

be minimized. Thus, Run-Lazy-Refineahead will lead to executing action sequences

with an overall cost less than that by Run-Lazy-Lookahead.

35

Chapter 4: Experimental Evaluation

This chapter describes the experimental setup and evaluation of the two de-

liberative HTN acting algorithms: (i) Run-Lazy-Lookahead and (ii) Run-Lazy-

Refineahead. We use IPyHOP as the HTN planner for both of these approaches.

In section 4.1 we explain the domain we used to run our experiments. In section

4.2 we explain the design and setup of experiments and explain the metrics we use

to compare the two approaches. In section 4.3 we provide and explain the results

obtained with our experiment, and in section 4.4 we provide the summary of this

chapter.

4.1 RoboSub Domain

Every year RoboNation, Inc.1 hosts the RoboSub challenge2 3 to provide var-

ious teams consisting of high school, undergraduate, and graduate students with a

platform to demonstrate their engineering acumen in designing Autonomous Under-

water Vehicles (AUVs). RoboSub is an international student competition. Student

teams from around the world design and build Robotic submarines, or in other

1RoboNation official website: https://robonation.org
2RoboNation’s page on RoboSub: https://robonation.org/programs/robosub
3RoboSub official website: https://robosub.org

36

https://robonation.org
https://robonation.org/programs/robosub
https://robosub.org

S

l0

l1

l2

l3

l4

l5

Gate

Cruci�x

Garlic

Marked path

Co�n

D Dracula

Acoustic Pinger

Surface Zone

Start Zone

Task locationsAUV

Vampires

Figure 4.1: An illustration of a sample planning problem for the RoboSub 2019
competition.

words, AUVs. The behaviors demonstrated by these experimental AUVs mimics

those of real-world systems currently deployed around the world for underwater

exploration, seafloor mapping, and sonar localization, amongst many others. The

fundamental goal of the RoboSub competition is for an AUV to demonstrate its

autonomy by completing underwater tasks, with a new theme each year. Robotics

@ Maryland4 is a student-run robotics team at the University of Maryland, Col-

lege Park that participates in RoboSub competition every year. The domain used

for these experiments is a modified version of the domain we used for designing

the autonomous planning functionality of Qubo5, our entry to the RoboSub 20196

competition.

The theme of the RoboSub 2019 competition was based on an imaginary un-

4Robotics @ Maryland official website: http://ram.umd.edu
5Webpage describing Qubo AUV: http://ram.umd.edu/html/qubo.html
6Details about RoboSub 2019 competition: https://robosub.org/programs/2019

37

http://ram.umd.edu
http://ram.umd.edu/html/qubo.html
https://robosub.org/programs/2019

derwater realm where our AUV had to slay Vampires and Dracula. Figure 4.1

illustrates a sample planning problem for the competition. The fundamental goal

of the mission was for an AUV to demonstrate its autonomy by interacting with

various vampires. Orange guide markers were placed to help direct the vehicle to

the beginning tasks, and two acoustic pingers were set up to guide the AUV to

the remaining two tasks. Along the way, garlic markers and crucifix markers were

placed, which the vehicle could pick up and use in other locations. The AUVs had

to complete the following tasks:

• Enter the Undead Realm (Gate): The AUV had to pass a validation gate. The

validation gate had a separator that separated it into 40% and 60% sections.

Higher points were awarded for AUVs that crossed the gate from the 40%

section compared to those that crossed it from the 60% section.

• Pickup Garlic and Crucifix (Markers): Two kinds of objects were placed

throughout the course. (i) garlic markers and (ii) crucifix markers. The AUVs

were supposed to pick them up for use in later tasks of the competition.

• Recognize and Trace Path (Marked Paths): Orange path markers were placed

to direct the AUVs to different task zones. The AUVs were expected to trace

the marked paths and use them to find the next task zones.

• Slay Vampires (Touch buoys): There were two “buoys” that were moored to

the floor at two places in the course. One buoy was two-sided with images of a

Jiangshi on both sides. In China, a Jiangshi (hopping vampire) is a deceased

loved one brought back home by a sorcerer. Furthermore, the other buoy was

38

three-sided with images of Aswang, Draugr, and Vetalas. The Aswang are

creatures from the Philippines, Malaysia, Cambodia, and Indonesia that take

a form of an attractive girl by the day and develop wings and a long, hollow,

thread-like tongue by night. The Draugr is an Icelandic parasitic ghost who

roams the earth and harasses the living to drive them mad or even kill them.

In India, the Vetalas are undead ghoul-like beings that inhabit corpses, hang

upside down on trees, found on cremation ground and cemeteries. The task

was to touch these buoys with the AUV. Higher points were allotted if the

AUV touched the side of the buoy facing away from the gate.

• Drop Garlic (Drop markers): For this task, the AUVs were supposed to drop

the earlier picked garlic markers into a bin. The bin is initially closed, and

the task of opening the bin and dropping the garlic markers in an opened bin

yielded more points than dropping the garlic markers in closed bins.

• Stake Through Heart (Manipulation/torpedoes): To reach the location zone

of this task, the AUVs first had to sense and localize an acoustic pinger. The

task was inspired by the lore of the Romanian Count Dracula. Dracula can

be killed by driving a wooden stake through the heart and beheading. To

complete this task with the maximum points, the AUV had to first decapitate

Dracula by pulling a lever and then shoot two torpedoes through holes on the

task board.

• Expose to Sunlight (Retrieve object(s), surface, move/release objects(s)): The

final task in the competition was to surface the AUV with a crucifix marker at

39

a surface zone. The surface zone could be found by localizing another acoustic

pinger placed in the course.

Completion of some of these tasks was compulsory, while others could be

skipped. A planning domain was written for the refinement of these tasks. The

planning domain consisted of seventeen primitive task operators and twenty-one

task refinement methods for refining ten non-primitive tasks.

4.2 Experimental Setup

We wanted to statistically analyze the performance of Run-Lazy-Lookahead

and Run-Lazy-Refineahead approaches for deliberative HTN acting for the above-

defined tasks. Let X denote the set containing all possible states. Based on our

calculations, the state space containes approximately 1.3318E + 19 unique states,

i.e. ‖X‖ = 1.3318E + 19. We calculate our state space based on possible values of

each state variable in the state. For the RoboSub competition, the initial location

of the robot was fixed, and a few other constraints were specified. However, the

location of various objects in the planning problem was varied. Let I denote the

set containing all possible values of the initial states, where I ⊂ X. Based on our

calculations, approximately 2.0213E+08 unique states could be the initial state, i.e.

‖I‖ = 2.0213E+08. We wanted to solve the planning problem for the competition’s

tasks, given that our initial state is randomly sampled from the initial state space

I. Let the sampled set be denoted as S, where S ⊂ I. We sampled 1E + 4 initial

states randomly and uniformly from I, i.e. ‖S‖ = 1E + 4.

