

ABSTRACT

Title of Thesis: DECENTRALIZED MULTIAGENT

METAREASONING APPLICATIONS IN

TASK ALLOCATION AND PATH FINDING

 Samuel T. Langlois,

Master of Science, 2021

Thesis Directed By: Professor Jeffrey W. Herrmann

Department of Mechanical Engineering

Decentralized task allocation and path finding are two problems for

multiagent systems where no single fixed algorithm provides the best solution in all

environments. Past research has considered metareasoning approaches to these

problems that take in map, multiagent system, or communication information. None

of these papers address the application of metareasoning about individual agent state

features which could decrease communication and increase performance for

decentralized systems.

 This thesis presents the application of a meta-level policy that is conducted

offline using supervised learning through extreme gradient boosting. The multiagent

system used here operates under full communication, and the system uses an

independent multiagent metareasoning structure.

 This thesis describes research that developed and evaluated metareasoning

approaches for the multiagent task allocation problem and the multiagent path finding

problem. For task allocation, the metareasoning policy determines when to run a task

allocation algorithm. For multiagent path finding, the metareasoning policy

determines which algorithm an agent should use.

The results of this comparative research suggest that this metareasoning

approach can reduce communication and computational overhead without sacrificing

performance.

DECENTRALIZED MULTIAGENT METAREASONING APPLICATIONS IN

TASK ALLOCATION AND PATH FINDING

by

 Samuel T. Langlois

Thesis submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Master of Science

2021

Advisory Committee:

Professor Jeffrey Herrmann, Chair, Advisor

Assistant Professor Michael Otte

Assistant Professor Mumu Xu

© Copyright by

Samuel T. Langlois

2021

ii

Dedication

I would like to dedicate this work to my parents, Steven and Karla Langlois, their

support and comfort are something I treasure. They have given so much of their time

to me and for that I am grateful.

iii

Acknowledgements

I could not have completed this thesis without the guidance and help of

others. The assistance and support always encouraged my work and for that I

am very grateful.

First, I would like to thank my advisor, Dr. Jeffrey W. Herrmann, for giving

me the opportunity to work with him on a very interesting, complex topic. In a year

where the world experienced a global pandemic, he adapted and guided me through

the change in direction to online work. I don’t think I could have

successfully completed this without him. His comments and suggestions were vital to

the understanding of the field and this thesis. It has been an honor and pleasure to

work with Dr. Herrmann. Along with Dr. Hermann, I also want to thank Dr. Otte and

Dr. Xu for being a part of the thesis committee.

 My research colleagues, Oghenetekevwe Akoroda and Sharan

Nayak, deserve an enormous thanks for help in understanding

multiagent metareasoning and for the execution of the simulations used in this thesis.

 My family has always been a source of inspiration and support. I especially

want to acknowledge their encouragement to step out and follow my own path. I

want too also acknowledge my confidante, Michelle Oller. Her compassion and

understanding during this last year were important in aiding the thought process

throughout this work.

iv

Lastly, I would like to acknowledge the financial support from Northrup

Grumman.

v

Table of Contents

Dedication ... ii

Acknowledgements .. iii
Table of Contents .. v
List of Tables .. vii
List of Figures .. viii
List of Abbreviations ... ix

Chapter 1: Introduction ... 1
1.1 Motivation ... 2
1.2 Contributions... 4

1.2.1 Decentralized Multiagent Task Allocation .. 5
1.2.2 Decentralized Multiagent Path Finding .. 5
1.2.3 Insights ... 6

1.3 Overview ... 7
Chapter 2: Related Work .. 8

2.1 Multiagent Task Allocation .. 8
2.2 Multiagent Path Finding (MAPF) ... 9
2. 3 Multiagent Metareasoning ... 10

2.4 Discussion ... 14
Chapter 3: Decentralized Multiagent Task Allocation ... 16

3.1 Specific Research Gaps... 16
3.2 Problem Description ... 16
3.3 Overall Approach .. 17

3.4 Explanation of Steps ... 19
3.4.1 Online Simulation .. 19

3.4.2 Log File .. 20
3.4.3 Historical CSV ... 21

3.4.4 Offline Algorithm ... 22
3.4.5 Performance and Features CSV .. 23
3.4.6 Extreme Gradient Boosting.. 26

3.4.7 Online Algorithm with Metareasoning .. 28
3.5 Results ... 29

3.5.1 Cross Validation and Importance Results ... 29
3.5.2 Simulation Results .. 31

3.6 Discussion ... 34

Chapter 4: Decentralized Multiagent Path Finding .. 37
4.1 Specific Research Question .. 37
4.2 Problem Description ... 38
4.3 Overall Approach .. 39

4.4 MAPF Algorithms Used ... 40
4.5 Explanation of Steps ... 43

4.5.1 Scenario Generation .. 43
4.5.2 Feature and Performance Logging .. 45
4.5.3 Extreme Gradient Boosting.. 47

vi

4.5.4 Meta-Level Reasoner ... 49
4.6 Results ... 51

4.6.1 Cross Validation and Importance Results ... 51
4.6.2 Distance and Computation Results .. 54
4.6.3 Algorithm Usage .. 60

4.7 Discussion ... 62
Chapter 5: Summary .. 65

Bibliography ... 67

vii

List of Tables

TABLE 3.1: INSTANCE CHARACTERISTICS ... 21
TABLE 3.2: PARAMETER DESCRIPTIONS AND VALUES USED IN TASK

ALLOCATION CROSS VALIDATION .. 28
TABLE 3.3: EXTREME GRADIENT BOOSTING TUNED PARAMETERS FROM

CBAAMM, SEARCH AND VISIT .. 30
TABLE 3.4: F SCORE (FEATURES IMPORTANCE) VALUES FOR ALL

ALGORITHM SCENARIO COMBINATIONS .. 31
TABLE 4.1: INITIAL DATA FOR ALL ALGORITHMS AND MAPS 45

TABLE 4.2: CROSS VALIDATION FOR EXTREME GRADIENT BOOST

CLASSIFICATION .. 48

TABLE 4.3: CROSS VALIDATION FOR EXTREME GRADIENT BOOST

REGRESSION ... 49
TABLE 4.4: TUNED PARAMETERS FROM THE CLASSIFICATION CROSS

VALIDATION .. 52
TABLE 4.5: TUNED PARAMETERS FROM THE REGRESSION CROSS

VALIDATION .. 53
TABLE 4.6: F SCORES FOR CLASSIFICATION IMPORTANCE 53
TABLE 4.7: F SCORES FOR REGRESSION IMPORTANCE 53

TABLE 4.8: AVERAGE DISTANCE TRAVELLED BY ALL AGENTS IN THE

SYSTEM FOR A SIMULATION ON THE WAREHOUSE MAP 55

TABLE 4.9: AVERAGE COMPUTATIONAL TIME FOR ALL AGENTS IN THE

SYSTEM FOR A SIMULATION ON THE WAREHOUSE MAP 55

TABLE 4.10: AVERAGE DISTANCE TRAVELLED BY ALL AGENTS IN THE

SYSTEM FOR A SIMULATION ON THE RANDOM MAP 58

TABLE 4.11: AVERAGE COMPUTATIONAL TIME FOR ALL AGENTS IN THE

SYSTEM FOR A SIMULATION ON THE RANDOM MAP 58
TABLE 4.12: AVERAGE DISTANCE TRAVELLED BY ALL AGENTS IN THE

SYSTEM FOR A SIMULATION ON THE GALLOWS MAP 60
TABLE 4.13: AVERAGE COMPUTATIONAL TIME FOR ALL AGENTS IN THE

SYSTEM FOR A SIMULATION ON THE GALLOWS MAP 60

viii

List of Figures

FIGURE 2.1: THREE LEVEL STRUCTURE OF METAREASONING 11

FIGURE 2.2: INDEPENDENT METAREASONING STRUCTURE FOR STATE FEATURE

MONITORING AND CONTROL ... 12

FIGURE 3.1: PATH OF DETERMINING METAREASONING POLICIES. WHITE BOXES

REPRESENT FILES USED TO STORE OF PROCESS DATA. BLUE ARROWS

REPRESENT AN ACTION, YELLOW ARROWS REPRESENT IMPORTS, AND GREEN

ARROWS IDENTIFY ADDED FUNCTIONALITIES ... 22

FIGURE 3.2: DISTANCE TRAVELLED FOR EACH ALGORITHM SCENARIO

COMBINATION ... 35

FIGURE 3.3: MESSAGES EXCHANGED FOR EACH ALGORITHM SCENARIO

COMBINATION ... 36

FIGURE 3.4: TOTAL RUNS FOR EACH ALGORITHM SCENARIO COMBINATION 37

FIGURE 4.1: MAPS USED IN THIS RESEARCH: (A) WAREHOUSE, (B)

GALLOWS, (C) RANDOM.. 44

FIGURE 4.2: AVERAGE DISTANCE REGRET FOR ALGORITHMS ON THE

WAREHOUSE MAP.. 56
FIGURE 4.3: AVERAGE COMPUTATIONAL REGRET FOR ALGORITHMS ON

THE WAREHOUSE MAP ... 56
FIGURE 4.4: AVERAGE DISTANCE REGRET FOR ALGORITHMS ON THE

RANDOM MAP ... 57

FIGURE 4.5: AVERAGE COMPUTATIONAL REGRET FOR ALGORITHMS ON

THE RANDOM MAP .. 57

FIGURE 4.6: AVERAGE DISTANCE REGRET FOR ALGORITHMS ON THE

GALLOWS MAP ... 59

FIGURE 4.7: AVERAGE COMPUTATIONAL REGRET FOR ALGORITHMS ON

THE GALLOWS MAP ... 59

FIGURE 4.8: PERCENTAGE DISTRIBUTIONS OF ALGORITHMS PER SYSTEM

SIZE ON THE WAREHOUSE MAP ... 61
FIGURE 4.9: PERCENTAGE DISTRIBUTIONS OF ALGORITHMS PER SYSTEM

SIZE ON THE RANDOM MAP... 61

FIGURE 4.10: PERCENTAGE DISTRIBUTIONS OF ALGORITHMS PER SYSTEM

SIZE ON THE GALLOWS MAP ... 62

ix

List of Abbreviations

CBAA – Consensus Based Auction Algorithm

CBAAMM – Consensus Based Auction Algorithm Minimized Maximum Objective

DHBA – Decentralized Hungarian Based Algorithm

DHBAMM - Decentralized Hungarian Based Algorithm Minimized Maximum

Objective

XGBoost – Extreme Gradient Boosting

LRA* - Local Repair A*

WHCA* - Windowed Hierarchical Cooperative A*

CBS – Conflict Based Search

MAPF – Multiagent Path Finding

EPEA* - Enhanced Partial Expansion A*

ICTS – Increasing Cost Tree Search

MA-CBS – Meta-Agent Conflict Based Search

SWaP – Size, Weight, and Power

1

Chapter 1: Introduction

Rapid advancement of technologies in communications and robotics has increased the

applicability of multiagent systems in industrial settings. Such applications operate

through centralized systems or decentralized systems.

 Centralized approaches have a single solver that sends the actions to the agents thereby

reducing the complexity of the system. Decentralized approaches spread the computational

efforts across an entire system, allowing agents to calculate their actions and communicate

with each other to solve problems in a collaborative way. A decentralized system is more

complex and robust than the centralized application because it does not contain a single

point of failure. For example, decentralized systems provide benefits in low

communication, partial information, dynamic, and unknown environments [3, 38].

As multiagent systems become more popular, they are being exposed to more complex

environments. These environments result in a contradiction for the agents where they must

increase the algorithmic complexity (computational time) to improve the solution quality.

To combat this contradiction, researchers studied the application of metareasoning in

multiagent settings. To date, multiagent metareasoning has been applied to instances of

multiagent coordination, communication, and resource allocation to name a few [2, 45, 62].

This thesis describes the development and evaluation of a multiagent metareasoning

method for distributed multiagent systems that is developed in an offline, supervised,

machine learning approach that maintains performance while changing computational or

communication attributes. For example, this method can maintain system performance in

2

a multiagent task allocation problem while reducing the number of recalculations and

communication messages generated. The agent calculates the magnitude of each feature

at a decision point and inputs these values into the machine learning model during the

“monitoring” phase. The model utilizes these features to calculate whether the algorithm

should be run or which algorithm should run during the “control” phase. The model is

composed of state features whose values will be calculated for each agent at run time.

Thus, each agent can independently monitor its environment and control its application of

reasoning. At each decision point, the point at which the task allocation or path finding

algorithms needs to be run, the agent will run its current state through the supervised

learning model in the meta-level, the higher-level reasoning of the agent. The meta-level

will either assign an algorithm to execute (path finding problem) or control whether the

algorithm should be run (task allocation problem).

