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Decentralized task allocation and path finding are two problems for 

multiagent systems where no single fixed algorithm provides the best solution in all 

environments.  Past research has considered metareasoning approaches to these 

problems that take in map, multiagent system, or communication information.  None 

of these papers address the application of metareasoning about individual agent state 

features which could decrease communication and increase performance for 

decentralized systems. 

 This thesis presents the application of a meta-level policy that is conducted 

offline using supervised learning through extreme gradient boosting.  The multiagent 

system used here operates under full communication, and the system uses an 

independent multiagent metareasoning structure. 



 

 

 This thesis describes research that developed and evaluated metareasoning 

approaches for the multiagent task allocation problem and the multiagent path finding 

problem. For task allocation, the metareasoning policy determines when to run a task 

allocation algorithm. For multiagent path finding, the metareasoning policy 

determines which algorithm an agent should use.  

The results of this comparative research suggest that this metareasoning 

approach can reduce communication and computational overhead without sacrificing 

performance.  
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Chapter 1: Introduction 

Rapid advancement of technologies in communications and robotics has increased the 

applicability of multiagent systems in industrial settings.  Such applications operate 

through centralized systems or decentralized systems. 

 Centralized approaches have a single solver that sends the actions to the agents thereby 

reducing the complexity of the system.  Decentralized approaches spread the computational 

efforts across an entire system, allowing agents to calculate their actions and communicate 

with each other to solve problems in a collaborative way.  A decentralized system is more 

complex and robust than the centralized application because it does not contain a single 

point of failure.  For example, decentralized systems provide benefits in low 

communication, partial information, dynamic, and unknown environments [3, 38].   

As multiagent systems become more popular, they are being exposed to more complex 

environments.  These environments result in a contradiction for the agents where they must 

increase the algorithmic complexity (computational time) to improve the solution quality.  

To combat this contradiction, researchers studied the application of metareasoning in 

multiagent settings.  To date, multiagent metareasoning has been applied to instances of 

multiagent coordination, communication, and resource allocation to name a few [2, 45, 62]. 

This thesis describes the development and evaluation of a multiagent metareasoning 

method for distributed multiagent systems that is developed in an offline, supervised, 

machine learning approach that maintains performance while changing computational or 

communication attributes.  For example, this method can maintain system performance in 
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a multiagent task allocation problem while reducing the number of recalculations and 

communication messages generated.  The agent calculates the magnitude of each feature 

at a decision point and inputs these values into the machine learning model during the 

“monitoring” phase.  The model utilizes these features to calculate whether the algorithm 

should be run or which algorithm should run during the “control” phase.  The model is 

composed of state features whose values will be calculated for each agent at run time.  

Thus, each agent can independently monitor its environment and control its application of 

reasoning.  At each decision point, the point at which the task allocation or path finding 

algorithms needs to be run, the agent will run its current state through the supervised 

learning model in the meta-level, the higher-level reasoning of the agent.  The meta-level 

will either assign an algorithm to execute (path finding problem) or control whether the 

algorithm should be run (task allocation problem).  

1.1 Motivation 

Autonomous multiagent systems provide benefits in fields with increased safety 

risk or coverage over large distances.  Examples of such applications include smart grids 

[61], search [63], tracking in underground mines [21], search and rescue [15, 20], 

agriculture [17, 41], and warehouses [5, 6, 28, 60].  In these applications, multiagent 

systems can accomplish the goal faster while keeping individuals safe.  One of the best 

example of autonomous multiagent applications is in supply chain management and 

warehouse management.  Led by companies like Kiva Technologies [60] and Symbotic 

[46], fulfillment centers and warehouses have reduced costs, increased scalability, and 

influenced sustainability.  As the number of robotic agents in these systems increase, the 

amount of total computation required by the system grows.  To solve this, a switch to 
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decentralized systems could be made, however these systems put a higher computational 

load on the agents completing the tasks.  For example, in decentralized systems the 

agents must sense their environment and calculate the necessary motor functions to 

complete a task while simultaneously determining the task to be completed.  This can be 

compared to a centralized system with one centralized controller determining which 

agent, focusing primarily on sensing and execution, receives a certain task.  Since a 

decentralized system must take on the overhead of computation and communication of 

the centralized controller, the agents must attempt to fit more computation in the same 

hardware.   This research focuses on the use of a decentralized multiagent system with 

metareasoning capability to decrease the computational overhead while maintaining or 

improving performance.  

Two different approaches are used to solve the problem of reduced computation 

with increased performance.  The first approach is to create better fixed algorithms.  For 

multiagent path finding, some of the algorithms include search-based algorithms, A* 

based algorithms, conflict-based search algorithms (CBS), and complete algorithms 

(M*).  These algorithms are applied in bounded environments.  They all can solve path 

finding problems, but none are the best fit for all situations.  This fact leads to a second 

solution, the application of metareasoning.  Most metareasoning approaches look to a 

machine learning model or neural network to use at the meta-level.  The metareasoning 

applications have focused primarily on map features [53] or the features of the multiagent 

system [25].  This research seeks to understand the relationships of the agents at a deeper 

level to solve the problem with the metareasoning approach. 
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Like path finding, multiagent task allocation research has implemented single 

fixed algorithms, such as the Consensus-Based Auction Algorithm (CBAA), 

Decentralized Hungarian Based Algorithm (DHBA), and genetic algorithms (GA).  This 

type of algorithm is applied in dynamic scenarios without predefined goal locations so 

the agents can determine which of the targets would be beneficial to the group.  These 

algorithms have been improved over the years, but as algorithm complexity increases so 

does system overhead.  Algorithms needing more data require larger amounts of 

computation and communication which leads to increases in these attributes.  

Metareasoning methods have been applied in some scenarios to find the greatest 

performance using neural networks [23] or communication availability monitoring and 

switching [12].  Breaking these systems down into parts of a whole and looking at the 

states of these parts may provide a better basis than the current metareasoning. 

 

1.2 Contributions 

This thesis introduces and evaluates a novel metareasoning approach where agents 

use individualistic values for state features in meta-level monitoring to determine their 

reasoning in multiagent task allocation and path finding scenarios.  This approach 

attempts to solve the problem of excess computational effort in task allocation and 

algorithm selection in path finding.  While this work is specific to these two problems, 

the overall concept of separating a multiagent system into its individual parts to 

understand and benefit from their relationships should be applicable in any multiagent 

situation.  The overall approach takes the machine learning models generated from 

previous datasets and applies them to understand the interrelationships of the agents.  
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During run time, the agents collect the state information at each decision point and use 

them in combination with the machine learning model.  The results of simulation 

experiments provide insights into the advantages and limitations of this metareasoning 

approach. 

1.2.1 Decentralized Multiagent Task Allocation 

The algorithms used to solve multiagent task allocation must be run multiple times 

during a simulation allowing agents to choose new tasks.  Constant running of the 

algorithms permits the agents to communicate and make decisions collaboratively.  For 

these scenarios, the agents will run the algorithms every 0.1 seconds in full 

communication resulting in excess communication and computation without added 

benefits.  The approach used here is a classification of state features constructed during 

run time that the agents compute individually so the same values will not be shared.  

Thus, we can maintain the collaborative communication between agents, allowing them 

to achieve the overall goal of the system while acting on their own perception of the 

environment.   

1.2.2 Decentralized Multiagent Path Finding 

In this situation the algorithms provide different benefits in a range of environments.  

Much attention has been given to determining a single algorithm for the system.  Kaduri 

et al. [12] and Sigurdson [23] both used learning approaches to solve this problem.  This 

thesis considers state features more specific to an individual agent than the 

aforementioned papers to provide combinations of algorithms for the multiagent system. 
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All environments are the composition of smaller environments.  In the case of 

videogame maps there may be sections of a specific environment that include bottlenecks 

while the other side of the map is completely open.   In these situations, the application of 

a single fixed algorithm may be hindering, and different algorithms are needed.  This 

approach attempts to use state features created using locations for tasks and distances to 

identify an algorithm that may provide the greatest benefit to the agent.  Past research has 

shown that the map influences the path finding algorithm, so each map uses a different 

machine learning model in the meta-level.  

1.2.3 Insights 

 Research into multiagent systems problems posed in Section 1.2.1 and 1.2.2 has 

focused on the system as a whole.  When considering centralized approaches, the agent 

can understand the entirety of the system, but in a decentralized approach this may not be 

the case.  This research looks to apply a metareasoning approach that increases the 

knowledge of how agents in a multiagent system interact when exposed to different 

environments and problems. 

 Experiments in this thesis provide two different perspectives for understanding 

the interrelationships of agents in a multiagent system.  The task allocation problem 

identifies existing features in an agent in a multiagent system that can be used to gain an 

understanding of the computation benefits.  Such a metareasoning policy also brings to 

light the meta-level effects on different sets of algorithms showing that some may benefit 

more than others. 
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 The path finding problem helps us understand not all agents in a multiagent 

system are treated equally.  When moving to a decentralized approach, the agents must 

do calculations on their own and some paths are more difficult to calculate than others.  

This research shows there exists a combination of algorithms in a multiagent system that 

may provide added benefit. 

 Comparing these two problems allows us to identify if this approach can scale 

between the applications of a multiagent system.  The approach is applied to two 

different modes of multiagent metareasoning showing it can be applied in multiple ways 

to different systems.  

  

1.3 Overview 

Chapter 2 of this thesis outlines the work relevant to this research.  Chapter 3 

discusses the multiagent task allocation problem studied here and describes the overall 

metareasoning approach.  It presents a detailed, step-by-step guide explaining how 

metareasoning was applied to the problem.  Finally, the results of the simulation study 

and a summary of the findings are discussed. 

 Chapter 4 explains the multiagent path finding problem and provides an example 

of it being used to address a real-life problem in a warehouse.  It then presents the overall 

approach and a step-by-step guide to solve this problem.  It ends with the results and 

summary of the work. 

 Chapter 5 discusses the findings and insights gained from the research results and 

suggests future work that can be done in this area. 



 

8 

 

Chapter 2: Related Work 

Multiagent task allocation and multiagent path finding are two common problems 

in the multiagent domain.  Each problem has witnessed numerous approaches such as 

single fixed algorithms and meta-level control and monitoring.  

