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Stochastic modeling plays an important role in estimating potential outcomes

where randomness or uncertainty is present. This type of modeling forecasts the

probability distributions of potential outcomes by allowing for random variation in

one or more inputs over time under different conditions. One of the classic topics of

stochastic modeling is queueing theory.

Hence, the first part of the dissertation is about a stylized queueing model

motivated by paid express lanes on highways. There are two parallel, observable

queues with finitely many servers: one queue has a faster service rate, but charges

a fee to join, and the other is free but slow. Upon arrival, customers see the state

of each queue and choose between them by comparing the respective disutility of

time spent waiting, subject to random shocks. This framework encompasses both

the multinomial logit and exponomial customer choice models. Using a fluid limit

analysis, we give a detailed characterization of the equilibrium in this system. We

show that social welfare is optimized when the express queue is exactly at (but not



over) full capacity; however, in some cases, revenue is maximized by artificially cre-

ating congestion in the free queue. The latter behaviour is caused by changes in the

price elasticity of demand as the service capacity of the free queue fills up.

The second part of the dissertation is about a new optimal experimental design

for linear regression models with continuous covariates, where the expected response

is interpreted as the value of the covariate vector, and an “error” occurs if a lower-

valued vector is falsely identified as being better than a higher-valued one. Our

design optimizes the rate at which the probability of error converges to zero using a

large deviations theoretic characterization. This is the first large deviations-based

optimal design for continuous decision spaces, and it turns out to be considerably

simpler and easier to implement than designs that use discretization. We give a

practicable sequential implementation and illustrate its empirical potential.
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Chapter 1: Introduction

1.1 Equilibrium analysis of observable express service with customer

choice

In this discussion, we mainly focus on work that involves observable queues

and heterogeneous customers. There are many other interesting problems that do

not deal with those particular issues; for instance, [1] and [2] both consider pricing

in queueing systems, but assume that system states are unobservable to customers

and/or do not model individual customer decisions. [3] gives a survey of the broad

rational queueing literature that encompasses these types of problems, and so we

will not delve more deeply into them here.

Our paper has some commonality with the stream of literature on priority

queues, where customers are given the option to receive faster service by paying

a fee. This is usually accomplished by moving paying customers in front of non-

paying customers [4], so that both types of customers are handled by the same set

of servers (perhaps a single server). In some cases, the customers do not observe the

queue state [5,6] or make any choice at all [7]. In other cases, customers observe the

queue state but have no choice of service type: for example, in [8] customers do not
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choose their priority class. Many of these papers focus on single-server models, thus

streamlining the issue of capacity. Recent work by [9] and [10] considered multi-

server settings, but made the queue unobservable to the customers; [11] studied a

multi-server priority queue with two customer classes, but did not include any form

of customer choice.

The notion of customer heterogeneity has many possible meanings: customers

may have different valuations of the service, different patience levels, or access to dif-

ferent levels of information. Many papers, for instance [12] or [13], introduce distinct

customer classes, but assume homogeneity within any given class. In [14] or [15],

rather than purchasing faster service, customers can pay to make the queue observ-

able, though their utilities are homogeneous. Common approaches to representing

customer heterogeneity include modeling purely exogenous, i.i.d. valuations of the

service [16,17] or abandonment times [18], or using a linear disutility of waiting with

a randomly generated slope [6,19,20]. [21] used the multinomial logit (MNL) choice

model to represent heterogeneous customer decisions in an unobservable queue. Our

paper uses a general random utility model within an observable system; the MNL

model falls under our framework, but so does, for example, the recent exponomial

choice model of [22].

Some authors have considered forms of express service that are closer to the one

in our paper. For example, [23] allows customers to move to a separate “fast lane”

by paying a fee; however, the fast lane is not explicitly represented in the model,

so these customers essentially disappear from the system altogether. By contrast, a

major distinguishing feature of our work is the inclusion of the state and service ca-
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pacity of the express queue into the customer’s decision. Two closely-related studies

by [24] and [25] explicitly model express queues, also motivated by the application

of paid lanes on highways. Both studies consider customer heterogeneity, but their

focus is on time-dependent pricing rather than equilibrium analysis, making it more

difficult to obtain tractable results. Thus, the analysis in [24] assumes linear disu-

tility (with random slope); on the other hand, [25] uses the MNL choice model, but

primarily relies on numerical simulations for insight. In comparison, we simplify

the service provider’s decision by considering the equilibrium performance of a fixed

price, with the upside that we can obtain a much more detailed characterization

of revenue and social welfare under much more general utility and choice models.

Our analytical approach builds on a recent series of papers by [26–28], which to

our knowledge were the first to study the equilibrium behaviour of paired queueing

systems under MNL choice. However, the focus of these papers is on delayed in-

formation, and they do not include any dimension of pricing, optimization, or even

the notion of choosing between two different service types (they assume that both

queues have identical service rates).

1.2 A new rate-optimal design for linear regression

In this work, we derive a new optimal experimental design for linear regression

models with continuous covariates, where the expected response is interpreted as

the value of the covariate vector, and an “error” occurs if a lower-valued vector is
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falsely identified as being better than a higher-valued one. Our design optimizes

the rate at which the probability of error converges to zero using a large deviations

theoretic characterization. This is the first large deviations-based optimal design for

continuous decision spaces, and it turns out to be considerably simpler and easier

to implement than designs that use discretization. We give a practicable sequential

implementation and illustrate its empirical potential.

Consider the linear regression model

y = β>x+ ε, (1.1)

where β ∈ Rd is a fixed, but unknown vector of regression coefficients, x ∈ Rd is a

vector of data, and ε ∼ N (0, σ2) is a residual noise. The expectation E(y|x) = β>x

is interpreted as the “value” of x. For example, the elements of x could represent

various attributes of a combination treatment for cancer, with the response y being

the health outcome [29]. We assume that x is “better” if E(y|x) is larger. The set

of possible x need not be discrete.

Suppose that we have the ability to design the data vector: given a sample size

of n, we may choose x1, ..., xn anywhere in some compact subset of Rd called the “de-

sign space.” This choice may be made either all at once, before any observations are

collected, or sequentially, where each xi may depend on x1, y1, ..., xi−1, yi−1, perhaps

through a vector bi of least-squares regression coefficients estimated using these pre-

viously collected data. The first, static setting has been extensively studied in the

literature on experimental design [30]. Because static decisions are made without
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any information on the response, one builds the design to optimize some summary

statistic of the covariance matrix of the least-squares estimator bn. There are many

possible criteria, known by such “alphabet-optimal” names as A-optimality [31], D-

optimality [32, 33], G-optimality [34], etc. All of these evaluate designs in a purely

statistical sense, with no other notion of the value of x.

The second, sequential setting has been considered by the community working

on simulation-based optimization. This literature grew out of the ranking and selec-

tion problem, in which the goal is to identify the highest-valued alternative (unlike

experimental design, ranking and selection always has some notion of value to maxi-

mize) from some finite set using independent samples of the value. An early effort to

apply algorithmic concepts from ranking and selection to the linear regression setting

was by [35], which also assumed that each xi could take values only in a finite set;

similar settings were considered by [36] and [37]. [38] provided approximation algo-

rithms for combinatorial design spaces, while [39] and [40] handled low-dimensional,

continuous design spaces with special structure (e.g., the value being a quadratic

function of a scalar control). In the computer science literature, [41], [42] and others

studied related “linear bandit” problems where one maximizes the total value of the

sampled vectors.

However, the static setting can also be used to examine the problem of find-

ing the best x, and this approach has yielded deep insights into the development

of sequential algorithms. In the simulation community, [43] used large deviations

theory to derive a new type of optimal design where the optimality criterion was

connected to the value through the probability of incorrect selection (i.e., the event
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that a suboptimal alternative is erroneously estimated to have a higher value than

the optimal one). Similar ideas motivate the literature on optimal computing bud-

get allocation [44–46], which uses various approximations of this error probability.

Later work by [47–49] generalized this notion to a broader class of simulation-based

optimization problems. In all of these papers, however, the optimal design depends

on the underlying unknown problem parameters (in regression, this is the vector

β) which determine the value of each alternative. Thus, although an optimal static

design exists, it cannot be computed statically, but rather must be learned as data

are acquired. In a sense, the purpose of a sequential algorithm is to do this effi-

ciently; see [50] and [51] for examples of such algorithms in the context of ranking

and selection. The computer science literature has also developed similar insights,

with [52] and [53] proposing sequential variants of G-optimal design.

1.3 Outline of Dissertation

In Chapter 2, we describe the stylized queueing system that we use for model-

ing express service with customer choice and presents the fluid limit approximation

used to study the equilibrium behaviour of this system and investigates its proper-

ties. Then we found the dependence of the equilibrium solution on c will determine

the shape of any relevant revenue function that we might define; for this reason,

we start by examining this dependence in Section 2.3.1. Then, in Section 2.3.2,

we propose and study two objective functions related to the revenue of the service
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provider and the social welfare of the customers. Finally, we present an additional

analysis and numerical illustrations for the setting where customer choice follows

the MNL model and the exponomial choice model.

In Chapter 3, we derive a new, large deviations theoretic optimality criterion

for linear regression, and propose a new design that optimizes this criterion. We

first derive the large deviations law for bn. Then we focus on studying error events

for countable collections {vk}∞k=1 that are dense in some uncountable set of inter-

ests, where v is the vector we are studying. In Section 3.2, we define and solve

the optimization problem to make the probability of error events converge to zero

at the fastest possible rate. Finally, we state a very simple algorithm (which we

call “LD-optimal”) for implementing the optimal design in practice and conduct a

numerical experiment comparing this algorithm with some other algorithms.

Chapter 4 provides the conclusion to the thesis.
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Chapter 2: Equilibrium analysis of observable express service with

customer choice

2.1 Introduction

This work was motivated by an increasingly common sight in urban beltways

and surrounding arterial highways – the availability of paid express lanes with higher

speed limits. To reduce congestion in the transportation network, and to generate

revenue for the state authority, drivers are given the option to pay a fee and gain

access to a special set of lanes running parallel to the general-purpose lanes on the

same highway. The magnitude of the entry fee has an impact on how many drivers

are willing to make the switch, which also affects the quality of service in both free

and paid lanes because the capacity of both types of lanes is finite. Thus, the entry

fee can be used to manipulate the amount of congestion in the system, either to

improve the overall quality of service or to maximize revenue.

This behaviour is not limited to transportation networks; there are other types

of service systems where faster service can be obtained at a price, such as express

lines in theme parks, or expedited service in document processing. In this paper, we

develop a stylized queueing model that is somewhat abstracted from the specifics
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of any one application in particular, but provides insight into the broader problem

of pricing in service systems with a paid express option. In our framework, there

are two M/M/q̄ queues operating in parallel. The “express” queue has a faster

service rate, but charges a fixed fee to join, whereas the “regular” queue is slower

but free. The value of the service itself is the same in either queue, but customers

prefer to wait less and, upon arrival, will choose between the two queues based on

their perception of the waiting times. The following key dimensions are present in

the model:

1. Both queues are observable: a newly arriving customer will see the exact state

of both queues at the moment of arrival, and determine whether the reduced

(conditional expected) waiting time in the express queue is worth the entry

fee.

2. Customers are heterogeneous : their valuations of waiting time are subject to

random variation, reflecting their differing perceptions of the waiting times or

of the inconvenience of waiting.

3. Both queues have limited service capacity : all else being equal, a newly arriving

customer will be less likely to choose the express queue if all of its servers are

busy and other customers are waiting in line.

In short, customer choice follows a random utility model and is based on the ob-

served queue lengths at the moment of arrival. Thus, customers all have different

willingness to pay and the magnitude of the entry fee affects the proportion of

customers that prefer express service to regular. However, these proportions also
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depend on the queue lengths at any given moment and thus change dynamically

over time even though the fee is kept fixed.

2.1.1 Contributions and Insights

We use a fluid limit equilibrium analysis; for other applications of this tech-

nique in service operations, see, e.g., [54] or [55]. We characterize the long-run

average queue lengths and choice probabilities for both express and regular service,

and then study the dependence of these quantities on the entry fee, which drives

the behaviour of various objectives related to revenue and social welfare. Below, we

summarize our key findings and insights.

Classification of equilibrium. The finite capacity of the system plays a vital

role in the structure of the equilibrium. Given a fixed entry fee and a fixed set of

other problem inputs, the equilibrium can belong to one of four “regimes” depend-

ing on whether the express and regular queues are above or below capacity. The

distinctions between these regimes essentially determine the way in which the entry

fee impacts revenue and social welfare.

Transitions of equilibrium as a function of price. If we vary the entry fee while

keeping the other problem inputs fixed, the equilibrium changes: as one might ex-

pect, the express queue length decreases in the price, while the regular queue length

increases. When one of the queues approaches capacity, the equilibrium transitions

from one regime to another, completely changing the structure of revenue and social
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welfare.

We provide a full characterization of all possible sets of transitions. Any given

set of problem inputs will yield one, and only one, of six possible cases. For example,

in one of these cases, low prices will lead to congestion in the express queue and

unused capacity in the regular queue; mid-range prices will cause enough customers

to move to the regular queue so as to eliminate congestion entirely; and high prices

will create congestion in the regular queue while leaving unused capacity in the ex-

press queue.

Social welfare. A natural way to measure social welfare in this problem is in

terms of the expected disutility of waiting per arrival; in other words, a customer is

better off when he or she spends less time in the system, regardless of whether it is

in the express or regular queue. We find that, under virtually any utility function

and choice model, social welfare is optimized by choosing a price that is high enough

to avoid creating congestion in the express queue, but otherwise low enough to min-

imize congestion in the regular queue. Customers are not always better off if the

express queue is free to join, because congestion in the express queue also reduces

service quality.

Revenue maximization. We find that the shape of the revenue function is

problem-specific and (depending on which of the six cases applies) there may be

multiple locally optimal prices. This behaviour arises because the finite capacity of

the regular queue effects a change in the price elasticity of demand. If both queues

are under capacity, a new customer obtains a constant improvement in waiting time

by choosing express over regular; however, as the price increases and the regular
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queue fills up, the benefit of switching to express starts to grow, partially offsetting

additional price increases. One possible consequence of this phenomenon is that

the revenue-maximizing price can artificially create congestion in the regular queue,

while deliberately maintaining unused capacity in the regular queue, even though a

different price may have eliminated all congestion entirely.

