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The overwhelming advances in biomedical technology facilitate the availability of

high-dimensional biomedical data with complex and organized structures. However, due

to the obscured true signals by substantial false-positive noises and the high dimensionality,

the statistical inference is challenging with the critical issue of research reproducibility

and replicability. Hence, motivated by these urgent needs, this dissertation is devoted to

statistical approaches in understanding the latent structures among biomedical objects,

as well as improving statistical power and reducing false-positive errors in statistical

inference.

The first objective of this dissertation is motivated by the group-level brain connectome

analysis in neuropsychiatric research with the goal of exhibiting the connectivity abnormality

between clinical groups. In Chapter 2, we develop a likelihood-based adaptive dense

subgraph discovery (ADSD) procedure to identify connectomic subnetworks (subgraphs)

that are systematically associated with brain disorders. We propose the statistical inference

procedure leveraging graph properties and combinatorics. We validate the proposed



method by a brain fMRI study for schizophrenia research and synthetic data under various

settings.

In Chapter 3, we are interested in assessing the genetic effects on brain structural

imaging with spatial specificity. In contrast to the inference on individual SNP-voxel

pairs, we focus on the systematic associations between genetic and imaging measurements,

which assists the understanding of a polygenic and pleiotropic association structure. Based

on voxel-wise genome-wide association analysis (vGWAS), we characterize the polygenic

and pleiotropic SNP-voxel association structure using imaging-genetics dense bi-cliques

(IGDBs). We develop the estimation procedure and statistical inference framework on the

IGDBs with computationally efficient algorithms. We demonstrate the performance of

the proposed approach using imaging-genetics data from the human connectome project

(HCP).

Chapter 4 carries the analysis of gene co-expression network (GCN) in examining

the gene-gene interactions and learning the underlying complex yet highly organized

gene regulatory mechanisms. We propose the interconnected community network (ICN)

structure that allows the interactions between genes from different communities, which

relaxes the constraint of most existing GCN analysis approaches. We develop a computational

package to detect the ICN structure based on graph norm shrinkage. The application

of ICN detection is illustrated using an RNA-seq data from The Cancer Genome Atlas

(TCGA) Acute Myeloid Leukemia (AML) study.
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Chapter 1: Introduction

With the advent of advanced biomedical technology, high-dimensional data analysis

has attracted widespread interest due to its applications in modern biomedical studies.

For example, brain connectome analysis in neuropsychiatric research targets to identify

functional connectivities related to brain disease (e.g., Schizophrenia) using functional

magnetic resonance imaging (fMRI) data, which yields millions of brain voxels. The

imaging-genetic studies with the goal of modeling the predictive mechanism of genetic

markers on quantitative imaging measures rely on the analysis of billions of SNP-voxel

pairs.

To date, the major works in high dimensional statistics have focused on various

research topics. For instance, the dimensional reduction that transforms the data to a

lower-dimensional representation (PCA, factor analysis, ICA, NMF, etc. [4, 5]), variable

screening [6, 7], variable selection to determine set of non-zero coefficients (penalized

regression [8, 9, 10], Bayesian models [11, 12]), multiple testing [13, 14, 15, 16], covariance

matrix estimation [17, 18, 19, 20] among many others.
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1.1 Multiple Testing Corrections

The modern applications of high-dimensional statistical inference motivate the need

to consider a sequence of simultaneous hypothesis tests. In large-scale brain imaging

data, the multiple testing problem arises when we are interested in testing the imaging

observation at each voxel, specifically,

Hv
0 : θv ∈ Θv

0 v.s. Hv
1 : θv /∈ Θv

0

with v ∈ V corresponding to a set of brain voxels.

Bonferroni correction has been widely accepted to control the family-wise error

rate (FWER), while a step-down procedure based on permutation test is developed by

Westfall and Young in [21] for less conservative controls. Besides, the concept of False

Discovery Rate (FDR) is first proposed in [13], and is employed through algorithms

including: Benjamini–Hochberg procedure (BH-FDR) [13, 14], positive FDR (pFDR,

[22]) and two-stage Benjamini, Krieger, & Yekutieli FDR procedure (BKY-FDR, [23]).

Later, another alternate local false discovery rate (fdr) is proposed by Efron in [15] which

relies on the empirical Bayes estimates of the mixture densities. These classical multiple

testing corrections apply a universal threshold on test statistics/p-values of each voxel,

such that the significant voxels may widespread among the whole brain which results in

less biological interpretability. Meanwhile, since the true signals are often obscured by

substantial false-positive noises in brain imaging data, a direct application of the classical

multiple testing corrections may result in high false-positive findings.
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Consequently, cluster-wise inference becomes increasingly popular in the field of

neuroimaging. A cluster is defined as a set of suprathreshold voxels/connections that

form a connected component spatially. Since a cluster of contiguous voxels surpassing

a threshold has less probability to exist comparing with isolated suprathreshold voxels

[24], the cluster-wise inference can be more powerful than voxel-wise inferences [25].

Subsequently, cluster size, voxels intensity and the combination [26] are developed as

cluster-wise statistics. Parametric (Random Field Theory (RFT), [27, 28]) and nonparametric

methods (permutation tests, [29, 30, 31]) are successfully applied to approximate the null

distributions of test statistics and control the FWER.

1.2 Network Analysis in High-dimensional Data

Networks play an increasing role in characterizing complex interactive structures

among high-dimensional objects. A network consists of a discrete set of study units and

their pairwise relationships. For instance, the interactive relationships between pairs of

genes are gathered in gene co-expression networks (GCN). The brain can be modeled

as a complex network with brain regions and their functional connectivities. Hence, the

advances of network analysis techniques proceed with the understanding of the complex

structures among high-dimensional objects.

Community detection is of high significance in network analysis to obtain insight

into valuable topological structures. A community is considered to be a group of units

(nodes) that have a closer relationship (edges) with each other compared with others.

Community detection has been widely studied during the past decades, and many community
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detection algorithms have been proposed including: clustering-based methods [32, 33],

modularity-based methods [34, 35], spectral methods [1], etc.

Analyzing the gene co-expression patterns is one possible application of community

detection [36, 37]. Genes are characterized as nodes in a network, while the interactive

relationships are represented by edges. The strength of relationships is calculated by the

similarity of co-expression patterns across subjects and reflected by edge weights. The

community detection methods divide the set of genes into homogeneous groups, such that

genes in the same community have similar expression patterns.

1.3 Overview

With the emphasis on brain connectome analysis and imaging-genetics studies, the

application of classic multiple testing corrections may lead to no positive findings, since

no single test statistics can pass the stringent cut-off due to the ultra-high dimensionality.

Moreover, although the cluster-wise inference controls the FWER with maintaining high

sensitivity, the available methods identify clusters as connected components which is

spatially connected but not spatially constrained (or constrained in its conceptual network)

in brain connectome data.

Hence, in Chapter 2, we focus on the group-level whole-brain connectome data, and

target in extracting disease-related subnetworks with statistical inference. We propose

a likelihood-based adaptive dense subgraph discovery (ADSD) model. Our method is

robust to both false positive and false negative errors of edge-wise inference and thus

can lead to a more accurate discovery of latent disease-related connectomic subnetworks.
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We present the ADSD objective function, a generalization based on graph `0-norm, the

statistical inference framework, and the associated algorithms in Section 2.2. Section 2.3

constructs theoretical results to guarantee the convergence properties of both objective

functions. We apply the proposed approach to a brain fMRI study for schizophrenia

research in Section 2.4, which identifies well-organized and biologically meaningful subnetworks

that exhibit schizophrenia-related salience network centered connectivity abnormality.

Analysis of synthetic data displayed in Section 2.5 also demonstrates the superior performance

of the ADSD method for latent subnetwork detection in comparison with existing methods

in various settings.

The purpose of Chapter 3 is the systematic investigation of genetic effects on brain

structures and functions with spatial specificity using imaging-genetics data. We attempt

to identify underlying organized association patterns of SNP-voxel pairs and understand

the polygenic and pleiotropic networks on brain imaging traits. We develop computational

strategies to detect latent SNP-voxel bi-cliques and inference model for statistical testing

in Section 3.2 and 3.3. We further provide theoretical results to guarantee the performance

of our computational algorithms and statistical inference. We validate our method by

extensive simulation studies in Section 3.4, and then apply it to a voxel-wise genome-

wide association analysis based on genetic data and white matter integrity data of 1042

participants from S1200 data release of the human connectome project (HCP) in Section

3.5.

In addition, the clustering of genes with similar expression patterns into groups

implies a block-diagonal structure for the gene co-expression network. However, the real

gene co-expression data may yield a more complicated network structure with interconnected
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communities. For example, genes from different communities might be enriched in

signaling pathways, such that genes involve synergistic interactions with each other in

a biological process. In Chapter 4, we develop a new computational package to extract

interconnected communities from GCNs. We consider a pair of communities be interconnected

if a subset of genes from one community is correlated with a subset of genes from another

community. The interconnected community structure is more flexible and provides a

better fit to the empirical co-expression matrix. To overcome the computational challenges,

we develop efficient algorithms by leveraging advanced graph norm shrinkage approach

in Section 4.2. We apply our interconnected community detection method to an RNA-

seq data from The Cancer Genome Atlas (TCGA) Acute Myeloid Leukemia (AML)

study and identify essential interacting biological pathways related to the immune evasion

mechanism of tumor cells in Section 4.3. We validate and show the advantage of our

method by extensive simulation studies in Section 4.4. Chapter 4 is a recall of recent

work in [38].
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Chapter 2: Statistical Inference for Group-level Brain Connectome Data

2.1 Introduction

Brain connectome analysis has become a powerful tool to understand the neurophysiology

and neuropathology of brain diseases at a circuit level. These analyses focused on investigating

patterns of functional and/or structural inter-connections between neural populations in

the central nervous system associated with symptomatic phenotypes. Mounting evidence

has shown that major neuropsychiatric disorders, including schizophrenia, Alzheimer’s

disease, and autism among others, are associated with disrupted structural and functional

connectivity patterns [39].

Recent advances in neuroimaging statistics have facilitated group-level statistical

analysis of structural and functional brain connectome data and the identification of disease-

related brain connectome patterns [40, 41, 42]. In these analyses, the brain is often

depicted as a graph [43], where each node corresponds to a brain region of interest

(ROI) and an edge represents the connectivity linking any two nodes. An edge can

represent functional connectivity based on functional magnetic resonance imaging (fMRI)

data at rest or task, structural connectivity measuring white matter track connections,

and weighted connection metric integrating multimodal brain connectivity [44]. These

multivariate edges are the variables of interest in brain connectome analysis, which are
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constrained by the nodes in a weighted adjacency matrix and thus exhibit network topological

properties [45]. Statistical inference for multivariate edge variables in an adjacency matrix

remains challenging because of the need to account for multiple testing corrections and

network topological structures simultaneously. Many statistical graph models have been

developed and successfully applied to brain connectome data analysis yielding important

findings (46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56 among many).

The current study focuses on extracting informative/signal subgraphs that are likely

related to brain diseases from the whole brain connectome [46]. Our overarching goal is

to accurately capture underlying signal subnetwork, such that the extracted subnetwork

i) cover a high proportion of true positive edges (i.e., high sensitivity); (ii) include a

few false positive edges (i.e., low false discovery rate (FDR)); and iii) are composed

of highly organized network topological structures (i.e., biologically interpretable). In

practice, however, this task is challenging because it is difficult to simultaneously balance

the sensitivity and false positive findings while constraining all positive edges in organized

subgraphs. The ‘dense’ subnetwork detection then becomes attractive because a subgraph

of a small number of nodes in an organized network topological structure covering most

signal edges can also lead to low FDR and high sensitivity. Although less discussed in the

statistical literature, dense subgraph discovery in the field of computer science research

has been carefully worked out (57), and thus may suit our needs for statistical analysis of

brain connectome data.

Dense subgraph discovery methods are designed to identify a subgraph with a

maximal density among all possible subgraphs, in short, the densest subgraph, in a binary

graph. These methods rely on the assumption that the overall graph is non-random and
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there exists some subgraph where the edge ratios are much higher than the rest of the

graph. [58] reduces the problem to a sequence of max-flow/min-cut computations, which

requires a logarithmic number of min-cut calls. [59] propose a simple and fast greedy

algorithm that is showed to have a 2-approximation guarantee by [60]. Nevertheless,

existing dense subgraph discovery algorithms may not be directly applicable to our analysis

due to the substantial noise in the group level brain connectome data. As demonstrated

in Figure 2.1a, there may exist an enormous amount of false positive and false negative

errors in edge-wise inference results that give rise to the difficulty of detecting dense

subgraph using existing methods. Specifically, due to the noise, existing dense subgraph

discovery algorithms tend to either identify over-sized subgraphs that may include a

large proportion of false positive edges with low importance levels (high FDR) or detect

over-conservative small-sized subgraphs that may not sufficiently cover signal edges (low

sensitivity, 61). Moreover, the computational cost of many these dense subgraph density

discovery algorithms is expensive, which may lead to intractable computational time

for commonly used statistical inference methods for brain connectome analysis (e.g.,

permutation tests). Hence, we are motivated to integrate modern statistical techniques

into dense graph discovery and mitigate these challenges for brain connectivity network

analysis.

We propose a likelihood-based adaptive dense subgraph discovery (ADSD) model

to extract informative connectomic subnetworks accurately. The new objective function

is robust to edge-wise false positive and false negative noise by introducing a tuning

parameter to balance the area density and degree density [61]. We optimize the tuning

parameter objectively by maximizing the widely used likelihood function in statistical
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network/graph model (e.g. stochastic block model, 62, 63, 64). We develop efficient

algorithms to implement the joint objective function of the ADSD. We further derive

theoretical results which guarantee the approximation properties for any fixed graph and

consistency for large graphs based on the proposed algorithm. In addition, we extend

the adaptive density metric to a general multiple-subgraph setting via `0 graph norm

shrinkage, and optimize the objective function through an efficient algorithm. We develop

theoretical results to show the accuracy of the model estimation by the `0-norm based

objective function. We then construct theoretical foundation for statistical inference on

disease-related subgraph and implement permutation tests to approximate p-values with

multiple testing correction [65, 66]. Our method is then applied to a resting state fRMI

(rfRMI) brain connectomic study for schizophrenia research. The results of our real data

analysis reveal for the first time systematic aberrant salience network centered connectivity

patterns in schizophrenia patients using whole brain connectome network analysis. Although

some of our findings coincide with previous studies using seed voxel-based method,

our analysis is more comprehensive and less biased, because it does not require pre-

selected seed sets or focuses on exclusively known networks. We perform extensive

simulation studies to validate the proposed model and theoretical conclusions. The results

demonstrate improved accuracy of informative subgraph detection in various settings.
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2.2 Methods

2.2.1 Background: group-level inference for multivariate edges in a graph

space

Let G = (V,E) be an undirected graph, where V = {vi}ni=1 is a set of nodes

representing brain areas and ROIs, and E = {eij}ni<j denotes the set of edges between

pairs of nodes (i.e, connections between brain areas). G′ = (V ′, E ′) is a subgraph of G if

V ′ ⊂ V and E ′ ⊂ E. Then, G(S) = (S,E(S)) is a ‘nodes-induced’ subgraph if S ⊂ V

and E(S) = {(u, v) ∈ E|u, v ∈ S} being edges in E with endpoints in S.

We use (Yk, Xk)Kk=1 to represent the group-level multivariate edge data in a graph

space G = (V,E), where k = 1, · · · , K is the subject index. Yk
n×n represents the brain

connectome data in a binary/weighted adjacency matrix for subject k, and Xk is the

corresponding vector of covariates (clinical and demographic variables). We assume that

the location of nodes and edges are identical across subjects after spatial normalization.

Thus, our goal is to perform statistical analysis and identify phenotype-related subnetworks

with high sensitivity and well-controlled FDR [46, 47, 51, 52, 56]. Figure 2.1a demonstrates

the procedure of group-level inference for brain connectome data.

Let W = {wij}ni,j=1 denote the edge-wise inference matrix based on graph G,

where each off diagonal entry wij represents the edge-wise statistical inference results on

edge eij (e.g., test statistics tij and p values − log(pij)). For each edge eij , we denote a

corresponding latent indicator variable δij such that δij = 1 if edge eij is associated with

the phenotype of interest and δij = 0 otherwise. We consider the edge-wise inference
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Figure 2.1: Motivation for informative subgraph extraction: (a) demonstrates
the process of obtaining edge-wise inference matrix from the population level
connectome data; (b) illustrates the commonly used community detection
results (e.g. using stochastic block model) cannot detect any informative
subgraph; (c) shows the results of existing dense subgraph discovery results;
(d) describes a desirable informative subgraph detection procedure which
can identify an organized and biologically interpretable topological structure
consisting of informative edges. The results in (d) are based on the ADSD
method (see details in the Results section).
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results as our input data [67].

The goal of group-level brain network analysis is to identify a set of subnetworks

{Ĝc} (Ĝc = (V̂c, Êc)) that are associated with a phenotype of interest, such that

1. Pr(δij = 1|eij ∈ Ĝc) > Pr(δij = 1|eij 6∈ Ĝc) (dense subgraph);

2. The false discovery rate (FDR),
∑
i<j I(δij=0|eij∈Ĝc))∑

i<j I(eij∈Ĝc))
, is low;

3. The sensitivity,
∑
i<j I(δij=1|eij∈Ĝc)∑

i<j I(δij=1)
, is high;

4. Ĝc is a well defined community (e.g., a node-induced subgraph that Ĝc = G(V̂c)).

In practice, the task above is challenging. For example, the mass univariate methods

including both FDR and family-wise error rate (FWER) controlling models apply an

universal threshold on all edges, and yield a set of unrelated ‘significant’ edges. Thus,

they can neither address the trade-off between sensitivity and false positive findings by

leveraging the information of network or yield findings with an organized and biologically

interpretale network topological structure. The network based statistics (NBS) method

allows edges borrow strengths from each other, yet it yields an unorganized subgraph

[39, 66]. Moreover, the signal subnetwork detected by NBS includes all nodes in G

almost surely, i.e., G(Vc) = G, when n is larger than a handful of nodes [68], and thus

less interpretable.

We also notice that the proportion of true positive edges
∑
I(δij=1)

|E| in G is often

small in our motivated brain connectome data (e.g., around 5%), which may lead to

the difficulty of applying the commonly used network models [69]. Figure 2.1b shows

the results of the application of spectral methods which miss the network topological
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structure. Therefore, it is highly desirable to extract a ‘dense’ subgraph which is a node-

induced subgraph G(S0), such that the edge density ρs is much higher than the overall

density ρ:

ρs > kρ, k > 1, with ρs ,

∑
i<j,i,j∈S0

I(δij = 1)

|E(S0)|
and ρ ,

∑
i<j I(δij = 1)

|E|
, (2.1)

and G(S0) includes most edges. The detected informative subgraph can either directly

become the subnetwork of interest or intermediate results for further refined network

analysis (e.g., using SBM). Since {δij} is unknown, we adopt the weighted edge set {wij}

by assuming that E(wij|δij = 1) > E(wij|δij = 0) for dense subgraph discovery.

2.2.1.1 Dense Subgraph Discovery

The conventional dense subgraph aims to detect a node-induced subgraph with

maximized density. Two popular definitions of density function are also referred to as

average degree and edge ratio [57, 59, 60]:

f1 =
|W (S)|
|S|

and f2 =
|W (S)|
|E(S)|

,

where |W (S)| =
∑

i,j∈S wij and |E(S)| =
(|S|

2

)
for weighted graphs. The edge ratio

agrees with our goal for informative subgraph detection. However, the implementation

of dense subgraph discovery is not trivial. The direct optimization of edge ratio f2 tends

to detect a high-density subgraph with a tiny size. Meanwhile, it has been known the

optimization of f1 can lead to the detection of an over-sized subgraph [61], which may
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cause a high false positive rate for statistical inference. Figure 2.1c shows the results of

conventional dense graph discovery by optimizing f1. To address these challenges, we

propose a likelihood based method for dense subgraph discovery.

2.2.2 Adaptive dense subgraph discovery (ADSD)

We consider G = (V,E,W ) as our input data that stores edge-wise inference

results in a weighted adjacency matrix W . Our goal is to extract a phenotype-related

informative subgraphG(S) induced by nodes set S in the sense thatE(wij|eij ∈ E(S))�

E(wij|eij /∈ E(S)) while maximally reducing false negative findings and improving the

sensitivity.

To address the challenges in conventional dense subgraph discovery and improve

the balance of the trade-off, we propose an adaptive density function:

f(S;λ) :=
|W (S)|
|S|λ

(2.2)

for S ⊂ V , where λ ∈ [1, 2] is a tuning parameter, such that when λ = 1 and 2, the

maximization of f(S;λ) density function reduces to f1 and f2, respectively. For f2,

|E(S)| =
(|S|

2

)
≈ |S|2/2.

To better illustrate the impact of the tuning parameter λ on the FDR and sensitivity,

we transform the optimization of objective function (2.2) to:

arg max
S⊂V

{
log f2(S) + λ′ log

|W (S)|
|W (G)|

}
(2.3)
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with λ′ ∈ [0, 1]. The optimal solution is approximated by f(S;λ) for large graphs with

λ′ = 2
λ
− 1. The first term in (2.3) is the true discovery rate (1− FDR), while the second

term is the sensitivity (power). In that, λ functions similarly to the tuning parameter

in the shrinkage methods (e.g., LASSO) since f1 is related to the loss function and f2

implements the rule of parsimony. Increasing λ leads to a low FDR, while decreasing λ

can improve the sensitivity. Therefore, our objective function is tailored for the four items

of our overarching goal.

In practice, both G(S) and λ need to be estimated, and λ is critical to balance the

trade-off between FDR and sensitivity. We propose an iterative procedure to optimize the

objective function (2.2) in subsection 2.2.2.1 and estimate λ in subsection 2.2.2.2. We

name this new procedure adaptive dense subgraph discovery (ADSD).