2.1 Multiagent Task Allocation 

One approach to the multiagent task allocation problem is to use a single fixed 

algorithm with a consensus phase [14, 29, 30, 31, 59].  Another approach by Ismail [24] 

includes the use of cost matrices to determine the optimal solution.  Bapat [3] conducted 

research on applications for low communication environments.  No one algorithm has 

provided the best solution in every environment, and differences in the algorithm 

performance were studied in [48]. 

 When there exists a set of fixed algorithms, where no algorithm dominates all 

environments, a metareasoning application could be used as a solution to the algorithm 

selection problem.  Carrillo [12] used a subset of task allocation algorithms in a 

metareasoning policy where a conditional rule set was constructed based on the 

communication quality of the system.  In this approach, when the communication quality 

rose above or dropped below different thresholds, the agents would switch task allocation 

algorithms.  The results showed Carrillo’s approach could improve or maintain 

performance compared to the fixed algorithms.  Herrmann [23] used a neural network to 

determine performance functions for a subset of task allocation algorithms.  This allowed 

the agents to identify the preferred algorithm in a current state.  In the scenarios that were 
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studied, the results of Herrmann’s experiment proved there existed a metareasoning 

approach that outperformed the fixed algorithms. 

2.2 Multiagent Path Finding (MAPF) 

The multiagent path finding problem or MAPF, has been studied for over two 

decades.  Sturtevant [57] created a benchmark set of acceptable maps for the MAPF 

problem.  Stern [56] built upon these maps by generating scenarios and providing 

terminology.  Optimal multiagent path finding algorithms can be divided into 7 different 

categories: suboptimal solvers, reduction-based optimal solvers, A*-based optimal 

solvers, increasing cost tree search (ICTS), conflict-based search (CBS), and sum-of-

costs SAT solver.  Fixed algorithms used for this problem include: D* [55], different 

variations of A* [54], M*[58], ICTS [52], CBS [51], and its different variations.  Felner 

[19] demonstrated that there is no one-size-fits-all-algorithm for all applications.  

Sigurdson [53] provided a deep learning method to construct a metareasoning 

approach for MAPF.  A convolutional neural network was used for image processing to 

identify the best algorithm for a given MAPF problem instance.  The instances were 

identified by their map topologies, distributions of the agents, and other characteristics.  

The distance traveled and goal achievement time were used as metrics and the set of 

algorithms included: Windowed Hierarchical Cooperative A* (WHCA*), flow annotation 

replanning, and bounded rationality A*.  Kaduri [25] used a similar approach and 

compared the convolutional neural network image processing to an extreme gradient 

boosting (XGBoost) supervised learning approach that used MAPF features.  The 

learning approaches were used in combination with algorithms that include EPEA*, A*, 
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ICTS, CBS, MA-CBS, and a heuristic version of CBS.  The results of this paper show 

that using an algorithm selection model resulted in the solution of more problems and a 

shorter runtime compared to the fixed algorithms.  

Different variations of MAPF have been tested in realistic environments that 

extend beyond the discrete MAPF benchmarks.  Li et al. [33] studied a variant of the 

MAPF problem that incorporates multiple tasks per agent.  The study demonstrated the 

use of a windowed low-level solver approach, allowing an agent’s plan to be more pliable 

to adapt to online settings while avoiding waste of computations for the distant future.  

This method was scalable up to 1,000 agents.  This lifelong variation, usually seen in 

large warehouse settings, was first studied by Ma et al. [34, 35].  Håkansson [22] studied 

a similar problem to MAPF and used metareasoning to solve a Traveling Salesman 

Problem (TSP) in a multiagent setting.  This approach used multiple meta-agents to 

monitor static and dynamic characteristics of the environment and determined the fastest 

route possible to solve the problem which included a network structure like the MAPF 

implementation.  It included static variables like speed and distance and dynamic 

variables like weather.   

2. 3 Multiagent Metareasoning 

Metareasoning for an intelligent agent is the application of a three-level reasoning 

structure first depicted in Cox and Raja [16] and shown in Figure 2.1.  The first level, or 

ground level, represents the computations done by an agent that represent movement or 

sensing.  The second level, or object level, represents the computations done by an agent 

that contribute to the decision-making process of an agent.  The outputs of this level are 
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the inputs to the ground level action computations.  The third level, or meta-level, 

represents the agent’s internal understanding of the benefits of the object level.  

 

Figure 2.1: Three level structure of metareasoning 

Depending on the multiagent system used, the application of metareasoning for 

these agents’ changes.  In centralized systems the structure is the same as in Figure 2.1 

because there exists only one object level.  In our metareasoning approach each of the 

agents has its own object level that is monitored and controlled by an agent’s meta-level.  

This can be referred to as an independent metareasoning structure [32].  The agents 

operate with full communication to execute the object level while they communicate path 

and location information.  The structure for the application used in this paper can be seen 

below in Figure 2.2.  

There exists other multiagent metareasoning modes that have not been applied to 

the problems in Sections 2.1 and 2.2.  The set of modes for multiagent metareasoning 

includes stopping an algorithm, modifying parameter values, modifying reasoning rules, 

authorizing communication, sharing information, designing coordination, and redefining 

relationships.  Langlois et al. [32] surveyed these multiagent metreasoning modes as well 

as the structures and problems. 
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Figure 2.2: Independent metareasoning structure for state feature monitoring and 

control (based on a figure in Langlois et al. [32]) 

 The algorithm-stopping approach has a meta-level that determines when the 

object-level computation should stop to allow for other computations and lower-level 

actions.  Zilberstein and Carlin [11, 66] demonstrated this approach using a meta-level 

Markov Decision Process (MDP) as a probabilistic performance profile to monitor and 

control an anytime algorithm in a multiagent collaborative decision-making scenario.  

The MDP determined when an agent should stop running the anytime algorithm to 

provide the greatest utility to the agent. 

 The parameter modification approach contains reasoning algorithms composed of 

parameter values.  The parameters can be modified when conditions change to improve 

performance.  Pinyol and Sabater-Mir [43] demonstrated this approach in a marketplace 

environment where buyer agents were given false or true information.  In instances where 

the agents were able to modify their parameters based on reputation information, the 

buyer agents had increased performance.  Rubenstein et al. [47] demonstrated this 



 

13 

 

approach on search algorithms.  This change affected the computational resources as well 

as the utility of the solution.  Noda and Ohta [39] modified learning parameters based on 

performance to encourage either exploration or exploitation. 

 The rule modification approach changes the rules by which the multiagent system 

must interact, usually a priori determined by the system designers.  Artikis [2] proposed a 

framework where the agents were able to vote on their own interest so that the rules of 

the system would benefit the majority. 

 The communication authorization approach occurs when agents must use cost or 

benefit computations to determine whether communication is needed.  Xuan et al. [62] 

used different heuristics for the meta-level control policies to determine the value of the 

communication.  In this work, the policies that incorporated communication cost had the 

greatest performance.  Becker et al. [4] proposed an offline policy to calculate the value 

of communication based on its beliefs of the other agents.  If the value was positive, the 

agents would communicate. 

 The information-sharing approach contains a meta-level that uses deduction to 

reason about the object-level of other agents.  The meta-level in this case provides 

controls without using communication instead using its knowledge of the allowable 

actions for the agents to understand what will occur [40]. 

 The coordination design approach has the agents break down the MAS into 

smaller groups to reduce the cost of communication in the system.  Zhang and Lesser 

[65] had the agents calculate the performance costs for group combinations.  The smallest 

group for each agent that provided an acceptable performance was chosen.  Brueckner [8] 
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used meta-agents to cluster groups which demonstrated increased effectiveness and 

reduced metareasoning overhead.  

 The relationship-redefinition approach focuses on the interrelationships of the 

agents inside the MAS.  Changing these relationships changes the reasoning of the 

agents.  Kota et al. [26] studied a meta-level that determined when agents should redefine 

their relationships.  The study determined that a poorly performing agent will prefer to 

change the relationship despite the reorganization cost.  Ahmadi and Allan [1] studied 

how limiting the amount of relationships to redefine can reduce the cost of 

reorganization. 

2.4 Discussion 

Recently the focus on the multiagent task allocation problem has been based on 

minimizing the total distance traveled [23] or creating robustness in low or varying 

communication [3, 12].  As research moves toward creating higher quality algorithms, 

the level of complexity and communication increases as well.  To be effective, the task 

allocation algorithms must be run constantly throughout the agents’ mission to maintain 

system performance due to the completion of tasks or the identification of new tasks.  

This results in the algorithm being run even when the results will not change the 

performance.  Such overhead requires computational resources that could be diverted to 

other aspects of the agent.  This issue is important because real-world constraints such as 

SWaP, (size, weight, and power) and cost may limit the computational hardware that can 

be applied to a multiagent system.  These values constrain the agents in a multiagent 

structure to hardware/specific computational ability.  As the size and weight of the agents 
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decrease, the computational abilities of the agents decrease too, therefore the method of 

computation the agents use becomes critical.  An example of this can be seen in the 

comparison between reinforcement learning and supervised learning.  Reinforcement 

learning allows for adaptivity throughout the mission but the amount of computation that 

must be undergone at each step provides a significant overhead [10, 27].  Current 

research has not focused on the specific task of reducing the amount of computation in 

task allocation algorithms or the effects on the multiagent system. 

The multiagent path finding problem has been studied mainly from the view of 

fixed algorithms like WHCA*, CBS, and ICTS.  The current state of research in this field 

has not identified a single algorithm that performs best in every scenario which has 

encouraged the use of metareasoning to solve this problem.  The metareasoning 

approaches used to solve the algorithm selection problem in MAPF include machine 

learning applied to map image processing and map features to identify the best 

algorithms for a particular map.  These metareasoning approaches consider the map 

attributes only and they apply one algorithm per map for the multiagent system.  In 

Chapter 4, this thesis describes research using a metareasoning approach that allows each 

agent to select the path finding algorithm best suited to its own current state.  This 

approach allows for the agents to flexibly determine which algorithm works best for their 

situation instead of the entirety of the system.  The CBS, WHCA*, and LRA* algorithms 

were included in this approach.   
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Chapter 3: Decentralized Multiagent Task Allocation 

This chapter describes a multiagent task allocation problem and the development 

and testing of a metareasoning approach that determines when an agent should run a task 

allocation algorithm.  The chapter includes a problem description, overall approach 

explanation, detailed steps, results, and discussion of implications. 

