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Abstract

and non-standardized outputs.

behavior for each analyzed perturbation or sample.

Background: Image-based high-throughput screening (HTS) reveals a high level of heterogeneity in single cells
and multiple cellular states may be observed within a single population. Currently available high-dimensional
analysis methods are successful in characterizing cellular heterogeneity, but suffer from the “curse of dimensionality”

Results: Here we introduce RefCell, a multi-dimensional analysis pipeline for image-based HTS that reproducibly
captures cells with typical combinations of features in reference states and uses these “typical cells” as a reference
for classification and weighting of metrics. RefCell quantitatively assesses heterogeneous deviations from typical

Conclusions: We apply RefCell to the analysis of data from a high-throughput imaging screen of a library of 320
ubiquitin-targeted siRNAs selected to gain insights into the mechanisms of premature aging (progeria). RefCell
yields results comparable to a more complex clustering-based single-cell analysis method; both methods reveal
more potential hits than a conventional analysis based on averages.

Keywords: Heterogeneity, Single-cell analysis, Image-based high-throughput screen

Background

High-throughput screening (HTS) is a powerful technique
routinely used in drug discovery, systematic analysis of
cellular functions, and exploration of gene regulation
pathways [1-4]. With modern automated microscopes,
image-based HTS allows for routine imaging of thousands
of cells in multiple fluorescence channels. Due to the
volume and complexity of imaging data, development of
analysis methods has become an urgent need.

During the last decade, powerful new automated
image analysis tools [5-8] that reproducibly paramet-
rize each cell have started to emerge, as well as
methods for analyzing high-dimensional data specific-
ally applicable to image-based HTS [9-19]. To identify
multiple cell subtypes and quantify cellular heterogen-
eity, machine learning methods such as support vector
machines (SVM) [15], hierarchical clustering [6], and
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clustering with Gaussian mixture models [9] have been
introduced. While these methods are very successful in
revealing cellular heterogeneity and identifying subpopula-
tions via clustering, the “curse of dimensionality” indicates
that this clustering is fraught with uncertainty: Simply as a
consequence of high dimensional geometry, typical near-
est neighbor distances become more and more similar to
each other with increasing system dimensionality. Indeed,
a recent study demonstrated that a number of widely used
analysis approaches produce different results when ap-
plied to the same high-dimensional data [20]. Further-
more, the outputs of advanced high-dimensional analysis
methods are not yet standardized, making comparison
and interpretation of their results difficult.

Here we introduce RefCell, a new method that incorpo-
rates multiple measurements simultaneously and captures
similarities of cells in a single state population. RefCell is
focused on the analysis of image-based HTS experiments
of cellular phenotypes. Our approach captures the typical
features of a single state cell population with single-cell
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resolution. This is achieved by introducing the concept of
“typical cells”.

We illustrate our approach in the context of an RNAi
screen to identify cellular factors involved in the prema-
ture aging disease progeria. The starting point of the
analysis is a set of single-cell metrics obtained through
standard image-processing tools (e.g. [10, 21]). The main
output of the analysis is the identification of the most
significant morphological features that together provide
a holistic view of the disease phenotype, and a list of sig-
nificant siRNA perturbations (hits) that partially rescue
the disease phenotype. We have compared our pipeline
to one of the more complex methods for characterizing
heterogeneous cellular response [9] and have found that
our pipeline yields similar hits, yet is conceptually sim-
pler, faster, and yields output graphs that can be directly
interpreted by biomedical researchers.

Results

We demonstrate our pipeline using datasets from an
image-based high-throughput siRNA screen designed
to investigate cellular factors that contribute to the
disease mechanism in the premature aging disorder
Hutchinson-Gilford progeria syndrome (HGPS), or
progeria [22] - a rare, fatal disease which affects one
in 4 to 8 million live births [23]. HGPS is caused by a
point mutation in the LMNA gene encoding the nu-
clear structural proteins lamin A and C [24]. The
HGPS mutation creates an alternative splice donor site
that results in a shorter mRNA which is later trans-
lated into the progerin protein — a mutant isoform of
the wild-type lamin A protein [23, 24]. HGPS is
thought to be relevant to normal physiological aging
as well [25-30], since low levels of the progerin pro-
tein have been found in blood vessels, skin and skin fi-
broblasts of normally aged individuals [28]. The
progerin protein is thought to associate with the nu-
clear membrane and cause membrane bulging [31]. In
addition to nuclear shape abnormalities and progerin
expression, two additional features that have been as-
sociated with progeria are the accumulation of DNA
damage inside the nucleus [32], as well as reduced and
mislocalized expression of lamin B1, another lamin
that functions together with lamin A [27].