We note that these findings are obtained in a very general setting that encom-

passes many possible disutility functions and random choice models. If one makes

additional assumptions, it is possible to obtain even more detailed characterizations

– for example, under the MNL model, we derive the equilibrium queue lengths in

closed form. However, the general setting also applies to, e.g., the exponomial choice

model, and all of our general results continue to hold in that context.

2.2 Model and analytical framework

Section 2.2.1 describes the stylized queueing system that we use for modeling

express service with customer choice. Section 2.2.2 presents the fluid limit approxi-

mation used to study the equilibrium behaviour of this system and investigates its

properties.

2.2.1 Setup with general choice probabilities

Consider the following queueing system. Customers arrive according to a Pois-

son process with rate λ. Upon arrival, a customer can choose to enter one of two

queues: a “regular” queue (free highway) with exponential service rate µr, or an “ex-
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press” queue (paid express highway) with rate µe > µr. Each queue has q̄ servers.

If neither queue is desirable, in a certain sense to be defined, the customer may also

choose an “outside option” (e.g., taking a back road) and leave the system entirely.

Once the choice has been made, it cannot be revisited; if the customer chooses one

of the queues, he or she remains in that queue until service is completed, and subse-

quently leaves the system. We assume that passing through the system (arriving at

home) has the same positive value regardless of how it was achieved, so the choice

between the three options (regular, express, outside) is made by comparing their

respective disutility of time spent waiting. We focus on disutility (as does, e.g., 11)

because, in the highway application, every commuter needs the service.

Let Qr(t) and Qe(t) denote the lengths of the two queues at time t. We will

formally define the dynamics of the queue lengths at the end of this discussion; for

now, let us focus on how they affect customer choice. Both queues are observable:

the choice made by a customer arriving at time t will depend on Qr(t) and Qe(t).

A customer expecting to wait s time units in a queue will evaluate the disutility of

waiting as u(s), where u : R+ → R+ satisfies the following properties:

U1) The disutility of not waiting at all is zero, i.e., u(0) = 0.

U2) The disutility of waiting infinitely long is infinite, i.e., lims→∞ u(s) =∞.

U3) Disutility strictly increases with the waiting time, i.e., u′ > 0.

Thus, the “ideal” disutility of waiting in queue i ∈ {r, e}, evaluated by a cus-

tomer arriving at time t, is given by

13



ui(Qi(t)) =


u( 1

µi
) Qi(t) < q,

u(Qi(t)
µiq

) Qi(t) ≥ q.

The disutility of the outside option is assumed to be a fixed positive number u >

max{u( 1
µe

), u( 1
µr

)}, meaning that it is not preferable to either queue as long as the

latter is under capacity.

The total disutility of joining either queue, as evaluated by a customer arriving

at time t, is given by

Ue(t) = ue(Qe(t)) + c+ τe, (2.1)

Ur(t) = ur(Qr(t)) + τr, (2.2)

where the quantity c ≥ 0 in (2.1) is the fixed dollar cost of joining the express

queue; this term is absent from (2.2) since the regular queue is free. The terms

τe,τr are random shocks (independent of each other, as well as the arrival process

and queue lengths) used to model heterogeneity between customers, e.g., differences

in their individual valuations, or differences in their individual perceptions of the

queue lengths.

Thus, the disutility function u can be seen as converting waiting time into a

dollar equivalent so that it might be directly traded off against the actual dollar

cost of entering the express queue. This determines the endogenous arrival rates for

the two queues. For example, a customer arriving at time t will choose the express

queue if Ue(t) ≤ min{Ur(t), Ū} where Ū = ū + τo is the disutility of the outside
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option subject to the random shock τo.

With additional assumptions on the distributions of τe, τr, τo, customer choice

can be made to follow a standard choice model such as multinomial logit (if the

shocks are Gumbel distributed) or exponomial (if exponentially distributed). We

consider both of these examples in Section 2.4; for the time being, however, we work

with the general form of the model. Denote by

pe

(
ue(Qe(t)) + c, ur(Qr(t)), u

)
= P

(
Ue(t) ≤ min{Ur(t), U}|Qr(t), Qe(t)

)
(2.3)

the probability (conditional on the observed queue lengths) that a customer arriving

at time t chooses the express queue. Similarly, we can define conditional probabilities

that the customer arriving at time t will choose the regular queue or the outside

option. We will use the notation pe, pr, po to refer to these probabilities, sometimes

without explicitly writing out their dependence on the various components of the

disutility calculations in order to make the notation less cumbersome.

The choice probabilities are assumed to add up to 1 and satisfy the following

conditions:

P1) All three probability functions (for example, the function pe(ue, ur, ū) in (2.3))

are differentiable and have uniformly bounded first derivatives with respect to each

argument.

P2) The derivative of each choice probability with respect to the disutility of that

particular choice is strictly negative (for example, ∂pe
∂ue

< 0), whereas the derivative

with respect to the disutility of a different choice is strictly positive. In words, if
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the disutility of joining a particular queue goes up, the probability of joining that

same queue should go down, and the probability of joining a different queue should

go up.

P3) For any δ, pi(ue + δ, ur + δ, ū + δ) = pi(ue, ur, ū) for all i ∈ {r, e, o}. In words,

the choice probabilities are unaffected if all the disutilities are changed by the same

amount.

As will be discussed in Section 2.4, these assumptions can be verified for both the

MNL and exponomial choice models.

We can now formally define the dynamics of the queue length processes. For

i ∈ {r, e}, let Πarr
i ,Πdep

i be independent Poisson processes with rate 1. Then,

Qi(t) = Qi(0)+Πarr
i

(∫ t

0

λpi(ue(Qe(s)+c), ur(Qr(s)), ū)ds

)
−Πdep

i

(∫ t

0

µi min{Qi(s), q̄}ds

)
,

(2.4)

with Qi(0) = 0 by convention. Thus, the arrival rate of each queue depends explic-

itly on the choice probabilities, while the departure rate depends only on the queue

lengths.

2.2.2 Equilibrium analysis using fluid limit

We analyze the long-run behaviour of (2.4) using a fluid limit approximation.

Essentially, we construct a deterministic dynamical system that strongly approxi-
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mates the scaled queue length processes

Qn
i (t) =

1

n
Πarr
i

(
n

∫ t

0

λpi(ue(Q
n
e (s)+c), ur(Q

n
r (s)), ū)ds

)
− 1

n
Πdep
i

(
n

∫ t

0

µi min{Qn
i (s), q̄}ds

)
,

(2.5)

in the limit as n → ∞. Essentially, we are scaling up the arrival and departure

rates by a factor of n, resulting in a large number of customers passing through

the system (as might happen during peak traffic), but we correspondingly scale the

resulting numbers of arrivals and departures back down to the magnitude of the

original process. This has the effect of averaging out the stochasticity in the choice

probabilities, leading to a purely deterministic limit, which is rigorously justified in

the following result.

Theorem 1. The sequence of stochastic processes Qn(t) = (Qn
e (t), Qn

r (t)) con-

verges a.s. and uniformly on compact sets of time to the dynamical system q(t) =

(qe(t), qr(t)) described by

q′e(t) = λpe(ue(qe(t)) + c, ur(qr(t)), u)− µe min{qe(t), q}, (2.6)

q′r(t) = λpr(ue(qe(t)) + c, ur(qr(t)), u)− µr min{qr(t), q}. (2.7)

Proof. For convenience, we assume Qi(0) = Qn
i (0) = qi(0) = 0. We follow [28] in

using the following result from [56]:

Lemma 1. A standard Poisson process {Π(t)}t>0 can be realized on the same proba-
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bility space as a standard Brownian motion {W (t)}t>0 in such a way that the almost

surely finite random variable

Z ≡ sup
t≥0

|Π(t)− t−W (t)|
log(2 ∨ t)

has finite moment generating function in the neighborhood of the origin and in par-

ticular finite mean.

Lemma 1 allows us to rewrite Qn
i in terms of two standard Brownian motions

Barr
i , Bdep

i via

1

n
Πarr
i

(
n

∫ t

0

λpi(Q
n
e (s), Qn

r (s))ds

)
=

∫ t

0

λpi(Q
n
e (s), Qn

r (s))ds

+
1

n
Barr
i

(
n

∫ t

0

λpi(Q
n
e (s), Qn

r (s))ds

)
+O

(
log n

n

)

=

∫ t

0

λpi(Q
n
e (s), Qn

r (s))ds

+
1√
n
Barr
i

(∫ t

0

λpi(Q
n
e (s), Qn

r (s))ds

)
+O

(
log n

n

)

(2.8)
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and

1

n
Πdep
i

(
n

∫ t

0

µi min{Qn
i (s), q}ds

)
=

∫ t

0

µi min{Qn
i (s), q}ds

+
1

n
Bdep
i

(
n

∫ t

0

µi min{Qn
i (s), q}ds

)
+O

(
log n

n

)

=

∫ t

0

µi min{Qn
i (s), q}ds

+
1√
n
Bdep
i

(∫ t

0

µi min{Qn
i (s), q}ds

)
+O

(
log n

n

)

(2.9)

Now, we calculate the difference between the scaled length process for queue i ∈

{e, r} and its fluid limit, given by

Qn
i (t)− qi(t) =

1

n
Πarr
i

(
n

∫ t

0

λpi(Q
n
e (s), Qn

r (s))ds

)
−
∫ t

0

λpi(qe(s), qr(s))ds

− 1

n
Πdep
i

(
n

∫ t

0

µi min{Qn
i (s), q}ds

)
+

∫ t

0

µi min{qi(s), q}ds

whence

| Qn
i (t)− qi(t) | ≤

∣∣∣∣∣ 1nΠarr
i

(
n

∫ t

0

λpi(Q
n
e (s), Qn

r (s))ds

)
−
∫ t

0

λpi(qe(s), qr(s))ds

∣∣∣∣∣
+

∣∣∣∣∣ 1nΠdep
i

(
n

∫ t

0

µi min{Qn
i (s), q}ds

)
−
∫ t

0

µi min{qi(s), q}ds

∣∣∣∣∣
(2.10)
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Substituting (2.8) into the first term of (2.10), we obtain

∣∣∣∣∣ 1nΠarr
i

(
n

∫ t

0

λpi(Q
n
e (s), Qn

r (s))ds

)
−
∫ t

0

λpi(qe(s), qr(s))ds

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t

0

λpi(Q
n
e (s), Qn

r (s))ds−
∫ t

0

λpi(qe(s), qr(s))ds

∣∣∣∣∣
+

∣∣∣∣∣ 1√
n
Barr
i

(∫ t

0

λpi(Q
n
e (s), Qn

r (s))ds

)∣∣∣∣∣+O

(
log n

n

)
,

with the Brownian term satisfying

lim
n→∞

sup
t′≤t

∣∣∣∣∣ 1√
n
Barr
i

(∫ t

0

λpi(Q
n
e (s), Qn

r (s))ds

)∣∣∣∣∣ ≤ lim
n→∞

∣∣∣∣∣ 1√
n
Barr
i (λt)

∣∣∣∣∣
= 0.

Substituting (2.9) into the second term of (2.10) yields

∣∣∣∣∣ 1nΠdep
i

(
n

∫ t

0

µi min{Qn
i (s), q}ds

)
−
∫ t

0

µi min{qi(s), q}ds

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t

0

µi min{Qn
i (s), q}ds−

∫ t

0

µi min{qi(s), q}ds

∣∣∣∣∣
+

∣∣∣∣∣ 1√
n
Bdep
i

(∫ t

0

µi min{Qn
i (s), q}ds

)∣∣∣∣∣+O

(
log n

n

)
,

with the Brownian term satisfying

lim
n→∞

sup
t′≤t

∣∣∣∣∣ 1√
n
Bdep
i

(∫ t

0

µi min{Qn
i (s), q}ds

)∣∣∣∣∣ ≤ lim
n→∞

∣∣∣∣∣ 1√
n
Bdep
i (µiq̄t)

∣∣∣∣∣
= 0.
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Thus, (2.10) has become

| Qn
i (t)− qi(t) | ≤

∣∣∣∣∣
∫ t

0

λpi(Q
n
e (s), Qn

r (s))ds−
∫ t

0

λpi(qe(s), qr(s))ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

0

µi min{Qn
i (s), q}ds−

∫ t

0

µi min{qi(s), q}ds

∣∣∣∣∣+ o(n).

The choice probability pi and the departure function both have uniformly bounded

derivatives by assumption P1, so there exist constants C and ε such that, for large

enough n, we have

| Qn
i (t)− qi(t) | ≤ C

∫ t

0

sup
0≤s′≤s

| Qn
i (s′)− qi(s′) | ds+ ε.

Applying Gronwall’s lemma [57], we obtain

sup
0≤s≤t

| Qn
i (s)− qi(s) |≤ ε · eCt.

Letting ε→∞ completes the proof.

Theorem 1 provides us with the system (2.6)-(2.7), which can be studied to

obtain insight into the long-run behaviour of the original queue. The validity of the

fluid limit is argued analogously to [28];

The equilibrium of the system (2.6)-(2.7) consists of two values qe, qr satisfying
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the equations

λpe(ue(qe) + c, ur(qr), u) = µe min{qe, q}, (2.11)

λpr(ue(qe) + c, ur(qr), u) = µr min{qr, q}, (2.12)

which are obtained by setting the time derivatives in (2.6)-(2.7) equal to zero. The

solution can also be related to the outside option through the equation

λ = λpo(ue(qe) + c, ur(qr), ū) + µe min{qe, q̄}+ µr min{qr, q̄}. (2.13)

Since we focus on the equilibrium from this point on, we abuse notation slightly

by using qe, qr to denote the fixed solution to (2.11)-(2.13), rather than the time-

dependent quantities in (2.6)-(2.7).