2.2.2.1 Optimization with a known λ

We implement the objective function (2.2) using a greedy algorithm. The greedy

algorithm has been the most commonly used technique to implement objective functions

for dense subgraph discovery [59, 60]. Generally, a greedy algorithm removes a node

with the minimum-degree at each iteration, and then selects the optimal dense subgraph

from the process of node removal. The detailed procedure is described by Algorithm 1.

We denote the optimal dense subgraph based on our objective function (2.2) with a

given λ by

S∗λ = arg max
S⊂V

f(S;λ),
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Algorithm 1 Optimizing objective function (2.3) with a given λ
1: procedure ALGORITHM

S1 ← V
2: for k=1 to n− 1 do
3: let v be the node in G(Sk) with smallest degree: v = arg mini∈Sk degG(Sk)

(i);
4: Sk+1 ← Sk/{v};
5: end for
6: Output the subgraph with largest objective function among G(S1), ..., G(Sn−1);
7: end procedure

and the output of greedy algorithm as:

S̃λ = arg max
S1,...,Sn−1

f(S;λ).

A major advantage of the greedy algorithm is the low computational complexity, which is

critical for our application. Although our greedy algorithm may not provide the exact

solution, [60] proved the greedy algorithm has a 2-approximation as to f1(·), that is

f1(S̃1) ≥ 2f1(S
∗
1), where S̃1 is the densest subgraph by greedy algorithm and S∗1 is the

true maximizer for f1(·). In section 3 of this chapter, we prove the theoretical approximation

properties of S̃λ with regard to the maximization f(S∗;λ) for various values of λ.

2.2.2.2 Likelihood-based method for λ estimation

Clearly, the performance of our greedy algorithm 1 relies on the unknown parameter

λ (e.g. λ = 1 and 2 lead to the optimization f1(·) and f2(·) alone respectively). We

propose a data-driven approach to automatically determine λ by maximum likelihood

estimation. In statistical literature, the likelihood function of network/graph data has been
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well studied [64]. For example, a binary graph with K block can be defined by:

Aij|θi = a, θj = b ∼ Bernoulli(πab)

whereAn×n is a binary adjacency matrix, θ = (θ1, ..., θn) is a latent vector of node labels,

and π = (πab)
K
a,b=1 is a K × K symmetric probability generating matrix for generative

for edges within and between blocks/communities.

We adopt the likelihood function of SBM because the dense subgraph structure in

our ADSD model can be considered as a special case of the block diagonal structure

in SBM. Specifically, in our model the graph G = (V,E) includes an underlying true

informative subgraphG(S0) and all other nodes are singletons. The number of communities

of SBM is K = n−ns + 1, where n = |V | and ns = |S0|. We further assume the planted

partition model that the parameters of Bernoulli distributions for edges between blocks

are identical in SBM.

To construct the likelihood function for ADSD, we first binarize the input data

matrix W using a threshold r and let Aij = {W (r)}ij = I(wij > r). We denote

θ(S) as a vector of node labels concerning the node set S for a dense subgraph G(S),

where an element θi(S) = 1 if i ∈ S and θi(S) = 0 for i ∈ V/S. Then, the membership

of edges regarding the nodes-induced subgraph G(S) can be defined consequently as

θij(S) = θi(S)θj(S).
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We let all edges in A follow a Bernoulli distribution with parameters πij that

πij =


πs both i, j ∈ S0

π0 o.w.

(2.4)

Using the mixture model representation, πij = θij(S0)πs + (1− θij(S0))π0.

When the membership of informative subgraph is given, the MLE of the edge

probabilities can be obtained by:

π̂MLE
s =

|A(S0)|
|E(S0)|

and π̂MLE
0 =

|A| − |A(S0)|
|E| − |E(S0)|

.

In practice, S0 is unknown and can be estimated by S̃λ from the Algorithm 1 with a

given λ. The likelihood function based on S̃λ is in the form:

Lλ(π̂
MLE
s , π̂MLE

0 ;θ(S̃λ),A) =
∏

i<j,i,j∈S̃(λ)

(π̂MLE
s )aij(1− π̂MLE

s )1−aij

×
∏

i<j,i∈V/S̃(λ) or j∈V/S̃(λ)

(π̂MLE
0 )aij(1− π̂MLE

0 )1−aij

where θ(S̃λ) is the node label vector associated with S̃λ. Therefore, λ can be estimated

by two steps. First, for any λ ∈ [1, 2], we can extract a dense subgraph S̃λ by the greedy

algorithm 1. Next, λ̂ is determined by the combination of λ and S̃λ that maximizes the

likelihood function:

λ̂ = arg max
λ

Lλ(π̂
MLE
s , π̂MLE

0 ;θ(S̃λ),A),
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The final result of dense subgraph discovery based on the MLE determined λ̂ is θ̂ =

θ(S̃λ̂).

We further consider the threshold r in Aij = {W (r)}ij = I(wij > r) as a

random variable following a distribution g(r) rather than a fixed value in order to avoid

an arbitrary selection. We integrate the likelihood with respect to r based on the prior

distribution g(r), and thus our optimization is invariant to the selection of r. g(r) can be a

discrete distribution with a support {r1, ...., rm} and corresponding probability {g(r1), ..., g(rm)}.

In practice, the performance of our algorithm is robust to the prior distribution, given the

reasonable support of r is used. By integrating r out, the likelihood function becomes:

Lλ(π̂
MLE
s , π̂MLE

0 ;θ(S̃λ),W ) =

∫
Lλ

(
π̂MLE
s , π̂MLE

0 ;θ(S̃λ),W (r)
)
g(r)dr

The general algorithm for ADSD is described in the Algorithm 2. Since Algorithm

1 is nested within the overall Algorithm 2, the low computational cost of Algorithm

1 is critical for the overall computational efficiency of ADSD. The complexity of the

ADSD algorithm is O(Mn2) where M is a sufficient searching range of λ. The resulting

subgraph G(Ŝλ̂) from our ADSD model can be further investigated for more delicate

latent topological structures and statistically tested by permutation tests with family-wise

error rate control [66, 70].

2.2.3 Subgraph extraction via `0 graph norm penalty

In the section, we resort to an `0 graph norm penalty based objective function

to extract multiple dense subgraphs from W . In this case, we express the topological
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Algorithm 2 The complete ADSD algorithm
1: procedure ALGORITHM λ← 1
2: while λ ≤ 2 do
3: return the densest subgraph S̃(λ) ofW from Algorithm 1
4: for r = r1 to rm do
5: calculate the likelihood: Lλ(π̂MLE

s , π̂MLE
0 ;θ(S̃λ),W (r))

6: end for
7: integrate w.r.t. λ:

Lλ(W ) =
∑m

i=1 Lλ(π̂
MLE
s , π̂MLE

0 ;θ(S̃λ),W (ri))g(ri)
8: end while
9: Output λ̂ and S̃λ̂ with maximized Lλ(W )

10: end procedure

structure of G as

G =
(
⊕Cc=1Gc

)
∪G0

where each Gc = {Vc, Ec} is a phenotype-related subnetwork and G0 = {V0, E0} is the

rest of G. In other words, G is structured as a union of C phenotype-related subnetworks

G1, . . . , GC and singleton nodes that do not belong to any subnetwork. Then, we follow

similar idea as the ADSD: for any detected subgraph Ĝc, we reward edge weights within

this subnetwork while penalizing on its size (i.e., increasing density and subnetwork size).

This objective function can lead to the discovery of a set of subgraphs with the maximal

size and density. Specifically, we define

U = (uij)i,j = W ∗G, that is, uij = wij · δij (2.5)

where “∗” denotes Hadamard (element-wise) matrix multiplication. Clearly, U depends

on the specified structure of the underlying graph G = (δij)i,j . Define ‖U‖1 =
∑

i,j |uij|

and ‖U‖0 =
∑

i,j I(|uij| > 0), where ‖ ‖1 and ‖ ‖0 are matrix element-wise `1 and

`0 norms. Our core proposal is the following `0 graph norm shrinkage criterion:
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arg max
G,C̃

log ||U ||1 − λ0 log ||U ||0 (2.6)

where λ0 is a tuning parameter. The objective function (2.6) jointly estimates the number

of subgraphs and the subgraph memberships of all nodes in G = ⊕Cc=1Gc ∪ G0. The

objective function (2.6) maximize the edge weights with minimally sized subgraphs,

which is mathematically equivalent to extract maximally sized subgraphs while maximizing

the density. Therefore, the optimization of (2.6) is governed by two conflicting goals:

covering high-weight informative edges and using minimally sized subgraphs. Maximizing

the first term ‖U‖1 can increase sensitivity by allocating a maximal number of high-

weight edges into subgraphs, which promotes large subgraphs. In the meanwhile, we

penalize the `0 graph norm to maximize the density of subgraphs. The second term can

also suppress false positive noise because false positive edges tend to be distributed in a

random pattern in G rather than an organized subgraph [70].

The tuning parameter λ0 balances the two conflicting terms. Specifically λ0 = 0

would send all nodes to one subnetwork, while a large λ0 prefers small communities and

singletons (nodes not in any community, thus contributing zero `0 graph norm ) even to

the true community structure. In our theoretical analysis, we find that for λ0 ∈ (0, 1), if

µ0/µ1 is less than an upper bound dependent on λ0, our criterion provides a consistent

estimation of the community structure, thus well-controlling the rates of two types of

errors in the multiple testing procedure. In practice, we can select λ0 based on likelihood

as ADSD.
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2.2.3.1 Implementation

We optimize (2.6) and extract dense subgraphs using Algorithm 3. Specifically, we

perform grid search for C. For each value of C = C†, let Ĝ(C†) be the estimated network

structure by optimizing (2.6), and UĜ(C†) is the corresponding matrix from Hadamard

matrix multiplication. Uc is the submatrix of U corresponding to Gc. Intuitively, both

‖Uc‖1 and ‖Uc‖0 decrease with an increasing value of C. The outcome provides a set

of maximal subnetworks with high density. We provide the theoretical guarantee for the

consistency and optimality of Ĉ, (Ĝc)c=1,...,Ĉ in section 2.3.

Algorithm 3 Implementation of `0-norm based subgraph extraction
1: procedure ALGORITHM C† ← 2
2: while C† =≤ n− 1 do
3: Optimize arg max

G(C†)

∑C†

c=1
‖Uc‖1
‖Uc‖

λ0
1

through spectral methods

4: Select Ĉ that arg max
C†=2,··· ,n−1

log ‖UĜ(C∗)‖1 − λ0 log ‖UĜ(C∗)‖0

5: end while
6: Output Ĉ, (Ĝc)c=1,...,Ĉ

7: end procedure

2.2.4 Statistical inference for phenotype-related subgraphs

We start to consider the primary problem of testing the existence of the subnetwork

structure. Particularly, we are testing

HG;0 : C = 0, that no phenotype-related subnetwork exists,

HG;a : C > 0, that at least one phenotype-related subnetwork exists.

(2.7)

Recall the SBM likelihood we constructed for ADSD,A is the binarized adjacency
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matrix (corresponding to a binary network G[r]) of W using threshold r [16], such that

A follows a mixture of Bernoulli distributions with probabilities πs and π0. Then, under

HG;0, we have that G[r] is an Erdős-Renyi graph with parameter π0. For any γ ∈ (π0, 1),

we call a subgraph of this binary graph a “γ-quasi clique” if its observed edge density

is at least γ. Define G[r; γ] to be the largest-in-size γ-quasi clique in G[r] and let |G[r]|

denote its size. Next, we show that we can reject the null based on these two properties of

a subgraph (i.e., density γ and size |G[r]|), which can be conveniently extended to testing

individual subgraphs.

Lemma 2.1. LetA be a binary network with independent edges.

• Suppose HG;0 : C = 0 is true, that is E[Aij] = π0. Assume that for any γ ∈ (π0, 1),

v0 = ω(
√
n) and n large enough such that {2/3 + 2(γ − π0)−1}−1 v0 ≥ log n, we

have

(|G[r; γ]| ≥ v0|HG;0) ≤ 2n · exp

(
−
{

2

(γ − π0)2
+

2

3(γ − π0)

}−1
· v20

)

• Suppose HG;a : C ≥ 1 is true. Assume that all subnetworks satisfy Gc = ω(
√
n)

and set v0 = c0
√
n for a small enough constant c0 > 0, such that minc=1,...,C∗ |Gc| ≥

v0, we have

(|G[r; γ]| ≥ v0|HG;a) ≥ 1− exp

{
−(q − γ)2v0(v0 − 1)/4

1 + (q − γ)/3

}

Lemma 2.1 states that i) the probability of a large and dense subnetworkGc existing

under H0 is almost zero; whereas ii) the probability of a large and dense subnetwork
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Gc existing under H1 is approaching 1. Lemma 2.1 provides the theoretical foundation

for our subnetwork-wise inference. Given an estimated Ĝc with high density and large

size, we can conveniently reject the null hypothesis by applying the results of Lemma

2.1. Therefore, the statistical inference for a phenotype-related subnetwork Ĝc becomes

testing on a statistic of the density and network size of Ĝc. Built on this inference

approach, the permutation tests [29, 66] can also effectively control the family-wise error

rate to simultaneously testing multiple phenotype-related subgraphs G1, . . . , GC fromW

with multiple testing correction.

2.3 Theoretical Results

The theoretical work for conventional dense graph discovery has been well-established

[57]. For example, [60] showed that the commonly used greedy algorithm proposed by

[59] has a 2-approximation bound. In this chapter, we aim to extend the theoretical results

for our new ADSD algorithms in 2.3 which generalizes the traditional objective function

by introducing the parameter λ. Specifically, we discus the approximation bounds for

ADSD with a full range of λ values in the following theorem 2.1.

Theorem 2.1 (Exact property of Algorithm 1). For a given graph G = (V,E), with S∗λ

and S̃λ defined in section 2.2, the Algorithm 1 has a ρ(λ, n)-approximation, especially

f(S∗λ;λ) ≤ ρ(λ, n)f(S̃λ;λ) with
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ρ(λ, n) =



c(λ) if λ ≥ 2

2c′(λ)n(λ−1)(2−λ) if 1 < λ < 2

2n1−λ if 0.5 < λ < 1

2nλ, if 0 < λ ≤ 0.5

where c(λ) = 2λ−1 and c′(λ) = 1 ∨ 21−λ.

The theorem 2.1 provides the performance of Algorithm 1 by guaranteeing the

closeness of objective function in S∗λ and S̃λ. However, an optimal optimization may

not result from a perfect recovery of informative subgraph for randomness (i.e. S∗λ 6= S0

for all λ). Hence, we further prove the asymptotic consistency of S̃λ from Algorithm 1

in following theorem 2.2. When the observed graph is generated from some underlying

model with true informative subgraph S0, there exist an λ such that S̃λ tends to S0 with

probability 1 asymptotically.

Theorem 2.2 (Asymptotic property of Algorithm 1). Assume the graph G = (V,E)

including an informative subgraph G(S0) = (S0, E(S0)) is generated from the special

SBM we defined in section 2.2.2.2, such that the edges are drawn from independent

Bernoulli distributions with parameter πij = πij(S0) = θij(S0)πs + (1 − θij(S0))π0,

where θij(S) = θi(S)θj(S), θi(S) = I(i ∈ S) and πs > π0. Let |S0| = O(|V |1/2+ε) as

n→∞ for any ε > 0.

Then, there exist some λ such that we will get exact recovery with probability 1 in
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Algorithm 1, i.e. as n→∞,

P(∀i, θi(S̃λ) = θi(S0))→ 1.

Theorem 2.2 provides the existence of parameter λ for a consistent estimator as

the size of graph goes to infinity. We use the following Theorem 2.3 to demonstrate the

performance of Algorithm 2 by illustrating the selected λ based on our likelihood-based

criterion will lead to an estimator with negligible proportion of incorrect assignment for

nodes.

Theorem 2.3. Assume the graph G = (V,E) includes an informative subgraph G(S0) =

(S0, E(S0)), such that the edges generate from independent Bernoulli distributions with

parameter πij = πij(S0) = θij(S0)πs + (1 − θij(S0))π0, where θij(S) = θi(S)θj(S),

θi(S) = I(i ∈ S) and πs > π0. Let |S0| = O(|V |1/2+ε) as n→∞ for any ε > 0.

Then, as n → ∞, the adaptive greedy algorithm with likelihood-based criterion

results in an estimate θ̂ = θ(S̃λ̂) with:

λ̂ = arg max
λ

sup
πs,π0

L(πs, π0;θ(S̃λ);A)

has incorrect assignment with probability converging to zero, i.e.

Ne(θ̂) =
n∑
i=1

I(θ̂i 6= θi(S0)) = op(n).
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Furthermore, we present theoretical guarantees for the `0-norm based subgraph

extraction. We first show the theoretical guarantee on the correctness of (2.6) optimization.

Theorem 2.4 (Consistency of subnetwork detection by (2.6)). Let C∗ be the true number

of subnetworks andµ = (µ0, µ1, ..., µC∗ , µC∗+1) denote their true proportions with ‖µ‖1 =

1. Suppose that the tuning parameter is set to be λ0 ∈ (0, 1), and assume

π0
πs

<


(C∗)λ0−1
C∗−1 , if C∗ ≥ 2

λ0, if C∗ = 1

(2.8)

Then asymptotically, our criterion (2.6) is uniquely optimized by C = C∗ and Gc = G∗c

for all c = 1, . . . , C∗.

Theorem 2.4 ensures that by optimizing (2.6), we can learn the correct number of

subnetworks. This optimization is combinatorial and difficult to carry out in practice.

Yet, Theorem 2.4 also suggests that our criterion (2.6) can also serve model selection

when combined with efficient subnetwork estimation procedures under each candidate

C. In view of this, next, we present the theoretical guarantee for a computationally

efficient estimation procedure for subnetwork detection under C = C∗. Let us define

some notation. Recall the definitions of π0, πs, and define σ2
0 = (wij|δij = 0) and

σ2
s = (wij|δij = 1). Let P = [W |G] = ΘΩΘT denote the expectation matrix, where

Θ ∈ {0, 1}n×(C+1) is a membership matrix that contains exactly one “1” and all others

“0” in each row. Here, Θi,(C+1) = 1 means that node i is a singleton node outside the

subnetwork structure.
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Theorem 2.5 (Consistency of spectral estimation underC = C∗). Assume that rank(P ) =

C∗+1, and denote its smallest absolute nonzero eigenvalue by ξn. Assume (πs∨σ2
s∨σ2

0) ≤

αn for αn ≥ c0 log n/n and c0 > 0. Then, if (2 + ε) (C+1)nαn
ξ2n

< τ for some τ, ε > 0, the

output Θ̂C∗ from the spectral estimation is consistent up to a permutation. Equivalently,

if V̂c is the estimated nodes set for subgraph Gc, c = 1, ..., C∗. Then V̂c ∩ Vc is the set in

Vc that the assignment of nodes can be guaranteed, and with probability at least 1− n−1,

up to a permutation, we have

C∑
c=1

1−

∣∣∣V̂c ∩ Vc∣∣∣
|Vc|

 ≤ τ−1(2 + ε)
Cnαn
ξ2n

.

The detailed derivations and proofs for the above theorems are provided in the

Appendix.

2.4 Data Example

We apply the proposed ADSD method to the neuroimaging data collected from

patients with schizophrenia and healthy controls. This data set includes 104 patients

with schizophrenia (SZ) (age 36.88 ± 14.17, 62 males and 41 females, 1 other) and

124 healthy controls (HC) (age 33.75 ± 14.22, 61 males and 63 females). There are

no systematic differences in age (test statistic 1.64, p value 0.10) or gender (test statistic

1.67, p value 0.10) between the two groups. The imaging acquisition and preprocessing

details are described in Adhikari et al. [71]. A brain connectivity-based atlas is used to

denote 246 regions of interest (ROIs) as nodes in a brain connectome graph [72]. The

functional connection (edge) between a pair of nodes for each subject is calculated by the
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covariation between averaged time series from the two corresponding brain ROIs. The

Fisher’s Z transformed Pearson correlation coefficient then is applied for each edge. We

perform non-parametric group level testing on each edge, although alternative inference

methods can be used as well.

We focus on the input matrix W reflecting the importance levels (− log(pij)) on

all edges, as demonstrated in Figure 2.2a. We first apply the greedy algorithm (e.g.,

Charikar’s method that is equivalent to the proposed greedy algorithm with an ad-hoc

λ = 1) for dense subgraph extraction. The results in Figure 2.2b seem to be an over-

inflated subnetwork without clear biological interpretation and a large set of false positive

edges. We also applied other popular subgraph detection methods, for example, breadth

first search in network-based statistics, stochastic block model, and various community

detection methods [66, 73, 74]). However, these algorithms either detect a subgraph

including all brain regions or yield no findings. In contrast, by implementing our ADSD

method (2), we obtain a subnetwork Ŝ = S̃λ̂ with λ̂ = 1.2. We note that the detected

subgraph is robust to the prior distribution of G(r) as long as a reasonable support is

used.

The computation is efficient, and it takes 2.21 seconds to implement the ADSD

algorithm on a Mac with CPU Core i5 and memory 8GB. We further calculate the p-

value of the network based on permutation test [45, 66, 70]. The p-value for the network

is significant p < 0.001 with family wise error rate adjustment.

The results show a subnetwork with reduced functional connectivity in patients

with schizophrenia compared to healthy controls (see in Figures 2.3), which is consistent

with the current knowledge that schizophrenia is possibly a degenerative disorder and
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associated with hypoconnectivity [75]. This subnetwork is centered around the well-

known salience network (SN) which is primarily composed of bilateral insular gyri (INS)

and anterior cingulate cortices (ACC). The salience network contributes to complex and

integrative brain functions including emotions, cognition, and self-awareness [76]. Numerous

previous studies have reported that decreased functional connectivity in the salience network

is related to several core symptoms of schizophrenia using seed voxel methods [77].