1.1 Motivation

Autonomous multiagent systems provide benefits in fields with increased safety

risk or coverage over large distances. Examples of such applications include smart grids

[61], search [63], tracking in underground mines [21], search and rescue [15, 20],

agriculture [17, 41], and warehouses [5, 6, 28, 60]. In these applications, multiagent

systems can accomplish the goal faster while keeping individuals safe. One of the best

example of autonomous multiagent applications is in supply chain management and

warehouse management. Led by companies like Kiva Technologies [60] and Symbotic

[46], fulfillment centers and warehouses have reduced costs, increased scalability, and

influenced sustainability. As the number of robotic agents in these systems increase, the

amount of total computation required by the system grows. To solve this, a switch to

3

decentralized systems could be made, however these systems put a higher computational

load on the agents completing the tasks. For example, in decentralized systems the

agents must sense their environment and calculate the necessary motor functions to

complete a task while simultaneously determining the task to be completed. This can be

compared to a centralized system with one centralized controller determining which

agent, focusing primarily on sensing and execution, receives a certain task. Since a

decentralized system must take on the overhead of computation and communication of

the centralized controller, the agents must attempt to fit more computation in the same

hardware. This research focuses on the use of a decentralized multiagent system with

metareasoning capability to decrease the computational overhead while maintaining or

improving performance.

Two different approaches are used to solve the problem of reduced computation

with increased performance. The first approach is to create better fixed algorithms. For

multiagent path finding, some of the algorithms include search-based algorithms, A*

based algorithms, conflict-based search algorithms (CBS), and complete algorithms

(M*). These algorithms are applied in bounded environments. They all can solve path

finding problems, but none are the best fit for all situations. This fact leads to a second

solution, the application of metareasoning. Most metareasoning approaches look to a

machine learning model or neural network to use at the meta-level. The metareasoning

applications have focused primarily on map features [53] or the features of the multiagent

system [25]. This research seeks to understand the relationships of the agents at a deeper

level to solve the problem with the metareasoning approach.

4

Like path finding, multiagent task allocation research has implemented single

fixed algorithms, such as the Consensus-Based Auction Algorithm (CBAA),

Decentralized Hungarian Based Algorithm (DHBA), and genetic algorithms (GA). This

type of algorithm is applied in dynamic scenarios without predefined goal locations so

the agents can determine which of the targets would be beneficial to the group. These

algorithms have been improved over the years, but as algorithm complexity increases so

does system overhead. Algorithms needing more data require larger amounts of

computation and communication which leads to increases in these attributes.

Metareasoning methods have been applied in some scenarios to find the greatest

performance using neural networks [23] or communication availability monitoring and

switching [12]. Breaking these systems down into parts of a whole and looking at the

states of these parts may provide a better basis than the current metareasoning.

1.2 Contributions

This thesis introduces and evaluates a novel metareasoning approach where agents

use individualistic values for state features in meta-level monitoring to determine their

reasoning in multiagent task allocation and path finding scenarios. This approach

attempts to solve the problem of excess computational effort in task allocation and

algorithm selection in path finding. While this work is specific to these two problems,

the overall concept of separating a multiagent system into its individual parts to

understand and benefit from their relationships should be applicable in any multiagent

situation. The overall approach takes the machine learning models generated from

previous datasets and applies them to understand the interrelationships of the agents.

5

During run time, the agents collect the state information at each decision point and use

them in combination with the machine learning model. The results of simulation

experiments provide insights into the advantages and limitations of this metareasoning

approach.

1.2.1 Decentralized Multiagent Task Allocation

The algorithms used to solve multiagent task allocation must be run multiple times

during a simulation allowing agents to choose new tasks. Constant running of the

algorithms permits the agents to communicate and make decisions collaboratively. For

these scenarios, the agents will run the algorithms every 0.1 seconds in full

communication resulting in excess communication and computation without added

benefits. The approach used here is a classification of state features constructed during

run time that the agents compute individually so the same values will not be shared.

Thus, we can maintain the collaborative communication between agents, allowing them

to achieve the overall goal of the system while acting on their own perception of the

environment.

1.2.2 Decentralized Multiagent Path Finding

In this situation the algorithms provide different benefits in a range of environments.

Much attention has been given to determining a single algorithm for the system. Kaduri

et al. [12] and Sigurdson [23] both used learning approaches to solve this problem. This

thesis considers state features more specific to an individual agent than the

aforementioned papers to provide combinations of algorithms for the multiagent system.

6

All environments are the composition of smaller environments. In the case of

videogame maps there may be sections of a specific environment that include bottlenecks

while the other side of the map is completely open. In these situations, the application of

a single fixed algorithm may be hindering, and different algorithms are needed. This

approach attempts to use state features created using locations for tasks and distances to

identify an algorithm that may provide the greatest benefit to the agent. Past research has

shown that the map influences the path finding algorithm, so each map uses a different

machine learning model in the meta-level.

1.2.3 Insights

 Research into multiagent systems problems posed in Section 1.2.1 and 1.2.2 has

focused on the system as a whole. When considering centralized approaches, the agent

can understand the entirety of the system, but in a decentralized approach this may not be

the case. This research looks to apply a metareasoning approach that increases the

knowledge of how agents in a multiagent system interact when exposed to different

environments and problems.

 Experiments in this thesis provide two different perspectives for understanding

the interrelationships of agents in a multiagent system. The task allocation problem

identifies existing features in an agent in a multiagent system that can be used to gain an

understanding of the computation benefits. Such a metareasoning policy also brings to

light the meta-level effects on different sets of algorithms showing that some may benefit

more than others.

7

 The path finding problem helps us understand not all agents in a multiagent

system are treated equally. When moving to a decentralized approach, the agents must

do calculations on their own and some paths are more difficult to calculate than others.

This research shows there exists a combination of algorithms in a multiagent system that

may provide added benefit.

 Comparing these two problems allows us to identify if this approach can scale

between the applications of a multiagent system. The approach is applied to two

different modes of multiagent metareasoning showing it can be applied in multiple ways

to different systems.

1.3 Overview

Chapter 2 of this thesis outlines the work relevant to this research. Chapter 3

discusses the multiagent task allocation problem studied here and describes the overall

metareasoning approach. It presents a detailed, step-by-step guide explaining how

metareasoning was applied to the problem. Finally, the results of the simulation study

and a summary of the findings are discussed.

 Chapter 4 explains the multiagent path finding problem and provides an example

of it being used to address a real-life problem in a warehouse. It then presents the overall

approach and a step-by-step guide to solve this problem. It ends with the results and

summary of the work.

 Chapter 5 discusses the findings and insights gained from the research results and

suggests future work that can be done in this area.

8

Chapter 2: Related Work

Multiagent task allocation and multiagent path finding are two common problems

in the multiagent domain. Each problem has witnessed numerous approaches such as

single fixed algorithms and meta-level control and monitoring.

2.1 Multiagent Task Allocation

One approach to the multiagent task allocation problem is to use a single fixed

algorithm with a consensus phase [14, 29, 30, 31, 59]. Another approach by Ismail [24]

includes the use of cost matrices to determine the optimal solution. Bapat [3] conducted

research on applications for low communication environments. No one algorithm has

provided the best solution in every environment, and differences in the algorithm

performance were studied in [48].

 When there exists a set of fixed algorithms, where no algorithm dominates all

environments, a metareasoning application could be used as a solution to the algorithm

selection problem. Carrillo [12] used a subset of task allocation algorithms in a

metareasoning policy where a conditional rule set was constructed based on the

communication quality of the system. In this approach, when the communication quality

rose above or dropped below different thresholds, the agents would switch task allocation

algorithms. The results showed Carrillo’s approach could improve or maintain

performance compared to the fixed algorithms. Herrmann [23] used a neural network to

determine performance functions for a subset of task allocation algorithms. This allowed

the agents to identify the preferred algorithm in a current state. In the scenarios that were

9

studied, the results of Herrmann’s experiment proved there existed a metareasoning

approach that outperformed the fixed algorithms.

2.2 Multiagent Path Finding (MAPF)

The multiagent path finding problem or MAPF, has been studied for over two

decades. Sturtevant [57] created a benchmark set of acceptable maps for the MAPF

problem. Stern [56] built upon these maps by generating scenarios and providing

terminology. Optimal multiagent path finding algorithms can be divided into 7 different

categories: suboptimal solvers, reduction-based optimal solvers, A*-based optimal

solvers, increasing cost tree search (ICTS), conflict-based search (CBS), and sum-of-

costs SAT solver. Fixed algorithms used for this problem include: D* [55], different

variations of A* [54], M*[58], ICTS [52], CBS [51], and its different variations. Felner

[19] demonstrated that there is no one-size-fits-all-algorithm for all applications.

Sigurdson [53] provided a deep learning method to construct a metareasoning

approach for MAPF. A convolutional neural network was used for image processing to

identify the best algorithm for a given MAPF problem instance. The instances were

identified by their map topologies, distributions of the agents, and other characteristics.

The distance traveled and goal achievement time were used as metrics and the set of

algorithms included: Windowed Hierarchical Cooperative A* (WHCA*), flow annotation

replanning, and bounded rationality A*. Kaduri [25] used a similar approach and

compared the convolutional neural network image processing to an extreme gradient

boosting (XGBoost) supervised learning approach that used MAPF features. The

learning approaches were used in combination with algorithms that include EPEA*, A*,

10

ICTS, CBS, MA-CBS, and a heuristic version of CBS. The results of this paper show

that using an algorithm selection model resulted in the solution of more problems and a

shorter runtime compared to the fixed algorithms.

Different variations of MAPF have been tested in realistic environments that

extend beyond the discrete MAPF benchmarks. Li et al. [33] studied a variant of the

MAPF problem that incorporates multiple tasks per agent. The study demonstrated the

use of a windowed low-level solver approach, allowing an agent’s plan to be more pliable

to adapt to online settings while avoiding waste of computations for the distant future.

This method was scalable up to 1,000 agents. This lifelong variation, usually seen in

large warehouse settings, was first studied by Ma et al. [34, 35]. Håkansson [22] studied

a similar problem to MAPF and used metareasoning to solve a Traveling Salesman

Problem (TSP) in a multiagent setting. This approach used multiple meta-agents to

monitor static and dynamic characteristics of the environment and determined the fastest

route possible to solve the problem which included a network structure like the MAPF

implementation. It included static variables like speed and distance and dynamic

variables like weather.

2. 3 Multiagent Metareasoning

Metareasoning for an intelligent agent is the application of a three-level reasoning

structure first depicted in Cox and Raja [16] and shown in Figure 2.1. The first level, or

ground level, represents the computations done by an agent that represent movement or

sensing. The second level, or object level, represents the computations done by an agent

that contribute to the decision-making process of an agent. The outputs of this level are

11

the inputs to the ground level action computations. The third level, or meta-level,

represents the agent’s internal understanding of the benefits of the object level.

Figure 2.1: Three level structure of metareasoning

Depending on the multiagent system used, the application of metareasoning for

these agents’ changes. In centralized systems the structure is the same as in Figure 2.1

because there exists only one object level. In our metareasoning approach each of the

agents has its own object level that is monitored and controlled by an agent’s meta-level.

This can be referred to as an independent metareasoning structure [32]. The agents

operate with full communication to execute the object level while they communicate path

and location information. The structure for the application used in this paper can be seen

below in Figure 2.2.

There exists other multiagent metareasoning modes that have not been applied to

the problems in Sections 2.1 and 2.2. The set of modes for multiagent metareasoning

includes stopping an algorithm, modifying parameter values, modifying reasoning rules,

authorizing communication, sharing information, designing coordination, and redefining

relationships. Langlois et al. [32] surveyed these multiagent metreasoning modes as well

as the structures and problems.

12

Figure 2.2: Independent metareasoning structure for state feature monitoring and

control (based on a figure in Langlois et al. [32])

 The algorithm-stopping approach has a meta-level that determines when the

object-level computation should stop to allow for other computations and lower-level

actions. Zilberstein and Carlin [11, 66] demonstrated this approach using a meta-level

Markov Decision Process (MDP) as a probabilistic performance profile to monitor and

control an anytime algorithm in a multiagent collaborative decision-making scenario.

The MDP determined when an agent should stop running the anytime algorithm to

provide the greatest utility to the agent.

 The parameter modification approach contains reasoning algorithms composed of

parameter values. The parameters can be modified when conditions change to improve

performance. Pinyol and Sabater-Mir [43] demonstrated this approach in a marketplace

environment where buyer agents were given false or true information. In instances where

the agents were able to modify their parameters based on reputation information, the

buyer agents had increased performance. Rubenstein et al. [47] demonstrated this

13

approach on search algorithms. This change affected the computational resources as well

as the utility of the solution. Noda and Ohta [39] modified learning parameters based on

performance to encourage either exploration or exploitation.

 The rule modification approach changes the rules by which the multiagent system

must interact, usually a priori determined by the system designers. Artikis [2] proposed a

framework where the agents were able to vote on their own interest so that the rules of

the system would benefit the majority.

 The communication authorization approach occurs when agents must use cost or

benefit computations to determine whether communication is needed. Xuan et al. [62]

used different heuristics for the meta-level control policies to determine the value of the

communication. In this work, the policies that incorporated communication cost had the

greatest performance. Becker et al. [4] proposed an offline policy to calculate the value

of communication based on its beliefs of the other agents. If the value was positive, the

agents would communicate.

