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The Standard Models (SM) of particle physics and cosmology have been great suc-

cesses so far, but various observational and theoretical hints point towards new physics

beyond them. In this thesis, we first briefly discuss these shortcomings, including puzzles

for the initial state of the early universe and how they can be solved via Cosmic Inflation.

We then focus on constructing microscopic models for inflation which are theoretically

natural, Effective Field Theory (EFT) controlled, and observationally consistent, while

also looking for possible new signals. We develop a supersymmetric (SUSY) bi-axion

model of high-scale inflation, in which the axionic structure originates from gauge sym-

metry in an extra dimension. While local SUSY is necessarily Higgsed at high scales

during inflation we show that it can naturally survive down to the ∼ TeV scale in the

current era in order to resolve the electroweak hierarchy problem. In the face of improv-

ing constraints on the tensor-to-scalar ratio, we also investigate inflation at lower energy

scales via the very well-motivated mechanism of Hybrid Inflation. We construct a tech-

nically natural and EFT-controlled model for this, “Twinflation”, incorporating a discrete



“twin” symmetry.

If a SUSY extension of the SM does survive down to ∼ TeV scales, although not

yet observed at the collider searches so far, it may have structures giving rise to novel

Long-Lived Particle (LLP) signatures. LLPs also feature in a variety of other new physics

scenarios. We show that future electron-proton colliders, forming an interesting hybrid of

leptonic and hadronic colliders, can probe LLPs with soft decay products and very short

lifetimes, thus offering a complimentary reach into the new physics parameter space.
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Chapter 1: Introduction

1.1 Success of the Standard Model and the need for new physics

The Standard Model of particle physics (see [13] for a review) has been a great

achievement of the human mind! It provides a microscopic theory of the constituent

building blocks of almost all the physical world that we know so far, amazingly spanning

∼ 40 orders of magnitude in length scales, valid from sub-nuclear (about a hundredth of

a femtometer) to the cosmological scales (Gigaparsecs).

However, there are strong reasons to believe, from both observational and theo-

retical perspectives, that this is not the “end of particle physics”, and that there should

exist new physics beyond the Standard Model (BSM). A variety of astrophysical and cos-

mological observations, e.g. galaxy rotation curves, gravitational lensing, and cosmic

microwave background (CMB), suggest that ∼ 85% of all matter and ∼ 26% of all the

energy density in the universe is made up of the Dark Matter (DM) (see [14, 15] for a

review), which does not interact like the SM particles except gravitationally. There is no

good SM candidate for DM (except probably primordial black holes [16]) and hence DM

is most likely consists of BSM particle(s). Also, the tiny neutrino masses, observed from

neutrino oscillation experiments, are much smaller than all the other scales in the SM and

do not have an explanation for their origin within it (see [17] for a review). Furthermore,
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the observable universe around us has much more matter than antimatter. This asymme-

try cannot be generated just by the SM and the standard cosmological evolution (see e.g.

[18]). All of these experimental results call for new BSM physics.

Apart from these observational hints, SM has some striking theoretical and con-

ceptual puzzles as well, pointing to its possible incompleteness. The SM Higgs boson,

a fundamental scalar field which plays the crucial role of spontaneous breaking of elec-

troweak symmetry and giving masses to all of the SM particles that couple to it, has been

observed and its SM interactions verified so far (see [14] for a review). However, SM

has no explanation for the fundamental origin of the Higgs mass, neither is it calculable

within it. Furthermore, any extension of SM which is able to calculate it, predicts a mass

much larger than the observed one (125 GeV) over the majority of the parameter space,

due to quadratic sensitivity to the UV mass scales. In order to get a small mass as ob-

served, one needs to fine-tune totally unrelated contributions to within an extraordinary

precision, which is highly unnatural. This is the so-called Higgs Hierarchy Problem.

A similar problem exists in the case of the Cosmological Constant (CC) which

receives quantum corrections quartically sensitive to the UV scales, generically giving

a value much bigger than the observed one (∼ meV4). This requires fine-cancellations

between unrelated contributions to a precision even higher than that in the Higgs case.

This is the so-called Cosmological Constant Problem (see [19, 20] for a review). Finally,

there is also the Strong CP Problem (see [21] for a review), which is the puzzle that

why is the CP-violating θ-parameter of QCD constrained to be so small, even though

it is expected to be O(1), especially considering that similar CP-violating phases in the

electroweak sector are O(1).
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The evolution of the universe on cosmological scales is governed very well by the

ΛCDM “standard model” of cosmology (see e.g. [22]). This describes the cosmological

expansion as driven by the CC and cold DM, with a small fraction of SM matter and

radiation. This description is consistent with almost all of the observations so far, ex-

cept for some anomalies still being examined, e.g. H0 tension [23, 24], EDGES 21-cm

observation [25], and DM core-cusp issue [26].

However, there exist various puzzles regarding the initial state of the early universe

(see [4] for a review). The observable universe today on large scales is extremely homo-

geneous, e.g. the CMB temperature is uniform to∼ 1 in 105 across all of the sky. But this

requires that the patches of the universe which would never have been in causal contact

since Big Bang, according to the standard ΛCDM evolution, to still be approximately in

thermal equilibrium today. This is the so-called Horizon Problem. Similarly, there exists

the Flatness Problem. The universe today is spatially flat to a good accuracy, even though

a little curvature at early times would grow considerably, thus requiring the initial state

to be flat to an extraordinary accuracy. Furthermore, the CMB shows small fluctuations

on top of the uniform background, even on the scales bigger than the horizon, which is

puzzling. The origin of these super-horizon fluctuations cannot be explained by ΛCDM

evolution since they cannot be produced by any causal processes, and need to be im-

printed on the initial state. As we will see next, these initial state issues can be addressed

robustly via Cosmic Inflation.
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1.2 Cosmic inflation

The initial state puzzles faced by the standard ΛCDM cosmology, as reviewed

above, can be addressed by introducing an early universe phase of accelerated expan-

sion, called as Cosmic Inflation. Such an expansion can be powered by vacuum energy

dominated dynamics, giving an approximately exponential expansion of the space-time,

as we will see below. Such a rapid expansion dilutes any prior “irregularities” (e.g. spatial

curvature), blows up a causally connected patch into the entire observable universe at late

times, while also imprinting quantum fluctuations on the super-horizon scales. Here we

give a brief overview of the classical and quantum inflationary evolution, including the

main aspects used in this thesis. For a review and detailed discussion, see [4].

Inflation can be implemented minimally with a single real scalar field, inflaton,

slowly rolling down its nearly flat potential (see Fig. 1.1). The general metric describing

a 3+1 dimensional expanding, homogeneous and isotropic space-time is given by

ds2 = −dt2 + a(t)2d~x2, (1.1)

with the Hubble parameter

H(t) =
ȧ

a
(t) (1.2)

characterizing the rate of expansion. Here, overdot denotes derivative with respect to t.

The coupled classical dynamics of the inflaton field in this background is given by the

4



Figure 1.1: Example of a slow-roll potential for inflaton [4]: Inflation can happen on a
nearly flat part of the potential as shown. φend refers to the onset of slow-roll violation
and end of inflation. φCMB corresponds to the initial field value to get sufficient e-folds
of expansion to address the horizon problem at the CMB. δφ are the spatially varying
inflaton quantum fluctuations.

following equations of motion:

φ̈+ 3Hφ̇+ V ′(φ) = 0,

φ̇2

2
+ V (φ) = 3H2M2

Pl.

(1.3)

During slow-roll inflation, potential energy dominates over the kinetic energy, i.e. φ̇2 �

V (φ), which then implies from above thatH remains approximately constant (since V (φ)

is also nearly flat in the slow-roll phase). Then, using Eq. (1.2), one can clearly see that

a(t) ∼ eHt, i.e. slow-roll inflation powers the exponential space-time expansion. The
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slow-roll potential is characterized by the so-called slow-roll parameters defined as below:

ε(φ) ≡ 1

2

(
V ′

V

)2

M2
Pl , η(φ) ≡ V ′′

V
M2

Pl. (1.4)

The slow-roll is satisfied when ε, η � 1. As φ rolls down such a potential, at some φend,

ε or η grows and becomes ≈ 1. Beyond this point, the inflaton undergoes a fast-roll to the

minimum of the potential, quickly releases the vacuum energy and thus ends the phase

of inflation. Later, through its perturbative decay or through non-perturbative conversion

processes, it can reheat the universe with SM (and DM) particles. In order to address e.g.

the horizon problem, the scale factor needs to expand by at least 50-60 e-folds (Ne) as

given by

Ne =

∫
d ln a =

∫
Hdt ≈

∫ φend

φini

dφ

MPl

√
ε(φ)

. (1.5)

To achieve this, φ needs to roll over large ∆φ, which might also be super-Planckian (see

Lyth bound [27]).

Classical evolution of inflaton addresses the initial state issues for the homoge-

neous background universe on the large scales. Furthermore, its quantum fluctuations

give rise to small primordial inhomogeneities and anisotropies as observed, and also pri-

mordial gravitational waves. The inflaton field fluctuations can be written as φ(~x, t) =

φ0(t) + δφ(~x, t), where φ0(t) and δφ(~x, t) are the inflaton classical background and quan-

tum fluctuations, respectively. At sufficiently early times during inflation, a mode δφk

with comoving momentum k, is sub-horizon, i.e. its physical momentum
(
= k

a

)
� H .

Its quantum evolution then is approximately described by a simple harmonic oscillator in

flat space-time, since curvature effects can be neglected at momenta much higher than H .
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When one analyses δφk at late times, one finds that it effectively becomes classical. Its

linearized equation of motion in the background inflationary space-time, neglecting the

small slow-roll potential, is given by

¨δφk + 3H ˙δφk +

(
k

a

)2

δφk = 0. (1.6)

When the mode becomes super-horizon, i.e. for k
a
� H , the second term in the above

equation dominates over the third, and hence its evolution gets frozen at its value during

horizon-crossing, i.e. for k
a
∼ H . These inflationary fluctuations imprinted on super-

horizon scales, after the end of inflation, enter back into the horizon during standard

ΛCDM evolution, and provide seeds for late-time structure formation.

As we mentioned earlier, the trajectory of φ plays the role of a “clock” governing

when inflation ends as a function of space. Spatially varying fluctuations δφ(~x, t) hence

imply that different regions of the universe inflate by slightly different amount, leading

to variations in the local energy densities in the post-inflationary universe, resulting e.g.

in the temperature fluctuations in the CMB as observed. These can be calculated in a

gauge-invariant way, i.e. taking into account scalar fluctuations of the metric, via the

comoving curvature perturbation (R). The two-point correlation function of R defines

the (dimensionless) power spectrum for the primordial scalar fluctuations (Ps) as

〈R~kR~k′〉 = (2π)3 δ(~k + ~k′)
2π2

k3
Ps(k), (1.7)
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which is given by

Ps(k) = As

(
k

k∗

)ns−1

; As =
1

8π2

1

ε∗

H2
∗

M2
Pl
, ns = 1− 6ε∗ + 2η∗. (1.8)

Here k∗ is a reference momentum scale corresponding to the largest length scale observ-

able today and all other quantities with a subscript ∗ are evaluated at the horizon-crossing

of this mode during inflation (i.e. when k∗ = aH∗). Similarly, inflation also generates

primordial tensor fluctuations to the spatial metric whose power spectrum is given by

Pt(k) = At

(
k

k∗

)nt
; At =

2

π2

H2
∗

M2
Pl
, nt = −2ε∗. (1.9)

The relative strength of these tensor fluctuations (gravitational waves) as compared to the

scalar ones is the so-called “tensor-to-scalar ratio”, given by

r ≡ At
As

= 16ε∗. (1.10)

The current constraints on As, ns, r from the Planck CMB observations [5] are

As = (2.097± 0.1014)× 10−9 , ns = 0.9649± 0.0042 , r < 0.064. (1.11)

The bound on r can also be translated to an upper bound on the inflationary Hubble scale

as

Hinf =

(
π2

2
Asr

)1/2

MPl . 1013GeV. (1.12)
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There are various upcoming and near-future proposed experiments [28, 29, 30, 31, 32]

aiming at improving these constraints, and especially measuring r. These will be able to

measure r & 10−3, corresponding to Hinf & 1012 GeV. The measurement of Hinf would

be a very important discovery as it gives a new fundamental energy scale in physics,

which may open up many new avenues in BSM physics explorations.

1.3 Supersymmetry

As inflation can happen at energy scales as high as Hinf ∼ 1013 GeV, it can be

sensitive to new physics structures in the UV, e.g. supersymmetry (SUSY), grand unified

theory etc. In Chap. 2, we explore the compatibility of high-scale inflation with SUSY,

which is a highly motivated BSM framework. Here we give a brief overview of some of

the main aspects of SUSY used in this thesis. For a review, see [33, 34, 35].

SUSY is a symmetry between bosons and fermions. We know that light fermions

are perfectly natural due to the chiral symmetry that becomes exact in the massless limit.

By contrast, a light Higgs scalar is ordinarily not protected by any symmetry and is

quadratically sensitive to UV scales. However, when the SM is extended to become su-

persymmetric, the Higgs scalar becomes naturally as light as its fermionic superpartner.

Thus, SUSY forms perhaps the most important and popular paradigm for addressing the

Higgs Hierarchy Problem.

SUSY can be formulated by extending the space-time to include Grassmannian

coordinates (θα, θ†α̇), which is now called the “superspace”. SUSY is then realized as the
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symmetry under superspace translations given by

θ → θ + ε , θ† → θ† + ε† , xµ → xµ + ∆µ ; ∆µ = i
(
εσµθ† + ε†σ̄µθ

)
. (1.13)

A superfield S
(
x, θ, θ†

)
is then a multiplet of fields, bosonic and fermionic, which has

well-defined transformations under SUSY as S → S + δS where

δS =
(

∆µ∂µ + εα∂α + ε†α̇∂
α̇
)
S, (1.14)

which features bosons transforming into fermions and vice versa, due to the Grassman-

nian nature of coordinates involved.

Some of the especially useful superfields are chiral and vector superfields. A chiral

superfield (Φ) is obtained by applying the constraint D̄α̇Φ = 0, where the SUSY covariant

derivative D̄α̇ = ∂α̇ − i (σ̄µθ)α̇ ∂µ. This constraint projects out all component fields in Φ

except a complex scalar (φ), a Dirac fermion (ψ), and an auxiliary complex scalar (F ).

These transform under SUSY as

δφ ∼ εψ , δψ ∼
(
σµε†

)
∂µφ+ εF , δF ∼ ε†σ̄µ∂µψ, (1.15)

which shows bosons transforming into fermions and vice versa, as alluded to before. On

the other hand, a vector superfield (V ) is a real superfield, i.e. satisfying the constraint

V = V ∗. It includes a gauge field (Aµ), its super-partner Dirac gaugino (λ), and an

auxiliary real scalar (D). The general SUSY-invariant action for chiral superfields Φi
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charged under a U(1) gauge symmetry with charges qi, respectively, is given by

∫
d4xL(Φi, V ) =

∫
d4x

[∫
d4θ Φ∗i e

gqiV Φi +

∫
d2θ

(
W (Φi) +

1

4
f(Φi)W2

α

)
+ h.c.

]
.

(1.16)

The
∫
d4θ term is called the Kähler potential. It includes the gauge-invariant kinetic terms

for the fields in Φi. It can also include higher dimension terms in Φ∗i e
gqiV Φi which then

give higher dimensional derivative interactions. The
∫
d2θ term is called the superpoten-

tial. The second term in it hasWα which is the SUSY analog of the gauge-invariant field

strength Fµν , and gives rise to the gauge kinetic term. W (Φi) and f(Φi) are holomorphic

functions of Φi and are responsible for non-derivative but gauge-invariant interactions for

Φi fields.

As mentioned before, SUSY can make light scalars natural and hence may play a

role in the real world to address the SM Higgs Hierarchy Problem. However, for natu-

ralness, this generically requires SUSY to be restored above ∼ TeV energy scales. There

have been innumerable collider searches for TeV-scale SUSY so far, but unfortunately

with null results to date. The exploration, however, still continues both on the theoretical

and experimental side.

1.4 Outline of the thesis

The slow-roll scalar inflaton needs to have a nearly flat potential, which gives rise to

its hierarchy problem, known as the “η problem” (see e.g. [36]), analogous to that of the

SM Higgs. The simplest of natural models addressing this via a pseudo-Nambu Goldstone
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boson (pNGB) nature of inflaton [37], however, require the scale of spontaneous breaking

of the corresponding global symmetry to be above MPl. This is in conflict with the argu-

ments that fundamental global symmetries are ill-defined in the context of Quantum Grav-

ity [38, 39, 40]. Also, in these models, inflaton needs to traverse super-Planckian distances

in the field space, which offers the potential danger of poorly controlled φ/MPl expansion

in the effective potential. These issues, however, can be addressed with a sub-Planckian

multi-axion structure, giving rise to an effective super-Planckian light field trajectory [41].

These 4D axions can arise via accidental (and not fundamental) global symmetries in

the IR, originating from extra-dimensional gauge theories in the UV [42, 43, 44], thus

satisfying the Quantum Gravity constraints mentioned above. (We review this in more

detail in Chap. 2.) Furthermore, if SUSY plays a role in addressing the Higgs Hierarchy

Problem, the above-mentioned well-motivated construction of axionic inflation has to be

compatible with an approximate SUSY vacuum. In Chap. 2, which is based upon [1], we

develop such a SUSY bi-axion model coupled to supergravity (SUGRA), with the axionic

structure protected by extra-dimensional gauge symmetries. We also study the possible

observable signals from this model which come naturally in the form of primordial non-

Gaussianties and periodic modulations in the CMB.

The high-scale models of inflation have been tightly constrained by CMB obser-

vations [5], primarily via the non-observation of primordial gravitational waves. This

motivates one to study mechanisms generating inflation at lower scales, which might also

be motivated from various particle physics scenarios (see e.g. [45, 46, 47, 48, 49, 50]).

However, realizing low-scale inflation via simple single-field models is typically fine-

tuned. The general structure of Hybrid Inflation [51] is a well-motivated mechanism for
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this, where a “waterfall” field ends inflation via its tachyonic transition. However, this

waterfall mechanism gives rise to the inflaton hierarchy problem. In Chap. 3, which is

based upon [2], we construct a natural, EFT-controlled and viable model of low-scale hy-

brid inflation, based on a discrete twin symmetry. Such symmetries were first used in the

Twin Higgs mechanism [52] to address the little hierarchy problem of the SM Higgs.

As mentioned earlier, the collider searches for TeV-scale SUSY, highly motivated

due to its possible role in addressing the Higgs Hierarchy Problem, have all returned with

null results so far (see e.g. [14]). However, the SUSY extensions of SM may possibly

give rise to novel but so-far hidden signatures at colliders. A prime example of this is the

class of Long-Lived Particle (LLP) signatures (e.g. [53, 54, 55, 56, 57, 58]). Furthermore,

such LLPs are generic features of a variety of BSM scenarios (e.g. [52, 59, 60, 61, 62, 63,

64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83]), and not just

SUSY, thus making their search highly motivated. Indeed there has been a rich LLP search

program at the current and upcoming colliders (see e.g. [78, 83, 84, 85]), both hadronic

and leptonic. In Chap. 4, which is based upon [3], we explore the unique capability

of the future proposed electron-proton (ep) colliders in this regard. The proposed ep

colliders, like LHeC [6, 86, 87] and FCC-eh [88], form an interesting hybrid of hadronic

and leptonic colliders. They have higher center-of-mass energies and luminosities than

the leptonic colliders, while also having a much cleaner environment as compared to the

hadronic ones, with low pile-up and hadronic background. We demonstrate that LLPs

with soft decay products and very short lifetimes, which are inaccessible at hadronic and

leptonic colliders, can be probed at ep colliders, thus offering a complementary reach into

the corresponding BSM parameter space.
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Chapter 2: Supersymmetric Inflation From The Fifth Dimension

2.1 Introduction

Cosmic Inflation provides an attractive framework for understanding the robustness

of the early state of our universe (see [4] for a review). Its simplest implementation driven

by a slowly rolling scalar field (inflaton) requires a very flat inflaton potential, suggesting

that the inflaton is a pseudo-Goldstone boson of a spontaneously broken global symmetry.

A small explicit breaking of the symmetry can then give rise to a weak potential naturally

varying on the scale of the spontaneous breaking, f . A canonical example is given by the

model of “Natural Inflation” [37], with periodic inflaton potential,

V (φ) = V0

(
1− cos

φ

f

)
. (2.1)

However, even a crude fit to the Cosmic Microwave Background (CMB) data [89] requires

f &MPl
1, which conflicts with our general expectation that there should be no dynamical

scales above the Planck scale, and with the particular arguments that global symmetries

themselves are ill-defined in the context of Quantum Gravity [38, 39, 40].

These concerns can be resolved by (a) relating but not identifying the scale over

1This is an example of the model-independent Lyth bound [27] in the case of Natural Inflation model.
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which the inflaton potential varies with the scale of spontaneous symmetry breaking, and

(b) realizing the spontaneously broken approximate symmetries as accidental symmetries

in the IR rather than fundamental global symmetries in the UV. The simplest version

of (a) is given by beginning with two pseudo-Goldstone bosons, φA and φB, for two

global symmetries U(1)A×U(1)B spontaneously broken at approximately the same scale

fA, fB ≈ f � MPl [41]. For suitable explicit symmetry breaking sources one can then

generate a potential of the form

V (φA, φB) = V
(1)

0

(
1− cos

φB
fB

)
+ V

(2)
0

[
1− cos

(
φA
fA

+N
φB
fB

)]
, (2.2)

where N represents a large charge under U(1)B for one of the “spurions” characterizing

the explicit breaking. Naively, this makes the problem worse, since the potential varies in

the φA direction on the scale f � MPl, and in the φB direction on the scale f/N � f ,

while CMB data suggests a potential varying more slowly than the Planck scale. However,

just such a potential can arise when we properly consider the mass eigenstates. Taking

for simplicity V (1),(2)
0 ≈ V0, these are given by heavy and light directions in field space,

φh ≡ φB +
1

N
φA, φl ≡ φA −

1

N
φB. (2.3)

After setting the heavy φh to its vacuum expectation value (VEV), we can obtain the

effective potential for the light field φl as

Veff(φl)
∣∣
〈φh〉≈0

≈ V0

(
1− cos

φl
Nf

)
. (2.4)

15



This corresponds to an effective Natural Inflation model, with inflaton φl and an emergent

scale of potential variation feff = Nf , which can be > MPl even though f < MPl, for

sufficiently large spurious charge N . We will refer to this as the “Bi-axion inflation”

model.

An attractive microscopic realization of Bi-axion inflation satisfying (b), based on

the mechanism of “extranatural inflation” [42], is provided by using gauge symmetry in an

extra dimension [43]. If the higher-dimensional spacetime is highly warped so as to have

an AdS5/CFT4 type holographic purely-4D dual description, then the dual interpretation is

that the axions are composite Goldstone bosons of some strong dynamics (see e.g. [90]),

analogous to the pions of QCD, and the spontaneously broken symmetries are accidental

or emergent symmetries below the Planck scale. Here, we just briefly summarize the

unwarped (or mildly warped) higher-dimensional case. The 4D axions above are realized

as gauge-invariant Wilson-loops (or lines, given suitable boundary conditions) around (or

across) the compact extra dimension,

φA ≡
∫ L

0

A5 dx5 , φB ≡
∫ L

0

B5 dx5. (2.5)

Charged matter propagating in the 5D bulk, H1 and H2, with mass m, can generate the

potential (2.2) for φA and φB, given that they are charged under the two gauge groups as

(0, 1) and (1, N), respectively. The scales fA, fB emerge as

fA =
1

gAL
, fB =

1

gBL
. (2.6)
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The potential in (2.2) can be generated minimally by the loop contributions of H1, H2 via

the “Hosotani mechanism” [91] which gives

V loop
0 ∼ e−mL

L4
, (2.7)

in (2.4), as well as “higher harmonics” accompanied by higher powers of e−mL. As

studied in [44], bi-axion extranatural inflation can also non-trivially satisfy the plausible

constraints of the Weak Gravity Conjecture (WGC) [92]. These quantum gravity con-

straints are an even stronger form of the arguments forbidding fundamental global sym-

metries, to also forbid UV gauge symmetries with very weak gauge couplings (relative

to gravitational strength). These higher dimensional realizations of bi-axion inflation can

be generalized to multiple-axion models, which then allow for more modest values of

charge, N [43, 44].