Remark 1 As will be shown further down in Theorem 2, the system (2.11)-(2.13) has

a unique solution. However, there are four possible interpretations of this solution

depending on which arguments attain the minima in (2.11)-(2.13). We call these

the four possible “regimes” of the equilibrium:

R1) Both queues are over capacity (qe, qr ≥ q̄);

R2) Both queues are under capacity (qe, qr < q̄);

R3) Only the express queue is over capacity (qe ≥ q̄ > qr);

R4) Only the regular queue is over capacity (qr ≥ q̄ > qe).

Different problem instances lead to different regimes: for example, if λ is very

small, the equilibrium will likely be in regime R2, whereas if the entry cost c is very

large, we may see regime R4. The distinctions between R1-R4 are quite important
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for pricing because, if we vary c while keeping the other problem inputs fixed, the

equilibrium may “jump” from one regime to another, affecting the revenues earned

from the express queue. Section 2.3 will explore this issue in much more detail.

The following results state some general properties of the equilibrium;

Theorem 2. The equilibrium of the system (2.11)-(2.13) exists and is unique.

Proof. Existence of the equilibrium. We first show the existence of the equilibrium

using Brouwer’s fixed point theorem, which states that, if f is a continuous function

mapping a compact convex set to itself, there exists a point x0 satisfying f(x0) = x0.

We rewrite the equilibrium conditions (2.11)-(2.12) as

λpe − µe min{qe, q̄}+ qe = qe, (2.14)

λpr − µr min{qr, q̄}+ qr = qr. (2.15)

We can then express the system (2.14)-(2.15) as f(q) = q, where q = (qe, qr).

Because we have assumed continuity of pe, pr (assumption P1), it straightforwardly

follows that f is continuous.

To show that f = (fe, fr) maps a compact convex set to itself, let us consider

the first component fe and suppose that qe < q̄. In this case, we have the bound

fe(qe) ≤ λ+ q̄.

When qe ≥ q̄, we have fe(qe) = λpe

(
u
(
qe
µeq

)
, ur, u

)
− µeq + qe. Note that, if

q̄ ≥ λ
µe

, then fe(qe) < qe and the codomain of fe is automatically contained in the
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domain.

If q̄ < λ
µe

, let q̃e be a value satisfying

λpe

(
u
( q̃e
µeq̄

)
, u(∞), u

)
= µeq.

Then, for qe ≥ q̃e, we have

λpe

(
u
( qe
µeq

)
, ur, u

)
≤ λpe

(
u
( q̃e
µeq

)
, ur, u

)
≤ λpe

(
u
( q̃e
µeq

)
, u(∞), u

)
= µeq,

implying f(qe) ≤ qe. Finally, for q̄ < qe < q̃e, we have

λpe

(
u
( qe
µeq

)
, ur, u

)
− µeq + qe ≤ λpe

(
u
( 1

µe

)
, ur(∞), u

)
− µeq + q̃e. (2.16)

Denote by q̂e the right-hand side of (2.16). Then, for any 0 ≤ qe ≤ max{q, q̃e,q̂e, λµe},

we have f(qe) in the same interval, regardless of qe. Thus, the conditions for

Brouwer’s fixed point theorem hold and the equilibrium exists.

Uniqueness of the equilibrium. Let λ, µe, µr, and the disutility function u be

given. Suppose that there are two non-identical equilibrium solutions
(
q

(1)
e , q

(1)
r

)
and

(
q

(2)
e , q

(2)
r

)
. Let us focus on the case where q

(1)
e < q

(2)
e (the other case where we

start with q
(1)
r < q

(2)
r is handled symmetrically).
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We first show that, if q
(1)
e < q

(2)
e , then q

(1)
r < q

(2)
r as well. To see this, let us

assume the contrary, i.e., that q
(1)
r ≥ q

(2)
r . We derive

0 = λpe

(
ue

(
q(1)
e

)
+ c, ur

(
q(1)
r

)
, ū
)
− µe min{q(1)

e , q̄}

≥ λpe

(
ue

(
q(2)
e

)
+ c, ur

(
q(1)
r

)
, ū
)
− µe min{q(1)

e , q̄} (2.17)

≥ λpe

(
ue

(
q(2)
e

)
+ c, ur

(
q(2)
r

)
, ū
)
− µe min{q(1)

e , q̄} (2.18)

≥ λpe

(
ue

(
q(2)
e

)
+ c, ur

(
q(2)
r

)
, ū
)
− µe min{q(2)

e , q̄} (2.19)

= 0,

where (2.17) is obtained from q
(1)
e < q

(2)
e and the fact that u′ > 0 (assumption U3)

while pe is deceasing in ue; equation (2.18) follows from the assumption that q
(1)
r ≥

q
(2)
r and the fact that u′ > 0 while pe is increasing in ur; and (2.19) follows from q

(1)
e <

q
(2)
e . However, since the first and last line both equal zero due to the equilibrium

conditions, (2.17)-(2.19) must all hold with strict equality. Consequently, (2.18)-

(2.19) imply that

min{q(1)
e , q̄} = min{q(2)

e , q̄}, (2.20)

whence we conclude q̄ ≤ q
(1)
e < q

(2)
e . From that, however, (2.17) yields

pe

(
u

(
q

(1)
e

µeq̄

)
+ c, ur

(
q(1)
r

)
, ū

)
= pe

(
u

(
q

(2)
e

µeq̄

)
+ c, ur

(
q(1)
r

)
, ū

)
,

and this is impossible since u′ > 0 with strict inequality. Therefore, q
(1)
e < q

(2)
e

implies q
(1)
r < q

(2)
r .
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Next, we claim that q
(2)
r > q̄. To see this, let us assume the opposite, i.e.

q
(2)
r ≤ q̄, whence ur

(
q

(1)
r

)
= ur

(
q

(2)
r

)
= u

(
1
µr

)
. We then have

µe min{q(2)
e , q̄} = λpe

(
ue

(
q(2)
e

)
+ c, u

(
1

µr

)
, ū

)

≤ λpe

(
ue

(
q(1)
e

)
+ c, u

(
1

µr

)
, ū

)
(2.21)

= µe min{q(1)
e , q̄},

and q
(1)
e < q

(2)
e implies that (2.21) holds with strict equality. This again implies

(2.20) and the same reasoning as before can be repeated to obtain a contradiction.

Therefore, q
(2)
r > q̄. A symmetric argument can be used to show q

(2)
e > q̄.

Combining the previous facts, (2.13) yields

po

(
ue

(
q(1)
e

)
, ur

(
q(1)
r

)
, ū
)

= po

(
u

(
q

(2)
e

µeq̄

)
, u

(
q

(2)
r

µrq̄

)
, ū

)
.

However, from q
(1)
e < q

(2)
e and q

(1)
r < q

(2)
r we obtain

po

(
ue

(
q(1)
e

)
, ur

(
q(1)
r

)
, ū
)
< po

(
u

(
q

(2)
e

µeq̄

)
, u

(
q

(2)
r

µrq̄

)
, ū

)
,

regardless of whether q
(1)
e and q

(1)
r are under or over capacity, because po satisfies

assumption P2. We conclude that it is impossible to have q
(1)
e < q

(2)
e and still satisfy

the equilibrium conditions for both solutions.

Theorem 3. The equilibrium of the system (2.11)-(2.13) is locally stable.

Proof. We examine each of regimes R1-R4 separately. In each regime, we write
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(2.6)-(2.7) as

(q′e, q
′
r) = (fe(qe, qr), fr(qe, qr)),

obtain all of the first-order partial derivatives ∂fi
∂qi

for i ∈ {e, r}, put them into matrix

form (the Jacobian) and evaluate this matrix at the equilibrium (q?e , q
?
r), which we

know exists and is unique from the preceding. The equilibrium is locally stable if

both eigenvalues of the Jacobian are negative [58].

Regime R1. We have q?e , q
?
r ≥ q̄ and the Jacobian is given by

JR1 = λ

 ∂pe
∂ue

∂ue
∂qe

∂pe
∂ur

∂ur
∂qr

∂pr
∂ue

∂ue
∂qe

∂pr
∂ur

∂ur
∂qr

 .

Letting e1, e2 be the eigenvalues, the characteristic equation is given by

(
λ
∂pe
∂ue

∂ue
∂qe
− e1

)
·
(
λ
∂pr
∂ur

∂ur
∂qr
− e2

)
− λ2 ∂pe

∂ur

∂ur
∂qr
· ∂pr
∂ue

∂ue
∂qe

= 0,

which can be rewritten as

λ2∂ue
∂qe

∂ur
∂qr

(
∂pe
∂ue

∂pr
∂ur
− ∂pe
∂ur

∂pr
∂ue

)
+ e1e2 = λe1

∂pr
∂ur

∂ur
∂qr

+ λe2
∂pe
∂ue

∂ue
∂qe

. (2.22)

We argue that

det(JR1) = λ2∂ue
∂qe

∂ur
∂qr

(∂pe
∂ue

∂pr
∂ur
− ∂pe
∂ur

∂pr
∂ue

)
is positive, which would imply that the product e1e2 in (2.22) is also positive. We
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first observe that the product ∂ue
∂qe

∂ur
∂qr

is positive since, for example,

∂ue
∂qe

= u′

(
q?e
µeq̄

)
1

µeq̄
> 0

by assumption U3. The same is true of ∂ur
∂qr

.

Assumption P3 implies

∂pe
∂ue

+
∂pe
∂ur

+
∂pe
∂ū

= 0

since changing all the disutilities by the same amount does not change the probability

of any choice. Since ∂pe
∂ū

> 0 by assumption P2, it follows that ∂pe
∂ue

+ ∂pe
∂ur

< 0, whence

∂pe
∂ue

< −∂pe
∂ur

(2.23)

and, symmetrically,

∂pr
∂ur

< −∂pr
∂ue

. (2.24)

From this we obtain

∂pe
∂ue

∂pr
∂ur

> −∂pe
∂ur

∂pr
∂ur

>
∂pe
∂ur

∂pr
∂ue

,

where the first inequality is obtained from (2.23) and the fact that ∂pe
∂ue

< 0, while

the second inequality is obtained from (2.24) and the fact that ∂pe
∂ur

> 0. Thus, we

conclude that det(JR1) > 0 and so both e1, e2 have the same sign.

From the preceding, it follows that the left-hand side of (2.22) is positive. On
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the right-hand side of (2.22), suppose that e1, e2 are both positive; then we have

λe1
∂pr
∂ur

∂ur
∂qr

< 0, λee
∂pe
∂ue

∂ue
∂qe

< 0

since ∂pr
∂ur
, ∂pe
∂ue

< 0 while ∂ur
∂qr
, ∂ue
∂qe

> 0. Therefore, both e1, e2 must be negative, as

required.

Regime R2. We have q?e , q
?
r < q̄ and the Jacobian is given by

JR2 = λ

−µe 0

0 −µr

 ,

from which the conclusion directly follows.

Regime R3. We have q?r < q̄ ≤ q?e and the Jacobian is given by

JR3 = λ

λ ∂pe∂ue
∂ue
∂qe

0

λ ∂pr
∂ue

∂ue
∂qe

−µr

 ,

which is a lower triangular matrix, meaning that its eigenvalues are on the diagonal.

It is easy to see that both are negative.

Regime R4. The proof is very similar to the previous case and is omitted.

The next result illustrates the distinctions between regimes. Suppose that

customer disutility becomes “steeper,” i.e., customers are more dissatisfied with the

same waiting time. If the cost remains unchanged, one might expect that the load
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on the express queue should increase, as express service is perceived as more bene-

ficial. However, this is not guaranteed to happen in every regime.

Theorem 4. Let u and v be disutility functions satisfying assumptions U1-U3, and

suppose that v′ > u′, that is, v grows more steeply than u; suppose also that the

disutility of the outside option similarly changes to v̄ > ū satisfying v−1(v̄) = u−1(ū).

Let (que , q
u
r ) and (qve , q

v
r ) be the equilibria under u and v. Then, if (que , q

u
r ) belongs to

regime R2 or R4, we have qve > que .

Proof. The assumptions on v imply that, for any s1 < s2, we have

v(s2)− v(s1) > u(s2)− u(s1). (2.25)

This fact will be used to show the desired result in each of the relevant regimes.

Regime R2. Since both queues are under capacity, we have ue(q
u
e ) = u

(
1
µe

)
and ur(q

u
r ) = u

(
1
µr

)
. From (2.25), we obtain

v
( 1

µe

)
− u
( 1

µe

)
< v
( 1

µr

)
− u
( 1

µr

)
< v̄ − ū. (2.26)

We will now show that que < qve by contradiction. Suppose that que ≥ qve . It follows

that the express queue continues to be under capacity when we switch to v. We
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then derive

λpe(ve(q
v
e ) + c, vr(q

u
r ), v̄) = λpe(ve(q

u
e ) + c, vr(q

u
r ), v̄) (2.27)

= λpe

(
v

(
1

µe

)
+ c, v

(
1

µr

)
, v̄

)
(2.28)

where (2.27)-(2.28) follow because both que , q
v
e < q̄. Next, we let δ = v

(
1
µr

)
−u
(

1
µr

)
,

noting that δ > 0, and observe that

λpe

(
v

(
1

µe

)
+ c, v

(
1

µr

)
, v̄

)
= λpe

(
v

(
1

µe

)
+ c− δ, v

(
1

µr

)
− δ, v̄ − δ

)
(2.29)

= λpe

(
v

(
1

µe

)
+ c− δ, u

(
1

µr

)
, v̄ − δ

)

> λpe

(
u

(
1

µe

)
+ c, u

(
1

µr

)
, ū

)
(2.30)

= µeq
u
e (2.31)

≥ µeq
v
e . (2.32)

Above, (2.29) is due to assumption P3, (2.30) follows from assumption P2 combined

with (2.26), and (2.31) follows by (2.11).