40

A state s, where s ∈ S, is chosen as the starting state for the planning problem,

p. The initial task network always contains a single task named competition-task

that needs to be refined to complete all the required tasks based on the competition

deliverable. The planning problem is solved using the IPyHOP planner, and the

resulting plan is executed by a simple actor communicating with an execution plat-

form. The execution environment is non-deterministic, which leads to occasional

failures in the execution of actions. The repeated planning and acting is done using

Run-Lazy-Lookahead and Run-Lazy-Refineahead algorithms. The complete refine-

ment and execution for one such planning problem is termed as a test case, t. A test

case ti corresponds to the ith planning problem with the initial state si, where si is

the ith state in S. The test case results are stored, and we repeat this deliberative

HTN acting process for all the states in S. The execution of all the test cases ti is

known as an experiment, e, where e = 〈t1, t2, ..., tj〉, where j = ‖S‖.

Since the execution environment is non-deterministic, multiple test case exe-

cutions lead to different results for the calculated metrics. This difference in metrics

means that the results obtained from an experiment e1 will differ from the results

obtained from another experiment e2. To have a reasonable estimate of our metrics,

we repeat the experiment 11 times, i.e. E = 〈e1, e2, ..., e11〉.

For our comparison, we calculate the following five metrics:

• Total nodes expanded: This metric calculates the total number of task nodes

expanded/refined by the planner in the given test case.

• Total actions planned: This metric calculates the total number of primitive

41

task nodes processed by the planner in the given test case. The primitive task

nodes are the leaf nodes of the solution task network. This metric is a measure

of the total plan length for a test case.

• Total iterations taken: This metric calculates the total number of iterations

taken by the planner for a given test case. Calculating iterations provides a

good estimate of the planner’s total planning time for a test case.

• Total action cost: This measures the total cost of an action sequence for a

given test case. Execution of smaller action sequences will generally lead to

lower total action costs.

• Final state reward: This measures the reward obtained based on the final state

of the robot in a test case. This is a good indicator of how well the competition

task was completed.

4.3 Results

The raw data collected draw in each experiment e ∈ E described in section

4.2 was accumulated into a single dataset Draw, where Draw = 〈d1, d2, ..., d11〉. Draw

was post-processed to calculate the required metrics and the results were stored in

a single numpy array representing the results dataset Dresults. Let the size of the

dataset Dresults be [e × a × t ×m]. Here e = 11 is the number of experiments per-

formed, a = 2 is the number of deliberative HTN acting algorithms being compared,

t = 1E + 4 is the number of test cases solved, and m = 5 is the number of metrics

42

evaluated.

The Dresults dataset was processed further by performing a reduce mean op-

eration across the zeroth axis of the dataset. Thus the dataset Dexp mean of size

[a × t × m] was generated. Each element in the dataset Dexp mean represents the

mean value of a metric for a given test case across experiments. Since the value of

a metric for a given test case varies across experiments due to the non-determinism

of the execution environment, taking the mean across experiments gives us a more

reliable estimate of that metric for a given test case. The metrics calculated in the

dataset Dexp mean are illustrated in figures 4.2(a), 4.3(a), 4.4(a), 4.5(a), and 4.6(a).

Another form of post-processing was done on Draw to generate the Dequivalent

dataset. As stated earlier, the most significant reason for variance in values of

a calculated metric for a given test case across experiments is due to the non-

determinism of the execution environment. This non-determinism causes the same

test case to have a varying number and location of failures across experiments. For

example, for a test case ti in experiment ej, f(ti, ej) failures occurred during the

deliberative acting process, and for the same test case ti in a different experiment

ek, f(ti, ek) failures occurred. Here f(ti, ej) might or might not be equal to f(ti, ek).

This makes the calculation of relation of metrics for different algorithms difficult. To

alleviate this problem, we generate a modified dataset Dequivalent of size [a× t×m],

where the data corresponding to each test case ti for both the algorithms featured the

same number of failures. The relation of metrics calculated for different algorithms

in dataset Dequivalent are illustrated in figures 4.2(b), 4.3(b), 4.4(b), 4.5(b), and

4.6(b).

43

Note that the metrics represented by the Dequivalent dataset are not very ac-

curate since they only use a single data point for a metric of a given test case.

Comparatively, the metric measurements from Dexp mean are computed by perform-

ing a mean operation across 11 values for each metric in a test case. To improve the

accuracy of the metric measurements by Dequivalent dataset, we will need to perform

more experiments such that multiple data points are available for each metric in the

dataset.

Figure 4.2(a) shows the distribution of the metric - Total nodes expanded,

across the different test cases as a histogram plot. The relation of this metric for

the two deliberative acting algorithms is visualized in figure 4.2(b) as a scatter plot.

Figure 4.3(a) shows the distribution of the metric - Total actions planned,

across the different test cases as a histogram plot. The relation of this metric for

the two deliberative acting algorithms is visualized in figure 4.3(b) as a scatter plot.

Figure 4.4(a) shows the distribution of the metric - Total iterations taken,

across the different test cases as a histogram plot. The relation of this metric for

the two deliberative acting algorithms is visualized in figure 4.4(b) as a scatter plot.

Figure 4.5(a) shows the distribution of the metric - Total action cost, across

the different test cases as a histogram plot. The relation of this metric for the two

deliberative acting algorithms is visualized in figure 4.5(b) as a scatter plot.

Figure 4.6(a) shows the distribution of the metric - Final state reward, across

the different test cases as a histogram plot. The relation of this metric for the two

deliberative acting algorithms is visualized in figure 4.5(b) as a scatter plot.

The numerical values corresponding to these results are presented in tables 4.1

44

150 175 200 225 250 275 300 325
Total nodes expanded

0

200

400

600

800

1000

Nu
m

be
r o

f t
es

t c
as

es

run_lazy_lookahead
run_lazy_refineahead

(a)

50 100 150 200 250 300 350 400 450
Total nodes expanded - run_lazy_lookahead

50

100

150

200

250

300

350

400

450

To
ta

l n
od

es
 e

xp
an

de
d

- r
un

_la
zy

_r
ef

in
ea

he
ad diagonal

best_fit_line
data_points

(b)

Figure 4.2: Results of metric - Total nodes expanded (a) Distribution visualized
using histograms (b) Relation visualized by fitting a line on the scatter plot.

45

80 100 120 140 160 180
Total actions planned

0

200

400

600

800

1000

Nu
m

be
r o

f t
es

t c
as

es

run_lazy_lookahead
run_lazy_refineahead

(a)

50 75 100 125 150 175 200 225
Total actions planned - run_lazy_lookahead

50

75

100

125

150

175

200

225

To
ta

l a
ct

io
ns

 p
la

nn
ed

 -
ru

n_
la

zy
_r

ef
in

ea
he

ad diagonal
best_fit_line
data_points

(b)

Figure 4.3: Results of metric - Total actions planned (a) Distribution visualized
using histograms (b) Relation visualized by fitting a line on the scatter plot.