In this chapter, we study compatibility of the bi-axion inflation scenario arising

from higher dimensional gauge theory with the scenario of ∼TeV-scale supersymmetry

(SUSY) for resolving the electroweak hierarchy problem. In the presence of SUSY, the

loop contributions from the charged matter fields to the effective potential of 4D axions

cancel out. We are hence forced to have tree-level contributions for the same, which can

be achieved ifH1, H2 have non-zero VEVs (v, v′) at both the boundaries, which generates

V tree
0 ∼ e−mLmvv′. (2.8)

Obviously, the question of whether the above-mentioned very plausible and robust forms
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of inflation are naturally realizable within the constraints of supergravity (SUGRA) dy-

namics in the UV, with SUSY being present at ∼ collider energies today, is of consider-

able importance to our picture of fundamental physics and the prospects for experiments

and observations. See [93, 94, 95, 96, 97, 98, 99] for other discussions of bi-axion in-

flation combined with SUSY, where the axions have alternative UV realizations. See

[100, 101, 102, 103, 104, 105, 106] for other attempts to reconcile low energy SUSY

and inflation from a UV perspective. We will also explore the possible new signatures

from extra fields in the axion supermultiplets, most notably in the form of primordial

non-Gaussianities (NG) in the cosmological collider physics program [107, 108, 109,

110, 111, 112, 113, 114, 115, 116, 117] as well as periodic modulations in the CMB

[44, 118, 119, 120, 121, 122, 123, 124, 125, 126].

Models of single-field inflation with relatively simple potentials, such as Natural

Inflation and its variants, necessarily operate at high scales in order to satisfy cosmolog-

ical data, with inflationary Hubble scale Hinf ∼ 1013 − 1014 GeV. The recently released

Planck 2018 data places tight constraints on such high-scale models, especially given

the non-observation of CMB B-modes induced by super-horizon gravitational waves [5].

Natural Inflation itself is now disfavored at 95% confidence level, but not ruled out. How-

ever, the bi-axionic structure of inflation from extra-dimensional gauge symmetry can

generically produce multiple periodic terms in the potential (2.1), which can alleviate the

tension above with a suitable and plausibly not very fine-tuned choice of parameters. We

leave such a detailed analysis and appraisal for a future study. Furthermore, there are

various ways discussed in the existing literature to relax these constraints for axion-based

inflation, e.g. by realizing the structure of hybrid inflation from a bi-axion potential [127].
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This chapter is organized as follows. In Section 2.2, we review a SUGRA-based

inflation model, the “Kallosh-Linde-Rube model” [128, 129], which has many common

features with our SUSY bi-axion model as developed in Sections 2.3 and 2.4. In Sec-

tion 2.3, starting from the 5D SUSY gauge structure, we first construct a 4D effective

theory of an axion supermultiplet. After generalizing it to the case of two axions, we

account for (effective) 4D SUGRA couplings below the compactification scale. In Sec-

tion 2.4, we discuss the inflationary trajectory along the lightest direction in the field

space with an effective super-Planckian field range and periodic potential, also stabilized

along all the other heavier directions. We then describe the picture of SUSY breaking

(����SUSY) during inflation which we find to be caused mostly by the heavy sector and not

the inflaton sector. Furthermore, we also account for the post-inflationary ����SUSY vac-

uum that we occupy today, which we find not affecting the inflationary dynamics sig-

nificantly as long as the ����SUSY scale is much below the inflationary energy scale. This

model presents an interesting interplay of fine-tunings in the electroweak (EW) sector,

cosmological constant (CC), and superpotential which are connected together after in-

corporating the ����SUSY today. The superpotential fine-tuning favors ����SUSY at high-scale,

however the net fine-tuning, dominated by the EW and CC fine-tunings, can be shown to

favor ����SUSY at low-scale i.e. somewhat above the EW scale. In Section 2.5, we discuss

observable signals in the form of primordial NG and periodic modulations in the CMB.

The “sinflaton”, the real scalar partner of inflaton, can haveO(Hinf) mass during inflation

and sufficiently strong coupling to the inflaton to mediate primordial NG of observable

strength in future experiments. A boundary-localized gauge singlet, in the presence of a

shift-symmetric Kähler coupling, can also mediate sizeable primordial NG. Charged mat-
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ter much heavier than the compactification scale, even only modestly below the 5D gauge

theory cut-off, can contribute to periodic modulations in the CMB, within the sensitivity

of ongoing searches. We conclude in Section 2.6.

We use units with the reduced Planck mass MPl = 1 everywhere in this chapter,

except Sections 2.4.4 and 2.5, where we explicitly write factors of MPl in order to get a

better sense of the numbers.

2.2 The Kallosh-Linde-Rube model

We seek a locally supersymmetric description of high-scale inflation in which SUSY

is only broken somewhat above the weak scale today. Since the weak scale is� Hinf, we

can first consider the supersymmetric limit of the ground state today. On the other hand,

during inflation we know that the approximate de Sitter geometry is incompatible with

SUSY. So inflation must be a spontaneous breaking (super-Higgsing) of SUSY within an

excitation on top of today’s SUSY vacuum, which we can also approximate to have zero

vacuum energy (cosmological constant).

In order to have a light inflaton (φ), we will have an inflaton supermultiplet (Φ) with

approximate shift symmetry. This can be implemented with K(Φ, Φ̄) = K(Φ + Φ̄) and

φ = Im(Φ). A small explicit breaking of the shift symmetry from the superpotential can

generate slow-roll potential for φ. Thus, the lightness of inflaton can be explained by its

pseudo-Goldstone boson nature. However, implementing inflation with only this single

supermultiplet is challenging [130]. In this case, the Goldstino of spontaneous ����SUSY

during inflation would have to be the inflatino (then “eaten” by the gravitino). Consider
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K = 1
2

(
Φ + Φ̄

)2 and W = f(Φ). Then, restricting to polynomial f(Φ) for illustration,

in SUGRA, V (φ) ≈ f ′2(φ/
√

2)− 3f 2(φ/
√

2), which has a clear instability.2 This can be

avoided by introducing a separate supermultiplet for the Goldstino during inflation.

We see that the Goldstino multiplet must be part of a sector that Higgses SUSY

during inflation. One of the simplest models to describe spontaneous ����SUSY coupled to

SUGRA, is the Polonyi model [134]:

K = S̄S − λ
(
S̄S
)2
, W = µS, (2.9)

with the addition of the non-minimal Kähler coupling λ. The SUSY order parameter in

the vacuum is DSW
∣∣
〈S〉≈0

≈ µ 6= 0. Spontaneous ����SUSY in this model gives rise to a

massless Goldstino which however is eaten by the gravitino which then becomes massive

(“super-Higgs mechanism”). The quartic term in the Kähler potential also makes the

scalar heavy, with m2
S ≈ 4λµ2. Thus, there is no light particle in this sector. During

inflation, in the limit of the slow-roll approximation i.e. for a fixed value of inflaton, the

physics can be approximately described by this model. But we need to have a coupling

between this sector (S) and the inflaton (Φ) such that there is no ����SUSY at Φ = 0 (i.e. at

the vacuum today) but with ����SUSY at Φ = Φ0 6= 0 (i.e. during inflation). In other words,

the µ parameter of (2.9) needs to be made Φ-dependent in a suitable manner. This can be

achieved with the following model [128, 129]:

K =
1

2

(
Φ + Φ̄

)2
+ S̄S − λ

(
S̄S
)2
, W = Sf(Φ), (2.10)

2However, see [131, 132, 133] for attempts towards building “sGoldstino inflation” model.
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which we will refer to as the “Kallosh-Linde-Rube (KLR) model” and consider as a toy

model for our SUSY bi-axion model. All scalars except for φ = Im(Φ) can be shown to

be heavy and thus the inflationary potential (see Appendix A for SUGRA scalar potential)

can be obtained as,

V (φ)
∣∣
〈S〉,〈η〉 = f 2(φ/

√
2),

Vinf = 3H2
inf = f 2(φ0/

√
2).

(2.11)

The SUSY order parameters for Φ and S during inflation can be evaluated as follows:

DΦW
∣∣
inf ≈ 0 , DSW

∣∣
inf ≈ f(Φ0) 6= 0. (2.12)

This implies that, as expected, ����SUSY during inflation is caused by the heavy sector

(S). Hence the Goldstino during inflation (further eaten by the gravitino) is equal to

the fermion from the S-sector (ψS) and not the inflatino (ψΦ).

The real scalar partner of the inflaton i.e. sinflaton (η = Re(Φ)), has the following

mass coming from its coupling to the SUSY-breaking curvature from (2.10):

mη ≈
√

6Hinf. (2.13)

This is within the favorable range of masses for observing it in primordial NG in the cos-

mological collider physics program. However, such a light sinflaton (i.e. mη ∼ O(Hinf))

is not guaranteed from this class of models. Indeed, a higher order term in the Kähler
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potential with a direct coupling between S and Φ, respecting the shift symmetry of φ,

K 3 − c

Λ2

(
Φ + Φ̄

)2
S̄S, (2.14)

can give a large contribution to the sinflaton mass:

m2
η ≈ 2Vinf + c

Vinf

Λ2
≈ 6H2

inf

(
1 +

c

2Λ2

)
. (2.15)

Thus, mη ∼ O(Hinf) for Λ ≈ O(1)MPl. But, mη � Hinf is also possible with Λ�MPl.

Even assuming mη ∼ O(Hinf), in order for η to mediate observable primordial NG,

there has to be sufficiently strong coupling between it and the inflaton (φ). The SUGRA

scalar potential from (2.10) does have such couplings, but these are shift-symmetry vi-

olating and hence very small, e.g. L 3 m2
φη

2φ2 ∼ 10−10η2φ2. However, higher order

shift-symmetric terms in Kähler potential,

K 3 c′

Λ2

(
Φ + Φ̄

)4
, (2.16)

can generate derivative-interactions as

L 3 c′

Λ2
(∂φ)2η2. (2.17)

This sinflaton-inflaton interaction (with a non-zero VEV for η) along with mη ∼ O(Hinf)

can give rise to observable NG for sufficiently small Λ and large 〈η〉. However, in this

chapter, we will not pursue the phenomenology of this model further.
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The main drawback of this construction is that the origin of such a form of La-

grangian (2.10) is not explained within the model. Also, it suffers from the issue of

trans-Planckian field displacement needed for φ, since a typical choice of f(Φ) in (2.10)

gives a large-field inflation model subject to the Lyth bound [27].

2.3 SUSY bi-axion model

In this section, we develop the setup of supersymmetric inflation with the pseudo-

Goldstone boson (or axion) nature of inflaton derived from a gauge symmetry in a com-

pact extra dimension (“extranatural inflation” [42]). Firstly, we describe how we obtain

the effective theory of a light axion supermultiplet starting from the N = 1 5D SUSY

gauge theory. Then, we describe how to introduce two such axion supermultiplets in or-

der to get feff > MPl (for trans-Planckian field displacement satisfying the WGC). Finally,

we also discuss how to take into account gravity, thus constructing our “SUSY bi-axion

model”.

As we will see later, this model has many common features with the KLR model

described in Section 2.2. It however provides a more UV-complete and robust picture

of inflationary dynamics where the central features are governed by the 5D SUSY gauge

theory structure.

2.3.1 Light axion supermultiplet from 5D SUSY gauge theory

In this sub-section, we will show how a single light axion supermultiplet can emerge

from 5D SUSY gauge theory. The extension to the more realistic case of two axion super-
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Figure 2.1: 5D gauge field and charged matter: non-SUSY version. See text and Table 2.1
for details.

Figure 2.2: 5D gauge field and charged matter: SUSY version. See text and Table 2.1 for
details.

multiplets follows in the next sub-section. Consider a flat extra dimension with bound-

aries, with a gauge field AM and a charged scalar field H propagating in the bulk (see

Figure 2.1). If Aµ and A5 have, respectively, Dirichlet and Neumann boundary condi-

tions at both the boundaries, then only A5 has a zero-mode
(
A

(0)
5

)
. As mentioned in

Section 2.1, if H has non-zero VEVs at both the boundaries, then it gives a tree-level
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5D super-multiplet 5D fields N = 1 4D superfields

Gauge multiplet AM , χDirac, ηreal
Vector superfields: V(x5) 3 Aµ(x5), χ1(x5)

Chiral superfields: Φ(x5) 3 η(x5) + iA5(x5), χ2(x5)

Hypermultiplet H,Hc, ψDirac
Chiral superfields: H(x5) 3 H(x5), ψ(x5)

Hc(x5) 3 Hc(x5), ψc(x5)

Table 2.1: N = 1 5D SUSY in the N = 1 4D SUSY language

contribution to the effective potential of A(0)
5 .

Now, consider the full 5D supersymmetric version of this setup (see Figure 2.2).

N = 1 5D SUSY is equivalent toN = 2 4D SUSY which can be written in theN = 1 4D

SUSY language as follows [135] (see Table 2.1). 5D SUSY gauge multiplet has a gauge

field (AM), Dirac gaugino (χDirac) and a real scalar (η). These can be represented inN =

1 4D SUSY language in terms of vector superfields V(x5) 3 Aµ(x5), χ1(x5) and chiral su-

perfields Φ(x5) 3 η(x5) + iA5(x5), χ2(x5), where the extra-dimensional coordinate x5 is

viewed as a mere continuous “label” from theN = 1 4D viewpoint. Charged matter fields

in 5D SUSY are part of a hypermultiplet which includes two complex scalars which are

conjugates of each other under the respective gauge group (H,Hc) and a Dirac fermion

(ψDirac). These can be represented inN = 1 4D SUSY language in terms of chiral super-

fields with conjugate representations: H(x5) 3 H(x5), ψ(x5);Hc(x5) 3 Hc(x5), ψc(x5),

again with the continuous “label” x5.

As illustrated in [135], imposing 4D SUSY and 5D Poincare symmetry automati-

cally generates an emergent 5D SUSY. Thus, the full 5D Lorentz-invariant, gauge-invariant

and SUSY action for a gauge multiplet and a charged hypermultiplet, keeping manifest
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only the N = 1 4D SUSY, can be written as follows:

S5 =

∫
d4x

∫ L

0

dx5

[∫
d2θ

1

4
W2

α + h.c.+

∫
d4θ

{
∂5V −

1√
2

(Φ + Φ̄)

}2

+

∫
d4θ

(
Hceg5VH̄c + H̄e−g5VH

)
+

∫
d2θ

{
Hc

(
m+ ∂5 −

g5√
2

Φ

)
H
}

+ h.c.

]
.

(2.18)

As mentioned in Section 2.1, in the presence of SUSY, we need tree-level contributions

from charged matter to the effective potential ofA5, which can be achieved by the charged

matter taking non-zero VEVs at the boundaries. Such VEVs break gauge invariance,

but this is allowed because we have already broken gauge invariance by the Dirichlet

boundary conditions for the boundary components of the gauge fields. These VEVs can be

achieved by adding the following boundary-localized superpotential terms to the action:

δS5 =

∫
d4x

∫ L

0

dx5

[∫
d2θ
{
λ(H− v)2 δ(x5) + λ′(H− v′)2 δ(x5 − L)

}
+ h.c.

]
.

(2.19)

Consider Dirichlet boundary conditions for V andHc and Neumann boundary con-

ditions for Φ and H, at both the boundaries. We implement these boundary conditions

via realizing the extra dimension with an interval as an “orbifold” of the circle. With the

angular coordinate (θ) on the circle going from −π to π, we identify the points θ with

−θ. Thus, half of the circumference of the extra-dimensional circle is the physical inter-

val with x5 going from 0 to πR ≡ L, where R is the radius of the circle. The Dirichlet

and Neumann boundary conditions for the fields in an interval can be implemented by

assigning, respectively, odd and even parity under orbifold (θ → −θ). (See [136] for a
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review of this.)

Let us solve for the classical potential of this model. We need to integrate out the

heavy fields (i.e. H,Hc and the KK modes in V) at tree-level to get an effective theory

in terms of Φ. We search for a supersymmetric vacuum of the full theory where inflation

happens at an excited state with ����SUSY vacuum energy Vinf. Considering the inflationary

energy scale to be much less than the masses of the heavy fields
(
V

1/4
inf � mKK ,m

)
3,

to the leading order in V
1/4

inf
mKK

, for the purpose of the dynamics of the heavy fields, their

ground state can be approximated to be supersymmetric even during inflation. Thus, we

can integrate them out by using their SUSY equations of motion.

Firstly, we can set V to zero since it contains only heavy fields and with zero VEVs.

Aµ in V cannot have non-zero VEV due to Lorentz invariance. The D-scalar in V is an

order parameter for SUSY and hence 〈D〉 = 0 for SUSY ground state. Of course the

fermions in V have vanishing VEVs. This leaves us with only the following terms in the

action:

S5 =

∫
d4x

∫ L

0

dx5

[∫
d4θ

{
1

2
(Φ + Φ̄)2 + H̄cHc + H̄H

}
+

∫
d2θ

{
Hc

(
m+ ∂5 −

g5√
2

Φ

)
H + λ(H− v)2 δ(x5) + λ′(H− v′)2 δ(x5 − L)

}
+ h.c.

]
.

(2.20)

The heavy charged matter fieldsH andHc, with 5D bulk masses m & mKK , can now be

3As can be seen in Section 2.4.1, V
1/4

inf
mKK

∼ vL√
f
e−mL ∼ 1√

g e
−mLvL3/2 which is small due to the

smallness of e−mL and the hypermultiplet boundary VEVs ∼ v.
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integrated out by imposing the following SUSY constraints:

∂W

∂H = 0 =
∂W

∂Hc
. (2.21)

Thus, we obtain the following 4D effective action4 for Φ,

S4 =

∫
d4x

[∫
d4θ

1

2
(Φ + Φ̄)2

+

∫
d2θ

(
W0 + λ

v2 e−mL e
gL√

2
Φ

+ v′2 emL e
− gL√

2
Φ − 2vv′

emL e
− gL√

2
Φ

+ e−mL e
gL√

2
Φ

+ h.c.

)]
,

(2.22)

where we take λ = λ′ for technical simplicity. The derivatives on H and Hc at the

boundaries in (2.20) are evaluated by taking into account their orbifold parity (even and

odd, respectively).

The Kähler potential in (2.22) displays shift symmetry for A5, which is the imagi-

nary part of the scalar component of Φ. However, integrating out the charged hypermul-

tiplet using (2.21) also generates shift symmetry violating terms in the Kähler potential.

These corrections are however functions of gLΦ and suppressed by e−mL, our modest ex-

pansion parameter. Thus, they contribute to the scalar potential only with Φ
f

-dependence(
f ≡ 1

gL

)
, not changing its qualitative form. Furthermore, the e−mL suppression makes

these corrections sub-dominant and hence we neglect them here.

The superpotential is the source of shift symmetry breaking for A5 which is natu-

rally suppressed by e−mL for mL & 1 (see e.g. for v ∼ v′). This is a generic feature

of extranatural inflation scenario where the compact extra dimension effectively acts as a

4Here, all the 4D fields are in canonical normalization. The 4D gauge coupling g is defined as: 1
g2 = L

g25
.
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Figure 2.3: Bi-axion inflation field content: non-SUSY version. See text for details.

“filter” for any far-UV physics by suppressing its contribution by e−MUV L. W0 is a con-

stant term in the superpotential which is relevant only in the presence of gravity, as we

will see in Section 2.3.3.

2.3.2 Bi-axion generalization to realize feff > MPl

As mentioned in Section 2.1, in order to have feff > MPl, we need to introduce

two axions in such a way that one of their linear combinations has an effective super-

Planckian field range. The non-SUSY version of bi-axion inflation has the setup as shown

in Figure 2.3. There are two gauge fields (AM , BM) with only (A5, B5) having zero

modes (by suitably assigning boundary conditions). The scalar fields H1 and H2 are

charged under the gauge groups as (0, 1) and (1, N), respectively. This field content

can now be embedded into the respective 5D SUSY multiplets, as shown in Figure 2.4.

By extending the construction from Section 2.3.1, the full 5D action in this case can be
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Figure 2.4: Bi-axion inflation field content: SUSY version. See text for details.

obtained as follows:

S5 =

∫
d4x

∫ L

0

dx5

[∫
d2θ

(
1

4
W2

A,α +
1

4
W2

B,α

)
+ h.c.

+

∫
d4θ

{
∂5VA −

1√
2

(ΦA + Φ̄A)

}2

+

{
∂5VB −

1√
2

(ΦB + Φ̄B)

}2

+

∫
d4θ
{(
Hc

1e
g5VBH̄c

1 + H̄1e
−g5VBH1

)
+
(
Hc

2e
g5(VA+NVB)H̄c

2 + H̄2e
−g5(VA+NVB)H2

)}
+

∫
d2θ

{
Hc

1

(
m+ ∂5 −

g5√
2

ΦB

)
H1 +Hc

2

(
m+ ∂5 −

g5√
2

(ΦA +NΦB)

)
H2

}
+ h.c.

+

∫
d2θ
{
λ1(H1 − v1)2 δ(x5) + λ′1(H1 − v′1)2 δ(x5 − L)

}
+ h.c.

+

∫
d2θ
{
λ2(H2 − v2)2 δ(x5) + λ′2(H2 − v′2)2 δ(x5 − L)

}
+ h.c.

]
.

(2.23)

Similarly to how (2.22) was obtained starting from (2.18) and (2.19) in the previous

section, we can obtain the 4D effective Kähler potential and superpotential for the two
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axion supermultiplets (ΦA,ΦB) as follows:

K =
1

2
(ΦA + Φ̄A)2 +

1

2
(ΦB + Φ̄B)2,

W = W0 + λ1
v2

1 e
−mL e

gL√
2

(ΦA+NΦB)
+ v′21 emL e

− gL√
2

(ΦA+NΦB) − 2v1v
′
1

emL e
− gL√

2
(ΦA+NΦB)

+ e−mL e
gL√

2
(ΦA+NΦB)

+ λ2
v2

2 e
−mL e

gL√
2

ΦB + v′22 emL e
− gL√

2
ΦB − 2v2v

′
2

emL e
− gL√

2
ΦB + e−mL e

gL√
2

ΦB
.

(2.24)

We would like to highlight here that in (2.23), and hence also in (2.24), all the scales and

field ranges are sub-Planckian.

2.3.3 Adding SUGRA and identifying the SUSY vacuum

We have not considered the effects of gravity so far in obtaining the L4,eff(ΦA,ΦB)

of (2.24). But now we can use this 4D effective K and W to compute the SUGRA scalar

potential (VSUGRA) directly in 4D (see Appendix A). With this strategy, from effective

field theory perspective, we could only be missing MPl-suppressed terms e.g. K 3 (ΦA +

Φ̄A)4, (ΦB + Φ̄B)4. In the case of SUSY bi-axion model, as highlighted below (2.24), the

range (and hence also the VEVs) of fields in ΦA and ΦB is sub-Planckian, thus making the

above-mentioned MPl-suppressed terms also sub-dominant. We would like to highlight

here that in the case of a single axion (in Section 2.3.1), such MPl-suppressed terms in

(2.22) are not sub-dominant due to the super-Planckian range of the fields. Hence the

truncation of the Φ/MPl expansion is uncontrolled in this case. In Section 2.5, we will see

that higher order Kähler interactions can have interesting observable effects if they are

stronger than MPl-suppressed.

The W0 parameter in (2.24) is now physical, due to the presence of gravity, and it

32



will contribute to the vacuum energy. We will consider a boundary-localized contribution

to W0 such that the net post-inflationary vacuum energy is (approximately) zero.

In order for the inflationary picture to be compatible with low energy SUSY (bro-

ken only at a scale somewhat above the EW scale) and approximately zero cosmolog-

ical constant as observed today, the vacuum of post-inflationary dynamics should be

SUSY-preserving and with zero vacuum energy. Thus, it seems that the inflation end-

point has to (approximately) satisfy the following three conditions: (1) unbroken SUSY

(〈DΦiW 〉 = 0), (2) zero vacuum energy (〈W 〉 = 0), and (3) local minimum5 of VSUGRA.

However, as shown below, (1) and (2) automatically imply (3), i.e. a point in the field

space satisfying DΦiW = 0 and W = 0 implies that it is automatically at a local mini-

mum of VSUGRA, so we do not bother to check (3) further.

Consider, for simplicity, a single chiral superfield Φ for which VSUGRA is

V = eK
(
K−1

ΦΦ̄
|DΦW |2 − 3 |W |2

)
. (2.25)

Now, for DΦW = 0 and W = 0, one can clearly see that,

∂ΦV = 0 = ∂Φ̄V, ∂Φ̄∂ΦV = eKK−1
ΦΦ̄
|∂ΦDΦW |2 , ∂2

ΦV = 0 = ∂2
Φ̄V, (2.26)

and for Φ = (η + iφ)/
√

2,

∂ηV = 0 = ∂φV, ∂
2
ηV = ∂2

φV =
1

2
eKK−1

ΦΦ̄
|∂ΦDΦW |2 . (2.27)

5Global minimum can be separated enough in the field space from this local minimum such that the
decay via tunneling does not happen even on the cosmological timescales.
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Thus, for K−1
ΦΦ̄
≥ 0 and KΦ̄ΦΦ, KΦ̄ΦΦ̄Φ finite, (2.27) implies a local minimum of VSUGRA.

The same proof can be applied for multiple chiral superfields Φi, with K−1
ΦiΦ̄i
≥ 0 in the

mass basis and no singularities in higher derivatives of K. These conditions are satisfied

in our cases of interest, since we mostly have K−1
ΦiΦ̄i

≈ 1 (see (2.24)) with corrections

suppressed by high scales Λ and small field VEVs (see Section 2.5.1).