3.1 Specific Research Gaps 

As stated in Section 2.4, this chapter focuses on the reduction of computation in 

task allocation algorithms and its effects in a decentralized multiagent system.  This 

chapter uses state features based on distances to provide individualized states for each 

agent.  This application has never been done in multiagent task allocation.  This method 

allows the agents to use information from past missions to understand its current 

computational benefits at each point in time. 

3.2 Problem Description 

This chapter investigates two scenarios for multiagent task allocation: (1) 

collaborative visit and (2) collaborative search and visit.  Both scenarios occur in a two-

dimensional square workspace.  The collaborative visit scenario has stationary target set 

𝑈 = {𝑢1, … , 𝑢𝑛} , which the agents know a priori.  The agents will be assigned to a set of 

tasks 𝑇 = {𝑡1, … , 𝑡𝑚}.  In this scenario 𝑇 = 𝑈 throughout the agents’ mission.  A target is 

considered visited if an agent moves within the threshold distance 𝛿𝑑𝑇 of the target’s 

location.  The mission ends when every target has been visited at least once. 
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The collaborative search and visit scenario has a stationary target set   𝑈 =

{𝑢1, … , 𝑢𝑛}, but these are initially unknown.  These targets are in a square workspace that 

is separated into non-overlapping grid cells 𝐺 = {𝑔1, … , 𝑔𝑟} that are known a priori.  

Initially 𝑈 is empty and 𝑇 = 𝐺, but, as the agents move around the workspace, they use 

their sensors (which have a detection radius of 𝑅𝑣) to detect targets.  A cell is considered 

visited when an agent reaches the center of the cell; at this point the agent’s sensor radius 

covers the entire cell, and, if any targets are in this cell, the agent detects these targets and 

shares their locations with the other agents.  The set 𝑈 of known targets thus grows as the 

mission progresses, and 𝑇 = 𝐺 ∪ 𝑈.  After all the cells and targets have been visited at 

least once, the mission is complete. 

3.3 Overall Approach 

This metareasoning approach is applied to two coordination algorithms: 

Consensus Based Auction Algorithm (CBAA) and Decentralized Hungarian algorithm 

(DHBA).  CBAA [9] and DHBA [24] are single task allocation algorithms that assign 

one task per algorithm cycle.  CBAA uses auctions to determine which agent will be 

visiting which target.  DHBA uses a cost matrix to identify which target an agent is 

assigned.  For this research we will be using the min max variations of these algorithms 

(CBAAMM and DHBAMM).  The two algorithms are variations of CBAA and DHBA 

that use the min-max distance travelled objective.  These variations use the current 

distance travelled by the agents as well as the distance to the target to create their bid 

evaluations.  Both algorithms require communication with the rest of the system to 

exchange their bid or cost information at each time step resulting in the appropriate 



 

18 

 

task.  In the scenarios considered in this chapter, communication is perfectly reliable (no 

communication packets are dropped), and every agent can communicate with every other 

agent.  The agents communicate their current locations at every time step, and the agents 

communicate their task allocations whenever they run the task coordination algorithm.  

A multiagent simulation model was used to evaluate the performance of the task 

coordination algorithms.  The simulation software used for this research was described by 

Nayak et al. [48].  We generated multiple instances by randomly selecting target 

locations. 

During the simulated mission, each agent runs the task coordination algorithm 

(CBAAMM or DHBAMM) every 0.1 seconds.  Rerunning the algorithm increases the 

number of calculations and messages.  Due to the static nature of the targets and the logic 

of the algorithms, after an agent has selected a task, the only reason to switch tasks is due 

to another agent being assigned to that task and closer to it.  In any other instance the 

agent is rerunning the algorithm and continuously sending messages without new useful 

information.  This unnecessary computation and communication are the motivation for 

using metareasoning to monitor and control the decision making so that computational 

and communication resources are used efficiently.   

The concept behind the metareasoning policy was to run the algorithm only when 

it might provide benefit.  If the algorithm did not change the current task assignment, 

then running it at that time was not valuable. 

To implement this concept, we developed a metareasoning policy in which the 

agent’s meta-level (which is monitoring and controlling the agent’s decision-making 
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process) determines, based on the current state, whether to run the algorithm.  This was 

implemented as a sequence of decision trees that were learned using XGBoost [13, 36, 

37].  XGBoost was chosen because it performs well when data is scarce. 

This approach uses four steps: (1) run simulations of the scenarios to determine 

the results of the algorithms during these missions, (2) run each algorithm offline to 

construct optimal task assignment, which determines whether running it is needed, (3) 

use extreme gradient boosting to learn a classification model, and (4) run additional 

simulations of the scenarios to evaluate the impact of the learned metareasoning policy 

(and other benchmark policies). 

3.4 Explanation of Steps 

Figure 1 depicts some details of this approach.  The process begins with 

simulating 240 randomly generated instances for each scenario-algorithm combination 

(listed in Table 1) and ends with a classification model made of a sequence of decision 

trees that can be used by each agent.  Each scenario-algorithm combination has its own 

model.  (That is, we performed this process four times; once for each combination of 

scenario and algorithm.)  The following subsections describe the steps in this 

process.  The simulation, algorithms, and logging in this chapter was developed by Nayak 

et al. [48]. 

3.4.1 Online Simulation 

This research generated 240 instances of target locations and used these for each 

algorithm-scenario combination.  The workspace was a square, and the length of each 
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side was 100 units.  Three values were considered for the number of targets (15, 20, and 

25), four values for the number of circular “clusters” (1, 2, 3, and 4), and 20 values for 

the cluster radius (5, 6, …, 24).   For each combination of these values, an instance was 

generated.  In an instance with more and larger clusters, the target locations were spread 

over the entire workspace.  In an instance with only one small cluster, the target locations 

were grouped closer to each other.  To create an instance, cluster centers were randomly 

selected so that the entire cluster was inside the workspace.  Then, for each target, the 

cluster and the “offset” between the target and the cluster center were randomly 

generated, which determined the target’s location. 

In the search-and-visit scenario, the grid cells were squares, and the length of each 

side was 20 units.  In both scenarios, the agents moved at a constant speed of 8 units per 

second.  

Next each instance was simulated, in which each agent ran the task coordination 

algorithm every 0.1 seconds and recorded what happened as the agents completed their 

mission, which yielded the log files. 

3.4.2 Log File 

During the simulated mission, at each time step (0.1 seconds), each agent 

recorded its state information in a log file.  At each time step, the log file lists all known 

target locations (x, y), all agent locations (x, y), the current assigned target of each agent, 

the number of times the algorithm has run, and the current time step of the 

simulation.  Every agent has its own log file.  For each instance, the log files for those 
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agents were parsed and combined into a new file with comma-separated values (CSV).  

This new file is called the Historical CSV. 

 

Figure 3.1: Path for determining metareasoning policies.  White boxes represent files 

used to store of process data.  Blue arrows represent an action, yellow arrows represent 

imports, and green arrows identify added functionalities. 

 

Table 3.1: Instance Characteristics 

Task  

Allocation Algorithm 

Scenario Number of 

agents 

Number of 

targets 

Number of 

clusters 

Cluster 

radius 

CBAAMM Visit 5 15, 20, 25 1, 2, 3, 4 5, 6, …, 24 

CBAAMM Search and Visit 5 15, 20, 25 1, 2, 3, 4 5, 6, …, 24 

DHBAMM Visit 5 15, 20, 25 1, 2, 3, 4 5, 6, …, 24 

DHBAMM Search and Visit 5 15, 20, 25 1, 2, 3, 4 5, 6, …, 24 

3.4.3 Historical CSV 

For each instance, the historical CSV file contains the locations of every known 

target and agent in the simulation at each time step during that mission.  (In the search-
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and-visit scenario, the locations of unknown targets are only populated in the CSV once 

they have been found by an agent.)  It also records the current task assignments. 

Once a simulation has completed the historical CSV is added to a larger 

cumulative historical file that contains the data from all previous simulations.  The array 

that results from the combination of all the historical CSVs is sparse.  This is due to the 

timestep after an agent completes a task where it is reporting the completed task and 

running the algorithm.  These actions are completed in this timestep and the assignment 

of a new task is not given.  This does not occur when an agent's task is completed by 

another agent because the agent is not responsible for reporting the completion.  

 3.4.4 Offline Algorithm 

Offline the historical data can be used to identify the closest task for each agent 

without tasking more than one agent to the same target.  The task assignment occurs 

through the task selection algorithm, but it does not allow two agents to target the same 

task at once.  The online algorithm has specific instances where an agent is outbid after it 

has already committed to a target and it continues until the target until it has been 

completed no matter if another agent has been assigned.  The offline algorithm results in 

the agents only assigning tasks based on the distance metric during the current time 

step.  The pseudocode for this algorithm can be found in Algorithm 1. 

The offline algorithm assigns a task to each agent; this task may be the same as 

the running task (the task that was determined by the agent online that was stored in the 

historical CSV), or it may be a different task.  Moments where the task assignment is 

different include timesteps where the agent's running task is outbid by another agent.  
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Here the agent should select a new task even though its running task has not been 

completed.  In the online simulation an agent may select a task because all the other 

agents are currently tasked to different targets.  Later, when one of the other agents 

completes its task it may be the closest to the running task of another agent.  This results 

in two agents tasked to the same target.  It is this instance where an agent would benefit 

in running the algorithm.  

When the offline task assignment is the same as the online task for a timestep the 

agent is tasked with its closest target and no other agent is closer and tasked to that target.  

In this situation the agent is using computational resources to determine the most optimal 

task with no change in tasking.  These are the instances where the agent is expending 

resources that result in the same optimal conclusions.  The decision-making algorithms 

(CBAAMM and DHBAMM) also include the expense of resources to communicate 

during each run so one run expends communication and computational resources. 