46

200 250 300 350 400 450 500
Total iterations taken

0

200

400

600

800

1000

Nu
m

be
r o

f t
es

t c
as

es

run_lazy_lookahead
run_lazy_refineahead

(a)

100 200 300 400 500 600 700
Total iterations taken - run_lazy_lookahead

100

200

300

400

500

600

700

To
ta

l i
te

ra
tio

ns
 ta

ke
n

- r
un

_la
zy

_r
ef

in
ea

he
ad

diagonal
best_fit_line
data_points

(b)

Figure 4.4: Results of metric - Total iterations taken (a) Distribution visualized
using histograms (b) Relation visualized by fitting a line on the scatter plot.

47

120 140 160 180 200 220
Total action cost

0

200

400

600

800

1000

Nu
m

be
r o

f t
es

t c
as

es

run_lazy_lookahead
run_lazy_refineahead

(a)

100 125 150 175 200 225 250 275
Total action cost - run_lazy_lookahead

100

125

150

175

200

225

250

275

To
ta

l a
ct

io
n

co
st

 -
ru

n_
la

zy
_r

ef
in

ea
he

ad

diagonal
best_fit_line
data_points

(b)

Figure 4.5: Results of metric - Total action cost (a) Distribution visualized using
histograms (b) Relation visualized by fitting a line on the scatter plot.

48

65 70 75 80 85
Final state reward

0

200

400

600

800

1000

Nu
m

be
r o

f t
es

t c
as

es

run_lazy_lookahead
run_lazy_refineahead

(a)

50 60 70 80 90 100
Final state reward - run_lazy_lookahead

50

60

70

80

90

100

Fi
na

l s
ta

te
 re

wa
rd

 -
ru

n_
la

zy
_r

ef
in

ea
he

ad

diagonal
best_fit_line
data_points

(b)

Figure 4.6: Results of metric - Final state reward (a) Distribution visualized using
histograms (b) Relation visualized by fitting a line on the scatter plot.

49

Metric
Run-Lazy-Lookahead Run-Lazy-Refineahead
Mean SD Mean SD

Total nodes expanded 241.230 21.744 202.006 22.480
Total actions planned 125.509 11.715 115.546 12.716
Total iterations taken 364.470 34.178 290.592 32.639
Total action cost 165.928 16.002 115.478 1.339
Final State Reward 74.368 3.183 74.326 3.242

Table 4.1: Overview of results obtained using Dmean exp

Metric
Refineahead /

Lookahead Mean
Best-fit line

Slope Y-intercept

Total nodes expanded 0.827 0.685 36.813
Total actions planned 0.893 0.723 24.681
Total iterations taken 0.796 0.639 58.296
Total action cost 0.682 0.044 108.282
Final State Reward 1.049 0.805 14.540

Table 4.2: Overview of results obtained using Dequivalent

and 4.2. The columns in table 4.1 provide the numerical values for the mean and

standard deviation of corresponding metrics’ histograms. The columns in table 4.2

provide the numerical value of the ratio of metrics’ mean for the two algorithms and

provide the best-fit line parameters.

4.4 Summary

Based on the results presented in 4.3, we can say that the Run-Lazy-Refineahead

is a better algorithm for deliberative HTN acting compared to Run-Lazy-Lookahead.

Based on the values of metrics: Total nodes expanded, Total actions planned, and

Total iterations taken, we can state that the Run-Lazy-Refineahead leads to the

generation of shorter and easily solvable re-planning problems. Also, the average

time spent in planning during Run-Lazy-Refineahead is ≈ 80% of the average time

50

spent in planning during Run-Lazy-Lookahead. Based on the values of metrics:

Total action cost, we can state that the Run-Lazy-Refineahead leads to the exe-

cution of smaller and cheaper action sequences. The average cost of executing ac-

tion sequences generated from Run-Lazy-Refineahead is ≈ 70% of the average cost

of executing action sequences generated from Run-Lazy-Lookahead. All these im-

provements were realized without sacrificing the average final state reward obtained

based on the task execution.

There is also a hidden burden associated with using the Run-Lazy-Lookahead

algorithm not portrayed by our experiments. Authoring the domain for use in

the Run-Lazy-Lookahead algorithm requires you to account for numerous scenarios

where failures would lead to repeated tasks, getting stuck in infinite task loops,

getting stuck in non-recoverable states, et cetera. These problems can be addressed

by clever definitions of task methods and flags in the state. However, even after

a significant effort is put, it might not be possible to eliminate these undesirable

behaviors. In more modest domain model definitions like ours, this problem is not as

pronounced. However, as the domain models get more and more comprehensive, this

problem quickly worsens. In Run-Lazy-Refineahead, however, the planner always

resumes after backtracking on the node that caused the failure. Thus, repetition of

tasks and other unexpected behaviors are minimized.

For our experiments, every effort was made to make deliberative HTN acting

using Run-Lazy-Lookahead as efficient as possible. Optimizing the performance of

the Run-Lazy-Lookahead algorithm was our prime focus. The task methods, opera-

tors, and state definition was designed primarily for use in the Run-Lazy-Lookahead

51

algorithm. Then the same domain model and state definition were used for the Run-

Lazy-Refineahead algorithm. This reuse of domain leads to the planner performing

many unnecessary constraint checks during task refinement required for Run-Lazy-

Lookahead but are not required for Run-Lazy-Refineahead. The domain authoring

for use in Run-Lazy-Refineahead is much more straightforward and concise. If the

domain model were primarily designed for Run-Lazy-Refineahead, the results would

considerably shift in its favor. The metrics would remain the same for Run-Lazy-

Refineahead but significantly worsen for the Run-Lazy-Lookahead. However, even

though the calculated metrics would remain the same, the second execution would

be computationally faster than the first since simpler domain models are being used

for the task refinement process.

Hence we can comfortably state that Run-Lazy-Refineahead is a better alter-

native to Run-Lazy-Lookahead for deliberative HTN acting.

52

Chapter 5: Conclusion

In this thesis, we presented a novel set of algorithms for HTN planning, acting,

and integrated planning and acting.

The first main contribution of this thesis is an HTN planner, IPyHOP. IPy-

HOP is an iterative tree traversal-based HTN planning algorithm written in Python

that provides extensive control over its task network refinement. Since the algo-

rithm is iteration-based, the task network refinement can be paused, modified, and

resumed at the user’s discretion. This level of control makes it a great choice for

planning in scenarios where re-planning is required. Since IPyHOP uses the Python

programming language, authoring domain models does not require developers to

learn specialized programming languages. Instead, developers can write the task

methods as Python functions. Also, since it follows an object-oriented design, it

is effortless to integrate and debug it with other computer programs. IPyHOP

is envisioned to make HTN planning accessible to a much broader audience who

were earlier reluctant to adopt it for their planning problems due to a lack of HTN

planners in Python.