To obtain the desired contradiction, we consider two cases, one where qvr < q̄

and one where qvr ≥ q̄. Suppose that qvr < q̄. Then, both queues are under capacity

with v as the disutility function, so (2.11) implies

λpe

(
v

(
1

µe

)
+ c, v

(
1

µr

)
, v̄

)
= µeq

v
e .
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On the other hand, if qvr ≥ q̄, we have qvr > qur and

λpe(ve(q
v
e ) + c, vr(q

u
r ), v̄) < λpe(ve(q

v
e ) + c, vr(q

v
r ), v̄)

= µeq
v
e ,

by assumption P2. Either case, when combined with (2.32), yields qve < qve , which

is impossible; therefore, we must have que < qve .

Regime R4. In this regime, only the express queue is under capacity. There

are two possible permutations

u
( 1

µe

)
< ū ≤ u

( qur
µrq̄

)
, u

( 1

µe

)
< u

( qur
µrq̄

)
< ū.

Applying (2.25) to both of these yields

v
( 1

µe

)
− u
( 1

µe

)
< v̄ − ū ≤ v

( qur
µrq̄

)
− u
( qur
µrq̄

)
, (2.33)

v
( 1

µe

)
− u
( 1

µe

)
< v
( qur
µrq̄

)
− u
( qur
µrq̄

)
< v̄ − ū. (2.34)

First, let us suppose that permutation (2.33) is correct. Again, we proceed by

contradiction and assume that que ≥ qve . Since the express queue is under capacity
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with either disutility function, we have

λpe(ve(q
v
e ) + c, vr(q

u
r ), v̄) = λpe(ve(q

u
e ) + c, vr(q

u
r ), v̄)

= λpe

(
v

(
1

µe

)
+ c, v

(
qur
µrq̄

)
, v̄

)
.

Letting δ = v̄ − ū, we further derive

λpe

(
v

(
1

µe

)
+ c, v

(
qur
µrq̄

)
, v̄

)
= λpe

(
v

(
1

µe

)
+ c− δ, v

(
qur
µrq̄

)
− δ, v̄ − δ

)

(2.35)

= λpe

(
v

(
1

µe

)
+ c− δ, v

(
qur
µrq̄

)
− δ, ū

)

> λpe

(
u

(
1

µe

)
+ c, u

(
qur
µrq̄

)
, ū

)
(2.36)

= µeq
u
e

≥ µeq
v
e , (2.37)

where, as before, (2.35) is due to assumption P3, while (2.36) follows from (2.33)

combined with assumption P2. From (2.37) and assumption P2, we conclude that

qur > qvr , otherwise there will be no way to satisfy (2.11).
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Now, (2.13) yields

0 = λpo

(
u

(
1

µe

)
+ c, u

(
qur
µrq̄

)
, ū

)
− λ+ µeq

u
e + µr min{qur , q̄}

≥ λpo

(
u

(
1

µe

)
+ c, u

(
qur
µrq̄

)
, ū

)
− λ+ µeq

v
e + µr min{qvr , q̄}

= λpo

(
u

(
1

µe

)
+ c, u

(
qur
µrq̄

)
, ū

)
− λpo

(
v

(
1

µe

)
+ c, vr(q

v
r ), v̄

)
, (2.38)

whence

po

(
u

(
1

µe

)
+ c, u

(
qur
µrq̄

)
, ū

)
≤ po

(
v

(
1

µe

)
+ c, vr(q

v
r ), v̄

)
. (2.39)

At the same time, letting δ = v
(
qur
µr q̄

)
− u
(
qur
µr q̄

)
, we obtain

po

(
u

(
1

µe

)
+ c, u

(
qur
µrq̄

)
, ū

)
= po

(
u

(
1

µe

)
+ c+ δ, u

(
qur
µrq̄

)
+ δ, ū+ δ

)

= po

(
u

(
1

µe

)
+ c+ δ, v

(
qur
µrq̄

)
, ū+ δ

)

> po

(
v

(
1

µe

)
+ c, v

(
qur
µrq̄

)
, v̄

)
(2.40)

> po

(
v

(
1

µe

)
+ c, vr(q

v
r ), v̄

)
, (2.41)

where the first equality is due to assumption P3, while (2.40) follows from (2.33)

and assumption P2, while (2.41) follows from assumption P2 and qur > qvr . Clearly

(2.39) and (2.41) contradict each other, whence we conclude that que < qve .

Finally, we suppose that permutation (2.34) is correct. In this case, however,

the proof is nearly identical. The only difference is that, in order to obtain (2.37),
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we use δ = v
(
qur
µr q̄

)
−u
(
qur
µr q̄

)
, while (2.40) is obtained by using δ = v̄− ū. The same

contradiction then follows.

For regimes R1 and R3, it is possible to design numerical examples where the

result of Theorem 4 does not hold. In other words, if the express queue is over

capacity to begin with, increased customer impatience may lead to increased loads

on the outside option or the regular queue. Here we see an example of how service

capacity affects the behaviour of the system.

2.3 Pricing observable express service

We now suppose that c ∈ R+ is a decision variable, with all of the other

problem inputs (such as λ, µe, µr, the disutility function u etc.) remaining fixed.

Let (qe(c), qr(c)) denote the solution to (2.11)-(2.12) for fixed, but arbitrary c. The

dependence of the equilibrium solution on c will determine the shape of any relevant

revenue function that we might define; for this reason, we start by examining this

dependence in Section 2.3.1. Then, in Section 2.3.2, we propose and study two ob-

jective functions related to the revenue of the service provider and the social welfare

of the customers.
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2.3.1 Dependence of the equilibrium on the entry cost

First, we present a key result on the monotonicity of the equilibrium solution

with respect to c. Because this result is important for what follows, the proof is

placed in the text.

Theorem 5. Consider a fixed cost c0 and let (qe(c0), qr(c0)) be the corresponding

equilibrium solution. Then:

1. If qe(c0) ≥ q̄, then ∂qe
∂c

∣∣∣
c=c0

< 0 and ∂qr
∂c

∣∣∣
c=c0

= 0.

2. If qe(c0) < q̄, then ∂qe
∂c

∣∣∣
c=c0

< 0 and ∂qr
∂c

∣∣∣
c=c0

> 0.

Proof. We consider each of the four possible regimes separately. In each regime, we

differentiate both sides of (2.11)-(2.12) with respect to c and manipulate the resulting

expressions. A slight abuse of notation should be clarified: when we write, e.g., ∂pe
∂ue

, we are referring to the generic first argument ue of the function pe(ue, ur, ū), not

to the actual disutility ue(qe(c)) of the equilibrium.

Regime R1. Differentiating both sides of (2.11)-(2.12), we obtain

λ
∂pe
∂ue

(
∂ue
∂c

+ 1

)
+ λ

∂pe
∂ur

(
∂ur
∂c

)
= 0,

λ
∂pr
∂ue

(
∂ue
∂c

+ 1

)
+ λ

∂pr
∂ur

(
∂ur
∂c

)
= 0,
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which can be expanded as

∂pe
∂ue

(
u′

(
qe
µeq

)
· 1

µeq

∂qe
∂c

+ 1

)
+
∂pe
∂ur

(
u′

(
qr
µrq

)
· 1

µrq

∂qr
∂c

)
= 0, (2.42)

∂pr
∂ue

(
u′

(
qe
µeq

)
· 1

µeq

∂qe
∂c

+ 1

)
+
∂pr
∂ur

(
u′

(
qr
µrq

)
· 1

µrq

∂qr
∂c

)
= 0. (2.43)

Equations (2.42)-(2.43) can be written in matrix form as

 ∂pe
∂ue

∂pe
∂ur

∂pr
∂ue

∂pr
∂ur

 ·
u′( qe

µeq
) · 1

µeq
∂qe
∂c

u′( qr
µrq

) · 1
µrq

∂qr
∂c

 = −

 ∂pe
∂ue

∂pr
∂ue

 .

The matrix A =

 ∂pe
∂ue

∂pe
∂ur

∂pr
∂ue

∂pr
∂ur

 is invertible, as in the proof of Theorem 2 it is shown

that det(A) > 0. Consequently,

u′( qe
µeq

) · 1
µeq

∂qe
∂c

u′( qr
µrq

) · 1
µrq

∂qr
∂c

 = −A−1 ·

 ∂pe
∂ue

∂pr
∂ue

 .

We then calculate

A−1 ·

 ∂pe
∂ue

∂pr
∂ue

 =
1

∂pe
∂ue

∂pr
∂ur
− ∂pe

∂ur

∂pr
∂ue

 ∂pr
∂ur

− ∂pe
∂ur

− ∂pr
∂ue

∂pe
∂ue

 ·
 ∂pe

∂ue

∂pr
∂ue

 =

 1

0

 ,
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whence

 ∂qe
∂c

∂qr
∂c

 = −

u′( qe
µeq

) · 1
µeq

0

0 u′( qr
µrq

) · 1
µrq


−1

·

 1

0

 = −


(
u′( qe

ueq̄
) · 1

µeq̄

)−1

0

 ,

which proves the claim.

Regime R2. Differentiating both sides of (2.11)-(2.12), we obtain

∂qe
∂c

=
λ

µe
· ∂pe
∂ue

,

∂qr
∂c

=
λ

µr
· ∂pr
∂ue

,

and the claim follows straightforwardly from assumption P2.

Regime R3. Differentiating both sides of (2.11)-(2.12), we obtain

λ
∂pe
∂ue
·

(
∂ue
∂c

+ 1

)
= 0, (2.44)

λ
∂pr
∂ue
·

(
∂ue
∂c

+ 1

)
= µr

∂qr
∂c

, (2.45)

and (2.44) becomes

∂pe
∂ue
·

(
u′

(
qe
µeq

)
· 1

µeq

∂qe
∂c

+ 1

)
= 0 (2.46)

38



analogously to (2.42). From (2.46), it follows that

∂qe
∂c

= −

(
u′

(
qe
µeq

)
· 1

µeq

)−1

,

which is strictly negative, as claimed. From (2.45), we obtain

∂qr
∂c

=
λ

µr

∂pr
∂ue
·

(
∂ue
∂c

+ 1

)
= 0,

where the last equality is due to the fact that ∂ue
∂c

+1 = 0, which follows from (2.44).

Regime R4. Differentiating both sides of (2.11)-(2.12), we obtain

λ
∂pe
∂ue

+ λ
∂pe
∂ur
· ∂ur
∂c

= µe
∂qe
∂c

, (2.47)

λ
∂pr
∂ue

+ λ
∂pr
∂ur
· ∂ur
∂c

= 0. (2.48)

From (2.48), we find

∂ur
∂c

= −
∂pr
∂ue
∂pr
∂ur

, (2.49)

which is strictly positive due to assumption P2. Because of this, we also have

∂qr
∂c

=

(
u′

(
qr
µrq

)
· 1

µrq

)−1

· ∂ur
∂c

> 0.
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From (2.47), we find

∂qe
∂c

=
λ

µe
· ∂pe
∂ue

+
λ

µe
· ∂pe
∂ur
· ∂ur
∂c

=
λ

µe
·
∂pr
∂ur

∂pe
∂ue
− ∂pe

∂ur

∂pr
∂ue

∂pr
∂ur

, (2.50)

where (2.50) is obtained via (2.49). In the proof of Theorem 2, it was shown that

∂pr
∂ur

∂pe
∂ue
− ∂pe

∂ur

∂pr
∂ue

> 0, which completes the proof of the claim.

Earlier, we observed that, for any fixed value of c, the equilibrium (qe(c), qr(c))

can belong to one of four possible regimes, based on whether the regular and express

queues are under or over capacity. If we then vary c, it is possible for the equilib-

rium to transition from one regime to another. Theorem 5 provides us with a way to

categorize all possible transitions, which are summarized in Figure 2.1. The nodes

represent possible regimes of the equilibrium, labeled R1- R4 as defined in Remark

1. In any given instance of this problem (that is, for a given disutility function u,

given parameters λ, µe, µr, etc.), as c increases from zero to infinity, the equilibrium

must make transitions between regimes according to one, and only one, of the six

cases labeled C1-C6 in Figure 2.1, with the first node in each case representing the

regime at c = 0.

To understand how this categorization is made, let us first consider an ex-

treme situation where c → ∞ (we call this the “terminal condition”). In this

situation, the express queue is never preferable to any other option regardless of
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Figure 2.1: Flowchart describing possible transitions of the equilibrium as c in-
creases.
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how many customers are in the system. Therefore, the express queue cannot be

over capacity in equilibrium; one can think of qr in this case as measuring the con-

gestion that would occur in the regular queue if the express queue did not exist at

all. Under the terminal condition, only two regimes are possible, namely R2 and

R4: either both queues are under capacity (e.g., if λ is small), or the regular queue

is over capacity. The following result gives a precise way to determine the termi-

nal regime using only the problem inputs and the distribution of the random shocks.

Proposition 1. The terminal regime is R2 if and only if

P

(
u

(
1

µr

)
+ τr < ū+ τo

)
<
µr
λ
q̄.

Proof. From (2.12), we have

µr
λ

min{qr(∞), q̄} = lim
c→∞

pr(ue(qe(c)) + c, ur(qr(c)), ū)

= P (ur(qr(∞)) + τr < ū+ τo) (2.51)

≤ P
(
u
( 1

µr

)
+ τr < ū+ τo

)
,

where (2.51) follows because the disutility of the express queue becomes infinitely

large as c→∞. Now, if R4 is the terminal regime, we obtain µr
λ
q̄ ≤ P

(
u
(

1
µr

)
+τr <

ū+τo

)
, as required. On the other hand, if R2 is the terminal regime, (2.51) becomes

µr
λ
q̄ > P

(
u
( 1

µr

)
+ τr < ū+ τo

)
,
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completing the proof.

Now, if we can identify the regime of the equilibrium for c = 0 (the “initial

condition”), Theorem 5 will then fill in the transitions in between. For example, if

the initial regime is R1 (both queues over capacity, case C2 of Figure 2.1), we know

that, as c increases, there will be only one transition to regime R4 (express queue

under capacity), because qe(c) is decreasing in c while qr(c) is non-decreasing. If

the initial regime is R2 (both queues under capacity, cases C3 and C5), at most one

transition can occur to regime R4 (regular queue over capacity), as more of the load

is shifted from the express queue to the regular queue. In fact, there is only one

case (C1) where more than one transition is possible, arising only when R3 is the

initial regime.