These cellular hallmarks of progeria are evident at
the single-cell level (Fig. la; Additional file 1: Figure
S1). Typical nuclei from healthy skin fibroblasts with
no progerin expression exhibit round nuclear shapes,
homogeneous lamin Bl expression along the nuclear
boundary, and little evidence of DNA damage (Additional
file 1: Figure S1, top). In contrast, typical nuclei from
HGPS patient skin fibroblasts show aberrant nuclear
shapes, reduced lamin B levels, and increased DNA dam-
age (Additional file 1: Figure S1, bottom). For a controlled
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RNAi screening experiment, a previously described
hTERT immortalized skin fibroblast cell line was used
in which GFP-progerin expression can be induced by
exposure to doxycycline, causing the various defects ob-
served in HGPS patient fibroblasts [33]. RNAIi screening
controls consisted of fibroblasts in which GFP-progerin
expression was induced by doxycycline treatment, in the
presence of 1) a non-targeting control siRNA, which
allowed for full expression of GFP-progerin and formation
of a progeria-like cellular phenotype in most cells, and
from here on will be referred to as the GFP-progerin
expressing control, or 2) a GFP-targeting siRNA, which
eliminated GFP-progerin, restored a healthy-like phenotype,
and from here on will be referred to as the GFP-progerin
repressed control. Progerin-induced cells were plated in
384-well plates and screened against a library of 320 ubiqui-
tin family targeted siRNAs. In addition, 12 GFP-progerin
expressing controls and 12 GFP-progerin repressed con-
trols were prepared on each imaging plate, enabling estima-
tion of control variability. Four fluorescent channels were
analyzed (DAPI to visualize DNA, far-red: the nuclear
architectural protein lamin B1, green: progerin, red: yH2AX
as a marker of DNA damage). Images were taken at 6 dif-
ferent locations in each well, and each plate was imaged 4
times under the same conditions; the whole imaging pro-
cedure was applied to 4 replicate plates with identical
setups (see Methods). Details of the screening process are
reported in Ref. [33].

Definition of stable classification boundaries based on
typical cells

Single cell heterogeneity is prevalent in most cell popu-
lations, including our screens (Fig. 1). While typical
progerin-expressing cells exhibit reduced and inhomo-
geneous lamin B1 expression, pronounced DNA dam-
age, high expression of progerin, and a blebbed cell
shape, some cells in this population look like typical
healthy cells, with normal levels of homogeneously dis-
tributed lamin B1, little or no DNA damage, little to no
expression of progerin, and round nuclear shape (Fig. 1).
Conversely, the cellular population of GFP-progerin re-
pressed controls consists mostly of healthy-looking cells.
However, a small fraction of cells in this population
display features characteristic of progeria (Fig. 1a). This
heterogeneity is a well-established feature of HGPS patient
cells [27].

Quantification of single-cell features shows the distribu-
tion of the mean intensity for all nuclei (progerin channel),
the distribution of standard deviations of curvature
(Lamin B1 channel), the distribution of fluorescence
intensities found along the nuclear boundary (boundary
intensities; Lamin B1 channel), and the standard deviation
of intensities inside nucleus (YH2AX channel) (Fig. 1b).
These metrics were extracted via automated image
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Fig. 1 Single-cell heterogeneity leads to overlapping cell populations. a Each row corresponds to one fluorescent marker; columns show different
nuclei selected from GFP-progerin repressed controls. Nuclear shapes (green contours) were extracted from the DAPI channel and mapped onto
the other channels. Typical healthy cells (first six columns) exhibit normal lamin B1 expression, littte DNA damage, no expression of progerin, and
round nuclear shape, as expected for GFP-progerin repressed controls. Atypical cells (two rightmost columns) exhibit characteristics of progeria,
namely reduced lamin B1 expression, increased DNA damage in the yH2AX channel, expression of progerin, and blebbed nuclear shape. b
Distribution of the metric that best separates the two types of controls in each channel, based on all cells in the control samples (green: GFP-
progerin repressed cells, red: GFP-progerin expressing cells). Note that the contours obtained from the DAPI channel appear slightly smaller and
misaligned with the images obtained in the lamin B1 channel (see Additional file 1: Figure S2 for the analysis of cross-channel discrepancies). The

scale bar is 5 um

analysis tools (see Methods) from all images in all control
samples. For each of the four channels imaged, we show
the metric that best separates GFP-progerin expressing
controls (red) from GFP-progerin repressed controls
(green). Except for the intensity of progerin, distributions
overlap significantly, highlighting substantial heterogeneity
among nuclei within each control group. The heterogen-
eity is largest for yH2AX, followed by nuclear shape and
lamin B1.