The second main contribution of this thesis is an HTN actor, RAE-lite. RAE-

lite is an iterative tree traversal-based HTN acting algorithm written in Python.

53

RAE-lite is purely reactive and is inspired by IPyHOP’s HTN refinement and RAE’s

task execution. It provides native support to HTN acting for domain models written

for IPyHOP and is an excellent alternative for problems where deliberation is not

required. At present, very few implementations of hierarchical actors are available in

Python. We expect RAE-lite to be useful to the vast robotics community developing

their robotic systems using Python. RAE-lite, along with IPyHOP, is also a natural

choice for systems that require a mixture of HTN planning and HTN acting.

Finally, the third main contribution of this thisis is a deliberative HTN actor,

Run-Lazy-Refineahead. Run-Lazy-Refineahead is a repeated planning and acting

algorithm specially designed for deliberative HTN acting. We proved it to be a better

alternative to Run-Lazy-Lookahead, another popular repeated planning and acting

algorithm, for deliberative HTN acting. Run-Lazy-Refineahead uses the hierarchical

nature of the refined task network generated by HTN planners like IPyHOP to

develop smaller and smaller task refinement problems as the execution proceeds. The

improvement in the overall execution performance can be beneficial in deliberative

HTN acting in fast-moving dynamic worlds like in games or in robotics scenarios.

We hope that the large community of roboticists and game developers who pro-

gram their systems in Python adopt IPyHOP, RAE-lite, and Run-Lazy-Refineahead

for HTN planning, acting, and integrated planning and acting.

54

5.1 Limitations and Future Work

In some aspects, HTN planning is quite controversial. The controversy lies

in its requirement for well-conceived and well-structured domain knowledge. Such

knowledge is likely to contain rich information and guidance on how to solve a plan-

ning problem, thus encoding more of the solution than was envisioned for classical

planning systems. This structured and rich knowledge gives a primary advantage to

HTN planners in terms of speed and scalability when applied to real-world problems

compared to their counterparts in the classical planning world. However, this also

makes their performance depend on the users’ definition of suitable domain-specific

task methods.

Some of the well-recognized inadequacies of HTN planning are:

• Enormous domain engineering effort in writing HTN methods: This is be-

cause the HTN formalism requires users to implement methods to cover every

possible scenario that the agent could encounter. If the HTN planner finds

itself in a state the user had not anticipated, it will misbehave or fail without

returning a solution.

• Brittleness in open and dynamic environments: The previous problem is in-

tensified in open, dynamic environments. Events outside of the agent’s control

can happen non-deterministically, leading to novel situations not anticipated

by the user. HTN planners are not well suited to work in open and dynamic

environments.

55

• Difficulty in designing domain-independent HTN planning heuristics: Heuris-

tics are crucial in guiding the algorithm quickly towards high-quality solutions.

Due to the lack of such heuristics, HTN planners are often entirely reliant on

the user-provided knowledge through the definition of methods in providing

the necessary guidance. Thus further increasing the burden on the user.

IPyHOP, being an HTN planner, also faces all these problems, and not much work

has been done to address them. We believe that they are the main areas for future

research in improving IPyHOP.

Hierarchical actors like RAE use operational representations, which can be

very useful in modeling the acting behavior of an agent. However, RAE-lite uses

limited operational representations, which forces it to perform task refinement simi-

lar to an HTN planner. On the one hand, RAE-lite’s use of extended HTN methods

allows seamless cross-compatibility and reuse of the defined domain model for HTN

planning and HTN acting; on the other hand, this means that RAE-lite’s methods

do not possess the expressiveness of operational models. Also, RAE-lite does not

allow parallel refinement and task execution the way RAE does. Moreover, unlike

RAE, external event handling is done sequentially and synchronously. Our work on

RAE-lite was started with the belief that we could design a hierarchical actor that

provides a subset of functionalities that RAE does while reducing the implemen-

tational complexity disproportionately. The subset of functionalities that we chose

to include for RAE-lite was primarily based on our needs. Thus we believe other

RAE-like algorithms can be devised that trade-off a different set of functionalities

56

to reduce the implementational complexity.

In some aspects, the integration of HTN planning and acting using Run-Lazy-

Refineahead that we proposed here can be interpreted as a simple HTN planner

guided acting. There are algorithms like SeRPE that directly integrate a planner’s

descriptive model into a hierarchical actor to select refinement methods. Whereas

others like [10,11] directly integrate planners that plan using operational representa-

tions with the actor RAE. Combining a hierarchical planner and an actor using this

strategy leads to much more efficient and tighter integration. We believe a similar

form of integration is also possible for HTN planners and HTN actors. An HTN

planner like IPyHOP could be directly integrated with an HTN actor like RAE-lite,

where the HTN actor would decide on the method it uses for task refinement based

on recommendation of the HTN planner.

For hierarchical acting and planning, there are two main ways to represent an

objective: tasks and goals. A task is an activity to be accomplished by an actor,

while a goal is a final state that should be reached. Depending on a domain’s

properties and requirements, users can choose between task-based and goal-based

approaches. Although not explained in this thesis, both IPyHOP and RAE-lite

have been extended to support hierarchical goal planning using Hierarchical Goal

Networks (HGN), taking inspiration from GNPyhop. However, all our assertions

on the benefits of Run-Lazy-Refineahead over Run-Lazy-Lookahead were with the

assumption that we were working in an HTN domain and not an HGN domain.

A comparison between these two algorithms for an HGN domain remains to be

addressed.

57

Appendix A: RoboSub Domain in IPyHOP

A.1 Method Definitions

1 #!/usr/bin/env python

2 """

3 File Description: Robosub methods file. All the methods for Robosub planning

domain are defined here.↪→

4 """

5 # ********************* Libraries to be imported ********************* #

6 from ipyhop import Methods

7

8 # ********************* Method Definitions ********************* #

9 methods = Methods()

10

11

12 def tm1_move(state, loc_):

13 if state.loc['r'] != loc_:

14 if state.found[loc_] is True:

15 return [('a_move', loc_)]

16 else:

17 if loc_ in state.rigid['adj'][state.loc['r']]:

18 return [('a_search_for', loc_), ('a_move', loc_)]

19 if loc_ > state.loc['r']:

20 l_ = state.rigid['adj'][state.loc['r']][-1]

21 return [('a_search_for', l_), ('a_move', l_), ('move_task',

loc_)]↪→

22 if loc_ < state.loc['r']:

23 l_ = state.rigid['adj'][state.loc['r']][0]

24 return [('a_search_for', l_), ('a_move', l_), ('move_task',

loc_)]↪→

25 return []

26

27

28 methods.declare_task_methods('move_task', [tm1_move])