Furthermore, the conditionsDΦiW = 0 andW = 0 are equivalent to the conditions

∂ΦiW = 0 , W = 0, (2.28)

since DΦiW = ∂ΦiW + (∂ΦiK)W . This hugely simplifies identifying the inflation end-

point analytically. The conditions ∂ΦAW = 0 = ∂ΦBW can be satisfied for the super-

potential in (2.24) minimally by the following choice for the parameters6 that govern the

hypermultiplet VEVs at the boundaries (see (2.23)) :

v1 = v′1 = v2 ≡ v, v′2 ∼ ve−mL. (2.29)

In order to avoid having significant fine-tuning for choosing v′2 ∼ ve−mL, we consider

e−mL ∼ O(1), while still having e−mL < 1 for valid perturbative expansion (e.g. e−mL ≈

1/3 with mL ≈ 1.1). With the choice of parameters vi, v′i as in (2.29), and after doing a

change of basis from (ΦA,ΦB) to (Φh,Φl) as defined by

Φh ≡ ΦB +
1

N
ΦA , Φl ≡ ΦA −

1

N
ΦB, (2.30)

6The simplest choice with v1 = v′1 = v2 = v′2 does not admit a solution to ∂ΦA
W = 0 = ∂ΦB

W when
restricted to sub-Planckian field values.
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the superpotential from (2.24) becomes

W

v2
=
W0

v2
+ λ1

1− 1

cosh
(
mL− gL√

2
NΦh

)


− 2λ2 e
−2mL e

gL√
2

(
Φh−

Φl
N

) [
1− cosh

(
gL√

2

(
Φh −

Φl

N

))]
+O

(
e−4mL

)
.

(2.31)

Now, we can identify the required Minkowski SUSY endpoint of inflation. Firstly,

we identify VEVs of all the scalars, Φk = 1√
2
(ηk + iφk), at inflation end by solving

∂ΦkW = 0 to obtain

〈φl〉 = 0 = 〈φh〉 , 〈ηh〉 ≈
fmL

N
, 〈ηl〉 ≈ fmL, (2.32)

with f ≡ 2
gL

. Then, plugging these VEVs back into (2.31), we can enforce 〈W 〉 = 0. This

self-consistently demands W0 to be chosen to cancel the terms in (2.31) sub-dominant in

e−mL, i.e.

W0 ∼ v2 · O
(
e−4mL

)
, (2.33)

where, as mentioned below (2.29), e−mL is our modest expansion parameter.

One can clearly see from (2.31) that W ≈ W (NΦh,Φl/N), for N � 1, and hence

the scalar potential will be of the form

V ≈ V

(
Nηh
f

,
Nφh
f

, ηl,
φl
Nf

)
. (2.34)

Due to the eK contribution from VSUGRA, and that K 3 1
2

(
Φl + Φ̄l

)2 has ηl- but no φl-

dependence, the potential along ηl varies over MPl, and not Nf > MPl. As we will
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detail in Sec. 2.4.1, from (2.34) we can power-count mηh ,mφh ∼ Hinf · O
(
N2

f

)
� Hinf

and mηl ∼ O(Hinf), while only mφl � Hinf. We will show in the Sec. 2.4.1 that after

integrating out the heavy fields (ηh, φh, ηl), we get Veff

(
φl
Nf

)
such that φl has an effective

super-Planckian field range: feff = Nf > MPl with f < MPl and N � 1. Thus, we

expect that the SUSY vacuum φl = 0 can be approached from some φinitial
l ∼ O(Nf)

along a slow-roll potential with the slow-roll parameters ε, η ∼
(
MPl
Nf

)2

� 1.

As in the case of single axion supermultiplet (see below (2.22)), integrating out

the charged hypermultiplets in (2.23) also generates shift symmetry violating terms in

the Kähler potential in (2.24). Similar to the case of single axion supermultiplet, these

corrections are functions of Φl
feff

which maintain the form of the effective inflationary po-

tential, Veff

(
φl
feff

)
, i.e. effective super-Planckian field range for φl. Furthermore, they

are suppressed by powers of e−mL, our modest expansion parameter, which makes them

sub-dominant and hence we neglect them here.

2.4 Inflationary history

In this section, we describe various aspects of the inflationary history from our

SUSY bi-axion model. Here we discuss the inflationary trajectory, SUSY breaking dur-

ing inflation, accounting for the SUSY breaking vacuum that we occupy today, and the

interplay of different fine-tunings within this model.
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2.4.1 Inflationary trajectory

In order to identify the inflationary trajectory and the effective potential along it, we

first consider the general problem where a potential depends on some heavy fields ~H and

some light fields ~L. We expand the potential to quadratic order in ~H while keeping it to

all orders in ~L:

V
(
~H, ~L

)
= V

(
〈 ~H〉, ~L

)
+ Ai

(
~L
)
· δHi +

1

2
m2
ij

(
~L
)
· δHi · δHj +O(δH3). (2.35)

Here, 〈 ~H〉 are VEVs of the heavy fields at the post-inflationary SUSY vacuum, while δ ~H

are the fluctuations away from 〈 ~H〉 in the course of inflation. The expansion coefficients

are

Ai

(
~L
)
≡ ∂HiV

(
〈 ~H〉, ~L

)
, m2

ij

(
~L
)
≡ ∂Hi∂HjV

(
〈 ~H〉, ~L

)
, (2.36)

which are functions of ~L. We can now integrate out the heavy fields by extremizing

(2.35) with respect to the heavy fluctuations δ ~H , for given light fields ~L, thereby getting

an effective potential for ~L as

Veff

(
~L
)
≈ V

(
〈 ~H〉, ~L

)
+

1

2

[
Ai
(
m2
)−1

ij
Aj

] (
~L
)
. (2.37)

In the case of our SUSY bi-axion inflation model, the heavy and light fields along

the inflationary trajectory are, respectively,

~H = (ηh, φh, ηl) , ~L = (φl). (2.38)
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The coefficients Ai and mass matrix m2
ij in VSUGRA (A.2), for the superpotential (2.31),

scale parametrically as follows:

Ai

(
~L
)
∼
(
N2, N2,

1

N

) V
(
〈 ~H〉, ~L

)
f

,

m2
ij

(
~L
)
∼


N4 N2 N

N2 N4 0

N 0 f 2


V
(
〈 ~H〉, ~L

)
f 2

,

(2.39)

where the indices i, j run over ~H in the same order as in (2.38). We can now estimate the

parametric size of the heavy fluctuations during inflation as

〈
δ ~H
〉
∼
(
f

N2
,
f

N2
,

1

Nf

)
. (2.40)

This then implies that the O(δH3) term that we dropped in (2.35) is sub-dominant, sup-

pressed by the small parameters 1
N

and 1
Nf

, and hence can be ignored along the inflation-

ary trajectory.

The mass eigenvalues of the heavy fluctuations δ ~H are as follows:

m2
1,2 ≈ m2

ηh,φh
∼ N4

V
(
〈 ~H〉, 〈~L〉

)
f 2

∼ N4

f 2
H2

inf,

m2
3 ≈ m2

ηl
∼ V

(
〈 ~H〉, ~L

)
∼ H2

inf

(
~L
)
.

(2.41)

Thus, the heavy mass-squared eigenvalues are all positive and much larger than m2
φl
∼

V (〈 ~H〉,~L)
N2f2 . Hence, we can integrate out the heavy fluctuations δ ~H all along the inflationary
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Figure 2.5: The dark line refers to the effective inflationary potential Veff(φl) after nu-
merically integrating out the heavy fields ηh, φh, ηl all along the inflationary trajectory.
For comparison, a pure cosine potential with the magnitude matching to that of Veff(φl)
is plotted as the dashed line. Inflation can start close to the hilltop of Veff(φl), with
Vinf ∼ v4e−4mL

f2 .

trajectory yielding

Veff (φl) ≈ V

(
〈 ~H〉, φl

Nf

)
·
[
1 +O(1) +O

(
1

N2f 2

)]
. (2.42)

Here, the second term comes from integrating out the mass eigenstates (H1, H2) ≈

(ηh, φh) while the third term comes from integrating out H3 ≈ ηl. Since the contribu-

tion from (H1, H2) is of the same order as V
(
〈 ~H〉, φl

Nf

)
, we perform the integration out

of δ ~H numerically. Firstly, we verify that as suggested by the parametric estimates in

(2.39) and (2.41), the heavy mass-squared eigenvalues are indeed much larger than m2
φl

all along the inflationary trajectory. The numerically computed Veff(φl) is as shown in

Fig. 2.5. It has the following approximate analytic form,

39



Veff(φl) ∼ H2
inf

(
1− cos

φl
Nf

)
, Hinf ∼ λ2

v2

f
e−2mL, (2.43)

which is the leading contribution in terms of the small parameters 1/N , f and e−mL.

Thus, the SUSY bi-axion model effectively provides an approximate Natural Inflation

model with feff = Nf > MPl, where the best-fit values are [5]

feff = Nf ∼ 10MPl , V
1/4

inf ∼ 1016GeV. (2.44)

The precise inflationary potential, Veff(φl), does contain “higher harmonics” in φl
Nf

. Al-

though, these do not affect the qualitative features as outlined above, they can play an

important role in precision fitting to the CMB data which we will explore in a future

work.

As can be seen from (2.41), the heavy fields ηh, φh are much heavier than Hinf:

mηh ,mφh ∼ Hinf
N2

f
. (2.45)

While sinflaton (ηl), the real scalar partner of the inflaton, has an intermediate mass,

mηl ∼ O(Hinf), (2.46)

about which we will discuss more in Section 2.5.1.1.
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2.4.2 SUSY breaking during inflation

As mentioned earlier in Section 2.2, the approximate de Sitter geometry during

inflation requires it to be an excited state with spontaneous ����SUSY on top of the post-

inflationary SUSY vacuum. The SUSY order parameters (see Appendix A) for Φh and Φl

evaluated along the inflationary trajectory are

DΦhW
∣∣
〈Φh〉,〈ηl〉

∼ λ2
v2

f
e−2mL e−i

φl
Nf

(
1− cos

φl
Nf

)
,

DΦlW
∣∣
〈Φh〉,〈ηl〉

∼ O
(

1

N

)
·DΦhW

∣∣
〈Φh〉,〈ηl〉

.

(2.47)

Here, we can clearly see that the SUSY order parameters are zero only at the vacuum (i.e.

φl = 0).

As described in Appendix A, the massless Goldstino of spontaneous ����SUSY, which

is “eaten” by gravitino to become massive, is given by the linear combination of all the

fermions weighted by the respective SUSY order parameters: ψGoldstino ∝ 〈DΦiW 〉 · ψi.

Hence, the SUSY order parameters during inflation (2.47) imply that,

ψGoldstino ∼ ψh +O
(

1

N

)
· ψl, (2.48)

i.e. the Goldstino during inflation belongs mostly to the heavy sector (Φh) and not to the

inflaton sector (Φl). In other words,����SUSY during inflation is caused mostly by the heavy

sector (Φh). This feature of our SUSY bi-axion model is very similar to the KLR model

discussed in Section 2.2 where the Goldstino during inflation belongs solely to the heavy

sector (S) (see (2.12)).
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2.4.3 SUSY breaking after inflation

We need to account for the post-inflationary ����SUSY vacuum that we occupy today

which we have neglected so far. In this section, we look for any possibly significant effects

of this ����SUSY vacuum on the inflationary dynamics. We consider a boundary-localized

Polonyi-type sector with

δK4 = X̄X − (X̄X)2

Λ2
, δW4 = Λ2

���SUSYX, (2.49)

which undergoes spontaneous ����SUSY at a scale ∼ Λ���SUSY. Consider the ����SUSY from this

hidden sector to be minimally communicated to the Standard Model via MPl suppressed

interactions which then implies an intermediate scale ����SUSY Λ���SUSY ∼
√
vweak ·MPl ∼

1011GeV . We expect that as long as Λ���SUSY � Hinf or even V 1/4
inf , the effect of this ����SUSY

X-sector on the inflationary dynamics will be negligible. (See also e.g. [137].) We show

below that indeed this expectation is borne out here.

The scalar field X in the Polonyi sector gets O(Hinf) mass during inflation, similar

to that of ηl. Thus, X can be added to the “heavy” fields ~H of (2.38) and essentially the

same procedure as described in Sec. 2.4.1 can be repeated to integrate them out along the

inflationary trajectory. The tadpole and mass matrix terms (see (2.36)) involving X field

scale as follows:

AX(φl) ∼ Λ2
���SUSYHinf(φl) · f , m2

XX(φl) ∼ H2
inf(φl),

m2
ηhX

(φl) ∼ m2
φhX

(φl) ∼ Λ2
���SUSYHinf(φl) ·N , m2

ηlX
(φl) ∼ Λ2

���SUSYHinf(φl)
1

N
.

(2.50)
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The fluctuations of X during inflation can be estimated from (2.50) as

δX ∼ Λ2
���SUSYf

V
1/2

inf (φl)
. (2.51)

The O(δH3) terms in (2.35) involving X are hence sub-dominant, suppressed by Λ��SUSY

V
1/4

inf

.

We can now integrate out X following (2.37) yielding

δVeff(φl) ∼ Λ4
���SUSY · f 2 ·

[
1 +

1

N2

Λ4
���SUSY

Veff(φl)

]
(2.52)

This δVeff(φl) is much smaller than the Veff(φl) of (2.42). Thus, as expected, for Λ���SUSY ∼

1011GeV and V 1/4
inf ∼ 1016GeV (see (2.44)) satisfying Λ���SUSY � V

1/4
inf , the ����SUSY X-

sector gives a negligible contribution to Veff(φl) and hence does not significantly affect

the inflationary dynamics.

2.4.4 Interplay of electroweak, cosmological constant and superpotential

tunings

In order to have (almost) vanishing vacuum energy after the end of inflation, as

discussed in Section 2.3.3, we need to have 〈W 〉 = 0 which can be achieved by tuning the

W0 parameter in (2.24). We also need to account for the SUSY breaking vacuum that we

occupy today. Here, we evaluate this combined fine-tuning which displays an interesting

interplay with the electroweak (EW) and cosmological constant (CC) fine-tunings.

Consider the ����SUSY hidden sector of Sec. 2.4.3 which minimally communicates to

the Standard Model via gravity mediation (i.e. MPl suppressed interactions). In order for
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it to address the electroweak hierarchy problem, this requires that
V

today
��SUSY

M2
Pl
∼ v2

weak.7 This

implies the following fine-tuning in the EW sector,

TEW ∼
v2

weakM
2
Pl

V today
���SUSY

, (2.53)

which can be minimized with
(
V today
���SUSY

)1/4

∼ √vweakMPl, as is standard. This����SUSY sector

and also ∆W0 6= 0 in (2.24) give contributions to the CC today as below:

CC = −3
∆W 2

0

M2
Pl

+ V today
���SUSY

(obs.)∼ meV4. (2.54)

The two terms in the above equation have typical sizes of ∼ v4

M2
Pl

(see (2.33)) and ∼

v2
weakM

2
Pl, respectively, which consist of a priori different and unrelated scales. This im-

plies that multiple contributions to ∆W0, each of magnitude ∼ v2

MPl
, must first cancel to

within
√
V today
���SUSY. Hence, we have the following fine-tuning in the contributions to W0:

TW0 ∼

√
V today
���SUSYMPl

v2
. (2.55)

Once the two terms on the right hand side of (2.54) are of the same order, they still have

to cancel to give CC ∼ meV4 as observed today. This amounts to having the following

usual CC fine-tuning:

TCC ∼
meV4

V today
���SUSY

. (2.56)

As can be seen from (2.53) and (2.56), the EW and CC fine-tunings favor ����SUSY at

7V today
��SUSY = Λ4

��SUSY
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low-scale. However, (2.55) shows that the W0 fine-tuning displays preference for ����SUSY

at high-scale! But, the net fine-tuning, assuming that these three are independent of each

other, is

Tnet = TEW × TW0 × TCC ∼
v2

weakM
3
PlmeV4

v2

(
V today
���SUSY

)−3/2

. (2.57)

This shows a net preference for����SUSY at low-scale, namely close to the EW scale.

Our considerations here are reminiscent of comparable tuning issues that arise in

high-scale string-derived SUGRA theories, in particular the necessary existence of a high-

scale W0 which makes the tuning worse. See [138] for a review. For a sample choice

of the parameters, V today
���SUSY ∼ v2

weakM
2
Pl and v2 ∼ (0.1MPl)

3, we see that the net tuning

in (2.57) is considerable (Tnet ∼ 10−100), predominantly because of the Cosmological

Constant Problem. However, such a residual tuning is still acceptable in the context of

the anthropic principle or some as yet unknown mechanism solving this problem. See

[19, 20] for a review.

2.5 Observable signals

In this section we discuss the phenomenology of our SUSY bi-axion model. The

observable signals from this model can come in the form of primordial non-Gaussianities

mediated by heavy particles, sinflaton being the prime candidate for this. Also, “higher

harmonic” terms in the inflaton potential can give rise to periodic modulations in the

CMB.
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2.5.1 Primordial non-Gaussianities

As first introduced in [107] and further illustrated in [108, 109, 110, 111, 112, 113,

114, 115, 116, 117], a particle X can mediate primordial non-Gaussianities of observable

size if it (1) has mX ∼ O(Hinf), (2) has sufficiently strong X(∂φ)(∂φ) couplings, and

(3) can give tree-level contribution to inflaton 3-point function which can come only from

bosons.

2.5.1.1 Sinflaton

In the SUSY bi-axion model, mass of the sinflaton (ηl) during inflation is

mηl ≈
√

6Hinf, (2.58)

which can be seen schematically from VSUGRA as follows:

VSUGRA = eK
(
|DΦAW |2 + |DΦBW |2 − 3 |W |2

)
,

V (ηl) ≈ eη
2
l Vinf 3 η2

l Vinf ≈ 3H2
infη

2
l .

(2.59)

This contribution to mηl comes from the coupling of ηl to the ����SUSY curvature during

inflation which also shows up in the KLR model as described in Section 2.2 (see (2.13)).

However, as in the case of the KLR model (see (2.15)), mηl ∼ O(Hinf) is not guaranteed

in our SUSY bi-axion model too. A higher order term in Kähler potential of the form

K5 3 δ(x5)
c2

Λ2
2

(ΦA + Φ̄A)2(ΦB + Φ̄B)2 (2.60)
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can give a contribution to the sinflaton mass as

m2
ηl
≈ 2Vinf

M2
Pl

+
c2Vinf

Λ2
2

= 6H2
inf

(
1 +

c2M
2
Pl

2Λ2
2

)
. (2.61)

Thus, for c2
Λ2

2
� 1

M2
Pl

, mηl � Hinf is possible.8 The effective higher order coupling (2.60)

between ΦA and ΦB can arise radiatively via the loops of hypermultiplet (H2, H
c
2) which

is charged under both the gauge groups as (1, N). Naive dimensional analysis suggests

that this loop contribution to (2.60) is

(
c2

Λ2
2

)
loop
∼ g2N2

16π2

1

m2
KK

. (2.62)

Considering N ∼ O(100) and mKK ∼ M5 ∼ 0.1MPl
9, we can have

(
c2
Λ2

2

)
loop

. 1
M2

Pl

with g . 0.1. Thus, with g . 0.1, the contribution from loop-induced term (2.60) to

sinflaton mass is small, thus keeping mηl ∼ O(Hinf), which is crucial to get observable

NG mediated by it.

The references [139, 140] and [141] construct SUSY EFT of inflation with a mini-

mal field content which does not include any scalar other than the inflaton, especially the

sinflaton. This can be interpreted by the UV-completion of these EFTs having sinflaton

with mass much greater than Hinf. In our SUSY bi-axion model, as can be seen from

(2.61), there exists a region of parameter space where mηl � Hinf, which is consistent

with the results of [139, 140, 141]. This parameter space corresponds to Λ2 � MPl in

8One might worry that the sub-leading term (2.60) can have a dominant effect on the sinflaton mass
and whether this signals breakdown of the EFT expansion. This is however not true. The sinflaton mass
in (2.58) comes purely from MPl-suppressed SUGRA contributions whereas the higher order Kähler term
(2.60) gives a direct coupling with suppression scale (Λ2) which can be below MPl.

9M5 ∼MPl

(
1

MPlL

)1/3

is the scale at which gravity becomes strong in 5D.
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(2.61) or g > 0.1 in (2.62). This feature of having a region of parameter space allowing

msinflaton � Hinf is also present in the KLR model described in Section 2.2 (see (2.15)).

However, in this case, the size of primordial NG suffers a severe exponential “Boltzmann-

suppression” (∼ e−πmηl/Hinf). Below, we focus on the region where mηl ∼ O(Hinf) which

allows the sinflaton to be observable via primordial NG.

Even in the presence of mηl ∼ O(Hinf), ηl still needs to have sufficiently strong

coupling with the inflaton to mediate NG of observable size. The VSUGRA from (2.24) has

the following coupling which violates the shift symmetry for φl and hence is very small:

VSUGRA 3 10−3Hinf

MPl
Hinf ηlφ

2
l . (2.63)

This coupling gives rise to the primordial NG of the following typical size [115, 117]:

fNL ∼ 10−2Hinf

MPl
. 10−6. (2.64)

This is much less than the sensitivity of the proposed experiments involving 21-cm cos-

mology, fNL ∼ 10−2 [142, 143], or even from more futuristic surveys, fNL ∼ 10−4

[144].

However, the following shift symmetry preserving, higher order, boundary-localized

term in the Kähler potential,

K5 3 δ(x5)
c1

Λ2
1

(ΦA + Φ̄A)4, (2.65)
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can generate the following derivative coupling of sinflaton with inflaton:

L4 3
c1

Λ2
1

η2
l (∂φl)

2 . (2.66)

The above coupling can give primordial NG of the size [115, 117]

fNL ≈ 0.03 c2
1ε

(
MPl

Λ1

)4(〈ηl〉inf

MPl

)2

. 10−6

(
MPl

Λ1

)4

, (2.67)

where the VEV of sinflaton during inflation is 〈ηl〉inf ≈
M2

Pl
Nf
≈ 0.1MPl, as can be cal-

culated from VSUGRA using (2.24). ε in the above expression is the slow roll parameter

of inflation which is constrained to be . 10−2 [5]. The suppression scale Λ1 in (2.65),

which would be the cutoff scale on the boundaries, has to be less than M5. Consider-

ing M5 ∼ O(0.1)MPl, this implies that even for Λ1 being very close to M5, we can get

fNL ∼ O(10−2). This signal can be observed at the proposed 21-cm experiments as

described after (2.64). Furthermore, Λ1 can be as low as the inflationary energy scale

V
1/4

inf . 10−2MPl, while maintaining EFT control, in which case fNL ∼ O(1) or even

higher is also possible.

2.5.1.2 Boundary-localized gauge singlets

It is also possible to see boundary-localized fields via primordial NG. Consider, for

example, a chiral superfield X localized at one of the boundaries and singlet under both

the gauge groups A and B. If it has the following Kähler potential, i.e. a direct coupling
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with ΦA preserving its shift symmetry,

K5 3 δ(x5)

[
cX
ΛX

(ΦA + Φ̄A)2(X + X̄) + X̄X

]
, (2.68)

then it has the following derivative interaction between the real scalar part of X (ηX) and

the inflaton:

L4 3
cX
ΛX

ηX (∂φl)
2 . (2.69)

Also, analogous to the case of sinflaton as in (2.59), mass of this gauge singlet during

inflation is

mX ≈
√

3Hinf. (2.70)

(2.69) and (2.70) imply that the size of primordial NG mediated by ηX is as follows

[115, 117]:

fNL ≈ 0.75 c2
Xε

(
MPl

ΛX

)2

. 10−2

(
MPl

ΛX

)2

. (2.71)

Similar to the case of Λ1 as discussed below (2.67), ΛX . M5 ∼ 0.1MPl which can give

fNL & O(1).

If the direct coupling in (2.68) is of the form K5 3 δ(x5)
c′X
Λ2
X

(Φ + Φ̄)2X̄X , then it

gives the interaction L4 3 c′X
Λ2
X
|X|2 (∂φl)

2. In this case, the fNL mediated by X has an

additional suppression factor due to its VEV during inflation: fNL ∼ c2
Xε
(
MPl
ΛX

)2 ( 〈X〉
ΛX

)2

.

Hence, in order to get fNL of an observable size, we need to have 〈X〉 during inflation to

be sufficiently large as compared to ΛX .
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2.5.2 Periodic modulations in the CMB

Extra-dimensional realization of Natural Inflation gives the leading slowly varying

inflaton potential with super-Planckian field range (∼ feff = Nf > MPl), while also

generically giving sub-leading “higher harmonic” terms oscillating over a much shorter

range (∼ f, f/N �MPl). Although these higher harmonics in V (φinf) are suppressed by

factors of e−ML, they can still give observable effects in the form of primordial features

with periodic modulations in the CMB power spectrum. These features, being motivated

from various theoretical constructions, have been searched for in the Planck CMB data

[44, 118, 119, 120, 121, 122, 123, 124, 125, 126].