Despite heterogeneous cellular expression, the average
behavior of GFP-progerin expressing and repressed con-
trol cells are significantly different. Since the goal of this
screen (and many other screens for identifying potential
drugs) is to identify important perturbations that reverse
the states of diseased cells to healthy-like, we focus on
typical features of cells within each control population.

Classification of individual cells based on such overlap-
ping distributions is challenging, as indicated by the fact
that the analysis of multiple sets of 300 randomly selected
cells of each of the two reference types via a Support
Vector Machine (SVM) approach (see Methods) does not
result in a stable classification boundary (Fig. 2). To illus-
trate this limitation, we use 200 bootstrap samplings to
identify a classification boundary using all metric dimen-
sions simultaneously. We then extract the variability of
the classification boundary in each channel (Fig. 2b). We
observe that classification boundaries rotated on average
by more than 10 degrees between trials in the progerin

channel, and by somewhat smaller amounts in the other
channels.

Note that the angle of the classification boundary
determines the relative weight of the two metrics
shown in the scatter plot: for example, a vertical clas-
sification boundary indicates that the metric plotted
along the vertical axis is not important for classifica-
tion. Thus uncertainty about the orientation of the
classification boundary implies uncertainty about the
relative weight of the metrics in distinguishing both
controls. To provide a reliable weighting of metrics
and to find reproducible classification boundaries, we
use typical cells, defined as cells close to the center of
distribution of given cell population in a given channel
(see Methods). Typical cells lead to stable classifica-
tion boundaries with variations of less than 5 degrees
in all channels (Fig. 2b).

Stable classification boundary enables identification of
potential siRNA hits based on the fraction of healthy-like
cells

Once a stable classification boundary is drawn based on
typical healthy-like (GFP-progerin repressed control) and
progeria-like (GFP-progerin expressed control) samples,
all cells in all samples can be analyzed using the classifica-
tion boundary. Specifically, we measured the percentage
of healthy-like cells in every sample (Fig. 3). We define
significant siRNA perturbations, or “hits”, based on the
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ability of the siRNA perturbation to significantly increase
the percentage of healthy-like cells (see Methods).

In all channels, GFP-progerin expressing and repressed
controls are well separated, with the healthy-like pheno-
type boundary (green dashed line in Fig. 3) above the hit
selection threshold (red solid line in Fig. 3). The separ-
ation between GPF-progerin expressing and repressed
controls is the largest in the progerin channel, as ex-
pected since GFP-progerin repressed controls are de-
rived from GFP-progerin expressing controls via GFP
siRNA modulation. According to our criteria for the se-
lection of siRNA hits (see Methods), the lamin Bl has
the largest number of hits (75), followed by progerin
(31), nuclear shape (8), and YH2AX (5) (see details in
Additional file 1).

The fraction of healthy-like cells in each sample of the
screen constitutes a metric not yet widely used in screen
analysis. This metric highlights the ability of the siRNA
to significantly alter some of the cells, but not all,
whereas the more traditional metrics — which were also
used in the original analysis of this dataset in Ref. [33] —
emphasize shifts in the overall behavior. To compare the
two metrics, we determine the Z-scores of the shifts in
average properties (Fig. 4a). Both types of Z-scores are
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determined based on GFP-progerin expressing control
samples. For the traditional metric, the threshold is held
at Z-score of 2, while our threshold is at Z-score of 5
(by Chebyshev’s inequality the probability that the hit is
spurious is less than 0.04). Note that if we increase the
Z-score threshold for traditional metrics to 5, there will
be no hits identified. These two thresholds (gray lines)
separate each panel of Fig. 4a into four quadrants: per-
turbations identified as hits by both methods (upper
right), hits identified only by traditional metrics (lower
right), hits identified only by the fraction of healthy-like
cells (upper left), and perturbations not identified as hits
by either method (lower left). The bottom right quadrant
is empty except for two siRNAs in the YH2AX channel,
suggesting that our method captured nearly all hits
determined by the traditional metric. On the other hand,
points in the top left quadrant represent siRNA hits
identified only by our approach, suggesting that our
metric is more sensitive in the sense of identifying add-
itional possible hits.

