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The canonical WNT signaling pathway is necessary for guiding cell growth 

during embryonic development. In adults, WNT signaling maintains tissue stem 

cells and therefore plays an essential role in tissue homeostasis. In the colon, 

the WNT transcription factor, TCF4, is necessary for maintaining the intestinal 

stem cells. The initiating event in colon cancer is the aberrant activation of the 

WNT signaling pathway, which results in constitutive activity of TCF4. To 

determine how TCF4 influences colon cancer cell behavior, we silenced 

TCF7L2, the gene encoding TCF4, and used RNA sequencing and Hi-C to 

measure changes in transcription and nuclear structure in the SW480 colon 

cancer cell line. Loss of TCF4 resulted in A/B compartment switching, local 

chromatin reorganization, and a dramatic up-regulation in transcription. 



  

However, A/B compartment switching was not associated with changes in gene 

expression. We also found that loss of TCF4 resulted in the up-regulation of 

LEF1, another WNT transcription factor. Expressed LEF1 isoforms were found 

to be transcriptionally competent and over-compensated for WNT signaling 

activity upon loss of TCF4, suggesting a WNT-intrinsic feedback mechanism. 

Over-expression of LEF1 altered WNT signaling output to favor the expression 

of lymphoid genes, as opposed to a TCF4-based transcriptional program. 

ChIP-seq demonstrated that TCF4 and LEF1 bind distinct target genes, though 

they synergize to express MYC. TCF4 was found to bind the LEF1 promoter, 

indicative of direct repression, though LEF1 did not bind the TCF7L2 promoter. 

The CtBP1 protein, a known binding partner of TCF4, was found to be the most 

potent repressor of LEF1 expression. This demonstrates that despite the 

overall activation of WNT signaling in colon cancer, repressive functions of the 

WNT transcription factors are still intact, and the repression of LEF1 by TCF4 

maintains a TCF4-centric transcriptional program in colon cancer cells. 
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Chapter 1: Introduction 

The canonical WNT signaling pathway is necessary for metazoan life. In the 

developing embryo, it promotes growth and spatially orients cells into tissues. In 

adults, WNT signaling maintains adult stem cells and therefore plays an essential role 

in tissue homeostasis. However, the potent growth inducing capacity of WNT signaling 

can be corrupted to drive the aberrant growth of cells in cancer. 

 

In mammals, WNT signaling is crucial for the development of the colon in embryos 

and maintenance of colonic stem cells in adults. The replication of these stem cells is 

driven by WNT signaling activity and their progeny differentiate to form the various 

epithelial cell types of the colon, which perform the colonic functions. The growth of 

stem cells and their progeny is carefully balanced by the elimination of differentiated 

cells to ensure that cells are actively renewed, but do not overgrow. 

 

It is generally accepted that the initiating mutation in colon cancer occurs in the WNT 

signaling pathway. These mutations typically occur in APC, a key tumor suppressor in 

the pathway. The result of the mutation is constitutively activated WNT signaling, which 

results in continuous growth of colonic cells and decreased differentiation. This 

imbalance in the growth/death ratio results in the formation of a tumor, which may 

extrude into the intestinal lumen. As these cells continue to divide, they accrue 

additional mutations, typically in KRAS, SMAD4, and TP53, which enhances their 

ability to proliferate and imbues them with the capability to metastasize. 
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Mutations in APC lead to constitutive WNT signaling activity by decreasing the ability 

of APC to facilitate the destruction of β-catenin, a potent transcriptional activator. In 

normal cells, the nuclear levels of β-catenin are very low, and β-catenin is localized 

primarily in the cytoplasm, where it is actively destroyed. However, in cells with 

mutated APC, β-catenin accumulates in the cytoplasm, which then migrates to the 

nucleus, resulting in high levels of nuclear β-catenin. Nuclear β-catenin binds to the 

TCF/LEF family of transcription factors, which are the canonical WNT signaling 

transcription factors. These factors are not standard transcription factors, as they are 

incapable of regulating transcription on their own. Instead, their influence on 

transcription is determined by their binding partner(s). When bound to β-catenin, these 

transcription factors activate the transcription of WNT target genes, such as MYC and 

CCND1, which results in cell cycle progression and growth. Biallelic mutation of APC 

therefore results in constitutive activity through β-catenin/TCF4 complexes. 

 

Humans have four TCF/LEF factors: TCF7, TCF7L1, TCF7L2, and LEF1, which 

encode the TCF1, TCF3, TCF4, and LEF1 proteins, respectively. TCF4 is crucial for 

development and maintenance of the colon, while the other factors are expendable. 