We may think of case C5 as representing situations where there is no real

congestion in the system to begin with (the regular queue is under capacity even

under the terminal condition). Cases C1, C3 and C4 represent situations where

the congestion in the regular queue can be relieved by the presence of an express

queue, if the entry fee is suitably chosen. Case C2 represents a situation where the

congestion is so heavy that the express queue will never be able to relieve it entirely

(though the service provider will still generate revenue from it). Finally, case C6

represents a surprising situation where, even if it is free to join the express queue,

we will continue to see congestion in the regular queue even though some unused

capacity remains in the express queue. As will be illustrated later, this can occur in
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instances where λ is moderately large (if λ is too large, we will be in case C2 instead)

and µe is significantly larger than µr. The high service rate in the express queue

reduces the queue length; although a large proportion of customers may be choosing

this queue, they are processed so quickly that the queue does not become congested.

However, the presence of random shocks will still direct some small proportion of

customers to the regular queue, which can lead to congestion when combined with

a much slower service rate.

2.3.2 Optimization of expected revenue and social welfare

We now propose two objective functions. Recalling from (2.11) that pe =

µe
λ

min{qe(c), q̄}, the function

R(c) = pe · c =
µec

λ
min{qe(c), q̄} (2.52)

represents the expected revenue per arrival to the system, a natural objective to

maximize for the service provider. The function

D(c) = pe · (ue(qe(c)) + c) + pr · ur(qr(c)) + po · u

= u+R(c) +
µe
λ

min{qe(c), q}(ue(qe(c))− u) +
µr
λ

min{qr(c), q}(ur(qr(c))− u)

represents the expected total disutility incurred by each customer, consisting of the

expected cost paid as well as the expected disutility of waiting. Since D is a measure
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of negative value, the function c 7→ R(c)−D(c) can be viewed as a measure of the

overall social welfare. Optimizing the social welfare is equivalent to finding the value

of c that minimizes

W (c) = u+
µe
λ

min{qe(c), q}(ue(qe(c))− u) +
µr
λ

min{qr(c), q}(ur(qr(c))− u),

the expected disutility of waiting.

The analysis of the six cases in Section 2.3.1 helps us understand the shape of

these functions. For example, it is obvious that, in regimes R1 and R3 where the

express queue is over capacity, the revenue (2.52) grows linearly in the cost. On the

other hand, in these same two regimes, the total disutility D is unaffected by cost,

as shown below.

Proposition 2. Consider a fixed cost c0 and let qe(c0), qr(c0) be the corresponding

equilibrium solution. If qe(c0) ≥ q̄, then ∂D
∂c

∣∣
c=c0

= 0.

Proof. The relevant regimes to consider are R1 and R3. We first consider regime

R1. Define

DR1(c) = ū+
µeq̄

λ

(
u

(
qe(c)

µeq̄

)
+ c− ū

)
+
µrq̄

λ

(
u

(
qr(c)

µr

)
− ū

)
. (2.53)

Taking the derivative with respect to c, we find

∂DR1

∂c
=
µeq̄

λ

(
u′

(
qe
µeq̄

)
1

µeq̄

∂qe
∂c

+ 1

)
,
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noting that, due to Theorem 5, the last term on the right-hand side of (2.53) vanishes

when differentiated with respect to c. When we are in regime R1, differentiating

both sides of (2.11) with respect to c yields

∂pe
∂ue

(
u′

(
qe
µeq̄

)
1

µeq̄

∂qe
∂c

+ 1

)
= 0,

and since ∂pe
∂ue

< 0 by assumption, it follows that ∂DR1

∂c
= 0.

In regime R3, we consider the function

DR3(c) = ū+
µeq̄

λ

(
u

(
qe(c)

µeq̄

)
+ c− ū

)
+
µr
λ

(
u

(
1

µr

)
− ū

)
qr(c).

Taking the derivative with respect to c, we find that ∂DR3

∂c
= ∂DR1

∂c
due to Theorem

5, and since (2.11) has the same form in both R1 and R3, the result follows from

the previous analysis.

Thus, regimes R2 and R4 are crucial to the understanding of both the revenue

and the social welfare. In fact, we can obtain a complete characterization of the

social welfare optimization problem under general choice probabilities.

Theorem 6. The social welfare R-D is maximized (and W is minimized) as follows:

1. In cases C1 and C4, W is minimized by setting c equal to the threshold between

regimes R3 and R2.

2. In case C2, W is minimized by setting c equal to the threshold between regimes
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R1 and R4.

3. In cases C3, C5 and C6, W is minimized by setting c = 0.

Proof. We examine the six cases in reverse order, because results obtained for the

simpler cases can be reused for the more complicated ones.

Case C6. In this case, the equilibrium is always in regime R4 and the social welfare

function is identical to

WR4(c) = u+
µe
λ

(
u

(
1

µe

)
− u

)
qe(c) +

µr
λ
q

(
u

(
qr(c)

µrq

)
− u

)
.

Therefore,

∂WR4

∂c
=
µe
λ

(
u

(
1

µe

)
− u

)
∂qe
∂c

+
1

λ
u′

(
qr
µrq

)
∂qr
∂c

. (2.54)

Both terms on the right-hand side of (2.54) are positive. The first term is a product

of two negative quantities since ū ≥ u
(

1
µe

)
and ∂qe

∂c
≤ 0 by Theorem 5. The second

term is positive since ∂qr
∂c
≥ 0 by Theorem 5, and the disutility function u is assumed

to be increasing. Thus, ∂W
R4

∂c
≥ 0 at any c for which the equilibrium solution belongs

to regime R2. Consequently, in case C5, W4 is minimized by setting c = 0.

Case C5. In this case, the equilibrium is always in regime R2. From (2.13), we know

that

∂po
∂c

+
µe
λ

∂qe
∂c

+
µr
λ

∂qr
∂c

= 0. (2.55)

From the construction of the choice probabilities, we know that ∂po
∂c
≥ 0, because,
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for any c1 ≤ c2, the event that

ū+ τo ≤ min

{
u

(
1

µe

)
+ c1 + τe, u

(
1

µr

)
+ τr

}

implies

ū+ τo ≤ min

{
u

(
1

µe

)
+ c2 + τe, u

(
1

µr

)
+ τr

}
.

Then (2.55) implies

∂qr
∂c
≤ −µe

µr

∂qe
∂c

. (2.56)

In regime R2, the social welfare function is identical to

WR2(c) = u+
µe
λ

(
u

(
1

µe

)
− u

)
qe(c) +

µr
λ

(
u

(
1

µr

)
− u

)
qr(c).

Therefore,

∂WR2

∂c
=
µe
λ

(
u

(
1

µe

)
− u

)
∂qe
∂c

+
µr
λ

(
u

(
1

µr

)
− ū

)
∂qr
∂c

≥ µe
λ

(
u

(
1

µe

)
− u

)
∂qe
∂c
− µe

λ

(
u

(
1

µr

)
− ū

)
∂qe
∂c

(2.57)

=
µe
λ

(
u

(
1

µe

)
− u

(
1

µr

))
∂qe
∂c

(2.58)

≥ 0,

where (2.57) is obtained by combining (2.56) with the fact that ū ≥ u( 1
µr

) and

the last line follows because (2.58) is the product of two negative quantities, since

∂qe
∂c
≤ 0 by Theorem 5 and µe > µr with u increasing. Thus, ∂WR2

∂c
≥ 0 at any c for
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which the equilibrium solution belongs to regime R2. Consequently, in case C5, W

is minimized by setting c = 0.

Case C4. Let c0 be the threshold value such that (qe(c), qr(c)) belongs to regime

R3 for c ∈ [0, c0], and to regime R2 for c > c0. From the preceding analysis,

W (c0) ≤ W (c) for all c > c0. However, from Proposition 2 we know that D is

constant on the interval [0, c0], while R increases linearly on the same interval.

Consequently,

arg min
0≤c≤c0

W (c) = arg max
0≤c≤c0

R(c)−D(c) = c0.

Case C3. Let c0 be the threshold value such that (qe(c), qr(c)) belongs to regime R2

for c ∈ [0, c0], and to regime R4 for c > c0. Then, W (c) = WR2(c) for c ∈ [0, c0]

and W (c) = WR4(c) for c > c0. It follows that ∂W
∂c
≥ 0 at all c ≥ 0, and thus is

minimized by setting c = 0.

Cases C1-C2. The analysis follows straightforwardly from the above.

Theorem 6 shows that social welfare is maximized when the express queue is

running exactly at full capacity (or as close to it as possible), but without going

over. Customers do not always benefit from being allowed to access the express

queue for free, because this would lead to congestion and reduced service quality.

Rather, the price should be low enough to alleviate the congestion in the regular

queue where possible, but high enough to avoid congestion in the express queue.

The shape of the revenue function R is more difficult to characterize. It is pos-

sible to show, in a fairly general setting, that R has a unique maximum in regime R2.
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Proposition 3. Suppose that each random shock τe, τr, τo has a log-concave density

on R+. Then, the mapping

c 7→ c · pe

(
u

(
1

µe

)
+ c, u

(
1

µr

)
, ū

)
(2.59)

is log-concave in c.

Proof. Let τ = (τe, τr, τo) and u = (ue, ur, ū). From p. 107 of [59], we know that the

mapping u 7→ P (τ + u ∈ C) is log-concave for any given convex set C. The set

C = {(ce, cr, co) : ce ≤ cr, ce ≤ co}

is convex, being described by linear inequalities. Consequently, the mapping

c 7→ pe

(
u

(
1

µe

)
+ c, u

(
1

µr

)
, ū

)

is log-concave, being a composition of a log-concave function and a linear function.

The log-concavity of (2.59) easily follows.

Unfortunately, there is no guarantee that R2 will always be associated with

higher revenue. In other words, it is possible to design some instances where the

revenue is maximized in regime R2, and others where it is maximized in R4. In the

latter case, a revenue-maximizing service provider will prefer to artificially drive up
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congestion in the regular queue, while deliberately leaving unused capacity in the

express queue, simply because it is more profitable to serve a small proportion of

customers with high willingness to pay.

2.4 Specific choice models

The multinomial logit and exponomial choice models represent two standard

and well-known sets of assumptions for the distributions of the random shocks. Both

models can be used together with general disutility functions, which makes them

the two most natural contexts in which to study our problem. In this section, we

discuss both models, both to illustrate the generality of our framework, and to show

that the presence of multiple peaks in the revenue function is not confined to one

particular choice model.

Section 2.4.1 presents additional analysis and numerical illustrations for the

setting where customer choice follows the MNL model. Section 2.4.2 considers the

exponomial choice model.

2.4.1 Multinomial logit (MNL) choice model

Under the MNL model, we assume that all random shocks in the problem

are i.i.d. Gumbel distributed. Using standard parameter choices, we obtain the
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following explicit forms for the choice probabilities:

pe(qe, qr, ū) =
e−ue(qe)−c

e−ue(qe)−c + e−ur(qr) + e−u
,

pr(qe, qr, ū) =
e−u(qr)

e−ue(qe)−c + e−ur(qr) + e−u
,

po(qe, qr, ū) =
e−u

e−ue(qe)−c + e−ur(qr) + e−u
,

We can verify that these probabilities satisfy the assumptions listed in Section 2.2.1.

Thus, all the results of Section 2.2.2 and Section 2.3 apply.

We now write (2.11)-(2.13) as

λ
e−ue(qe)−c

e−ue(qe)−c + e−ur(qr) + e−u
= µe min{qe, q̄}, (2.60)

λ
e−ur(qr)

e−ue(qe)−c + e−ur(qr) + e−u
= µr min{qr, q̄}, (2.61)

λ
e−u

e−ue(qe)−c + e−ur(qr) + e−u
= λ− µe min{qe, q̄} − µr min{qr, q̄}. (2.62)

These equations lead to closed-form expressions for the equilibrium solution in every

possible regime. It then becomes possible to identify which of the four regimes holds

in a specific problem instance.

Regime R1. qe, qr ≥ q̄. Equations (2.60)-(2.62) become

λ
e−u( qe

µeq
)−c

e−u( qe
µeq

)−c + e−u( qr
µrq

) + e−u
= µeq, (2.63)

52



λ
e−u( qr

µrq
)

e−u( qe
µeq

)−c + e−u( qr
µrq

) + e−u
= µrq, (2.64)

λ
e−u

e−u( qe
µeq

)−c + e−u( qr
µrq

) + e−u
= λ− µeq − µrq. (2.65)

Dividing (2.63) and (2.64), respectively, by (2.65) produces

qR1
e = µeq · u−1

(
− log

(
µeq

λ− µeq − µrq

)
+ u− c

)
,

qR1
r = µrq · u−1

(
− log

(
µrq

λ− µeq − µrq

)
+ u

)
.

Regime R2. qe, qr ≤ q̄. Equations (2.60)-(2.62) directly lead to

qR2
e =

λ

µe
· e−u( 1

µe
)−c

e−u( 1
µe

)−c + e−u( 1
µr

) + e−u
,

qR2
r =

λ

µr
· e−u( 1

µr
)

e−u( 1
µe

)−c + e−u( 1
µr

) + e−u
.

Regime R3. qe ≥ q̄ > qr. Equations (2.60)-(2.62) become

λ
e−u( qe

µeq
)−c

e−u( qe
µeq

)−c + e−u( 1
µr

) + e−u
= µeq, (2.66)

λ
e−u( 1

µr
)

e−u( qe
µeq

)−c + e−u( 1
µr

) + e−u
= µrqr, (2.67)

λ
e−u

e−u( qe
µeq

)−c + e−u( 1
µr

) + e−u
= λ− µeq − µrqr. (2.68)
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Dividing (2.66) and (2.67), respectively, by (2.68) produces

− u
( qe
µeq

)
− c+ u = log

(
µeq

λ− µeq − µrqr

)
, (2.69)

− u
( 1

µr

)
+ u = log

(
µrqr

λ− µeq − µrqr

)
. (2.70)

The system (2.69)-(2.70) is solved by

qR3
e = µeq · u−1

(
− log

(
µeq

λ− µeq
· e
−u( 1

µr
) + e−u

e−u

)
+ u− c

)
,

qR3
r =

λ− µeq
µr

· e−u( 1
µr

)

e−u( 1
µr

) + e−u
.