In addition, we have benchmarked our method against
one of the existing multi-dimensional analysis approaches
that is also based on the difference in cell type fractions
[9]. The method of Ref. [9] is based on more complex

a)

progerin

lamin B1

yH2AX

3
foo

N
o

/
.

percentage of healthy-like cells
o

20
-10 -5 0 5 10-10 -5 0 5 . 10-10 -5 0 5 10
average-based metrics
b) w Progerin Lamin B1 YH2AX
= 80 ° © o
8 ° ° 8 . o
Q o
é 60 1 OO ] Cé)oo o&D o§ o
g o
= o
§ 40 o Og:o
5 ¢ o
o 20
(o)}
8
5 o0 - :
hg_ 0.00 0.05 0.10 0.15 0 2 4 6 8 101214 0 10 20 30 40 50

1/distance to GFP-progerin repressed controls

Fig. 4 Comparing the percentage of healthy-like cells with traditional average-based metrics and another multi-dimensional analysis approach [9].
a Each panel depicts one channel (nuclear shape — DAPI channel - is not considered in Ref. [33] and therefore is not included here). Each dot
represents a siRNA sample. Horizontal axis shows the average-based metric, and vertical axis shows our percentage-based metric. In general,
SiRNA samples on the right are more different from progerin-like controls than samples to their left. Solid gray lines represent hit thresholds for
corresponding metrics. b Similar to (@), each panel shows one of the three channels in the screen. Each circle is a SIRNA sample. The horizontal
axis shows the inverse of the distance to healthy-like (GFP-progerin repressed) controls: larger values indicate increased similarity of the siRNA to
GFP-progerin repressed controls. The vertical axis shows the percentage of healthy-like cells, and the dashed lines are thresholds for hits in the
respective channels




Shen et al. BMC Bioinformatics (2018) 19:427

clustering of all cells into multiple cell types (Fig. 4b).
Using the method of Ref. [9], we first identified multiple
clusters (9 clusters in progerin and yH2AX channels, and
8 clusters in lamin B1 channel) in 10,000 combined con-
trols cells (5000 for each control type). We then calculated
the profile of cell distribution in each cluster for all siRNA
samples and compared with GFP-progerin repressed con-
trols (healthy-like). Since the original workflows of Ref. [9]
did not include hits selection, we adapted the workflow of
Ref. [9] and introduced the inverse distance between each
siRNA sample and GFP-progerin repressed controls as the
metric for the hit selection. Figure 4 shows a strong cor-
relation between the metric derived from this benchmark-
ing test (horizontal axis) and the RefCell analysis pipeline
(vertical axis), with Spearman correlation coefficient 0.98
for YH2AX channel, 0.91 for lamin B1 channel, 0.58 for
progerin channel (p value << 0.05 in all cases).

Classification boundary and metric weighting obtained
via typical cells is useful for characterization of all
perturbations

As explained above, we assess the phenotype for each
perturbation in our high-throughput screen relative to
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two types of controls. Thus, the weighting of metrics
given by the SVM classification boundary is based on
both control phenotypes (Fig. 2). In Fig. 3, we had fo-
cused on subsets of cells that cross the classification
boundary, i.e., that exhibit a shift in property perpen-
dicular to the classification boundary.

In our next step, we characterize shifts of the pheno-
type both perpendicular and parallel to the SVM clas-
sification boundary (Fig. 5a). We find that most
perturbations shift cell properties perpendicular to the
classification boundary. This indicates that the im-
aging metrics which are most important to distinguish
typical cells in the two control phenotypes are also the
imaging metrics that change most in the siRNA per-
turbations. Given that all siRNAs in this screen are
ubiquitin-related (hence may affect progeria in a simi-
lar manner), this finding suggests our method really
does capture the important differences between pro-
geria phenotype and healthy phenotype. In contrast,
when the classification metrics are computed from
randomly selected cells — the blue points in Fig. 5b — we
observe shifts both parallel and perpendicular to the clas-
sification boundary (Fig. 5b). One notable exception is the

-
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(progeria-like) control sample, respectively. There are 12 samples for each control type. Each blue point represents the mean of all cells for one
SIRNA perturbation. The classification boundary is shown as a vertical dotted black line. Four siRNA samples that deviate significantly from both
controls in each of the four channels are labeled (siPHF13 for progerin; SINEDD4 for lamin B1; siTRIML1 for DAPI (nuclear shape), and siRNF8 for
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progerin channel in which the two control cases are very
well separated (Fig. 1b).