 The information-sharing approach contains a meta-level that uses deduction to

reason about the object-level of other agents. The meta-level in this case provides

controls without using communication instead using its knowledge of the allowable

actions for the agents to understand what will occur [40].

 The coordination design approach has the agents break down the MAS into

smaller groups to reduce the cost of communication in the system. Zhang and Lesser

[65] had the agents calculate the performance costs for group combinations. The smallest

group for each agent that provided an acceptable performance was chosen. Brueckner [8]

14

used meta-agents to cluster groups which demonstrated increased effectiveness and

reduced metareasoning overhead.

 The relationship-redefinition approach focuses on the interrelationships of the

agents inside the MAS. Changing these relationships changes the reasoning of the

agents. Kota et al. [26] studied a meta-level that determined when agents should redefine

their relationships. The study determined that a poorly performing agent will prefer to

change the relationship despite the reorganization cost. Ahmadi and Allan [1] studied

how limiting the amount of relationships to redefine can reduce the cost of

reorganization.

2.4 Discussion

Recently the focus on the multiagent task allocation problem has been based on

minimizing the total distance traveled [23] or creating robustness in low or varying

communication [3, 12]. As research moves toward creating higher quality algorithms,

the level of complexity and communication increases as well. To be effective, the task

allocation algorithms must be run constantly throughout the agents’ mission to maintain

system performance due to the completion of tasks or the identification of new tasks.

This results in the algorithm being run even when the results will not change the

performance. Such overhead requires computational resources that could be diverted to

other aspects of the agent. This issue is important because real-world constraints such as

SWaP, (size, weight, and power) and cost may limit the computational hardware that can

be applied to a multiagent system. These values constrain the agents in a multiagent

structure to hardware/specific computational ability. As the size and weight of the agents

15

decrease, the computational abilities of the agents decrease too, therefore the method of

computation the agents use becomes critical. An example of this can be seen in the

comparison between reinforcement learning and supervised learning. Reinforcement

learning allows for adaptivity throughout the mission but the amount of computation that

must be undergone at each step provides a significant overhead [10, 27]. Current

research has not focused on the specific task of reducing the amount of computation in

task allocation algorithms or the effects on the multiagent system.

The multiagent path finding problem has been studied mainly from the view of

fixed algorithms like WHCA*, CBS, and ICTS. The current state of research in this field

has not identified a single algorithm that performs best in every scenario which has

encouraged the use of metareasoning to solve this problem. The metareasoning

approaches used to solve the algorithm selection problem in MAPF include machine

learning applied to map image processing and map features to identify the best

algorithms for a particular map. These metareasoning approaches consider the map

attributes only and they apply one algorithm per map for the multiagent system. In

Chapter 4, this thesis describes research using a metareasoning approach that allows each

agent to select the path finding algorithm best suited to its own current state. This

approach allows for the agents to flexibly determine which algorithm works best for their

situation instead of the entirety of the system. The CBS, WHCA*, and LRA* algorithms

were included in this approach.

16

Chapter 3: Decentralized Multiagent Task Allocation

This chapter describes a multiagent task allocation problem and the development

and testing of a metareasoning approach that determines when an agent should run a task

allocation algorithm. The chapter includes a problem description, overall approach

explanation, detailed steps, results, and discussion of implications.

3.1 Specific Research Gaps

As stated in Section 2.4, this chapter focuses on the reduction of computation in

task allocation algorithms and its effects in a decentralized multiagent system. This

chapter uses state features based on distances to provide individualized states for each

agent. This application has never been done in multiagent task allocation. This method

allows the agents to use information from past missions to understand its current

computational benefits at each point in time.

3.2 Problem Description

This chapter investigates two scenarios for multiagent task allocation: (1)

collaborative visit and (2) collaborative search and visit. Both scenarios occur in a two-

dimensional square workspace. The collaborative visit scenario has stationary target set

𝑈 = {𝑢1, … , 𝑢𝑛} , which the agents know a priori. The agents will be assigned to a set of

tasks 𝑇 = {𝑡1, … , 𝑡𝑚}. In this scenario 𝑇 = 𝑈 throughout the agents’ mission. A target is

considered visited if an agent moves within the threshold distance 𝛿𝑑𝑇 of the target’s

location. The mission ends when every target has been visited at least once.

17

The collaborative search and visit scenario has a stationary target set 𝑈 =

{𝑢1, … , 𝑢𝑛}, but these are initially unknown. These targets are in a square workspace that

is separated into non-overlapping grid cells 𝐺 = {𝑔1, … , 𝑔𝑟} that are known a priori.

Initially 𝑈 is empty and 𝑇 = 𝐺, but, as the agents move around the workspace, they use

their sensors (which have a detection radius of 𝑅𝑣) to detect targets. A cell is considered

visited when an agent reaches the center of the cell; at this point the agent’s sensor radius

covers the entire cell, and, if any targets are in this cell, the agent detects these targets and

shares their locations with the other agents. The set 𝑈 of known targets thus grows as the

mission progresses, and 𝑇 = 𝐺 ∪ 𝑈. After all the cells and targets have been visited at

least once, the mission is complete.

3.3 Overall Approach

This metareasoning approach is applied to two coordination algorithms:

Consensus Based Auction Algorithm (CBAA) and Decentralized Hungarian algorithm

(DHBA). CBAA [9] and DHBA [24] are single task allocation algorithms that assign

one task per algorithm cycle. CBAA uses auctions to determine which agent will be

visiting which target. DHBA uses a cost matrix to identify which target an agent is

assigned. For this research we will be using the min max variations of these algorithms

(CBAAMM and DHBAMM). The two algorithms are variations of CBAA and DHBA

that use the min-max distance travelled objective. These variations use the current

distance travelled by the agents as well as the distance to the target to create their bid

evaluations. Both algorithms require communication with the rest of the system to

exchange their bid or cost information at each time step resulting in the appropriate

18

task. In the scenarios considered in this chapter, communication is perfectly reliable (no

communication packets are dropped), and every agent can communicate with every other

agent. The agents communicate their current locations at every time step, and the agents

communicate their task allocations whenever they run the task coordination algorithm.

A multiagent simulation model was used to evaluate the performance of the task

coordination algorithms. The simulation software used for this research was described by

Nayak et al. [48]. We generated multiple instances by randomly selecting target

locations.

During the simulated mission, each agent runs the task coordination algorithm

(CBAAMM or DHBAMM) every 0.1 seconds. Rerunning the algorithm increases the

number of calculations and messages. Due to the static nature of the targets and the logic

of the algorithms, after an agent has selected a task, the only reason to switch tasks is due

to another agent being assigned to that task and closer to it. In any other instance the

agent is rerunning the algorithm and continuously sending messages without new useful

information. This unnecessary computation and communication are the motivation for

using metareasoning to monitor and control the decision making so that computational

and communication resources are used efficiently.

The concept behind the metareasoning policy was to run the algorithm only when

it might provide benefit. If the algorithm did not change the current task assignment,

then running it at that time was not valuable.

To implement this concept, we developed a metareasoning policy in which the

agent’s meta-level (which is monitoring and controlling the agent’s decision-making

19

process) determines, based on the current state, whether to run the algorithm. This was

implemented as a sequence of decision trees that were learned using XGBoost [13, 36,

37]. XGBoost was chosen because it performs well when data is scarce.

This approach uses four steps: (1) run simulations of the scenarios to determine

the results of the algorithms during these missions, (2) run each algorithm offline to

construct optimal task assignment, which determines whether running it is needed, (3)

use extreme gradient boosting to learn a classification model, and (4) run additional

simulations of the scenarios to evaluate the impact of the learned metareasoning policy

(and other benchmark policies).

3.4 Explanation of Steps

Figure 1 depicts some details of this approach. The process begins with

simulating 240 randomly generated instances for each scenario-algorithm combination

(listed in Table 1) and ends with a classification model made of a sequence of decision

trees that can be used by each agent. Each scenario-algorithm combination has its own

model. (That is, we performed this process four times; once for each combination of

scenario and algorithm.) The following subsections describe the steps in this

process. The simulation, algorithms, and logging in this chapter was developed by Nayak

et al. [48].

3.4.1 Online Simulation

This research generated 240 instances of target locations and used these for each

algorithm-scenario combination. The workspace was a square, and the length of each

20

side was 100 units. Three values were considered for the number of targets (15, 20, and

25), four values for the number of circular “clusters” (1, 2, 3, and 4), and 20 values for

the cluster radius (5, 6, …, 24). For each combination of these values, an instance was

generated. In an instance with more and larger clusters, the target locations were spread

over the entire workspace. In an instance with only one small cluster, the target locations

were grouped closer to each other. To create an instance, cluster centers were randomly

selected so that the entire cluster was inside the workspace. Then, for each target, the

cluster and the “offset” between the target and the cluster center were randomly

generated, which determined the target’s location.

In the search-and-visit scenario, the grid cells were squares, and the length of each

side was 20 units. In both scenarios, the agents moved at a constant speed of 8 units per

second.

Next each instance was simulated, in which each agent ran the task coordination

algorithm every 0.1 seconds and recorded what happened as the agents completed their

mission, which yielded the log files.

3.4.2 Log File

During the simulated mission, at each time step (0.1 seconds), each agent

recorded its state information in a log file. At each time step, the log file lists all known

target locations (x, y), all agent locations (x, y), the current assigned target of each agent,

the number of times the algorithm has run, and the current time step of the

simulation. Every agent has its own log file. For each instance, the log files for those

21

agents were parsed and combined into a new file with comma-separated values (CSV).

This new file is called the Historical CSV.

Figure 3.1: Path for determining metareasoning policies. White boxes represent files

used to store of process data. Blue arrows represent an action, yellow arrows represent

imports, and green arrows identify added functionalities.

Table 3.1: Instance Characteristics

Task

Allocation Algorithm

Scenario Number of

agents

Number of

targets

Number of

clusters

Cluster

radius

CBAAMM Visit 5 15, 20, 25 1, 2, 3, 4 5, 6, …, 24

CBAAMM Search and Visit 5 15, 20, 25 1, 2, 3, 4 5, 6, …, 24

DHBAMM Visit 5 15, 20, 25 1, 2, 3, 4 5, 6, …, 24

DHBAMM Search and Visit 5 15, 20, 25 1, 2, 3, 4 5, 6, …, 24

3.4.3 Historical CSV

For each instance, the historical CSV file contains the locations of every known

target and agent in the simulation at each time step during that mission. (In the search-

22

and-visit scenario, the locations of unknown targets are only populated in the CSV once

they have been found by an agent.) It also records the current task assignments.

Once a simulation has completed the historical CSV is added to a larger

cumulative historical file that contains the data from all previous simulations. The array

that results from the combination of all the historical CSVs is sparse. This is due to the

timestep after an agent completes a task where it is reporting the completed task and

running the algorithm. These actions are completed in this timestep and the assignment

of a new task is not given. This does not occur when an agent's task is completed by

another agent because the agent is not responsible for reporting the completion.

 3.4.4 Offline Algorithm

Offline the historical data can be used to identify the closest task for each agent

without tasking more than one agent to the same target. The task assignment occurs

through the task selection algorithm, but it does not allow two agents to target the same

task at once. The online algorithm has specific instances where an agent is outbid after it

has already committed to a target and it continues until the target until it has been

completed no matter if another agent has been assigned. The offline algorithm results in

the agents only assigning tasks based on the distance metric during the current time

step. The pseudocode for this algorithm can be found in Algorithm 1.

The offline algorithm assigns a task to each agent; this task may be the same as

the running task (the task that was determined by the agent online that was stored in the

historical CSV), or it may be a different task. Moments where the task assignment is

different include timesteps where the agent's running task is outbid by another agent.

23

Here the agent should select a new task even though its running task has not been

completed. In the online simulation an agent may select a task because all the other

agents are currently tasked to different targets. Later, when one of the other agents

completes its task it may be the closest to the running task of another agent. This results

in two agents tasked to the same target. It is this instance where an agent would benefit

in running the algorithm.

When the offline task assignment is the same as the online task for a timestep the

agent is tasked with its closest target and no other agent is closer and tasked to that target.

In this situation the agent is using computational resources to determine the most optimal

task with no change in tasking. These are the instances where the agent is expending

resources that result in the same optimal conclusions. The decision-making algorithms

(CBAAMM and DHBAMM) also include the expense of resources to communicate

during each run so one run expends communication and computational resources.

At each time step, the offline algorithm uses the data in the Historical CSV file to

assign targets to the agents. It then compares its assignment to the assignment that

occurred during the simulation (recorded in the Historical CSV file) to generate the

Performance CSV file.

3.4.5 Performance and Features CSV

For each time step in the instance, the performance CSV file indicates, for each

agent, whether the target that the offline algorithm assigned is the same as the target that

the task coordination algorithm (CBAAMM or DHBAMM) assigned. This is called a

“supervisory signal.” Let sit be the supervisory signal for agent i at time step t. If these

24

targets are different, then sit = 1. If these targets are the same, then sit = 0. If an agent is

in operation and the task coordination algorithm returns a Nonvalue and the offline

25

algorithm also returns a Nonvalue, then sit = 0. If the agent stops operating (ends before

the simulation ends) it will still report a Nonvalue. This occurs when the number of

remaining tasks is less than the number of agents and an agent loses the bid for all the

tasks to another agent. The agent does not record a task for this timestep and moves to

the next timestep. The result is a sparse dataset with missing task data. Algorithm 2

contains the pseudo code used to calculate the values for the Performance CSV. We used

this data with the feature data (in the Features CSV file) to learn the classification model

that was used as the metareasoning policy.