In our SUSY bi-axion model, there exist such higher harmonics in V (φl) arising

from within the model, but they are small. These can come from the sub-dominant terms

in the superpotential (2.31), δW = δW
(
e−mL · e

gL√
2N

Φl
)

, suppressed by powers of e−mL.

This gives corrections to the inflaton potential of the form

δV

Vinf
∼ e−2nmL cos

(
n
φl
Nf

)
. (2.72)

However, contributions to the periodic modulations in the CMB come only from the har-

monics with n� 1 i.e. n ∼ O(N). But, such cos
(
O(N) · φl

Nf

)
terms in the potential are

hugely suppressed by ∼ e−2mL·O(N). Thus, the higher harmonics from within the SUSY

bi-axion model cannot give rise to observable CMB periodic modulations.

But, let us now consider contribution from a generic heavy hypermultiplet beyond

our minimal model (H3,Hc
3), with mass M and charges (nA, nB) under the gauge groups
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A and B. This will give an additional term in the superpotential (2.31) as

δW ≈ 2v2e−ML
[
1− e

gL√
2

(nAΦA+nBΦB)
]
, (2.73)

where we have taken the parameters governing boundary VEVs of H3, H
c
3 to be equal:

v3 = v′3 = v. As expected, this is suppressed by e−ML which is “filtered” out by the

extra dimension for M � 1/L. However, as discussed below, the precision CMB ob-

servables can be sensitive to the contributions to periodic modulations sourced by such a

hypermultiplet if it is not too heavy. The contribution to the inflaton potential from (2.73)

is

δV

Vinf
≈ nBe

2mLe−ML cos

[
(NnB − nA)

φl
Nf

]
. (2.74)

The observational constraint on the size of CMB periodic modulations is
∣∣∣ δVVinf

∣∣∣ . 10−5,

also depending upon the higher harmonic frequency [125]. Considering nB ∼ O(N) ∼

100 and e−mL ∼ 1/3, we can get
∣∣∣ δVVinf

∣∣∣ ∼ 10−5 from M ∼ 20× 1
L

. This shows sensitivity

of CMB periodic modulations to the charged matter much heavier than the KK scale!

The 5D gauge theory being non-renormalizable has a cutoff which is given by

Λ5D ∼ c
g2

1
L

. As discussed below (2.62), we require g . 0.1 in order to have mηl ∼

O(Hinf) for getting observable primordial NG mediated by sinflaton. Hence, for g . 0.1

and c ∼ O(1), the cutoff is Λ5D & 100 × 1
L

. Thus, charged matter beyond the minimal

model with

M .
1

5
Λ5D (2.75)

can generate observable periodic modulations in the CMB power spectrum with
∣∣∣ δVVinf

∣∣∣ ∼
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10−5. Of course, some such heavy states are expected near the cutoff of 5D gauge theory

as part of a UV-completion of our non-renormalizable effective field theory.

2.6 Discussion

In the present work, we demonstrated the compatibility of low-energy SUSY (i.e.

SUSY broken only at somewhat above the EW scale) with high-scale axionic inflation

where the axionic nature of inflaton is derived from extra-dimensional gauge symmetry.

The inflaton potential, in the presence of SUSY, can be generated at tree-level by charged

matter in the 5D bulk with gauge symmetry breaking at the 5D boundaries. We also

required that this robust gauge-theoretic origin for the inflaton satisfy the Weak Grav-

ity Conjecture quantum gravity constraints, which are especially tight given the super-

Planckian inflaton field range required by the data (Lyth bound). But we showed that

this can be achieved by introducing two axion supermultiplets, containing a light infla-

ton direction having feff > MPl. The heavy sector, apart from stabilizing the inflationary

trajectory, also contributes dominantly to SUSY breaking (����SUSY) during inflation. The

Goldstino of spontaneous����SUSY during inflation lies mostly in this heavy sector.

Our SUSY bi-axion model displays an interesting interplay of electroweak (EW),

cosmological constant (CC) and superpotential (W0) fine-tunings after considering the

����SUSY vacuum we occupy today. The fine-tuning for EW and CC, as usual, prefer low-

scale ����SUSY. The W0 fine-tuning, however, shows preference for high-scale ����SUSY. We

showed that the net fine-tuning is dominated by EW and CC fine-tunings and hence

prefers low-scale����SUSY i.e. somewhat above the EW scale.
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The observable signals in our model can come in the form of primordial non-

Gaussianities (NG) and periodic modulations in the CMB. The sinflaton can naturally

haveO(Hinf) mass via its coupling to the����SUSY curvature during inflation. It can also nat-

urally have sufficiently strong couplings with inflaton such that it can be seen via primor-

dial NG in future 21-cm experiments, with the measure of NG, fNL, being & 10−2. The

sinflaton mass can receive large contributions from higher order Kähler terms which, how-

ever, can be kept sub-dominant with small enough gauge coupling. Similarly, a boundary-

localized gauge singlet can have O(Hinf) mass during inflation and strong enough cou-

pling with inflaton, via higher order Kähler couplings, thus allowing it to mediate large

primordial NG with even fNL & O(1).

Although the extra dimension acts as a “filter” for the unknown UV-completion of

our non-renormalizable model, with e−ML suppression, the precision observables in the

CMB can still probe modulating features imprinted by such heavy physics. We showed

that charged matter, not far below the effective field theory cutoff of our model, can

generate modulations in the inflationary potential,
∣∣∣ δVVinf

∣∣∣ ∼ 10−5, which lie within the

sensitivity of ongoing searches [123, 125].

As mentioned in Section 2.1, the recent Planck 2018 CMB data [5] puts tight con-

straints on Natural Inflation. The bi-axionic inflation studied here, while very roughly

giving a Natural Inflation potential, can have significant differences at precision level that

can be used to better agree with the data, as exemplified in [127]. We hope to further

explore SUSY axionic inflation models in the future for the best fit to the precision data.

54



Chapter 3: TwInflation: natural low-scale inflation via discrete symmetry

3.1 Introduction

As we discussed in the previous chapter, cosmic inflation can be implemented min-

imally by the slow rolling of a single real scalar field, the inflaton (φ), along its nearly flat

potential (V (φ)). But, this requires the inflaton to be significantly lighter than the Hubble

scale, which gives rise to a hierarchy problem known as the “η−problem” (see e.g. [36]).

Furthermore, the observations so far [5] seem to rule out or strongly constrain some

of the simplest forms of V (φ), originating from straightforward and natural microscopic

models explaining the lightness of the inflaton. They typically predict a large tensor-to-

scalar ratio, r & 0.01, and hence a high scale of inflation. But, with the non-observation of

primordial tensor fluctuations to date, the data seems to hint towards lower-scale inflation.

The upcoming and near-future proposed experiments like BICEP Array [28], Simons

Observatory [29], CMB-S4 [30], LiteBIRD [31], and PICO [32], will be able to measure

r & 10−3, corresponding to H & 5 × 1012 GeV. It is therefore interesting to reconsider

the structure of inflationary dynamics, especially keeping the η−problem in mind, to see

whether observable r is a robust prediction or whether extremely small r can be readily

achieved.

Indeed, inflation may well take place at a much lower scale than above, i.e. with
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H � 1012 GeV, with unobservably small tensor fluctuation at these near-future exper-

iments, although, realizing such low-scale inflation with a simple single-field model is

typically fine-tuned. This fine-tuning can come in the form of the potential, the model pa-

rameters, and also the initial conditions (see e.g. [145, 146, 147, 148, 149]). On the other

hand, multi-field inflation, i.e. with the field(s) orthogonal to inflaton playing an important

dynamical role in (ending) inflation, can help in the model building for low-scale infla-

tion. The classic example of this is Hybrid Inflation [51]. Here, the inflaton couples to a

“waterfall” field (σ) in such a way that σ has a φ-dependent mass term. During inflation,

the much heavier σ is fixed at 0, while φ performs the slow roll. As the inflaton rolls past

a critical field value, σ becomes tachyonic and rapidly rolls down to the global minimum

of the potential. This fast rolling along the “waterfall” on the inflationary trajectory ends

inflation by releasing the vacuum energy in the σ field. Hybrid inflation exhibits a separa-

tion of roles with the space-time expansion during inflation dominantly driven by vacuum

energy in σ, and the slow-roll “clock” provided by φ, which helps in realizing low-scale

inflation as we will review in Sec. 3.2. This provides a mechanism generating an effective

inflationary trajectory with an abrupt drop in vacuum energy, which is difficult to realize

from a single-field perspective. However, as we will review in Sec. 3.2, hybrid inflation

needs fine-tuning in the model parameters to achieve radiative stability and EFT control.

We will address this issue in the present work and build an EFT-controlled and natural

low-scale inflationary model.

The primary challenge offered by the hybrid inflation paradigm towards building a

microscopic model is the following: φ needs to be a light real scalar, but with sufficiently

strong non-derivative coupling with the heavy σ field as required for the waterfall effect.
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Even if φ is modeled as a pseudo-Nambu Goldstone boson (pNGB) of a global symme-

try, its coupling with σ explicitly breaks the symmetry and induces quadratic sensitivity

in the effective inflationary potential to the ultra-violet (UV) physics. Hence, we need

some extra ingredient to achieve naturalness in hybrid inflation. This issue is similar to

the case of the light Higgs boson as required in the Standard Model (SM) in the presence

of its Yukawa and gauge couplings. This, hence, motivates one to apply different particle

physics mechanisms explored in the literature to address the hierarchy problem of the SM

Higgs boson, to the case of hybrid inflation mentioned above. There are various super-

symmetric constructions of hybrid inflation, see e.g. [150, 151, 152, 153, 154]. Little

Inflaton [155, 156] is also one such proposal addressing the issue of naturalness in hybrid

inflation based on the Little Higgs mechanism [157]. This makes use of “collective sym-

metry breaking” to protect the inflaton potential from the radiative contributions sourced

by its coupling with the waterfall field. See also [158, 159, 160, 161] for more proposals

aimed at building such a radiatively stable, EFT-controlled and viable model for hybrid

inflation.

Twin Higgs [52] is another mechanism proposed to address the (little) hierarchy

problem of the SM Higgs boson. Here, the light scalar is protected from radiative cor-

rections sourced by its non-derivative couplings by using a discrete symmetry, with a

symmetry-based cancellation of 1-loop quadratic divergences. Inspired by this, in the

present work, we make use of a Z2-symmetry structure to build a quite simple, natural

and EFT-controlled model of hybrid inflation, which we will call “Twinflation”.1 As we

1We thank N. Craig, S. Koren and T. Trott for giving us permission to re-use this name, first used by
them in the different setting of Ref. [162].
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will see in Sec. 3.5, Twinflation can naturally give rise to a viable model of inflation, with

a red tilt in the primordial scalar fluctuations consistent with the observations [5], and

with the inflationary Hubble scale as low as ∼ 107 GeV.

Low-scale inflation and the consequent reheating, apart from explaining the small-

ness of yet-unobserved primordial tensor fluctuations, can also be motivated from other

particle physics considerations. For example, if QCD axions or axion-like particles con-

stitute (a significant fraction of) cold dark matter (CDM) and if Peccei-Quinn (PQ) sym-

metry is broken during inflation, low-scale inflation is favored to avoid CDM isocurvature

constraints (see e.g. [5, 45, 46]). Such inflationary scenarios are also often invoked so that

heavy, unwanted relics e.g. monopoles, moduli, gravitino, which might be generated by

the UV physics (see e.g. [47, 48, 49, 50]) are diluted away/not reheated.2 Furthermore,

for sufficiently low inflationary scales, we can have complementary terrestrial particle

physics probes of inflation and reheating, such as at current and future collider experi-

ments, see e.g. [163, 164, 165, 166].

The paper is organized as follows. In Sec. 3.2, we review the basic mechanism

of hybrid inflation, also reviewing that it requires fine-tuning of parameters to achieve

radiative stability and EFT control, the criteria of which we also explain. In Sec. 3.3, we

present a simple variant of hybrid inflation with a soft (dimensionful) waterfall coupling,

and show that even this suffers from a similar naturalness problem as before. In Sec. 3.4,

we describe the effective single-field inflation with the massive waterfall field integrated

out. Here, we also introduce a simplifying notation for the effective inflationary potential

2We note that it is also possible to avoid reheating heavy relics just by requiring a low reheating temper-
ature while still having a high-scale inflation.
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that arises quite generically from hybrid inflation (irrespective of its naturalness) using

which we can estimate the inflationary observables and constrain some model parameters.

In Sec. 3.5, we construct the Twinflation model, starting with a simple renormalizable

version, analysing its radiative stability and EFT consistency, and then presenting a more

complete version realizing the pNGB structure of the inflaton. In Sec. 3.6, we discuss a

simple way to address the cosmological domain wall problem related to the spontaneous

breaking of a (simplifying but non-essential) σ-parity at the end of inflation, via a small

explicit breaking. We conclude in Sec. 3.7.

3.2 Hybrid inflation and naturalness

The basic mechanism of hybrid inflation can be described by the following simple

variant [167] of the original potential in [51]:

V (φ, σ) = Vinf + v(φ) +
1

2
M2

σσ
2 +

1

4
λσσ

4 − 1

2
gφ2σ2 + . . . . (3.1)

Here, φ is the slowly rolling inflaton and σ is the “waterfall” field whose dynamics ends

inflation. Inflation starts at small φ, with 0 < gφ2 < M2
σ , such that the minimum in the

σ direction is at σ = 0. The ellipsis in Eq. (3.1) includes higher-dimensional interaction

terms ensuring global stability of the potential at large field values. A crucial ingredient

of the hybrid inflation mechanism is that during inflation the σ-mass is bigger than both

the φ-mass and the Hubble scale. This ensures that σ remains localized at σ = 0, and does

not play any role until the end of inflation. Therefore, during inflation, i.e. for gφ2 < M2
σ ,
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V (φ, σ) in Eq. (3.1) effectively reduces to

Veff(φ) ≈ Vinf + v(φ). (3.2)

For |v(φ)| � Vinf, this implies that the detailed dynamics of the inflaton is governed by

v(φ), while the vacuum energy Vinf dominantly drives the spacetime expansion. We will

see that the relaxation of Vinf to zero, as needed at the end of inflation, can be triggered

by σ dynamics, rather than purely the single-field rolling of φ. The crucial separation

of roles between v and Vinf is one of the primary reasons why the waterfall mechanism

allows for consistent low-scale models of inflation.

As inflation progresses, φ slowly rolls down its potential v(φ), i.e. towards larger

φ. As it crosses a critical value φ∗ = Mσ√
g

(assumed to be smaller than the minimum of

v(φ)), the effective mass-squared for σ switches sign. Consequently, the now-tachyonic

σ rapidly rolls down to its new minimum. This fast rolling of the waterfall field violates

the slow-roll conditions and ends inflation by releasing the inflationary vacuum energy,

Vinf. The two fields finally settle into the global minimum which can be characterized

by some φmin with σmin =
√

gφ2
min−M2

σ

λσ
. Demanding a negligible vacuum energy in the

post-inflationary era fixes

Vinf = 3H2M2
Pl ≈

(gφ2
min −M2

σ)
2

4λσ
=

(1− φ2
min/φ

2
∗)

2

4

M4
σ

λσ
∼ O(1)

M4
σ

λσ
. (3.3)

In the last step above, we have considered that the ellipsis in Eq. (3.1) fixes the global

minimum in φ only O(1) away from φ∗, i.e. φ∗ ∼ O(φmin). This is also so that there
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is no tuning required in the initial inflaton field location (see also Sec. 3.4). As we will

see in Sec. 3.5.4, all these aspects can be easily realized with φ being a pNGB of a global

symmetry and consequently its couplings taking trigonometric forms.

In the original hybrid inflation model [51], v(φ) = +1
2
m2
φφ

2 along with an opposite

choice of signs in the potential in Eq. (3.1) for the M2
σ and g terms, allowing inflation to

start at large φ. This convex form of v(φ) in hybrid inflation, however, leads to blue tilt in

the power spectrum of the primordial scalar perturbations (after respecting the constaint

on tensor-to-scalar ratio) which is strongly disfavored by the Planck data [5]. In order

to get the observed red tilted spectrum, we will consider a hilltop-like v(φ) [167] with

inflation happening somewhat near its maximum. In Sec. 3.4, we will see that no tuning

is required in the initial inflaton field value to achieve this. A simple example of such a

potential is

v(φ) = −1

2
m2
φφ

2 +
λφ
4
φ4 + . . . , (3.4)

which has a hilltop at φ = 0. The ellipsis above refers to sub-dominant higher-dimensional

terms in φ.

3.2.1 Naturalness considerations

In high-scale models of inflation, the inflaton field typically traverses super-Planckian

field distances [27], requiring special UV structures to ensure the consistency of the infla-

tionary effective field theory, e.g. as in [41]. Here, for our lower-scale inflation, we will

aim to have a more straightforward EFT consistency. In particular, we will be aiming to

construct a low-scale model of hybrid inflation where
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• all the parameters take natural (or bigger) values,

• all the relevant mass scales and field values are smaller than the respective EFT

cutoff(s),

• the EFT cutoff(s) is (are) sub-Planckian.

In the following, we will examine the naturalness of hybrid inflation, in light of the above

requirements, first for the original model in Eq. (3.1) (with a hilltop structure of v(φ)) and

then in Sec. 3.3 for our simple modification with a soft waterfall coupling.

The non-derivative coupling with the waterfall field in Eq. (3.1) badly breaks shift

symmetry of the inflaton and radiatively generates quadratic sensitivity in m2
φ to the UV

cutoff scale3 Λ: (
δm2

φ

)
1-loop

∼ gΛ2

16π2
. (3.5)

In order to satisfy naturalness in m2
φ, we require

(
δm2

φ

)
1-loop

.
(
m2
φ

)
tree

i.e. Λ2 .
(
16π2η

) H2

g
, (3.6)

implying that the UV cutoff Λ cannot be arbitrarily large. Here η ≡ M2
Pl
∂2
φV (φ,σ)

V (φ,σ)
�

1 is the slow-roll parameter during inflation, with (m2
φ)tree ∼ ηH2. Furthermore, the

requirement that σ is not dynamical during inflation, i.e. it being frozen at σ = 0, implies

its effective mass should be bigger than the Hubble scale,

M2
σ,eff ≡M2

σ − gφ2
0 ∼ O(1) · gφ2

0 & H2, (3.7)

3More precisely, Λ should be thought of as a placeholder for the mass of some heavy field.
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where φ0 denotes a typical inflaton field value during inflation and M2
σ,eff ∼M2

σ ∼ O(1) ·

gφ2
0. To satisfy conditions in Eq. (3.6) and (3.7), we need

φ2
0 &

Λ2

16π2η
. (3.8)

Since the observed tilt of the primordial perturbations gives η ∼ 10−2, this demands

inflaton field displacement bigger than the UV scale, i.e.

φ0 & Λ. (3.9)

However, this is only marginally consistent with our requirements above, and we cannot

take φ0 � Λ as desired.

Furthermore, even marginally satisfying validity of the EFT, i.e. φ0 ∼ Λ in Eq. (3.9),

we need to satisfy M2
σ,eff ∼ H2 in Eq. (3.7). However, using Eq. (3.3), this then requires

the post-inflationary σ-VEV to be ∼MPl:

〈σ〉2post−inf. ∼
M2

σ

λσ
∼M2

Pl
H2

M2
σ

∼M2
Pl, (3.10)

which is against our EFT requirements of sub-Planckian field values mentioned earlier.

In detail, 〈σ2〉post−inf. =
gφ2

min−M
2
σ

λσ
= M2

σ

λσ

(
φ2

min

φ2
∗
− 1
)

, and hence 〈σ2〉post−inf. <
M2
σ

λσ
is

possible implying a slightly sub-Planckian σ-VEV. However, this is only marginal, and

we will have a greater confidence in the EFT-control if the σ-VEV is parametrically lower

than MPl.

Thus, the only way to construct a consistent hybrid inflation model with Eq. (3.1),
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which is under EFT control, is with fine-tuning inm2
φ, i.e. with fine cancellations between

m2
φ,tree and δm2

φ,1−loop. Only at the cost of such a tuning, can we satisfy φ0 < Λ.

3.2.2 Allowing for different cutoff scales

Since the quadratic sensitivity of m2
φ at 1-loop comes due to the σ field running in

the loop, another solution one may try is allowing for different cutoff scales for φ and

σ, i.e. Λφ and Λσ, respectively. This can come about if φ and σ belong to two different

sectors with different physical scales involved in their UV completions. A familiar but

dramatic example is given by the chiral Lagrangian description of composite pions of

QCD, cut off by the GeV hadronic scale, while light leptons and gauge fields interacting

with these pions have a much higher cutoff.

With a choice

Λφ & φ0 & Λσ, (3.11)

one may evade Eq. (3.9) while still ensuring EFT control in the φ−sector. Now, we

examine if hybrid inflation satisfies naturalness for all couplings, all scales being sub-

Planckian and also smaller than the respective cutoffs, i.e. mφ, φ0 . Λφ and Mσ, 〈σ〉 .

Λσ. The radiative corrections to m2
φ now are

(
δm2

φ

)
1−loop

∼ gΛ2
σ

16π2
&
g〈σ〉2
16π2

∼ H2M2
Pl

16π2φ2
0

, (3.12)

where we use Λσ & 〈σ〉 and 〈σ〉 ∼ HMPl√
gφ0

following Eq. (3.10). Now, we can see that
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1-loop naturalness in m2
φ, i.e.

(
δm2

φ

)
1−loop

. m2
φ ∼ ηH2, can only be satisfied with

φ0 &MPl, (3.13)

which is against our requirements to realize a truly low-scale hybrid inflation model.

Thus, even allowing for separate cutoffs, hybrid inflation is still not naturally in

EFT control.

3.3 Hybrid inflation with a soft “waterfall” coupling

The naturalness problem described in Sec. 3.2 stems from the quadratic UV scale

sensitivity in m2
φ. One of the simplest solutions is to have only a soft shift symmetry

breaking for φ, i.e. a dimensionful φ− σ interaction, e.g.

V (φ, σ) = Vinf +

(
−
m2
φ

2
φ2 +

λφ
4
φ4 + . . .

)
+

(
M2

σ

2
σ2 +

λσ
4
σ4

)
− µφ

2
σ2 + . . . . (3.14)

Here, during inflation, i.e. for µφ < M2
σ , σ remains localized at σ = 0, thus giving

the same effective inflationary potential as Eq. (3.2). The ellipsis after the last term in

Eq. (3.14) above, as in Eq. (3.1), includes higher-dimensional interaction terms which

ensure that the global minimum in φ is only O(1) away from the critical value φ∗ = M2
σ

µ
.

As φ rolls down past φ∗, the waterfall in σ is triggered, thus ending inflation by releasing

the inflationary vacuum energy Vinf ∼ O(1)M
4
σ

λσ
, similarly to Eq. (3.3). As mentioned

before, this parametric form of Vinf along with φmin ∼ O(φ∗) can be explicitly realized in

the pNGB realization of the inflaton which we detail in Sec. 3.5.4.
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3.3.1 Naturalness considerations

The soft coupling µ generates only a logarithmic cutoff sensitivity in m2
φ:

(δm2
φ)1−loop ∼

µ2 ln Λ

16π2
. (3.15)

As in the previous case, demanding that the loop-induced inflaton mass is smaller than

its tree-level mass, i.e. µ2

16π2 . ηH2 (taking ln Λ ∼ O(1)), and that σ is non-dynamical

during inflation, i.e. M2
σ,eff ∼ µφ0 & H2, we get

H

φ0

.
µ

H
. 4π

√
η ∼ O(1). (3.16)

Therefore, at the first sight, there is no constraint such as φ0 & Λ as before. However, the

µ term in Eq. (3.14) also generates a quadratically divergent φ-tadpole:

V (φ, σ) 3 µΛ2

16π2
φ. (3.17)

Indeed, the soft waterfall coupling breaks φ → −φ symmetry allowing for a tadpole

like above. Although it is possible for the theory to have a larger tadpole, e.g. Λ3φ, but

it is natural for it to have the above radiatively generated value. We take µ � Λ to

characterize the small breaking of φ→ −φ symmetry in any coupling of the model. The

tadpole in Eq. (3.17) can be absorbed in Eq. (3.14) with a large shift in the φ field:

δφ ∼ µΛ2

16π2m2
φ

∼ µΛ2

16π2ηH2
∼ µΛ2

H2
. (3.18)
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Such a large shift in φ, however, also gives large contributions to other terms in Eq. (3.14),

e.g.

δM2
σ

M2
σ,eff
∼ δφ

φ0

∼ µΛ2

H2φ0

∼ M2
σ,eff

H2

Λ2

φ2
0

. (3.19)

We can see from above that, in order for naturalness inM2
σ (and also to allow for waterfall

transition), i.e. for δM2
σ .M2

σ,eff, we need

φ2
0

Λ2
&
M2

σ,eff

H2
& 1. (3.20)

This again implies φ0 & Λ, which is in contradiction with the EFT requirements stated

earlier.