Figure 5a also identifies siRNA perturbations that
yield unusual changes in phenotype. Four examples of
such siRNAs are highlighted here, one for each channel:
siPHF13 for the progerin channel, siNEDD4 for the
lamin B1 channel, siTRIMLI for the DAPI channel, and
siRNF8 for the YH2AX channel. From each of these
siRNA samples, four typical cells (picked using the
same method as typical control cells; see Methods for
details) are shown below in Fig. 6 (a, b, d, and e). For
comparison, four typical cells in both progeria-like and
healthy-like controls are also selected (Fig. 6¢ and f).
siPHF13 treated cells (Fig. 6a) express even higher
levels of progerin than cells in progeria-like controls
and progerin aggregates in the nucleus. Upon examin-
ing lamin Bl levels expressed by cells treated with
siNEDD4 (Fig. 6b), we find that lamin B1 no longer lo-
calizes only to the nuclear boundary, but spreads
throughout the nucleus in an inhomogeneous way. In
addition, in this case, lamin Bl expression co-localizes
with progerin expression. siTRIMLI1 is an outlier in
both the progerin and nuclear shape channel, with
overexpression of progerin similar to that observed in
cells treated with siPHF13. Furthermore, cells treated
with siTRIML1 have nuclear shapes that are even less
regular than progeria controls. Finally, for cells treated
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with siRNF8 DNA damage is more substantial but also
more localized (isolated bright dots in the yH2AX
channel) than in progeria-like controls. These results
suggest that a classification boundary built from typical
cells in controls is valuable for analyzing the full per-
turbation screen and that outliers identified in this clas-
sification point to perturbations that yield unusual
properties.

Integrating information from multiple channels increases
hit detection accuracy

So far we have considered multiple metrics separately
for each channel. This means that we may have labeled
a cell as healthy-like based on one channel, but
progeria-like when it is analyzed in another channel.
This approach reflects uncertainty regarding the pro-
geria phenotype at the single cell level: although it is
known that progeria is caused by the expression of the
lamin A-mutant progerin, it remains unknown how
progerin expression changes other features, such as
blebbed nuclear envelope, DNA damage accumulation,
and mislocalized lamin B1 expression at the single-cell
level, and how these different features correlate with
one another. For example, in one study progeria and
healthy cells were distinguished using only nuclear
shape measurements [34], implying that nuclear shape
is a dominant criterion in detecting progeria. However,

DAPI Lamin B1
d TRIVL
%)

DAPI Lamin Blp
Pfogeria-lik€)

Fig. 6 Typical cells in siRNA perturbations identified as different from both controls. a siPHF13 is an outlier in the progerin channel: cells treated
with siPHF13 express more progerin than the progeria-like control cells (f), and the expressed progerin appears to be distributed differently from
the progeria control. b siNEDD4 is an outlier in the lamin B1 channel; cells treated by siNEDD4 express more lamin B1 than the healthy-like
control cells (c), and the expression is less homogeneous. In addition, the expression of lamin B1 is spatially co-localized with the expression of
progerin in siNEDD4-treated cells. d siTRIML1 is an outlier in both DAPI (nuclear shape) and progerin channels. Cells treated by siTRIML1 tend to
have elongated nuclei compared to the healthy-like and the progeria-like controls. Also, clusters and increased progerin expression (compared to
the progeria-like control (f)) can be observed. e siRNF8 is an outlier in the yH2AX (DNA damage) channel. Note that the contours obtained from
the DAPI channel appear slightly smaller and misaligned with the images obtained in the lamin BT channel (see Additional file 1: Figure S2 for
the analysis of cross-channel discrepancies). f Progeria-like control cells. The scale bar is 5 um
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another study found that nuclear shape could change
independently from DNA damage accumulation inside
the nucleus [32].

Thus, as a final step in the analysis, we study the rela-
tionships among the four features associated with pro-
geria at the single-cell level. RefCell integrates single cell
information from multiple channels in two different
ways. First, we display the percentage of healthy-like
cells for a primary marker vs. the percentage of cells
identified as healthy-like according to the other three
markers (Fig. 7). The diameter of the circle represents
the fraction of cells identified as healthy-like according
to all four markers. As expected, GFP-progerin repressed
controls (i.e., healthy-like controls, green circles) show a
larger percentage of cells identified as healthy-like for all
four markers than any of the 320 perturbations (blue cir-
cles). Figure 7 shows that the percentage of healthy-like
cells according to one given marker is correlated with
the percentage identified as healthy-like according to the
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other three markers, although the correlation is weak in
all channels except progerin.