29

30

31 def tm1_cross_gate(state, gate_):

32 if state.crossed_gate[gate_] is False:

33 if state.loc['r'] == state.loc[gate_]:

34 if state.found[gate_] is True:

35 return [('a_cross_gate_40', gate_)]

58

36 return [('a_localize', gate_), ('a_cross_gate_40', gate_)]

37 return [('move_task', state.loc[gate_]), ('cross_gate_task', gate_)]

38 return []

39

40

41 def tm2_cross_gate(state, gate_):

42 if state.crossed_gate[gate_] is False:

43 if state.loc['r'] == state.loc[gate_]:

44 if state.found[gate_] is True:

45 return [('a_cross_gate_60', gate_)]

46 return [('a_localize', gate_), ('a_cross_gate_60', gate_)]

47 return [('move_task', state.loc[gate_]), ('cross_gate_task', gate_)]

48 return []

49

50

51 methods.declare_task_methods('cross_gate_task', [tm1_cross_gate, tm2_cross_gate])

52

53

54 def tm1_pick(state, obj_):

55 if state.loc[obj_] != 'r':

56 if state.loc['r'] == state.loc[obj_]:

57 if state.found[obj_]:

58 return [('a_pick', obj_)]

59 return [('a_localize', obj_), ('a_pick', obj_)]

60 return [('move_task', state.loc[obj_]), ('pick_task', obj_)]

61 return []

62

63

64 def tm2_pick(*_):

65 return [] # skip the task

66

67

68 methods.declare_task_methods('pick_task', [tm1_pick, tm2_pick])

69

70

71 def tm1_trace_path(state, gp_):

72 if state.traversed_path[gp_] is False:

73 if state.loc['r'] == state.loc[gp_]:

74 if state.found[gp_] is True:

75 return [('a_trace_guide_path', gp_)]

76 return [('a_localize', gp_), ('a_trace_guide_path', gp_)]

77 return [('move_task', state.loc[gp_]), ('trace_path_task', gp_)]

78 return []

79

80

81 def tm2_trace_path(*_):

82 return [] # skip the task

83

84

85 methods.declare_task_methods('trace_path_task', [tm1_trace_path, tm2_trace_path])

86

87

88 def tm1_slay_vampire(state, v_):

89 if state.vampire_touched[v_] is False:

59

90 if state.loc['r'] == state.loc[v_]:

91 if state.found[v_] is True:

92 return [('a_touch_back_v', v_)]

93 return [('a_localize', v_), ('a_touch_back_v', v_)]

94 return [('move_task', state.loc[v_]), ('slay_vampire_task', v_)]

95 return []

96

97

98 def tm2_slay_vampire(state, v_):

99 if state.vampire_touched[v_] is False:

100 if state.loc['r'] == state.loc[v_]:

101 if state.found[v_] is True:

102 return [('a_touch_front_v', v_)]

103 return [('a_localize', v_), ('a_touch_front_v', v_)]

104 return [('move_task', state.loc[v_]), ('slay_vampire_task', v_)]

105 return []

106

107

108 def tm3_slay_vampire(*_):

109 return [] # skip the task

110

111

112 methods.declare_task_methods('slay_vampire_task', [tm1_slay_vampire,

tm2_slay_vampire, tm3_slay_vampire])↪→

113

114

115 def tm1_drop_garlic(state, gm_, c_):

116 if len(state.coffin_filled[c_]) < 2:

117 if state.loc[gm_] == 'r':

118 if state.loc['r'] == state.loc[c_]:

119 if state.found[c_] is True:

120 if state.opened[c_] is True:

121 return [('a_drop_garlic_open_coffin', gm_, c_)]

122 return [('a_open_c', c_), ('a_drop_garlic_open_coffin', gm_,

c_)]↪→

123 return [('a_localize', c_), ('a_open_c', c_),

('a_drop_garlic_open_coffin', gm_, c_)]↪→

124 return [('move_task', state.loc[c_]), ('drop_garlic_task', gm_, c_)]

125 return

126 return []

127

128

129 def tm2_drop_garlic(state, gm_, c_):

130 if len(state.coffin_filled[c_]) < 2:

131 if state.loc[gm_] == 'r':

132 if state.loc['r'] == state.loc[c_]:

133 if state.found[c_] is True:

134 return [('a_drop_garlic_closed_coffin', gm_, c_)]

135 return [('a_localize', c_), ('a_drop_garlic_closed_coffin', gm_,

c_)]↪→

136 return [('move_task', state.loc[c_]), ('drop_garlic_task', gm_, c_)]

137 return

138 return []

139

60

140

141 def tm3_drop_garlic(*_):

142 return [] # skip the task

143

144

145 methods.declare_task_methods('drop_garlic_task', [tm1_drop_garlic,

tm2_drop_garlic, tm3_drop_garlic])↪→

146

147

148 def tm1_stake_heart(state, t, d):

149 if len(state.staked_dracula[d]) < 2 and state.loc[t] == 'r':

150 if state.loc['r'] == state.loc[d]:

151 if state.found[d] is True:

152 if state.decapitated[d] is True:

153 return [('a_stake_decap_d', t, d)]

154 return [('a_decap_d', d), ('a_stake_decap_d', t, d)]

155 return [('a_localize', d), ('a_decap_d', d), ('a_stake_decap_d', t,

d)]↪→

156 return [('move_task', state.loc[d]), ('stake_heart_task', t, d)]

157 return []

158

159

160 def tm2_stake_heart(state, t, d):

161 if len(state.staked_dracula[d]) < 2 and state.loc[t] == 'r':

162 if state.loc['r'] == state.loc[d]:

163 if state.found[d] is True:

164 return [('a_stake_norm_d', t, d)]

165 return [('a_localize', d), ('a_stake_norm_d', t, d)]

166 return [('move_task', state.loc[d]), ('stake_heart_task', t, d)]

167 return []

168

169

170 def tm3_stake_heart(*_):

171 return [] # skip the task

172

173

174 methods.declare_task_methods('stake_heart_task', [tm1_stake_heart,

tm2_stake_heart, tm3_stake_heart])↪→

175

176

177 def tm1_surface(state, s_):

178 if state.surfaced['r'] is False:

179 if state.loc['r'] == state.loc[s_]:

180 if state.found[s_] is True:

181 return [('a_surface', 'cm1', s_)]

182 return [('a_localize', s_), ('a_surface', 'cm1', s_)]

183 return [('move_task', state.loc[s_]), ('surface_task', s_)]

184 return []

185

186

187 def tm2_surface(state, s_):

188 if state.surfaced['r'] is False:

189 if state.loc['r'] == state.loc[s_]:

190 if state.found[s_] is True:

61

191 return [('a_surface', 'cm2', s_)]

192 return [('a_localize', s_), ('a_surface', 'cm2', s_)]