The features used in this study were based solely from features that are

independent of time. The features were represented with different measures of distance

available in the simulation. The features used in this research include Target Distance,

Closest Agent, and Cumulative Distance. These features are calculated for each agent

using its position, the positions of the other agents, and the target’s position. Let 𝑛 be the

26

number of agents. Let (𝑢𝛼𝑥, 𝑢𝛼𝑦) be the current position of agent 𝑢𝛼. Let (𝑢𝑖𝑥, 𝑢𝑖𝑦) be

the current position of agent 𝑢𝑖. Let (𝑡𝛼𝑥, 𝑡𝛼𝑦) be the position of the target that has been

assigned to agent 𝑢𝑎. Let 𝑇𝐷𝛼, the target distance feature, be the distance from the agent

to its assigned target. Let 𝑑𝛼𝑖 be the distance from agent 𝑢𝛼 to agent 𝑢𝑖. Let 𝐶𝐴𝛼, the

closest agent feature, be the distance to the closest agent. Let 𝐶𝐷𝛼, the cumulative

distance feature, be the sum of the distances from the agent to all other agents. The

features are calculated as follows:

𝑇𝐷𝛼 = √(𝑢𝛼𝑥 − 𝑡𝛼𝑥)2 + (𝑢𝛼𝑦 − 𝑡𝛼𝑦)2

𝑑𝛼𝑖 = √(𝑢𝛼𝑥 − 𝑢𝑖𝑥)2 + (𝑢𝛼𝑦 − 𝑢𝑖𝑦)2

𝐶𝐴𝛼 = 𝑚𝑖𝑛{𝑑𝛼𝑖: 𝑖 ≠ 𝛼}

 𝐶𝐷𝛼 = ∑ 𝑑𝛼𝑖

𝑛

𝑖=1

The features were calculated for each agent at every time step. Since the agents are

homogeneous, operate under the same reasoning and have the same physical

characteristics, each time step results in n data points.

3.4.6 Extreme Gradient Boosting

After the four algorithm-scenario combinations and 240 instances were run for

each combination, the simulations produced 648,839 data points. (One data point

contained the features for one-time step and the supervisory signals for a single agent.)

27

We then created a training dataset with 80% of these data points and a test dataset with

the other 20%.

For each algorithm-scenario combination, we used XGBoost

(https://github.com/dmlc/xgboost) to create a classification model for each state. We

used gamma regularization so that the decision tree was not overfit to the training data.

XGBoost handles sparse data internally. A description of how XGBoost handles sparse

matrices can be found in Mitchell et al. [36]. From the Performance CSV file and the

Feature CSV file, XGBoost created a sequence of decision trees whose branches split

based on a logical operator and a feature value and associated with each leaf node with a

𝑙𝑜𝑔 (𝑜𝑑𝑑𝑠) value for the supervisory signal sit. Thus, the sequence of trees classifies a

given state through a summation of the 𝑙𝑜𝑔 (𝑜𝑑𝑑𝑠) values for each tree in the sequence.

Using the logistic function to interpret this value we get a probability that determines

whether the agent should run the task coordination algorithm.

The values for the leaves are equal to the similarity score which is calculated

using the residuals of the performance value for the data points classified to the leaf (k) to

the current probability (𝑅) and the previous probability that the agent will need to run the

algorithm (P).

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =
∑ 𝑅𝑖

𝑘
𝑖=1

∑ 𝑃𝑖(1 − 𝑃𝑖)
𝑘
𝑖=1

We used cross validation to tune the XGBoost parameters. To maximize

classification accuracy, we used the multi:softprob multiclass classification approach,

with a learning rate (eta) of 0.1. Table 2 includes the ranges of max depth, minimum

about:blank

28

child weight, gamma regularization, and column sample by tree used to determine the

best combination through cross validation.

Table 3.2: Parameter descriptions and values used in task allocation cross validation

Parameter Description Possible

Values

Number of classes This is the number of classes that machine learning must classify 2

Max depth This is the depth to which the tree should be split 3 - 6

Eta The learning rate 0.1

Minimum child

weight

This is the sum of the instance weight. If a leaf node is less than

the minimum child weight it is pruned

1, 3, 5, 7, 9,

13

Gamma

regularization

Minimum loss reduction required to make a further partition on

a leaf node of the tree

0 - 10

Column sample by

tree

Subsample of columns when constructing each tree 0.3, 0.5, 0.7,

0.9

3.4.7 Online Algorithm with Metareasoning

All 240 instances were simulated for each algorithm-scenario combination under

three new meta-level policies: (1) metareasoning, (2) random, and (3) necessary.

When using the metareasoning policy, an agent uses the appropriate decision tree

(the one for that algorithm-scenario combination) to determine whether to run the task

coordination algorithm at each time step. It should be noted that, to use this policy, every

agent must communicate to every other agent its current location at every time step. This

is part of the overhead of the metareasoning policy.

When using the random policy, an agent will use the task coordination algorithm

at a given time step if a random value between 0 and 1 is less than or equal to 0.5. That

is, the agent uses the algorithm 50% of the time.

29

When using the necessary policy, an agent uses the task coordination algorithm

only when it has completed its task (visited a target or cell) and needs a new target or cell

to visit.

The original simulation results, when the agents used no meta-level policy, was

denoted as the “control” policy. The random and necessary policies were used as

benchmarks for assessing the performance of the metareasoning policy.

3.5 Results

This section contains the results of the machine learning cross validation tests, the

feature importance results, and the results for all the algorithm-scenario combinations.

3.5.1 Cross Validation and Importance Results

Before running the cross validation, I determined which of the two classification

methods I should use: multi:softprob or multi:softmax. Softmax outputs a class output (l

or 0 in this case); softprob outputs a vector of probabilities for each of the classes (Ex.

0.66 and 0.34). Using the same number of classes (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 2), the max

depth (𝑚𝑎𝑥 𝑑𝑒𝑝𝑡ℎ = 3), and learning rate (𝜀 = 0.1) for both classifications I calculated

the accuracy for classifying the CBAAMM Search and Visit data. The accuracy when

using multi:softprob was 91.9%; the accuracy when using multi:softmax was 83.7%.

The cross validation, using multi:softprob classification, was tested on the

CBAAMM Search and Visit combination. This resulted in the values from Table 3.3

with a gamma value of 0, with an accuracy of 87.8%.

30

Table 3.3: Extreme gradient boosting tuned parameters from CBAAMM, Search and Visit

Parameter Value

Number of classes 2

Max depth 6

Eta 0.1

Minimum child weight 1

Gamma (regularization) 80

Column sample by tree 0.7

Although it was the best solution, this parameter set was too complex to implement due

to its zero-gamma value because this resulted in a total of 64 leaves. To simplify the

decision trees a greater gamma value was needed. Multiple gamma values were tested

while keeping the other parameters constant. The goal of this test was to identify the

trade-off of percent accuracy compared to the simplification of the decision tree. At a

gamma value of 0 the decision tree had 64 leaves and 87.8% accuracy. This would mean

that there would be a minimum of 32 conditional statements for each tree in the

classification model. The larger the tree the larger the computational overhead so the

goal would be to have less than 10 leaves in each tree. At a gamma value of 80 the

decision trees had about 10 leaves with 87.3%accuracy. Due to the small change in

accuracy and low complexity the gamma parameter was chosen to be 80. The parameters

determined in this cross-validation assessment were used in the extreme gradient

boosting for all the other algorithm-scenario combinations. They can be seen in Table 3.

The accuracy results for the CBAAMM Visit, DHBAMM Search and Visit, and the

DHBAMM Visit scenario were 78.7%, 86.3%, and 78.4% respectively using these

parameters.

31

The supervised learning also results in the identification of the feature importance

in each of the combinations. The features are given an F score when the tree is

constructed; a greater F score indicates that the feature has more influence on the tree.

The feature importance values can be seen in Table 4. These suggest that the

𝑇𝐷𝛼 feature is more influential than the other features.

Table 3.4: F Score (Features Importance) values for all algorithm scenario combinations

Features

CBAAMM

Visit

CBAAMM

S&V

DHBAMM

Visit

DHBAMM

S&V

𝑇𝐷𝛼 160 162 100 117

𝐶𝐴𝛼 105 127 62 84

𝐶𝐷𝛼 77 101 40 42

3.5.2 Simulation Results

These simulations represented the control for the experiments. Once the meta-

level controls were identified from each combination another 240 simulations were run

with inclusion of the meta-level. Simulations with a 50% random policy and task

completion policy were run for comparison. The random policy is like running the

decision-making algorithm every 0.2 seconds. The task completion policy runs the

algorithm only when the task an agent has been assigned to has been completed.

For each algorithm-scenario combination, meta-level policy (control,

metareasoning, random, and necessary), and instance, we assessed performance using

three metrics: distance travelled, total messages exchanged, and total runs. The distance

travelled metric is the total distance that all the agents traveled during the mission. The

total messages exchanged metric is the total number of messages sent by all agents during

the mission. The total runs metric is the total number of times that the agents ran the task

32

coordination algorithm during the mission. Figures 3.2, 3.3, and 3.4 show the

distributions of these metrics for each policy in each algorithm-scenario combination.

Figure 3.2: Distance travelled for each algorithm scenario combination. Red dots

represent averages, the red lines represent the medians, and the box represents the

middle two quartiles.

33

Figure 3.3: Messages exchanged for each algorithm scenario combination

34

Figure 3.4: Total runs for each algorithm scenario combination

3.6 Discussion

The baseline policy, in which the agents ran the task coordination algorithm every

time step (labelled “Control” in Figures 3.2, 3.3, and 3.4), yielded lower mean and

median distance values than the metareasoning policy in three of the four algorithm-

scenario combinations. These values were smaller in the CBAAMM scenarios than the

DHBAMM scenarios. The baseline policy yielded much larger values for the messages

35

exchanged and total runs metrics, however. Thus, it appears that the metareasoning

policy can reduce computational effort and communication costs without degrading

system performance (total distance); indeed, in one case (using CBAAMM in the search-

and-visit scenario), the system performance was not worse. Although the necessary

policy improved the messages exchanged and total runs metrics even more than the

metareasoning policy, it also degraded system performance more.

The baseline policy (which runs the algorithm every time step) serves as an upper

bound on the messages exchanged and total runs metrics. The random policy runs the

algorithm half as often as the control. In all the combinations the metareasoning policy

yields values less than the random policy and in the case of DHBAMM it is similar to the

messages exchanged and total runs of the necessary policy.

 The control policy exchanged the most messages and performed the algorithm

significantly more than any of the other methods. As shown in Figures 3.3 and 3.4,

running the algorithm constantly acts as an upper bound for the number of messages

transmitted and algorithmic runs per simulation. This is a result of the policy running

every 0.1 seconds; although the other policies determine whether the algorithm will run,

the control automatically runs the algorithm. Running the algorithm results in a sending

of bids messages to the other agents. Running the algorithm in the necessary situations

results in the least number of algorithmic runs to complete and therefore the least

messages. The performance of the random policy, which ran the task allocation

algorithm 50% of the time, was near the average of the performance of the control and

necessary policies, as shown in Figures 3.3 and 3.4. The metareasoning policy does not

follow the same trend of Figure 3.2. The metareasoning provides a reduction in the

36

overall messages passed and a reduction in algorithmic runs. The metareasoning is

consistently lower than the random policy in all algorithm scenario combinations and in

the CBAAMM instances it completes the simulation with less distance.

 Not all the features in the supervised learning were used to construct the

classification model. The cumulative feature has no logical expressions in any of the

scenarios. Given the two features used for these decision trees, XGBoost was able to

obtain a decision tree that provided a structure that decreased the messages and the

computational overhead of the decision-making process while minimally affecting the

performance of the system. The decision trees used in this study were all less than 90%

accurate. Increasing the classification model’s accuracy would improve an agent’s ability

to detect instances when it would otherwise be over computing. Since the occurrences of

multiple agents on a single task is less likely than the agents going to different tasks this

would reduce the algorithmic runs further as well as the communication of the system.

However, this increased accuracy will also increase the model complexity and a larger

computational overhead for the model.

 Overall, these results indicate that a metareasoning policy that is trained using

supervised learning can decrease overhead while maintaining performance. The

approach was also able to scale between the different algorithms and environment

complexities while producing similar results. The benefits of the metareasoning can

differ based on these algorithms and scenarios.

37

Chapter 4: Decentralized Multiagent Path Finding

This chapter describes the multiagent path finding problem and the development

and testing of a metareasoning approach that determines out of a set of path finding

algorithms which one should be executed for each agent. The approach is implemented

on a decentralized system using optimal and suboptimal centralized path planning

algorithms that have been converted into their decentralized logical equivalents. The

chapter includes a problem description, overall approach explanation, detailed steps,

results, and discussion of implications.