Second, we have integrated image metrics from all chan-
nels together and applied our method on combined met-
rics. We have found that the three metrics related to
progerin (mean intensity, the standard deviation of inten-
sity and boundary intensity) are the most important met-
rics in separating GFP-progerin expressing and repressed
controls, contributing more than 60% in the direction of
classification boundary. Lamin Bl is next, contributing
about 20%. In addition, we found that 99% siRNA hits
identified by combining all channels are also identified by
detecting hits separately for each channel; however, the
combined analysis allows us to hone in on a subset of 61%
of all hits (based on a separate analysis of each channel).

Discussion
One of the major usages of image-based high-throughput
screening (HTS) experiments is to identify important
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RNAI perturbations for pathway identification and drug
discovery. A major strength of image-based HTS is that
measurements of multiple parameters are carried out
on each cell, thus promising insights into mutual infor-
mation and correlations among parameters at the single
cell level. However, newly developed analysis methods
yield complex and hard-to-interpret end results, and
may actually misrepresent the data due to the “curse of
dimensionality” [20]. As noted above, the “curse of
dimensionality” states that distance estimation and thus
the definition of nearest neighbors, which are used in
clustering-based algorithms, are less meaningful in
high-dimensional space [35]. Here we introduce
RefCell, a method that fills the gap between statistically
sound average-based methods and statistically challen-
ging high-dimensional methods. The underlying as-
sumptions of RefCell are that the properties of typical
cells are useful reference points for the biological or
clinical question of interest and that the best approach
to identifying hits is to measure changes along a
straight path (in high-dimensional space) between the
references points.

The first step in RefCell is the selection of two sets of
controls and the choice of “typical” cells within these
controls. Here we choose typical cells as cells that are
average in all aspects of their phenotype, i.e., all their
metrics are close to the mean. In our dataset, one con-
trol represents cell nuclei of a model for progeria which
show several defects, and the other control approxi-
mates healthy cell nuclei. Since image-based metrics
are heterogeneous, the corresponding distributions of
measured values overlap significantly at the single-cell
level (Fig. 1). Selecting typical cells yields distributions
that are well separated, enabling stable classification
boundaries between healthy-like and progeria-like cells.
The classification boundary reveals both the value of
each metric that marks this transition and the relative
weight of each metric (Fig. 2).

For the HTS used in this investigation, we find that,
surprisingly, the metrics we identified as important are
also the metrics that change most for all perturbations.
A graphical representation of this observation is shown
in Fig. 5a, where the two controls (green and red dots)
lay out a straight path between a progeria-like phenotype
and a healthy-like phenotype. All siRNA perturbations
(blue dots in Fig. 5a) fall along this straight path indicat-
ing that the metrics that were identified as important are
the ones that are changing the most in the 320 siRNA
perturbations. On the other hand, if all cells rather than
typical cells are used for classification and weighting,
classification boundaries are less stable (Fig. 2), and the
320 siRNA perturbations do not change the highly
weighted metrics more than other metrics (the blue dots
in Fig. 5b form a cloud). This indicates that the screen
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does not involve random perturbations, but perturba-
tions targeted specifically to progeria.

With these weights and a stable classification bound-
ary, we were able to quantify the heterogeneity of all
cells in all samples. This analysis yields a simple param-
eter: the fraction of cells identified as healthy-like in
each sample. The fraction of normal cells had been
identified in other studies as a useful parameter [36]. In
RefCell, this parameter is used in multiple steps and is
first determined separately for each channel to identify
potential “hits” in the siRNA perturbation screen (Fig.
3). RefCell then reveals a complex interplay among the
four standard indicators of progeria (measured in four
independent fluorescence channels), revealing that the
list of hits depends strongly on the choice of indicator.

Furthermore, RefCell's focus on the fraction of
healthy-like cells means that any perturbation that
makes a substantial fraction of cell nuclei appear
healthy-like is included as a possible hit, even if the
average cell properties do not change. This allows us to
include all perturbations that are capable of making at
least a subset of cells appear healthy-like, even if the
same perturbation is ineffective in, or detrimental to
other cells.

The final step in RefCell focuses on integrating informa-
tion from multiple imaging channels (Fig. 7). When con-
sidering all siRNA perturbations and all channels
simultaneously, our analysis confirms that the progerin
level is the most important feature in progeria disease,
and that decreasing progerin expression levels is the most
efficient way of removing all four principal phenotypes as-
sociated with progeria. However, we also note significant
variability in how effectively a given perturbation leads to
healthy-like phenotypes in each channel. This information
helps prioritize hits that have been identified separately in
each channel. After recognizing how different features of
progeria relate to each other over all siRNA perturbations,
researchers can visualize feature correlations for single
siRNA perturbation samples using advanced tools like
PhenoPlot [37] on a subset of siRNAs.