3.3.2 Allowing for different cutoff scales

Allowing even for different cutoff scales in this hybrid inflation model with soft

coupling, we get a similar result as Eq. (3.13). The radiative corrections to M2
σ here are

(
δM2

σ

)
1−loop

∼ λσΛ2
σ

16π2
+

µ2Λ2
σ

16π2m2
φ

. (3.21)

Naturalness for the first term on the right hand side above, as before, demands 〈σ〉 .

Λσ . 4π〈σ〉, now with 〈σ〉 ∼ HMPl√
µφ0

. In order to satisfy naturalness for the second term

(sourced by quadratically divergent φ-tadpole), i.e.

1 &
µ2Λ2

σ

16π2m2
φM

2
σ

&
µ〈σ〉2
H2φ0

∼ M2
Pl

φ2
0

, (3.22)
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we again need

φ0 &MPl. (3.23)

Thus, we see that with either marginal or soft φ − σ coupling, even with different

cutoffs for the inflaton and the waterfall field, if we demand EFT control (i.e. all scales

being smaller than the respective cutoffs) and sub-Planckian physics, the only way to have

a consistent hybrid inflation model is with fine-tuning of the relevant parameters, m2
φ or

M2
σ as discussed in this and the previous section. This suggests that in order to build a

natural model for hybrid inflation, we need some significant new mechanism to entirely

get rid of the quadratic UV-sensitivity in the inflaton potential coming from its necessarily

non-derivative coupling to the waterfall field.

3.4 Effective single-field inflation

The models described in Sec. 3.2 and 3.3 cannot give rise to consistent hybrid in-

flation under EFT control without fine-tuning of parameters. Before we propose such a

natural model for hybrid inflation in Sec. 3.5, in this section we first focus on effective

single-field inflation with the massive waterfall field integrated out. We also introduce

here a simplifying notation for the effective inflationary potential that arises quite gener-

ically from hybrid inflation. As we will see, this simplified single-field analysis allows

us to easily estimate the inflationary observables and use them to constrain the effective

model parameters, even without knowing the detailed form of the full potential. This

“satellite view” will be helpful later in Sec. 3.5 by simply identifying the realistic parts of

parameter space deserving a fuller analysis.
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The waterfall field, although with a φ-dependent mass, still remains heavier than

H throughout inflation, except at the end of inflation when M2
σ(φ) passes through zero.

Thus, prior to the end of inflation we can integrate it out and get an effective single-field

description in terms of φ. Hybrid inflation quite generically gives this effective single-

field inflationary potential in the form of Eq. (3.2), which varies as some function v(φ)

with a large vacuum energy offset Vinf. In this section, we introduce a simplifying notation

with

v(φ) = V0 · F
(
φ

f

)
, (3.24)

where V0 controls the magnitude, while the shape is specified by a dimensionless function

F . The effective inflationary potential then has the following form:

Veff(φ) = Vinf + V0 · F
(
φ

f

)
; Vinf � V0. (3.25)

The hilltop-like v(φ) that we considered earlier in Eq. (3.4) has the form as in Eq. (3.24).

We will also show later how this simple form arises generically from a more complete

hybrid inflation model in Sec. 3.5 where the inflaton is realized as a pNGB, and where

F
(
φ
f

)
takes a trigonometric form.

The main benefit of using this simplifying notation is that, assuming the function F

and its derivatives are∼ O(1) during inflation, which is also the case in the model that we

discuss later in Sec. 3.5, we can obtain general expressions for inflationary observables

as shown below, even without specifying the explicit form of F . We assume that inflation

starts4 at φi which is somewhat near the hilltop of F
(
φ
f

)
as preferred by the data [5],

4More precisely, when the largest scales observable today exit the horizon during inflation.
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and ends at φe by a waterfall transition along the σ field. Then, the slow-roll inflation

parameters are5

η ≡ V ′′

V
M2

Pl ∼
V0

Vinf

M2
Pl

f 2
, ε ≡ 1

2

(
V ′

V

)2

M2
Pl ∼ η2 f

2

M2
Pl
,

As ≡
1

8π2

H2

M2
Pl

1

ε
∼ 10−2

η2

H2

f 2
, Ne ≡

∫ φe

φi

dφ

MPl

√
2ε(φ)

∼ 1

η

∫ θe

θi

dθ

F ′(θ)
∼ O(1)

η
.

(3.26)

The last relation above involving the number of observable e-foldingsNe uses the notation

θ ≡ φ/f . First line of Eq. (3.26) shows that quite generically the slow-roll parameter ε

is parametrically suppressed compared to η (for f � MPl), thereby naturally explaining

the smallness of the yet-unobserved primordial tensor fluctuations [5]. The observables—

spectral tilt of the primordial scalar fluctuations (1 − ns), tensor-to-scalar ratio (r), and

the scalar power spectrum amplitude (As)—as per the Planck CMB data [5, 22] are

1− ns = 6ε− 2η ≈ −2η ≈ 0.04 , r = 16ε < 0.06 , As ≈ 2× 10−9, (3.27)

where, in the first part above, we assume ε� η as is the case preferred by the data. Also,

as the spectral tilt constraint above shows, η < 0 is strongly preferred, especially for

the low-scale models we are considering (i.e. for small ε). A convex form of F
(
φ
f

)
in

Eq. (3.25), or more generally convex v(φ) in Eq. (3.2), e.g. v(φ) = +1
2
m2
φφ

2 as mentioned

earlier, gives η > 0 and hence a blue spectral tilt which is strongly disfavored. Hence, we

5The slow roll parameters ε, η as defined above are, in general, functions of φ. However, unless an
explicit functional argument is shown, they refer to the parameters evaluated at an epoch when the largest
scales observable today exit the horizon during inflation, normally ∼50-60 e-folds before the end of infla-
tion.
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consider a hilltop-like F
(
φ
f

)
with inflation happening somewhat close to its maximum.

Eq. (3.27) constrains the parameters of the effective single-field inflation as described by

Eq. (3.25), i.e. (Vinf, V0, f), as6

f

H
∼ 0.1

η
√
As
∼ 106 ,

V0

f 4
∼ 102η3As ∼ 10−12 ,

V0

Vinf
∼ ε

η
∼ O(10) r. (3.28)

Hilltop inflation models, in order to satisfy the slow roll conditions, typically require

inflation to happen very close to the hilltop. However, with a large offset in the vacuum

energy as in Eq. (3.25), this tuning in the initial inflaton field location is not required.

Here, the potential generically satisfies slow-roll conditions for all values of φ and not

just near its extrema. As can be seen in Eq. (3.26), Ne ∝ 1/η ∼ O(100). Hence, the

dimensionless integral there needs only to be O(1) to get Ne = 50 − 60 which can be

easily satisfied with φi, φe ∼ O(f).

3.5 Hybrid “Twinflation”

In the present section, we propose a natural model for hybrid inflation, “Twinfla-

tion”, which satisfies naturalness for all parameters, all mass scales and field values being

smaller than the respective UV cutoff scales, and sub-Planckian physics. We will also

make use of the estimates in Sec. 3.4, since the effective inflationary potential here has

the same form as in Eq. (3.25), as we will see later.

In order to get rid of the quadratic sensitivity of the inflaton potential Veff(φ) to-

6We will do a better job of estimating these parameters, especially f
H , in Sec. 3.5.4, taking the ∼ O(1)

factors in F and its derivatives from Eq. (3.25) into account.
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wards the UV physics, we consider mirroring the σ-field with a Z2 exchange symmetry.

Considering the original structure of hybrid inflation, Eq. (3.1), one could try gφ2σ2 →

gφ2 (σ2
A − σ2

B), such that the quadratic sensitivity of the inflaton mass to the UV scale is

canceled between σA and σB. However, no symmetry protects this structure and hence it

is not radiatively stable. Instead, we consider twinning the σ-field in our variant hybrid

inflation, Eq. (3.14), i.e.

µφσ2 → µφ
(
σ2
A − σ2

B

)
. (3.29)

Here, m2
φ has already only log-sensitivity to the UV scale. Now the twinning in σ

prevents a quadratically divergent φ-tadpole, and thereby removing the associated is-

sues as discussed in Sec. 3.3. Also, there exists a symmetry protecting this structure:

σA → σB, φ → −φ; along with σ-parity i.e. σi → −σi (i = A,B) for simplicity.7 So,

this structure is radiatively stable. This can also be realized by a UV completion where φ

is a pNGB of a U(1) global symmetry with soft explicit breaking (see Sec. 3.5.4).

A similar model construction to the one presented in the Sec. 3.5.1, i.e. Eqs. (3.30)

and (3.31), was considered in Ref. [168] but in the context of mirror-world models to

achieve asymmetric reheating of the mirror sector so as to avoid the ∆Neff constraints.

However, here our primary goal is to point out the utility of the twin symmetry in Eq. (3.30)

to address the η−problem for the inflaton, by constraining inflaton radiative corrections,

while reheating can proceed as in standard hybrid inflation.

7In the next section we will softly break the σ−parity in a controlled manner to address the cosmological
domain wall problem while ensuring naturalness.
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3.5.1 Basic model

We now consider the symmetry structure described above, namely,

σA → σB , φ→ −φ (3.30)

under the twin symmetry, and also σi → −σi for simplicity. The most general potential

consistent with the above symmetry is given by

V (φ, σA,B) = Vinf +

(
−1

2
m2
φφ

2 +
λφ
4
φ4 + . . .

)
+

((
1

2
M2

σσ
2
A +

λσ
4
σ4
A

)
+ (A→ B)

)
+
λ̄σ
4
σ2
Aσ

2
B

+
µ

2
φ
(
σ2
A − σ2

B

)
+ κφ2

(
σ2
A + σ2

B

)
+ . . . ,

(3.31)

where ellipsis after the last term includes higher-dimensional interaction terms, as in

Eq. (3.14). Approximate shift symmetry for the inflaton φ then requires

µ,mφ �Mσ and κ, λφ � λσ, λ̄σ , (3.32)

which ensures that φ is much lighter and weakly coupled as compared to σi.

Let us first analyze the effective inflationary dynamics at tree-level. During infla-

tion, i.e. for µφ < M2
σ , both the σ fields remain heavy and with vanishing VEVs. Then,

integrating them out at tree-level is simply dropping σi in Eq. (3.31). This gives

Veff(φ) = Vinf +

(
−1

2
m2
φφ

2 +
λφ
4
φ4 + . . .

)
= Vinf +

λφ
4

(φ2 − f 2)2 + . . . , (3.33)
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where f ∼ mφ/
√
λφ and the ellipsis includes sub-dominant higher-dimensional terms

in φ. This potential is of the form of Eq. (3.25) and hence all the results of Sec. 3.4,

in particular Eq. (3.28), apply here. We will consider inflationary trajectory somewhat

close to the hilltop of Veff(φ) (i.e. φ = 0), but still with a typical inflaton field value of

∼ O(f) to avoid any considerable initial location tuning. As φ rolls down its potential,

M2
σi

change as

M2
σA,B

(φ) = M2
σ ± µφ. (3.34)

In order for the waterfall effect to take place, we need

M2
σ ∼ O(µf). (3.35)

Since M2
σA

always stays positive along the inflationary trajectory, σA has no dynamical

role in the model. But σB, which is the true waterfall field here, turns tachyonic at φ∗ =

M2
σ

µ
∼ O(f) and rapidly rolls down to its new minimum. The global minimum can be

characterized by

σB,min =

(
µφmin −M2

σ

λσ

)1/2

=
Mσ√
λσ

(
φmin

φ∗
− 1

)1/2

, σA,min = 0. (3.36)

This fast rolling to the global minimum ends inflation by releasing the vacuum energy

given by

Vinf =
M4

σ

4λσ

(
φmin

φ∗
− 1

)2

∼ O(1)
µ2f 2

λσ
. (3.37)

In the last step above, as also alluded to before in Sec. 3.3, we have set φmin ∼ O(φ∗) ∼
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O(f) assuming that the higher-dimensional interaction terms in the ellipsis in Eq. (3.31)

fix the global minimum in φ at ∼ O(f). As we will see later in Sec. 3.5.4, this can be

easily realized in a more complete model with φ as pNGB of a U(1) global symmetry.

3.5.2 Radiative stability and naturalness

In order for the tree-level analysis of the Twinflation model from the previous sec-

tion to be valid even at loop-level, we need the radiative corrections in Eq. (3.31) to be

sufficiently small which we explore in this section. The effect of loops is two-fold: renor-

malizing tree-level parameters, and giving non-analytic field-dependence via logarithmic

terms in the Coleman-Weinberg (CW) potential. First, we require that renormalization

of tree-level parameters respects radiative stability and naturalness, and get the resulting

constraints on the model parameters. Then, in Sec. 3.5.3, we also consider the effects of

the full CW potential, but we will show that they can have significant effects only at the

boundary of the allowed parameter space, i.e. when naturalness in Veff(φ) is saturated,

which we examine numerically and show in Fig. 3.1. In this section, we will therefore

defer the full CW analysis in order to first identify the bulk of the viable parameter space.

Here we look for the constraints in the parameter space required to achieve natural-

ness of the tree-level parameters. In the σ-sector, quadratic divergence in M2
σ is induced

by the σ self-quartic couplings as

δM2
σ,1−loop ∼

λσΛ2
σ

16π2
+
λ̄σΛ2

σ

16π2
. (3.38)
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Hence, naturalness in M2
σ demands the cutoff in σ-sector to be

Mσ√
λσ

. Λσ . 4π
Mσ√
λσ
. (3.39)

The first constraint above is obtained by demanding that the VEV of σ is smaller than the

UV scale, which is one of our EFT consistency requirement. We also consider λ̄σ . λσ

such that the upper bound on Λσ is controlled by λσ as above. Since both λ̄σ and λσ get

the same radiative contributions as mentioned below in Eq. (3.40), this is justified.

In the φ-sector, for simplicity, first we consider an exact shift symmetry, which is

then only softly broken by the µ term in Eq. (3.31). Then, the loop-level one-particle

irreducible (1PI) effective potential has contributions as follows (here we track only the

µ-dependent corrections):

δm2
φ,1−loop ∼

µ2

16π2
ln Λσ ,

δ
(
λφ, λσ, λ̄σ

)
1−loop

∼ µ4

16π2M4
σ

∼ µ2

16π2f 2
,

δκ1−loop ∼
λσµ

2

16π2M2
σ

∼ λσµ

16π2f
.

(3.40)

Here, we first note that there is no quadratic sensitivity to the UV cutoff scales as in

Eq. (3.17), due to cancellations induced by the twin symmetry, and only a log-sensitivity

in m2
φ. Now, we will consider even tree-level hard breaking of φ-shift symmetry, i.e. tree-

level λφ and κ couplings, which are comparable to the loop contributions above. We will

take tree-level values for the other parameters to be at least comparable or bigger than
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their loop contributions. This gives

m2
φ,tree &

µ2

16π2
,
(
λσ, λ̄σ

)
tree

&
µ2

16π2f 2
, λφ,tree ∼

µ2

16π2f 2
, κtree ∼

λσµ

16π2f
,

(3.41)

taking ln Λσ ∼ O(1). We note that with the above choice for m2
φ and λφ, the φ-transit

scale is indeed O(f). But, the tree-level λφ and κ hard breaking terms now induce

quadratic UV-sensitivity in Veff(φ). However, their values satisfying the above constraints

are sufficiently small so that naturalness in m2
φ can still be maintained as below:

δm2
φ,1−loop,(λφ) ∼

λφΛ2
φ

16π2
∼ µ2

16π2

Λ2
φ

16π2f 2
.

µ2

16π2
. m2

φ,tree ,

δm2
φ,1−loop,(κ) ∼

κΛ2
σ

16π2
∼ µ2

16π2

Λ2
σ

16π2M2
σ/λσ

.
µ2

16π2
. m2

φ,tree.

(3.42)

As can be seen above, this requires cutoffs in the two sectors to be bounded as

Λφ . 4πf , Λσ . 4π
Mσ√
λσ

, (3.43)

where the σ-cutoff also satisfies Eq. (3.39). We note that these cutoffs can still be bigger

than the respective field values.

Getting a consistent inflationary model:

In order to get a consistent single-field inflation model, we need to satisfy

m2
φ ∼ ηH2 , Mσ & H , Vinf ∼ H2M2

Pl ∼
M4

σ

λσ
. (3.44)
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The first condition above, along with Eq. (3.41), requires µ . O(H). The second condi-

tion, i.e. the σ fields being at least heavier than the Hubble scale, combined withM2
σ ∼ µf

(see Eq. (3.35)) and f ∼ 106H (see Eq. (3.28)), requires µ & 10−6H . Together, these

constrain the model parameter µ as

10−6 .
µ

H
. O(1). (3.45)

The lower bound on µ above also satisfies 〈σ〉 .MPl following Eq. (3.37) and Eq. (3.39).

A stronger requirement of Λσ ∼ 4π〈σ〉 .MPl implies µ
H

& 10−3.

Lower bound on the Hubble scale:

The third condition in Eq. (3.44), which relates the inflationary Hubble scale to the

model parameters, implies

λσ ∼
M4

σ

H2M2
Pl
∼ µ2f 2

H2M2
Pl
∼ 1022µ

2

f 2

H2

M2
Pl
, (3.46)

using Eq. (3.28) in the last step. Hence naturalness in λσ, i.e. λσ & µ2

16π2f2 (see Eq. (3.41)),

combined with Eq. (3.46) gives a lower bound on the inflationary Hubble scale within our

Twinflation model as

H & 106GeV. (3.47)

This also implies a lower bound on the tensor-to-scalar ratio as r & 10−16.

As we can see above, naturalness in λσ also implies H2M2
Pl . 16π2f 4 i.e. Vinf .

Λ4
φ, with the φ-cutoff Λφ . 4πf . Also, perturbativity of λσ combined with Eq. (3.37) and

78



(3.39) implies Vinf . Λ4
σ. Thus, the inflationary energy scale being smaller than the UV

scales ensures good EFT control in this model.

Thus, our Twinflation model of Eq. (3.31), with the parameters satisfying the con-

straints in Eq. (3.41), exhibits naturalness and EFT control. All the mass scales and the

field values are less than the corresponding UV cutoff scales, especially f . Λφ and

〈σ〉 . Λσ. As we will see later in Sec. 3.5.4, there is a significant parameter space

available satisfying Λφ,Λσ . MPl (see Fig. 3.1) such that we have a truly low-scale,

sub-Planckian hybrid inflation model under EFT control, satisfying all of our naturalness

requirements as mentioned in Sec. 3.2.

3.5.3 One-loop Coleman-Weinberg effective potential

As we noted earlier, the σ fields are always heavy before the end of inflation, and

hence can be integrated out to give a 1-loop Coleman-Weinberg (CW) potential:

VCW(φ) =
∑
i=A,B

M4
σi

(φ)

64π2
ln
M2

σi
(φ)

Λ2
σ

=
µ2f 2

64π2

[(
2
φ2

f 2
+ · · ·

)
ln
µf

Λ2
σ

+
(φ∗ + φ)2

f 2
ln
φ∗ + φ

f
+

(φ∗ − φ)2

f 2
ln
φ∗ − φ
f

]
.

(3.48)

The first term above renormalizes m2
φ,tree as in Eq. (3.40). Parameterizing the tree-level

inflaton mass as

m2
φ,tree ≡ cφ

µ2

16π2
, (3.49)

79



the naturalness constraint in Eq. (3.41) requires cφ & O(1). Then, VCW(φ) in Eq. (3.48)

is comparable to tree-level Veff(φ) in Eq. (3.33) only when cφ ≈ 1, while giving sub-

dominant effects for the bulk of the natural parameter space (cφ � 1). Nevertheless, in

our full numerical analysis in Sec. 3.5.4, we will incorporate the logarithmic effects in the

inflaton that distinguish the 1-loop potential, but they are so modest as to be difficult to

resolve by eye, as we will see in Fig. 3.1.

3.5.4 Pseudo-Nambu-Goldstone inflaton realization

In this section, we discuss a simple and more complete extension of the model in

Eq. (3.31), realizing the inflaton as a pNGB of a global U(1) symmetry, with soft explicit

breaking. The Lagrangian is given by,

LUV =|∂Φ|2 − VΦ(|Φ|2)

+

((
1

2
(∂σA)2 − 1

2
M2

σσ
2
A −

λσ
4
σ4
A

)
+ (A→ B)

)
− λ̄σ

4
σ2
Aσ

2
B

+

(
µΦ

2
√

2
(σ2

A − σ2
B) +

cφ
64π2

(µΦ)2 + h.c.
)
− g|Φ|2

(
σ2
A + σ2

B

)
− Vinf. (3.50)

Similar to the symmetry structure in Eq. (3.30), we demand

Φ→ −Φ, σA → σB (3.51)

under the twin symmetry, and also for simplicity a Z2-symmetry under which σi → −σi

for i = A,B. Furthermore, we treat µ as a U(1) “spurion” with charge −1 that compen-

sates the +1 charge of Φ under the U(1). This spurion analysis, along with the symmetry
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structure in Eq. (3.51), uniquely fixes the Lagrangian in Eq. (3.50) at the dimension-4

level. There are two dimensionless coupling constants cφ and g, with µ,Mσ, λσ, λ̄σ be-

ing the same as in Eq. (3.31).8 The potential VΦ is such that it allows for a spontaneous

breaking of U(1) with the inflaton (φ) being the corresponding Nambu-Goldstone boson

(NGB). The µ−term in the third line of Eq. (3.50) then gives mass to the inflaton, as we

will see below, making it a pseudo-NGB. We parametrize the inflaton φ as Φ = f+χ√
2
eiφ/f ,

where χ is the radial mode and 〈Φ〉 = f is the VEV. Integrating out χ and redefining

φ
f
→ φ

f
+ π/2, we get an effective Lagrangian from Eq. (3.50) as

LIR =

((
1

2
(∂σA)2 − 1

2
M̃2

σσ
2
A −

λσ
4
σ4
A

)
+ (A→ B)

)
− λ̄σ

4
σ2
Aσ

2
B

+
1

2
(∂φ)2 − µf

2
sin

(
φ

f

)(
σ2
A − σ2

B

)
− cφ

µ2f 2

64π2
cos

(
2φ

f

)
− Vinf. (3.52)

Here we have defined M̃2
σ ≡ M2

σ + gf 2. For the waterfall mechanism to work, we

need both M2
σ ∼ µf , which was discussed earlier, and g . µ/f , which then implies

M̃2
σ ∼ M2

σ ∼ µf . Hence, in what follows, we will drop the tilde over M2
σ . This value of

g is technically natural since loop-contributions in the 1PI effective potential include

δg1−loop ∼
λσµ

2

16π2M2
σ

∼ λσµ

16π2f
� µ

f
. (3.53)

8To simplify the notation, we keep using the same parameter µ as before, although now it has a spurion
charge.
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Inflation starts somewhat near the hilltop along φ i.e. close to φ = 0. Expanding for

φ/f � 1 in Eq. (3.52), we get9

LIR ≈
((

1

2
(∂σA)2 − 1

2
M2

σσ
2
A −

λσ
4
σ4
A

)
+ (A→ B)

)
− λ̄σ

4
σ2
Aσ

2
B

+
1

2
(∂φ)2 − µφ

2

(
σ2
A − σ2

B

)
− Vinf + cφ

µ2

16π2

(
φ2

2
− φ4

6f 2
+ . . .

)
. (3.54)

For cφ & O(1), as required by technical naturalness in Eq. (3.50), this reproduces all the

interactions relevant for hybrid inflation as was studied earlier in Eq. (3.31) for cφ > 0.

During inflation, i.e. with sin
(
φ
f

)
< M2

σ

µf
, both σA,B remain heavy and with vanish-

ing VEVs. Thus, integrating them out at tree-level, which is dropping them in Eq. (3.52),

gives an effective inflationary potential

Veff(φ) ≈ Vinf + cφ
µ2f 2

64π2
cos

(
2φ

f

)
. (3.55)

This is of the form of Eq. (3.25) with the function F
(
φ
f

)
taking trigonometric form as

above, and hence all the results of Sec. 3.4 apply here too. As inflaton rolls past a critical

value φ∗ such that

sin

(
φ∗
f

)
=
M2

σ

µf
, (3.56)

waterfall is triggered along σB. The fields then rapidly roll down to the global minimum

9The size of the cosine potential in φ (∼ µ2f2/16π2) is much smaller than Vinf ∼ µ2f2/λσ , as we will
see later in Eq. (3.58), and hence the constant term from the cosine can be neglected here.
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which is situated at

φmin

f
=
π

2
, σA,min = 0,

σB,min =

√
1

λσ

(
µf sin

(
φmin

f

)
−M2

σ

)
=

√
µf

λσ

(
1− sin

(
φ∗
f

))
∼ O(1)

√
µf

λσ
.

(3.57)

The inflationary vacuum energy released during this waterfall transition is given by

Vinf ≈
µ2f 2

4λσ

(
1− sin

(
φ∗
f

))2

∼ O(1)
µ2f 2

λσ
. (3.58)

Thus, as mentioned earlier in Sec. 3.5.1, once φ is realized as a pNGB of a U(1) global

symmetry as in this section, the global minimum in φ is fixed only ∼ O(1) away from

the critical point triggering waterfall, i.e. φmin ∼ O(φ∗) ∼ O(f). Consequently, the

parametric dependence of Vinf (and hence H) on the model parameters is obtained as in

Eq. (3.58), which is as expected in Eq. (3.37).