Our findings are well aligned with these established results. In addition to SN, our

subnetwork extracted by ADSD involves several other brain regions including bilateral

superior temporal gyri (STG), superior frontal gyri (SFG), precentral gryi (PCL), inferior

parietal lobe left (IPL), and orbitofrontal cortex right (OrG). These regions have been

identified to associate with auditory perceptual abnormalities (STG, IPL), voluntary movement

(PCL), and sensory and cognition (SFG, OrG) [39]. Jointly, our detected subnetwork

reveals a comprehensive and systematic brain connectivity aberrance in patients with

schizophrenia, which is related to the impaired capability to integrate and comprehend

information (e.g., multiple external stimuli) and to respond appropriately. The detected

schizophrenia-related brain connectome subnetwork is biologically plausible. It provides

evidence to combine prior isolated findings, and thus enhances our understanding of the

complex brain connectomic patterns and clinical symptoms.

Thus, our novel analytic approach revealed a neural sub-network that has been

previously shown to both differentiate healthy controls and patients with schizophrenia

and has been critically linked to core symptoms of the disorder. Since our results do not

depend on the arbitrary selection of seed voxels and pre-specified networks of interest,

our results are subject to less selection bias and thus more reliable and comprehensive.
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Figure 2.2: Results of data example: (a) is the input matrix W ; (b) shows
the results of existing dense graph discovery; (c) demonstrates the results by
applying ADSD; (d) illustrates refined topological structure based on results
of ADSD.
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Figure 2.3: Results of data example: (a) illustrates the enlarged and labeled
informative subgraph in t-statistics detected by ADSD which indicates
decreased functional connectivity of SZ. (b) is a 3D demonstration of the
subgraph: red nodes represent superior frontal gyrus (SFG) + orbitofrontal
cortex right (OrG); yellow nodes are precentral gryi (PCL); green nodes are
superior temporal gyrus (STG)+inferior parietal lobe left (IPL); blue nodes
represent insular gyrus (INS); navy nodes represents cingulate cortex (CG).
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2.5 Simulation Studies

In the simulation study, we generate multiple brain connectivity data sets under

several settings. We consider a graph G with |V | = 100, and set an informative subgraph

in a community structure with two possible sizes |S0| = 15 and 30. We simulate connectivity

matrices with different sample sizes (cases v.s. control): 30 v.s. 30 and 60 v.s. 60. We

assume that most edges in the informative subgraph are differentially expressed between

cases and healthy controls. We let the connectivity weights of edges inside the informative

subgraph follow a normal distribution with mean µ1 and variance σ2, while all other edges

have normal µ0 and σ2 for the case group. In the control group, we let all edges follow a

normal distribution of µ0 and σ2. Specifically,

xcase
ij(s)|{i < j, i, j ∈ S0} ∼ N(µ1, σ

2), xcase
ij(s)|{i < j, i or j /∈ S0} ∼ N(µ0, σ

2),

and xcontrol
ij(s′) |{i < j, i, j ∈ V } ∼ N(µ0, σ

2),

where xcase
ij(s) represents the edge linking node i and j for the sth subject in case group, and

xcontrol
ij(s′) defines the edge weight for the s′th subject in control group.

We apply various standard effect sizes (i.e., signal-to-noise ratios - SNRs) by setting

σ = 1, and µ0 = 0, µ1 = 0.6 and 0.8. We further consider a more realistic scenario

by letting the proportion q1 of edges inside informative-subgraph be non-differentially

expressed (i.e. N(µ0, σ
2) for both cases and controls). Similarly, we set a q2 proportion

of edges outside informative-subgraph are differentially expressed (i.e. N(µ1, σ
2) for

cases and N(µ0, σ
2) for controls). (q1, q2) represent the practical non-perfect distribution
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of informative edges in the overall graph. In the simulation data, two sets of parameters

(q1, q2) = (0.8, 0.1) and (0.9, 0.05) are used.

We compare the ADSD method with the two most popular dense subgraph discovery

methods including Greedy algorithm with λ = 1 and Goldberg’s algorithm. The results

are evaluated by node-assignment accuracy in terms of true positive rate (TP) and true

negative rate (TN) defined as follows:

TP =

∑n
i=1 I(θi = θ̂i = 1)∑n

i=1 I(θi = 1)
, TN =

∑n
i=1 I(θi = θ̂i = 0)∑n

i=1 I(θi = 0)

The mean and standard errors of TP and TN for three methods across 30 replicates for

all settings are displayed in the following Tables 2.1 and 2.2. For ADSD, we report the

estimated tuning parameter λ̂ and the size of the selected subgraph |S̃λ̂|. |S̃1| denotes the

size of subgraph detected by the Greedy algorithm and |Ŝ| by Goldberg’s method.

Tables 2.1 and 2.2 demonstrate results of sample sizes 30 v.s. 30 and 60 vs. 60

respectively. In general, the performance of all algorithms is satisfactory when sample

size, subgraph size, and effect size is large. When noise presents and either and subgraph

size is small (i.e., the scenario for most brain connectome data analysis), ADSD outperforms

the competing methods with much improved sensitivity.

We further performed permutation tests on the detected subgraph for network-level

inference. We summarize the results in terms of False Negative error (n-FN) rate and False

Positive error (n-FP) rate in Table 2.3. In general, the performance of ADSD inference

is satisfactory except when sample size, subgraph size, and effect size are all small. The

average computational time for each simulated data set is around one minute on a PC with
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Table 2.1: The node-assignment accuracy of three methods under varied SNRs (µ1 =
0.6, 0.8) and subgraph sizes for 30 cases and 30 controls

(q1, q2) = (0.8, 0.1) (0.9, 0.05)

|S0| Methods 0.6 0.8 0.6 0.8

15

ADSD

TP 0.903 (0.107) 0.979 (0.044) 0.963 (0.055) 0.997 (0.020)

TN 0.873 (0.093) 0.989 (0.024) 0.982 (0.050) 0.999 (0.004)

λ̂ 1.206 (0.050) 1.150 (0.046) 1.032 (0.066) 1.001 (0.037)

|S̃λ̂| 24.31 (17.48) 15.63 (2.20) 16.00 (4.48) 15.07 (0.47)

Greedy
TP 1 (0) 1 (0) 0.985 (0.037) 0.997 (0.013)

TN 0.081 (0.197) 0.061 (0.032) 0.746 (0.366) 0.999 (0.004)

|S̃1| 93.11 (3.33) 94.85 (2.68) 36.40 (31.26) 15.05 (0.38)

Goldberg
TP 0.989 (0.025) 0.989 (0.025) 0.973 (0.046) 0.986 (0.027)

TN 0.093 (0.039) 0.073 (0.033) 0.764 (0.351) 0.999 (0.004)

|Ŝ| 91.96 (3.27) 93.67 (2.79) 34.67 (29.98) 14.89 (0.55)

30

ADSD

TP 0.987 (0.024) 1 (0) 0.997 (0.010) 1 (0)

TN 0.991 (0.015) 0.999 (0.004) 0.998 (0.005) 1 (0)

λ̂ 1.035 (0.089) 0.998 (0.023) 0.985 (0.051) 1 (0)

|S̃λ̂| 30.25 (1.37) 30.06 (0.28) 30.04 (0.47) 30 (0)

Greedy
TP 0.996 (0.012) 1 (0) 0.999 (0.007) 1 (0)

TN 0.988 (0.017) 0.999 (0.003) 1 (0) 1 (0)

|S̃λ̂| 30.70 (1.29) 30.06 (0.24) 29.95 (0.22) 30 (0)

Goldberg
TP 0.985 (0.020) 0.989 (0.016) 0.988 (0.019) 0.989 (0.016)

TN 0.987 (0.026) 0.999 (0.003) 1 (0) 1 (0)

|Ŝ| 30.49 (1.88) 29.74 (0.52) 29.63 (0.56) 29.68 (0.47)

an i7 CPU 3.60 GHz and 64GB memory.

In summary, the simulation results clearly show that likelihood-based ADSD approach

is more robust to both false positive and false negative noise and can better capture smaller

subnetworks with a high sensitivity and a low false positive rate. These properties are

critical for the brain connectome analysis in practice because the real data sets are often

mixed with substantial noise and include a small proportion of signal edges.
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Table 2.2: The node-assignment accuracy of three methods under varied SNRs (µ1 =
0.6, 0.8) and subgraph sizes for 60 cases and 60 controls

(q1, q2) = (0.8, 0.1) (0.9, 0.05)

|S0| Methods 0.6 0.8 0.6 0.8

15

ADSD

TP 0.985 (0.035) 0.994 (0.023) 0.999 (0.009) 1 (0)

TN 0.995 (0.014) 1.000 (0.003) 0.999 (0.003) 1 (0)

λ̂ 1.139 (0.052) 1.105 (0.054) 0.998 (0.021) 1.002 (0.018)

|S̃λ̂| 15.17 (1.25) 14.96 (0.42) 15.06 (0.28) 15 (0)

Greedy
TP 1 (0) 1 (0) 0.999 (0.009) 1 (0)

TN 0.063 (0.031) 0.067 (0.036) 1.000 (0.002) 1.000 (0.001)

|S̃1| 94.68 (2.64) 94.27 (3.07) 15.02 (0.24) 15.01 (0.10)

Goldberg
TP 0.985 (0.028) 0.985 (0.028) 0.983 (0.029) 0.985 (0.028)

TN 0.073 (0.032) 0.077 (0.036) 0.999 (0.003) 1.000 (0.002)

|Ŝ| 93.55 (2.60) 93.23 (2.98) 14.80 (0.45) 14.79 (0.41)

30

ADSD

TP 1.000 (0.003) 1 (0) 1 (0) 1 (0)

TN 1.000 (0.002) 1 (0) 1 (0) 1 (0)

λ̂ 1.000 (0.004) 1.001 (0.011) 1 (0) 1 (0)

|S̃λ̂| 30.02 (0.20) 30 (0) 30 (0) 30 (0)

Greedy
TP 1.000 (0.003) 1 (0) 1 (0) 1 (0)

TN 1.000 (0.002) 1.000 (0.002) 1 (0) 1 (0)

|S̃λ̂| 30.02 (0.20) 30.02 (0.14) 30 (0) 30 (0)

Goldberg
TP 0.990 (0.016) 0.990 (0.015) 0.990 (0.015) 0.990 (0.015)

TN 1.000 (0.002) 1.000 (0.002) 1 (0) 1 (0)

|Ŝ| 29.72 (0.53) 29.72 (0.49) 29.70 (0.46) 29.70 (0.46)
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Table 2.3: The accuracy of permutation test under varied scenarios

(cases, controls) (q1, q0) |S0| 0.6 0.8

(30, 30)

(0.8, 0.1)

15
n-FP 0.340 (0.474) 0.010 (0.100)

n-FN 0.010 (0.100) 0 (0)

30
n-FP 0.020 (0.140) 0 (0)

n-FN 0 (0) 0 (0)

(0.9, 0.05)

15
n-FP 0.030 (0.171) 0 (0)

n-FN 0 (0) 0 (0)

30
n-FP 0 (0) 0 (0)

n-FN 0 (0) 0 (0)

(60, 60)

(0.8, 0.1)

15
n-FP 0 (0) 0 (0)

n-FN 0 (0) 0 (0)

30
n-FP 0 (0) 0 (0)

n-FN 0 (0) 0 (0)

(0.9, 0.05)

15
n-FP 0 (0) 0 (0)

n-FN 0 (0) 0 (0)

30
n-FP 0 (0) 0 (0)

n-FN 0 (0) 0 (0)

2.6 Discussion

In this chapter, we compare brain connectome matrices between diagnostic groups

(e.g. schizophrenia and healthy subjects) to understand connectivity patterns altered

by psychiatric illness. As in our motivation data example, however, phenotype-related

subnetworks can be overwhelmed by substantial noise in the connectome data and thus

difficult to extract. The noise heavily influences statistical inference by introducing enormous

edge-wise false positive and negative errors that are constrained in a weighted adjacency

matrix, and thus impose difficulty in understanding the network topology of phenotype-

related brain circuits and in yielding valid statistical inference.

To overcome these challenges, we develop a novel ADSD method to reliably and
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robustly identify signal subgraphs (related to the phenotypes of interest) from the whole

brain connectome network. The overall brain connectome inference network is often

over-sized with a small proportion of signal edges which are not compatible with existing

statistical network models. Therefore, it is desirable to detect a dense subnetwork maintaining

most signal edges in a clique with a much smaller number of nodes (nodes induced

subnetwork) and discarding a large proportion of false positive edges from the overall

network. Dense graph discovery has been a popular research topic in network analysis for

a couple of decades. Dense graph discovery methods are distinct from existing statistical

methods for network analysis (e.g. various versions of community detection) because

they focus on a network with a far fewer number of connections than a highly connected

network consisting of communities. The dense graph discovery method is well suited for

our application because the number of edges from the non-null distribution is relatively

small [16]. A key limitation of the current dense graph discovery methods is sensitive to

noise. Due to the substantial noise in brain connectome data, the existing dense graph

discovery methods tend to extract over-sized dense subgraphs which can lead to a high

FDR, potentially incorrect biological findings, and low replicability. The proposed ADSD

method integrates the concept of shrinakge into dense graph discovery by introducing a

balance parameter to include the most informative edges into the subgraph (high sensitivity)

while maintaining a low FDR. The balance parameter can be estimated based on the

likelihood function which is commonly used in network statistics. We develop efficient

algorithms to implement the objective function that is compatible with computationally

intensive inference methods (e.g., permutation tests and bootstraps) . In the current

research, we apply permutation test based statistical inference on the dense subgraph.
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Both the simulation and data example results show that the proposed method is robust to

the false negative and positive edges and can accurately detect the target dense subgraph

with high sensitivity and low false positive rates. Therefore, our goal of brain connectome

analysis can be well met by applying ADSD.

Our work makes several contributions to the field: first, the ADSD and `0-norm

based objective functions and algorithms provide new dense subgraph detection tools

for noisy, weighted, large, and less dense graphs, which may have wide applications

in data mining and knowledge discovery. Secondly, for ADSD algorithms, we derive

theoretical results to provide the bounds for the approximation in a full range of the

balance parameter. The asymptotic property of subgraph detection and balance parameter

estimation are also developed. For `0-norm based algorithms, we provide the optimality of

the objective function and error bounds. Last, the biological findings are novel, integrative,

and clinically meaningful. Although part of these findings has been found in previous

studies, only edge-wise results (i.e. links between regions to a fixed seed) are reported

without fully investigating the interactive nature of network-level inference.

In this chapter, the hypo-connections in the salience network centered subnetwork

groups in patients with schizophrenia are detected for the first time by whole brain connectome

network analysis with explicit network topology. The reported network reveals the novel

links between aberrant functional connectivity networks and impaired capability to integrate

information from multiple sources (cognition deficits) in patients with schizophrenia,

which may assist to further understand the underlying biological mechanism for multiple

schizophrenic disorder symptoms.

In summary, we develop a likelihood-based adaptive dense graph detection method
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to extract the dense subgraph from a large and noisy network (weighted and/or binary).

Our ADSD method outperforms existing dense subgraph discovery methods when the

overall graph includes a small proportion of edges with high importance levels, and thus

is well-suited for group-level brain connectome analysis. ADSD can also serve as a

screening step for group level network analysis to effectively extract a dense subnetwork

from a large overall network for further analysis. In addition, ADSD can be applied to

other biological network data (e.g. interactive networks of genomics and proteomics data)

and yield findings revealing latent and complex co-expression subnetworks. Therefore,

ADSD can become a new useful tool for statistical analysis of large and less dense

networks.
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Chapter 3: A Multivariate-to-Multivariate Approach for Voxel-wise Genome-

wide Association Analysis

3.1 Introduction

Imaging-genetics studies have garnered increased interest in the field of neuropsychiatric

research. The joint application of whole genome sequencing and high-resolution imaging

techniques is appealing because it can reveal the genetic effects on spatially specific brain

functions and structures [78, 79, 80, 81]. The imaging-genetics analysis has becomes a

new avenue to understand the genetic and neurological mechanisms for complex neuropsychiatric

traits.

In imaging-genetics studies, both brain imaging data and genome sequence are

measured for each participant. The genetic measurements can characterize genetic variations

using single nucleotide polymorphism (SNP) and copy number variants (CNVs). The

non-invasive brain imaging techniques assess the brain structures by magnetic resonance

imaging (MRI), diffusion tensor imaging (DTI), and brain functions by functional magnetic

resonance imaging (fMRI). The recent development of neuroimaging technology provides

high-resolution imaging data with improved spatial specificity.

To date, the voxel-wise genome-wide association analysis (vGWAS) is a main
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approach in imaging-genetics studies to assess genetic architecture of structural brain

imaging. However, the ultra-high dimensionality by combining imaging space (i.e., voxels)

with whole genome (i.e., SNP) poses considerably computational challenges. Specifically,

a typical imaging-genetics study collects roughly 107 SNPs and 105 voxels, which jointly

contributes trillions (1012) of SNP-voxel pairs [82, 83]. Thus, the statistical inference

involves simultaneous massive-scale tests. The classic multiple testing methods [82,

84, 85] and voxel-wise inference methods [65, 86] have been first applied. However,

the direct application of multiple testing correction, for example, false discovery rate

(FDR), may lead to none positive findings, because no single SNP-voxel pairwise test

p-value can pass the stringent cut-off due to the ultra-high dimensionality. In addition,

various noise and heterogeneity in imaging-genetics data can further impede accurate

inference. Other approaches such as advanced regression shrinkage models incorporating

group sparse regularization [87, 88], and low rank regression models [80, 89] have been

developed to fit multiple voxels in a joint model. Although enjoying numerous theoretical

advantages, these methods are only applicable in summarized imaging features at ROIs

due to computational burdens.

Most current statistical inference approaches treat each imaging-genetic interaction

as an individual unit and disregard the systematic nature of genetic influence on human

brains. Comparing with massive SNP-voxel pairs, the polygenic and pleiotropic pattern

formed by genetic variants from different chromosomes and multiple distant brain areas

is a more realistic characteristic of imaging-genetics associations. The detection and

statistical test of systematic association patterns help with the interpretability and replicability

of biological findings.
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Figure 3.1: Data structure for vGWAS

44



In this chapter, we propose a new multivariate-to-multivariate method to detect

and test polygenic and pleiotropic patterns based on vGWAS. Specifically, we consider

associations between all SNP-voxel pairs as edges in a bipartite graph, and genetic variants

and imaging voxels as two disjoint sets of nodes, correspondingly. We model the polygenic

and pleiotropic SNP-voxel association structure as an imaging-genetics dense bi-clique

(IGDB). IGDB is a node-induced subgraph consisting of a subset of SNPs and a subset of

voxels, where the possibility of a SNP associated with a voxel is much elevated than

the rest of the bipartite graph. Within an IGDB, each voxel can be considered as a

polygenic imaging trait, and a SNP as a pleiotropic genetic variant. The existence of

the polygenic and pleiotropic SNP-voxel association structure can be evaluated against a

random bipartite graph. We then develop computationally efficient algorithms to extract

the IGDB structure from the bipartite graph mixture model and thus provide sound estimates

of parameters in the mixture model. Our inference on IGDB is constructed via likelihood

ratio test based on the bipartite graph mixture model.

3.2 Methods

3.2.1 Background and notation

We consider an imaging-genetics data set collected from L independent subjects.

We denote V as the set of brain imaging voxels with |V | = n. The imaging trait of a

voxel v ∈ V is yv,l, and accordingly the vector of multivariate imaging traits is yl =

(y1,l, ..., yn,l)
T , for participant l ∈ {1, ..., L}. We let U be the set of genetic variants

with |U | = m. Then, xl = (x1,l, ..., xm,l)
T , l = 1, ..., L represents the genetic variants
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for the participant l. Without loss of generality, we estimate the associations between

multivariate imaging traits and multivariate genetic variants using a generalized linear

regression model:

E(yl|xl) = g−1(BTxl +αTzl),

where g(·) is a known link function with inverse function g−1(·), B = {βuv}u∈U,v∈V is

the m× n SNP-voxel association matrix, and βuv represents the effect size of association

between SNP u and voxel v with covariates zl accounted. The goal of statistical inference

is to accurately identify the subset of significant associations {βuv} via a sequence of

hypotheses (15, 90, etc.):

H
(u,v)
0 : βuv = 0, versus H(u,v)

1 : βuv 6= 0,

for all u ∈ U and v ∈ V .

A key distinction between univariate to multivariate inference (e.g., a single trait)

and multivariate-to-multivariate inference is that the associations can be more constrained

in multivariate-to-multivariate analysis when systematic association patterns present. For

example, a cluster of genes can be associated with a cluster of voxels. The identification

of the cluster-to-cluster association requires the joint modeling the global pattern and

local/individual βuv associations. Conventional inference methods (e.g., multiple testing

correction or regression shrinkage) may only focus on a set of individual association pairs

βuv without recognizing the systematic patterns. To address this challenge, we propose

a new multivariate-to-multivariate inference framework based on imaging-genetics dense
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bi-clique (IGDB).

3.2.2 Multivariate-to-multivariate inference from a graph perspective

We characterize the vGWAS association as a bipartite graph G = (U, V,E), in

which U and V are the two disjoint node sets representing sets of SNPs and voxels,

respectively. Through the association matrix B = {βuv}u∈U,v∈V , E denotes the edge set

and |E| ≤ |U ||V | such that euv ∈ E if and only if βuv 6= 0. In our application, we

consider the global sparsity of connections between U and V and thus |E| � |U ||V |.

In contrast to the inference on individual edges euv, we focus our study on the

systematic association patterns with emphasis on pleiotropic and polygenic relationships.