In addition, we compared RefCell with a published
method that aims to characterize heterogeneity in cells
using EM clustering with Gaussian mixture models
(GMM) [9]. Since the published method did not pro-
vide a metric for hit selection, we used inverse dis-
tance to GFP-progerin repressed controls. This
distance is calculated using symmetrized KL diver-
gence as in [9]. The higher the inverse distance, the
more important the perturbation. We show that in
both yH2AX and lamin B1 channels, our metric agrees
well with the other method (see Additional file 1),
with Spearman correlation coefficient 0.98 for yH2AX
channel and 0.91 for lamin B1 channel (p-value << 0.05 in
both cases). However, the complex clustering approach
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employed in Ref. [9] does not allow us to integrate infor-
mation from all channels, since it does not provide
straightforward evaluation of single cell status.

Conclusions

In summary, RefCell represents a simple but useful
computational approach for analyzing image-based HTS
datasets. RefCell is broadly applicable to single-cell-based
high-throughput screens that focus on perturbing cells
from one distinct phenotype to another. RefCell uses
image processing and machine learning algorithms to
identify hits that substantially increase the fraction of cells
that regain one of the two reference phenotypes. RefCell
can be used to analyze each fluorescent channel separ-
ately, and also to integrate the single-cell information from
all channels. Applied to a progeria HCS dataset, RefCell
analysis provides robust classification boundaries between
the two control groups of healthy-like and progeria-like
cells, and reveals (Fig. 5) that the dataset contains mostly
siRNA that shift the phenotype in a straight line between
the two control groups. When integrating information
from multiple fluorescence channels, RefCell reveals that
the four standard indicators of progeria (measured in four
independent fluorescence channels) are distinct, each
leading to different hits in the screen.

RefCell provides a hierarchy of tools that allows step
by step exploration of image-based HTS data. Starting
from prioritization of metrics for each channel separ-
ately, it provides robust selection of hits in each channel
based on typical cells and allows for the integration of
information from multiple channels. Since the key out-
put of RefCell is visual and easy to interpret (typical cell

Table 1 Image measurements used in this study
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examples, priority lists for metrics, and lists of hits), we
expect that RefCell will prove valuable for a broad range
of image-based high-throughput screens.

Methods

Experimental procedure

hTert immortalized doxycycline GFP-progerin indu-
cible human skin fibroblasts, (P1 cells as described in
Kubben et al. [22]), were generated and induced
(96 h). Reverse siRNA transfections were carried out
in quadruplicate in a 384-well format (Perkin Elmer
Cell carrier plates) in the presence of doxycycline
(1 mg/ml) with pooled siRNA oligos (50 nM; 4 siR-
NAs/target) from the Dharmacon siGENOMESMART
pool siRNA Human Ubiquitin Conjugation subset 1
and 2 libraries. Positive and negative controls con-
sisted of GFP-targeting and non-targeting siRNA
(50 nM; Ambion, #AM4626, #AM4611G), respectively.
Transfected cells were incubated overnight, after
which 60 ml of antibiotic and doxycycline (1 mg/ml)
containing medium was added, and cells were incu-
bated for another 3 days (37 °C, 5% CO2). Details of
the experiments are reported in [22]. A full list of
screened siRNAs can be found in Additional file 1.

Image analysis

While metrics similar to the one used in this study could
be obtained with commercial software, we used a custom
image analysis method modified from methods in [38].
Details are described inAdditional file 1. A list of measure-
ments and short descriptions are shown in Table 1.

Name of measurement

Description

Nuclear shape Area

Circularity

Eccentricity

Invaginations

Major Axis Length

Mean Curvature

Mean Negative Curvature
Minor Axis Length
Perimeter

Solidity

Std of Curvature
Tortuosity

Intensity BP Intensity
Mean Intensity

Std of Intensity

Area of nucleus

Ratio of perimeter to area, normalized so that a circle would have ratio 1
Eccentricity of nucleus

Number of invaginations along nuclear boundary

Major axis length of the best fit ellipse to nuclear boundary

Mean curvature along nuclear boundary

Average of only negative curvatures along nuclear boundary

Minor axis length of the best fit ellipse

Perimeter of nucleus

Percentage of pixels inside the convex hull that are inside the boundary
Standard deviation of curvature