193 return [('move_task', state.loc[s_]), ('surface_task', s_)]

194 return []

195

196

197 def tm3_surface(*_):

198 return [] # skip the task

199

200

201 methods.declare_task_methods('surface_task', [tm1_surface, tm2_surface,

tm3_surface])↪→

202

203

204 def tm1_pinger(state):

205 tasks = []

206 if state.found['ap1'] is False:

207 tasks.append(('a_localize_ap', 'ap1'))

208 if state.found['ap2'] is False:

209 tasks.append(('a_localize_ap', 'ap2'))

210 return tasks

211

212

213 methods.declare_task_methods('pinger_task', [tm1_pinger])

214

215

216 def _common_tasks(state, task_list, locs):

217 if state.loc['g'] == locs and state.crossed_gate['g'] is False:

218 task_list.append(('cross_gate_task', 'g'))

219

220 if state.loc['gm1'] == locs:

221 task_list.append(('pick_task', 'gm1'))

222 if state.loc['gm2'] == locs:

223 task_list.append(('pick_task', 'gm2'))

224 if state.loc['c1'] == locs:

225 if state.loc['gm1'] != 'c1':

226 task_list.append(('drop_garlic_task', 'gm1', 'c1'))

227 if state.loc['gm2'] != 'c1':

228 task_list.append(('drop_garlic_task', 'gm2', 'c1'))

229

230 if state.loc['cm1'] == locs:

231 task_list.append(('pick_task', 'cm1'))

232 if state.loc['cm2'] == locs:

233 task_list.append(('pick_task', 'cm2'))

234

235 if state.loc['v1'] == locs and state.vampire_touched['v1'] is False:

236 task_list.append(('slay_vampire_task', 'v1'))

237 if state.loc['v2'] == locs and state.vampire_touched['v2'] is False:

238 task_list.append(('slay_vampire_task', 'v2'))

239

240 if state.loc['d1'] == locs:

241 if state.loc['t1'] == 'r':

242 task_list.append(('stake_heart_task', 't1', 'd1'))

243 if state.loc['t2'] == 'r':

62

244 task_list.append(('stake_heart_task', 't2', 'd1'))

245

246 if state.loc['gp1'] == locs and state.traversed_path['gp1'] is False:

247 task_list.append(('trace_path_task', 'gp1'))

248 if state.loc['gp2'] == locs and state.traversed_path['gp2'] is False:

249 task_list.append(('trace_path_task', 'gp2'))

250

251 if state.loc['s1'] == locs and state.surfaced['r'] is False:

252 task_list.append(('surface_task', 's1'))

253

254

255 def tm1_main(state, loc_list):

256 task_list = []

257 for locs in loc_list:

258 task_list.append(('move_task', locs))

259 _common_tasks(state, task_list, locs)

260

261 return task_list

262

263

264 methods.declare_task_methods('main_task', [tm1_main])

265

266 # ********************* Demo / Test Routine ********************* #

267 if __name__ == '__main__':

268 raise NotImplementedError("Test run / Demo routine for Robosub Mod Methods

isn't implemented.")↪→

269

270 """

271 Author(s): Yash Bansod

272 Repository: https://github.com/YashBansod/IPyHOP

273 Organization: University of Maryland at College Park

274 """

A.2 Action Definitions

1 #!/usr/bin/env python

2 """

3 File Description: Robosub actions file. All the actions for Robosub planning

domain are defined here.↪→

4 """

5 # ********************* Libraries to be imported ********************* #

6 from ipyhop import Actions

7

8

9 # ********************* Action Definitions ********************* #

10 actions = Actions()

11

12

13 # search for a location in the field

14 def a_search_for(state, loc_):

15 if loc_ in state.rigid['adj'][state.loc['r']]:

63

16 state.found[loc_] = True

17 return state

18

19

20 # search for an object at current location

21 def a_localize(state, obj_):

22 if state.loc['r'] == state.loc[obj_]:

23 state.found[obj_] = True

24 return state

25

26

27 # acoustic pinger triangulation

28 def a_localize_ap(state, ap_):

29 if state.rigid['type'][ap_] == 'ap':

30 state.found[ap_] = True

31 state.found[state.loc[ap_]] = True

32 return state

33

34

35 # move to a recognized location

36 def a_move(state, loc_):

37 if state.found[loc_] is True and state.rigid['type'][loc_] == 'l':

38 state.loc['r'] = loc_

39 return state

40

41

42 # cross the gate at current location from 40% side

43 def a_cross_gate_40(state, gate_):

44 if state.loc['r'] == state.loc[gate_] and state.found[gate_] is True and

state.rigid['type'][gate_] == 'g':↪→

45 state.crossed_gate[gate_] = 'T40'

46 return state

47

48

49 # cross the gate at current location from 60% side

50 def a_cross_gate_60(state, gate_):

51 if state.loc['r'] == state.loc[gate_] and state.found[gate_] is True and

state.rigid['type'][gate_] == 'g':↪→

52 state.crossed_gate[gate_] = 'T60'

53 return state

54

55

56 # pick an obj at current location (allowed objects: crucifix marker, garlic

marker)↪→

57 def a_pick(state, obj_):

58 if state.loc['r'] == state.loc[obj_] and state.found[obj_] is True:

59 if state.rigid['type'][obj_] == 'gm' or state.rigid['type'][obj_] ==

'cm':↪→

60 state.loc[obj_] = 'r'

61 return state

62

63

64 # trace a guide path at current location

65 def a_trace_guide_path(state, gp_):

64

66 if state.loc['r'] == state.loc[gp_] and state.found[gp_] is True and

state.rigid['type'][gp_] == 'gp':↪→

67 state.traversed_path[gp_] = True

68 return state

69

70

71 # touch the back of a vampire at current location

72 def a_touch_back_v(state, v_):

73 if state.loc['r'] == state.loc[v_] and state.found[v_] is True and

state.rigid['type'][v_] == 'v':↪→

74 state.vampire_touched[v_] = 'Tb'

75 return state

76

77

78 # touch the front of a vampire at current location.