TCF1 and LEF1 are involved in the immune system, while TCF3 regulates skin 

development. In the human colon, TCF7L1 and TCF7L2 are abundant, while TCF7 

and LEF1 are either not detectable, or detectable to a minute degree. In colon cancer, 

however, TCF7 and LEF1 are more abundant and TCF7L1 expression is lost. This 

raises the question, what roles do TCF1 and LEF1 play in colon cancer? TCF4 may 

hold the key, as silencing of TCF7L2 (TCF4) induces a potent up-regulation of LEF1. 
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Intrigued by this interaction and realizing it had not been explored in the literature, I 

investigated the interaction between TCF4 and LEF1. I sought to answer the questions 

which I believed most directly addressed our lack of knowledge: 

1. What are the consequences of silencing TCF7L2 in colon cancer? 
a. How does gene expression change? 
b. How does nuclear structure change? 
c. Do changes in nuclear structure and gene expression correlate? 

 
2. What are the consequences of silencing LEF1 in colon cancer? 

a. Are the protein isoforms of LEF1 capable of driving transcription? 
b. What pathways are influenced by LEF1? 
c. Does the activity of LEF1 complement the actions of TCF4 or are the 

target genes non-overlapping? 
 

3. How does TCF4 regulate LEF1? 
a. Does TCF4 bind a regulatory element of LEF1? 
b. Does LEF1 bind a regulatory element of TCF7L2? 
c. If TCF4 does bind LEF1, which domain of TCF4 is responsible for 

repressing LEF1 (which is then reduced upon silencing of TCF4, 
resulting in the observed up-regulation)? 
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Chapter 2: Literature Review 
2.1 Colon Cancer: Epidemiology 

2.1.1 The Impact of Colorectal Cancer on Modern Society 

Colon cancer refers to those tumors which originate in the colon and whose cell of 

origin is a colonic, typically epithelial, cell. Given the high similarity in pathogenesis 

observed between colon and rectal cancers, these two cancer types are often grouped 

together and are jointly referred to as colorectal cancer. Colorectal cancer accounts 

for approximately 10% of all newly diagnosed cancer cases and cancer-related deaths 

worldwide, which translates to approximately 1.8 million new cases and 885,000 

deaths per year1. It is the third most frequently diagnosed cancer in males and the 

second in females. In terms of cancer-associated mortality, colorectal cancer ranks 

fourth in males, and third in females1. Men are approximately 30% more likely to 

develop colorectal cancer than women1-3. The global distribution of colorectal cancer 

is biased towards highly-developed countries, such as the United States and Europe, 

due to risk factors associated with a western lifestyle including: physical inactivity, diets 

high in red and processed meats, excess body weight, and smoking4-6 (Figure 1). Less 

developed countries are plagued instead by cancers caused by infection7-9. However, 

continuing socioeconomic progress in developing countries results in a shift in cancer 

type prevalence10,11. The annual burden of colorectal cancer worldwide is therefore 

expected to increase to ~2.2 million cases and 1.1 million deaths by 2030, despite 

stabilized or decreasing case and mortality rates in highly-developed countries12,13. 
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2.1.2 Colorectal Cancer Dynamics in the United States 

In the United States, colorectal cancer is the second most frequent cause of cancer 

death14. The likelihood that a man or woman living in the United States will be 

diagnosed during their lifetime is ~4.2%, and, in 2020, an estimated 147,950 

individuals will be diagnosed with colorectal cancer in the United States14. The five-

year relative survival rate is dependent upon the stage at diagnosis and ranges from 

90% for patients diagnosed with early, localized disease to 5% for patients with late, 

metastatic disease15,16. Routine screening is therefore crucial to minimize colorectal 

cancer associated mortality, by diagnosing the disease at an early, treatable stage17. 

Figure 1 | Worldwide colorectal cancer incidence and mortality rates 
(age adjusted according to the world standard population, per 
100,000) in males (GLOBOCAN 2012). Reproduced with permission 
from Arnold et al., 2017. 
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As is commonly observed across cancer types, the rate of colorectal cancer incidence 

increases dramatically with age. The incidence rate approximately doubles every five 

years until age 50, at which point there is a 30% increase in the incidence rate for 

every five-year interval14. Counterintuitively, the median age of diagnosis has dropped 

from 72 years of age in 2001-2002 to 66 years of age in 2015-2016. The reduction is 

a result of decreasing colorectal cancer rates in those ages 55 and older, coupled with 

an increase in those younger than 55 years18-20. The declining incidence and mortality 

rates in the elderly population is a result of reduced exposure to risk factors, increased 

screening, and improved treatment modalities16. The factors underlying the 51% 

increase in colorectal cancer incidence in young adults remain unclear, though likely 

reflect increased exposure to risk factors, specifically: physical inactivity, diets high in 

red and processed meats, and obesity21,22. As a result of the rising colorectal cancer 

incidence rates in young adults, the American Cancer Society (ACS) now 

recommends that patients aged 45, with an average risk of colorectal cancer, undergo 

regular screening with either a high-sensitivity stool-based test or a colonoscopy22. 