Particularly, we attempt to draw inference on the connections between neighborhoods of

SNPs and voxels, N (euv) = {eu′v′ , u′ ∈ N (u), v′ ∈ N (v)}. We restrict this structured

associations in an IGDB subgraph in G. In general, a subgraph is defined as G[S, T ] =

(S, T,E[S, T ]) with S ⊂ U , T ⊂ V , E[S, T ] = {euv ∈ E|i ∈ S, j ∈ T}. We denote

IGDB G[S0, T0] as a special subgraph reduced by disjoint neighboring vertex sets:

S0 = NU,1 ∪ ... ∪NU,kU and T0 = NV,1 ∪ ... ∪NV,kV

with concentrated imaging-genetic associations that:

Pr(βuv 6= 0|δuv = 1) > Pr(βuv 6= 0|δuv = 0), (3.1)
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where δuv is a binary variable indicating the IGDB-based network structure, i.e.,

δuv ≡ δuv(S0, T0) = I(euv ∈ G[S0, T0]),

or equivalently,

µ1 > µ0 for µ1 =
|E[S0, T0]|
|S0||T0|

and µ0 =
|E| − |E[S0, T0]|
|U ||V | − |S0||T0|

.

Within an IGDB, genetic variants may come from different chromosomes, while

imaging voxels may consist of multiple distant brain areas. This reflects that these imaging

features (T0) are polygenic traits and the genetic variants S0 are pleiotropic alleles. The

genetically correlated imaging features and functionally related SNPs jointly compose

a functional biclique G[S0, T0]. In practice, a functional biclique G[S0, T0] may further

be decomposed into multiple sets of SNPs based on their linkage disequilibrium (LD)

patterns and a few brain areas by the spatial contiguity constraint. Nevertheless, extracting

a functional biclique G[S0, T0] is critical because it provides a comprehensive association

pattern between multivariate imaging and genetic features and the basis for the following

steps (further decomposition). In the next subsection, we articulate that the IGDB enjoys

several statistical advantages based on graph and combinatorics theories.

3.2.3 Graph properties of IGDB

Without loss of generality, we consider the probabilistic and graph properties of

IGDB under the scenario of null hypothesis that G is a random bipartite graph (similar to
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Figure 3.2: A demonstration of the bipartite graph with IGDB structure
G[S0, T0]. The right subfigure indicates G[S0, T0] in G with nodes reordered.
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the derivation of exact tests). Specifically, the null and alternative hypotheses as follows:

H0 : G is observed from a random bipartite graph G(m,n, µ0),

H1 : There exists an IGDB G[S0, T0] such that

euv ∼


Bernoulli(µ1), if u ∈ S0 & v ∈ T0

Bernoulli(µ0), otherwise

with µ1 > µ0.

We define a γ-quasi biclique as a subgraph with edge density at least γ, and denote

as G[Sγ, Tγ]. Empirically, the probability to observe a γ-quasi biclique decrease with the

subgraph size. In the following lemma, we specify the upper bound of the probability

to observe a γ-quasi biclique via the subgraph sizes and edge densities under a random

bipartite graph.

Lemma 3.1 (Under IGDB-wise null hypothesis). Suppose G is observed from a random

bipartite graphG(m,n, µ0). G[Sγ, Tγ] is any subgraph with edge density |E[Sγ ,Tγ ]|
|Sγ ||Tγ | ≥ γ ∈

(µ0, 1) (i.e., γ-quasi biclique). Let m0, n0 = Ω(max{mε, nε}) for some 0 < ε < 1. Then

for sufficiently large m,n with c(γ, µ0)m0 ≥ 8 log n and c(γ, µ0)n0 ≥ 8 logm, we have

P (|Sγ| ≥ m0, |Tγ| ≥ n0) ≤ 2mn · exp

(
−1

4
c(γ, µ0)m0n0

)
,

where c(a, b) =
{

1
(a−b)2 + 1

3(a−b)

}−1
.

Lemma 3.1 states that the probability to observe an IGDB decays on the edge

density and exponentially on the size of the IGDB under the null. Thus, identifying an

IGDB with a non-trivial size and high edge density from G suggests the rejection of the
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null hypothesis, which carries the theoretical background on the IGDB-wise inference.

Our method is inspired by this finding and aims at the estimation and statistical inference

of IGDB in imaging-genetics data.

3.3 Estimation and Inference

Let Wm×n denote the inference result matrix (e.g., test statistics wuv = tuv or

− log(puv)) for the regression coefficients B̂m×n. Then, our goal becomes to extract and

test the IGDB structure from a weighted bipartite graph G = (U, V,W ).

3.3.1 IGDB estimation

We propose a new objective function for IGDB estimation which is inspired Lemma

3.1. We search for the maximal subgraph in G with a density constraint. Hence, we

estimate the IGDB G[S0, T0] based on edge weights matrixW by optimizing:

max
S⊆U,T⊆V

|S||T | subject to
|W [S, T ]|
|S||T |

≥ γ′ (3.2)

or the Lagrangian form after taking logarithm on both terms:

max
S⊆U,T⊆V

log(|S||T |) + λ log

(
|W [S, T ]|
|S||T |

)
, (3.3)

where γ′ is the density constraint and the tuning parameter λ ∈ (1,∞).

The direct optimization of the objective function (3.3) is challenging because it

is a nondeterministic polynomial (NP) problem [60, 91]. We propose computationally
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efficient (greedy) algorithms to implement the optimization while taking into account the

spatial continuity. Our algorithm can be summarized as two steps. In step 1, we detect

an initial IGDB without considering spatial constraint, which is developed based on the

greedy algorithms in dense subgraph discovery [91]. In step 2, we then determine the

IGDB based on the initial detection and its spatial connectivity by merging neighboring

voxel clusters while preserving the maximization of the objective function. We describe

the step 1 algorithm in the following Algorithm 4, and the details of step 2 are included

in Appendix. In practice, the tuning parameter can be objectively selected by a likelihood

method (see the Appendix for details). Multiple IGDBs can be extracted by performing

algorithms repeatly with the detected IGDBs masked [92]. The computational complexity

of Algorithm 4 is O(C1mn), where C1 is determined by the grid search of c.

To establish the approximation accuracy of the Algorithm 4 and its estimation of

IGDB, let S∗λ and T ∗λ be the true optimal maximizing the objective function (3.3):

(S∗λ, T
∗
λ ) = arg max

S⊂U,T⊂V
dλ(S, T ),

and (S̃λ, T̃λ) is the solution of Algorithm 4 with

(S̃λ, T̃λ) = arg max
c

arg max
(S1,T1),...,(Sm+n−1,Tm+n−1)

dλ(S, T ),

where dλ(S, T ) := log(|S||T |) + λ log
(
|W [S,T ]|
|S||T |

)
.

The greedy algorithm defined in directed graph with average-degree based density

(or equivalently λ = 2) is stated to guarantee a 2-approximation for the true optimal [60].
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Algorithm 4 Optimizing objective function (3.3) with a given λ
Input: G = (U, V,E,W ), λ
Output: G[S̃λ, T̃λ]

1: procedure ALGORITHM

2: for c ∈ {c1, c2, ..., cL} do
3: S1 ← U , T1 ← V
4: for k=1 to n+m− 1 do
5: let i ∈ Sk be the node with smallest degree: i =

arg mini′∈Sk degX(i′;Sk, Tk);
6: let j ∈ Tk be the node with smallest degree: j =

arg minj′∈Tk degY (j′;Sk, Tk);
7: if

√
c degX(i;Sk, Tk) ≤ 1√

c
degY (j;Sk, Tk) then

8: Sk+1 ← Sk/{i} and Tk+1 ← Tk;
9: else

10: Sk+1 ← Sk and Tk+1 ← Tk/{j};
11: end if
12: end for
13: Output G[Sc, T c] with maximized objective function among

G[S1, T1], ..., G[Sn+m−1, Tn+m1 ];
14: end for
15: Output G[S̃λ, T̃λ] with largest objective function among

G[Sc1 , T c1 ], ..., G[ScL , T cL ];
16: end procedure
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In short, 2d2(S̃2, T̃2) > d2(S
∗
2 , T

∗
2 ). In this chapter, we investigate the approximation

bounds in the bipartite graph setting. We present the approximation bounds for the

proposed objective function (3.3) in terms of a parameter λ as the following theorem

3.1.

Theorem 3.1. For a given bipartite graph G = (U, V,E), with (S∗λ, T
∗
λ ) and (S̃λ, T̃λ)

defined in Section 3.1.1, the greedy algorithm 4 has a ρ(λ,m, n)-approximation, i.e.,

dλ(S
∗
λ, T

∗
λ ) ≤ ρ(λ,m, n)dλ(S̃λ, T̃λ) with

ρ(λ,m, n) =



2(mn)
1
λ(1− 2

λ) if λ ≥ 2

2(mn)(
1
λ
− 1

2) if 4
3
< λ < 2

(mn)(1−
1
λ). if 1 < λ ≤ 4

3

We then state that under the IGDB-based network structure, the optimization of the

proposed objective function (3.3) leads to almost full recovery asymptotically.

Theorem 3.2. Assume the graphG = (U, V,E) with an IGDBG[S0, T0] = (S0, T0, E[S0, T0])

is generated from mixture of Bernoulli distributions: euv ∼ δuvBernoulli(π1) + (1 −

δuv)Bernoulli(π0), δuv = I(euv ∈ G[S0, T0]) and π1 > π0. For simplicity, we let

m = Θ(n). Assume |S0| = O(|m|1/2+ε) and |T0| = O(|n|1/2+ε) as n → ∞ for some

ε > 0. Denote

eS =

(
1− S̃λ ∩ S0

S0

)
+

(
1− S̃cλ ∩ Sc0

Sc0

)
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and

eT =

(
1− T̃λ ∩ T0

T0

)
+

(
1− T̃ cλ ∩ T c0

T c0

)

be the error rates of node memberships based on (S̃λ, T̃λ) from Algorithm 4.

Then, there exists some λ such that we will get almost full recovery in Algorithm 4,

i.e. for all a ∈ (0, 1) as n→∞,

P(eS + eT ≥ a)→ 1.

3.3.2 Statistical inference of the IGDB

Recall the purpose of this chapter is to perform statistical inference on the pleiotropic

and polygenic association pattern or the IGDB. We investigate the significant existence

of an IGDB against a random bipartite graph as illustrated in section 3.2.3. In developing

methodologies for the statistical test, without loss of generality, we assume that edge

weights inW following a mixture marginal distribution [15]:

wuv ∼


f1(·;θ1), if βuv 6= 0

f0(·;θ0), if βuv = 0.

(3.4)

Subsequently, under the IGDB-based network model in section 3.2.2, wuv|δuv = 1 ∼

µ1f1 + (1 − µ1)f0, while wuv|δuv = 0 ∼ µ0f1 + (1 − µ0)f0. Empirically, we have the

central tendency of f1(·;θ1) being greater than f0(·;θ0), in the sense that Eθ1 [wuv|βuv 6=

0] > Eθ0 [wuv|βuv = 0].
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Let r be a sound cutoff that dichotomize the weighted graph G into a binary graph

Gr = (U, V,A) using auv = I(|wuv| > r). Then, under IGDB structure indexed by node

sets (S0, T0), the edges in Gr follow a mixture of two Bernoulli distributions:

auv|(S0, T0) ∼ Bernoulli(πuv) (3.5)

where πuv = δuvπ1 + (1− δuv)π0 with the two parameters:

π1 = µ1

∫ ∞
r

f1(w,θ1)dw + (1− µ1)

∫ ∞
r

f1(w,θ1)dw,

π0 = µ0

∫ ∞
r

f1(w,θ1)dw + (1− µ0)

∫ ∞
r

f1(w,θ1)dw,

and π1 > π0. Then, the IGDB testing hypotheses boil down to

H0 : π1 = π0 = π versus H1 : π1 > π0,

based on our mixture distribution model (3.5).

We propose a likelihood-based approach for the IGDB-wise hypothesis testing. For

a binarized graph Gr, we let

tG = log
supH0∪H1

L(π;S, T,A)

supH0
L(π;A)

,

with likelihood given by Bernoulli distributions in (3.5) and a rejection region:

Pr(tG > η) ≤ α.
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In determining the significance of IGDBs, the simultaneous testing needs to be

accounted for all potential IGDBs. Besides, a rejection region (η) should be determined

based on the distribution of tG under null model. Hence, we employ the commonly

used permutation test procedure in the field of neuroimaging [31, 66] to empirically

approximate the distribution of the likelihood ratio statistic tG under IGDB-wise null

hypothesis and control the family-wise error rates (FWER). We describe the detailed

testing procedure in Appendix.

3.4 Simulation Studies

3.4.1 Simulation settings

In this section, we evaluate the finite-sample performance of our proposed method,

and compare with competing methods. We generate the synthetic data set with m =

200 genetic markers (i.e., X = (X1, ..., X200)), and n = 100 imaging features (i.e.,

Y = (Y1, ..., Y100)) on L = 60 subjects. We establish the associations between genetic

markers and imaging features through a bipartite graph G = (U, V,E). According to the

IGDB structure in section 3.2.2, we observe the matrix of indicator variable ∆ = {δuv}

from the IGDB G[S0, T0] = (S0, T0, E[S0, T0]) with two possible sizes: (|S0|, |T0|) =

(50, 40) and (30, 20). We let the proportion of significant associations within the IGDB

µ1 inside the IGDB (i.e. 1 − µ1 as false positive findings), and µ0 false positive edges

at the background graph. Different parameters (µ1, µ0) = (0.8, 0.2) and (0.9, 0.1) are

consider in this simulation study.

We then consider the genetic markers (Xu) from Bernoulli distributions, while
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imaging features (Yv) following normal distributions. Subsequently, for significant associations

(i.e., βuv 6= 1), the distribution of Yv should be significantly different in two groups ofXu,

whereas for βuv = 0, Yv follow a common distribution for values of Xu. Particularly, for

the pair with βuv 6= 0, Yv is assumed to follow N(θ1, σ
2) and N(θ0, σ

2) in two groups of

Xu (i.e., Yv,l ∼ N(θ1Xu,l+θ0(1−Xu,l), σ
2), l = 1, ..., L). For βu′v′ = 0, Yv′l ∼ N(θ0, σ

2)

for all l = 1, ..., L. Hence, we generate the edge weights matrixW with

wuv|δuv = 1 ∼ µ1tL−2(ν) + (1− µ1)tL−2

wuv|δuv = 0 ∼ µ0tL−2(ν) + (1− µ0)tL−2

with noncentral parameter ν = θ1−θ0
σ
√

4
L

. We apply different signal and noise power (i.e.,

Signal-to-Noise Ratio (SNR)) by letting σ = 1, θ0 = 0 and θ1 = 0.8, 1.0 and 1.2. We

replicate all scenarios for 100 times.

3.4.2 Performance metrics

In the simulation study, we evaluate the performance of proposed inferential procedure

by the IGDB-wise testing results, and the extraction of IGDB based on the edge-wise

accuracy. For IGDB-wise inference, we consider a detected IGDB G[Ŝ, T̂ ] is a recovery

of the underlying IGDB G[S0, T0] if it is rejected in the proposed likelihood ratio test and

has high similarity with G[S0, T0]. Specifically, we consider G[Ŝ, T̂ ] is a true positive

detection of G[S0, T0] if JX ∧ JY > 0.6 with

JX =
S0 ∩ Ŝ
S0 ∪ Ŝ

and JY =
T0 ∩ T̂
T0 ∪ T̂

,
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and we succeed to reject the IGDB-wise null hypothesis in the permutation test. Therefore,

the detected IGDB leads to a false negative finding if the p-value in the permutation test is

not lower than the a significant level (i.e., 0.05). Besides, we observe a false positive error

ifG[Ŝ, T̂ ] has low similarity toG[S0, T0] even we rejected the IGDB-wise null hypothesis.

We report the accuracy of inference by False Positive Rate (FPR) and False Negative Rate

(FNR) among replications.

Furthermore, we investigate the edge-wise accuracy by comparing to the standard

multiple testing methods: pFDR by [93] and Bonferroni correction. We compare the true

∆ with estimated ∆̂ from varied methods. For the proposed method, we obtain the ∆̂

based on the extracted IGDB G[Ŝ, T̂ ] and the hypothesis testing. Particularly, if we reject

the IGDB-wise null hypothesis with a detected bicluster G[Ŝ, T̂ ], we let ∆̂ = {δ̂uv} =

{I(euv ∈ G[Ŝ, T̂ ])}. In the case that we fails to reject, we consider Ŝ, T̂ as empty sets

such that ∆̂ = 0m×n. For both pFDR and Bonferroni, we observe δ̂uv by a cutoff 0.2 of q

values and adjusted p values.

Subsequently, based on the δ̂uv observed from different methods, and true parameters

δuv, we calculate true positive rate (TPR) and true negative rate (TNR) as:

TPR =

∑
u,v I(δuv = δ̂uv = 1)∑

u,v I(δuv = 1)
, TNR =

∑
u,v I(δuv = δ̂uv = 0)∑

u,v I(δuv = 0)
.

The associated means and standard deviations are reported based on 100 replications for

each simulation scenario.
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3.4.3 Results

The results from the IGDB-wise inference are summarized in Table 3.1. The power

of the IGDB-wise inference relies on the size as well as the intensities (by different

SNRs and parameters of mixture distributions) of the underlying IGDB G[S0, T0], which

confirms our theoretical conclusions. We only fails to reject the IGDB-wise null hypothesis

with size (30, 20), low SNR 0.8, and higher rates of noisy edges (0.8, 0.2).

The comparative edge-level results from the proposed method and competing methods

are displayed in Table 3.2 and Table 3.3 for different sizes of the IGDB. All three methods

have improved performance when we have higher SNRs and less noisy edges. The

proposed method out performs pFDR and Bonferroni correction for both TPR and TNR

under different scenarios. Both pFDR and Bonferroni methods have high TNR but low

TPR indicating a stringent cutoff, while the proposed method achieves a higher TPR

maintaining a similar or even higher TNR than the others. The Bonferroni method is even

more stringent where the TPR is even smaller than 10% when we have low SNRs (e.g.,

0.8) for all cases.

Table 3.1: IGDB-wise inference results under varied SNRs and noises
0.8 1.0 1.2

(50, 40)

(0.9, 0.1)
FPR 0 (0) 0 (0) 0 (0)

FNR 0 (0) 0 (0) 0 (0)

(0.8, 0.2)
FPR 0 (0) 0 (0) 0 (0)

FNR 0 (0) 0 (0) 0 (0)

(30, 20)

(0.9, 0.1)
FPR 0 (0) 0 (0) 0 (0)

FNR 0 (0) 0 (0) 0 (0)

(0.8, 0.2)
FPR 0 (0) 0 (0) 0 (0)

FNR 0.0600 (0.2375) 0 (0) 0 (0)

60



Table 3.2: Edge-wise accuracy under varied SNRs and noises with (|S0|, |T0|) = (50, 40)

(q1, q2) Methods 0.8 1.0 1.2

(0.9, 0.1)

IGDB
TPR 0.9879 (0.0184) 0.9942 (0.0124) 0.9968 (0.0097)

TNR 1 (0) 1 (0) 1 (0)

pFDR
TPR 0.7453 (0.0090) 0.8686 (0.0045) 0.8995 (0.0023)

TNR 0.8858 (0.0020) 0.8667 (0.0018) 0.8619 (0.0018)

Bonferroni
TPR 0.0520 (0.0048) 0.1739 (0.0092) 0.3941 (0.0096)

TNR 0.9942 (0.0005) 0.9806 (0.0008) 0.9562 (0.0012)

(0.8, 0.2)

IGDB
TPR 0.9938 (0.0126) 0.9982 (0.0064) 0.9984 (0.0061)

TNR 0.9998 (0.0006) 1.0000 (0.0003) 1.0000 (0.0004)

pFDR
TPR 0.7032 (0.0067) 0.7903 (0.0039) 0.8095 (0.0027)

TNR 0.7842 (0.0021) 0.7577 (0.0019) 0.7517 (0.0018)

Bonferroni
TPR 0.0458 (0.0043) 0.1557 (0.0084) 0.3506 (0.0097)

TNR 0.9884 (0.0007) 0.9612 (0.0014) 0.9125 (0.0020)

Table 3.3: Edge-wise accuracy under varied SNRs and noises with (|S0|, |T0|) = (30, 20)

(q1, q2) Methods 0.8 1.0 1.2

(0.9, 0.1)

IGDB
TPR 0.9987 (0.0081) 0.9992 (0.0060) 1 (0)

TNR 1.0000 (0.0001) 1 (0) 1(0)

pFDR
TPR 0.7043 (0.0176) 0.8537 (0.0085) 0.8954 (0.0042)

TNR 0.9017 (0.0019) 0.8799 (0.0015) 0.8741 (0.0014)

Bonferroni
TPR 0.0517 (0.0082) 0.1741 (0.0163) 0.3946 (0.0175)

TNR 0.9942 (0.0005) 0.9807 (0.0009) 0.9561 (0.0012)

(0.8, 0.2)

IGDB
TPR 0.8527 (0.2248) 0.9645 (0.0398) 0.9778 (0.0287)

TNR 0.9996 (0.0009) 0.9995 (0.0009) 0.9997 (0.0005)

pFDR
TPR 0.6891 (0.0114) 0.7857 (0.0075) 0.8069 (0.0045)

TNR 0.7952 (0.0022) 0.7661 (0.0017) 0.7596 (0.0019)

Bonferroni
TPR 0.0473 (0.0095) 0.1563 (0.0144) 0.3525 (0.0173)

TNR 0.9884 (0.0008) 0.9610 (0.0013) 0.9123 (0.0017)

61



3.5 Data Example

The Human Connectome Project (HCP) sponsored by National Institutes of Health

(NIH) aims to construct the underlying neuro pathways with healthy human brain functions.

The HCP becomes an important public resource for structural and functional brain connectivity

data together with demographic, behavior, genetic data, and etc. We demonstrate the

effectiveness of the proposed method in identifying systematic associations between genetic

markers and imaging features using the S1200 data release from 1206 young adults.