4.1 Specific Research Question

The lack of a single dominating fixed algorithm for the MAPF has motivated

research on the relevant algorithm selection problem. Current metareasoning research

used to solve this problem has utilized map features to determine which of the multiagent

path finding algorithms are best suited for a specified map [25, 53]. Although this

approach has provided positive results, it has only focused on the problem from a

centralized system viewpoint. This chapter attempts to identify whether using the

individualized state features of an agent in a decentralized multiagent system to solve the

algorithm selection problem for MAPF will provide better results than the individual

fixed optimal and suboptimal algorithms. The algorithms used in this section include

LRA*, WHCA*, and CBS.

38

4.2 Problem Description

The classical multi-agent pathfinding (MAPF) problem with k agents is defined

by a tuple {𝐺, 𝑠, 𝑧} where 𝐺 = (𝑉, 𝐸) is an undirected graph, 𝑠 ∶ [1, … , 𝑘] → 𝑉 maps an

agent to its source vertex, and 𝑧 ∶ [1, … , 𝑘] → 𝑉 maps an agent to its target vertex [56].

The timeline is a discrete sequence that begins at 𝑡0, and agent 𝑎𝑖 is at 𝑠𝑖 at time 𝑡0.

During each time step an agent can complete a single action. The agent can complete a

wait or move action at each time step. A wait action is one where the result of the action

is the current vertex. A move action is one where the agent moves to a vertex that is

adjacent to the current position. During a move action the agent must move along an

edge denoted by (𝑣, 𝑣’) ∈ 𝐸. A solution to the classical MAPF is a set 𝑝 = {𝑝1, … , 𝑝𝑘} of

paths, one for each agent, where a path is a sequence of wait and move actions where the

agents can move from source to target without conflicts. In this research we consider two

different types of conflicts: swapping conflicts and vertex conflicts. We will refer to

these as edge collisions and node collisions respectively in this paper. An edge collision

occurs when two agents switch vertices in a time step resulting in them traveling on the

same edge. A node collision occurs when two agents arrive at the same node at the same

time step. These collisions are used with the algorithms to help agents avoid following

faulty paths.

 Sturtevant [57] proposed a set of benchmark maps 𝑀 that includes warehouses,

mazes, video game maps, and random environments. This study used three maps, each of

a different type (warehouse, videogame, and random) that includes fewer than 12,000

vertices. When acting the agents will only be able to move to four adjacent vertices other

39

than its current vertex, otherwise known as a 2𝑛 neighborhood grid where n is equal to 2.

This means agents may only move in the x and y direction, and they may not move on a

diagonal. We studied a decentralized multiagent system using a decoupled path finding

approach, while trying to minimize the sum-of-costs (the sum of all individual path costs)

and minimize the sum of the computational time for all agents. The source and goal

nodes were randomly generated, and the maps chosen will not have any isolated portions

that would otherwise lead to the inability for an agent to determine a path.

4.3 Overall Approach

The algorithms used in this study are LRA* [64], WHCA* [54], and CBS [51].

These three algorithms were chosen due to their use of the A* algorithm, their ability to

be converted into a decentralized form in full communication, and their temporal

relationship to collision checking. A description of these algorithms can be found in

Section 4.4. Other algorithms like the complete M* were not included because they do

not enhance the testing of different collision checking times.

 The metareasoning approach used in this research is Selecting a Reasoning

Algorithm. That is, each agent’s meta-level chooses the algorithm that it will use to find

its path. No matter the map or the agent, the decision is based on the understanding of

the state features. It will then choose which of the algorithms will provide the most

benefit.

As explained in Section 4.5, we first ran the fixed algorithms on each of the maps

to collect state and performance data. At the start of each run distance-based state

features are used to gain an understanding of the current situation for each agent. These

40

features do not include any information about the environment, instead they only

consider the magnitude of the distances to the other agents as well as the magnitude of

the distance to the targets. They also use the average of the distances between the agents

and the source to target distances. Once all the runs were complete the information was

processed using XGBoost. Both classification and regression were used.

 Once the models were constructed a subsection of the runs were conducted a

second time. During a run, each agent used the classification or regression models to

determine which of the algorithms was best suited for the state at 𝑡0 depending on the

metric used to create the model. In both cases the model is trying to minimize the metric.

The metrics used were the sum-of-costs and the sum of computational time.

4.4 MAPF Algorithms Used

Local Repair A* (LRA*) is a search-based solver [54] which comes from the

brute force planner developed in [63]. It allows the agents to calculate their optimal paths

excluding the other agents. The agents then begin to follow their paths until a collision is

imminent. Before an agent moves into a position that would result in a collision (edge

collision or node collision) the agent recalculates the rest of its path. During the

recalculation, the agent considers the collision resulting node as an obstacle for the next

time step, the time step at which the collision would have occurred. This collision check

happens three times so that new paths do not result in new collisions. To implement this

algorithm, the agents must have the ability to perceive two nodes in each direction from

the current location. These responsive traits tend to result in a difficulty in bottleneck

environments where there are many agents. Silver [54] noted that this type of a situation

41

causes the algorithm to rerun at every time step causing the agent to cycle between two

adjacent vertices.

 Windowed Hierarchical Cooperative A*(WHCA*) is also a search-based solver

[54]. WHCA* uses A* initially to compute the optimal path of an agent however after an

agent has computed the optimal path the agent must check a small portion of it before it

is accepted. The agents must check their paths with a global reservation table for a

specified window, which is a fixed number of future time steps. After completing the

checks if an agent does not find any conflict the agent may proceed and update the

reservation table. If it does find a conflict, the agent must run the algorithm again using

the current reservation table as a set of constraints in determining the new path. The

agents do these windowed checks synchronously when they reach the midpoint of the

reservation table. For example, if the window is set to be sixteen when the agents reach

the eighth vertex in the table it will be shifted forward. The current vertex becomes the

first vertex in the reservation table and the following vertices are populated. This

algorithm is known in research to be centralized but the application in this research

allows the agents to share the current reservation table with the next agent in the

hierarchy. By following this process, the structure is maintained, and each agent can

calculate the path with A* and the reservation table constraints.

 The Conflict Based Search (CBS) algorithm is a two-level solver that uses A* in

the low-level and a constraint tree in high-level [51]. Initially A* is used to determine the

optimal paths for each of the agents. A single agent is then assigned by design to check if

any conflicts exist in the paths. If no conflicts exist, the initial paths are collision free and

accepted. If a conflict does exist two nodes are created with the paths involved, agents

42

involved, and time of occurrence. The agent that discovered the conflict must run the A*

algorithm in each node using the conflict vertex and time as a constraint. If the agent

determines nonconflicting paths in one node while the other node contains a conflict the

non-conflicting paths are returned. If both nodes have non-conflicting paths the sum-of-

costs of the paths is taken and the one with the lesser value is returned. The node with the

lowest sum-of-costs becomes the paths and constraints used in the next iteration. CBS is

known to be a centralized algorithm, but Sharon [51] described that if a system had full

communication and was fully cooperative it would be logically equivalent to a

decentralized system. In this research CBS has been constructed in this decentralized

manner. When the branch of a constraint tree is split into two nodes one agent out of the

set of agents replans its path. If this new node is the lowest cost out of all nodes than the

agent whose path was replanned is responsible for the next iteration of conflict checks

and replanning. This is made possible because the new plans are communicated to all

agents and the algorithm runs through any agent that has needed to replan its path.

 The metareasoning approaches allow for multiple algorithms to be used in the

system which provides an issue of conflict resolution. To solve this problem each agent

uses the LRA* algorithm to resolve conflicts that wouldn’t occur in the single fixed

algorithm implementations. The WCHA* and CBS algorithms don’t include agents in

their solutions that do not run the same algorithm. For example, the CBS algorithm only

runs the conflict checking and replanning for the set of agents that are running the CBS

algorithm.

43

4.5 Explanation of Steps

This approach relies on data from initial experiments that can be used for training

of a supervised machine learning model. The initial experiments include testing on three

MAPF benchmark maps [56], three fixed path finding algorithms, and two metareasoning

approaches trained using XGBoost. XGBoost was chosen because of successful

metareasoning application in Kaduri et al. [25].

4.5.1 Scenario Generation

Each fixed algorithm will be run with sizes of multiagent systems ranging from

10 to 70. As the size of the multiagent system increases the number of runs decreases.

This is done because the agents log their state features at the beginning of the simulation

thus the number of data points in a single run is dependent on the size of the multiagent

system. There will be 500 runs per algorithm for each of the maps, this is a total of 1,500

initial runs. This will result in 16,900 data points for each of the maps per algorithm.

The maps chosen for this experiment include three types: warehouse, video game, and

random. Due to the number of runs needed per map we were unable to use all the maps

from the benchmark set. Each of the maps chosen were selected based on the number of

nodes in the map. Due to the application of this approach in MATLAB, medium size

maps (about 12,000 nodes or less) were chosen. The specific maps chosen were the

warehouse 10-20-10-2-2 map, the lt_gallowstemplar_n map, and the random 64-64-20

map. These maps can be found at https://movingai.com/benchmarks/mapf/index.html

[57], and they will be referred to as warehouse, gallows, and random respectively and

about:blank

44

they can be seen in Figure 4.1. Table 4.1 contains the design of experiments for the

initial tests.

(a) (b)

(c)

Figure 4.1: Maps used in this research: (a) warehouse, (b) gallows, (c) random.

 These algorithms were also tested using the 128 by 128 maze with a corridor

width of two, but it was excluded from this study because the algorithms were unable to

solve this problem in the larger system sizes without collisions.

45

Table 4.1: Initial data for all algorithms and maps

Algorithm Map Type Number of Agents Number of Runs

A*

{warehouse,

gallows, random} {10, 20, 30, 40, 50, 60, 70} {110, 90, 80, 70, 60, 50, 40}

WHCA*

{warehouse,

gallows, random} {10, 20, 30, 40, 50, 60, 70} {110, 90, 80, 70, 60, 50, 40}

CBS

{warehouse,

gallows, random} {10, 20, 30, 40, 50, 60, 70} {110, 90, 80, 70, 60, 50, 40}

 In Table 4.1, the number of agents is related to the number of runs respectively.

This means that the system size of 10 agents had 110 runs, 20 agents had 90 runs, and 30

agents had 80 runs. This tactic was used so that the smaller system sizes would have

enough data points for the machine learning.

4.5.2 Feature and Performance Logging

The feature attributes were set so that no agent would share the same value in the

same run. This means that none of the features are related to the map or the values of the

system as a whole and instead their magnitudes change based on which agent is

completing the computation. To accomplish this, we avoided using temporal attributes,

and we used only attributes that could be calculated using the data pertaining to agent

locations, target locations, and the number of agents. These factors were based on the

understanding that if the agents must travel during the simulation the farther the agent is

from another agent the lower the likelihood that the agents will receive a conflict. From

the target side, the farther the target location is from the source the higher the likelihood

the agent will experience a conflict. Given these assumptions there may be factors based

46

on distance that may classify states where agents would benefit from one algorithm over

another.

 The features used in this research include Number of Agents (NA), Closest Agent

(CA), Farthest Agent (FA), Average Agent Distance (AAD), Target Distance (TD), Ratio

of Closest Agent to Average Agent Distance (RCA), and Ratio of Task Distance to

Average Task Distance (RTD). Let k be the number of agents. Let (𝑢𝛼𝑥 , 𝑢𝛼𝑦) be the

current position of agent 𝑢𝛼. Let (𝑢𝑖𝑥, 𝑢𝑖𝑦) be the current position of agent 𝑢𝑖. Let 𝑑𝛼𝑖 be

the manhattan distance from agent 𝑢𝛼 to agent 𝑢𝑖. Let 𝐶𝐴𝛼, the closest agent feature, be

the distance to the closest agent. Let 𝐹𝐴𝛼, the farthest agent feature, be the distance to

the farthest agent. Let 𝐴𝐴𝐷𝛼, the average agent distance feature, be the average distance

to the agents. Let (𝑡𝛼𝑥, 𝑡𝛼𝑦) be the position of the target that has been assigned to agent

𝑢𝑎. Let 𝑇𝐷𝛼, the target distance feature, be the Manhattan distance from the agent to its

assigned target. Let 𝑅𝐶𝐴𝛼, the ratio of the task distance to the closest agent feature, be

the ratio of 𝑇𝐷𝛼 divided by 𝐶𝐴𝛼. Let 𝑅𝑇𝐷𝛼, the ratio of task distance to average task

distance feature, be the ratio of 𝑇𝐷𝛼 divided by the average of all task distances. The

features are calculated as follows:

𝑑𝛼𝑖 = |𝑢𝛼𝑥 − 𝑢𝑖𝑥| + |𝑢𝛼𝑦 − 𝑢𝑖𝑦|

𝐶𝐴𝛼 = min{𝑑𝛼𝑖 ∶ 𝑖 ≠ 𝛼}

𝐹𝐴𝛼 = max{𝑑𝛼𝑖 ∶ 𝑖 ≠ 𝛼}

𝐴𝐴𝐷𝛼 =
∑ 𝑑𝛼𝑖

𝑘
𝑖=1

𝑘 − 1
∶ 𝑖 ≠ 𝛼

47

𝑇𝐷𝛼 = |𝑢𝛼𝑥 − 𝑡𝛼𝑥| + |𝑢𝛼𝑦 − 𝑡𝛼𝑦|

𝑅𝐶𝐴𝛼 =
𝑇𝐷𝛼

𝐶𝐴𝛼

𝑅𝑇𝐷𝛼 =
𝑇𝐷𝛼

(
∑ 𝑇𝐷𝑖

𝑘
𝑖=1

𝑘 − 1
)

∶ 𝑖 ≠ 𝛼

 The performance metrics measured in these experiments includes the sum-of-

costs and the sum of computational time. Let 𝐶 = {𝑐1, … , 𝑐𝑘} be the set of costs for each

agent in a single run. The cost 𝑐𝑖 equals the number of move and wait actions of agent i

in a run. Let 𝐽 = {𝑗1, … , 𝑗𝑘} be the set of computational times for each agent in a single

scenario. The computation time 𝑗𝑖 equals the total time that an agent takes running the

algorithm for a single scenario.