Integrating out the heavy σ fields at 1-loop level, similar to Eq. (3.48), gives rise to

the following logarithmic dependence from the Coleman-Weinberg potential:

VCW

(
θ ≡ φ

f

)
=
µ2f 2

64π2

[
(sin θ∗ + sin θ)2 ln (sin θ∗ + sin θ)

+ (sin θ∗ − sin θ)2 ln (sin θ∗ − sin θ)
]
.

(3.59)

As mentioned earlier in Sec. 3.5.2, this can give considerable effects only when natural-

ness is saturated for m2
φ, i.e. for cφ ≈ 1. These effects, numerically computed in Fig. 3.1,

are however so modest as to be difficult to resolve by eye.
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Figure 3.1: Available parameter space in the U(1) version of our Twinflation model (see
Sec. 3.5.4) exhibiting naturalness and EFT-control: φ∗/f = π/5 for concreteness. The
right and bottom edges of the shaded region correspond to naturalness constraints on mφ

and λσ, respectively. The top and left edges correspond to the cutoffs Λφ and Λσ being
sub-Planckian, respectively. Λφ ≈ Λσ on the dotted line. The parameter cφ varies from
1 to ∼ 104 as we move from right to left edge, which makes the loop contributions to
inflaton potential smaller and smaller as compared to the tree-level term. The dashed lines
show contours for H = 107, 109, 1011 GeV, corresponding to r ≈ 10−15, 10−11, 10−7,
respectively. ns is fixed to 0.9649, its central value from the Planck CMB constraints [5].
Varying its value up or down by a percent shifts the entire blue region slightly to the left
or right, respectively, by about a percent which is hardly resolvable by eye.

Fig. 3.1 shows the available parameter space in our Twinflation model described

by Eq. (3.52), satisfying the requirements of naturalness and EFT control, and giving a

viable hybrid inflation model. Here we have fixed φ∗
f

= π
5

for concreteness. This then

gives the initial field value10 φi
f
≈ 0.1π to get 60 e-foldings, using the effective potential in

Eq. (3.55) and the analysis in Sec. 3.4. This gives the trigonometric functions ∼ O(1) for

both φi
f

and φ∗
f

, as alluded to before in Sec. 3.4. The other essential parametersM2
σ and λσ

10This value changes slightly for different cφ values, i.e. including the CW potential from Eq. (3.59).
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are then fixed by the model requirements in Eqs. (3.56), (3.58), and (3.28). The right and

bottom edges of the allowed parameter space correspond to naturalness constraints onmφ

(see Eq. (3.45)) and λσ (see Eq. (3.41)), respectively. The top and left edges correspond

to the cutoffs in the φ and σ sectors being sub-Planckian, respectively. Here we consider

Λφ ≈ 4πf,Λσ ≈ 4π Mσ√
λσ

saturating the constraints in Eq. (3.43). Thus, the shaded region

satisfies our naturalness and EFT consistency requirements. ns is fixed to 0.9649, its

central value from the Planck CMB constraints [5]. Varying its value up or down by a

percent shifts the entire allowed region slightly to the left or right, respectively, by about a

percent. The dashed lines show contours for H which are mostly horizontal (i.e. constant

f/H , see Eq. (3.28)), but bending slightly upwards close to the right edge due to the CW

potential contribution. As we can see in the figure, Λφ being sub-Planckian restricts the

model to realize H . 1011 GeV, while the λσ-naturalness gives a lower bound on H as

∼ 106 GeV as expected from Eq. (3.47). The two cutoffs Λφ,Λσ are approximately equal

on the dotted line. Thus, as the figure shows, demanding Λφ ≈ Λσ can only realize H

bigger than ∼ 1010 GeV. Only a small part of the parameter space lying above this dotted

line corresponds to Λφ > Λσ, while a majority of the allowed region has Λσ > Λφ.

The Lagrangian of theU(1) model in Eq. (3.50) contains terms only up to dimension-

4. This will also include higher-dimensional terms respecting the symmetry in Eq. (3.51)

and the spurion analysis mentioned thereafter, and thus will be of the form

δLUV,non−ren. 3 cnm
(µΦ)n (σ2

i )
m

(Λ2)n+m−2 . (3.60)

Here, the exponents n,m and the combinations of σA,B in σ2
i will be such that they respect
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the symmetry in Eq. (3.51). Also, for simplicity, we consider here a single UV cutoff

scale Λ suppressing these non-renormalizable terms.11 In order to satisfy naturalness in

the σ-potential, it suffices to have c0m . (16π2)
m−2

λσ. This mild requirement on the

coefficients cnm in Eq. (3.60), i.e. cnm ∼ c0m . (16π2)
m−2

λσ, is sufficient to render

the entire model natural, even at the non-renormalizable level, as illustrated below. The

most vulnerable terms would be the super-renormalizable terms in Eq. (3.50), i.e. the bare

and Φ−dependent σ mass terms, which we collectively refer to as M2
σ(Φ). The higher-

dimensional terms in Eq. (3.60) can contribute to M2
σ(Φ) at loop- or tree-level (i.e. after

setting some fields to their VEVs) as

δM2
σ(Φ)

M2
σ

∼ cnm(µΦ)n · 〈σ〉2(m−1)

M2
σ · Λ2(n+m−2)

.
(16π2)m−2(µΦ)n · 〈σ〉2(m−2)

Λ2(n+m−2)
∼
(
µΦ

Λ2

)n
.
(µ

Λ

)n
,

(3.61)

which is negligible due to the suppression from µ
Λ

. H
4πf

. 10−6. Also, any higher-

dimensional terms in Eq. (3.50) involving |Φ|2 will be sub-dominant since they will come

with suppression factors of at least |Φ|
2

Λ2 ∼ 1
16π2 .

3.6 Addressing the cosmological domain wall problem

Spontaneous breaking of an exact discrete symmetry, in our model σi → −σi,

during cosmological evolution, will lead to the formation of domains (with 〈σB〉 > 0 or

< 0) after the end of inflation, separated by cosmologically stable domain walls (DW).

The energy density in these domain walls redshifts slower than both matter and radiation.

11It can be shown that even with different cutoff scales for φ and σ fields, analogous to what is shown
here for Λφ ∼ Λσ , these non-renormalizable terms do not pose any danger to our model.
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This gives rise to a late-time universe dominated by domain walls contrary to what is

observed during Big-Bang Nucleosynthesis. This is the so called “cosmological domain

wall problem” [169], which our Twinflation model faces for an exact σi → −σi symmetry.

The σ fields could be charged under a U(1) gauge symmetry, which then may not give

rise to domain walls, but instead forms the much less constrained cosmic strings (see e.g.

[170, 171, 172]). However, this approach requires additional fields and structures. Here

we will consider a simple solution to the domain wall problem via small explicit breaking

of the discrete symmetry.

We first note that σi → −σi symmetry is not an essential ingredient of our model

and is used so far only for simplicity. We can hence add a small soft breaking of this

symmetry in Eq. (3.31) or (3.52) via

V (φ, σi) 3Mσ3
i , (3.62)

whereM is a dimensionful spurion of this σ-parity breaking. This leads to a bias between

the previously degenerate vacua as

∆Vbias

Vinf
∼ M

Mσ

√
λσ
, (3.63)

where in the denominator we have Vinf which is also the typical size of the σ-potential.

This bias provides a pressure force acting against the surface tension of the walls, eventu-

ally leading to their annihilation. Then, demanding that this annihilation of domain walls
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happens before their cosmological energy domination, we need [173, 174, 175]

O(1) &
∆Vbias

Vinf
&

M2
σ

λσM2
Pl
, (3.64)

which can be realized in our model, using Eq. (3.63), by having

Mσ

√
λσ &M &

M3
σ√

λσM2
Pl

. (3.65)

However, the cubic term in Eq. (3.62) radiatively generates the following σ-tadpole:

V (φ, σi) 3M
Λ2
σ

16π2
σi ∼M

M2
σ

λσ
σi. (3.66)

Tadpole terms of this order shift the minimum in σi in a φ-dependent way as

δσi(φ) ∼ MM2
σ

λσM2
σi

(φ)
∼ M

λσ

(
1± sin(φ/f)

sin(φ∗/f)

)−1

, (3.67)

whereM2
σi

(φ) = M2
σ±µf sin (φ/f) is the φ-dependent mass-squared for σi (see Eq. (3.52)).

This shift contributes to the effective inflaton potential as12

δVeff(φ) ∼
∑
i=A,B

M2M4
σ

λ2
σM

2
σi

(φ)
∼ M2M2

σ

λ2
σ

(
1− sin2(φ/f)

sin2(φ∗/f)

)−1

. (3.68)

Demanding that this contribution is sub-dominant to the inflaton potential implies

12As φ → φ∗, i.e. towards the end of inflation, the expressions in Eqs. (3.67), (3.68) seem to diverge.
However, this is because the effective mass for σB vanishes at φ∗, and hence we have to balance the σ-
tadpole with σ-cubic which will modify these expressions close to φ∗.
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Figure 3.2: Addressing the cosmological domain wall problem in Twinflation: The blue
region (same as in Fig. 3.1) satisfies our naturalness and EFT consistency requirements.
Small explicit breaking of σ-parity (see Eq. (3.62)) solves the domain wall problem. Its
contribution to Veff(φ), via the natural value of σ-tadpole, is sub-dominant in the green
region shown above.
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where in the last step we have used Eq. (3.65). Then, using our model requirements –

λσ ∼ M4
σ

H2M2
Pl
,M2

σ ∼ µf, f
H
∼ 106 – we get the constraint for the allowed parameter region

as

√
cφ

µ2

fMPl
& 10−17. (3.70)

This is evaluated numerically and shown in Fig. 3.2 as the green region. We can also note
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here that this now gives a lower bound on the Hubble scale as

H & 107GeV, (3.71)

which is ∼ O(10) bigger than that obtained in Eq. (3.47).

Thus, the cosmological domain wall problem can be solved in our model by intro-

ducing a small explicit breaking of σ-parity at the cost of some reduction in the allowed

parameter space as shown in Fig. 3.2. One might explore more general ways of explicit

σ-parity breaking than the simple one we considered here via Eq. (3.62), possibly allow-

ing for viable hybrid inflation in the entire blue region. We leave this exploration for a

future study.

3.7 Discussion

In the present work, we build a viable, natural, and EFT-controlled model of low-

scale hybrid inflation, “Twinflation”. Here, inflation happens somewhat near the hilltop

of the effective inflaton potential, although without any fine-tuning of the initial position.

This gives rise to the red tilt in the scalar perturbations, consistent with the observations.

The quadratic sensitivity to the UV cutoff scales in the inflaton potential, induced by its

necessarily non-derivative coupling with the waterfall field, is removed by a twin sym-

metry. All the parameters take (technically) natural values, without any fine-tuning. All

the mass scales and field values are below the respective UV cutoff scales and also the

Planck scale, thus rendering the model under (straightforward) EFT control. This model

can realize low-scale inflation with the Hubble scale as low as ∼ 106 GeV (see Fig. 3.1).

90



It is therefore easily consistent with the smallness of the yet-unobserved primordial tensor

fluctuations, which could be unobservably small (r ∼ 10−16) for the lowest Hubble scales

realized in our model.

Spontaneous breaking of the discrete symmetry σi → −σi towards the end of in-

flation will lead to cosmic domain wall formation in the post-inflationary universe. One

simple way to be compatible with our universe on the large scales at late times, is to de-

mand that such domain walls should annihilate before they start dominating the cosmic

energy density. As discussed in Sec. 3.6, we show that this can be easily implemented in

our model with a small explicit breaking of the σ-parity, which we only considered for

technical simplification in any case. This, however, can be achieved only in the parame-

ter space as shown in Fig. 3.2, allowing for the smallest inflationary Hubble scale to be

∼ 107 GeV. We expect that allowing for more general ways of explicit σ-parity breaking

can possibly relax this constraint, which we leave for a future study. It is also interest-

ing that the domain wall dynamics can give rise to a stochastic gravitational wave (GW)

background observable in future GW experiments. See [175] for a review.

Hybrid inflation models typically require fine-tuned couplings. However, our model

does not require any fine-tuning in the parameters to achieve radiative stability. With re-

gards to the initial conditions, we also showed that there is no tuning required in the initial

inflaton field location, i.e. it need not start very close to the hilltop and can have a transit

of ∼ O(f). A large initial inflaton velocity can be compensated by starting more uphill

along the potential, up to the hilltop. However, demanding that it first damps to the termi-

nal slow-roll velocity, then gives the required number of e-foldings of slow-roll inflation

before entering the waterfall phase, we see that the initial velocity has to be sufficiently
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small: φ̇
f2 . H

f
∼ 10−6. (See also [176] for similar constraints.) Furthermore, there is

the question of whether inflation can begin in an inhomogeneous spacetime. Numerical

simulations show that whereas large-field inflation models are less susceptible to inho-

mogeneities preventing the onset of inflation, small-field inflation models may be more

so [145, 177, 178, 179, 180, 181]. These issues can however be addressed, for example,

by invoking tunneling from a prior metastable vacuum in the landscape of the theory,

which naturally gives rise to a state with small field velocity and inhomogeneity (see e.g.

[182, 183, 184, 185]).

It would obviously be very interesting if we could directly observe the waterfall

field(s) (σi) via their mediation of primordial non-Gaussianity (NG), using the idea of

“Cosmological Collider Physics” [108, 115]. Ordinarily such signals would be strongly

“Boltzmann”-suppressed by e−πMσ/H , since Mσ � H . However, the recently discussed

“scalar chemical potential” mechanism [186] may eliminate this suppression and be com-

patible with our twin symmetry structure. We leave an exploration of this to future work.

As discussed in the Introduction, a variety of UV physics scenarios may give rise to

unwanted defects or relics like monopoles, moduli, gravitino (see e.g. [47, 48, 49, 50]).

Different UV scenarios can also exhibit a meta-stable high temperature phase in which

the universe can remain stuck if the phase transition to the familiar low temperature phase

fails to complete [187]. Reheating of the universe at a low temperature, following in-

flation with a low Hubble scale, might help to address these issues in a straightforward

way. Another motivation towards low-scale inflation can come from the constraints on

isocurvature perturbations sourced by (QCD) axionic dark matter (see e.g. [5, 45, 46]). If
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the Peccei-Quinn symmetry is broken during inflation, axions source dark matter isocur-

vature perturbations which are stronger for higher H (for any given axion decay constant,

fa), the non-observation of which thus prefers low-scale inflation. Furthermore, with cur-

rent and future collider experiments, such as a future ∼ O(100) TeV collider, we might

have the opportunity to investigate the physics during and after such a low-scale inflation

in laboratory searches too, along with the cosmological ones!
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Chapter 4: New physics opportunities for long-lived particles at electron-

proton colliders

4.1 Introduction

Progress in high energy physics relies on designing new experiments to explore

ever higher mass scales and smaller interactions [188]. This is vital both to understand

the Standard Model (SM) at new energy regimes, as well as for the discovery of Beyond

SM (BSM) physics. As the Large Hadron Collider (LHC) makes impressive progress

exploring of the TeV scale, it is therefore a high priority to look ahead and identify the

most important physics opportunities presented by the next round of proton and electron

colliders.

Lessons learned from the LHC era provide important context for any future col-

lider program (see e.g. ref. [189]). When the LHC experiment was designed more than

two decades ago, the main focus was the discovery of the Higgs boson and searches

for BSM theories like supersymmetry (SUSY) [34]. This meant that identification of

high energy final states, copiously produced in prompt decays of intermediate particles

with masses around the TeV scale, was paramount. The exploration of this canonical

“High Energy Frontier” will be an important goal for future experiments, but the ab-
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sence (to date) of any such BSM signatures at the LHC presents us with an important

puzzle: How do we reconcile LHC null results with the fact that motivation for BSM

theories is as strong as ever? The hierarchy problem has been sharpened by the dis-

covery of the Higgs and explicitly calls for TeV-scale new physics, while dark matter,

baryogenesis and neutrino masses continue to beg for explanations. An important les-

son of the last decade is that these fundamental mysteries can be addressed by theories

which have signatures very unlike the high energy SUSY signals of the canonical high

energy frontier. Hidden valleys [59, 60, 61, 62, 63, 64], Hidden Sectors connected to

Dark Matter [65, 66, 67, 68, 69, 70], Neutral Naturalness [52, 71, 72], WIMP baryogen-

esis [73, 74, 75, 76], many varieties of SUSY [53, 54, 55, 56, 57, 58], and right-handed

neutrinos [77, 78, 79, 80, 81, 82, 83] might only show up in “exotic channels” like Long-

Lived Particle (LLP) signatures. It is important that future colliders can explore this

“Lifetime Frontier" as well as the High Energy or High Intensity Frontiers.

Future colliders: Most proposals fall into two categories: lepton or hadron col-

liders. The proposed e+e− colliders, namely the ILC in Japan [190, 191], the CEPC

in China [192], and the FCC-ee (formerly known as TLEP) [193] and CLIC at CERN

[194] are ideal for precision measurements of the Higgs boson properties due to their

exquisitely clean experimental environment. The sensitivity of the Higgs to the existence

of new physics (see e.g. [195]) makes this an endeavor of the highest priority, but direct

discovery of new BSM states at such machines is generally less likely, since their center

of mass energy is below that of the present LHC.

On the other hand, presently discussed future pp colliders like the FCC-hh at CERN [196,

197, 198] or the SppC in China [199] would offer enormous center of mass energies at
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the 100 TeV scale as well as huge event rates for many weak-scale processes like Higgs

Boson production. This would enable them to probe very high mass scales and very rare

processes, provided the final states can be identified in such an extremely high-energy

high-rate environment.

There is a hybrid of these two approaches which is less often discussed: electron-

proton colliders. HERA was the only such machine ever built, and it was instrumental

to establish the inner structure of the proton via deep inelastic scattering (DIS) measure-

ments. The resulting information about Parton Distribution Functions (PDFs) is now

part of textbooks and Monte Carlo generators. This was HERA’s primary objective, and

its successes are of foundational importance for high energy measurements and BSM

searches at pp colliders like the Tevatron and the LHC. HERA’s direct contributions to

BSM searches, however, were much more limited. The electron-proton initial state does

not give rise to large cross sections for many BSM processes, and HERA’s center-of-mass

energy of
√
s = 320 GeV and integrated luminosity of ∼ 500 pb−1 was far below the

Tevatron’s 1.96 TeV and 10 fb−1. As a result, HERA was outclassed in mass reach for

almost all BSM signatures, with the exception of some leptoquark scenarios [200, 201].

Beyond HERA: Plans for electron-proton colliders have evolved considerably since

HERA. Modern proposals envision them an “add-on” or “upgrade” to an existing high-

energy pp collider, at a cost that is roughly an order of magnitude below that of the pp

machine alone. The LHeC proposal [6, 86, 87] consists of a 60 GeV high-intensity linac

supplying the electron beam to meet the 7 TeV proton beam at a collision point in the

LHC tunnel. This includes a dedicated detector, with a geometry that accommodates the

asymmetric nature of the collision. The LHeC would have a center of mass energy of
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1.3 TeV and is planned to deliver up to 1 ab−1 of collisions over its approximately 10-

year lifetime, a drastic increase of energy and especially luminosity compared to HERA.

An analogous proposal, FCC-eh, exists for a future 100 TeV pp collider at CERN [88],

but one could just as easily imagine such an extension for the HE-LHC [202] or the

SppC [199].

Future machines like the LHeC or the FCC-eh would greatly advance our knowl-

edge of the proton [203] with many important benefits for the main pp program, but the

physics potential does not stop there. Future e−pmachines can access mass scales beyond

the energies of lepton colliders, while maintaining a clean experimental environment and

delivering high luminosity, all for a fraction of the cost. This explains their perhaps sur-

prising ability to support a strong precision Higgs program [204, 205, 206, 207, 208]:

LHeC measurements of Higgs couplings relying on Vector Boson Fusion (VBF) produc-

tion might be competitive with electron colliders (albeit without the important model-

independent measurement of the Higgs width via Zh production).

Could we harness this unique experimental setup to explore hitherto inaccessible

BSM signatures as well? Previous studies exploring the BSM reach of future e−p col-

liders mostly focused on production modes that allowed for large signal rates from the

asymmetric initial state: leptoquarks [6], 4th generation quarks [209] or excited leptons

[210], right-handed (RH) neutrinos [84, 210, 211, 212, 213], and left-right symmetric

models with new gauge bosons in the t-channel [214, 215]. However, in all of those

cases, with the exception of RH neutrino models (which include LLP signals [84]), the

LHC or HL-LHC has higher mass reach [216, 217, 218, 219, 220, 221, 222]. This is

a familiar echo of the HERA-Tevatron interplay. One might think naïvely that this puts
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a damper on the BSM motivation for electron-proton colliders, but we argue that this

conclusion is premature.

In fact, we argue that e−p colliders are uniquely suited to discover new physics,

with strengths that are truly complementary to both pp and e+e− programs. Given the

unknown nature of new physics signatures in light of the LHC puzzle, this makes e−p

colliders a vital component of a future high energy physics program.

Focusing on the final state: Rather than focusing on BSM scenarios with large

production rates, we suggest focusing on BSM scenarios which give rise to final states

that look like hadronic noise in the pile-up-rich environment of pp colliders. The clean

environment of the e−p collider allows for their unambiguous reconstruction, while their

large center-of-mass energies allow them to access higher mass scales than lepton collid-

ers. This view is tentatively backed up by the encouraging results of the initial precision

Higgs and RH neutrino studies, which relied heavily on the clean experimental environ-

ment. The shifted focus from initial to the final state also allows us to consider more

general BSM production modes like VBF, which are present in any theory with new elec-

troweak charged states. We consider LLP signatures to demonstrate the utility of this new

paradigm.

Long lived particles: New states with macroscopic lifetime are extremely broadly

motivated. They often emerge as result from basic symmetry principles of Quantum Field

Theory and are highly generic in BSM theories, where states can be long-lived due to

approximate symmetries, modest mass hierarchies, or sequestration of different sectors in

a UV completion. As outlined above, they are ubiquitous in theories of hidden valleys and

general hidden sectors, and are the smoking gun signal of Neutral Naturalness, certain
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varieties of SUSY, theories explaining the origin of neutrino masses, as well as many

baryogenesis and dark matter scenarios.

LLPs can be detected directly via their passage through the detector material if they

are charged or colored (and long-lived enough), or by reconstruction of a displaced vertex

(DV) if they decay in the detector. They are not picked up by most standard searches fo-

cusing on prompt signals, making them consistent with recent LHC null results. However,

the spectacular nature of these signals means that dedicated LLP searches typically have

very low backgrounds, often allowing for discovery with just a few observed events at the

LHC or future colliders [78, 83, 84, 223, 224, 225, 226] There are, however, important

regions of LLP signature space which are very difficult for pp colliders to probe, due to

low signal acceptance, trigger thresholds, or sizable backgrounds. This includes (i) in-

visible LLPs with very long lifetimes that escape the main detectors, (ii) LLPs with very

soft decay products, and (iii) LLPs with very short lifetimes . mm, making them diffi-

cult to distinguish from hadronic backgrounds. Recent proposals for dedicated external

LLP detectors near an LHC collision point, like MATHUSLA [227, 228], milliQan [229],

CODEX-b [230] and FASER [231], aim to address the first of these shortcomings. The

second and third class of signals are prime targets for e−p colliders.

We examine two important BSM signatures at e−p colliders after briefly reviewing

the salient details of these proposals in Section 4.2. We study Higgsinos in Section 4.3.

If the winos are decoupled, the charged Higgsino can have a lifetime of up to several

mm, decaying to often just a single soft pion via a small mass splitting to the neutral

Higgsino. This decay cannot be reconstructed at pp colliders, forcing searches to rely on

monojet or disappearing track signals. In the clean environment of e−p colliders, these
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Figure 4.1: Possible layout of the LHeC detector, figure from [6].

soft displaced final states can be explicitly reconstructed, and lifetimes many orders of

magnitude shorter than those accessible by pp colliders can be probed at masses far be-

yond the reach of lepton colliders. To demonstrate the utility of e−p colliders for general

LLP signals with very short lifetime, we also consider LLP production in exotic Higgs

decays in Section 4.4. Again, the e−p searches outperform searches for pp colliders by

orders of magnitude for very short lifetimes. We conclude in Section 4.5.

4.2 Electron-proton collider basics

Electron-proton colliders are hybrids between e−e+ and pp colliders. Today’s pro-

posals consider electron beams from a linac that intersect with the hadron beam from an

existing pp collider (though using an electron beam from a circular collider would also be

possible). Such machines allow for a clean collision environment with very little pile-up,

center-of-mass energies of O(1) TeV and luminosities of 1 ab−1 or more.