79 def a_touch_front_v(state, v_):

80 if state.loc['r'] == state.loc[v_] and state.found[v_] is True and

state.rigid['type'][v_] == 'v':↪→

81 state.vampire_touched[v_] = 'Tf'

82 return state

83

84

85 # open the coffin at current location

86 def a_open_c(state, c_):

87 if state.loc['r'] == state.loc[c_] and state.found[c_] is True and

state.rigid['type'][c_] == 'c':↪→

88 state.opened[c_] = True

89 return state

90

91

92 # drop a garlic in an opened coffin at current location

93 def a_drop_garlic_open_coffin(state, gm_, c_):

94 if state.loc[gm_] == 'r' and state.loc['r'] == state.loc[c_] and

state.opened[c_] is True:↪→

95 if state.rigid['type'][c_] == 'c' and state.rigid['type'][gm_] == 'gm':

96 state.loc[gm_] = c_

97 state.coffin_filled[c_].append('1o')

98 return state

99

100

101 # drop garlic on a closed coffin at current location

102 def a_drop_garlic_closed_coffin(state, gm_, c_):

103 if state.loc[gm_] == 'r' and state.loc['r'] == state.loc[c_] and

state.found[c_] is True:↪→

104 if state.rigid['type'][c_] == 'c' and state.rigid['type'][gm_] == 'gm':

105 state.loc[gm_] = c_

106 state.coffin_filled[c_].append('1c')

107 return state

108

109

110 # decapitate a dracula at current location

111 def a_decap_d(state, d_):

112 if state.loc['r'] == state.loc[d_] and state.found[d_] is True and

state.rigid['type'][d_] == 'd':↪→

65

113 state.decapitated[d_] = True

114 return state

115

116

117 # stake a decapitated dracula at current location

118 def a_stake_decap_d(state, t_, d_):

119 if state.loc[t_] == 'r' and state.loc['r'] == state.loc[d_] and

state.decapitated[d_] is True:↪→

120 if state.rigid['type'][t_] == 't' and state.rigid['type'][d_] == 'd':

121 state.loc[t_] = d_

122 state.staked_dracula[d_].append('1d')

123 return state

124

125

126 # stake a normal dracula at current location

127 def a_stake_norm_d(state, t_, d_):

128 if state.loc[t_] == 'r' and state.loc['r'] == state.loc[d_] and

state.found[d_] is True:↪→

129 if state.rigid['type'][t_] == 't' and state.rigid['type'][d_] == 'd':

130 state.loc[t_] = d_

131 state.staked_dracula[d_].append('1n')

132 return state

133

134

135 # surface in a surface zone at current location carrying a crucifix marker

136 def a_surface(state, cm, s):

137 if state.loc['r'] == state.loc[s] and state.loc[cm] == 'r' and state.found[s]

is True:↪→

138 if state.rigid['type'][cm] == 'cm' and state.rigid['type'][s] == 's':

139 state.surfaced['r'] = True

140 return state

141

142

143 actions.declare_actions([a_search_for, a_localize, a_localize_ap, a_move,

a_cross_gate_40, a_cross_gate_60, a_pick,↪→

144 a_touch_back_v, a_touch_front_v, a_trace_guide_path,

a_open_c, a_drop_garlic_open_coffin,↪→

145 a_drop_garlic_closed_coffin, a_decap_d, a_stake_decap_d,

a_stake_norm_d, a_surface])↪→

146

147 action_probability = {

148 'a_cross_gate_40': [0.3, 0.7],

149 'a_pick': [0.95, 0.05],

150 'a_touch_back_v': [0.4, 0.6],

151 'a_touch_front_v': [0.8, 0.2],

152 'a_trace_guide_path': [0.85, 0.15],

153 'a_open_c': [0.5, 0.5],

154 'a_drop_garlic_open_coffin': [0.9, 0.1],

155 'a_drop_garlic_closed_coffin': [0.9, 0.1],

156 'a_decap_d': [0.4, 0.6],

157 'a_stake_decap_d': [0.8, 0.2],

158 'a_stake_norm_d': [0.8, 0.2],

159 }

160

66

161 action_cost = {

162 'a_search_for': 2,

163 'a_move': 5,

164 'a_cross_gate_40': 10,

165 'a_cross_gate_60': 8,

166 'a_pick': 3,

167 'a_touch_front_v': 3,

168 'a_touch_back_v': 6,

169 'a_trace_guide_path': 3,

170 'a_open_c': 5,

171 'a_drop_garlic_open_coffin': 2,

172 'a_drop_garlic_closed_coffin': 2,

173 'a_decap_d': 5,

174 'a_stake_norm_d': 2,

175 'a_stake_decap_d': 2,

176 'a_surface': 3,

177 }

178

179 actions.declare_action_models(action_probability, action_cost)

180

181 # ********************* Demo / Test Routine ********************* #

182 if __name__ == '__main__':

183 raise NotImplementedError("Test run / Demo routine for Robosub Mod Commands

isn't implemented.")↪→

184

185 """

186 Author(s): Yash Bansod

187 Repository: https://github.com/YashBansod/IPyHOP

188 Organization: University of Maryland at College Park

189 """

67

Bibliography

[1] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory
and practice. Elsevier, 2004.

[2] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated planning and acting.
Cambridge University Press, 2016.

[3] Dana Nau, T-C Au, Okhtay Ilghami, Ugur Kuter, Dan Wu, Fusun Yaman,
Héctor Munoz-Avila, and J William Murdock. Applications of SHOP and
SHOP2. IEEE Intelligent Systems, 20(2):34–41, 2005.

[4] Ilche Georgievski and Marco Aiello. HTN planning: Overview, comparison,
and beyond. Artificial Intelligence, 222:124–156, 2015.

[5] Fletcher Thompson and Damien Guihen. Review of mission planning for au-
tonomous marine vehicle fleets. Journal of Field Robotics, 36(2):333–354, 2019.

[6] Derek Long and Maria Fox. The 3rd international planning competition: Re-
sults and analysis. Journal of Artificial Intelligence Research, 20:1–59, 2003.

[7] John Paul Kelly, Adi Botea, Sven Koenig, et al. Offline planning with hierar-
chical task networks in video games. In AIIDE, pages 60–65, 2008.

[8] Martha E Pollack and John F Horty. There’s more to life than making
plans: plan management in dynamic, multiagent environments. AI Magazine,
20(4):71–71, 1999.

[9] Félix Ingrand and Malik Ghallab. Deliberation for autonomous robots: A
survey. Artificial Intelligence, 247:10–44, 2017.

[10] Sunandita Patra, Malik Ghallab, Dana Nau, and Paolo Traverso. Acting and
planning using operational models. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 7691–7698, 2019.

68

[11] Sunandita Patra, James Mason, Amit Kumar, Malik Ghallab, Paolo Traverso,
and Dana Nau. Integrating acting, planning, and learning in hierarchical oper-
ational models. In Proceedings of the International Conference on Automated
Planning and Scheduling, volume 30, pages 478–487, 2020.

[12] Dana Nau, Yue Cao, Amnon Lotem, and Hector Munoz-Avila. SHOP: Simple
hierarchical ordered planner. In Proceedings of the 16th international joint
conference on Artificial intelligence-Volume 2, pages 968–973, 1999.

[13] Dana S Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J William Murdock,
Dan Wu, and Fusun Yaman. SHOP2: An HTN planning system. Journal of
artificial intelligence research, 20:379–404, 2003.

[14] Robert P Goldman and Ugur Kuter. Hierarchical task network planning in
common lisp: the case of SHOP3. In ELS, pages 73–80, 2019.