2.1.3 Colorectal Cancer Risk Factors and Inherited Syndromes 

Societal and hereditary risk factors both contribute to colorectal cancer incidence. 

More than one-half of all colorectal cancer cases and deaths have been attributed to 

societal risk factors, such as those associated with a western lifestyle21. Fortunately, 

these factors are modifiable and include physical inactivity, diets high in processed 

and red meats, excess body weight, and smoking (Figure 2). 
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Hereditary risk factors, which persist in the DNA, account for 10-20% of all colorectal 

cancer patients, while the heritability of colorectal cancer ranges from 12-35%23-25. 

Approximately 5-10% of colorectal cancer cases are attributed to a well-characterized 

hereditary colorectal cancer syndrome26. Hereditary colorectal cancer syndromes can 

be divided into polyposis and non-polyposis syndromes. The polyposis syndromes are 

easily recognized due to the polyp burden in the colon, while non-polyposis syndromes 

are more difficult to recognize as patients present fewer polyps and these polyps 

resemble sporadic lesions. The polyposis syndromes can be further subdivided into 

adenomatous and hamartomatous syndromes. The adenomatous polyposis 

syndromes include: Familial Adenomatous Polyposis (FAP), Attenuated Familial 

Adenomatous Polyposis (AFAP), and MUTYH-Associated Polyposis (MAP). 

Figure 2 | Colorectal cancer risk factors. Modifiable risk factors which decrease risk are 
highlighted in green, while modifiable and non-modifiable risk factors which increase risk, are 
highlighted in red. Reproduced with permission from Dekker et al., 2019. 
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The hamartomatous polyposis syndromes include: Peutz-Jeghers Syndrome (PJS), 

Juvenile Polyposis Syndrome (JPS), Cowden Syndrome, and Serrated/Hyperplastic 

Polyposis Syndrome. The single non-polyposis syndrome is Lynch Syndrome. 

Individuals suffering from any of the polyposis or non-polyposis syndromes are 

recommended to begin earlier screening for the presence of colorectal polyps26. The 

age at which screening should be initiated varies by syndrome, with FAP patients 

recommended to begin screening during puberty, while Lynch Syndrome patients are 

recommended to initiate screening between 20-25 years of age26. 

  



 

 
 
 

9 
 

2.2 Colon Cancer: Manifestation 

2.2.1 The Human Colon 

The colon of Homo sapiens is a smooth, elongate, muscular tube approximately four 

feet in length and three inches in diameter, which links the cecum to the rectum27. The 

colon is divided into four major segments: the ascending colon (which connects to the 

cecum on the right side of the body), the transverse colon, the descending colon, and 

the sigmoid colon (which connects to the rectum). The colon can be divided into the 

right and left colon, with the right colon comprised of the ascending and transverse 

colon, and the left colon comprised of the descending and sigmoid colon (Figure 3). 

The purpose of the colon is to extract water from dietary waste, thereby concentrating 

and forming the stool. Once stool is in the rectum, nerves signal the brain to defecate. 

 

 

Figure 3 | The regions of the colon. The ascending colon is shown in red, the transverse colon 
is shown in orange and light green, the descending colon is in blue, while the sigmoid colon is 
colored green. The colon empties into the rectum, which is shown in gray. Reproduced with 
permission from Dekker et al., 2019. 
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Despite fulfilling a single function, the role of the colonic epithelium is paradoxical as 

it must be permeable to facilitate water absorption, yet impermeable to prevent the 

vast numbers of microbes which reside within the colon from accessing the body. It 

must also be structurally resilient to endure the passing stool. The structure of the 

colon, as well as the function of the colonic epithelium, has been evolutionarily shaped 

to adjust to these multi-faceted constraints. To facilitate the movement of the stool, the 

internal surface of the colon is smooth and secretes mucus. Undulating contractions 

of smooth muscle push the stool forwards. Unlike the small intestine, no villi are found 