At each time step, the offline algorithm uses the data in the Historical CSV file to 

assign targets to the agents.  It then compares its assignment to the assignment that 

occurred during the simulation (recorded in the Historical CSV file) to generate the 

Performance CSV file. 

3.4.5 Performance and Features CSV 

For each time step in the instance, the performance CSV file indicates, for each 

agent, whether the target that the offline algorithm assigned is the same as the target that 

the task coordination algorithm (CBAAMM or DHBAMM) assigned.  This is called a 

“supervisory signal.”  Let sit be the supervisory signal for agent i at time step t.  If these 
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targets are different, then sit = 1.  If these targets are the same, then sit = 0.  If an agent is 

in operation and the task coordination algorithm returns a Nonvalue and the offline  
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algorithm also returns a Nonvalue, then sit = 0.  If the agent stops operating (ends before 

the simulation ends) it will still report a Nonvalue.  This occurs when the number of 

remaining tasks is less than the number of agents and an agent loses the bid for all the 

tasks to another agent.  The agent does not record a task for this timestep and moves to 

the next timestep.  The result is a sparse dataset with missing task data.  Algorithm 2 

contains the pseudo code used to calculate the values for the Performance CSV.  We used 

this data with the feature data (in the Features CSV file) to learn the classification model 

that was used as the metareasoning policy. 

The features used in this study were based solely from features that are 

independent of time.  The features were represented with different measures of distance 

available in the simulation.  The features used in this research include Target Distance, 

Closest Agent, and Cumulative Distance.  These features are calculated for each agent 

using its position, the positions of the other agents, and the target’s position.  Let 𝑛 be the 
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number of agents.  Let (𝑢𝛼𝑥, 𝑢𝛼𝑦) be the current position of agent 𝑢𝛼.  Let (𝑢𝑖𝑥, 𝑢𝑖𝑦) be 

the current position of agent 𝑢𝑖.  Let (𝑡𝛼𝑥, 𝑡𝛼𝑦) be the position of the target that has been 

assigned to agent 𝑢𝑎.  Let 𝑇𝐷𝛼, the target distance feature, be the distance from the agent 

to its assigned target.  Let 𝑑𝛼𝑖 be the distance from agent 𝑢𝛼 to agent 𝑢𝑖.  Let 𝐶𝐴𝛼, the 

closest agent feature, be the distance to the closest agent.   Let 𝐶𝐷𝛼, the cumulative 

distance feature, be the sum of the distances from the agent to all other agents.  The 

features are calculated as follows:  

𝑇𝐷𝛼 = √(𝑢𝛼𝑥 −  𝑡𝛼𝑥)2  + (𝑢𝛼𝑦  − 𝑡𝛼𝑦)2 

𝑑𝛼𝑖 = √(𝑢𝛼𝑥  −  𝑢𝑖𝑥)2 + (𝑢𝛼𝑦  − 𝑢𝑖𝑦)2    

𝐶𝐴𝛼 = 𝑚𝑖𝑛{𝑑𝛼𝑖: 𝑖 ≠  𝛼} 

   𝐶𝐷𝛼 = ∑ 𝑑𝛼𝑖

𝑛

𝑖=1

 

The features were calculated for each agent at every time step.  Since the agents are 

homogeneous, operate under the same reasoning and have the same physical 

characteristics, each time step results in n data points. 

3.4.6 Extreme Gradient Boosting 

After the four algorithm-scenario combinations and 240 instances were run for 

each combination, the simulations produced 648,839 data points.  (One data point 

contained the features for one-time step and the supervisory signals for a single agent.)  
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We then created a training dataset with 80% of these data points and a test dataset with 

the other 20%.   

For each algorithm-scenario combination, we used XGBoost 

(https://github.com/dmlc/xgboost)  to create a classification model for each state.  We 

used gamma regularization so that the decision tree was not overfit to the training data.  

XGBoost handles sparse data internally.  A description of how XGBoost handles sparse 

matrices can be found in Mitchell et al. [36].  From the Performance CSV file and the 

Feature CSV file, XGBoost created a sequence of decision trees whose branches split 

based on a logical operator and a feature value and associated with each leaf node with a 

𝑙𝑜𝑔 (𝑜𝑑𝑑𝑠) value for the supervisory signal sit.  Thus, the sequence of trees classifies a 

given state through a summation of the 𝑙𝑜𝑔 (𝑜𝑑𝑑𝑠)  values for each tree in the sequence.  

Using the logistic function to interpret this value we get a probability that determines 

whether the agent should run the task coordination algorithm. 

The values for the leaves are equal to the similarity score which is calculated 

using the residuals of the performance value for the data points classified to the leaf (k) to 

the current probability (𝑅) and the previous probability that the agent will need to run the 

algorithm (P). 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =  
∑ 𝑅𝑖

𝑘
𝑖=1

∑ 𝑃𝑖(1 −  𝑃𝑖)
𝑘
𝑖=1

 

We used cross validation to tune the XGBoost parameters.  To maximize 

classification accuracy, we used the multi:softprob multiclass classification approach, 

with a learning rate (eta) of 0.1. Table 2 includes the ranges of max depth, minimum 

about:blank
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child weight, gamma regularization, and column sample by tree used to determine the 

best combination through cross validation. 

Table 3.2: Parameter descriptions and values used in task allocation cross validation  

Parameter Description Possible 

Values 

Number of classes This is the number of classes that machine learning must classify 2 

Max depth This is the depth to which the tree should be split 3 - 6 

Eta The learning rate 0.1 

Minimum child 

weight 

This is the sum of the instance weight.  If a leaf node is less than 

the minimum child weight it is pruned 

1, 3, 5, 7, 9, 

13 

Gamma 

regularization 

Minimum loss reduction required to make a further partition on 

a leaf node of the tree 

0 - 10 

Column sample by 

tree 

Subsample of columns when constructing each tree 0.3, 0.5, 0.7, 

0.9 

3.4.7 Online Algorithm with Metareasoning 

All 240 instances were simulated for each algorithm-scenario combination under 

three new meta-level policies: (1) metareasoning, (2) random, and (3) necessary. 

When using the metareasoning policy, an agent uses the appropriate decision tree 

(the one for that algorithm-scenario combination) to determine whether to run the task 

coordination algorithm at each time step.  It should be noted that, to use this policy, every 

agent must communicate to every other agent its current location at every time step.  This 

is part of the overhead of the metareasoning policy. 

When using the random policy, an agent will use the task coordination algorithm 

at a given time step if a random value between 0 and 1 is less than or equal to 0.5.  That 

is, the agent uses the algorithm 50% of the time. 
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When using the necessary policy, an agent uses the task coordination algorithm 

only when it has completed its task (visited a target or cell) and needs a new target or cell 

to visit. 

The original simulation results, when the agents used no meta-level policy, was 

denoted as the “control” policy.  The random and necessary policies were used as 

benchmarks for assessing the performance of the metareasoning policy. 

3.5 Results 

This section contains the results of the machine learning cross validation tests, the 

feature importance results, and the results for all the algorithm-scenario combinations. 

3.5.1 Cross Validation and Importance Results 

Before running the cross validation, I determined which of the two classification 

methods I should use: multi:softprob or multi:softmax.  Softmax outputs a class output (l 

or 0 in this case); softprob outputs a vector of probabilities for each of the classes (Ex. 

0.66 and 0.34).  Using the same number of classes (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 2), the max 

depth (𝑚𝑎𝑥 𝑑𝑒𝑝𝑡ℎ = 3), and learning rate (𝜀 = 0.1) for both classifications I calculated 

the accuracy for classifying the CBAAMM Search and Visit data.  The accuracy when 

using multi:softprob was 91.9%; the accuracy when using multi:softmax was 83.7%. 

The cross validation, using multi:softprob classification, was tested on the 

CBAAMM Search and Visit combination.  This resulted in the values from Table 3.3 

with a gamma value of 0, with an accuracy of 87.8%. 
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Table 3.3: Extreme gradient boosting tuned parameters from CBAAMM, Search and Visit 

Parameter Value 

Number of classes 2 

Max depth 6 

Eta 0.1 

Minimum child weight 1 

Gamma (regularization) 80 

Column sample by tree 0.7 

Although it was the best solution, this parameter set was too complex to implement due 

to its zero-gamma value because this resulted in a total of 64 leaves.  To simplify the 

decision trees a greater gamma value was needed.  Multiple gamma values were tested 

while keeping the other parameters constant.  The goal of this test was to identify the 

trade-off of percent accuracy compared to the simplification of the decision tree.  At a 

gamma value of 0 the decision tree had 64 leaves and 87.8% accuracy.  This would mean 

that there would be a minimum of 32 conditional statements for each tree in the 

classification model.  The larger the tree the larger the computational overhead so the 

goal would be to have less than 10 leaves in each tree.  At a gamma value of 80 the 

decision trees had about 10 leaves with 87.3%accuracy.  Due to the small change in 

accuracy and low complexity the gamma parameter was chosen to be 80.  The parameters 

determined in this cross-validation assessment were used in the extreme gradient 

boosting for all the other algorithm-scenario combinations.  They can be seen in Table 3.  

The accuracy results for the CBAAMM Visit, DHBAMM Search and Visit, and the 

DHBAMM Visit scenario were 78.7%, 86.3%, and 78.4% respectively using these 

parameters. 
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The supervised learning also results in the identification of the feature importance 

in each of the combinations.  The features are given an F score when the tree is 

constructed; a greater F score indicates that the feature has more influence on the tree.  

The feature importance values can be seen in Table 4.  These suggest that the 

𝑇𝐷𝛼 feature is more influential than the other features. 

Table 3.4: F Score (Features Importance) values for all algorithm scenario combinations 

Features 

CBAAMM 

Visit 

CBAAMM 

S&V 

DHBAMM 

Visit 

DHBAMM 

S&V 

𝑇𝐷𝛼 160 162 100 117 

𝐶𝐴𝛼 105 127 62 84 

𝐶𝐷𝛼 77 101 40 42 

3.5.2 Simulation Results 

These simulations represented the control for the experiments.  Once the meta-

level controls were identified from each combination another 240 simulations were run 

with inclusion of the meta-level.  Simulations with a 50% random policy and task 

completion policy were run for comparison.  The random policy is like running the 

decision-making algorithm every 0.2 seconds.  The task completion policy runs the 

algorithm only when the task an agent has been assigned to has been completed. 