4.5.3 Extreme Gradient Boosting

We implemented XGBoost on the initial test data. In this experiment we

calculated two different machine learning models for each of the maps. The first

approach used 𝐶 with classification to determine which algorithms should be run in each

state. We used the multi:softprob classification approach, which is a multiclass approach

that creates a vector of probabilities for each of the classes.

The second approach used 𝐽 with regression. This resulted a model that can be

used to estimate the predicted computational effort for each algorithm at the beginning of

48

a run. In this approach, each agent chooses the algorithm that will require the least

computational effort.

Before implementing the machine learning approaches, we conducted a cross

validation test to determine the parameters for the machine learning application. We

conducted two cross-validation checks for each map, one for classification and one for

regression. Table 4.2 and Table 4.3 show the inputs to the cross-validation experiments.

The results of the cross-validation experiments can be found in Section 4.6.

Table 4.2: Cross Validation for Extreme Gradient Boost Classification

Parameter Description Possible

Values

Number of classes This is the number of classes that machine learning must classify 3

Max depth This is the depth to which the tree should be split 5 - 8

Eta The learning rate 0.1, 0.2, 0.3

Minimum child

weight

This is the sum of the instance weight. If a leaf node is less than

the minimum child weight it is pruned

1, 3, 5

Gamma

regularization

Minimum loss reduction required to make a further partition on

a leaf node of the tree

0 - 10

Column sample by

tree

Subsample of columns when constructing each tree 0.5, 0.75, 1

The tuned parameters were input into the machine learning approach. This

resulted in a model saved as a binary file. When a run begins the agent calculates the

state features in the initial step. Then, the model was loaded into the MATLAB

simulation. Using these state features the model chooses one of the three algorithms and

gives the result to the agent.

49

Table 4.3: Cross Validation for Extreme Gradient Boost Regression

Parameter Description Possible

Values

Eta The learning rate 0.1, 0.2, 0.3

Max depth This is the depth to which the tree should be split 5 – 8

Minimum child

weight

This is the sum of the instance weight. If a leaf node is less than

the minimum child weight it is pruned

1, 3, 5

Gamma

regularization

Minimum loss reduction required to make a further partition on

a leaf node of the tree

0 - 10

Subsample Fraction of observations to be randomly sampled (total training

data selection)

0.5, 0.75, 1

4.5.4 Meta-Level Reasoner

At run time either the classification model or the regression model will be used as

the meta-level reasoner. Each agent will calculate the set of state features at the start of

each scenario. These features will then be passed into the model during the meta-level

monitoring process. In this case the model will run a python function in MATLAB to

determine the best algorithm out of the three. In classification, the extreme gradient

boosting model goes through a sequence of boosted trees resulting in a set of leaves

containing similarity scores. If the magnitude of the similarity scores is low, the group of

data separated into the leaf have different classifications and therefore the separation is a

poor one. If the magnitude of the similarity scores is high, the group of data are similar

and therefore the separation, or classification, is good. The equation for the calculation

of the similarity score can be seen below:

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =
∑ 𝑅𝑖

𝑚
𝑖=1

∑ 𝑃𝑖(1 − 𝑃𝑖)
𝑚
𝑖=1

50

Where R is a set of residuals and P is the previous probability. The construction

of trees with different branches and leaves occurs many times each tree constructing new

branches and leaves based on the probability, P, calculated by the previous tree. The

result is a sequence of decision trees that use the feature data to move through each tree

resulting in a leaf. The resulting set of leaf values is then summed to calculate a

log(odds) value. Each of the algorithms receives its own log(odds) value. A probability

is then calculated using the logistic equation below:

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑒log(𝑜𝑑𝑑𝑠)

1 + 𝑒log(𝑜𝑑𝑑𝑠)

The model then returns whichever of the algorithms has the greatest probability,

in this case the algorithm that will most likely result in the lowest cost. This

determination will become the meta-level control used by the agent to select which of the

algorithms it will use in the object-level. The result of this testing on each agent will be a

non-homogenous set of algorithms, 𝐴 = {𝑎1, … , 𝑎𝑛}, where each 𝑎𝑖 ∈

{𝐿𝑅𝐴∗, 𝑊𝐻𝐶𝐴∗, 𝐶𝐵𝑆} .

 Using extreme gradient boosting with regression will produce three times the

machine learning models compared to classification, one for each of the fixed algorithms.

These models will be used to estimate the computational time an algorithm will take

given the state. An average of all the computational times is taken to determine the

original leaf average (𝜑). The data is then split into branches of a decision tree like the

classification approach. The residuals for each data point in a branch are taken in respect

to 𝜑. If the group has a high magnitude of similarity score the values in this branch are

similar. Once a tree has been completed the predicted value for the data point is adding

51

the 𝜑 to the average residual (𝑅𝑖) of the leaf times the learning rate (𝜀). This occurs for a

sequence of n trees. The equation for this calculation can be seen below:

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝜑 + ∑ ε𝑅𝑖

𝑛

𝑖=1

When new state features are provided to the model the trees are implemented in

their sequence. The 𝜑 is always the same but as the conditional values of the tree

evaluate the state features different residuals are determined based on the resulting

leaves. At the completion of the model there exists a set of residuals that when summed

together and multiplied by the learning rate result in some estimation of computational

time. Since there are three models, one for each of the algorithms, the meta-level chooses

the algorithm with the minimal computational time, min{𝐽} = min{𝑗𝐴∗, 𝑗𝑊𝐻𝐶𝐴∗, 𝑗𝐶𝐵𝑆}.

The algorithm with the minimal computational time will be used by the agent.

4.6 Results

This section contains the results of the machine learning cross validation tests, the

feature importance results, the distance and computation results for the algorithms, and

the percent of each algorithm use in the metareasoning for the differing maps.

4.6.1 Cross Validation and Importance Results

 The cross validation for the classification model was conducted using the

multi:softprob objective. This objective returns a vector of probabilities in relation to the

algorithms, the algorithm with the highest probability will be run in the object-level by an

52

agent. The number of rounds was set to 25 to reduce the amount of decision trees in the

sequence. The evaluation metric used was the multiclass negative log-likelihood. This

metric was used to validate the data. The number of classes was equal to three since

there are three algorithms to classify. The results for this cross validation can be seen in

Table 4.4.

 When classifying the algorithms, the algorithm with the smallest distance is

chosen. When a tie occurs, a tie breaker is used to choose the algorithm. If LRA* is tied

for the lowest distance LRA* is returned. If WHCA* and CBS tie than WHCA* is

returned.

Table 4.4: Tuned Parameters from the classification cross validation

Parameter Warehouse Random Gallows

Eta 0.1 0.3 0.1

Max depth 7 6 5

Minimum child weight 5 5 5

Gamma 4 3 2

Column sample by tree 0.5 0.5 0.5

Accuracy 63% 59% 63%

 The regression cross validation used the reg:squarederror objective. This is the

default objective. The evaluation metric used to validate the data was the root mean

squared error. The number of estimators (number of trees in sequence) used for this

model was set to 100 to provide a mid-sized model with moderate accuracy and

computation. The results of the regression cross validation can be seen in Table 4.5.

The tuned parameters from the cross validation were used to construct three

classification models and nine regression models. These models consist of trees

separated by conditional statements in relation to feature values. Not all feature values

53

are equivalent. Features that have a higher F Score are more important to a model and

these F Scores are reported in an importance table. The results of the feature importance

for each model can be found in Table 4.6 and Table 4.7.

Table 4.5: Tuned parameters from the regression cross validation

 Warehouse Random Gallows

Parameter LRA* WHCA* CBS LRA* WHCA* CBS LRA* WHCA* CBS

Eta 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Max depth 5 7 5 5 5 5 5 6 5

Minimum

child weight

1 5 5 3 5 5 1 1 1

Gamma 9 1 5 0 0 9 3 6 7

Subsample 0.9 0.5 0.9 0.5 0.3 0.9 0.9 0.9 0.9

Score 68% 80% 24% 78% 80% 24% 72% 88% 26%

Table 4.6: F Scores for classification importance

Features Warehouse Random Gallows

𝑅𝑇𝐷𝛼 330 184 355

𝐴𝐴𝐷𝛼 91 111 170

𝑅𝐶𝐴𝛼 81 114 133

𝑁𝐴 219 108 244

𝑇𝐷𝛼 130 77 137

𝐶𝐴𝛼 15 28 131

𝐹𝐴𝛼 46 55 66

Table 4.7: F Scores for regression importance

 Warehouse Random Gallows

Features LRA* WHCA* CBS LRA* WHCA* CBS LRA* WHCA* CBS

𝑅𝑇𝐷𝛼 6 9 40 11 13 62 13 42 51

𝐴𝐴𝐷𝛼 3 18 56 7 6 54 13 53 37

𝑅𝐶𝐴𝛼 9 6 44 15 6 32 31 33 45

𝑁𝐴 4 7 32 5 14 35 34 86 41

𝑇𝐷𝛼 59 79 57 58 45 41 47 111 50

𝐶𝐴𝛼 2 4 11 3 2 19 5 36 13

𝐹𝐴𝛼 16 27 25 11 7 15 10 55 35

54

4.6.2 Distance and Computation Results

 To analyze the performance of the metareasoning the regret was measured in

relation to the distance and computation. The regret was calculated by using the

minimum distance or computation by any algorithm as the optimal value. The difference

between the distance or computation for each algorithm and the optimal value is

calculated otherwise known as the regret. This metric will identify algorithms that are

consistently poor or effective in a certain map and system combination.

 The first 25 runs for each system size in a map were used to compare the

algorithms. The average regret for the 25 runs for each system size can be seen in

Figures 4.1 – 4.6. The computational regret for the CBS algorithm was not plotted in

Figures 4.2 and 4.4 because its value was 100 times the next largest computational time.

 Tables 4.8 – 4.13 contain the average sum of the distances and computational

times for each of the system sizes. In the following tables and figures MetaClass

represents the metareasoning method that utilizes the classification learning model and

MetaRegress represents the metareasoning method that utilizes the regression learning

models.

55

Table 4.8: Average distance travelled by all agents in the system for a simulation on the

warehouse map

Number of

Agents

A*

Average

Distance

WHCA*

Average

Distance

CBS

Average

Distance

MetaClass

Average

Distance

MetaRegress

Average

Distance

10 926 926 925 926 925

20 2,029 2,030 2,026 2,029 2,022

30 3,184 3,184 3,182 3,184 3,178

40 4,423 4,414 4,415 4,423 4,413

50 5,715 5,716 5,712 5,716 5,714

60 6,815 6,834 6,832 6,815 6,814

70 8,348 8,345 8,332 8,348 8,348

Table 4.9: Average computational time for all agents in the system for a simulation on

the warehouse map

Number

of

Agents

A* Average

Computation

Time

WHCA*

Average

Computation

Time

CBS Average

Computation

Time

MetaClass

Average

Computation

Time

MetaRegress

Average

Computation

Time

10 1.837 1.829 2.782 1.845 1.866

20 4.982 3.98 37.53 5.005 5.127

30 6.25 6.334 36.758 6.25 6.464

40 8.392 8.993 120.775 8.383 8.681

50 10.834 11.185 200.447 10.864 11.143

60 13.393 12.626 281.541 13.393 12.72

70 14.765 16.031 302.259 14.854 15.212

56

Figure 4.2: Average distance regret for algorithms on the warehouse map

Figure 4.3: Average computational regret for algorithms on the warehouse map

0

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70

D
is

ta
n

ce

Number of Agents

LRA* Mean Diff

WHCA* Mean Diff

CBS Dist Mean Diff

MetaClass Mean Diff

MetaRegress Mean Diff

0

0.5

1

1.5

2

2.5

10 20 30 40 50 60 70

Ti
m

e
(s

ec
o

n
d

s)