Tortuosity of nuclear boundary

Mean intensity of points along nuclear boundary

Mean intensity inside nucleus

Standard deviation of intensity inside nucleus
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Analysis of the two control groups

Selection of typical control cells

Within each control population, typical cells were de-
fined as a core of n=300 cells closest to the mean
based on the L1 (Manhattan) distance, calculated sep-
arately for each channel. We pooled all control sam-
ples together for typical control cell selection. On
average there are about 20,000 cells in each type of
controls. Typical progeria-like cells, selected out of
the population of GFP-progerin expressed controls,
show HGPS characteristic nuclear defects (increased
progerin expression, misshapen nuclei, reduced lamin
B1 protein levels, and increased DNA damage shown
by expression of YH2AX). Typical healthy-like cells,
selected from GFP-progerin repressed controls, show
no sign of HGPS nuclear defects. This selection
procedure was carried out independently for each
replicate plate. Additional details are provided in
Additional file 1.

Comparing variation of classification boundary direction
We first calculate the direction of classification bound-
ary for the original (before bootstrapping) randomly se-
lected cells and typical cells. These two directions are
used as references for bootstrapped classification bound-
aries accordingly. For each pair of boundary direction,
cosine is first calculated, and the angle between direc-
tions is calculated based on the cosine value.

Classification using support vector machines (SVM)

The sets of typical cells were used to classify healthy-
and progeria-like phenotypes via SVM, an efficient and
robust supervised machine learning algorithm for clas-
sification [39]. Using a linear kernel, SVM finds the op-
timal linear boundary in instance space (straight line in
2D, planes in higher-dimensional spaces) that separates
two classes of instance data points, while maximizing
the margin of class separation. We performed SVM
using the ksvm() function in kernlab package in R (ver-
sion 3.1.1). After rescaling all nucleus metrics to zero
mean and unit variance, a classification boundary was
obtained between typical healthy and typical progeria
cells. The distance from each nucleus to the classifica-
tion boundary, which is a linear combination of all the
measurements, can be used as a score to classify the
proximity of that cell to each phenotype (healthy- or
progeria-like). In order to distinguish between the two
sides of the classification boundary, we define positive
distances as associated with healthy-like cells, and
negative distances with progeria-like cells. The SVM
analysis also yields the relative importance of each
metric in distinguishing between the two phenotypes as
shown in Additional file 1.
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Identification of significant perturbations

Determination of the fraction of healthy-like cells

Having obtained a classifier boundary based on typical
control cells, we then applied it to all samples (including
all control samples and siRNA perturbations samples). For
this, we first normalize all cells to be classified using the
z-score transformation determined from typical control
cells (i.e., subtracting the mean of typical control cells and
dividing by their standard deviation). Next, we calculate
the distance from each cell to the classification boundary
and use the sign of the distance to classify individual cells
as either healthy- or progeria-like. Finally, we calculate the
percentage of healthy-like cells in each sample. This per-
centage is obtained separately for each replicate plate. This
allows us to report the mean percentage (averaged over all
replicate plates) and its estimated uncertainty (resulting
from the variance over multiple replicates). The number
of cells in each perturbation sample ranges from 500 to
2000. For more details, see Additional file 1.

Identification of siRNAs that generate significant healthy-
like perturbations (“hits”)

We repeated the screen 4 times (yielding 4 independent
replicates), and the analysis described above was done sep-
arately for each plate (i.e, given a sample, there are 4 inde-
pendent estimates for each parameter). To carry out the hit
selection process, we first averaged each parameter over the
4 replicates. Then we excluded potentially cytotoxic siRNA
samples, by excluding those that contain less than 50% of
cells compared to GFP-progerin repressed samples (the
number of cells is similar in each sample at the start of the
experiment). Next, a siRNA hit was selected based on the
following two criteria: 1) the fraction of healthy-like cells is
above a threshold (a mean and standard deviation were
computed based on the percentage of healthy-like cells in
each of the 12 GFP-progerin expressing control samples,
the threshold was set to 5 standard deviations higher than
the mean); 2) the false positive rate (FPR) based on the vari-
ation among the 4 replicates is less than 0.05.

Software

Image analysis is done using Matlab 7, while all the other
analysis is carried out using R (version 3.1.1). RefCell is
available as an open-source R package at https://github.
com/aspen-shen/RefCell.

Additional file

[ Additional file 1: Supplementary information. (DOCX 1694 kb) J
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