The brain imaging and genetics data of HCP were acquired for 1142 participants. The

diffusion tensor imaging fractional anisotropy (FA) measures at 29,627 voxels were used

in this chapter to characterize the white matter integrity by following an ENIGMA FA

imaging processing pipeline [94]. Regarding genetic variants, 1,580,643 imputed SNPs

passed the quality control filters in the data set (MAF< 0.014; HQE< 1e−6; r-squared>

0.03; call rate> 0.95).

We focus our study on the associations between 1,580,643 SNPs and 29,627 voxels.

We applied hard-thresholding on p-values with cutoff 0.001. 13,498 SNPs with at least

0.5% non-zero p-values are included in the study.

We illustrate our analysis in chromosome 1 based on the matrix of association

strength W1178×29627. By implementing the proposed IGDB-wise statistical inference

procedure on the weight matrix W (i.e., Figure 3.3 (a)), we detect an IGDB with 384

SNPs and 3803 voxels via optimizing the objective function (3.3) as Figure 3.3 (b). The

computation is efficient, which takes 20 minutes on a PC with an i7 CPU 3.60 GHz and

64GB memory. We further calculate the p value for the IGDB-wise statistical inference
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Figure 3.3: HCP data example: (a) is the input matrix W ; (b) demonstrates
the detected IGDB; (c)displays the refined pattern of the IGDB

via the permutation test, which results in a significant existence of an IGDB with p value

< 0.001.

Although the IGDB is an irreducible subgraph, it can be further refined based

data-driven algorithms and spatial information of imaging data. We apply the existing

community detection algorithms [69] on similarity matrices observed from the detected

IGDB. The refined pattern in Figure 3.3 (c) displays 6 distinct SNP-voxel association

clusters. We illustrate the cluster-wise association pattern in Figure 3.4, which shows

that the SNP cluster is constructed from neighboring SNPs while the voxel clusters also

preserve the spatial structure in imaging features. Note that the refined structure can not

be identified without revealing the IGDB by the proposed algorithm.
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Figure 3.4: HCP data example: illustration of the association pattern

64



3.6 Discussion

The imaging-genetic studies aim in modelling the predictive mechanism of genetic

markers on quantitative imaging measures. The multiple testing problems are challenging

to identify the important effects in the dimension of imaging-genetic studies. Methods

are proposed to reduce the number of multiple comparisons by identifying significant

genetic variants with important contribution to all voxels or vice versus. In this chapter,

we have developed a bipartite graph model to identify the IGDB for imaging-genetics

association analysis. The IGDB is a bipartite subgraph consisting mainly of genetic

variant-voxel pairs with strong associations. The subset of genetic variants or voxels

can be further grouped to genes or subregions to provide more biological insights or more

refined patterns. Thus, it can be considered as a functional subnetwork of genes and

brain areas with pleiotropic and polygenic mechanisms. Such inference results provide a

systematic and comprehensive view of imaging-genetics association.

We develop theoretical results to show that an IGDB structure with a non-trivial size

is unlikely to be false positively detected. Built on these graph combinatorics properties,

we propose likelihood ratio based inference for IGDB with a bipartite graph mixture

model. A major contribution of this framework is that the statistical power of IGDB

inference is invariant to the high-dimensionality of imaging-genetics features with controlled

false positive error rate. Therefore, it alleviates the requirement of extremely large (even

impractical) sample size for the imaging-genetics study. Our IGDB detection algorithm

is computationally efficient, and thus is compatible with the permutation test. We provide

theoretical bound to guarantee the approximation of our algorithm. Although our method
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is originally developed for imaging-genetics association analysis, it can be generalized to

other modal multivariate-multivariate association analysis (e.g., eQTL).
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Chapter 4: Extracting Interconnected Communities in Gene Co-expression

Networks

4.1 Introduction

Gene co-expression network (GCN) analysis has been widely used to study the

systematic interactions among high throughput genomic features [95]. GCN is often

represented by an undirected graph, where each node denotes a gene and an edge between

two nodes indicates the interactive relationship between a pair of genes. The edge weight

(the strength of the interactive relationship) is calculated by metrics including various

versions of correlation coefficients and mutual information measures across group samples

[96]. Co-expressed genes in the network are often simultaneously active in the same

biological processes. The community structures found in a large gene co-expression

network can reveal the system-level property of genes and assist in understanding the

underlying regulatory mechanism and the complex biology behind. For example, conserved

functional modules have been identified from yeast co-expression network which contain

a number of hub genes essential for yeast viability [97].

In the last two decades, clustering algorithms and network models have been developed

and applied to learning the latent patterns of GCN data [36, 37, 98]. The results of
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commonly used GCN analysis tools (e.g., WGCNA) often yield a number “modules/communities”

as the detected network structure. In the field of network analysis, the independent

community structure has been extensively studied, yielding many efficient and theoretically

justified estimation procedures, such as Newman-Girwan Modularity [74], also see [32,

99, 100, 101] for comprehensive reviews. The independent community structure implies a

block-diagonal structure for the GCN adjacency matrix, as illustrated in Figure 4.1(d). For

GCN analysis, the detected communities can be subsequently investigated by functional

enrichment analysis to identify the functional categories overrepresented by the genes in

the communities.

Independent communities vs. interconnected communities: Despite its usefulness,

the independent community model may be over-simplified. In the current research, we

propose a new interconnected community network (ICN) structure that relaxes the constraint

of the independence between communities and allow connections between genes from

different communities. Our model is more flexible and enjoys several advantages. First,

genes from the different communities might be enriched in signalling pathways that have

cross-talks between each other and play synergistic roles in a biological process. For

example, signal propagation among several important kinase signalling pathways are

well-documented in the literature [102, 103]. Second, by allowing between-community

interactions, the ICN structure is compatible with the well-known properties of the real-

world complex networks (e.g., protein-protein interaction (PPI) networks and metabolic

networks) including hub nodes, small-worldness, and high efficiency among many others

[104, 105, 106]. In contrast, the independent community structure shows no small-

worldness and much lower global efficiency. Last, the flexibility of the ICN structure
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provides a better fit to our data, because it can more precisely characterize the latent

topological structure (see Figure 4.1(a, c, e, f)). As a comparison, the independent

community structure based algorithms may yield false positive interaction estimations by

incorrectly merging two interconnected communities into one jumbo community (Figure

4.1(b)) or miss the interconnections between two interactive communities (Figure 4.1(d)).

Solving the exact ICN parameter estimation problem requires a combinatorial optimization

and is intractable in practice. To overcome the computational challenge, we develop a set

of new and efficient algorithms to extract the ICN structure and provide a user-friendly

software package. Our algorithm operates as follows. We first detect a set of ‘dense’

communities where genes are highly correlated. Then, we perform statistical tests to

identify interconnected community pairs. Finally, for each interconnected community

pair, we identify the connecting edges by a shrinkage method. We implement the above

steps using a unified objective function with `0 graph norm penalty to ensure a low false

discovery rate. To authors’ best knowledge, this is the first computationally efficient

algorithm for detecting the ICN structure. We perform extensive simulation studies to

validate the proposed method. We also apply our approach to a human RNA-seq data

set for Acute Myeloid Leukemia research. The results specify important interconnections

between communities and gene interactions among modules which is related to the immune

evasion mechanism of tumor cells.

Overlapped communities vs. interconnected communities: The ICN model bears

a resemblance to the overlapping community network (OCN) model [107, 108, 109], as

in both structures genes can be shared in multiple communities. The main distinction

lies in the connection patterns between communities. Under OCN models, a node from
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community 1 that shows nonzero overlapping membership towards community 2 typically

has positive connection probabilities with most, if not all, members of community 2. In

contrast, this node only needs to be connected with a proportion of members in community

2 under the ICN model. Moreover, our model allows two nodes from community 1

differ in their correspondence node sets from community 2, thus yields greater flexibility

in modeling the between-community connections that exhibits both sparsity and non-

uniformity while keeping the interpretation simple and clean. Thus, the OCN model can

be viewed as a special case of the ICN model. As an empirical evidence of the ICN

model’s better fit to real-world data, Figure 4.1(f) shows a real-world GCN example: a

gene in the conjunction may connect to all other genes in its own community, while only

connects to a proportion of genes in the other community. There are few genes showing

overlapping memberships. In simulation studies and data analysis, we demonstrate that

the ICN model extracts the underlying network structure more accurately and provides a

better fit.

4.2 Methods

We denote a preprocessed and normalized gene expression data set with n subjects

and p genes by a matrix Xn×p. The weighted adjacency matrix Wp×p for GCN analysis

can be calculated across subjects based on Xn×p. For example, wij , the entry at the ith

row and jth column ofWp×p, is a Fisher’s Z transformed correlation coefficient between

genes i and j with 1 ≤ i 6= j ≤ p. We can also apply alternative pairwise association

metrics to calculate wij , including Spearman correlation coefficient, Kendall’s tau, and
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Figure 4.1: Demonstration of ICN using a subset of genes from data example,
and results from comparing independent community network structure vs.
ICN structure based on a gene expression data. (a) is the input gene co-
expression matrix; (b) shows the results of two independent communities
(based on a relaxed threshold); (c) illustrates that the first community in (b)
can be further decomposed into two interactive communities; (d) however,
under the independent community assumption, only three independent
communities can be detected; (e) in contrast, the ICN method can recognize
the interconnected communities; (f) the ICN method can further identify
connecting edges between the two interconnected communities.
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mutual information coefficient. Our goal is to extract the latent network topological

structure of GCN based on the input data Wp×p, and enhance our understanding of the

underlying complex biological processes [37, 110].

4.2.1 Gene co-expression networks with independent communities

A graph notation G = (V,E) is often used to represent the structure of a co-

expression network, where the node set V denotes p genes with |V | = p and E represents

the pair-wise interactive relationships among the p genes such that |E| = p(p− 1)/2. We

considerWp×p as the weighted adjacency matrix of G. In the last two decades, numerous

algorithms have been developed to extract network structures from Wp×p [37, 104, 110,

111, 112, 113]. In these models, the independent community structure of G is assumed.

Specifically, the whole network can be partitioned into a set of disjoint communities

G = {G1, . . . , GC} where each Gc = {Vc, Ec} is a community, and edges only exist

between nodes in the same community.

Here, we define the network topology by T (G), which characterizes the network

layout of graph G. In other words, when G has an independent community structure,

T (G) describes the assignment of all nodes in G into communities {G1, . . . , GC} and the

corresponding allocation of edges in G.

We let edge weights {wij} in Wp×p follow a two-component mixture distribution

[114]:

f(wij|θ1,θ0, δij) = δijf1(wij;θ1) + (1− δij)f0(wij;θ0), (4.1)
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where f1 is the distribution of the intra-community edge weights, and f0 is the null

distribution for background edge weights. θ1 and θ0 are distribution parameters for f1

and f0 respectively. We let the central tendency of f1 be greater than f0, Eθ1 [wij|δij =

1] > Eθ0 [wij|δij = 0]. Here, the binary indicator variable δij is determined by the

network topology T (G), and δij = 1 indicates the existence of correlation between i

and j. Specifically, for an independent community structure, we have

δij =


1, if i, j ∈ Gc, for some c;

0, otherwise.

(4.2)

We denote the above function by {δij} = h(T (G)). The function h(T (G)) links

the underlying network structure with the marginal distribution of edge weights inWp×p,

thus plays a central role in GCN analysis.

The goal of gene co-expression network analysis is to estimate the {Ĝc}c (i.e.,

T̂ (G)) from Wp×p. We note that θ0,θ1 can be easily estimated given T̂ (G), and vice

versa. Therefore, both non-parametric methods (e.g., clustering and community detection

models) and parametric models (e.g., infinite mixture models using iterative algorithms)

have been successfully applied for GCN data analysis and yield interesting biological

findings [112, 115, 116]. However, the independent community assumption may over-

simplify the true nature of complex biological networks. Network estimation tools for

more general models are less developed and computationally expensive. To address this

challenge, we develop novel and efficient numerical methods for flexible models that

better capture the graph topological structures for GCN analysis.

73



4.2.2 Gene co-expression networks with interconnected communities

In this chapter, we consider a more general network structure: interconnected communities.

We alleviate the constraint of independence between communities. Formally, we call a

pair of communities “interconnected” if some of their nodes form between-community

connections. We use Gc ⇔ Gc′ to denote that communities Gc = {Vc, Ec} and Gc′ =

{Vc′ , Ec′} are interconnected. Then, Gc ⇔ Gc′ iff there exist at least two adjacent

nodes, for example, i and j (i.e. i ↔ j) for i ∈ Gc, j ∈ Gc′ . We use a subgraph

Ic,c′ to denote the interconnection between Gc and Gc′ (see connected edges between the

first two blocks in Figure 4.1(f)). Specifically, Ic,c′ is an edge-induced subgraph by the

edge set E∗c,c′ = {eij|i ↔ j, i ∈ Vc, j ∈ Vc′}. We let Ic,c′ = {V ∗c , V ∗c′ , E∗c,c′}, where

V ∗c ⊂ Vc and V ∗c′ ⊂ Vc′ are two disjoint sets of nodes. By definition, Gc ⇔ Gc′ iff

0 < |E∗c,c′| ≤ |Vc| × |Vc′ |.

The network topological structure of ICN, TICN(G), determines the indicator variable

δij as follows:

δij =



1, i, j ∈ Gc, for some c;

k, if eij ∈ E∗c,c′ , k = 2, ..., K;

0, otherwise.

(4.3)

where k = 2, ..., K are indices for the interconnected community pairs, such that K ≤

C(C − 1)/2 + 1. The connection strengths of edges can vary in different interconnection

subgraphs (e.g., the distributions of edges can be different in interconnection subgraph

Ic,c′ and interconnection subgraph Ic∗,c∗∗). Thus, interaction edges can follow a distribution
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with K − 1 mixture components instead of a single component.

In this case, the edge weight distribution of the observed co-expression weighted

matrix Wp×p can be modeled as a K + 1-component mixture distribution with density

function:

f(wij|θ0,θ1, ...,θK , δij) = f1(wij;θ1)I(δij = 1)

+ f0(wij;θ0)I(δij = 0) +
K∑
k=2

fk(wij;θk)I(δij = k), (4.4)

where f1 is the density function for the intra-community edge weights, fk, k = 2, · · · , K

are the density functions for the edge weights in Ic,c′ , and f0 is the distribution for the

background edge weights. To ensure the model identifiability, we let Eθk [wij|δij = 1] >

Eθk [wij|δij = k] > Eθ0 [wij|δij = 0] for k = 2, ..., K. The parameter estimation of (4.4) is

challenging because the indicator variable δij is unknown and entangled with the network

topological structure.

Our primary goal is to estimate the underlying network structure T̂ICN(G) based on

Wp×p. The estimation of f0, f1, ..., fk becomes straightforward with a known TICN(G).

Recently, network/graph models have been developed to estimated the mixture model

with independent community structure [117]. In this chapter, we focus on developing

tools to estimate the latent ICN structure from a noisy weighted adjacency matrixWp×p.

4.2.3 Detecting interconnected communities

Our goal is to extract both communities {Ĝc} and their interconnections {Îc,c′}

fromWp×p. However, the true ICN structure detection tends to be disturbed by the noise
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Figure 4.2: The flowchart presents a brief overview of the three-step detection
procedure for ICN structure. The input data is a weighted adjacency matrix
of gene co-expression network. In step 1, the densely connected communities
are detected. In step 2, we evaluate the connectivity between each pair
of communities from step 1. If the pair of communities are significantly
interconnected, we identify the connecting edges in step 3. Otherwise, we
consider this pair of community to be independent.
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in Wp×p and the entangled network structure. For example, Figure 4.1(b) shows that

merging two distinct but interconnected communities into one jumbo community can lead

to false positive errors, while Figure 4.1(d) illustrates that the missing interconnections

between communities can introduce false negative errors.

To mitigate this challenge, we develop a new objective function to cover the maximum

edge weights in Wp×p by an ICN structure with a minimal number of non-zero edges.

By minimizing the size of ICN structure, we can effectively control the false positive

errors (Figure 4.1(b)). Meanwhile, the maximized cover of edge weights would favor the

interconnected communities (Figure 4.1(d)) and reduce the false negative errors.

To link the underlying ICN structure TICN(G) with the input dataWp×p, we introduce

a matrix U = {uij}1≤i,j≤p obtained by thresholdingWp×p:

uij =


wij, if δij > 0, where δij = h(TICN(G));

0, otherwise.

(4.5)

Then, our new objective function is:

arg max
C,{Gc},{Ic,c′}

log ‖U‖1 − λ0 log ‖U‖0, (4.6)

where ‖U‖1 =
∑

i,j |uij| is the element-wise `1 matrix norm, ‖U‖0 =
∑

i,j I(|uij| > 0)

is the element-wise `0 matrix norm, and λ0 is a tuning parameter. We maximize ‖U‖1 to

include a maximal number of edges with high correlation values (letting δij > 0 for these

edges), which can increase sensitivity and avoid false negative errors. In the meanwhile,

we penalize the subgraph sizes (i.e., controlling the number of edges with δij > 0) through
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the `0 shrinkage term ‖U‖0. Note that δij > 0 only if eij ∈ Gc or eij ∈ Ic,c′ for the ICN

structure. Therefore, we regulate the size of each Gc and the number of edges in Ic,c′ to

control the false positive rate. In other words, we seek to include highly correlated edges

using the minimally-sized cover of {Gc, Ic,c′}Cc,c′=1 [118, 119, 120]. By implementing

the `0 graph norm shrinkage, we can accurately recognize the underlying ICN structure

without false positively combining interconnected communities into mega-communities.

Optimizing (4.6) may lead to estimating some nodes as singletons, or isolated

nodes. The singleton genes have weak correlations between other genes in G, which

are impossible to glue up small communities or be added to existing communities. This

also reflects the shrinkage force of our method in controlling the false discovery rate.

In practice, singleton genes are less interactive with other genes, and involved in more

isolated biologic processes.

The shrinkage level of our estimation is regulated by λ0. Generally, a smaller

λ0 leads to larger-sized networks covering more correlated edges (i.e., relatively higher

sensitivity and false positive rates) while a greater λ0 to yield more parsimonious networks

covering less correlated edges (i.e., relatively lower sensitivity and false positive rates).

λ0 can be selected based on cross-validation [121] or by prior knowledge. Note that C

in our objective function (4.6) is automatically determined by the optimization function

rather than prespecified.

When the ICN structure presents in Wp×p, our objective function (4.6) favors the

ICN structure over the independent community structure. The independent community

structure either merges two interconnected communities into one large community with

a larger `0 graph norm or treats them as independent communities with a smaller `1
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matrix norm ‖U‖1. Therefore, the objective function (4.6) is tailored for ICN structure

extraction. We develop an iterative three-step procedure to optimize (4.6):

1. We first detect a set of communities with highly correlated intra-community edges

{Ĝc};

2. We then examine which pairs of communities are interconnected Ĝc ⇔ Ĝc′;

3. For each pair of interconnected communities, we identify the edge set connecting

pairs of communities: Ê∗c,c′ of Îc,c′ = (V̂ ∗c , V̂
∗
c′ , Ê

∗
c,c′).

Step 1: detecting community structure

We first detect a set of densely connected, non-overlapping communities {Gc}

as the backbone of ICN structure. In step 1, we aim to only assign highly correlated

genes into communities (see Figure 4.1(c)) and avoid the disruption from the between-

community connections and false positive noise. We optimize the objective function:

arg max
C,{Gc}

log ‖D‖1 − τ0 log ‖D‖0, (4.7)

where τ0 is a tuning parameter. The matrix D = {dij} differs from U = {uij} in

(4.6) in that it only captures within-community connections, while ignoring the inter-

community connections. In step 1, we assume that T (G) is an independent community

structure. Thus, we have dij = wij for the within-community edges eij ∈ Gc,∀c , and

dij = 0 otherwise. Similar to the objective function (4.6), the step 1 objective function can

effectively suppress false positive noise and only detect densely connected communities
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by implementing the `0 graph norm shrinkage. In step 1, we focus on controlling false

positive errors regardless of sensitivity. However, this has little impact on the overall

sensitivity since we’ll identify edges interconnecting communities in the following steps.

Like λ0, the tuning parameter τ0 can also be selected by cross-validation. We would

refer the audience to [69] for the details to implement (4.7) and corresponding theoretical

results.

Step 2: testing whether a pair of communities are interconnected

Step 1 yields a set of estimated communities {Ĝc}. We next examine which of these

non-trivial communities are interconnected by statistical tests. For a pair of communities

Gc and Gc′ , the genes in one community Gc can be connected to some or all genes

in another community Gc′ . We denote G(Vc, Vc′) = (Vc, Vc′ , E(Vc, Vc′),Wc,c′) as the

bipartite subgraph induced by all possible edges between communitiesE(Vc, Vc′). Wc,c′ =

{wij|i ∈ Vc, j ∈ Vc′} is the corresponding weighted matrix. We shall test H0 : Gc 6⇔ Gc′

vs. Ha : Gc ⇔ Gc′ . Under H0, the distribution of edge weights in Wc,c′ is simply

the distribution of {wij|δij = 0}. A viable strategy to approximate the distribution of

{wij|δij = 0} is to sample from edges connecting singletons based on step 1 community

detection results.

We denote GR = (VR, ER,WR) as the singleton-induced subgraph. Then, the edge

weights in WR follow an f0 distribution. The difference between the two distributions

of edge weights in G(Vc, Vc′) and GR can be measured by the Kullback–Leibler (KL)

divergence. We reject H0 for a large enough KL divergence and conclude that Gc ⇔ Gc′ .
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We perform this test non-parametrically by resampling. Specifically, we sampleM sets of

edge weights B1, ..., BM (e.g., M = 2, 000) from edges outside communities {wij|eij /∈

∪Cc=1Ec} with |Bm| = |E(Vc, Vc′)| = |Vc||Vc′ |. The p value is calculated as the percentile

of KL divergence (Wc,c′ vs. WR) among random samples dm (Bm vs. WR). If p is

less than a specific type 1 error rate α (e.g., α = 0.05), then Gc ⇔ Gc′ . We describe

the details of Step 2 in the following Algorithm 5. The computational complexity for the

pairwise tests of interconnectivity isO(Mp2), whereM is the number of random samples

and p the number of genes.