Number of Agents

LRA* Mean Diff

WHCA* Mean Diff

MetaClass Mean Diff

MetaRegress Mean Diff

57

Figure 4.4: Average distance regret for algorithms on the random map

Figure 4.5: Average computational regret for algorithms on the random map

0

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70

D
is

ta
n

ce

Number of Agents

LRA* Mean Diff

WHCA* Mean Diff

CBS Dist Mean Diff

MetaClass Mean Diff

MetaRegress Mean Diff

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 20 30 40 50 60 70

Ti
m

e
(s

ec
o

n
d

s)

Number of Agents

LRA* Mean Diff

WHCA* Mean Diff

MetaClass Mean Diff

MetaRegress Mean Diff

58

Table 4.10: Average distance travelled by all agents in the system for a simulation on the

random map

Number

of Agents

A*

Average

Distance

WHCA*

Average

Distance

CBS

Average

Distance

MetaClass

Average

Distance

MetaRegress

Average

Distance

10 510 510 508 510 510

20 1,102 1,109 1,102 1,102 1,099

30 1,781 1,762 1,762 1,781 1,780

40 2,533 2,538 2,521 2,533 2,531

50 3,250 3,234 3,257 3,250 3,248

60 4,092 4,110 4,086 4,092 4,092

70 4,870 4,874 4,868 4,870 4,870

Table 4.11: Average computational time for all agents in the system for a simulation on

the random map

Number

of

Agents

A* Average

Computation

Time

WHCA*

Average

Computation

Time

CBS Average

Computation

Time

MetaClass

Average

Computation

Time

MetaRegress

Average

Computation

Time

10 0.236 0.254 0.373 0.256 0.253

20 0.538 0.602 3.629 0.556 0.572

30 0.925 0.944 47.376 0.94 0.99

40 1.25 1.459 152.117 1.274 1.312

50 1.49 1.812 300.279 1.516 1.589

60 2.036 2.685 300.492 2.072 2.176

70 2.346 3.187 299.564 2.429 2.463

59

Figure 4.6: Average distance regret for algorithms on the gallows map

Figure 4.7: Average computational regret for algorithms on the gallows map

0

20

40

60

80

100

120

140

160

10 20 30 40 50 60 70

D
is

ta
n

ce

Number of Agents

LRA* Mean Diff

WHCA* Mean Diff

CBS Dist Mean Diff

MetaClass Mean Diff

MetaRegress Mean Diff

0

5

10

15

20

25

10 20 30 40 50 60 70

Ti
m

e
(s

ec
o

n
d

s)

Number of Agents

LRA* Mean Diff

WHCA* Mean Diff

MetaClass Mean Diff

MetaRegress Mean Diff

60

Table 4.12: Average distance travelled by all agents in the system for a simulation on the

gallows map

Number

of

Agents

A*

Average

Distance

WHCA*

Average

Distance

CBS

Average

Distance

MetaClass

Average

Distance

MetaRegress

Average

Distance

10 1,180 1,180 1,155 1,180 1,180

20 2,467 2,476 2,464 2,467 2,469

30 3,945 3,945 3,887 3,945 3,951

40 5,426 5,439 5,361 5,426 5,422

50 6,894 6,929 6,865 6,894 6,895

60 8,444 8,521 8,427 8,444 8,450

70 10,209 10,211 10,172 10,200 10,224

Table 4.13: Average computational time for all agents in the system for a simulation on

the gallows map

Number

of

Agents

A* Average

Computation

Time

WHCA*

Average

Computation

Time

CBS Average

Computation

Time

MetaClass

Average

Computation

Time

MetaRegress

Average

Computation

Time

10 6.73 7.14 39.93 6.84 6.77

20 15.99 18.69 209.78 16.29 18.43

30 28.81 31.73 309.26 29.32 30.12

40 51.57 51.24 324.26 52.68 49.37

50 63.66 71.39 336.29 64.98 75.18

60 79.4 87.75 347.84 81.01 83.23

70 114.24 125.12 375.16 118.57 115.86

4.6.3 Algorithm Usage

 The metareasoning policies allow for different algorithms in the same run.

Figures 4.7 – 4.9 shows the percentage of the algorithms used for the different system

sizes on each map. The classification and regression are compared to show how the

different methods resulted in varying system compositions. In each figure the number of

agents in the system was specified in parenthesis under the algorithm name.

61

Figure 4.8: Percentage distributions of algorithms per system size on the warehouse map

Figure 4.9: Percentage distributions of algorithms per system size on the random map

Meta
Class
(10)

Meta
Reg
(10)

Meta
Class
(20)

Meta
Reg
(20)

Meta
Class
(30)

Meta
Reg
(30)

Meta
Class
(40)

Meta
Reg
(40)

Meta
Class
(50)

Meta
Reg
(50)

Meta
Class
(60)

Meta
Reg
(60)

Meta
Class
(70)

Meta
Reg
(70)

CBS 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

WHCA* 0% 46% 0% 52% 0% 56% 0% 56% 6% 51% 1% 46% 2% 51%

LRA* 100% 53% 100% 48% 100% 44% 100% 45% 94% 49% 99% 54% 98% 49%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
er

ce
n

ta
ge

Meta
Class
(10)

Meta
Reg
(10)

Meta
Class
(20)

Meta
Reg
(20)

Meta
Class
(30)

Meta
Reg
(30)

Meta
Class
(40)

Meta
Reg
(40)

Meta
Class
(50)

Meta
Reg
(50)

Meta
Class
(60)

Meta
Reg
(60)

Meta
Class
(70)

Meta
Reg
(70)

CBS 0% 2% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

WHCA* 0% 8% 0% 6% 0% 7% 0% 8% 1% 3% 0% 2% 1% 2%

LRA* 100% 90% 100% 93% 100% 93% 100% 93% 99% 97% 100% 98% 99% 98%

84%

86%

88%

90%

92%

94%

96%

98%

100%

P
er

ce
n

ta
ge

62

Figure 4.10: Percentage distributions of algorithms per system size on the gallows map

4.7 Discussion

The accuracy of the classification method yielded about 60% for all the maps.

When this information is used in combination with the algorithm breakdowns, the

classification method resulted in the LRA* algorithm most of the time. This could be

because the classification identifies LRA* if it is tied for the minimum value. It could

also mean that the state features used are not effectively separating the data.

This tie breaker method could be the cause of the lack of CBS in the algorithm

breakdowns. For example, the CBS algorithm consistently has the least amount of

distance regret out of all algorithms, yet it is not represented in any of the classification

metareasoning. If the agent never encounters a collision the CBS and LRA* algorithms

are equivalent in terms of distance. If the CBS outperforms the LRA* algorithm it must

still outperform the WHCA* because a tie with this algorithm results in the WHCA*

Meta
Class
(10)

Meta
Reg
(10)

Meta
Class
(20)

Meta
Reg
(20)

Meta
Class
(30)

Meta
Reg
(30)

Meta
Class
(40)

Meta
Reg
(40)

Meta
Class
(50)

Meta
Reg
(50)

Meta
Class
(60)

Meta
Reg
(60)

Meta
Class
(70)

Meta
Reg
(70)

CBS 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

WHCA* 0% 57% 0% 58% 0% 60% 0% 60% 6% 56% 4% 51% 7% 56%

LRA* 100% 43% 100% 42% 100% 40% 100% 40% 94% 44% 96% 49% 93% 44%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
er

ce
n

ta
ge

63

selection. These tie breakers could be over correcting for the LRA* and WHCA*

methods causing the CBS to be removed from the classification model.

The lack of the CBS in the regression model is due to its large timeout,

computational time given for agents to find a set of paths without conflicts. To make the

CBS complete the most optimal path, the timeout for the algorithm was increased to 300

seconds. This value produced the least distance regret, but it also increased the

regression to values much larger than LRA* and WHCA*.

LRA* and WHCA* were evenly split in the breakdown for the warehouse and

gallows maps. This is due to the competitive computational times for the agents for each

of these algorithms. The two algorithms require about the same level of effort but when

there is no conflicts LRA* dominates and when there are many conflicts WHCA*

dominates because of the reduced amount of algorithmic computing. Thus, when a

multiagent system is half composed of agents that will not incur a conflict and half that

will the agents the algorithm breakdown is split relatively in two. The breakdown results

in multiple occasions where the regression model outperforms the two algorithms

included in its breakdown. This can be seen with 40 agents in the gallows map and most

of the system sizes in warehouse. However, the only instance where the regression

outperforms the algorithms included in its breakdown is the 40 agents’ gallows scenario.

For both the regression and classification the two least important features were

𝐶𝐴𝛼 and 𝐹𝐴𝛼. This means that there may be no relationship between the agent distances

directly. Based on the greater importance of the 𝑅𝐶𝐴𝛼 feature, it may be more beneficial

to relate these features to others.

64

 The random map is unlike the other two in that the LRA* algorithm dominated

the WHCA* and CBS algorithms. The environment had fewer restrictions and it is easier

to solve the path problem when collisions exist, therefore the overhead WHCA* and CBS

has does not provide the same benefit LRA* can come to the same solutions without

having to solve all the conflicts a priori or having to populate a reservation table

constantly. As the number of agents increases, the LRA* gains usage but one would

expect that as the number of agents grows, conflicts would also grow, and the random

space would be more constrained than it currently is, and this may not hold.

65

Chapter 5: Summary

This paper proposed an application of a metareasoning approach that used state

features. The state features were chosen so that their values would be different for each

agent and they would change as the agent moved through the simulation. This approach

was used to allow for independent metareasoning in a decentralized multiagent system.

The agents had the ability to control their own reasoning with only their own perceptions

and communication. The meta-level was constructed using an extreme gradient boosting

machine learning method for both classification and regression.

This approach was used on two different problems in the multiagent field: task

allocation and path finding. Two single fixed algorithms (CBAAMM and DHBAMM)

were tested in two different scenarios (search and search and visit) for the task allocation

problem. A system size of five was tested in this problem along with different numbers

of targets and their spacing. The metareasoning model for this experiment was conducted

using the XGBoost classification approach to identify when the agent should not be

running the task allocation algorithm. The results showed that the number of algorithm

runs, and the number of messages were decreased to a fourth of the baseline value. In the

CBAAMM instances the performance (distance) metric was nearly equivalent to the

baseline while in the DHBAMM application there was a decrease in performance.

For the multiagent path finding problem, three single fixed algorithms were tested

(LRA*, WHCA*, and CBS) on three different maps (warehouse, gallows, and random).

The system sizes varied from 10 to 70 agents and there was one task for each of the

agents. Two different metareasoning models were constructed, one using classification

66

combined with the distance metric and the other using computational time for regression.

The results showed that using this method systems can be constructed where the

performance or computation of the metaresoning system can be greater than the single

fixed algorithms. It also showed that the combination of algorithms in a system changes

depending on the map.

Future work into this metareasoning application may include different sets of

algorithms, maps, state features, or machine learning models. While this work uses a few

algorithms, others exist that may have different reactions to this application or other

machine learning methods that could improve the accuracy. Another direction of study

could be the application of the approach on the lifelong path finding problem introduced

by Ma et al. [34, 35]. Using this type of approach, the agents should be able to sense

their environment whenever a new task appears so it may be beneficial to this problem as

the system number of tasks to be solved increases.

67

Bibliography

[1] Ahmadi, Kamilia, and Vicki H. Allan. "Efficient Self Adapting Agent

Organizations." In ICAART (1), pp. 294-303. 2013.

[2] Artikis, Alexander. "Dynamic protocols for open agent systems." In Proceedings

of The 8th International Conference on Autonomous Agents and Multiagent

Systems-Volume 1, pp. 97-104. 2009.

[3] Bapat, Akshay Vinay. "Development of Decentralized Task Allocation

Algorithms for Multi-Agent Systems with Very Low Communication." PhD diss.,

2020.

[4] Becker, Raphen, Alan Carlin, Victor Lesser, and Shlomo Zilberstein. "Analyzing

myopic approaches for multi‐agent communication." Computational

Intelligence 25, no. 1 (2009): 31-50.

[5] Beul, Marius, David Droeschel, Matthias Nieuwenhuisen, Jan Quenzel, Sebastian

Houben, and Sven Behnke. "Fast autonomous flight in warehouses for inventory

applications." IEEE Robotics and Automation Letters 3, no. 4 (2018): 3121-3128.

[6] Bolu, Ali, and Ömer Korçak. "Adaptive Task Planning for Multi-Robot Smart

Warehouse." IEEE Access 9 (2021): 27346-27358.

[7] Borghetti, Brett J., and Maria L. Gini. "Weighted Prediction Divergence for

Metareasoning." (2011): 249-264.

[8] Brueckner, Sven A. "Swarming Geographic Event Profiling, Link Analysis, and

Prediction." In 2009 Third IEEE International Conference on Self-Adaptive and

Self-Organizing Systems, pp. 71-81. IEEE, 2009.

[9] Brunet, Luc, Han-Lim Choi, and Jonathan How. "Consensus-based auction

approaches for decentralized task assignment." In AIAA guidance, navigation and

control conference and exhibit, p. 6839. 2008.

[10] Busoniu, Lucian, Robert Babuska, and Bart De Schutter. "A comprehensive

survey of multiagent reinforcement learning." IEEE Transactions on Systems,

Man, and Cybernetics, Part C (Applications and Reviews) 38, no. 2 (2008): 156-

172.