The Large Hadron electron Collider (LHeC) [6, 86, 87] is a proposed upgrade for

the high luminosity phase of the LHC. It foresees the construction of a high-intensity

electron accelerator adjacent to the main rings. The resulting 60 GeV e− beam would
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meet the 7 TeV proton beam from the LHC at a dedicated interaction point in the HL-

LHC tunnel, with an envisaged total luminosity of 1 ab−1 at a 1.3 TeV center-of-mass

energy over the lifetime of the program. We remark that higher electron beam energies

are also discussed [6]. The collisions would be analyzed in a general-purpose detector,

with an adjusted geometry to accommodate the asymmetric collision.

An even more powerful electron-proton collider is discussed as part of the Fu-

ture Circular Collider design study, namely the Future Circular electron-hadron Collider

(FCC-eh) [88]. The FCC-eh is based on the electron beam from the LHeC facility, col-

liding with the 50 TeV proton beam from the hadron-hadron mode of the FCC. The final

integrated luminosity is currently assumed to be ∼ 1 ab−1, at center-of-mass energies up

to 3.5 TeV [203]. In the following, we will refer to this experimental setup as the FCC-eh

(60) to indicate the electron beam energy.

The goal of our study is to assess the BSM potential of e−p colliders, which should

be a major design driver for the electron accelerator and detector. The FCC-eh specifica-

tions are much less finalized than the LHeC, and it is instructive to consider alternatives

to the existing proposal, and how they differ in BSM reach. We will therefore also discuss

a version of the FCC-eh which represents a less realistic setup, which might be feasible

in principle: an electron beam with energy 240 GeV meeting the 50 TeV proton beam,

to generate center-of-mass energies of 6.9 TeV. We refer to this scenario as the FCC-eh

(240). Such a high energy electron beam would be challenging to implement, but there

are several options, including a nearby ILC or CLIC-like facility. 1 Morevoer, since the

1One could also consider to make use of a high-energy circular electron-positron collider in the same
tunnel (as is planned in the CEPC/SppC project in China). In this case, however, it is unlikely that compa-
rable luminosities to the FCC-eh(60) can be achieved.
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benchmark luminosity of the FCC-hh program is ∼10 times higher than foreseen for the

HL-LHC, we also allow for the analogous possibility of 10 ab−1 at the FCC-eh (60) and

FCC-eh (240).

The LHeC detector layout from the technical design report is shown in Fig. 4.1 [6].

Precise details of the detector are not relevant for our benchmark studies, and we only fo-

cus on the most salient features. For concreteness, and also to be somewhat conservative,

we assume the same detector capabilities for the FCC-eh as for the LHeC (though this

does not affect our qualitative conclusions).

Notable is the tracker coverage to very high rapidity of 4.7 in the forward and back-

ward direction with respect to the proton beam, starting at a distance of about 3cm from

the beams. The detector has a magnetic field of ∼ 3.5 T, and the nominal tracking res-

olution is 8 µm. Studies for ILC detectors show that impact parameter resolutions down

to ∼5 µm may be possible [232, 233, 234]. To assess the importance of tracking reso-

lution on LLP reach, we therefore consider resolutions of 5, 8 and 16 µm. The elliptical

interaction point has rms dimensions of 7 µm in the transverse plane and 0.6 mm along

the longitudinal beam direction. Charged hadronic tracks with energies above few GeV

are generally accepted by the calorimeters. However, since we will be considering LLPs

that decay to soft low-multiplicity hadrons, precise energy thresholds will be important.

To assess their impact on LLP reach we consider pT thresholds of 50, 100 and 400 MeV

for reliable reconstruction of a single charged particle track. The trigger capabilities of

the tracking system are not yet completely defined [6], but since DIS measurements are

a major design driver, we assume that single jets with pT > 20 GeV can be triggered on

with high efficiency. This means trigger considerations will not play a major role in our
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analyses.

With the above specified performance parameters, the corresponding e−p collider

concepts offer center-of-mass energies larger than all but the most ambitious lepton col-

lider proposals, while maintaining a very clean experimental environment. In comparison

to pp colliders, the various hadronic backgrounds have very different distributions and are

strongly suppressed. At the LHeC, the pile-up is expected to be ∼ 0.1 per event, while

for the FCC-eh (60) it may rise to ∼ 1. We will consider analysis strategies which take

advantage of, but are robust with respect to, these low pile-up levels.

4.3 Long-lived Higgsinos

The electroweakinos (EWinos) of the MSSM are well-motivated candidates for

LLPs. The mixing of the Bino, Wino and Higgsino fields gives rise to four neutralino

and two chargino mass eigenstates.

If the mixing of these particles is significant they can be detected at hadron colliders

via searches for high energy leptons and missing energy [235, 236].

In the following we consider the challenging limit of small mixing. In that case,

the masses of the lightest Higgsino (Wino) chargino and the lightest neutralino are only

slightly split due to electroweak symmetry breaking loop effects.2 The difference be-

tween these two masses, referred to as the ‘mass splitting’ (∆m) in the following, is

O(100) MeV which corresponds to a lifetime cτ ∼ 7mm (∼ 6 cm). Charged LLPs

with this lifetime, decaying into a massive neutral particle, can be searched for at the

2These cases are often referred to in the literature as ‘pure’ limits. We note that a ‘pure Bino’ that is
stable on cosmological time scales and thus a viable dark matter candidate needs to be lighter than 100 GeV
not to overclose the universe, which is ruled out by LEP searches[237].
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LHC via so-called ‘disappearing-track searches’. Owing to the larger lifetime and four

times larger production cross section,3 Wino searches have significant mass reach at

the LHC and FCC-hh [238, 239]. Searches for Higgsinos are much more challeng-

ing, and a customized tracker with sensitivity to shorter lifetimes is needed, as shown

in ref. [7] (see also ref. [240]). Due to the almost-degenerate mass spectrum, the lep-

tons and jets from the chargino decay have very small momenta and thus largely fail

to pass reconstruction thresholds of the LHC analyses. Depending on the value of ∆m,

searches that include an ISR jet and additional ‘soft’ leptons can yield relevant constraints

[241, 242, 243, 244, 245, 246, 247, 248, 249]. In scenarios where the mass splitting of

the electroweakinos is given by the loop effects only, the relevant signature at the LHC is

the missing energy, which is included in the so-called mono-jet searches.

There are important incentives to study Higgsino signatures beyond their role in

supersymmetry. Neutral Higgsinos are thermal DM relics that can yield the observed

relic density if their masses mχ is around 1.1 TeV [250] or below (depending on mix-

ing). Furthermore, the lessons learned from studying pure Higgsinos can easily be trans-

ferred to theories with similar phenomenology, for instance models with inert multiplets

[251, 252, 253] and vector-like leptons (see e.g. [254, 255, 256, 257, 258, 259]), which

are also interesting in the context of minimal models for gauge unification [260, 261].

This makes the ‘pure-Higgsino’ case very theoretically compelling, even as their low

production cross section, soft decay products, and short lifetime make them the most

experimentally challenging electroweakino scenario at proton-proton colliders.

In the remainder of this section we review the main phenomenological features,

3The Casimir group factor is given simply by T 2
3 .
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branching ratios and lifetimes of Higgsinos. After setting the stage by summarizing cur-

rent and projected constraints from cosmology and pp colliders, we show how e−p col-

liders can fill in crucial gaps in coverage.

4.3.1 Higgsino Phenomenology

The spectrum and interactions of EWinos in the MSSM has been studied in depth

[34, 262], and we only focus on the aspects relevant for our analysis here. In the decoupled

Wino limit where µ � M2 and µ < M1 there is one charged state χ± and three neutral

χ0
i , i = 1, 2, 3. The mass of the charged state receives the 1-loop correction from EW

gauge bosons, ∆1−loop. In the neutral sector the two lighter states are at about the scale µ

split by ∆0 and the third one at the heavy scale M1. The latter does not impact directly on

the phenomenology, but rather dictates ∆0. One can thus trade the Lagragian parameters

µ,M1, tan β for the mass of the lightest neutralinomχ0
1

and the mass splitting with respect

to the chargino (∆m ≡ mχ± − mχ0
1
) and to the second neutralino (∆0 ≡ mχ0

2
− mχ0

1
).

The relevant expressions read

mχ0
1

= |µ| − m2(1 + sign(µ)s2β)

2M1(1− |µ|/M1)
,

∆m = ∆1−loop +
m2(1 + sign(µ)s2β)

2(M1 − |µ|)
, (4.1)

∆0 =
m2

M1

(1 + sign(µ)s2βµ/M1

1− µ2/M2
1

)
,

where tan β = vu/vd, and the above results assume m = mZsW ≈ 44 GeV� |M1−µ|.

We consider M1 to be real and positive, while µ is real with either sign. ∆1−loop ∼

300 MeV has very modest dependence on mχ± , and one can see from the above expres-
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sions that the dependence on tan β is modest as well. For concreteness, we take in our

analysis tan β = 15. The choice of mχ± and ∆m then determines the spectrum. Note

that ∆m = mχ± −mχ0
1
> ∆1−loop > mχ± −mχ0

2
. Upscattering in direct detection ex-

periments [263, 264] forces ∆0 & 0.1 MeV, which implies an upper bound on M1 . 20

PeV.

The neutralino couplings to the gauge bosons follow from the EW charges. The

three particles with masses ∼ |µ| are ‘almost-doublets’, and hence the Z-current cou-

ples χ0
1 and χ0

2 with ’almost-full’ strength. Both the Z and Higgs interactions with the

DM candidate χ0
1 arise from doublet-singlet mixing, and hence they are suppressed by

powers of mZ/|µ|,mZ/M1, which also suppresses the direct detection cross section, see

section 4.3.2 below.

The decay modes of the long-lived chargino are computed using the expressions in

refs. [265, 266] and shown in Fig. 4.2. Chargino decays to χ0
1 are always allowed with

a mass splitting greater than ∆1−loop, which sets the maximum possible lifetime in this

model (though longer lifetimes can be considered in more general scenarios). If M1 is

much larger than |µ|, the lifetime gets reduced by a factor of 2, as the chargino decays

with a similar width to each neutralino. Note that this is unlike the Wino case, where there

is only one neutralino in the low energy spectrum. For lower values of M1, the chargino

decays to χ0
2 become smaller. The hadronic decay widths require some care due to the

small mass splitting. For ∆m . 1 GeV, one must compute partial widths to exclusive

hadron final state like π+χ0
1. For ∆m � 1 GeV, quarks are the relevant degrees of

freedom, and hadronic decays give rise to jets which shower and hadronize.

In practice, we compute hadronic final states both in the exclusive hadron picture
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and the inclusive quark picture, and define ∆m∗ as the mass splitting where
∑

Γ(χ± →

hadrons + χ0
1) =

∑
Γ(χ± → quarks + χ0

1). For ∆m < ∆m∗ we then use the hadron

picture and for ∆m > ∆m∗ we use the quark picture, which is responsible for the sharp

turn-over at ∆m ≈ 1.75 GeV in Fig. 4.2. This unphysical sharp turn-over between

the two regimes is sufficient at the level of detail of our study. To capture the effect of

hadronization uncertainties, we follow ref. [265] and compute the partial decay widths to

quarks assuming md = 0.5 GeV and md = 0 GeV, with different ∆m∗ for each case.

We note a few important features of the branching ratios in Fig. 4.2. At small

mass splitting, decays to both χ0
1 and χ0

2 are kinematically allowed while for larger mass

splittings all decays are to χ0
1. Our region of interest for displaced searches is cτ & µm,

corresponding to ∆m . 2.5 GeV. The branching fractions have some quantitative (but

not qualitative) dependence on sign(µ), but very little dependence on mχ± itself. As

mentioned above, the minimal mass splitting is given by ∆1−loop and larger mass splittings

are possible when M1 is closer to µ, although for our region of interest M1 is still several

TeV to tens of TeV.

On our scenario, LEP excludes χ+ masses below 104 GeV [237]. The existing LHC

searches for soft leptons [267] are currently only sensitive to ∆ ∼ 20 GeV. The prospects

of the HL-LHC and of future colliders are summarized below.

4.3.2 Probing Higgsinos with pp colliders and cosmology

To understand the unique role e−p colliders could play in the exploration of Hig-

gsino parameter space, we briefly review the reach of future pp colldiers, as well as
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Figure 4.2: Decay branching ratios for a 400 GeV charged Higgsino as a function of
∆m = mχ±1 −χ0

1
and µ < 0. Note the chargino lifetime on the upper vertical axis.

Hadronic decay widths are computed assuming md = 0.5 GeV. The switch from an
exclusive hadronic final state description to an inclusive jet final state description occurs
at around ∆m ≈ 1.75 GeV, which decreases to 1.3 GeV if the assumed mD is taken to
zero. The µ > 0 case is qualitatively very similar, and there is very little dependence on
the Higgsino mass.

projected cosmological bounds from dark matter direct and indirect detection. This is

summarized in Fig. 4.3.

Searches at future pp colliders

The dominant production mode for EWinos at pp colliders are s-channel Drell-

Yan-like processes. The cross section is much larger than at e−p colliders, which offers

opportunities to search for pure Winos with large decay lengths. A challenge in the high-

energy environment of pp collisions is that the SM final state from the chargino decays

are often very soft (sometimes just a single pion) which cannot be reliably reconstructed.

It is therefore difficult to find the corresponding displaced secondary vertex in this envi-

ronment: the signal gets swamped by the surrounding hadronic activity, and becomes part

of the “hadronic noise”.

One promising search strategy is the so-called “disappearing track search”, which
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Figure 4.3: Projected Higgsino bounds from future pp colliders (top) and cosmology
(bottom). Top: Vertical bands indicate the approximate projected mass reach of mono-
jet searches, with darker shading indicating the dependence of reach on the assumed
systematic error. Regions above black contours can be excluded by disappearing track
searches [7] at the HL-LHC (optimistic and pessimistic) and FCC-hh. See text for de-
tails. Bottom: Longer lifetimes indicate smaller direct detection signal, hence the bounds
from XENON1T [8], XENONnT [8]/LZ [9] and DARWIN [10] are sensitive to the re-
gion below the colored contours. The orange region lies below the neutrino floor for
direct detection. Also shown is the approximate mass exclusion of Fermi (existing) and
CTA (projected). The black line indicates the maximum mass for the Higgsinos such that
their relic abundance is at most ΩDM. The µ < 0 case is nearly identical. Relic density
and direct detection bounds are taken from [11]. Grey upper region indicates lifetimes
corresponding to smaller mass splittings than the minimal electroweak contribution.
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targets the traces that the long-lived chargino leaves in the tracker of the detector. This

strategy relies on the chargino to reach the first few inner tracking layers, which severely

limits the sensitivity for short lifetimes. At the HL-LHC the disappearing track searches

have a mass reach up to ∼ 200 GeV with standard tracking if cτ ∼ 7mm (∆m =

∆1−loop) [7, 238, 240]. Hypothetical upgrades to the HL-LHC trackers in the high-rapidity

region could increase mass reach to about 380 GeV. We show these two scenarios in

Fig. 4.3 (top), using the results from [7]. (This study examined Higgsinos heavier than

200 GeV, but the proposed search would have sensitivity to lower masses as well.) The

pessimistic HL-LHC disappearing track reach projection assumes that the Higgsino must

reach a transverse distance of 30cm, while the optimistic projection only requires 10cm.

The realistic reach likely lies between these estimates, but we point out that recent ATLAS

tracker upgrades should allow for the reconstruction of Higgsinos that travel 12 cm [268].

At future 100 TeV colliders like the FCC-hh or the SppC with 3 ab−1 of luminos-

ity,4 disappearing track searches can probe mχ ∼ 1.1 TeV if ∆m ∼ ∆1−loop assuming

a chargino traveling 10cm can be reconstructed, but the reach disappears for shorter life-

times [7, 240].5 These sensitivity projections are also shown in Fig. 4.3 (top).

Another strategy is the search for the missing mass that is carried away by the neu-

tral heavy final state. Studies show that such so-called “monojet searches” can probe pure

Higgsinos with masses up to ∼ 100 − 200 GeV at the HL-LHC [238, 243, 249, 269],

depending on assumptions about systematic errors. At future 100 TeV collider (see e.g.

refs. [238, 270, 271, 272, 273]), significantly higher masses of ∼ 600 − 900 GeV [238]

4Since many recent benchmarks assume 30 ab−1 luminosity for future 100 TeV colliders [196, 198],
these reach estimates may be conservative.

5The reach can be improved considering improved forward tracking close to the beam pipe compared
to current benchmark detector proposals.
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can be probed for the loop-induced mass splitting. We show bounds from [238] in Fig. 4.3

(top). The darker shading indicates how the mass reach changes when background sys-

tematic errors are varied between 1% and 2%.6

In general, the direct detection of the chargino LLP yields more information than

a monojet missing energy signal. Both of the above search strategies suffer significant

limitations. Monojet (or mono-X) searches have modest mass reach and reveal no in-

formation as to the nature of the produced BSM state beyond the invisibility of the new

final states.7 It would therefore be impossible to diagnose the signal as coming from a

Higgsino-like state. Disappearing track searches can have slightly higher mass reach, but

only if the lifetime is near the theoretically motivated maximum for this scenario.

Lifetimes below a few mm are in general extremely challenging to probe in these

environments. It is clear, that the pure Higgsinos with their extremely small mass splitting

and relatively short decay length are something of a night-mare scenario for searches at

proton-proton colliders.

Cosmology

EWinos make natural candidates for thermal Dark Matter if they are stable on cos-

mological time scales. Thus, cosmological considerations may serve as general motivator

for our theoretical setup and provide constraints for specific models. It is important to

keep in mind, however, that these constraints are dependent on the universe’s cosmologi-

cal history, and are therefore not as robust as collider searches.

6For larger mass splittings, a soft lepton search can increase Higgsino mass reach [238], but ∆m <
5 GeV in our region of interest.

7The prospects of the mono-Z searches at the FCC are currently under investigation [11].
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Assuming that the lightest neutralino contributes to the thermal relic density pro-

vides us with additional bounds from cosmological observation. The abundance from

Higgsinos with masses above ∼ 1.1 TeV [250] is larger than the observed dark matter

relic density. This makes 1.1 TeV an obvious target for collider searches, see Fig. 4.3

(bottom)

Direct dark matter detection experiments are sensitive to Higgsinos with mass split-

tings in the GeV range or above, see e.g. ref. [249]. Sensitivity projections are summa-

rized in Fig. 4.3 (bottom), and notably constrain short lifetimes but not long ones. This is

due to the coupling to the Higgs boson, which mediates nuclear scattering and depends on

the Higgsino-Bino mixing angle, or, equivalently, ∆m−∆1−loop and only becomes appre-

ciable for mass splittings ∼ GeV. Hence, the lack of signals in direct detection strongly

favors a highly compressed spectra.8 The most sensitive of these future experiments is

DARWIN [10], which will be able to probe DM-nucleon cross sections very close to the

so-called neutrino floor, where backgrounds from solar, cosmic and atmospheric neutri-

nos become relevant. For thermal Higgsino DM, this scattering rate corresponds to mass

splittings of about 0.5 GeV.9 Probing cross sections below the neutrino floor will be much

more challenging.

Indirect detection experiments search for signs of dark matter annihilation in the

cosmic ray spectra. Assuming a thermal relic abundance, current bounds from Fermi

disfavor masses below 280 GeV, with proposed CTA measurements being sensitive to

mχ ∼ 350 GeV [275]. AMS antiproton data might exclude somewhat higher masses

8It is also possible to have an accidentally small (or null) coupling of Higgs to dark matter in the so
called blind-spots [274]. We will not consider this option further in this work.

9This implies a lower bound on the singlet mass of 10 TeV. The singlet might then be well outside the
reach of both the present and future generation of collider experiments.
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Figure 4.4: Example of dominant Higgsino (left) and Higgs (right) production processes
at e−p colliders. V = W± or Z as required.

[276], but that bound is subject to very large uncertainties.

While these cosmological bounds complement collider searches, they are much

more model-dependent. One can imagine a Higgsino-like inert doublet scenario which

does not give rise to a stable dark matter candidate (e.g. the lightest neutral state could

decay to additional hidden sector states), making colliders the only direct way to probe

their existence. Even if the assumptions about cosmology hold, collider searches are vital

to fill in the blind spots below the neutrino floor. If a direct detection signal is found,

the precise nature of dark matter would then have to be confirmed with collider searches.

Finally, even with the most optimistic projections there are regions of parameter space at

intermediate mass splitting (lifetimes . mm) that are difficult to probe using both direct

detection and current strategies at pp colliders.

4.3.3 Higgsino search at e−p colliders

At e−p colliders, Higgsinos are produced dominantly in VBF processes as shown

in Fig. 4.4 (left). Since the production process is 2→ 4 it suffers significant phase space

suppression and has a rather small cross section, as shown in Fig. 4.5. Fortunately, the

spectacular nature of the LLP signal, and the clean experimental environment, still allows
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Figure 4.5: Production rate of Higgsinos at e−p colliders. The fraction of events with
two charged Higgsino LLPs is ∼ 40− 50%.

for significant improvements in reach compared to the existing search strategies outlined

in the previous subsection.

LLP signature

We first consider searches at the LHeC. Weak-scale Higgsinos are produced in as-

sociation with a recoiling, highly energetic jet with pT > 20 GeV. This jet alone will

ensure that the event passes trigger thresholds and is recorded for offline analysis. Cru-

cially, the measurement of this jet will also determine the position of the primary vertex

(PV) associated with the Higgsino production process.

Due to the asymmetric beams the center-of-mass frame of the process is boosted by

bcom ≈ 1
2

√
Eq/Ee =

√
xq Ep/Ee ≈ 5.5

√
xq with respect to the lab frame, where q and xq

are a parton and its Bjorken variable, respectively. Subsequently, the long lived charginos

are typically significantly boosted along the proton beam direction, which increases their

lifetime in the laboratory frame.

For small mass splittings . 1 GeV considered here, the dominant decay modes of
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the Higgsinos are to single π±, e±, µ± + invisible particles. The single visible charged

particle typically has transverse momenta in theO(0.1 GeV) range. In the clean environ-

ment (i.e. low pile up) of the e−p collider, such single low-energy charged tracks can be

reliably reconstructed.

Analysis strategy

The following offline analysis strategy is sketched out in Fig. 4.6. One or two

charginos are produced at the PV, which is identified by the triggering jet (A). A chargino

decaying to a single charged particle is depicted in Fig. 4.6 (B). The charged track has

an impact parameter with respect to the PV. If the impact parameter with respect to the

PV is greater than a given rmin, we assume that this track can be tagged as originating

from an LLP decay. Since the triggering jet provides the location of the PV, this LLP

identification also holds if the chargino decays inside the interaction region. Therefore,

this analysis explicitly takes advantage of the clean environment of the ep collider, with

pile-up being either absent or controllable (that is, clearly distinguishable from the harder

LLP production events). If the chargino decays to two or more charged particles, a con-

ventional displaced vertex can be reconstructed (C). In that case, the PV-DV distance has

to be greater than rmin to identify an LLP decay.10

The most relevant parameter of our search strategy is thus rmin. While we do not

explicitly include detector resolution in our simulations, we implicitly take it into account

by choosing rmin to be 5 detector resolutions. As such, our nominal benchmark assumes

10In a realistic analysis, rmin can be different for displaced tracks and vertices, but for our analysis it is
sufficient to take them to be identical.
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an 8µm resolution, corresponding to rmin = 40µm. To understand the impact of this

parameter (and hence the tracking resolution of the future detector) on LLP reach, we also

consider a more “optimistic” detector resolution of 5µm, corresponding to rmin = 25µm,

and a “pessimistic” scenario with 16µm resolution, giving rmin = 80µm. We emphasize

that these values are consistent with the impact parameter resolutions for O(10 GeV)

tracks with scattering angle above∼ 5◦ considered in the LHeC CDR [6], and with current

resolutions of the LHCb VELO [277].

Moreover, the pT threshold for reconstruction of a single charged particle is also

relevant. In order to study the impact of the pT threshold, we will consider a benchmark

value of pmin
T = 100 MeV, corresponding to a gyromagnetic radius of O(10cm) for

the B field of 3.5 T. We also consider an optimistic scenario of pmin
T = 50 MeV and a

pessimistic scenario of pmin
T = 400 MeV, which corresponds to the threshold for track ID

at ATLAS and CMS in a high pile-up environment [278]. 11

We assume 100% reconstruction efficiency for displaced tracks and vertices. The

estimation of the realistic (expected-to-be O(1)) efficiencies requires a full simulation of

the detector response to our signal, which is beyond the scope of this work and will be

left for future work. We do not expect this to significantly affect our conclusions.

Event simulation and analysis

The production of MSSM Higgsinos is simulated in MG5_aMC@NLO [279] at parton-

level, which is sufficient given the almost purely geometrical nature of our signal. For

11At an e−p collider the full four momentum can be measured, and employing |p| rather than pT would
lead to a slight increase in sensitivity. However, in order to be comparable with pp collider thresholds, we
use pT in the following.