Algorithm 5 Step 2: Testing whether two communities (e.g. Gc and Gc′) are
interconnected

1: procedure ALGORITHM

2: Calculate the KL-divergence between G(Vc, Vc′) and a random graph GR =
(VR, ER,WR) and denote it as d0:

d0 = D(P‖Q) =
∑
x∈X

P (x) log
P (x)

Q(x)

where P and Q are estimated densities for edge weights from GR and G(Vc, Vc′) on
support X , respectively.

3: for m = 1 to M do
4: Get a random sample of edge weights Bm of size |Vc||Vc′ | from edges outside

communities {wij|eij /∈ ∪Cc=1Ec};
5: Calculate the KL-divergence between Bm and GR and denote as dm;
6: end for
7: p0 is the percentile of d0 in {dm}Mm=1;
8: if p0 is smaller than α then
9: Gc ⇔ Gc′ .

10: end if
11: end procedure
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Step 3: identifying connecting edges between each pair of interconnected

communities

For a pair of connected communities Gc ⇔ Gc′ , we further identify the connection

edgesE∗c,c′ from all possible edges between these two communities,E(Vc, Vc′). Consistent

with the overall objective function (4.6), our goal is to recover maximally correlated edges

with parsimonious estimated community sizes. The `0 graph norm shrinkage is used to

suppress false positive noise while maintain high sensitivity.

Let G(c+c′) denote the subgraph induced by nodes in Gc and Gc′ , andW(c+c′) be the

associated edge weights. W(c+c′) differ from the edge weight matrix Wc,c′ of G(Vc, Vc′)

(defined in step 2) as W(c+c′) includes both intra- and inter- community edges whereas

Wc,c′ is only for inter-community edges.

We further introduce an indicator variable δij for each edge in W(c+c′), such that

δij = 1 if eij ∈ Gc, Gc′ or Ic,c′ and δij = 0 otherwise. Then, the matrix S = {sij}

integrates the topological structure of G(c+c′) into the observed data W(c+c′) by letting

sij = wijδij . The step 3 objective function coincides with the primary objective function

(4.6)

arg max
Ic,c′

(log ‖S‖1 − γ0 log ‖S‖0) , (4.8)

where γ0 is the tuning parameter. The optimization of (4.8) can be implemented by hard

thresholding. The detailed procedure is described in Algorithm 6.

The computational complexity for the three-step procedure of ICN detection is
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O(p4), where p is the number of genes.

Algorithm 6 Step 3: Identify connecting edges between interconnected communities (e.g.
Gc ⇔ Gc′)

1: procedure ALGORITHM

2: Given a sequence of cut-offs r1, r2,. . . ,rL;
3: Extract the weight matrix of the subnetwork G(c+c′) for the pair of communities

(e.g. c and c′): W(c+c′) = {wij|i, j ∈ Vc ∪ V ′c};
4: for l = 1 to L do
5: Obtain the estimated set of connecting edges by thresholding: Ê(l)

c,c′ = {eij|i ∈
Vc, j ∈ Vc′ , wij > rl};

6: Obtain the estimation of indicator variable based on estimated subnetwork:
δ̂ij = 1 if eij ∈ Êc, Êc′ or Ê(l)

c,c′;
7: Observe Ŝ as ŝij = (W(c+c′))ijδij and calculate the value of objective function

as hl = log ‖Ŝ‖1 − γ0 log ‖Ŝ‖0;
8: end for
9: Select the l∗ for the largest value of objective function: hl, l = 1, ..., L;

10: The detected connecting edges between community c and c′ are {eij|i ∈ Vc, j ∈
Vc′ , wij > rl∗};

11: end procedure

4.3 Data Example

We demonstrate the effectiveness of our proposed method on an RNA-seq gene

expression data set from The Cancer Genome Atlas (TCGA) Acute Myeloid Leukemia

(AML) study [122]. The processed RNA-seq data of 173 leukemia patients measured in

Transcripts Per Million (TPM) values were retrieved from the TCGA data repository on

Broad GDAC Firehose (https://gdac.broadinstitute.org/). We performed standard preprocessing

by filtering out genes with low means or low variance and took a log2 transformation. A

total of 10259 genes survived our preliminary filtering for community detection. We

then calculate the pairwise Pearson correlation matrix W10259×10259 between the genes

and input it into our algorithm. Depending on the raw data type, one may also use other
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similarity measures, such as Spearman correlation coefficient and maximum information

coefficient, to replace the Pearson correlation.

We apply the proposed algorithm to the correlation matrix (Figure 4.3(a)). The

community structure is detected by optimizing objective function (4.7) using algorithm

of Step 1 (Figure 4.3(b)). The detected subnetwork includes 16 communities of interest

displayed in Figure 4.3(c). We next perform Step 2 algorithm to find interconnected

community pairs. As is shown in Figure 4.3(d), our method identified 16 blocks, where

the blue and red squares indicate the significantly positive and negative interconnections

between the communities of row and column indices. The yellow blocks represent the

non-interconnection between some community pairs. Finally, we implement Step 3 algorithm

to identify interconnected edges between each interconnected community pairs. To present

more details of our estimation results, we also displayed the weights of estimated nonzero

edges in the subnetwork between communities 1 and 2 in Figure 4.3(e), and that between

communities 7 and 8 in Figure 4.3(f).

Communities can be either positively or negatively interconnected with each other.

For example, a set of genes in the 1st community shows strong positive correlations

with the 2nd community as Figure 4.3(e), while genes in the 7th and 8th community are

negatively correlated as Figure 4.3(f). To gain biological insights of the interconnected

communities by ICN, we followed a systematic approach to perform pathway analysis

(a.k.a. gene set enrichment analysis) using curated KEGG [123] and Reactome pathway

database [124]. For each pair of communities (e.g., community 1 and 2, community 7 and

8), we first performed pathway analysis to the union of genes from the two modules (e.g.,

V̂1 ∪ V̂2) and identified enriched pathways with Fisher’s exact test p-value < 0.05 and
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Figure 4.3: The procedure to detect interconnected communities: (a)
demonstrates the input large correlation matrix W10259×10259; (b) shows the
step 1 analysis results by re-ordering the genes and revealing latent dense
communities and singletons; (c) zooms in to show the 16 dense communities;
(d) demonstrates the testing results for interconnection between 120 pairs of
16 communities (postively connected: blue; negatively connected: brown;
not connected: yellow). We illustrate the results of step 3 using two
examples, in (e) we identify positively connected edges between the 1st and
2nd community; and in (f) we find negatively connected edges between the
7th and 8th community.
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at least 10 genes overlapping with the union set. We then conducted pathway analysis

separately on the genes without interconnecting edges in each module (e.g., V̂1 \ V̂ ∗1

and V̂2 \ V̂ ∗2 ) as well as genes in the interconnection subgraph (e.g., V̂ ∗1 ∪ V̂ ∗2 ). The

demonstrative results listing the Fisher’s exact test in each part for the top 10 KEGG

and Reactome pathways for community 1-2 and 7-8 pair are included in Appendix. The

pathway enrichment patterns show both commonality and uniqueness of pathways enriched

in the three parts, implying the specificity of each part identified by ICN. For example,

Wnt signaling pathways and ERBB signaling pathway are enriched with genes from

community 1-specific and interconnecting part while RNA degradation is only enriched

in the interconnecting part.

Regarding the enriched pathways in the interconnection between community 1 and

2, we further investigated the genes contributed by each module in the pathway topology

plots [125]. Among the top ranked pathways, for example, mitogen-activated protein

kinase (MAPK) signaling pathway of KEGG plays a critical regulatory role in leukemia

[126] and is enriched in the interconnection subgraph V̂ ∗1 ∪ V̂ ∗2 . The topology plot of this

pathway displayed in Figure 4.4 found the genes from community 1 and 2 highlighted

in two different colors work synergistically to realize the shared function of the MAPK

pathway.

For community 7 and 8, it turned out that the pathways enriched by the gene set

in the 7th community include MAPK pathways and its downstream regulated processes

such as RNA transcription by RNA Polymerase, while those enriched by the set in the 8th

community are characterized by immune response-activating signal transduction. Their

negative relationship implies the adverse impact of MAPK pathway dysregulation on host
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Figure 4.4: Topology plot of selected MAPK signaling pathway with the
genes from community 1 and 2 highlighted by red and yellow, respectively.
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immune response and represent a possible immune evasion mechanism by tumor cells in

AML [127, 128].

4.4 Simulation Results

Table 4.1: Estimated edge-level FPR, FNR and standard errors for C0 = 3 and n = 200
based on different detection methods. The FPR and FNR are calculated separately for
between-community edges, within-community edges, and overall edges.

ICN MMSB BNMTF HK-relax

(60, 40, 40)

Between
FPR 0.008 (0.008) 0.221 (0.020) 0.027 (0.012) 0.031 (0.020)

FNR 0.157 (0.129) 0.768 (0.041) 0.780 (0.112) 0.848 (0.109)

Within
FPR 0.001 (0.003) 0.054 (0.009) 0.065 (0.015) 0.084 (0.028)

FNR 0.025 (0.061) 0.944 (0.012) 0.120 (0.072) 0.204 (0.112)

Overall
FPR 0.009 (0.009) 0.274 (0.019) 0.016 (0.008) 0.038 (0.029)

FNR 0.039 (0.066) 0.716 (0.030) 0.061 (0.025) 0.126 (0.037)

(30, 20, 20)

Between
FPR 0.005 (0.003) 0.237 (0.023) 0.005 (0.002) 0.016 (0.011)

FNR 0.189 (0.234) 0.739 (0.084) 0.781 (0.071) 0.815 (0.168)

Within
FPR 0.001 (0.005) 0.059 (0.010) 0.015 (0.003) 0.035 (0.009)

FNR 0.072 (0.154) 0.939 (0.013) 0.090 (0.038) 0.036 (0.023)

Overall
FPR 0.005 (0.007) 0.295 (0.024) 0.005 (0.002) 0.034 (0.010)

FNR 0.070 (0.161) 0.668 (0.039) 0.073 (0.029) 0.017 (0.017)

In this section, we focus on comparing the performance of our method to existing

methods using synthetic data. We set up p = 200 genes with C0 = 3 non-trivial

communities. We set the three community sizes and the number of singleton nodes to

be (60, 40, 40; 60) and (30, 20, 20; 130), respectively. Regarding the ICN structure, we

assume that community 1 and 2 are positively interconnected with 40% connecting edges,

and community 1 and 3 are negatively interconnected with 20% connecting edges. We

first generated an adjacency matrix ∆p×p = {δij} based on the ICN structure by (4.3).

We then simulated edge weights in Ωp×p from a 4-component mixture distribution by
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(4.4). We let f1, f2, f3 and f0 follow normal distributions with means 0.8, 0.5, -0.6, 0,

respectively, and standard deviation 0.1. To ensure the positive semi-definiteness of the

covariance matrix, we then observed Σ = ΩTΩ as our true covariance matrix. Finally,

we generated the observable data matrix X from N(0,Σ) with a sample size n = 200.

We repeated each setting for 500 times.

We applied the ICN algorithm to the sample correlation matrix of X . The results

were stored as recovered network structure in an estimated matrix of ∆̂ = {δ̂ij}. For

each simulated data set, the computational time of the three-step procedure is around 65

seconds on a laptop with CPU Core i5 and memory 8GB.

We further compared our method with benchmarks of overlapping community detection

methods, including Mixed Membership Stochastic Blockmodel (MMSB) [129], Bounded

Non-Negative Matrix Tri-Factorization (BNMTF) [107] and Heat Kernel-Based Community

Detection (HK-relax) [130]. We evaluated the performance of these methods by comparing

∆̂ with ∆ in terms of false positive rates (FPR) and false negative rates (FNR). Specifically,

FPRl =

∑
i,j I(δij 6= l, δ̂ij = l)∑

i,j I(δij 6= l)
; FNRl =

∑
i,j I(δij = l, δ̂ij 6= l)∑

i,j I(δij = l)

where 0 < l ≤ K is a label for the subgraph type (e.g., community or interconnection

subgraph). Then, FPR and FNR were evaluated separately for between- and within-

community edges. Last, we measured the overall FPR and FNR by categorizing edges

into two classes δij > 0 vs. δij = 0.

We summarize the performance of ICN and competing methods across 500 repeated

experiments under each configuration by reporting means and standard deviations in Table
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4.1. Additional simulation results under various settings are presented in Appendix. In

Table 4.1, our method demonstrates clear systematical advantages, possibly due to its

greater flexibility in modeling fully and partially connected between-community edges.

Specifically, we find that the ICN method can better recover the Between-community

edges and control the overall false positive error rate, and thus more accurately detect the

latent network topology.

4.5 Discussion

Gene co-expression analysis has been at the heart of genomic data analysis to

understand the complex biological processes and pathways. Currently available GCN

tools typically focus on modeling block-diagonal correlation structures, while inter-block

correlations widely present in many data sets. In this chapter, we presented a new model

to capture inter-block correlations in a flexible way. Despite its simplicity, our objective

function is well suited to revealing the organized GCN structure while preserving the

high network modularity and efficiency. Controlling false positive findings is critical for

GCN analysis because false positively connected edges severely interrupt the accurate

extraction of interconnected network structure. To cope with such practical needs, we

proposed an `0 graph norm penalty term to suppress false positive edges by covering

connected edges using minimally-sized ICN structures. We also developed efficient algorithms

to implement the optimization. The advantageous performance of our method was showcased

on both synthetic and real-world data.

Besides the modeling and computational advantages, the ICN model may lead to
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new biological findings by providing a new angle to study the co-expression network

in a hierarchical network structure from interactive genes (communities) to interactive

communities. The proposed ICN method can also be applied to the other omics data

with latent and complex interactive structures (e.g., protein-protein interactions). The

accurately detected ICN covariance structure can also assist differential expression analysis

by performing dependence adjusted multivariate inference [131].
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Chapter 5: Conclusions

Nowadays, the analysis of high-dimensional biomedical data becomes crucial in

various applications including genomics, genetics, neuroimaging, and so forth. However,

the high dimensionality and the complex interactive relationships among biomedical objects

bring new challenges to statistical inference.

In Chapter 2, since the edge-wise inference results from group-level brain connectome

data can be overwhelmed by substantial false positive and negative errors, we develop the

ADSD method to reliably and robustly extract the latent disease-related subnetworks.

The proposed ADSD and `0-norm based objective functions are suitable for general

applications in biomedical data. The two-step procedure can be conveniently adapted

in cases with multiple clinical groups and regressions with covariates. We develop the

asymptotic properties of the ADSD algorithm and `0-norm based algorithms regarding the

recovery of true subgraphs and the optimality of the objective function. The application in

the data example reveals the hypo-connections in the salience network-centered subnetwork

for patients with schizophrenia, which assists the understanding of brain activities related

to brain disorder.

In Chapter 3, with an emphasis on the pleiotropic and polygenic association pattern

between genetic markers and imaging measures, we characterize the imaging-genetics
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association as a bipartite graph model with an IGDB structure. The extracted IGDB

could exhibit the systematic genetic effects on quantitative imaging measurements, which

produces more biologically interpretable findings. We construct theoretical results regarding

the approximation bounds of the IGDB algorithm and the asymptotic power of the proposed

likelihood ratio approach. However, the current study also points to several future directions.

The screening methods accounting for the dependence structures among genetic markers

and imaging features would be helpful for further statistical inferences or regression

models. Statistical models to relate these genetic and brain activity associations with

brain disorders still deserve further research.

In Chapter 4, we supplement the block-diagonal correlation structures in current

GCN analysis with the inter-block correlations through ICN. The ICN method possesses

favorable advantages in its flexibility of modeling gene interactions and computational

efficiency. The proposed ICN approach is also robust to noise and effective to capture

the delicate network structure, and thus can be applied to a wide range of bioinformatics

research problems focusing on detections of interactive structures. These new pathway

patterns can also serve as an input into further analysis. For example, the detected

interconnected communities provide data-driven pathways which can be integrated into

advanced machine learning algorithms.
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Appendix A: Supplemental for Chapter 2

A.1 Additional Data Results

A.1.1 Comparison results with NBS method

We conducted an additional analysis using NBS with the option“intensity” and

various threshold values on the real data example. We summarize the results in the

following Table A.1. Indeed, these results are more comparable to ADSD than the option

“extent”. The current results demonstrate that: i) when the threshold is more stringent,

NBS tends to identify over-sparse (low density) subgraph with average node-degree close

to 1; ii) when the threshold is more liberal, NBS selects a sparse subgraph with a large

number of nodes. In general, edges detected by NBS are more sparse and randomly

distributed (not restricted in a small node-induced subgraph) in the overall graph, which is

limited to characterize the systematically altered connectivity patterns by the phenotype.

We further compared edges selected by NBS and ADSD in Figure A.1. The sensitivity

of ADSD is higher because it can select edges systematically rather than only relying on

edge-wise inference as NBS.
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Table A.1: Connected components detected by NBS function “intensity” option with
varied thresholds.

Threshold Number of nodes Number of edges

2.5 196 624

2.8 138 305

3.1 93 151

3.3 71 92

3.5 36 48

(a) ADSD (b) NBS “intensity” with threshold 3.3

Figure A.1: Histograms of − log(p) values of edges selected by ADSD and
NBS with threshold 3.3

95



Figure A.2: Results from community detection methods: (a) spectral
clustering (K = 10) in [1]; (b) Louvain method by [2]; (c) INFOMAP
algorithm by [3]; (d) ADSD

A.1.2 Comparison results with community detection methods

We compared our approach to several popular community detection methods. We

demonstrate the results in the following Web Figure 3. Our method outperforms the

competing algorithms. The difference can be explained by the fact that dense subgraph

discovery aims to extract a subgraph with a high density of phenotype-related edges,

while community detection algorithms tend to assign similar nodes into balance-sized

communities.
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A.2 Detailed Proofs

Before we prove the Theorem 1, we first establish the following Lemma 3 by

applying the idea of proof in [60] with density function f1(S) directly.

Lemma A.1. The greedy algorithm will give a 2n|λ−1| approximation, i.e. f(S∗) ≤

2n|λ−1|v.

Proof. For an undirected graph, we assign the edge eij to either node i or j. Denote the

number of edges assigned to node i as d(i). Then,

∑
i∈S∗

d(i) ≥ |E(S∗)|,

since all edges in E(S∗) will be assigned to node i or j which will be included in∑
i∈S∗ d(i).

Consider a specific way to assign edges. Let the node gets assigned when it is

removed in the greedy algorithm. In other words, d(i) equals the degree of node i in the

iteration that it is removed in greedy algorithm. Assume the subgraph at the iteration that

i is removed is G(S ′) such that at this iteration the nodes set changes from S ′ → S ′/{i}.

Therefore, since the node i is deleted for the smallest degree, we will have the degree of

i is smaller than the average degree in this iteration:

d(i) ≤ 2
|E(S ′)|
|S ′|

.
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Case 1: For λ < 1,

d(i) ≤ 2
|E(S ′)|
|S ′|

≤ 2
|E(S ′)|
|S ′|λ

≤ 2
|E(S̃)|
|S̃|λ

= 2v,

⇒ f(S∗) =
|E(S∗)|
|S∗|λ

≤
∑

i∈S∗ d(i)

|S∗|λ
≤ 2v

|S∗|
|S∗|λ

≤ 2vn1−λ.

Case 2: For λ > 1,

d(i) ≤ 2
|E(S ′)|
|S ′|

≤ 2
|E(S ′)|
|S ′|λ

× |S ′|λ−1 ≤ 2
|E(S̃)|
|S̃|λ

× |S ′|λ−1 = 2vnλ−1,

⇒ f(S∗) =
|E(S∗)|
|S∗|λ

≤
∑

i∈S∗ d(i)

|S∗|λ
≤ 2vnλ−1

|S∗|
|S∗|λ

≤ 2vnλ−1.

Proof of Theorem 2.1. Case 1: λ ≥ 2. The subgraph with only two nodes has f(S;λ) =

1/2λ, otherwise all elements in this 2 × 2 matrix should be zero and inductively the raw

graph have no edges (all elements in the corresponding matrix should be zero). Thus,

f(S̃;λ) ≥ 1/2λ.

On the other hand, when λ ≥ 2,

f(S∗;λ) =
|E(S∗)|
|S∗|λ

≤ |S
∗|2

2|S∗|λ
≤ 1

2
.

Hence, f(S̃;λ) ≥ 21−λf(S∗;λ) and c(λ) = 2λ−1.

Case 2: 1 < λ < 2. Assume there exists λ > 0 such that f(S∗;λ) ≤ 2naf(S̃;λ) and we
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want to find such λ. It suffices to show

f(S∗;λ) =
|E(S∗)|
|S∗|λ

≤ |S
∗|2

2|S∗|λ
≤ 2

1

2λ
na

since from case 1, f(S̃;λ) has a lower bound 1/2λ. It’s automatically true for |S∗| ≤

(22−λna)1/(2−λ) = 2na/(2−λ).

For |S∗| > 2na/(2−λ), from the proof of case 2 in lemma 3, we have

f(S∗;λ) =
E(S∗)

|S∗|λ
≤
∑

i∈S∗ d(i)

|S∗|λ
≤ 2f(S̃;λ)nλ−1|S∗|1−λ

≤ 2f(S̃;λ)nλ−1(2na/(2−λ))1−λ

Let 2f(S̃;λ)nλ−1(2na/(2−λ))1−λ = 2f(S̃;λ)na, we will get a = (λ− 1)(2− λ).

Hence, f(S∗;λ) ≤ 2n(λ−1)(2−λ)(1 ∨ 21−λ)f(S̃;λ), then c′(λ) = 1 ∨ 21−λ.