[11] Carlin, Alan, and Shlomo Zilberstein. "Bounded rationality in multiagent systems

using decentralized metareasoning." In Decision Making with Imperfect Decision

Makers, pp. 1-28. Springer, Berlin, Heidelberg, 2012.

68

[12] Carrillo, Estefany, Suyash Yeotikar Sharan Nayak, Mohammad Khalid M. Jaffar,

Shapour Azarm, Jeffrey W. Herrmann, Michael Otte, and Huan Xu.

“Communication-Aware Multi-agent Metareasoning for Decentralized Task

Allocation.” Unpublished manuscript, 2020, typescript.

[13] Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree boosting system."

In Proceedings of the 22nd acm sigkdd international conference on knowledge

discovery and data mining, pp. 785-794. 2016.

[14] Choi, Han-Lim, Luc Brunet, and Jonathan P. How. "Consensus-based

decentralized auctions for robust task allocation." IEEE transactions on

robotics 25, no. 4 (2009): 912-926.

[15] Cooper, John R. "Optimal Multi-Agent Search and Rescue Using Potential Field

Theory." In AIAA Scitech 2020 Forum, p. 0879. 2020.

[16] Cox, Michael, and Anita Raja. "Metareasoning: A manifesto." BBN

Technical (2007).

[17] Davoodi, Mohammadreza, Saba Faryadi, and Javad Mohammadpour Velni. "A

Graph Theoretic-Based Approach for Deploying Heterogeneous Multi-agent

Systems with Application in Precision Agriculture." Journal of Intelligent &

Robotic Systems 101, no. 1 (2021): 1-15.

[18] de Koster, René. "Automated and robotic warehouses: developments and research

opportunities." Logistics and Transport 38 (2018): 33-40.

[19] Felner, Ariel, Roni Stern, Solomon Eyal Shimony, Eli Boyarski, Meir

Goldenberg, Guni Sharon, Nathan Sturtevant, Glenn Wagner, and Pavel Surynek.

"Search-based optimal solvers for the multi-agent pathfinding problem: Summary

and challenges." In Tenth Annual Symposium on Combinatorial Search. 2017.

[20] Frasheri, Mirgita, Baran Cürüklü, Mikael Esktröm, and Alessandro Vittorio

Papadopoulos. "Adaptive autonomy in a search and rescue scenario." In 2018

IEEE 12th International Conference on Self-Adaptive and Self-Organizing

Systems (SASO), pp. 150-155. IEEE, 2018.

[21] Fuentealba, Diego, Ismael Soto, Kecheng Liu, and Alejandro J. Martinez.

"Tracking system with VLC for underground mine using multi-agent systems."

In 2017 First South American Colloquium on Visible Light Communications

(SACVLC), pp. 1-5. IEEE, 2017.

[22] Håkansson, Anne, and Ronald Hartung. "Using Meta-Agents for Multi-Agents in

Networks." (2007): 6.

69

[23] Herrmann, Jeffrey. "Data-driven metareasoning for collaborative autonomous

systems." (2020).

[24] Ismail, Sarah, and Liang Sun. "Decentralized hungarian-based approach for fast

and scalable task allocation." In 2017 International Conference on Unmanned

Aircraft Systems (ICUAS), pp. 23-28. IEEE, 2017.

[25] Kaduri, Omri, Eli Boyarski, and Roni Stern. "Algorithm Selection for Optimal

Multi-Agent Pathfinding." In Proceedings of the International Conference on

Automated Planning and Scheduling, vol. 30, pp. 161-165. 2020.

[26] Kota, Ramachandra, Nicholas Gibbins, and Nicholas R. Jennings. "Decentralized

approaches for self-adaptation in agent organizations." ACM Transactions on

Autonomous and Adaptive Systems (TAAS) 7, no. 1 (2012): 1-28.

[27] Kuchar, Karel, Eva Holasova, Lukas Hrboticky, Martin Rajnoha, and Radim

Burget. "Supervised Learning in Multi-Agent Environments Using Inverse Point

of View." In 2019 42nd International Conference on Telecommunications and

Signal Processing (TSP), pp. 625-628. IEEE, 2019.

[28] Kwon, Woong, Jun Ho Park, Minsu Lee, Jongbeom Her, Sang-Hyeon Kim, and

Ja-Won Seo. "Robust autonomous navigation of unmanned aerial vehicles

(UAVs) for warehouses’ inventory application." IEEE Robotics and Automation

Letters 5, no. 1 (2019): 243-249.

[29] L. Johnson, H.-L. Choi, and J. P. How, “The hybrid information and plan

consensus algorithm with imperfect situational awareness,” in Distributed

Autonomous Robotic Systems. Springer, 2016, pp. 221–233.

[30] L. Johnson, S. Ponda, H.-L. Choi, and J. How, “Improving the efficiency of a

decentralized tasking algorithm for uav teams with asynchronous

communications,” in AIAA Guidance, Navigation, and Control Conference, 2010,

p. 8421.

[31] L. Johnson, S. Ponda, H.-L. Choi, and J. P. How, “Asynchronous decentralized

task allocation for dynamic environments,” in Infotech@ Aerospace 2011, 2011,

p. 1441.

[32] Langlois, Samuel T., Oghenetekevwe Akoroda, Estefany Carrillo, Jeffrey W.

Herrmann, Shapour Azarm, Huan Xu, and Michael Otte. "Metareasoning

Structures, Problems, and Modes for Multiagent Systems: A Survey." IEEE

Access 8 (2020): 183080-183089.

[33] Li, Jiaoyang, Andrew Tinka, Scott Kiesel, Joseph W. Durham, T. K. Kumar, and

Sven Koenig. "Lifelong multi-agent path finding in large-scale

warehouses." arXiv preprint arXiv:2005.07371 (2020).

70

[34] Ma, Hang, Jiaoyang Li, T. K. Kumar, and Sven Koenig. "Lifelong multi-agent

path finding for online pickup and delivery tasks." arXiv preprint

arXiv:1705.10868 (2017).

[35] Ma, Hang, Wolfgang Hönig, TK Satish Kumar, Nora Ayanian, and Sven Koenig.

"Lifelong path planning with kinematic constraints for multi-agent pickup and

delivery." In Proceedings of the AAAI Conference on Artificial Intelligence, vol.

33, no. 01, pp. 7651-7658. 2019.

[36] Mitchell, Rory, Andrey Adinets, Thejaswi Rao, and Eibe Frank. "Xgboost:

Scalable GPU accelerated learning." arXiv preprint arXiv:1806.11248 (2018).

[37] Nielsen, Didrik. "Tree boosting with xgboost-why does xgboost win" every"

machine learning competition?." Master's thesis, NTNU, 2016.

[38] Nissim, Raz, and Ronen I. Brafman. "Multi-agent A* for parallel and distributed

systems." In ICAPS Workshop on Heuristics and Search for Domain-Independent

Planning, pp. 43-51. 2012.

[39] Noda, Itsuki, and Masayuki Ohta. "Meta-level control of multiagent learning in

dynamic repeated resource sharing problems." In Pacific Rim International

Conference on Artificial Intelligence, pp. 296-308. Springer, Berlin, Heidelberg,

2008.

[40] Pěchouček, Michal, Jan Tožička, and Vladimír Mařík. "Meta-reasoning methods

for agent’s intention modelling." In International Workshop on Autonomous

Intelligent Systems: Agents and Data Mining, pp. 134-148. Springer, Berlin,

Heidelberg, 2005.

[41] Pentjuss, Agris, Aleksejs Zacepins, and Aleksandrs Gailums. "Improving

precision agriculture methods with multiagent systems in Latvian agricultural

field." Engineering for rural development, Latvia, Jelgava (2011): 109-114.

[42] Piardi, Luis, Vivian Cremer Kalempa, Marcelo Limeira, André Schneider de

Oliveira, and Paulo Leitão. "ARENA—augmented reality to enhanced

experimentation in smart warehouses." Sensors 19, no. 19 (2019): 4308.

[43] Pinyol, Isaac, and Jordi Sabater-Mir. "Metareasoning and social evaluations in

cognitive agents." In International Conference on Autonomic Computing and

Communications Systems, pp. 220-235. Springer, Berlin, Heidelberg, 2009.

[44] Puljiz, David, Gleb Gorbachev, and Björn Hein. "Implementation of augmented

reality in autonomous warehouses: challenges and opportunities." arXiv preprint

arXiv:1806.00324 (2018).

71

[45] Raja, Anita, and Victor Lesser. "A framework for meta-level control in multi-

agent systems." Autonomous Agents and Multi-Agent Systems 15, no. 2 (2007):

147-196.

[46] Robots, Fully Autonomous. "The Warehouse Workers of the Near

Future." Robbie Whelan-http://www. wsj. com/articles/fully-autonomous-robots-

the-warehouse-workers-of-the-near-future-1474383024.

[47] Rubinstein, Zachary B., Stephen F. Smith, and Terry L. Zimmerman. "14 The

Role of Metareasoning in Achieving Effective Multiagent

Coordination." Metareasoning: Thinking about Thinking (2011): 217.

[48] S. Nayak, S. Yeotikar, E. Carrillo, E. Rudnick-Cohen, M.K.M. Jaffar, R. Patel, S.

Azarm, J.W. Herrmann, H. Xu and M. Otte, ”Experimental Comparison of

Decentralized Task Allocation Algorithms Under Imperfect Communication,” in

IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 572-579, April 2020.

[49] Salzman, Oren, and Roni Stern. "Research challenges and opportunities in multi-

agent path finding and multi-agent pickup and delivery problems." In Proceedings

of the 19th International Conference on Autonomous Agents and MultiAgent

Systems, pp. 1711-1715. 2020.

[50] Sharon, Guni, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. "Conflict-based

search for optimal multi-agent pathfinding." Artificial Intelligence 219 (2015):

40-66.

[51] Sharon, Guni, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. "Meta-Agent

Conflict-Based Search For Optimal Multi-Agent Path Finding." SoCS 1 (2012):

39-40.

[52] Sharon, Guni, Roni Stern, Meir Goldenberg, and Ariel Felner. "The increasing

cost tree search for optimal multi-agent pathfinding." Artificial Intelligence 195

(2013): 470-495.

[53] Sigurdson, Devon, Vadim Bulitko, Sven Koenig, Carlos Hernandez, and William

Yeoh. "Automatic algorithm selection in multi-agent pathfinding." arXiv preprint

arXiv:1906.03992 (2019).

[54] Silver, David. "Cooperative Pathfinding." Aiide 1 (2005): 117-122.

[55] Stentz, Anthony. Optimal and efficient path planning for unknown and dynamic

environments. CARNEGIE-MELLON UNIV PITTSBURGH PA ROBOTICS

INST, 1993.

72

[56] Stern, Roni, Nathan Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne

Walker, Jiaoyang Li et al. "Multi-agent pathfinding: Definitions, variants, and

benchmarks." arXiv preprint arXiv:1906.08291 (2019).

[57] Sturtevant, Nathan R. "Benchmarks for grid-based pathfinding." IEEE

Transactions on Computational Intelligence and AI in Games 4, no. 2 (2012):

144-148.

[58] Wagner, Glenn, and Howie Choset. "Subdimensional expansion for multirobot

path planning." Artificial Intelligence 219 (2015): 1-24.

[59] W. Zhao, Q. Meng, and P. W. Chung, “A heuristic distributed task allocation

method for multivehicle multitask problems and its application to search and

rescue scenario,” IEEE transactions on cybernetics, vol. 46, no. 4, pp. 902–915,

2015. 55

[60] Wurman, Peter R., Raffaello D'Andrea, and Mick Mountz. "Coordinating

hundreds of cooperative, autonomous vehicles in warehouses." AI magazine 29,

no. 1 (2008): 9-9.

[61] Xie, Jing, and Chen-Ching Liu. "Multi-agent systems and their

applications." Journal of International Council on Electrical Engineering 7, no. 1

(2017): 188-197.

[62] Xuan, Ping, Victor Lesser, and Shlomo Zilberstein. "Communication decisions in

multi-agent cooperation: Model and experiments." In Proceedings of the fifth

international conference on Autonomous agents, pp. 616-623. 2001.

[63] Zafar, Kashif, Shahzad Badar Qazi, and A. Rauf Baig. "Mine detection and route

planning in military warfare using multi agent system." In 30th Annual

International Computer Software and Applications Conference (COMPSAC'06),

vol. 2, pp. 327-332. IEEE, 2006.

[64] Zelinsky, Alexander. "A mobile robot navigation exploration algorithm." IEEE

Transactions of Robotics and Automation 8, no. 6 (1992): 707-717.

[65] Zhang, Chongjie, and Victor Lesser. "Coordinating multi-agent reinforcement

learning with limited communication." In Proceedings of the 2013 international

conference on Autonomous agents and multi-agent systems, pp. 1101-1108. 2013.

[66] Zilberstein, Shlomo, and Alan Carlin. "Bounded rationality in multiagent systems

using decentralized metareasoning." In NIPS 2011 workshop Decision Making

with Multiple Imperfect Decision Makers. 2011.