116



e� p

jet A

BC

rmin

Tracker

Interaction
Region PV

Figure 4.6: Sketch of our LLP search strategy at e−p colliders. Single or pair-production
of weak-scale Higgsino LLPs (red) is practically always associated with the production
of a hard jet (A) with pT > 20 GeV and |η| < 4.7 which reaches the tracker and passes
the trigger. The charged jet constituents (black) identify the primary vertex (PV). For
Higgsinos decaying into e/µ/π± + χ0

1,2 (B), the LLP is detected if the charged particle
trajectory (black solid and dashed) is reconstructed with pT > pmin

T and has impact pa-
rameter greater than rmin. For LLPs decaying into two or more charged particles (C), a
DV can be reconstructed, and the LLP is identified if the distance to the PV is more than
rmin. The electron or neutrino in the event as well as neutral final states of LLP decay are
not shown.

each chargino k the probability of detecting it as an LLP is

P
(k)
detect =

∑
i

Bri(∆m(cτ))Pi(cτ) , (4.2)

where k = 1, 2 for chargino pair production events. The index i stands for the decay

processes in Fig. 4.2, with branching ratios Bri. Pi is the probability of detecting this

particular chargino if it decays via process i. For 2- and 3-body decays to a single charged

particle, it is computed by choosing the charged particle momentum from the appropriate

phase space distribution in the chargino rest frame, then computing the minimum distance

the chargino must travel for the impact parameter of the resulting charged track to be

greater than rmin. Pi is the chance of the chargino traveling at least that distance given its

boost and the chosen lifetime cτ . Pi = 0 if the charged particle pT lies below threshold

117



or it does not hit the tracker.

For decays to “jets”, defined as three charged pions (all hadronic decays) for ∆m

below (above) ∆m∗, we examine two possibilities. Optimistically, one would expect the

jet to contain two or more relatively energetic charged particles, allowing a DV to be

reconstructed. Pjet is then computed simply by requiring the chargino to travel at least

rmin from the PV. Pessimistically the jet has to contain at least one charged particle, and

we assign Pjet = Pπ±π0π0 . The difference between the optimistic and pessimistic Pjet

scenarios represents an uncertainty on our sensitivity estimate.

For each event with one chargino, P (1)
detect represents the chance of detecting a single

LLP in the event. For each event with two charginos, 1− (1− P (1)
detect)(1− P

(2)
detect) is the

chance of observing at least one LLP, while P (1)
detectP

(2)
detect is the chance of observing two

LLPs. This allows us to compute the number of observed events with at least one or two

LLPs, N1+LLP and N2LLP, as a function of chargino mass and chargino lifetime.

We show contours of N1+LLP and N2LLP in Fig. 4.7 for µ > 0. The darker (lighter)

shading represents the contour with the lowest (highest) estimate of event yield, obtained

by minimizing (maximizing) with respect to the two hadronization scenarios ofmd = 0 or

0.5 GeV, and adopting the pessimistic (optimistic) Pjet reconstruction assumption. The

difference between the light and dark shaded regions can be interpreted as a range of

uncertainty in projected reach.12 The µ < 0 case is very similar in all of our studies, so

we only show the positive case.

12We note that the abrupt “bite” in the green shaded region of the top plot around (mχ, cτ) ∼
(140 GeV, 10−5m) is an artifact of assuming 100% DV reconstruction once the Higgsino decays to jets of
two or more charged particles turn on at larger mass splitting (under the optimistic reconstruction assump-
tion). In reality, this intermediate region would likely be smoothly interpolated by a gradual turn-on, when
more efficiently reconstructed DVs start dominating over displaced single tracks.
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Figure 4.7: Regions in the (mχ± , cτ) Higgsino parameter plane where more than 10
or 100 events with at least one (top) or two (bottom) LLPs are observed at the LHeC.
Light shading indicates the uncertainty in the predicted number of events due to differ-
ent hadronization and LLP reconstruction assumptions. Approximately 10 signal events
should be discernable against the τ -background at 2σ, in particular for 2 LLPs, so the
green shaded region represents an estimate of the exclusion sensitivity. For comparison,
the black curves are the optimistic and pessimistic projected bounds from HL-LHC dis-
appearing track searches, see Fig. 4.3.
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Figure 4.8: Regions in the (mχ± , cτ) Higgsino parameter plane where more than the
indicated number of one (top) or two (bottom) LLPs are observed at the FCC-eh with a
60 GeV electron beam and 1 ab−1 (left) or 10 ab−1 (right) of luminosity. Light shading
indicates the uncertainty in the predicted number of events due to different hadronization
and LLP reconstruction assumptions. As for the LHeC estimate in Fig. 4.7, the green
region represents our 2σ sensitivity estimate in the presence of τ backgrounds. For 10
ab−1, red shading is an optimistic sensitivity estimate in case background rejection is

better than we anticipate. For comparison, the black curves are projected bounds from
disappearing track searches, for the HL-LHC (optimistic and pessimistic) and the FCC-
hh, see Fig. 4.3.
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Figure 4.9: Same as Fig. 4.8 for the FCC-eh with a 240 GeV electron beam.

Backgrounds

An important and irreducible background SM background to our LLP signature is

the decays of tau leptons, which have a proper lifetime of ∼ 0.1mm and beta-decay into

the same range of final states as the charginos. Events with one (τ+ντ ) and two taus

(τ+τ−) are produced via VBF together with a jet with pT > 20 GeV, |η| < 4.7 at LHeC

with cross sections of ∼ 0.6 and ∼ 0.3 pb, respectively.

Since the τ ’s originate from the decay of on-shell W and Z bosons, their decay

products are much more central and energetic than those of charginos. Consequently,

despite this background being much larger than the Higgsino signal, it can be suppressed

considerably with simple kinematic cuts.
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Specifically, by requiring the final states of LLP decay to be forward (|η| > 1

in the proton beam direction), the missing energy to be high (MET & 30 GeV) and

the LLP final state energy to be very low (. 1.5∆m for a given chargino lifetime), a

background rejection of 10−3 (10−4) can be achieved for events requiring at least one

(two) reconstructed LLPs while keeping a large O(1) fraction of the Higgsino signal.

Given the above background cross sections, the number of signal events that would

be excludable at the 95% confidence level (2σ) above the background are then about 50

(10) for at least one (two) observed LLPs. This purely kinematic background rejection

is very effective, but still underestimates the sensitivity. In the space of possible final

states and decay lengths, τ ’s will populate very different regions than the chargino signal.

While an in-depth study of such an analysis is beyond our scope, a comparison of the

observed LLP data to a background template in that space will clearly increase sensitivity

even further.

There are also reducible backgrounds from jets, most importantly the decays of

B-mesons, which themselves have macroscopic lifetime. However, the final states of B-

decays, which are extremely well studied, are different and distinguishable from the final

states of chargino or τ -decay. Furthermore, B-decay can be vetoed by rejecting events

with additional soft hadrons that are collinear with the line from the PV to the DV, which

are very likely to accompany b-quark production and hadronization. Again, this rejection

of QCD backgrounds takes advantage of the clean environment of the ep collider, and we

expect its ultimate impact to be smaller than that of the τ -backgrounds we discuss above.

Finally, in any LLP analysis one must generally contend with complicated and

difficult-to-estimate backgrounds originating from beam halo, material interactions, mis-
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reconstructed tracks, etc. These backgrounds are highly dependent on the final accelerator

and detector design, very difficult or impossible to simulate, and far beyond the scope of

our simple theoretical study. However, experience at the LHC [223, 225, 280] shows that

these backgrounds can be controlled to effectively contribute at the sub-ab cross section

level if the LLP decay can be triggered on and is sufficiently distinguishable from the

high pile-up levels present at the LHC and HL-LHC. Given the clean environment at the

ep colldier, we expect these backgrounds to be under control in our analysis as well.

It is with all this in mind that we have shown contours of N1+LLP,2LLP > 10 and

> 100. By the above arguments, the former constitutes a realistic expectation for the

approximate number of LLPs which should be excludable at 2σ, while the latter shows

how sensitivity is affected if backgrounds are much harder to reject than we anticipated.

FCC-eh

We repeat the above analysis for the FCC-eh scenarios. We assume the same de-

tector dimensions, triggers, and thresholds. The kinematic rejection of τ backgrounds

improves, with rejections in the range of 10−4 − 10−3 (10−5 − 10−4) for one (two) τ

events, more than offsetting the modest growth in τ -cross section, which is 2.1 (0.8) pb

at the FCC-eh with a 60 GeV electron beam, and 4.4 (1.1) pb with a 240 GeV electron

beam.

Figs. 4.8 and 4.9 show the number of observed events with at least 1 or 2 LLPs at the

FCC-eh (60) and FCC-eh (240). We recall that we here consider benchmark luminosities

of 1 and 10 ab−1. For the latter, we show contours of 300 and 30 events instead of 100

123



100 120 140 160 180 200 220
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1

0.3
0.5

1

2

3
4
5

mχ+ (GeV)

cτ
(m

)

Δ
m

(G
eV

)

LHeC

pT
min = 100 MeV

r0 = 25 μm

r0 = 40 μm

r0 = 80 μm

100 120 140 160 180 200 220
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1

0.3
0.5

1

2

3
4
5

mχ+ (GeV)

cτ
(m

)

Δ
m

(G
eV

)

LHeC

r0 = 40 μm

pT
min = 50 MeV

pT
min = 100 MeV

pT
min = 400 MeV

100 200 300 400 500
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1

0.3
0.5

1

2

3
4
5

mχ+ (GeV)

cτ
(m

)

Δ
m

(G
eV

)

FCC-eh-60

pT
min = 100 MeV

r0 = 25 μm

r0 = 40 μm

r0 = 80 μm

100 200 300 400 500
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1

0.3
0.5

1

2

3
4
5

mχ+ (GeV)

cτ
(m

)

Δ
m

(G
eV

)

FCC-eh-60

r0 = 40 μm

pT
min = 50 MeV

pT
min = 100 MeV

pT
min = 400 MeV

200 400 600 800
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1

0.3
0.5

1

2

3
4
5

mχ+ (GeV)

cτ
(m

)

Δ
m

(G
eV

)

FCC-eh-240

pT
min = 100 MeV

r0 = 25 μm

r0 = 40 μm

r0 = 80 μm

200 400 600 800
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1

0.3
0.5

1

2

3
4
5

mχ+ (GeV)

cτ
(m

)

Δ
m

(G
eV

)

FCC-eh-240

r0 = 40 μm

pT
min = 50 MeV

pT
min = 100 MeV

pT
min = 400 MeV

Figure 4.10: Reach dependence on r0 and pmin
T for the Higgsino search requiring a single

tagged LLP decay. All plots assume 1 ab−1 of data, µ > 0, and the most optimistic
estimate for event yield given hadronization and displaced jet reconstruction uncertainties.
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and 10 to estimate sensitivity. This roughly accounts for the
√

10 larger number of signal

events required to stand out against the same background cross section with a factor of

10 higher luminosity. However, we also show contours for 10 events, in the event that

background rejection is very good and sensitivity scales more linearly with luminosity.

We emphasize that the FCC-eh (240) with 10 ab−1 of luminosity may be able to probe the

1.1 TeV thermal Higgsino DM relic at lifetimes much shorter than FCC-hh disappearing

track searches. Furthermore, this reach is theoretically very robust since LLP tagging

efficiency at O(mm) lifetime is excellent at e−p colliders.

We note that an O(1) pile-up may become relevant at higher beam energies and

luminosities. A detailed discussion is beyond our scope, but we expect that single dis-

placed charged particles should be kinematically clearly distinguishable from a second

high-energy primary vertex. Furthermore, given the sizable longitudinal extent of the

interaction region, sensitivity at short lifetimes would not be affected by requiring the

impact parameter or DV distance from the PV to be much less than the beam spot length.

This would further reject pile-up vertices, which are more evenly distributed along the

beam axis. While a more thorough investigation is certainly required, we expect our re-

sults to be fairly robust against these modest levels of pile-up, especially for the search

requiring 2 observed LLPs.

Impact of track resolution and energy thresholds

It is important to determine to what extent the specifications of the detector, like

energy thresholds and tracking resolution, affect BSM reach. In Fig. 4.10 we show how
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reach of the single-LLP decay search is modified if we deviate from our benchmark as-

sumptions of pmin
T = 100 MeV as the minimum threshold for single track reconstruction

and rmin
0 = 40µm as the minimum spatial separation for LLP tagging. (We do not show

the corresponding figure for the search requiring two LLP decays, since the conclusions

are similar.)

Our results are fairly robust with respect to variation in these two thresholds. Chang-

ing the tracking resolution (rmin
0 ) unsurprisingly has noticeable effect on reach at the low-

est lifetimes, but does not affect mass reach at the larger lifetimes. Conversely, the pmin
T

threshold has no effect on reach at short lifetimes (where mass splitting is larger, leading

the single charged particles to always pass the threshold). At large lifetimes the bench-

mark threshold of 100 MeV is very close to optimal, with improvements for 50 MeV being

very minimal. On the other hand, assuming a much worse threshold of 400 MeV would

modestly affect mass reach, which would make it even harder to reach the mχ = 1.1 TeV

goal corresponding to thermal Higgsino dark matter. This provides significant motivation

to aim for single track reconstruction thresholds at the ∼ 100 MeV level when finalizing

detector design.

Discussion and comparison

Our projected LHeC sensitivity for Higgsinos is competitive in mass reach to the

monojet projections for the HL-LHC, being sensitive to masses around 200 GeV for the

longest theoretically motivated lifetimes. The LHeC search has the crucial advantage of

actually observing the charged Higgsino parent of the invisible final state. Proposed disap-
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pearing track searches at the HL-LHC may probe higher masses for the longest lifetimes,

but lose sensitivity at shorter lifetimes. By comparison, the LHeC search is sensitive to

lifetimes as short as microseconds. It is important to note that the mass reach of e−p col-

liders is much more robust than the disappearing track projections, since the former are

not exponentially sensitive to uncertainties in the Higgsino velocity distribution. While

similar lifetime sensitivities may be possible at lepton colliders, only the highest energy

proposals would have comparable center-of-mass energy.

The direct collider sensitivities are complementary to the sensitivity of dark matter

direct detection experiments, which cover larger mass splittings (shorter lifetimes), and

indirect detection constraints. However, these bounds are model-dependent and rely on

cosmological assumptions. In the event of a positive dark matter signal, e−p colliders

would play a crucial role in determining the nature of the dark matter candidate.

The mass reach of the FCC-eh is obviously much greater than for the LHeC. Reach-

ing the thermal Higgsino DM mass of∼ 1.1 TeV is challenging and would require a high

luminosity high energy FCC-eh scenario as shown in Fig. 4.9 (left). However, in all cases

the sensitivity to short decay lengths, possibly much less than a single micron, far exceeds

what the FCC-hh can accomplish with disappearing track searches, making the FCC-eh

coverage crucial in probing the full range of possible Higgsino scenarios.

4.4 LLP Production in Exotic Higgs Decays

The Higgsino analysis of the previous section demonstrates that e−p colliders have

unique capabilities to detect LLPs which decay due to almost-degenerate masses into
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extremely soft SM final states with very short lifetimes. However, the excellent tracking

resolution, clean environment and longitudinal boost of the collision center-of-mass frame

also has significant advantages for detecting LLPs with somewhat higher energy final

states.

Exotic Higgs decays are strongly motivated on general theoretical grounds, see e.g.

ref. [195]: the small SM Higgs width allows even small BSM couplings to lead to sizable

exotic Higgs branching fractions, and the low dimensionality of the gauge- and Lorentz-

singlet |H|2 portal operator allows it to couple to any BSM sector via a low-dimensional

term in the Lagrangian, making sizable couplings generic.

We consider exotic Higgs decays into a pair of BSM LLPsX . The exotic branching

fraction Br(h → XX) and the LLP lifetime cτ are both essentially free parameters. We

focus on LLP masses of order 10 GeV to demonstrate that e−p colliders also offer crucial

advantages to LLPs without soft decay products. This simplified model represents many

highly motivated theoretical scenarios, including Neutral Naturalness [281] and general

Hidden Valleys [59, 60, 61, 62, 63, 64], where the LLPs are hadrons of the hidden sector

produced via the Higgs portal.

Analysis strategy

We assume X decays to at least two charged particles with energies above pT de-

tection threshold to uniquely identify a DV for the LLP decay. The analysis proceeds

along very similar lines as the Higgsino case: VBF Higgs production at e−p colliders, see

Fig. 4.4 (right), is simulated to lowest order in MadGraph, with cross sections 0.1, 0.34,
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Figure 4.11: Projected exclusion limits on exotic Higgs decay branching fraction to
LLPs X as a function of lifetime cτ for the LHeC, FCC-eh (60) and FCC-eh (240) with
1 ab−1 of data. The excluded branching ratio scales linearly with luminosity under the
assumption of no background. The LLP mass in the plot is 20 GeV, but for different
masses the curves shift in cτ roughly by a factor of mLLP/(20 GeV). The search at the
ep collider requires only the trigger jet to locate the PV and a single DV from LLP decay.
For comparison, assumingX decays hadronically, we show a somewhat realistic estimate
for the sensitivity of pp colliders with 3 ab−1 and without background (blue), as well
as a very optimistic estimate which assumes extremely short-lived LLP reconstruction
(orange), from [12].

1.05 pb at the LHeC, FCC-eh (60) and FCC-eh (240) respectively. The search strategy

is also the same, shown in Fig. 4.6, but now we are dealing exclusively with displaced

vertices (C), which we assume are detected with an efficiency of 100% as long as the

final states hit the tracker and the LLP decays at a distance rmin away from the primary

vertex, which is again identified by the associated jet which passed the trigger.

The decay of a single LLP from exotic Higgs decays, with mass of a few GeV

or above, is much more spectacular than in the Higgsino analysis discussed previously.

This is because each LLP decays to a DV with either two fairly hard tracks (if the decay

is leptonic) or O(10) charged tracks (if the decay is hadronic), making reconstruction

much more robust and strongly distinguishing it from backgrounds including τ and b

decay. Additional handles are the DV invariant mass and known Higgs mass. As a result,

our exotic Higgs decay search only requires a single LLP with a displacement above

rmin = 40µm, in addition to the triggering jet, and we expect backgrounds to be negligible.
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Results and discussion

We show the resulting sensitivity in Fig. 4.11, with the exclusion sensitivity of 4

expected events passing the above signal requirements. From the figure we see that e−p

colliders can probe LLP production in exotic Higgs decays with decay lengths below a

micron, due to the lifetime-enhancing longitudinal boost and excellent tracking in a clean

environment.

For comparison, we show estimates of the HL-LHC and FCC-hh sensitivity to LLPs

produced in exotic Higgs decays [12], where the LLP decays hadronically, which is a

challenging scenario for the LHC main detectors. A somewhat realistic estimate assumes

triggering on Higgs production from VBF13 and requiring a single DV displaced more

than 3cm from the beamline is enough to eliminate backgrounds (blue curves). A much

more optimistic estimate (orange curves) assumes a search triggering on a single high-pT

lepton from associated Higgs Boson production and requiring a single DV with displace-

ment as low as 50µm can be performed with no backgrounds. It is still unclear whether

this optimistic search can be realized at pp colliders.

The sensitivity achievable at the LHeC (FCC-eh) reaches much shorter lifetimes

than either projection for the HL-LHC (FCC-hh), especially for the more conservative pp

projections. This is especially significant since the optimistic search of [12] was required

to cover well-motivated parts of Neutral Naturalness parameter space where the hidden

hadrons are very short-lived. Furthermore, the estimated sensitivity of e−p colliders at

short lifetimes is more robust than that of pp colliders, where those searches have to
13This reach estimate would be very similar if the search triggered on leptons from associated production

instead of VBF.
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contend with much higher levels of background and pile-up.

4.5 Discussion

Electron-proton colliders are more commonly associated with DIS studies of the

proton than with BSM searches. However, their high center-of-mass energy compared

to lepton colliders but clean environment compared to hadron colliders lets them play a

unique role in probing a variety of important BSM signals.

Diverse BSM states can be produced in VBF processes, which also ensures trigger-

ing and identification of the primary vertex. Any BSM state which looks like hadronic

background in the high-energy, high-rate environment of hadron colliders can likely be

much better identified and studied in e−p collisions. A prime example of such BSM sce-

narios are LLPs which decay with short lifetime (. mm) and/or a small mass splitting

(. GeV) which can arise from compressed spectra. To demonstrate this, we studied

searches for pure Higgsinos and exotic Higgs decays to LLPs. In both cases, proposed

e−p colliders probe new and important regions of parameter space inaccessible to other

experiments. Our most optimistic FCC-eh scenarios could produce and reconstruct the

1.1 TeV thermal Higgsino dark matter relic. It is also important to point out that in both

BSM scenarios, the e−p collider reach is more robust than the pp projections.

We used LHeC and FCC-eh proposals as our benchmarks, but took some liberties

in exploring higher luminosities and higher energies to show what kind of physics reach

may be possible. In that light, our results can serve to guide the detailed design of such

a future machine, whether it is built as an add-on to the CERN LHC, CERN FCC-hh, or
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a the SppC. Similarly, we found that the reconstruction of soft LLP final states with high

tracking resolution (. 10µm), single track reconstruction thresholds of ∼ 100 MeV and

very low pile-up are necessary conditions for this unique BSM sensitivity, and should be

a high priority in the design.

We demonstrated that e−p colliders have unique sensitivity to BSM signals, in par-

ticular LLPs with soft final states or very short lifetimes. Further study is needed to

identify other BSM scenarios to which these machines could be uniquely sensitive, but

our results suggest that difficult final states may be a particularly fruitful avenue of explo-

ration. There may be other diverse classes of signals that can be effectively probed. This

adds significant motivation for the construction of future e−p colliders. Together with the

invaluable proton PDF data, as well as precision measurements of EW parameters, top

quark couplings and Higgs couplings, our results make clear that adding a DIS program

to a pp collider is necessary to fully exploit its discovery potential for new physics.
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Chapter 5: Conclusion

This thesis discussed various theoretical ideas to build microscopic models for Cos-

mic Inflation (see Chap. 2, 3). We explored model-building for inflation at high scales

as well as at lower scales, in each case striving for better theoretical control and natu-

ralness. We investigated modeling inflaton as a pseudo-Nambu-Goldstone boson, using

multi-axion structure to get an effective super-Planckian field space, the axionic structure

originating from extra-dimensional gauge theory, and embedding this in an approximately

supersymmetric vacuum in order to address the electroweak hierarchy problem. We also

explored the Hybrid Inflation mechanism with a discrete twin symmetry, as a means of

naturally realizing relatively low-scale inflation. It is exciting that we will have opportuni-

ties to test whether any of these constructions are realized in nature, via the numerous up-

coming and near-future experiments. There are various experiments – like BICEP Array

[28], Simons Observatory [29], CMB-S4 [30], LiteBIRD [31], and PICO [32] – aiming to

improve the constraints on inflationary observables and at measuring the energy scale of

inflation, which would be a great discovery. Furthermore, various searches for primordial

non-Gaussianities via large scale structure and 21-cm observations [142, 143, 144] will

probe the inflaton interactions, and the existence of new fields during inflation. All of

these experiments will help us get a detailed view into the physics governing the early
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universe, and in particular the phase of cosmic inflation.

The novel signatures of Long-Lived Particles (LLP), explored in Chap. 4, naturally

arise from a variety of beyond the Standard Model scenarios, including supersymmetry. It

is exciting to see a rich and diverse LLP search program (see e.g. [78, 83, 84, 85]) coming

up at the current and future colliders. There are also proposals for dedicated LLP detec-

tors, e.g. MATHUSLA [227, 228], milliQan [229], CODEX-b [230] and FASER [231].

All of these so-called “Lifetime Frontier” searches, will help us better understand the

structure of the world of fundamental particles, possibly resolving some of the long-

standing puzzles like the electroweak hierarchy problem, nature of dark matter, origin

of matter-antimatter asymmetry etc.

It has been the eternal quest of mankind to understand how the world around us

works. The theoretical and experimental investigations in particle physics and cosmol-

ogy explored in this thesis, along with innumerable others not even mentioned here, will

hopefully take us further on that path and reveal some of the secrets of the nature!
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Appendix A: SUGRA preliminaries

We write here the important SUGRA expressions relevant for Chapter 2. See [33]

for review and further details.

For a general Kähler potential and superpotential for chiral superfields Φi,

K = K(Φi, Φ̄i) , W = W (Φi), (A.1)

the SUGRA scalar potential is

Vscalar(Φi, Φ̄i) = eK
[
K−1

ΦiΦ̄j
(DΦiW )

(
DΦ̄jW

)
− 3WW

]
, (A.2)

with subscripts referring to the respective partial derivatives, and with

DΦiW ≡ WΦi +KΦiW. (A.3)

〈DΦiW 〉 is the SUSY order parameter for each of the superfields Φi. If there exists

spontaneous breaking of SUSY in a model, it gives rise to a massless Goldstino,

ψGoldstino ∝ 〈DΦiW 〉 ψΦi , (A.4)
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where ψΦi are fermions in the superfields Φi. The Goldstino is further “eaten” by the

gravitino which then becomes massive. This is called the “super-Higgs mechanism”.
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