Regime R4. qr ≥ q̄ > qe. We proceed similarly to the derivation for regime R3 and

obtain

qR4
e =

λ− µrq
µe

· e−u( 1
µe

)−c

e−u( 1
µe

)−c + e−u
,

qR4
r = µrq · u−1

(
− log

(
µrq

λ− µrq
· e
−u( 1

µe
)−c + e−u

e−u

)
+ u

)
.

Given a specific problem instance (some specific disutility function u, param-

eters λ, µe, µr, etc.), we can identify which of the four regimes holds by calculating

these four solutions and checking which of them actually falls into its correct range.

Thus, for example, if we calculate qR1
e , qR1

r , but find that at least one of these quan-

tities is strictly less than q̄ (contrary to the definition of regime R1), it necessarily

follows that R1 is not the correct regime for the equilibrium of this problem instance.

In fact, for any given instance, only one of the four solutions will be in the correct

54



range, corresponding to the regime of the equilibrium.

By applying this analysis for c = 0 and c → ∞, we can further identify the

case, among C1-C6 in Figure 2.1, to which the given problem instance belongs.

Note that each of the six cases is described by a unique combination of initial and

terminal regime. Thus, identifying the initial and terminal regimes is enough to tell

us how many transitions, and between which regimes, will occur as c increases from

zero to infinity.

We can use this approach to obtain further insight into how the problem in-

puts determine which case among C1-C6 is realized. Let us first focus on the initial

regime (fixing c = 0). The threshold between regimes R2 and R3 occurs when

qR2
e = q̄. This is equivalent to the condition

λ = µeq +
e−u + e−u( 1

µr
)

e−u( 1
µe

)
µeq, (2.71)

which (for a given disutility function u) defines a curve on the space of all possible

(µr, µe, λ), on which small changes in these inputs will cause the initial regime to

change from R2 to R3. In a similar fashion, the threshold between R3 and R1 is

found by setting qR3
r = q̄, yielding the curve

λ = µeq +
e−u + e−u( 1

µr
)

e−u( 1
µr

)
µrq. (2.72)
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The threshold between R4 and R1 can be found by setting qR4
e = q̄, yielding

λ = µrq +
e−u + e−u( 1

µe
)

e−u( 1
µe

)
µeq, (2.73)

and the threshold between R2 and R4 is found by setting qR2
r = q̄, yielding

λ = µrq +
e−u + e−u( 1

µe
)

e−u( 1
µr

)
µrq. (2.74)

Under the terminal condition (now taking c→∞), we observed before that R2 and

R4 are the only possible regimes. The threshold between them is found by setting

qR2
r = q̄, yielding

λ =
e−u + e−u( 1

µr
)

e−u( 1
µr

)
µrq. (2.75)

In Figure 2.2, we take a linear utility function, standardize µr = 1, and plot all

five curves (2.71)-(2.75) on the (µe, λ)-plane. We explain how this diagram can be

used to match any (µe, λ) pair to one of the six cases. First, the terminal threshold

(2.75) is represented in Figure 2.2 by the dashed horizontal black line. Any (µe, λ)

pair below this threshold must have R2 as the terminal regime; from Figure 2.1,

we know that this is only possible in cases C4 and C5. Thus, it follows that (as

one might expect) case C5 occurs only when λ is sufficiently small. Conversely, any

(µe, λ) pair above the terminal threshold must have R4 as the terminal regime.

The initial regime is found as follows. For any fixed µe ≥ 1, the initial regime

will be R2 if λ is very low, and R1 if λ is very high. For “moderate” values, either

R3 or R4 can occur, but these two are mutually exclusive under a fixed µe value. In
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other words, if µe is fixed to a “low” value, then R3 is the initial regime for moderate

λ, so increasing λ from zero to infinity under this fixed µe will take us from R2 to

R3 to R1, with the relevant thresholds being (2.71) and (2.72). However, if µe is

“high,” then R4 is the initial regime for moderate λ, so increasing λ under such a

µe will take us from R2 to R4 to R1, with the relevant thresholds being (2.74) and

(2.73). The precise threshold of µe separating “low” and “high” values is shown in

Figure 2.2 by the dashed vertical blue line.

Thus, the complete reading of Figure 2.2 is as follows:

1. Any point below the dashed horizontal black line belongs to case C5.

2. Any point to the left of the dashed vertical blue line belongs to:

(a) Case C3 if it is above the dashed horizontal black line, but below the blue

curve;

(b) Case C1 if it is above the blue curve, but below the black curve;

(c) Case C2 if it is above the black curve.

3. Any point to the right of the dashed vertical blue line belongs to:

(a) Case C3 if it is above the dashed horizontal black line, but below the

green curve;

(b) Case C6 if it is above the green curve, but below the red curve;

(c) Case C2 if it is above the red curve.

Note that case C4 is not present in Figure 2.2. We found that this case is somewhat

rare, occurring only if the blue curve dips below the dashed horizontal black line on
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the left side of the graph. It is possible to design instances where this happens, if

ū is very close to u(1) and the disutility function is extremely steep around 1, but

even then the region in which C4 occurs will be very small.

Once the correct case has been identified, we can obtain the revenue function

(2.52) by plugging in the appropriate expressions for qe(c) attained in each of the

relevant regimes. In regimes R1 and R3, we have q̄ ≤ qe(c) and so the revenue grows

linearly in c as long as (qe(c), qr(c)) belong to one of these regimes. In regime R2, the

revenue function is log-concave by Proposition 3, and in regime R4, this can also be

shown by direct computation. Consequently, there is a unique revenue-maximizing

price in cases C2, C4, C5 and C6, but two local optima in cases C1 and C3, caused

by the transition from R2 to R4. Figure 2.3 gives numerical illustrations of R and

R−D in all six cases.

The second peak only occurs when the transition from R2 to R4 is present,

and is caused by a change in the behavior of the price elasticity of demand between

these regimes. Unfortunately, it is not possible in general to guarantee that one of

the two peaks will always be better; one can design instances of either case C1 or

C3 in which either R2 or R4 generates more revenue.

Note that in Figure 2.3, R has double peaks in cases C1 and C3, while R−D

has nonzero maxima in cases C1, C2 and C4. The figures were obtained under

different parameter choices, which are omitted here as the purpose is illustrative.
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Figure 2.3: Illustrations of equilibrium queue lengths, revenue, and social welfare in
cases C1- C6.
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2.4.2 Exponomial choice model

Under the exponomial model [22], we assume that all random shocks in the

problem are i.i.d. exponentially distributed. In this model, the expression for the

choice probabilities depends on the utility order; for example, if ue ≤ ur ≤ ū, we

have

pe(ue, ur, ū) = 1− 1

2
e−`(ur−ue) − 1

6
e−`((ū−ur)+(ū−ue)),

pr(ue, ur, ū) =
1

2
e−`(ur−ue) − 1

6
e−`((ū−ur)+(ū−ue)),

po(ue, ur, ū) =
1

3
e−`((ū−ur)+(ū−ue)),

where ` is the fixed rate parameter of the exponential distribution. One can, how-

ever, examine all of the possible permutations and directly verify that our assump-

tions in Section 2.2.1 hold. For example, in the case shown above, ∂pe
∂ue

< 0 and

∂pe
∂ur

> 0, and the derivatives are uniformly bounded since each exponential term

must take values between 0 and 1. It follows that all of the general results from

Section 2.2.2 and Section 2.3 apply.

Unfortunately, we do not have closed-form expressions for the equilibrium

queue lengths, so we cannot explicitly solve for the thresholds between the four

regimes. However, for µr = 1 and a given disutility function u, we can still con-

struct a phase diagram numerically, as shown in Figure 2.4. The interpretation of

this diagram is the same as in the case of MNL; in particular, we see that the same

cases are present. (Case C4 is again rare, but possible for some choices of u.)
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Figure 2.4: Phase diagram illustrating the impact of µe, λ on the equilibrium
regimes.

We can also numerically evaluate the revenue function. Figure 2.5 shows that,

just as in Figure 2.3, the revenue function may still have multiple peaks, and that

this behaviour cannot be eliminated by simply using a different choice model.

2.5 Conclusion

We have studied a service system where paying customers join a separate queue

with a faster service rate. The system is observable, and newly arriving customers
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Figure 2.5: Illustration of double peaks under exponomial choice probabilities (case
C3).

make the decision to purchase express service based not only on the cost, but also

on the lengths of both regular and express queues at that moment. Customer het-

erogeneity is represented with a general probabilistic choice model, and our analysis

can accommodate both multinomial logit and exponomial choice probabilities, to-

gether with very general disutility functions.

We find that the limited service capacity in both queues (modeled using q̄

servers per queue, in contrast with the M/M/1 models studied in much of the re-

lated literature) plays a key role in how customers react to the entry fee. Depending

on how we change the fee, the equilibrium may transition between different regimes;

for example, very low prices may cause crowding in the express queue, very high

prices may cause crowding in the free queue, and mid-range prices may eliminate

congestion entirely. As a result, the revenue function may exhibit multiple local

optima – a revenue-maximizing service provider may opt to artificially drive up con-

gestion in the regular queue, while leaving unused capacity in the express queue,

because the benefit of switching from regular to express starts to grow once the reg-

ular queue becomes congested. By contrast, if the goal is to optimize social welfare,

the price should be low enough to eliminate congestion from the regular queue (or to
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reduce it by as much as possible) without creating congestion in the express queue.

The main limitation of our model is the assumption of a fixed arrival rate λ

and a fixed cost c, though this is consistent with most of the related literature. Sev-

eral studies have examined the complementary setting of nonstationary arrivals and

time-dependent prices, but these elements make the problem much less tractable.

The upside of our assumptions is that they allow us to work with very general

random utility models, capturing many different forms of customer valuation and

heterogeneity. If one is willing to make additional assumptions on the choice model,

it can even be possible to solve for the optimal prices in closed form. However, the

fundamental structure of the revenue function is quite robust with respect to the

particular choice model being used.
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Chapter 3: A new rate-optimal design for linear regression

3.1 Introduction

In this paper, we derive a new, large deviations theoretic optimality criterion

for linear regression, and propose a new design that optimizes this criterion. Un-

like all of the existing work on large deviations-based designs, we do not discretize

the design space, but rather allow any x on the L2 sphere {x : ||x|| = 1}. This

requires substantial new technical developments over past work (which is limited to

finite sets), and leads to a completely different interpretation of the design. In [43]

and related papers, each alternative is assigned a certain nonzero proportion of the

sample, which is no longer possible when x is a continuous variable. However, due

to the structure of the linear model, we can instead characterize the design as an

allocation of the budget to an orthonormal basis for the design space, with β itself

being one of the basis vectors. We then obtain exceptionally simple closed-form

calculations for the optimal proportions to assign to each basis vector. In fact, these

optimal proportions are almost uniform: one samples β with a certain small prob-

ability (computable in closed form) that does not depend on β itself, and otherwise

chooses one of the other basis vectors uniformly at random.

Due to this structure, our design is much easier to learn sequentially than any
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existing design of this type. In discrete problems, such designs require enumeration

of all possible alternatives, and make a special distinction between the allocation to

the best alternative vs. all the others. As a result, any sequential implementation

first has to guess which alternative is the best, and if this guess is incorrect, the

estimated proportions will be very inaccurate. In our case, however, by changing

the focus to an orthonormal basis for the design space, we do not require any in-

formation about which x is optimal; we simply estimate β and extend the estimate

to a suitable basis. For this reason, our approach has considerable practical utility

(also illustrated in a numerical example) and can serve as a natural benchmark for

continuous optimal design in linear regression.

3.2 Large deviations in least squares regression

Return to the model (1.1) and assume, without loss of generality, that ||β|| = 1.

Suppose that {xn}∞n=1 is a deterministic sequence satisfying

lim
n→∞

1

n

n∑
i=1

xix
>
i = A (3.1)

where A is a symmetric, positive definite matrix. Let yi = β>xi+εi with the residuals

εi ∼ N (0, σ2) being independent. The ordinary least-squares estimator bn of β, given

the data (xi, yi) for i = 1, ..., n, is defined as bn = arg minb
∑n

i=1(yi − b>xi)2.
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3.2.1 Large deviations laws

We derive the following large deviations law for bn.

Theorem 7. For any E ⊆ Rd such that β /∈ E,

lim
n→∞

1

n
logP (bn ∈ E) = − inf

u∈E
I(u) (3.2)

where I(u) = 1
2σ2 (u− β)>A(u− β).

Proof. We first describe the major steps in the proof and then complete the com-

putations. First, for any n, we let Ψn(γ) = logE
(
eγ
>bn
)

be the log-mgf of bn.

Assuming that the scaled limit Ψ(γ) = limn→∞
1
n
Ψn(nγ) exists, we let

I(u) = sup
γ
γ>u−Ψ(γ) (3.3)

be the Fenchel-Legendre transform of Ψ. The large deviations law (3.2) then follows

from the Gartner-Ellis theorem [60]. It remains to explicitly compute Ψ and I.

For any n, bn can be written [61] as

bn = β +

(
n∑
i=1

xix
>
i

)−1 n∑
j=1

xjεj.
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Using this representation, we calculate

Ψn(γ) = γ>β + logE

(
eγ
>(

∑n
i=1 xix

>
i )−1

∑n
j=1 xjεj

)

= γ>β + logE

(
e
∑n
j=1[γ>(

∑n
i=1 xix

>
i )−1xj ]εj

)

= γ>β +
n∑
j=1

1

2
σ2

[
γ>

(
n∑
i=1

xix
>
i

)−1

xj

]2

.