in the colon28. If villi were to be found in the colon, likely to facilitate water absorption 

by increased surface area, they would be damaged by the passing feces, which is the 

fate of those colonic polyps extruding into the intestinal lumen. Therefore, the strategy 

of increasing surface area to facilitate absorption utilized by the small intestine is not 

a viable strategy in the colon. Instead, to facilitate the absorption of water, the colonic 

epithelium is a single cell layer thick, consisting of cells with channel proteins designed 

for water transportation. This single layer epithelium is a vulnerability considering the 

trillions of colon-resident microbes29. Unlike the skin, which utilizes multiple layers of 

dead cells to generate an impermeable barrier, this strategy is not viable in the colon 

due to its requirement for absorption. Additionally, given the constant movement of the 

stool, small abrasions which damage the epithelial cell layer could create openings for 

opportunistic infection. To account for the weak structural integrity of a single cell layer, 

these epithelial cells are constantly being renewed. Indeed, the intestinal stem cells, 

which are the progenitors for all colonic epithelial cells, are some of the most actively 

dividing stem cells in the body. The entire colonic epithelium is estimated to be 

replaced weekly, with an average cell cycle length of a day30,31. To control the vast 
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numbers of bacteria, specific colonic cells secrete a cocktail of anti-bacterial 

peptides32,33. Taken together, the colon combines rapid cell growth, mucus secretion, 

and antimicrobial peptide secretion to maintain a single cell layer capable of water 

absorption, bacterial control, and the passing of feces34. 

2.2.2 Composition of the Human Colon 

The colon is comprised of several concentric layers of various tissues whose 

coordinated activity results in proper colon function. The layers of the colon include: 

the mucosa, the submucosa, the muscularis propria, and the serosa (Figure 4). 

The inner most layer, the mucosa, consists of three sublayers: the epithelium, the 

lamina propria, and the muscularis mucosae27. The epithelium is a single cell layer 

lining the interior of the lumen responsible for mediating water absorption, mucus 

secretion, and bactericidal peptide secretion. It also forms a physical barrier for the 

body. The epithelium forms multiple invaginations, referred to as crypts, which are 

comprised of several cell types, each performing a specific function (Figure 5). 

 

Figure 4 | Histology of the normal colon. The mucosa lies 
adjacent to the intestinal lumen and contains the epithelial cell 
layer. The submucosa connects the mucosa to the muscularis 
propria, and the serosa forms the outer layer of the tissue. 
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The cell types of the colon and their functions are: 

Enterocytes: Physical barrier, water, and ion absorption 

Goblet cells: Secrete mucus, transfer microbial antigens to dendritic cells 

Paneth cells: Secrete antimicrobial peptides, maintain intestinal stem cells35 

Tuft cells: Regulate the activity of lymphoid cells 

Intestinal stem cells (CBC): Generate the cell types of the colon 

 

 

Figure 5 | Epithelial structure of a colonic crypt. Reproduced with permission from Gehart and 
Clevers, 2019. 
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The cells of the intestine are organized in a hierarchy along the axis of the intestinal 

crypts, which is crucial to their development and function36. The stem cells, also 

referred to as crypt columnar base (CBC) cells, reside at the base of the colonic crypt, 

interspersed with Paneth cells37. The stem cells are maintained by growth stimulatory 

signals from the surrounding Paneth cells as well as the mesenchyme. As the stem 

cells divide, the progeny cells are pushed outside of the stem cell niche and begin to 

differentiate. Asymmetrical cell division does not appear to take place in the intestinal 

stem cells, therefore exclusion of the stem cells from the stem cell niche appears to 

be stochastic31,38. These excluded cells continue to divide as they ascend the crypt 

and are referred to as transit amplifying cells. As the cells approach the luminal surface 

(the top of the crypt), they fully differentiate into the various intestinal cell types 

mentioned previously, and stop proliferating39. Replicating cells are found in the bottom 

75% of the crypt, while replication is absent in the upper 25% of the crypt40. Upon 

reaching the luminal surface, the cells are either removed by the movement of the 

feces, or are exfoliated into the lumen via apoptosis, with another cell quicky taking its 

place. A delicate balance between cell proliferation and death maintains proper colonic 

epithelial architecture with the entire crypt being renewed weekly (~6 days)30,41. 