[15] Dana Nau. Game applications of HTN planning with state variables. In Plan-
ning in Games: Papers from the ICAPS Workshop, 2013.

[16] Jeff Orkin. Three states and a plan: the AI of FEAR. In Game developers
conference, volume 2006, page 4, 2006.

[17] Richard E Fikes and Nils J Nilsson. STRIPS: A new approach to the application
of theorem proving to problem solving. Artificial intelligence, 2(3-4):189–208,
1971.

[18] Xenija Neufeld, Sanaz Mostaghim, Dario L Sancho-Pradel, and Sandy Brand.
Building a planner: A survey of planning systems used in commercial video
games. IEEE Transactions on Games, 11(2):91–108, 2017.

[19] Earl D Sacerdoti. The nonlinear nature of plans. Technical report, Stanford
Research Inst Menlo Park CA, 1975.

[20] Austin Tate. Generating project networks. In Proceedings of the 5th inter-
national joint conference on Artificial intelligence-Volume 2, pages 888–893,
1977.

[21] David E Wilkins. Can AI planners solve practical problems? Computational
intelligence, 6(4):232–246, 1990.

[22] Ken Currie and Austin Tate. O-Plan: the open planning architecture. Artificial
intelligence, 52(1):49–86, 1991.

[23] Austin Tate, Brian Drabble, and Richard Kirby. O-Plan2: an open architecture
for command, planning and control. In Intelligent Scheduling. Citeseer, 1994.

[24] Kutluhan Erol. Hierarchical task network planning: formalization, analysis,
and implementation. PhD thesis, 1996.

69

[25] Luis Castillo, Juan Fdez-Olivares, Óscar Garćıa-Pérez, and Francisco Palao.
Temporal enhancements of an HTN planner. In Conference of the Spanish
Association for Artificial Intelligence, pages 429–438. Springer, 2005.

[26] Alexandre Menif, Éric Jacopin, and Tristan Cazenave. SHPE: HTN planning
for video games. In Workshop on Computer Games, pages 119–132. Springer,
2014.

[27] Zohar Feldman and Carmel Domshlak. Monte-Carlo planning: Theoretically
fast convergence meets practical efficiency. arXiv preprint arXiv:1309.6828,
2013.

[28] Zohar Feldman and Carmel Domshlak. Monte-Carlo tree search: To MC or to
DP? In ECAI, pages 321–326, 2014.

[29] Sung Wook Yoon, Alan Fern, and Robert Givan. FF-Replan: A baseline for
probabilistic planning. In ICAPS, volume 7, pages 352–359, 2007.

[30] Florent Teichteil-Koenigsbuch, Guillaume Infantes, and Ugur Kuter. RFF: A
robust, FF-based MDP planning algorithm for generating policies with low
probability of failure. Sixth International Planning Competition at ICAPS, 8,
2008.

[31] Sung Wook Yoon, Alan Fern, Robert Givan, and Subbarao Kambhampati.
Probabilistic planning via determinization in hindsight. In AAAI, pages 1010–
1016, 2008.

[32] François Félix Ingrand, Raja Chatila, Rachid Alami, and Frédéric Robert. PRS:
A high level supervision and control language for autonomous mobile robots.
In Proceedings of IEEE International Conference on Robotics and Automation,
volume 1, pages 43–49. IEEE, 1996.

[33] Olivier Despouys and François Félix Ingrand. Propice-plan: Toward a unified
framework for planning and execution. In European Conference on Planning,
pages 278–293. Springer, 1999.

[34] R James Firby. An investigation into reactive planning in complex domains.
In AAAI, volume 87, pages 202–206, 1987.

[35] Reid G Simmons. Concurrent planning and execution for autonomous robots.
IEEE Control Systems Magazine, 12(1):46–50, 1992.

[36] Reid Simmons and David Apfelbaum. A task description language for robot
control. In Proceedings. 1998 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems. Innovations in Theory, Practice and Applications
(Cat. No. 98CH36190), volume 3, pages 1931–1937. IEEE, 1998.

[37] Michael Beetz and Drew V McDermott. Improving robot plans during their
execution. In AIPS, pages 7–12, 1994.

70

[38] Nicola Muscettola, P Pandurang Nayak, Barney Pell, and Brian C Williams.
Remote agent: To boldly go where no AI system has gone before. Artificial
intelligence, 103(1-2):5–47, 1998.

[39] Karen L Myers. CPEF: A continuous planning and execution framework. AI
Magazine, 20(4):63–63, 1999.

[40] Vandi Verma, Tara Estlin, Ari Jónsson, Corina Pasareanu, Reid Simmons, and
Kam Tso. Plan execution interchange language (PLEXIL) for executable plans
and command sequences. In International symposium on artificial intelligence,
robotics and automation in space (iSAIRAS), 2005.

[41] Fei-Yue Wang, Konstantinos J Kyriakopoulos, Athanasios Tsolkas, and
George N Saridis. A petri-net coordination model for an intelligent mobile
robot. IEEE Transactions on Systems, Man, and Cybernetics, 21(4):777–789,
1991.

[42] Jonathan Bohren, Radu Bogdan Rusu, E Gil Jones, Eitan Marder-Eppstein,
Caroline Pantofaru, Melonee Wise, Lorenz Mösenlechner, Wim Meeussen, and
Stefan Holzer. Towards autonomous robotic butlers: Lessons learned with the
PR2. In 2011 IEEE International Conference on Robotics and Automation,
pages 5568–5575. IEEE, 2011.

[43] David J Musliner, Michael JS Pelican, Robert P Goldman, Kurt D Krebsbach,
and Edmund H Durfee. The evolution of CIRCA, a theory-based AI architecture
with real-time performance guarantees. In AAAI Spring Symposium: Emotion,
Personality, and Social Behavior, volume 1205, 2008.

[44] Raphaël Lallement, Lavindra De Silva, and Rachid Alami. HATP: An HTN
planner for robotics. arXiv preprint arXiv:1405.5345, 2014.

[45] Jason Wolfe, Bhaskara Marthi, and Stuart Russell. Combined task and motion
planning for mobile manipulation. In Proceedings of the International Confer-
ence on Automated Planning and Scheduling, volume 20, 2010.

71

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Contributions of the Thesis
	Thesis Organization

	Related Work
	AI Planning
	AI Acting
	Integrating AI planning and acting

	Planning and Acting Algorithms
	HTN Planning Formulation
	HTN Planning in Pyhop
	HTN Planning in IPyHOP
	RAE-lite - A purely reactive HTN Actor
	Integrating IPyHOP with an Actor
	Run-Lazy-Lookahead
	Run-Lazy-Refineahead

	Experimental Evaluation
	RoboSub Domain
	Experimental Setup
	Results
	Summary

	Conclusion
	Limitations and Future Work

	RoboSub Domain in IPyHOP
	Method Definitions
	Action Definitions

	Bibliography