For each algorithm-scenario combination, meta-level policy (control, 

metareasoning, random, and necessary), and instance, we assessed performance using 

three metrics: distance travelled, total messages exchanged, and total runs.  The distance 

travelled metric is the total distance that all the agents traveled during the mission.  The 

total messages exchanged metric is the total number of messages sent by all agents during 

the mission.  The total runs metric is the total number of times that the agents ran the task 



 

32 

 

coordination algorithm during the mission.  Figures 3.2, 3.3, and 3.4 show the 

distributions of these metrics for each policy in each algorithm-scenario combination.   

 

Figure 3.2: Distance travelled for each algorithm scenario combination. Red dots 

represent averages, the red lines represent the medians, and the box represents the 

middle two quartiles. 
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Figure 3.3: Messages exchanged for each algorithm scenario combination 

 



 

34 

 

 

Figure 3.4: Total runs for each algorithm scenario combination 

3.6 Discussion 

The baseline policy, in which the agents ran the task coordination algorithm every 

time step (labelled “Control” in Figures 3.2, 3.3, and 3.4), yielded lower mean and 

median distance values than the metareasoning policy in three of the four algorithm-

scenario combinations.  These values were smaller in the CBAAMM scenarios than the 

DHBAMM scenarios.  The baseline policy yielded much larger values for the messages 
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exchanged and total runs metrics, however.  Thus, it appears that the metareasoning 

policy can reduce computational effort and communication costs without degrading 

system performance (total distance); indeed, in one case (using CBAAMM in the search-

and-visit scenario), the system performance was not worse.  Although the necessary 

policy improved the messages exchanged and total runs metrics even more than the 

metareasoning policy, it also degraded system performance more. 

The baseline policy (which runs the algorithm every time step) serves as an upper 

bound on the messages exchanged and total runs metrics.  The random policy runs the 

algorithm half as often as the control.  In all the combinations the metareasoning policy 

yields values less than the random policy and in the case of DHBAMM it is similar to the 

messages exchanged and total runs of the necessary policy.  

 The control policy exchanged the most messages and performed the algorithm 

significantly more than any of the other methods.  As shown in Figures 3.3 and 3.4, 

running the algorithm constantly acts as an upper bound for the number of messages 

transmitted and algorithmic runs per simulation.  This is a result of the policy running 

every 0.1 seconds; although the other policies determine whether the algorithm will run, 

the control automatically runs the algorithm.  Running the algorithm results in a sending 

of bids messages to the other agents.  Running the algorithm in the necessary situations 

results in the least number of algorithmic runs to complete and therefore the least 

messages.  The performance of the random policy, which ran the task allocation 

algorithm 50% of the time, was near the average of the performance of the control and 

necessary policies, as shown in Figures 3.3 and 3.4.  The metareasoning policy does not 

follow the same trend of Figure 3.2.  The metareasoning provides a reduction in the 
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overall messages passed and a reduction in algorithmic runs.  The metareasoning is 

consistently lower than the random policy in all algorithm scenario combinations and in 

the CBAAMM instances it completes the simulation with less distance. 

 Not all the features in the supervised learning were used to construct the 

classification model.  The cumulative feature has no logical expressions in any of the 

scenarios.  Given the two features used for these decision trees, XGBoost was able to 

obtain a decision tree that provided a structure that decreased the messages and the 

computational overhead of the decision-making process while minimally affecting the 

performance of the system.  The decision trees used in this study were all less than 90% 

accurate.  Increasing the classification model’s accuracy would improve an agent’s ability 

to detect instances when it would otherwise be over computing.  Since the occurrences of 

multiple agents on a single task is less likely than the agents going to different tasks this 

would reduce the algorithmic runs further as well as the communication of the system.  

However, this increased accuracy will also increase the model complexity and a larger 

computational overhead for the model. 

 Overall, these results indicate that a metareasoning policy that is trained using 

supervised learning can decrease overhead while maintaining performance.  The 

approach was also able to scale between the different algorithms and environment 

complexities while producing similar results.  The benefits of the metareasoning can 

differ based on these algorithms and scenarios.  

 

 



 

37 

 

Chapter 4: Decentralized Multiagent Path Finding 

This chapter describes the multiagent path finding problem and the development 

and testing of a metareasoning approach that determines out of a set of path finding 

algorithms which one should be executed for each agent.  The approach is implemented 

on a decentralized system using optimal and suboptimal centralized path planning 

algorithms that have been converted into their decentralized logical equivalents.  The 

chapter includes a problem description, overall approach explanation, detailed steps, 

results, and discussion of implications. 

4.1 Specific Research Question 

The lack of a single dominating fixed algorithm for the MAPF has motivated 

research on the relevant algorithm selection problem.  Current metareasoning research 

used to solve this problem has utilized map features to determine which of the multiagent 

path finding algorithms are best suited for a specified map [25, 53].  Although this 

approach has provided positive results, it has only focused on the problem from a 

centralized system viewpoint.  This chapter attempts to identify whether using the 

individualized state features of an agent in a decentralized multiagent system to solve the 

algorithm selection problem for MAPF will provide better results than the individual 

fixed optimal and suboptimal algorithms.  The algorithms used in this section include 

LRA*, WHCA*, and CBS. 
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4.2 Problem Description 

The classical multi-agent pathfinding (MAPF) problem with k agents is defined 

by a tuple {𝐺, 𝑠, 𝑧} where 𝐺 = (𝑉, 𝐸) is an undirected graph, 𝑠 ∶ [1, … , 𝑘]  → 𝑉 maps an 

agent to its source vertex, and 𝑧 ∶  [1, … , 𝑘]  → 𝑉 maps an agent to its target vertex [56].  

The timeline is a discrete sequence that begins at 𝑡0, and agent 𝑎𝑖 is at 𝑠𝑖 at time 𝑡0.  

During each time step an agent can complete a single action.  The agent can complete a 

wait or move action at each time step.  A wait action is one where the result of the action 

is the current vertex.  A move action is one where the agent moves to a vertex that is 

adjacent to the current position.  During a move action the agent must move along an 

edge denoted by (𝑣, 𝑣’) ∈ 𝐸.  A solution to the classical MAPF is a set 𝑝 = {𝑝1, … , 𝑝𝑘} of 

paths, one for each agent, where a path is a sequence of wait and move actions where the 

agents can move from source to target without conflicts.  In this research we consider two 

different types of conflicts: swapping conflicts and vertex conflicts.  We will refer to 

these as edge collisions and node collisions respectively in this paper.  An edge collision 

occurs when two agents switch vertices in a time step resulting in them traveling on the 

same edge.  A node collision occurs when two agents arrive at the same node at the same 

time step.  These collisions are used with the algorithms to help agents avoid following 

faulty paths. 

 Sturtevant [57] proposed a set of benchmark maps 𝑀 that includes warehouses, 

mazes, video game maps, and random environments.  This study used three maps, each of 

a different type (warehouse, videogame, and random) that includes fewer than 12,000 

vertices.  When acting the agents will only be able to move to four adjacent vertices other 
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than its current vertex, otherwise known as a 2𝑛 neighborhood grid where n is equal to 2.  

This means agents may only move in the x and y direction, and they may not move on a 

diagonal.  We studied a decentralized multiagent system using a decoupled path finding 

approach, while trying to minimize the sum-of-costs (the sum of all individual path costs) 

and minimize the sum of the computational time for all agents.  The source and goal 

nodes were randomly generated, and the maps chosen will not have any isolated portions 

that would otherwise lead to the inability for an agent to determine a path. 

4.3 Overall Approach 

The algorithms used in this study are LRA* [64], WHCA* [54], and CBS [51].  

These three algorithms were chosen due to their use of the A* algorithm, their ability to 

be converted into a decentralized form in full communication, and their temporal 

relationship to collision checking.  A description of these algorithms can be found in 

Section 4.4.  Other algorithms like the complete M* were not included because they do 

not enhance the testing of different collision checking times. 

 The metareasoning approach used in this research is Selecting a Reasoning 

Algorithm.  That is, each agent’s meta-level chooses the algorithm that it will use to find 

its path.  No matter the map or the agent, the decision is based on the understanding of 

the state features.  It will then choose which of the algorithms will provide the most 

benefit. 

As explained in Section 4.5, we first ran the fixed algorithms on each of the maps 

to collect state and performance data.  At the start of each run distance-based state 

features are used to gain an understanding of the current situation for each agent.  These 
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features do not include any information about the environment, instead they only 

consider the magnitude of the distances to the other agents as well as the magnitude of 

the distance to the targets.  They also use the average of the distances between the agents 

and the source to target distances.  Once all the runs were complete the information was 

processed using XGBoost.  Both classification and regression were used.  

 Once the models were constructed a subsection of the runs were conducted a 

second time.  During a run, each agent used the classification or regression models to 

determine which of the algorithms was best suited for the state at 𝑡0 depending on the 

metric used to create the model.  In both cases the model is trying to minimize the metric.  

The metrics used were the sum-of-costs and the sum of computational time. 

4.4 MAPF Algorithms Used 

Local Repair A* (LRA*) is a search-based solver [54] which comes from the 

brute force planner developed in [63].  It allows the agents to calculate their optimal paths 

excluding the other agents.  The agents then begin to follow their paths until a collision is 

imminent.  Before an agent moves into a position that would result in a collision (edge 

collision or node collision) the agent recalculates the rest of its path.  During the 

recalculation, the agent considers the collision resulting node as an obstacle for the next 

time step, the time step at which the collision would have occurred.  This collision check 

happens three times so that new paths do not result in new collisions.  To implement this 

algorithm, the agents must have the ability to perceive two nodes in each direction from 

the current location.  These responsive traits tend to result in a difficulty in bottleneck 

environments where there are many agents.  Silver [54] noted that this type of a situation 
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causes the algorithm to rerun at every time step causing the agent to cycle between two 

adjacent vertices.   