Consequently, the scaled limit Ψ is found to be

Ψ(γ) = γ>β + lim
n→∞

n∑
j=1

1

2
σ2n

[
γ>

(
n∑
i=1

xix
>
i

)−1

xj

]2

= γ>β + lim
n→∞

n∑
j=1

1

2
σ2nγ>

(
n∑
i=1

xix
>
i

)−1

xjx
>
j

(
n∑
i=1

xix
>
i

)−1

γ

= γ>β + lim
n→∞

1

2
σ2nγ>

(
n∑
i=1

xix
>
i

)−1( n∑
j=1

xjx
>
j

)(
n∑
i=1

xix
>
i

)−1

γ

= γ>β + lim
n→∞

1

2
σ2γ>

(
1

n

n∑
i=1

xix
>
i

)−1

γ

= γ>β +
1

2
σ2γ>A−1γ.

Then, (3.3) becomes

I(u) = sup
γ
γ>(u− β)− 1

2
σ2γ>A−1γ.
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The supremum is achieved at γ? satisfying

σ2A−1γ? = u− β =⇒ γ? =
1

σ2
A(u− β).

Substituting γ? into (3.3) yields I(u) = 1
2σ2 (u− β)>A(u− β), as required.

In words, since the true coefficients β satisfy β /∈ E, the event {bn ∈ E}

represents an “error” of some sort. As n→∞, the probability of error decays expo-

nentially, but the exponent can be controlled by changing the matrix A. Although

we have treated the data sequence {xn} as deterministic in this discussion, intuitively

one can think of (3.1) as a kind of “law of large numbers” for the data-generating

process. For example, if we were given some desired A, we could generate xn i.i.d.

from some distribution, independent of {εn}∞n=1 and satisfying E(xnx
>
n ) = A, and

still achieve the large deviations law.

In the remainder of this paper, we will primarily focus on error events of the

form

Ev =
{
u ∈ Rd : u>v ≤ 0

}
(3.4)

for various fixed vectors v ∈ Rd that satisfy β>v > 0. The rate exponent for any

such event can be computed in closed form, as shown in the following result.

Proposition 4. Suppose that β>v > 0. Then,

lim
n→∞

1

n
logP (b>n v ≤ 0) = − 1

2σ2
R(v)
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where R(v) = (β>v)2

v>A−1v
.

Proof. From Theorem 7, it follows that R(v) is the optimal value of the convex

program

min
u∈Rd

(u− β)>A(u− β) (3.5)

s.t. v>u ≤ 0.

Letting λ be the Lagrange multiplier of the single linear constraint, the optimality

conditions of (3.5) are given by

A(u− β) + λv = 0, (3.6)

v>u = 0, (3.7)

where (3.7) follows because the linear constraint should be binding at optimality.

Now, (3.6) yields

u = β − λA−1v, (3.8)

and plugging (3.8) into (3.7) leads to

v>β − λv>A−1v = 0 =⇒ λ =
v>β

v>A−1v
.
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Plugging this back into (3.8), we obtain

u? = β − v>β

v>A−1v
A−1v,

whence

I(u?) = (u? − β)>A(u? − β)

=

(
v>β

v>A−1v

)2

v>A−1AA−1v

=
(v>β)2

v>A−1v
,

as required.

Thus, the convergence rate of P (bn ∈ Ev) is governed by the exponent R(v),

which depends on the specific vector v we are studying; note that R(v) is invariant

with respect to ||v||, so we can assume ||v|| = 1 whenever it is convenient to do so.

We can now study error events of the form
⋃
k Evk for countable collections {vk}∞k=1

that are dense in some uncountable set of interests. A straightforward consequence

of Theorem 7 and Proposition 4 is that

lim
n→∞

1

n
logP

(
bn ∈

⋃
k

Evk

)
= − inf

k
R(vk), (3.9)

provided that β /∈
⋃
k Evk (or, equivalently, infk β

>vk > 0). Intuitively, the prob-

ability that at least one error event in the collection occurs is determined by the
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slowest convergence rates among the individual error events.

3.2.2 Optimal designs

Let x? ∈ Rd be some fixed ”reference solution,” possibly obtained from some

optimization problem that will not be explicitly modeled here. The value of this

solution is β>x?. We assume that larger values are better, so

X (x?) =
{
x ∈ Rd : β>(x? − x) > 0

}

is interpreted as the set of all inferior solutions. If there is any x ∈ X (x?) for which

b>n (x? − x) ≤ 0, this means that the estimated coefficients bn have led us to erro-

neously identify x as being superior to x?. This is clearly an example of (3.4) with

v = x? − x. Note that the convergence rate of P (bn ∈ Ev) only depends on x? and

x through the “optimality gap” v.

Potentially, any x ∈ X (x?) can generate an error. Consider a countable col-

lection {xk}∞k=1 ⊆ X (x?). Each xk corresponds to an error vector vk = x? − xk,

motivating an optimization problem of the form

sup
A∈Sd++

inf
k

(v>k β)2

v>k A
−1vk

, (3.10)

where Sd++ is the set of all d×d symmetric positive definite matrices. Through (3.9),

this problem chooses the matrix A to make P (bn ∈
⋃
k Evk) converge to zero at the
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fastest possible rate. Of course, to ensure that (3.10) is not unbounded, we would

also need to impose a simple constraint on the magnitude of A, such as an upper

bound on the trace. Such an upper bound serves as a scale factor on R(vk) for all

k, but otherwise does not change the geometry of the optimal A.

However, we require β /∈
⋃
k Evk in order to use Theorem 7, which means

that we cannot make {xk} dense in the entire set X (x?). Instead, we will focus on

{vk} ⊆ Vδ where

Vδ =
{
v : ||v|| = 1, β>v ≥ δ

}
and δ > 0 is a small constant. This ensures that infk R(vk) is strictly positive (for

any fixed positive definite A) and allows (3.9) to be applied. Essentially, we are now

willing to accept x ∈ X (x?) whose value is sufficiently close to that of x?, and we

focus on eliminating errors generated by solutions that are outside this tolerance

level. Note that our design space need not be restricted to Vδ. The parameter δ

only imposes restrictions on the error events that we are trying to eliminate.

With this modification, one can rewrite (3.10) as

sup
A∈Sd++

min
v∈Vδ

(v>β)2

v>A−1v
. (3.11)

Since A is symmetric and positive definite, we can write A =
∑d

i=1 piζiζ
>
i where

pi > 0 and (ζ1, ..., ζd) is an orthonormal basis for Rd. We may assume that
∑

i pi = 1

without loss of generality; as discussed earlier, this condition scales the optimal A

without changing its geometry. Recalling the interpretation of A as an expected

73



value, pi can be seen as the probability of sampling ζi.

So far, (3.11) requires us to jointly choose both eigenvalues and eigenvectors.

We will simplify this problem by setting ζ1 = β, that is, β itself will be an eigenvec-

tor. With this, the orthonormal basis can be straightforwardly completed, and the

only remaining decision variable is the vector p of eigenvalues. We first give some

intuition for this choice. For any fixed positive definite B, the ratio (β>v)2

v>Bv
can in

general be made arbitrarily small. However, if we allow the positive semidefinite

matrix B = ββ>, the ratio evaluates to 1 for any v with β>v 6= 0. This suggests

that, when we choose a positive definite B, its principal eigenvector should also be

aligned with β.

Before providing more rigorous support for this idea, we first manipulate the

problem setup as follows. Let B =
∑

i riζiζ
>
i , where (ζ1, ..., ζd) is an orthonormal

basis for Rd, and r1 > r2 ≥ ... ≥ rd > 0 are the eigenvalues. It can easily be seen

that minv∈Vδ
(β>v)2

v>Bv
is attained on the boundary ∂Vδ = {v : ||v|| = 1, β>v = δ} .

Then, the problem maxB minv∈∂Vδ
(β>v)2

v>Bv
has the same optimal solution as the prob-

lem minB maxv∈∂Vδ v
>Bv. We then show that, when δ is small, the optimal value of

the inner maximization can be bounded below by the second-largest eigenvalue of

B, regardless of the choice of orthonormal basis.

Proposition 5. For sufficiently small δ, we have maxv∈∂Vδ v
>Bv ≥ r2.

Proof. We consider two cases: one where β = ζi for some i, and one where β 6= ζi

for any i. In the first case, an optimal solution can be found by taking v = δζ1 +
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√
1− δ2 · ζ2 if β = ζ1, or v = δζi +

√
1− δ2 · ζ1 if β = ζi for i 6= 1. Either way, the

optimal value is bounded below by r2 for sufficiently small δ.

Now consider the case where β 6= ζi for any i. Define v = δβ + Pw, where

P = I − ββ> is the projection onto the orthogonal complement of β. Then, the

objective v>βv
v>v

, which coincides with v>βv when v>v = 1, can be rewritten in terms

of w as

f(w) =
w>PBPw + 2δw>PBβ + δ2β>Bβ

w>Pw + δ2
.

Observe that

∂f

∂w
=

1

w>Pw + δ2
(2PBPw + 2δPBβ − 2f(w)Pw).

Setting the derivative equal to zero yields

PBPw + δPBβ = f · Pw. (3.12)

Given any solution (f, w) of (3.12), we can obtain a feasible v = δβ + Pw whose

objective value is f . Observe, however, that such a solution may be found for

almost any f value: we may rewrite (3.12) as (fI − PB)Pw = δPBβ, where the

matrix fI − PB is invertible as long as f is not equal to any of the eigenvalues

s1 ≥ ... ≥ sd of PB. Consequently, given any f satisfying f 6= si for all i, we can

obtain Pw = δ(fI − PB)−1PBβ such that v = δβ + Pw satisfies v>βv
v>v

= f .

However, we also require v to satisfy the normalization condition v>v = 1.
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Equivalently, we must have w>P 2w = 1− δ2, which becomes

1− δ2

δ2
= b>BP (fI − PB)−2PBβ. (3.13)

Thus, the optimal value of maxv∈∂Vδ v
>Bv is the largest f for which (3.13) holds.

Since the right-hand side of (3.13) has a cusp at f = s1 and decreases monotonically

on (s1,∞), the largest root satisfies f > s1. By the Courant-Fischer theorem [62],

Thm. 4.2.6, we have r1 ≥ s1 ≥ r2, whence f ≥ r2.

Proposition 5 shows that, no matter how we choose the orthonormal basis, the

inner maximum maxv∈∂Vδ v
>Bv cannot be reduced below r2. Thus, we may simply

set ζ1 = β, in which case maxv∈∂Vδ v
>Bv = δ2r1 + (1− δ2)r2, a quantity that can be

made arbitrarily close to the lower bound for sufficiently small δ. Returning to our

original problem (3.11), since we are primarily interested in the small-δ regime, we

will impose the structure

A = p1ββ
> +

∑
i>1

piζiζ
>
i , (3.14)

where the other vectors ζ2, ..., ζd in the orthonormal basis are unique (up to mul-

tiplication by -1). The remainder of this paper will derive the optimal eigenvalues

pi. In fact, we will see that p1 = mini pi in the optimal solution, confirming the

intuition that β should be the principal eigenvector of A−1.
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3.3 Solving for the optimal design

Suppose that the sequence {vk} is dense in Vδ. Since R(v) is invariant with

respect to ||v||, we can focus on unit vectors without loss of generality. For fixed K,

we consider the problem

max
p

min
k≤K

(v>k β)2

1
p1

(v>k β)2 +
∑

i>1
1
pi

(v>k ζi)
2

(3.15)

subject to the constraints p ≥ 0,
∑

i pi = 1. Equation (3.15) is a version of (3.10)

with (3.14) plugged into the denominator. As K →∞, the inner minimum in (3.15)

will behave like a minimum over all v ∈ Vδ. Since we are mainly interested in this

asymptotic regime, we can choose the elements of {vk} in any way we want, as long

as the sequence remains dense in Vδ.

The objective function in (3.15) is concave in p and can be rewritten as maxp,z z

subject to

z ≤ (v>k β)2

1
p1

(v>k β)2 +
∑

i>1
1
pi

(v>k ζi)
2
, k = 1, ..., K. (3.16)

in addition to the original constraints on p. The Lagrangian of this optimization

problem is given by

L(z, p, µ, ν) = −z +
K∑
k=1

µk

(
z − (v>k β)2

1
p1

(v>k β)2 +
∑

i>1
1
pi

(v>k ζi)
2

)
+ ν

(
d∑
i

pi − 1

)
,

with the terms corresponding to the nonnegativity constraints on pi omitted, in or-

der to ensure that A is positive definite. The optimality conditions are as follows:
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1. First-order conditions:

K∑
k=1

µk
(v>k β)4[

1
p1

(v>k β)2 +
∑

i>1
1
pi

(v>k ζi)
2
]2 = p2

1ν, (3.17)

K∑
k=1

µk
(v>k β)2(v>k ζi)

2[
1
p1

(v>k β)2 +
∑

i>1
1
pi

(v>k ζi)
2
]2 = p2

i ν, i = 2, ..., d (3.18)

K∑
k=1

µk = 1. (3.19)

2. Primal feasibility: (3.16) and
∑

i pi = 1, pi > 0 for all i.

3. Dual feasibility: µk ≥ 0.

4. Complementary slackness:

µk

(
z − (v>k β)2

1
p1

(v>k β)2 +
∑

i>1
1
pi

(v>k ζi)
2

)
= 0, k = 1, ..., K. (3.20)

The first-order conditions (3.17)-(3.18) can be viewed as a system of d lin-

ear equations in K variables µ1, ..., µK . For large K, this system may have many

solutions. In particular, we can construct a basic solution by taking d linearly in-

dependent vectors vk1 , ..., vkd from {vk}Kk=1 and setting µk = 0 if k /∈ {k1, ..., kd}.