Case 3: For 0.5 < λ < 1, the claim is automatically true from lemma 3.

Case 4: 0 < λ < 0.5

f(S∗;λ) =
|E(S∗)|
|S∗|λ

≤ |E(V )|
|S∗|λ

=
|E(V )|
|S∗|λ|V |λ

× |V |λ

≤f(S̃;λ)
|V |λ

|S∗|λ
≤ 2f(S̃;λ)nλ

Proof of Theorem 2.2. Part 1. Let C = {S1, S2, ..., Sn−1} be the sequence of subgraphs

generated by deleting the smallest-degree node in Algorithm 1. We first prove the true

subgraph S0 is included in C up to a permutation with high probability as n→∞. Denote
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n = |V | and ns = |S0|.

At stage k(< n− ns) of Algorithm 1, for i ∈ S0, and i′ ∈ V/S0, we have

di =
ns∑
j=1

Xij +
n−k+1∑
j=ns+1

Yij and di′ =
n−k+1∑
j=1

Yi′j

where Xij ∼ Bernouli(πs), Yij ∼ Bernouli(π0), and Yi′j ∼ Bernouli(π0)

From chernoff bound, for i ∈ S0, i′ ∈ V/S0 and δ ∈ (0, 1)

P(di ≤ (1− δ)(nsπs + (n− k − ns)π0)) ≤ exp

[
−δ

2

2
(nsπs + (n− k − ns)π0)

]
,

and

P(di′ ≥ (1 + δ)(n− k)π0) ≤ exp

[
− δ2

2 + δ2
(n− k)π0

]
.

Hence, there exist ε0(δ) > 0, such that

P(di−di′ ≥ ε0(δ)) ≥ 1−exp

[
−δ

2

2
(nsπs + (n− k − ns)π0)

]
−exp

[
− δ2

2 + δ2
(n− k)π0

]
.

At stage k(< n− ns) of Algorithm 1, the event of deleting a node outside S0 is:

∩i∈S0 ∩i′∈Sk/S0 {di ≥ di′} = ∩i∈S0 [∪i′∈Sk/S0{di < di′}]c

100



Then,

P
(
∩i∈S0 ∩i′∈Sk/S0 {di ≥ di′}

)
≥ 1−

∑
i∈S0

P
(
∪i′∈Sk/S0{di < di′}

)
≥1−

∑
i∈S0

∑
i′∈Sk/S0

P(di < d′i)

≥1− ns(n− k − ns)
{

exp

[
−δ

2

2
(nsπs + (n− k − ns)π0)

]
+ exp

[
− δ2

2 + δ2
(n− k)π0

]}

Using similar argument, the class C includes the true subgraph up to a permutation Q:

P(Q(S0) ∈ C) = P
(
∩n−ns−1k=1 ∩i∈S0 ∩i′∈Sk/S0{di ≥ di′}

)
≥1− (n− ns − 1)ns(n− k − ns)×{

exp

[
−δ

2

2
(nsπs + (n− k − ns)π0)

]
+ exp

[
− δ2

2 + δ2
(n− k)π0

]}
→1 as n→∞ and ns = O(n1/2+ε).

Part 2. We then establish the true subgraph can be selected from C by density function

f(S;λ) for some λ. For k < n − ns, from the proof of part 1, S0 ⊂ Sk with high

probability. From Chernouff bounds,

P
(
2|A(Sk)| − 2|A(S0)| ≤ (1 + δ)[(n− k − 1)2 − (n− ns − k − 1)2]π0

)
≥1− exp

[
− δ2

2 + δ2
[(n− k − 1)2 − (n− ns − k − 1)2]π0

]

and

P
(
2|A(S0)| > (1− δ)n2

sπs
)
≥ 1− exp

[
−δ

2

2
n2
sπs

]
.
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Thus, with high probability,

|A(Sk)| − |A(S0)|
|A(S0)|

<
1 + δ

1− δ
∗ [(n− k − 1)2 − (n− ns − k − 1)2]π0

n2
sπs

On the other hand,

|A(Sk)|
(n− k − 1)λ

≤ |A(S0)|
(ns)λ

⇔ |A(Sk)| − |A(S0)|
|A(S0)|

≤ (n− k − 1)λ

(ns)λ
− 1,

hence, it suffices to have

1 + δ

1− δ
∗ [(n− k − 1)2 − (n− ns − k − 1)2]π0

n2
sπs

≤ (n− k − 1)λ

(ns)λ
− 1.

For πs > π0, there exist corresponding δ and λ to make the inequality holds.

For k > n− ns, we could use similar argument and the claim is true.

Proof of Theorem 2.3. We implement the proof of SBM under maximum likelihood fitting

by [132] that constrain stochastic block model with K . n1/2 communities and the

average degree M & (log(n))3+δ. The growth restriction on K is utilized to bound

the number of possible choices of assignment. Although the restriction is not satisfied in

our model, the assumption such that all edges outside the dense subgraph are considered

as singletons makes the number of possible assignments being the same as K = 2. The

restriction on average degree is also automatically satisfied for fixed πs and π0.

Next, we prove the conclusion is valid when the assignment is maximized over a

smaller class of possible solutions, which is generated by different values of λ.
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The Theorems 1 and 2 in [132] also hold in our model because the maximization

over a subset of parameter space is smaller than over the whole space. For their theorem

3, from the proof of our theorem 2, the true assignment is in the subset that we maximized

with probability converging to 1, i.e. θ(S0) ∈ {θ(S̃λ), λ ∈ (0, 2)}. Then theorem 3 holds

with probability converging to 1, i.e. L̄P (θ(S0))- L̄P (θ̂) = op(M). Hence, our claim is

true.

Proof of Lemma 2.1. We discuss the two cases.

• We first present the proof for the HG;0 case. By Bernstein’s inequality, for any

v ∈ {v0, . . . , n} and any V ⊆ [n] satisfying |V | = v, we have

(∣∣∣∣∣v−2 ∑
i,j∈V

(Aij − π0)

∣∣∣∣∣ > γ − π0

)
≤ 2 exp

(
− v4(γ − π0)2

2[v2 + 1
3
v2(γ − π0)]

)

= 2 exp

(
−
{

2

(γ − π0)2
+

2

3(γ − π0)

}−1
· v2
)

Therefore by a union bound, we have

(
∪V⊆[n]:v=|V |≥v0

{∣∣∣∣∣v−2 ∑
i,j∈V

(Aij − π0)

∣∣∣∣∣ > γ − π0

})

≤
n∑

v=v0

(
n

v

)
· 2 exp

(
−
{

2

(γ − π0)2
+

2

3(γ − π0)

}−1
· v2
)

≤
n∑

v=v0

2 exp

(
−
{

2

(γ − π0)2
+

2

3(γ − π0)

}−1
· v2 + v log n

)

≤
n∑

v=v0

2 exp

(
−
{

4

(γ − π0)2
+

4

3(γ − π0)

}−1
· v2
)

≤2n · exp

(
−
{

4

(γ − π0)2
+

4

3(γ − π0)

}−1
· v2
)
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• Now we prove for the HG;a case. The strategy is to simply consider Gc and show

that with high probability, Gc would form a γ-quasi clique in G[r]. We have


(
|Gc|

2

)−1 ∑
i,j:(i,j)∈E(Gc)

(G[r])ij ≥ γ|HG;a


=


(
|Gc|

2

)−1 ∑
i,j:(i,j)∈E(Gc)

{(G[r])ij − πs} ≥ γ − πs|HG;a


≥1−


∣∣∣∣∣∣
(
|Gc|

2

)−1 ∑
i,j:(i,j)∈E(Gc)

{(G[r])ij − πs}

∣∣∣∣∣∣ ≥ πs − γ|HG;a


≥1− exp

{
−

1
2
(πs − γ)2

(|Gc|
2

)2(|Gc|
2

)
+ 1

3
(πs − γ)

(|Gc|
2

)}

=1− exp

{
−

1
2
(πs − γ)2

(|Gc|
2

)
1 + (πs − γ)/3

}

Proof of Theorem 2.4. We prove the population version, such thatW satisfying wij = µ1

for δij = 1 and wij = µ0 for δij = 0. Denote U ∗C as the matrix under true network

structure G∗C , i.e., U ∗C = W ∗ G∗C , and ÛC related with the optimized network structure

under C, i.e., ÛC = W ∗ ĜC .

For each C 6= C∗, let x be the number of corresponding edges with {ÛC}ij = µ1

and y to be {ÛC}ij = µ1. In other words, x = ‖ÛC∗G∗C‖0 and y = ‖ÛC‖0−‖ÛC∗G∗C‖0.

Then, the objective function (10) takes value:

JÛC = log ‖ÛC‖1 − λ0 log ‖ÛC‖0

= log
xµ1 + yµ0

(x+ y)λ0
.
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On the other hand, under true network structure G∗C , the objective function (10):

JU∗C = log ‖U ∗C‖1 − λ0 log ‖U ∗C‖0

= log
‖U ∗C‖0µ1

‖U ∗C‖
λ0
0

≥ log
xµ1

xλ0
= JÛC∗G∗C

,

since the right-hand side is increasing in x for λ0 ∈ (0, 1), and x ≤ U ∗C‖0 by definition.

Hence, to show our criterion (10) is optimized by C = C∗ and Gc = G∗c for all

c = 1, . . . , C∗, it suffices to have

JÛC < JÛC∗G∗C
⇐⇒ xµ1 + yµ0

(x+ y)λ0
≤ xµ1

xλ0

⇐⇒ µ0

µ1

<

[(
1 +

y

x

)λ0
− 1

]
x

y
, (A.1)

for each C 6= C∗ and ÛC . Let h(t) =
[
(1 + t)λ0 − 1

]
1
t
, then, h′(t) = 1

t2

[
1− (1−λ0)t+1

(1+t)1−λ0

]
.

Since (1 + t)a < 1 + at for a ∈ (0, 1) and t > 0, h′(t) is negative and h(t) is decreasing

for all t > 0.

Therefore, it suffices to have

µ0

µ1

<

[(
1 + sup

x,y

y

x

)λ0
− 1

]
1

supx,y y/x
.

For each block Ĝc, c ∈ {1, ..., C}, the nodes V̂c of Ĝc are possible to have true memberships

of at most C∗ communities. Then, the number of edges in Ĝc with edge weight µ1 would

satisfy (
g1
2

)
+

(
g2
2

)
+ ...+

(
gC∗

2

)
with g1 + g2 + ...+ gC∗ = |V̂c|
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where gc is the number of nodes from the true community G∗c . Consider a sufficiently

large graph and the numbers of nodes change continuously, we have

(
g1
2

)
+
(
g2
2

)
+ ...+

(
gC∗
2

)(|V̂c|
2

) ≥ C∗.

Therefore, for C∗ ≥ 2, y/x ≤ C∗ − 1 and for C∗ = 1, y/x ≤ 1. Hence, the claim is

true.

Proof of Theorem 2.5. It suffices to show the consistency results are guaranteed for spectral

clustering in our setting of a continuous stochastic block model. The proof of theorem 3.1

in [133] can be easily extended to a weighted case using continuous versions of Bernstein

inequality and Chernoff bounds.

To bound light pairs, uij = xiyj1(|xiyj| ≤
√
d/n) + xjyi1(|xjyi| ≤

√
d/n), then

|uij| ≤ 2
√
d/n, and xTW ′y can be written as

∑
1≤i<j≤n

w′ijuij.

Then, for zero-mean independent random variables, apply Bernstein inequality,

P

[∣∣∣∣∣∑
i<j

w′ijuij

∣∣∣∣∣ ≥ c0
√
d

]
≤ 2 exp

(
−

1
2
c20d∑

i<j σ
2
iju

2
ij + 1

3
2
√
d

n
c0
√
d)

)

≤ 2 exp

(
−

1
2
c20d

σ2
max

∑
i<j u

2
ij + 2c0

3
d
n

)

≤ 2 exp

(
− c20

4 + 4c0
3

n

)
.

In bounding heavy pairs, let e(I, J) be the summation of edge weights in node sets I and
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J: e(I, J) =
∑

(i,j)∈s(I,J)wij . Define µ(I, J) = Ee(I, J), µ(I, J) = pmax|I||J |. We could

obtain continuous versions of Lemma 4.1 and 4.2 in supplementary material of [133].

Using Bernstein inequality:

P

(
n∑
j=1

wij ≥ c1d

)
≤ P

(
n∑
j=1

w′ij ≥ (c1 − 1)d

)
≤ exp

[
−

1
2
(c1 − 1)2d2∑n

j=1 σ
2
ij + 1

3
(c1 − 1)d

]

≤ exp

[
−

1
2
(c1 − 1)2d2

nσ2
max + 1

3
(c1 − 1)d

]
≤ exp

[
−

1
2
(c1 − 1)2d

1 + 1
3
(c1 − 1)

]
≤ n

− 3c0(c1−1)2

2c1+4

We have for c0 > 0, there exists constant c1 = c1(c0) such that with probability at least

1− n−c0 ,
∑n

j=1wij ≤ c1d.

From Chernoff Bound:

P[e(I, J) ≥ kµ(I, J)] = P

 ∑
(i,j)∈s(I,J)

wij ≥ kµ̄(I, J)


≤ exp(−µ̄(I, J)(k ln k − (k − 1)))

≤ exp

[
−1

2
(k ln k)µ̄

]

the lemma 4.2 is true from exacly the same calculations.

Hence, our claim is true with stated assumptions from Theorem 3.1 of [133].
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Appendix B: Supplemental for Chapter 3

B.1 Algorithms

We present the detailed algorithm considering the spatial constraint in IGDB extraction

as follows. With the input of a set of voxels T̃λ from Algorithm 4, we refine the voxel

sets as pieces of spatially connected voxel clusters which also preserve the high value

of objective function. Let GV be the graph corresponding to the spatial connectivity of

voxels, then our goal is to identify connected components T̃λ,1, ..., T̃λ,kṼ in GV while

they are spatially distinct from each other. We propose the following procedure. Let

T̃ 0
λ,1, ..., T̃

0
λ,kṼ

be the connected components at time 0, which is the decomposition of T̃λ

in GV . We merge the connect components by adding nodes from its shortest path (e.g.,

shortest path between T̃ t
λ,k̂

and T̃ t
λ,k̂′

) iteratively until the distance of any two connected

components exceed a give threshold. In order to preserve the high density of the refined

voxel sets, the nodes should be added in the order of nodes degree (e.g., degrees in

G[S̃λ, V ]). Hence, we adapt the Dijkstra’s algorithm in searching for shortest path in a

node weighted graph where the weights are defined as the reciprocal of the node degrees

[134]. The computational complexity of the procedure is O(n2 + n log(n)).
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Algorithm 7 IGDB extraction with spatial constraint
Input: T̃λ, GV , ρ = (ρ1, ..., ρn)
Output: G[S̃λ, T̃λ]

1: procedure ALGORITHM

2: At t = 0: T 0 ← T̃λ
3: while mink1,k2 distance(T ik1 , T

i
k2

)) ≤ threshold do
4: Decompose T t to connected components T t1, ..., T

t
kt in GV ;

5: Compute shortest path for each pair of connected components Lk,k′(T tk, T
t
k′),

k1, k2 = 1, ..., kt;
6: Merge the two connected components with least weights in shortest paths:
T t+1 = T t ∪ Lk̂,k̂′ if k̂, k̂′ = arg mink,k′ Lk,k′;

7: end while
8: Output T̂λ ← T tmax ;
9: end procedure

Algorithm 8 Determine tuning parameter λ by likelihood function
1: procedure ALGORITHM

2: Given a grid of tuning parameters: λ1, λ2, ..., λJ , and a sequence of cutoffs
r1, r2, ..., rR

3: while λ ∈ {λ1, ..., λJ} do
4: Return the IGDB (S̃λ, T̃λ) ofW from Algorithm 4
5: for r = r1 to rR do
6: calculate the likelihood: Lλ(π̂; S̃λ, T̃λ,W (r))
7: end for
8: integrate w.r.t. r:

Lλ(W ) =
∑R

i=1 Lλ(π̂; S̃λ, T̃λ,W (ri))g(ri)
9: end while

10: Output λ̂ and (S̃λ̂, T̃λ̂) with maximized Lλ(W )
11: end procedure

B.2 Permutation test

The Section 3.3.2 provides a way to detect an IGDB and maximize the likelihood

function with the given the IGDB. Thus, given a bipartite graph with adjacency matrixA,

we observe the test statistic as:

tG = log
m1(π̂; S̃λ̂, T̃λ̂,A)

m0(π̂;A)
.
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Let φ(·) be the vectorization of a matrix, such that φ(A) is an mn vector. Denote

τ as a permutation of mn elements, and Pτ is the corresponding permutation matrix.

Let Gτ = (U, V,Eτ ) is an edge-permuted graph from G. Then, under the IGDB-wise

null hypothesis, in which G is observed from a uniform random bipartite graph model,

the edge-permuted graph Gτ would be a realization from the same null model. We

let τ(1), ..., τ(B) be B random permutations. Then, the corresponding edge-permuted

adjacency matrices are given by Aτ(1), ..., Aτ(B) with Aτ = φ−1(Pτφ(A)). The test

statistics associated with edge-permuted adjacency matricesAτ(1), ..., Aτ(B) forms a random

sample of tG under null hypothesis, which can be utilized to obtain the empirical distribution

of tG under null hypothesis. We illustrate whole procedure of the permutation test as

follows:

Algorithm 9 Implementation of likelihood ratio statistic via permutation tests
Input: G = (U, V,E,A)
Output: p-value of the IGDB-wise hypothesis test

1: procedure ALGORITHM

2: calulate the test statistic on G and denote as: t0
3: for b = 1 to B do
4: generate permutation matrix Pb on mn elements
5: observe adjacency matrix of edge-permuted graph Gb: Ab = φ−1(Pbφ(A))
6: calculate the test statistic on Gb as: tb
7: end for
8: p0 is the percentile of t0 in {tb}Bb=1;
9: if p0 is smaller than τ then

10: G[S, T ] is a significant subgraph of G.
11: end if
12: end procedure
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B.3 Detailed Proofs

Proof of Lemma 3.1. From Bernstein’s inequality, for any S ⊆ U , T ⊆ V , we have

P

∣∣∣∣∣∣|S||T |−1
∑

i,j∈G[S,T ]

(Aij − π)

∣∣∣∣∣∣ > γ − π

 ≤ 2 exp

(
− (|S||T |)2(γ − π)2

2[|S||T |+ 1
3
|S||T |(γ − π)]

)

= 2 exp

(
−
{

2

(γ − π)2
+

2

3(γ − π)

}−1
· |S||T |

)

:= 2 exp

(
−1

2
c(γ, π) · |S||T |

)

Therefore,

P (|Sγ| ≥ m0, |Tγ| ≥ n0)

≤P

∪(S,T ):|S|≥m0,|T |≥n0


∣∣∣∣∣∣|S||T |−1

∑
i,j∈Gr[S,T ]

(Aij − π)

∣∣∣∣∣∣ > γ − π




≤
m∑

|S|=m0

n∑
|T |=n0

(
m

|S|

)(
n

|T |

)
2 exp

(
−1

2
c(γ, π) · |S||T |

)

≤
m∑

|S|=m0

n∑
|T |=n0

2 exp

(
−1

2
c(γ, π) · |S||T |+ |S| logm+ |T | log n

)

≤
m∑

|S|=m0

n∑
|T |=n0

2 exp

(
−1

4
c(γ, π) · |S||T |

)

≤2mn exp

(
−1

4
c(γ, π) · |S||T |

)
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Lemma B.1. The greedy algorithm will give a 2(mn)|
1
2
−λ|-approximation, i.e.

dλ(S
∗
λ, T

∗
λ ) ≤ 2dλ(S̃λ, T̃λ)(mn)|

1
2
−λ|.

Proof of Lemma B.1. For a bipartite graph, we assign the edge eij to either node i or j

where i ∈ U and j ∈ V . Denote the number of edges assigned to node i as dU(i) and j as

dV (j). The subscript U and V indicate the sets of nodes. Let dmax
U = maxi{dU(i)} and

dmax
V = maxj{dV (j)}. We start with the case c = |S∗λ|/|T ∗λ |. Let

(S∗λ,c, T
∗
λ,c) = arg max

S⊂U,T⊂V,|S|/|T |=c
dλ(S, T ),

Then, since all edges in E[S∗λ,c, T
∗
λ,c] will be assigned to node i or j which will be counted

in dU(i) or dV (j),

|E[S∗λ,c, T
∗
λ,c]| ≤ |S∗λ,c|dmax

U + |T ∗λ,c|dmax
V (B.1)

Consider a specific way to assign edges. Let the edges are not assigned at the

beginning of this algorithm. A node gets assigned when it is removed in the greedy

algorithm. In other words, if a node i ∈ U is deleted at some iteration, assume the

subgraph at this iterationis G[S ′, T ′], then after this iteration the nodes set changes from

(S ′, T ′) → (S ′/{i}, T ′). The edges assigned to this node i is the number of edges

removed at this iteration, which is the degree of node i in this iteration. The same for
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a node removed from nodes set V . Therefore, since the node i or j is deleted for the

smallest degree, we will have the degree of i at this iteration is smaller than the average

degree :

dU(i) ≤ |E[S ′, T ′]|
|S ′|

and dV (i) ≤ |E[S ′, T ′]|
|T ′|

.

Hence,

min(
√
cdU(i),

1√
c
dV (j)) ≤

√
dU(i)dV (j) ≤ |E[S ′, T ′]|√

|S ′||T ′|

≤ |E[S ′, T ′]|
(|S ′||T ′|)λ

(mn)λ−
1
2 ≤ dλ(S̃λ, T̃λ)(mn)λ−

1
2

If
√
cdU(i) ≤ 1√

c
dV (j), then node i is deleted and deleted edges are all assigned to dU(i).