 Windowed Hierarchical Cooperative A*(WHCA*) is also a search-based solver 

[54].  WHCA* uses A* initially to compute the optimal path of an agent however after an 

agent has computed the optimal path the agent must check a small portion of it before it 

is accepted.  The agents must check their paths with a global reservation table for a 

specified window, which is a fixed number of future time steps.  After completing the 

checks if an agent does not find any conflict the agent may proceed and update the 

reservation table.  If it does find a conflict, the agent must run the algorithm again using 

the current reservation table as a set of constraints in determining the new path.  The 

agents do these windowed checks synchronously when they reach the midpoint of the 

reservation table.  For example, if the window is set to be sixteen when the agents reach 

the eighth vertex in the table it will be shifted forward.  The current vertex becomes the 

first vertex in the reservation table and the following vertices are populated.  This 

algorithm is known in research to be centralized but the application in this research 

allows the agents to share the current reservation table with the next agent in the 

hierarchy.  By following this process, the structure is maintained, and each agent can 

calculate the path with A* and the reservation table constraints. 

 The Conflict Based Search (CBS) algorithm is a two-level solver that uses A* in 

the low-level and a constraint tree in high-level [51].  Initially A* is used to determine the 

optimal paths for each of the agents.  A single agent is then assigned by design to check if 

any conflicts exist in the paths.  If no conflicts exist, the initial paths are collision free and 

accepted.  If a conflict does exist two nodes are created with the paths involved, agents 
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involved, and time of occurrence.  The agent that discovered the conflict must run the A* 

algorithm in each node using the conflict vertex and time as a constraint.  If the agent 

determines nonconflicting paths in one node while the other node contains a conflict the 

non-conflicting paths are returned.  If both nodes have non-conflicting paths the sum-of-

costs of the paths is taken and the one with the lesser value is returned.  The node with the 

lowest sum-of-costs becomes the paths and constraints used in the next iteration.  CBS is 

known to be a centralized algorithm, but Sharon [51] described that if a system had full 

communication and was fully cooperative it would be logically equivalent to a 

decentralized system.  In this research CBS has been constructed in this decentralized 

manner.  When the branch of a constraint tree is split into two nodes one agent out of the 

set of agents replans its path.  If this new node is the lowest cost out of all nodes than the 

agent whose path was replanned is responsible for the next iteration of conflict checks 

and replanning.  This is made possible because the new plans are communicated to all 

agents and the algorithm runs through any agent that has needed to replan its path.  

 The metareasoning approaches allow for multiple algorithms to be used in the 

system which provides an issue of conflict resolution.  To solve this problem each agent 

uses the LRA* algorithm to resolve conflicts that wouldn’t occur in the single fixed 

algorithm implementations.  The WCHA* and CBS algorithms don’t include agents in 

their solutions that do not run the same algorithm.  For example, the CBS algorithm only 

runs the conflict checking and replanning for the set of agents that are running the CBS 

algorithm. 
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4.5 Explanation of Steps 

This approach relies on data from initial experiments that can be used for training 

of a supervised machine learning model.  The initial experiments include testing on three 

MAPF benchmark maps [56], three fixed path finding algorithms, and two metareasoning 

approaches trained using XGBoost. XGBoost was chosen because of successful 

metareasoning application in Kaduri et al. [25]. 

4.5.1 Scenario Generation 

Each fixed algorithm will be run with sizes of multiagent systems ranging from 

10 to 70.  As the size of the multiagent system increases the number of runs decreases.  

This is done because the agents log their state features at the beginning of the simulation 

thus the number of data points in a single run is dependent on the size of the multiagent 

system.  There will be 500 runs per algorithm for each of the maps, this is a total of 1,500 

initial runs.  This will result in 16,900 data points for each of the maps per algorithm. 

The maps chosen for this experiment include three types: warehouse, video game, and 

random.  Due to the number of runs needed per map we were unable to use all the maps 

from the benchmark set.  Each of the maps chosen were selected based on the number of 

nodes in the map.  Due to the application of this approach in MATLAB, medium size 

maps (about 12,000 nodes or less) were chosen.  The specific maps chosen were the 

warehouse 10-20-10-2-2 map, the lt_gallowstemplar_n map, and the random 64-64-20 

map.  These maps can be found at https://movingai.com/benchmarks/mapf/index.html  

[57], and they will be referred to as warehouse, gallows, and random respectively and 

about:blank
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they can be seen in Figure 4.1.  Table 4.1 contains the design of experiments for the 

initial tests.  

(a)                                                                    (b) 

      

 

(c) 

Figure 4.1: Maps used in this research: (a) warehouse, (b) gallows, (c) random. 

 

 These algorithms were also tested using the 128 by 128 maze with a corridor 

width of two, but it was excluded from this study because the algorithms were unable to 

solve this problem in the larger system sizes without collisions.  
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Table 4.1: Initial data for all algorithms and maps 

Algorithm Map Type Number of Agents Number of Runs  

A* 

{warehouse, 

gallows, random} {10, 20, 30, 40, 50, 60, 70} {110, 90, 80, 70, 60, 50, 40} 

WHCA* 

{warehouse, 

gallows, random} {10, 20, 30, 40, 50, 60, 70} {110, 90, 80, 70, 60, 50, 40} 

CBS 

{warehouse, 

gallows, random} {10, 20, 30, 40, 50, 60, 70} {110, 90, 80, 70, 60, 50, 40} 

 

 In Table 4.1, the number of agents is related to the number of runs respectively.  

This means that the system size of 10 agents had 110 runs, 20 agents had 90 runs, and 30 

agents had 80 runs.  This tactic was used so that the smaller system sizes would have 

enough data points for the machine learning. 

4.5.2 Feature and Performance Logging 

The feature attributes were set so that no agent would share the same value in the 

same run.  This means that none of the features are related to the map or the values of the 

system as a whole and instead their magnitudes change based on which agent is 

completing the computation.  To accomplish this, we avoided using temporal attributes, 

and we used only attributes that could be calculated using the data pertaining to agent 

locations, target locations, and the number of agents.  These factors were based on the 

understanding that if the agents must travel during the simulation the farther the agent is 

from another agent the lower the likelihood that the agents will receive a conflict.  From 

the target side, the farther the target location is from the source the higher the likelihood 

the agent will experience a conflict.  Given these assumptions there may be factors based 
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on distance that may classify states where agents would benefit from one algorithm over 

another. 

 The features used in this research include Number of Agents (NA), Closest Agent 

(CA), Farthest Agent (FA), Average Agent Distance (AAD), Target Distance (TD), Ratio 

of Closest Agent to Average Agent Distance (RCA), and Ratio of Task Distance to 

Average Task Distance (RTD).  Let k be the number of agents.  Let (𝑢𝛼𝑥 , 𝑢𝛼𝑦) be the 

current position of agent 𝑢𝛼.  Let (𝑢𝑖𝑥, 𝑢𝑖𝑦) be the current position of agent 𝑢𝑖.  Let 𝑑𝛼𝑖 be 

the manhattan distance from agent 𝑢𝛼 to agent 𝑢𝑖.  Let 𝐶𝐴𝛼, the closest agent feature, be 

the distance to the closest agent.  Let 𝐹𝐴𝛼, the farthest agent feature, be the distance to 

the farthest agent.  Let 𝐴𝐴𝐷𝛼, the average agent distance feature, be the average distance 

to the agents.  Let (𝑡𝛼𝑥, 𝑡𝛼𝑦) be the position of the target that has been assigned to agent 

𝑢𝑎.  Let 𝑇𝐷𝛼, the target distance feature, be the Manhattan distance from the agent to its 

assigned target.  Let 𝑅𝐶𝐴𝛼, the ratio of the task distance to the closest agent feature, be 

the ratio of 𝑇𝐷𝛼 divided by 𝐶𝐴𝛼.  Let 𝑅𝑇𝐷𝛼, the ratio of task distance to average task 

distance feature, be the ratio of 𝑇𝐷𝛼 divided by the average of all task distances.  The 

features are calculated as follows: 

𝑑𝛼𝑖 =  |𝑢𝛼𝑥 − 𝑢𝑖𝑥| + |𝑢𝛼𝑦 − 𝑢𝑖𝑦| 

𝐶𝐴𝛼 =  min{𝑑𝛼𝑖 ∶  𝑖 ≠ 𝛼} 

𝐹𝐴𝛼 =  max{𝑑𝛼𝑖 ∶ 𝑖 ≠ 𝛼} 

𝐴𝐴𝐷𝛼 =  
∑ 𝑑𝛼𝑖

𝑘
𝑖=1

𝑘 − 1
∶ 𝑖 ≠  𝛼 
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𝑇𝐷𝛼 =  |𝑢𝛼𝑥 − 𝑡𝛼𝑥| + |𝑢𝛼𝑦 − 𝑡𝛼𝑦| 

𝑅𝐶𝐴𝛼 =  
𝑇𝐷𝛼

𝐶𝐴𝛼
 

𝑅𝑇𝐷𝛼 =  
𝑇𝐷𝛼

(
∑ 𝑇𝐷𝑖

𝑘
𝑖=1

𝑘 − 1
)

∶ 𝑖 ≠ 𝛼 

 The performance metrics measured in these experiments includes the sum-of-

costs and the sum of computational time.  Let 𝐶 =  {𝑐1, … , 𝑐𝑘} be the set of costs for each 

agent in a single run.  The cost 𝑐𝑖 equals the number of move and wait actions of agent i 

in a run.  Let 𝐽 = {𝑗1, … , 𝑗𝑘} be the set of computational times for each agent in a single 

scenario.  The computation time 𝑗𝑖 equals the total time that an agent takes running the 

algorithm for a single scenario.  

4.5.3 Extreme Gradient Boosting 

We implemented XGBoost on the initial test data.  In this experiment we 

calculated two different machine learning models for each of the maps.  The first 

approach used 𝐶 with classification to determine which algorithms should be run in each 

state.  We used the multi:softprob classification approach, which is a multiclass approach 

that creates a vector of probabilities for each of the classes. 