Since {vk} is dense in a set of dimension d, we can choose individual vk to take

certain values in that set without affecting the asymptotic result. For our analysis,

it is convenient to take w1 = β and let wj be a linear combination of β and ζj, for

j = 2, ..., d, with w>j ζi = 0 for any i 6= j. We may assume that, for any j, there

exists kj ≤ K such that wj = vkj .
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With this choice of wj, we can rewrite (3.17)-(3.18) as

p2
1µk1 +

∑
j>1

µkj
(w>j β)4[

1
p1

(w>j β)2 + 1
pj

(w>j ζj)
2
]2 = p2

1ν (3.21)

µkj
(w>j β)2(w>j ζj)

2[
1
p1

(w>j β)2 + 1
pj

(w>j ζj)
2
]2 = p2

jν, j = 2, ..., d. (3.22)

Substituting (3.22) into (3.21) yields

p2
1µk1 + ν

∑
j>1

p2
j

(w>j β)2

(w>j ζj)
2

= p2
1ν. (3.23)

If we set µk1 = 0, the dual variable ν cancels out of (3.23), yielding

p2
1 =

∑
j>1

p2
j

(w>j β)2

(w>j ζj)
2
. (3.24)

Note that, for any p, it is easy to find µkj > 0 and ν to satisfy (3.22). Condition

(3.19) can also be easily satisfied by rescaling these values. The complementary

slackness condition (3.20) is satisfied for any k /∈ {k2, ..., kd} since the corresponding

dual variables µk are set to zero. To satisfy the condition for the remaining values

of k, it is sufficient to ensure that R(wi) = R(wj), that is,

(w>i β)2

1
p1

(w>i β)2 + 1
pi

(w>i ζi)
2

=
(w>j β)2

1
p1

(w>j β)2 + 1
pj

(w>j ζj)
2
, i, j 6= 1. (3.25)

Thus, as long as p is chosen to satisfy (3.24)-(3.25), we can find feasible µ, ν to satisfy

(3.17)-(3.20). Essentially, most of the optimality conditions for the problem (3.15)
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have reduced to the conditions (3.24)-(3.25) on p, which generalize those derived in

Example 1 of [43] for large deviations of pairwise comparisons between scalar normal

distributions.

In fact, there is only one optimality condition for (3.15) that has not yet been

treated, namely (3.16). Our choice of p must also imply R(wi) ≤ R(vk) for all

i = 2, ..., d and k = 1, ..., K. Recalling that we have the freedom to pick wj , we

further suppose that (w>j β)2 = δ2 for j = 2, ..., d. Since each wj is a unit vector, it

follows that (w>j ζj)
2 = 1 − δ2. Consequently, (3.25) now implies that pi = pj = c

for i, j 6= 1 and some constant c. Then, for any v ∈ Vδ, the rate exponent R(v)

simplifies to

R(v) =
(v>β)2

1
p1

(v>β)2 + 1
c

∑
i>1(v>ζi)2

.

Note that, since (v>β)2 ≥ δ2 for any v ∈ Vδ, we must also have
∑

i>1(v>ζi)
2 ≤ 1−δ2

because v is a unit vector. Consequently,

R(v) ≥ δ2

1
p1
δ2 + 1

c
(1− δ2)

= R(wj)

for any j = 2, ..., d. Thus, our choice of w has caused (3.16) to be satisfied for any

v ∈ Vδ. Therefore, the solution p? of (3.24)-(3.25), for this choice of w, is optimal

for any arbitrarily large K, and therefore

p? = arg max
p:
∑
i pi=1

min
v∈Vδ

R(v)
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also optimizes the convergence rate of the probability that an error arises from any

v ∈ Vδ.

It remains to calculate p?. Letting ∆ = δ2

1−δ2 , we find that (3.24) reduces to

p2
1 = (d− 1)∆c2.

At the same time, p1 = 1− (d− 1)c, whence

1− (d− 1)c = c
√

(d− 1)∆,

leading to the closed-form solution

p?1 =

√
(d− 1)∆

(d− 1) +
√

(d− 1)∆
, (3.26)

p?i =
1

(d− 1) +
√

(d− 1)∆
, i = 2, ..., d. (3.27)

Recalling our earlier interpretation of A as an expected value, the representation

(3.14) allows us to view the design as a discrete probability distribution where each

pi represents the probability of collecting a data point using ζi as the covariate

vector. The solution (3.26)-(3.27) indicates that the optimal distribution is almost

uniform: any basis vector that is orthogonal to β can be sampled with the same

probability. However, the probability assigned to the first eigenvector β is different

from the others; as δ becomes smaller, this probability is reduced, which means that
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A−1 will correspondingly place more weight on ββ>, as expected.

One especially striking aspect of this solution is that the probabilities p?i are

completely deterministic. Thus, the only unknown quantity in (3.14) is β itself, as

suitable ζi can be straightforwardly computed if β is known. However, one does not

need to know x? in order to apply the optimal design. Another way to interpret our

results is that, for any x?, the probability that b>n (x? − x) > 0 for all x satisfying

β>(x? − x) ≥ δ converges to 1 at the fastest possible rate.

3.4 Algorithm and numerical example

Figure 3.1 states a very simple algorithm (which we call “LD-optimal”) for

implementing the optimal design in practice. Essentially, we use the least-squares

estimator bn in place of β. The estimator itself can be updated recursively, but

in every iteration we have to extend it to an orthonormal basis. A simple way to

do this is to take d arbitrary linearly independent vectors (ζ1, ..., ζd) and apply the

Gram-Schmidt process to (bn, ζ1, ..., ζd). Note that the algorithm does not need to

know or estimate x?, unlike virtually every known large deviations-based optimal

design.

To evaluate this procedure, we consider the following test setting in five dimen-

sions. First, for i = 1, ..., 100, we generate vectors x?i ∈ R5, where each component

of x?i is drawn from a uniform distribution on [-1,1]. We also generate a vector β
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Figure 3.1: LD-optimal algorithm for sequential implementation of the optimal de-
sign.

in the same way and normalize it. Suppose that the vectors x?i are sorted in order

of decreasing β>x?i . Thus, for fixed 1 ≤ i ≤ 100, there are exactly i − 1 vectors

that are suboptimal relative to x?i . We can then collect n observations using the

algorithm in Figure 3.1 and calculate, for each i, how many of these i − 1 subop-

timal choices are mistakenly identified as being superior to x?i . Figure 3.2 gives an

illustration of this calculation for two values of n: the horizontal axis represents the

index i, while the vertical axis gives the number of errors for that i value. Note

that the number of errors can never be greater than i itself. The red line in Figure

3.2 is the zero-intercept regression line drawn through the points, which can help to

visualize how well we are doing (if there are no errors, the slope of this line will be 1).

We compare our approach against two benchmarks: the Randomized Adaptive
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(a) n = 100 (b) n = 1000

Figure 3.2: Illustration of error counts.

Gap Elimination (RAGE) procedure of [53], and a classical design of experiments

procedure known as D-optimal [32]. The RAGE method assumes that the sampling

decision is restricted to a pre-specified finite set of vectors, which does not need to

be the same as the set of x?i vectors whose values we are learning. With such a dis-

cretization of the design space, the D-optimal method can be formulated as a convex

optimization problem [63] that can be solved efficiently. Thus, for i = 1, ..., 100, we

generate vectors zi uniformly on the unit sphere in R5, and use these as the input

to both benchmarks. Our proposed LD-optimal algorithm does not use these values

since it can sample anywhere on the unit sphere.

Remark2 In fact, like our method, RAGE does not require any knowledge of x?,

which is why we see it as the most natural benchmark. We do not compare against,

e.g., the knowledge gradient method of [38], or the Thompson sampling method

of [64], because these focus on identifying a particular x? value.
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Although both benchmarks are designed for learning in linear regression, they

make different assumptions about how the problem proceeds. D-optimal gener-

ates vector independently from the set {zi} according to a probability mass func-

tion that maximizes log detE(xix
>
i ). Recall that we assumed the long-run be-

haviour for x>i xi equals A, so we may think D-optimal is equivalent to maximize

log det(A) = log
∏
pi =

∑
log pi. The problem can be maximized by setting pi equal

to each other. Since we imposed tr(A) = 1, we may pick an arbitrary orthonormal

basis and sample uniformly from it, and this is equivalent to uniformly generating

points on a unit sphere.

On the other hand, the RAGE algorithm is adaptive and proceeds in “phases.”

In each phase, some elements are removed from the set {zi} based on the most recent

estimated regression coefficients, and each of the remaining elements is sampled a

certain number of times. The procedure terminates when only one element is left;

the screening and sampling steps are constructed to ensure that a desired error prob-

ability (given as an input to the algorithm) is achieved at termination. However,

the number of phases and samples needed for termination is not known ahead of

time.

Since our method has no explicit termination criterion (rather, it can be run

for as long as our sampling budget allows), we conduct the comparison as follows.

First, we run the RAGE algorithm with a desired error probability of δ = 0.01 (this

same threshold is also used to set ∆ in LD-optimal) to see how many samples it

uses. This number is then used as the budget for both D-optimal and LD-optimal.

The number of phases can vary widely depending on the test instance, i.e., the set
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(a) 1 phase (b) 3 phases

(c) 4 phases (d) 5 phases

Figure 3.3: Illustration of accuracy.

of vectors x?i that is generated: when there are more of these vectors clustered close

together, it is easier to make errors and so more samples are required. Figure 3.3

shows how the accuracy of LD-optimal (averaged over all 100 possible choices of xi)

improves over time for four instances in which RAGE requires 1, 3, 4 and 5 phases,

respectively. The performance of LD-optimal is averaged over 100 sample paths to

smooth out the trajectory.

We find that, if LD-optimal is allowed to run for as long as RAGE, it achieves

very comparable performance, and even outperforms RAGE. We also observe (em-
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(a) LD-optimal (b) RAGE

Figure 3.4: Illustration of empirical sampling distributions.

pirically) that RAGE tends to be somewhat conservative, i.e., its accuracy is higher

than the target of 0.99 that was requested. LD-optimal tends to achieve this target

accuracy with fewer samples, as indicated by vertical lines in Figure 3.3; for exam-

ple, in the 5-phase instance, LD-optimal reaches the target with less than 20,000

samples, while RAGE runs for over 140,000. These additional samples only improve

the accuracy by O(10−3), which seems to be a classic case of diminishing returns.

We acknowledge that RAGE comes with strong guarantees on the error probability

at the moment of termination; however, it has often been observed in the past [65]

that such “fixed-precision” guarantees often come at the cost of conservativeness.

Thus, if the sampling budget is a severe constraint, we believe that LD-optimal

offers a powerful alternative.

It is also interesting to consider the empirical distribution of the sampled de-
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sign points. Figure 3.4 provides an illustration for a different instance in R2 where

the design space can be easily visualized. Again, we discretized the design space

into 100 points, generated from a uniform distribution on the unit sphere, in order

to run RAGE and D-optimal. In this instance, RAGE ran for 7 phases, which de-

termined the sampling budget for the other two methods. The true value of β is

indicated by an X in Figure 3.4a. We see that most of the sampling effort of RAGE

is concentrated on a handful of points close to β, with all of the other design points

screened out after just one phase. The sampling distribution for D-optimal design

is omitted since it is just a uniform distribution.

The LD-optimal method concentrates around β and its orthogonal comple-

ment; note that any of the orthonormal basis vectors can be multiplied by -1 without

affecting the theory. Furthermore, a majority of the budget is actually assigned to

the orthogonal complement, since p?1 in (3.26) will be smaller than the other prob-

abilities when ∆ is sufficiently small. Perhaps the most interesting insight to be

obtained from our work is that sampling the orthogonal complement of β can also

be very important for ruling out suboptimal solutions.

3.5 Conclusion

We have derived a new optimal design for linear regression based on a large

deviations theoretic analysis of error probability. Our result has several novel char-

acteristics relative to previous work. First, in the linear regression setting, it is not
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necessary to specify or estimate a particular “optimal” solution that we are trying

to select. The asymptotic behaviour of the error probability depends only on the

size on the suboptimality gap, so our design simultaneously learns about any gaps,

between any two solutions, in excess of a given threshold δ. As a result, the com-

putation of the design becomes exceedingly simple, requiring only estimation of the

regression coefficients β. The design thus becomes much easier to implement than

those found in [47] and related work, in which it is necessary to make an explicit

guess of the optimal solution, creating an additional source of possible error. Thus,

our work offers a natural computational benchmark for this problem class, and can

perform well under limited sampling budgets.
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Chapter 4: Conclusion and future work

4.1 Conclusion

In this dissertation, we focus on both theoretical and applied research of

stochastic modeling and optimization. In Chapter 2, we characterize the long-run

average queue lengths and choice probabilities for both express and regular service,

and then study the dependence of these quantities on the entry fee, which drives

the behaviour of various objectives related to revenue and social welfare using an

M/M/q̄ queueing model. We also include customer choice in our paper, which most

of the existing literature does not have.

We note that these findings are obtained in a very general setting that encom-

passes many possible disutility functions and random choice models. If one makes

additional assumptions, it is possible to obtain even more detailed characterizations

– for example, under the MNL model, we derive the equilibrium queue lengths in

closed form. However, the general setting also applies to, e.g., the exponomial choice

model, and all of our general results continue to hold in that context.

In Chapter 3, we derive a new, large deviations theoretic optimality criterion

for linear regression, and propose a new design that optimizes this criterion. More

specifically, we have derived a static design that optimizes the convergence rate of
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the probability of error. Unlike all of the existing work on large deviations-based

designs, we do not discretize the design space so that our method can be applied

for continuous variables. Also, our optimal design is much easier to implement be-

cause we do not need to make an explicit guess of the optimal solution. Compared

to most of the existing literature on sequential implementation, which first has to

guess which alternative is the best and if this guess is incorrect, the estimated pro-

portions will be very inaccurate. For this reason, our approach has considerable

practical utility (also illustrated in a numerical example) and can serve as a natural

benchmark for continuous optimal design in linear regression.

4.2 Suggestions for future research

In Chapter 2, although we obtain a complete characterization of the social wel-

fare optimization problem, we were not able to characterize the general structure of

the revenue curve in detail. A possible solution might be to consider self-adjusting

pricing schemes that learn the optimal price dynamically. Instead of fixing the entry

fee c, we are working on a dynamic pricing policy, and we believe it may help us to

characterize the optimal revenue.

In Chapter 3, although our LD-optimal algorithm has a nice performance, we

notice that it doesn’t differ from D-optimal design too much for large sample sizes.

Thus, we are currently exploring some cases where our algorithm may be better

than other algorithms. For example, from Figure 3.3, it seems that our algorithm
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has a big advantage for small sample sizes. Also while running multiple numerical

experiments, we found that if the set of vectors x?i are close to each other, then our

algorithm also has a big advantage.
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