In this case, from the inequality above,
√
cdU(i) ≤ dλ(S̃λ, T̃λ)(mn)λ−

1
2 . If j is deleted,

√
cdU(i) > 1√

c
dV (j), then 1√

c
dV (j) ≤ dλ(S̃λ, T̃λ)(mn)λ−

1
2 . Therefore,

√
cdmax

U ≤ dλ(S̃λ, T̃λ)(mn)λ−
1
2 and

1√
c
dmax
V ≤ dλ(S̃λ, T̃λ)(mn)λ−

1
2 . (B.2)

Thus,

• Case 1: for λ > 1
2
,

dλ(S
∗
λ,c, T

∗
λ,c) =

|E[S∗λ,c, T
∗
λ,c]|

(|S∗λ,c||T ∗λ,c|)λ
≤
|E[S∗λ,c, T

∗
λ,c]|√

|S∗λ,c||T ∗λ,c|
≤
√
cdmax

U +
1√
c
dmax
V

≤ 2dλ(S̃λ, T̃λ)(mn)λ−
1
2 (B.3)
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• Case 2: For λ < 1
2
,

dλ(S
∗
λ,c, T

∗
λ,c) =

|E[S∗λ,c, T
∗
λ,c]|

(|S∗λ,c||T ∗λ,c|)λ

≤
[S∗λ,c, T

∗
λ,c]|√

|S∗λ,c||T ∗λ,c|
(mn)

1
2
−λ ≤

(√
cdmax

U +
1√
c
dmax
V

)
(mn)

1
2
−λ

≤ 2dλ(S̃λ, T̃λ)(mn)
1
2
−λ (B.4)

Since (B.2) doesn’t depend on the choice of c, taking maximum of the left-hand side over

c for equation (3) and (4) gives the result.

Proof of Theorem 3.1. Equivalently, we consider to maximize a generalized metric:

dλ(S, T ) =
|W [S, T ]|
(|S||T |)λ

, (B.5)

with λ ∈ (0, 1).

Then, from similar argument in Lemma 1:

• Case 1: For 1/2 ≤ λ < 1, we can see dλ(S̃λ, T̃λ) ≥ 1 and

dλ(S
∗
λ, T

∗
λ ) =

|E[S∗λ, T
∗
λ ]|

(|S∗λ||T ∗λ |)λ
≤ (|S∗λ||T ∗λ |)1−λ.

Assume there exist 0 < a < 1 with dλ(S∗λ, T
∗
λ ) ≤ 2dλ(S̃λ, T̃λ)(mn)a. Firstly, if
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|S∗λ||T ∗λ | ≤ (mn)a, dλ(S∗λ, T
∗
λ ) ≤ (mn)(1−λ)a. If |S∗λ||T ∗λ | > (mn)a,

dλ(S
∗
λ, T

∗
λ ) ≤ (mn)−a(λ−

1
2
) |E[S∗λ, T

∗
λ ]|√

|S∗λ||T ∗λ |
≤ (mn)−a(λ−

1
2
) · 2dλ(S̃λ, T̃λ)(mn)λ−

1
2

= 2dλ(S̃λ, T̃λ)(mn)(λ−
1
2
)(1−a).

Let a = 2λ− 1, we have

dλ(S
∗
λ, T

∗
λ ) ≤ 2dλ(S̃λ, T̃λ)(mn)(1−λ)(2λ−1)

• Case 2: For 0 < λ < 1
4
,

dλ(S
∗
λ, T

∗
λ ) ≤ |E[U, V ]| ≤ |E[U, V ]|

(|U ||V |)λ
· (mn)λ ≤ dλ(S̃λ, T̃λ)(mn)λ

• Case 3: For 1
4
< λ < 1

2
, keep the result in Lemma 1.

Proof of Theorem 3.2. For simplicity, we assume m = n and |S0| = |T0| = s0. We

prove the claim in two parts. In part 1, we show that with high probability, the state

space searched by Algorithm (1) includes candidates of (S, T ) with misarrangement error

smaller than nε. In part 2, we illustrate that the objective function would favor the (S, T )

with misarrangement error smaller than nε with high probability.

Part 1. We denote C = {(S1, T1), (S2, T2), ..., (Smn−1, Tmn−1)} be the sequence of

biclusters generated by deleting the smallest-degree nodes according to the decision rule

in Algorithm 1 when c = c0 = |S0|
|T0| (i.e., under our assumption c0 = 1). Then, we target
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to prove with high probability (S0, T0) ∈ C .

At the stage k, within the subgraph G[Sk, Tk], the node degrees satisfy:

For i ∈ Sk ∩ S0 : degX(i) =

|Tk∩T0|∑
j=1

ξ1ij +

|Tk|∑
j=|Tk∩T0|+1

ξ0ij,

For i′ ∈ Sk ∩ Sc0 : degX(i′) =

|Tk|∑
j=1

ξ0i′j,

For j ∈ Tk ∩ T0 : degY (j) =

|Sk∩S0|∑
i=1

ξ1ij +

|Sk|∑
i=|Sk∩S0|+1

ξ0ij,

For j′ ∈ Tk ∩ T c0 : degY (j′) =

|Sk|∑
i=1

ξ0ij′ ,

where ξ1ij ∼ Bernouli(π1), ξ0ij ∼ Bernouli(π0).

From chernoff bound, for i ∈ Sk ∩ S0 and δ ∈ (0, 1)

P(degX(i) ≤ (1−δ) (|Tk ∩ T0|π1 + |Tk ∩ T c0 |π0)) ≤ exp

[
−δ

2

2
(|Tk ∩ T0|π1 + |Tk ∩ T c0 |π0)

]
,

and for i′ ∈ Sk ∩ Sc0,

P(degX(i′) ≥ (1 + δ)|Tk|π0) ≤ exp

[
− δ2

2 + δ2
|Tk|π0

]
.

Hence, when δ > |Tk|−
1
2
+ ε

2 and |Tk∩T0||Tk|
≥ 2 δ

1−δ
π0

π1−π0 , there exist ε0(δ) > 0,

P(degX(i)− degX(i′) ≥ ε0(δ)) ≥ 1− exp

[
−δ

2

2
(|Tk ∩ T0|π1 + |Tk ∩ T c0 |π0)

]
− exp

[
− δ2

2 + δ2
|Tk|π0

]
→ 0.
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Similarly, when δ > |Sk|−
1
2
+ ε

2 and |Sk∩S0|
|Sk|

≥ 2 δ
1−δ

π0
π1−π0 , there exist ε0(δ) > 0,

P(degY (j)− degY (j′) ≥ ε0(δ)) ≥ 1− exp

[
−δ

2

2
(|Sk ∩ S0|π1 + (|Sk ∩ Sc0|)π0)

]
− exp

[
− δ2

2 + δ2
|Sk|π0

]
→ 0.

In this case, we have

P({degX(i)− degX(i′) ≥ ε0(δ) and degY (j)− degY (j′) ≥ ε0(δ)})

≥ P(degX(i)− degX(i′) ≥ ε0(δ)) + P(degY (j)− degY (j′) ≥ ε0(δ))− 1.

≥ 1− exp

[
−δ

2

2
(|Tk ∩ T0|π1 + (|Tk ∩ T c0 |)π0)

]
− exp

[
− δ2

2 + δ2
|Tk|π0

]
− exp

[
−δ

2

2
(|Sk ∩ Sc0|π1 + (|Sk ∩ Sc0|)π0)

]
− exp

[
− δ2

2 + δ2
|Sk|π0

]
:= p1

At stage k of, the event of deleting a node outside S0 and T0 is:

∩i∈Sk∩S0 ∩i′∈Sk∩Sc0 ∩j∈Tk∩T0 ∩j′∈Tk∩T c0 {degX(i) ≥ degX(i′) and degY (j) ≥ degY (j′)}

Then,

P
(
∩i∈Sk∩S0 ∩i′∈Sk∩Sc0 ∩j∈Tk∩T0 ∩j′∈Tk∩T c0 {degX(i) ≥ degX(i′) and degY (j) ≥ degY (j′)}

)
≥1−

∑
i∈Sk∩S0

∑
i′∈Sk∩Sc0

∑
j∈Tk∩T0

∑
j′∈Tk∩T c0

P(degX(i) < degX(i′) or degY (j) < degY (j′))

≥1− |Sk ∩ S0||Sk ∩ Sc0||Tk ∩ T0||Tk ∩ T c0 |p1
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Using similar argument,

P((S0, T0) ∈ C)

=P
(
∩n

2−s20
k=1 ∩i∈Sk∩S0 ∩i′∈Sk∩Sc0 ∩j∈Tk∩T0 ∩j′∈Tk∩T c0 {degX(i) ≥ degX(i′) and degY (j) ≥ degY (j′)}

)
≥1− (n2 − s20)P

(
∩i∈Sk∩S0 ∩i′∈Sk∩Sc0 ∩j∈Tk∩T0 ∩j′∈Tk∩T c0 {degX(i) ≥ degX(i′) and degY (j) ≥ degY (j′)}

)
→1 as n→∞,

when s0 = O(n
1
2
+ε).

Part 2. We first show the population version that the true subgraph G[S0, T0] is the

global optimal of the objective function under expectation.

Denote dλ(S, T ) = ‖A[S, T ]‖1 − λ|S||T | be the objective function under tuning

parameter λ. Let ∆(S, T ) be the matrix of indicator variables: {∆(S, T )}ij = I(eij ∈

G[S, T ]), and ∆0 ≡∆(S0, T0) corresponds to the true IGDB.

Then, EA = P = π1∆0 + π0(1n1
T
m −∆0), and

Edλ(S, T ) = ‖
{
π1∆0 + π0(1n1

T
m −∆0)

}
◦∆(S, T )‖1 − λ‖∆(S, T )‖1

= π1‖∆0 ◦∆(S, T )‖1 + π0‖(1n1Tm −∆0) ◦∆(S, T )‖1 − λ‖∆(S, T )‖1

= (π1 − λ)‖∆0 ◦∆(S, T )‖1 + (π0 − λ)‖(1n1Tm −∆0) ◦∆(S, T )‖1.

(B.6)

Hence, for λ ∈ (π0, π1), S = S0 and T = T0 is the unique maximizer of Edλ(S, T ).

We then consider to select from the sequence of subgraphs C by objective function
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dλ(S;T ). From Chernouff bounds,

P(‖A ◦∆(S, T )‖1 ≥ (1 + δ)‖P ◦∆(S, T )‖1) ≤ exp

[
− δ2

2 + δ2
‖P ◦∆(S, T )‖1

]

and

P(‖A ◦∆0‖1 ≤ (1− δ) {π1‖∆0‖1}) ≤ exp

[
−δ

2

2
{π1‖∆0‖1}

]
.

Then,

P(‖A ◦∆(S, T )‖1 − ‖A ◦∆0‖1 ≤ (1 + δ)‖P ◦∆(S, T )‖1 − (1− δ)π1‖∆0‖1)

≥1− exp

[
− δ2

2 + δ2
‖P ◦∆(S, T )‖1

]
− exp

[
−δ

2

2
{π1‖∆0‖1}

]
:= 1− p.

Therefore,

P(dλ(S, T )− dλ(S0, T0) ≤ E(dλ(S, T ))− E(dλ(S0, T0))

+ δ(‖P ◦∆(S, T )‖1 + π1‖∆0‖1))

≥1− p. (B.7)

Based on the proof of part 1, we only need to discuss the sets {(S, T ) : S ⊃ S0, T ⊃ T0}

and {(S, T ) : S ⊂ S0, T ⊂ T0}. For S0 ⊂ S and T0 ⊂ T , assume |S/S0| + |T/T0| ≥

(|S0| ∧ |T0|)ε. Then we observe the largest value of E(dλ(S, T )) − E(dλ(S0, T0)) when
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(|S|, |T |) = (s0 + sε0/2, s0 + sε0/2). In this case,

E(dλ(S, T ))− E(dλ(S0, T0)) = (π0 − λ)

(
s1+ε0 − 1

4
s2ε0

)
,

while

‖P ◦∆(S, T )‖1 + π1‖∆0‖1 = 2π1s
2
0 + π0

(
s1+ε0 +

1

4
s2ε0

)
.

Hence, from (B.7), when δ is order s
−1+ ε

2
0 and λ > π0, dλ(S0, T0) > dλ(S, T ) for any

S ⊃ S0 and T ⊃ T0 with high probability.

On the other hand, when S ⊂ S0,T ⊂ T0, for simplicity, we assume m = n and

|S0| = |T0| = s0, then the largest value of E(dλ(S, T ))−E(dλ(S0, T0)) is observed when

(|S|, |T |) = (s0 − sε0/2, s0 − sε0/2). In this case,

E(dλ(S, T ))− E(dλ(S0, T0)) = −(π1 − λ)

(
s1+ε0 − 1

4
s2ε0

)
,

and

‖P ◦∆(S, T )‖1 + π1‖∆0‖1 = π1

(
2s20 − s1+ε0 +

1

4
s2ε0

)
.

Similarly, when δ is order s
−1+ ε

2
0 and λ < π1, dλ(S0, T0) > dλ(S, T ) for any S ⊂ S0 and

T ⊂ T0 with high probability.
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Appendix C: Supplemental for Chapter 4

C.1 Additional Simulation Results

C.1.1 Illustrative plots of simulation results

To conveniently display the difference of FPR and FNR from the ICN and competing

methods, we draw the plots indicating the mean values and SDs as error bars as follows:
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Figure C.1: Plots of results in Table 1 of main context. Estimated edge-
level FPR, FNR and standard errors for C0 = 3 and n = 200 based on
different detection methods. The FPR and FNR are calculated separately for
(a) between-community edges, (b) within-community edges, and (c) overall
edges.

C.1.2 Additional simulation settings

We include additional simulation results from different settings. Table C.1 shows
the edge-level FPR and FNR for the synthetic data with two positively interconnected
communities under generating mechanism described in Simulation Results in Chapter 4.
Two non-trivial communities are considered in this case, such that the community sizes
and the number of singleton nodes are (60, 40; 100) and (30, 20; 150), respectively. The
matrix A is generated from f1, f2 and f0 with mean values 0.8, 0.5 and 0. 40% of edges
between two communities are true connecting edges.

The corresponding figure is displayed as follows:

C.1.3 Simulation results for community-level inference

We also evaluate the power of testing interconnected community from Algorithm

5 in Step 2 of our method in Chapter 4. Despite the testing of interconnection is not the

ultimate goal, it is the backbone of our method and critically affects the accuracy of the

identification for connecting edges. In addition to the experimental settings described
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Table C.1: Estimated edge-level FPR, FNR and standard errors for C0 = 2 and n = 200
with positive interconnection based on different detection methods. The FPR and FNR
are calculated separately for between-community edges, within-community edges, and
overall edges.

ICN MMSB BNMTF HK-relax

(60, 40)

Between
FPR 0.004 (0.006) 0.280 (0.028) 0.024 (0.013) 0.030 (0.012)

FNR 0.146 (0.153) 0.706 (0.057) 0.537 (0.207) 0.708 (0.145)

Within
FPR 0.001 (0.002) 0.107 (0.014) 0.017 (0.016) 0.020 (0.009)

FNR 0.002 (0.009) 0.887 (0.024) 0.134 (0.092) 0.307 (0.096)

Overall
FPR 0.004 (0.006) 0.384 (0.026) 0.008 (0.007) 0.004 (0.002)

FNR 0.038 (0.043) 0.597 (0.048) 0.070 (0.040) 0.182 (0.039)

(30, 20)

Between
FPR 0.001 (0.002) 0.234 (0.024) 0.004 (0.002) 0.009 (0.003)

FNR 0.127 (0.152) 0.748 (0.041) 0.532 (0.145) 0.510 (0.222)

Within
FPR 0.001 (0.001) 0.058 (0.010) 0.004 (0.003) 0.004 (0.003)

FNR 0.001 (0.012) 0.937 (0.013) 0.065 (0.042) 0.171 (0.110)

Overall
FPR 0.001 (0.002) 0.289 (0.025) 0.003 (0.002) 0.006 (0.003)

FNR 0.031 (0.038) 0.6898 (0.030) 0.051 (0.031) 0.068 (0.063)

Figure C.2: Plots of results in Table C.1. Estimated edge-level FPR, FNR
and standard errors for C0 = 2 and n = 200 with positive interconnection
based on different detection methods. The FPR and FNR are calculated
separately for (a) between-community edges, (b) within-community edges,
and (c) overall edges.
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in Simulation Results of Chapter 4 and A.1.2 of the Appendix, we further consider

an ICN structure with two negatively interconnected communities, where the matrix A

is generated based on f1, f2 and f0 from normal with mean 0.8, -0.6, 0 and standard

deviation 0.1.

The results are summarized in Table C.1. We evaluate the accuracy via community-

level false negative rate (FNR) and false positive rate (FPR) for KL test among replications.

Note, the community-level FPR is not calculated for the settings with C0 = 2 since we

assume that the two communities are connected.

In general, we have a high power to detect the truely connected communities with

a well-controlled type I error. Both FPR and FNR decrease as the sample size n increases.

The networks with two positively interconnected communities have extremely small FNRs,

which is signficantly higher than communities with negative interconnections. A possible

reason is that the strength of negative connections is constrained by the positive semi-

definiteness of the covariance matrix.
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Table C.2: Estimated community-level FPR, FNR and standard errors for testing
interconnections using Algorithm 1 in main context. The true correlation matrices are
considered to have three structures with varied number of non-singleton communities:
C0 = 3 with both positive and negative interconnections, C0 = 2 with positive, and
C0 = 2 with negative interconnections. Each structure is constructed according to two
different cluster sizes. The random samples are generated from the multivariate normal
distribution with specified true correlation matrices of varied sample sizes: 100, 200 and
1000.

n = 100 n = 200 n = 1000

C0 = 3

(60, 40, 40)
FPR 0.0660 (0.0111) 0.0160 (0.0056) 0.0020 (0.0020)

FNR 0.0220 (0.0066) 0.0090 (0.0042) 0.0100 (0.0044)

(30, 20, 20)
FPR 0.1140 (0.0142) 0.0760 (0.0119) 0.0000 (0.0000)

FNR 0.0800 (0.0121) 0.0270 (0.0070) 0.0170 (0.0058)

C0 = 2 (positive)
(60, 40) FNR 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

(30, 20) FNR 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

C0 = 2 (negative)
(60, 40) FNR 0.0200 (0.0020) 0.0240 (0.0068) 0.0220 (0.0066)

(30, 20) FNR 0.0440 (0.0092) 0.0480 (0.0095) 0.0340 (0.0081)

C.1.4 Simulation results with large networks

Furthermore, to illustrate the performance of ICN in a data with a similar number of

nodes as real data example, we set p = 10, 000 nodes, and three communities with sizes:

(2000, 1500, 1500) and (1500, 1000, 1000). All other settings are the same as Simulation

Results in Chapter 4. We replicate the experiments for 100 times. Since the competing

methods under these settings suffer from computational burdens (e.g., MMSB needs more

than 6 hours for real data with similar number of nodes), we only reported the results from

ICN in the following Table C.1.4.
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Table C.3: Estimated edge-level FPR, FNR and standard errors for C0 = 3, p = 10, 000
and n = 200 with positive interconnection based on different detection methods. The FPR
and FNR are calculated separately for between-community edges, within-community
edges, and overall edges.

FPR FNR

(2000, 1500, 1500)
Between 0.0105 (0.0119) 0.1861 (0.2306)

Within 0.0144 (0.0256) 0.0605 (0.0693)

Overall 0.0244 (0.0359) 0.0724 (0.0949)

(1500, 1000, 1000)
Between 0.0052 (0.0053) 0.1837 (0.2333)

Within 0.0055 (0.0113) 0.0614 (0.0574)

Overall 0.0098 (0.0151) 0.0688 (0.0880)

C.2 Addition Data Results

C.2.1 Data results from competing overlapping community methods

We implement the competing methods on the real data example, and the detection

results are displayed in the following Figure C.3. We set 17 communities for MMSB

method. The results from MMSB yield a balancing partition of all genes into 17 communities,

which does not lead to any highly connected communities (i.e., Figure C.3 (a)). BNMTF

can identify several blocks, however, it seems to false positively assign week correlations

into communities yield false positive results. The HK-relax method detects a number of

too small communities (e.g., ranging from a few nodes to a few hundred of nodes), which

does not effectively reveal the latent community structure.

C.2.2 Pathway analysis

We include the demonstrative results from pathway analysis in following Figure

C.4. We identified pathways enriched with the union of genes in each pair of modules
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(a) MMSB (b) BNMTF (c) HK-relax

Figure C.3: The results of real data example from competing methods

(e.g. V̂1 ∪ V̂2 for community 1 and 2, V̂7 ∪ V̂8 community 7 and 8 in leukemia example)

using both Fisher’s exact test p-values and number of overlapping genes as cutoffs. Then,

for each community pair (e.g., community 1 and 2), we conducted pathway analysis

separately on three parts: the unique parts of each module (e.g., V̂1 \ V̂ ∗1 for community 1,

e.g., V̂2 \ V̂ ∗2 for community 2), and the interconnecting part (e.g., V̂ ∗1 ∪ V̂ ∗2 ). We display

− log10(p-value) of the Fisher’s exact test in three parts of each community pair for the

top 10 KEGG and Reactome pathways sorted by the p-value from the union set in Figure

C.4 (a)(b). We further show the topology plot of MAPK signaling pathway for KEGG

with genes from community 1 and 2 highlighted in two different colors in Figure C.4 (c).
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Figure C.4: Pathway enrichment patterns of the three parts identified by ICN
for top 10 KEGG and Reactome pathways. (a) Results for community 1-
2 pair; (b) Results for community 7-8 pair. Y-axis indicates the pathways
and the color reflects the significance level of Fisher’s exact tests with red
indicating more significant, blue indicating not significant. (c) Topology plot
of selected MAPK signaling pathway with the genes from community 1 and
2 highlighted by two different colors.
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