The second approach used 𝐽 with regression.  This resulted a model that can be 

used to estimate the predicted computational effort for each algorithm at the beginning of 
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a run.  In this approach, each agent chooses the algorithm that will require the least 

computational effort.  

Before implementing the machine learning approaches, we conducted a cross 

validation test to determine the parameters for the machine learning application.  We 

conducted two cross-validation checks for each map, one for classification and one for 

regression.  Table 4.2 and Table 4.3 show the inputs to the cross-validation experiments.  

The results of the cross-validation experiments can be found in Section 4.6. 

Table 4.2: Cross Validation for Extreme Gradient Boost Classification 

Parameter Description Possible 

Values 

Number of classes This is the number of classes that machine learning must classify 3 

Max depth This is the depth to which the tree should be split 5 - 8 

Eta The learning rate 0.1, 0.2, 0.3 

Minimum child 

weight 

This is the sum of the instance weight.  If a leaf node is less than 

the minimum child weight it is pruned 

1, 3, 5 

Gamma 

regularization 

Minimum loss reduction required to make a further partition on 

a leaf node of the tree 

0 - 10 

Column sample by 

tree 

Subsample of columns when constructing each tree 0.5, 0.75, 1 

The tuned parameters were input into the machine learning approach.  This 

resulted in a model saved as a binary file.  When a run begins the agent calculates the 

state features in the initial step.  Then, the model was loaded into the MATLAB 

simulation.  Using these state features the model chooses one of the three algorithms and 

gives the result to the agent. 
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Table 4.3: Cross Validation for Extreme Gradient Boost Regression 

Parameter Description Possible 

Values 

Eta The learning rate 0.1, 0.2, 0.3 

Max depth This is the depth to which the tree should be split 5 – 8 

Minimum child 

weight 

This is the sum of the instance weight.  If a leaf node is less than 

the minimum child weight it is pruned 

1, 3, 5 

Gamma 

regularization 

Minimum loss reduction required to make a further partition on 

a leaf node of the tree  

0 - 10 

Subsample Fraction of observations to be randomly sampled (total training 

data selection) 

0.5, 0.75, 1 

 

4.5.4 Meta-Level Reasoner 

At run time either the classification model or the regression model will be used as 

the meta-level reasoner.  Each agent will calculate the set of state features at the start of 

each scenario.  These features will then be passed into the model during the meta-level 

monitoring process.  In this case the model will run a python function in MATLAB to 

determine the best algorithm out of the three.  In classification, the extreme gradient 

boosting model goes through a sequence of boosted trees resulting in a set of leaves 

containing similarity scores.  If the magnitude of the similarity scores is low, the group of 

data separated into the leaf have different classifications and therefore the separation is a 

poor one.  If the magnitude of the similarity scores is high, the group of data are similar 

and therefore the separation, or classification, is good.  The equation for the calculation 

of the similarity score can be seen below:  

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =  
∑ 𝑅𝑖

𝑚
𝑖=1

∑ 𝑃𝑖(1 −  𝑃𝑖)
𝑚
𝑖=1
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Where R is a set of residuals and P is the previous probability.  The construction 

of trees with different branches and leaves occurs many times each tree constructing new 

branches and leaves based on the probability, P, calculated by the previous tree.  The 

result is a sequence of decision trees that use the feature data to move through each tree 

resulting in a leaf.  The resulting set of leaf values is then summed to calculate a 

log(odds) value.  Each of the algorithms receives its own log(odds) value.  A probability 

is then calculated using the logistic equation below:  

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑒log(𝑜𝑑𝑑𝑠)

1 + 𝑒log(𝑜𝑑𝑑𝑠)
 

The model then returns whichever of the algorithms has the greatest probability, 

in this case the algorithm that will most likely result in the lowest cost.  This 

determination will become the meta-level control used by the agent to select which of the 

algorithms it will use in the object-level.  The result of this testing on each agent will be a 

non-homogenous set of algorithms, 𝐴 =  {𝑎1, … , 𝑎𝑛}, where each 𝑎𝑖  ∈

{𝐿𝑅𝐴∗, 𝑊𝐻𝐶𝐴∗, 𝐶𝐵𝑆} . 

 Using extreme gradient boosting with regression will produce three times the 

machine learning models compared to classification, one for each of the fixed algorithms.  

These models will be used to estimate the computational time an algorithm will take 

given the state.  An average of all the computational times is taken to determine the 

original leaf average (𝜑).  The data is then split into branches of a decision tree like the 

classification approach.  The residuals for each data point in a branch are taken in respect 

to 𝜑.  If the group has a high magnitude of similarity score the values in this branch are 

similar.  Once a tree has been completed the predicted value for the data point is adding 
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the 𝜑 to the average residual (𝑅𝑖) of the leaf times the learning rate (𝜀).  This occurs for a 

sequence of n trees.  The equation for this calculation can be seen below:  

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =  𝜑 + ∑ ε𝑅𝑖

𝑛

𝑖=1

 

When new state features are provided to the model the trees are implemented in 

their sequence.  The 𝜑 is always the same but as the conditional values of the tree 

evaluate the state features different residuals are determined based on the resulting 

leaves.  At the completion of the model there exists a set of residuals that when summed 

together and multiplied by the learning rate result in some estimation of computational 

time.  Since there are three models, one for each of the algorithms, the meta-level chooses 

the algorithm with the minimal computational time, min{𝐽} = min{𝑗𝐴∗, 𝑗𝑊𝐻𝐶𝐴∗, 𝑗𝐶𝐵𝑆}.  

The algorithm with the minimal computational time will be used by the agent.  

4.6 Results 

This section contains the results of the machine learning cross validation tests, the 

feature importance results, the distance and computation results for the algorithms, and 

the percent of each algorithm use in the metareasoning for the differing maps. 

4.6.1 Cross Validation and Importance Results 

 The cross validation for the classification model was conducted using the 

multi:softprob objective.  This objective returns a vector of probabilities in relation to the 

algorithms, the algorithm with the highest probability will be run in the object-level by an 
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agent.  The number of rounds was set to 25 to reduce the amount of decision trees in the 

sequence.  The evaluation metric used was the multiclass negative log-likelihood.  This 

metric was used to validate the data.  The number of classes was equal to three since 

there are three algorithms to classify.  The results for this cross validation can be seen in 

Table 4.4. 

 When classifying the algorithms, the algorithm with the smallest distance is 

chosen.  When a tie occurs, a tie breaker is used to choose the algorithm.  If LRA* is tied 

for the lowest distance LRA* is returned.  If WHCA* and CBS tie than WHCA* is 

returned. 

Table 4.4: Tuned Parameters from the classification cross validation 

Parameter Warehouse Random Gallows 

Eta 0.1 0.3 0.1 

Max depth 7 6 5 

Minimum child weight 5 5 5 

Gamma 4 3 2 

Column sample by tree 0.5 0.5 0.5 

Accuracy 63% 59% 63% 

 

 The regression cross validation used the reg:squarederror objective.  This is the 

default objective.  The evaluation metric used to validate the data was the root mean 

squared error.  The number of estimators (number of trees in sequence) used for this 

model was set to 100 to provide a mid-sized model with moderate accuracy and 

computation.  The results of the regression cross validation can be seen in Table 4.5. 

The tuned parameters from the cross validation were used to construct three 

classification models and nine regression models.  These models consist of trees 

separated by conditional statements in relation to feature values.  Not all feature values 
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are equivalent.  Features that have a higher F Score are more important to a model and 

these F Scores are reported in an importance table.  The results of the feature importance 

for each model can be found in Table 4.6 and Table 4.7. 

Table 4.5: Tuned parameters from the regression cross validation 

 Warehouse Random Gallows 

Parameter LRA* WHCA* CBS LRA* WHCA* CBS LRA* WHCA* CBS 

Eta 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Max depth 5 7 5 5 5 5 5 6 5 

Minimum 

child weight 

1 5 5 3 5 5 1 1 1 

Gamma 9 1 5 0 0 9 3 6 7 

Subsample 0.9 0.5 0.9 0.5 0.3 0.9 0.9 0.9 0.9 

Score 68% 80% 24% 78% 80% 24% 72% 88% 26% 

 

Table 4.6: F Scores for classification importance 

Features Warehouse Random Gallows 

𝑅𝑇𝐷𝛼 330 184 355 

𝐴𝐴𝐷𝛼 91 111 170 

𝑅𝐶𝐴𝛼 81 114 133 

𝑁𝐴 219 108 244 

𝑇𝐷𝛼 130 77 137 

𝐶𝐴𝛼 15 28 131 

𝐹𝐴𝛼 46 55 66 

 

 

Table 4.7: F Scores for regression importance 

 Warehouse Random Gallows 

Features LRA* WHCA* CBS LRA* WHCA* CBS LRA* WHCA* CBS 

𝑅𝑇𝐷𝛼 6 9 40 11 13 62 13 42 51 

𝐴𝐴𝐷𝛼 3 18 56 7 6 54 13 53 37 

𝑅𝐶𝐴𝛼 9 6 44 15 6 32 31 33 45 

𝑁𝐴 4 7 32 5 14 35 34 86 41 

𝑇𝐷𝛼 59 79 57 58 45 41 47 111 50 

𝐶𝐴𝛼 2 4 11 3 2 19 5 36 13 

𝐹𝐴𝛼 16 27 25 11 7 15 10 55 35 
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4.6.2 Distance and Computation Results 

 To analyze the performance of the metareasoning the regret was measured in 

relation to the distance and computation.  The regret was calculated by using the 

minimum distance or computation by any algorithm as the optimal value.  The difference 

between the distance or computation for each algorithm and the optimal value is 

calculated otherwise known as the regret.  This metric will identify algorithms that are 

consistently poor or effective in a certain map and system combination. 

 The first 25 runs for each system size in a map were used to compare the 

algorithms.  The average regret for the 25 runs for each system size can be seen in 

Figures 4.1 – 4.6.  The computational regret for the CBS algorithm was not plotted in 

Figures 4.2 and 4.4 because its value was 100 times the next largest computational time. 

 Tables 4.8 – 4.13 contain the average sum of the distances and computational 

times for each of the system sizes. In the following tables and figures MetaClass 

represents the metareasoning method that utilizes the classification learning model and 

MetaRegress represents the metareasoning method that utilizes the regression learning 

models. 
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Table 4.8: Average distance travelled by all agents in the system for a simulation on the 

warehouse map 

Number of 

Agents 

A* 

Average 

Distance 

WHCA* 

Average 

Distance 

CBS 

Average 

Distance 

MetaClass 

Average 

Distance 

MetaRegress 

Average 

Distance 

10 926 926 925 926 925 

20 2,029 2,030 2,026 2,029 2,022 

30 3,184 3,184 3,182 3,184 3,178 

40 4,423 4,414 4,415 4,423 4,413 

50 5,715 5,716 5,712 5,716 5,714 

60 6,815 6,834 6,832 6,815 6,814 

70 8,348 8,345 8,332 8,348 8,348 

 

 

 

Table 4.9: Average computational time for all agents in the system for a simulation on 

the warehouse map 

Number 

of 

Agents 

A* Average 

Computation 

Time 

WHCA* 

Average 

Computation 

Time 

CBS Average 

Computation 

Time 

MetaClass 

Average 

Computation 

Time 

MetaRegress 

Average 

Computation 

Time 

10 1.837 1.829 2.782 1.845 1.866 

20 4.982 3.98 37.53 5.005 5.127 

30 6.25 6.334 36.758 6.25 6.464 

40 8.392 8.993 120.775 8.383 8.681 

50 10.834 11.185 200.447 10.864 11.143 

60 13.393 12.626 281.541 13.393 12.72 

70 14.765 16.031 302.259 14.854 15.212 
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Figure 4.2: Average distance regret for algorithms on the warehouse map 

 

 

 
Figure 4.3: Average computational regret for algorithms on the warehouse map 

0

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70

D
is

ta
n

ce

Number of Agents

LRA* Mean Diff

WHCA* Mean Diff

CBS Dist Mean Diff

MetaClass Mean Diff

MetaRegress Mean Diff

0

0.5

1

1.5

2

2.5

10 20 30 40 50 60 70

Ti
m

e 
(s

ec
o

n
d

s)

Number of Agents

LRA* Mean Diff

WHCA* Mean Diff

MetaClass Mean Diff

MetaRegress Mean Diff



 

57 

 

 

 
Figure 4.4: Average distance regret for algorithms on the random map 

 

 
Figure 4.5: Average computational regret for algorithms on the random map 
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Table 4.10: Average distance travelled by all agents in the system for a simulation on the 

random map 

Number 

of Agents 

A* 

Average 

Distance 

WHCA* 

Average 

Distance 

CBS 

Average 

Distance 

MetaClass 

Average 

Distance 

MetaRegress 

Average 

Distance 

10 510 510 508 510 510 

20 1,102 1,109 1,102 1,102 1,099 

30 1,781 1,762 1,762 1,781 1,780 

40 2,533 2,538 2,521 2,533 2,531 

50 3,250 3,234 3,257 3,250 3,248 

60 4,092 4,110 4,086 4,092 4,092 

70 4,870 4,874 4,868 4,870 4,870 

 

 

 

 

Table 4.11: Average computational time for all agents in the system for a simulation on 

the random map 

Number 

of 

Agents 

A* Average 

Computation 

Time 

WHCA* 

Average 

Computation 

Time 

CBS Average 

Computation 

Time 

MetaClass 

Average 

Computation 

Time 

MetaRegress 

Average 

Computation 

Time 

10 0.236 0.254 0.373 0.256 0.253 

20 0.538 0.602 3.629 0.556 0.572 

30 0.925 0.944 47.376 0.94 0.99 

40 1.25 1.459 152.117 1.274 1.312 

50 1.49 1.812 300.279 1.516 1.589 

60 2.036 2.685 300.492 2.072 2.176 

70 2.346 3.187 299.564 2.429 2.463 
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Figure 4.6: Average distance regret for algorithms on the gallows map 

 

 

 
Figure 4.7: Average computational regret for algorithms on the gallows map 
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Table 4.12: Average distance travelled by all agents in the system for a simulation on the 

gallows map 

Number 

of 

Agents 

A* 

Average 

Distance 

WHCA* 

Average 

Distance 

CBS 

Average 

Distance 

MetaClass  

Average 

Distance 

MetaRegress 

Average 

Distance 

10 1,180 1,180 1,155 1,180 1,180 

20 2,467 2,476 2,464 2,467 2,469 

30 3,945 3,945 3,887 3,945 3,951 

40 5,426 5,439 5,361 5,426 5,422 

50 6,894 6,929 6,865 6,894 6,895 

60 8,444 8,521 8,427 8,444 8,450 

70 10,209 10,211 10,172 10,200 10,224 

 

 

Table 4.13: Average computational time for all agents in the system for a simulation on 

the gallows map 

Number 

of 

Agents 

A* Average 

Computation 

Time 

WHCA* 

Average 

Computation 

Time 

CBS Average 

Computation 

Time 

MetaClass 

Average 

Computation 

Time 

MetaRegress 

Average 

Computation 

Time 

10 6.73 7.14 39.93 6.84 6.77 

20 15.99 18.69 209.78 16.29 18.43 

30 28.81 31.73 309.26 29.32 30.12 

40 51.57 51.24 324.26 52.68 49.37 

50 63.66 71.39 336.29 64.98 75.18 

60 79.4 87.75 347.84 81.01 83.23 

70 114.24 125.12 375.16 118.57 115.86 

 

4.6.3 Algorithm Usage 

 The metareasoning policies allow for different algorithms in the same run.  

Figures 4.7 – 4.9 shows the percentage of the algorithms used for the different system 

sizes on each map.  The classification and regression are compared to show how the 

different methods resulted in varying system compositions.  In each figure the number of 

agents in the system was specified in parenthesis under the algorithm name. 
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Figure 4.8: Percentage distributions of algorithms per system size on the warehouse map 

 

Figure 4.9: Percentage distributions of algorithms per system size on the random map 
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Figure 4.10: Percentage distributions of algorithms per system size on the gallows map 

4.7 Discussion 
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selection.  These tie breakers could be over correcting for the LRA* and WHCA* 

methods causing the CBS to be removed from the classification model.   

The lack of the CBS in the regression model is due to its large timeout, 

computational time given for agents to find a set of paths without conflicts.  To make the 

CBS complete the most optimal path, the timeout for the algorithm was increased to 300 

seconds.  This value produced the least distance regret, but it also increased the 

regression to values much larger than LRA* and WHCA*. 

LRA* and WHCA* were evenly split in the breakdown for the warehouse and 

gallows maps.  This is due to the competitive computational times for the agents for each 

of these algorithms.  The two algorithms require about the same level of effort but when 

there is no conflicts LRA* dominates and when there are many conflicts WHCA* 

dominates because of the reduced amount of algorithmic computing.  Thus, when a 

multiagent system is half composed of agents that will not incur a conflict and half that 

will the agents the algorithm breakdown is split relatively in two.  The breakdown results 

in multiple occasions where the regression model outperforms the two algorithms 

included in its breakdown.  This can be seen with 40 agents in the gallows map and most 

of the system sizes in warehouse.  However, the only instance where the regression 

outperforms the algorithms included in its breakdown is the 40 agents’ gallows scenario.    

For both the regression and classification the two least important features were 

𝐶𝐴𝛼 and 𝐹𝐴𝛼.  This means that there may be no relationship between the agent distances 

directly.  Based on the greater importance of the 𝑅𝐶𝐴𝛼 feature, it may be more beneficial 

to relate these features to others.  
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 The random map is unlike the other two in that the LRA* algorithm dominated 

the WHCA* and CBS algorithms.  The environment had fewer restrictions and it is easier 

to solve the path problem when collisions exist, therefore the overhead WHCA* and CBS 

has does not provide the same benefit LRA* can come to the same solutions without 

having to solve all the conflicts a priori or having to populate a reservation table 

constantly.  As the number of agents increases, the LRA* gains usage but one would 

expect that as the number of agents grows, conflicts would also grow, and the random 

space would be more constrained than it currently is, and this may not hold.  
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Chapter 5:  Summary 

This paper proposed an application of a metareasoning approach that used state 

features.  The state features were chosen so that their values would be different for each 

agent and they would change as the agent moved through the simulation.  This approach 

was used to allow for independent metareasoning in a decentralized multiagent system.  

The agents had the ability to control their own reasoning with only their own perceptions 

and communication.  The meta-level was constructed using an extreme gradient boosting 

machine learning method for both classification and regression.   

This approach was used on two different problems in the multiagent field: task 

allocation and path finding.  Two single fixed algorithms (CBAAMM and DHBAMM) 

were tested in two different scenarios (search and search and visit) for the task allocation 

problem.  A system size of five was tested in this problem along with different numbers 

of targets and their spacing.  The metareasoning model for this experiment was conducted 

using the XGBoost classification approach to identify when the agent should not be 

running the task allocation algorithm.  The results showed that the number of algorithm 

runs, and the number of messages were decreased to a fourth of the baseline value.  In the 

CBAAMM instances the performance (distance) metric was nearly equivalent to the 

baseline while in the DHBAMM application there was a decrease in performance. 

For the multiagent path finding problem, three single fixed algorithms were tested 

(LRA*, WHCA*, and CBS) on three different maps (warehouse, gallows, and random).  

The system sizes varied from 10 to 70 agents and there was one task for each of the 

agents.   Two different metareasoning models were constructed, one using classification 
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combined with the distance metric and the other using computational time for regression.  

The results showed that using this method systems can be constructed where the 

performance or computation of the metaresoning system can be greater than the single 

fixed algorithms.  It also showed that the combination of algorithms in a system changes 

depending on the map. 

Future work into this metareasoning application may include different sets of 

algorithms, maps, state features, or machine learning models.  While this work uses a few 

algorithms, others exist that may have different reactions to this application or other 

machine learning methods that could improve the accuracy.  Another direction of study 

could be the application of the approach on the lifelong path finding problem introduced 

by Ma et al. [34, 35].  Using this type of approach, the agents should be able to sense 

their environment whenever a new task appears so it may be beneficial to this problem as 

the system number of tasks to be solved increases.  
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