 

The epithelium is supported by the lamina propria, which is an interstitial tissue 

comprised of an extensive lymphatic network27. The lamina propria is comprised of 

collagen and a variety of cell types including fibroblasts, lymphocytes, eosinophils, 

macrophages, and mast cells. The function of the lamina propria is to structurally 

support and defend the epithelium42. Microbial pathogens which have breached the 

epithelium are met with a dense collagenous matrix housing a plethora of lymphoid 
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cells. The third, and final, layer of the mucosa is the muscularis mucosae, which 

consists of smooth muscle fibers. Contraction of the muscularis mucosae may 

facilitate the movement of secreted compounds into the lumen of the intestine. 

 

The submucosa is a dense layer of connective tissue, similar in composition to the 

lamina propria, underneath the mucosa containing collagenous fibers, blood vessels, 

fibroblasts, macrophages, mast cells, and nerves27. The submucosa is innervated by 

two neural plexuses, the Meissner plexus, and the Auerbach plexus. The submucosa 

can stretch with increased capacity, however, maintains the cylindrical shape of the 

colon. Ganglia from the submucosa extend into the muscularis mucosae of the 

mucosa. The submucosa is vascularized by the arterioles, venules, and lymphatic 

vessels. Invasion of the submucosa by neoplastic cells of the colonic epithelium 

therefore marks the transition to malignant disease due to access to the vasculature43. 

 

The muscularis propria, also called the muscularis externa, lies outside the 

submucosa and is comprised of two layers of smooth muscle. The inner layer, closer 

to the submucosa, is arranged in rings which encompass the inner layers of the colon. 

The outer, longitudinal layer lies perpendicularly to the inner layer. These muscles are 

responsible for peristalsis and are controlled by the myenteric plexus, which lies 

between the two muscle layers. Contractions are initiated by the interstitial cells of 

Cajal. The gut has intrinsic peristaltic activity due to its self-contained nervous system. 
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The serosa is the outermost layer of the colon and is comprised of several layers of 

connective tissue covered by a squamous epithelium, referred to as the mesothelium, 

which reduces friction between the colon and the surrounding organs during digestion. 

2.2.3 Aberrant Crypt Foci 

Aberrant Crypt Foci (ACF) are colorectal crypts in which the epithelial cells have begun 

to proliferate abnormally. They represent the earliest identified precursors to colonic 

polyps and colon cancer, and can be found in ~60% of adults 50-59 years old44. ACF 

are divided into two main types, nondysplastic (hyperplasia) and dysplastic 

(dysplasia), based on their morphology45 (Figure 6). Nondysplastic ACF presents 

either as a single crypt, or multiple neighboring crypts, with an enlarged, thickened 

morphology46-49. The luminal surface may be serrated and extend slightly beyond the 

surface of the normal mucosa, however cells with positive staining for proliferation 

markers remain in the middle and lower regions of the crypt(s)46-48. Cell nuclei may be 

enlarged and mucin, indicative of differentiated Goblet cells, may be partially 

depleted49. Dysplastic ACF presents with enlarged and elongated crypts containing 

cells with enlarged nuclei, loss of nuclear polarity, and nuclear hyperchromatism. 

Goblet cells are significantly decreased in number, and positive staining for 

proliferative markers is observed throughout the crypt, including the top48,49. While all 

ACF are considered benign, dysplastic ACF have the greatest likelihood of developing 

into colonic polyps48. Though the less threatening nondysplastic ACF are more 

commonly observed (90%) than the potentially malignant dysplastic ACF (10%)47-50. 
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The prevalence of ACF, in general, increases with age with ~10% of normal patients 

under the age of 40 presenting an ACF, which rises to 66% in patients 60 to 69 years 

of age44,48. However, patients diagnosed with adenomas or carcinomas, have an 

increased ACF burden at all ages, suggesting a link between the three44,51. Another 

similarity is the anatomical distribution of ACF, colonic polyps, and colon cancers, with 

all three occurring primarily in the left colon (descending and sigmoid)46-48. Microscopic 

analysis has demonstrated that dysplastic ACF are morphologically similar to 

polyps47,49,50. At the molecular level, the most common genetic alteration found in colon 

cancer, mutation of APC, is also present in some dysplastic ACF. Additionally, patients 

with FAP, an inherited disease which bears significant colorectal cancer risk, have an 

increased burden of dysplastic ACF, suggesting a common growth mechanism. 

Figure 6 | Morphology of aberrant 
crypt foci. In the top left image, 
methylene blue staining was used to 
visualize a small aberrant focus. The 
aberrant crypts, seen in the center of 
the image, stain more darkly and have 
a thicker epithelial lining than normal 
crypts. Histologically (top right), there 
is a slight elongation and enlargement 
of the ducts, which was visualized 
using hematoxylin and eosin (H&E) 
staining. In the middle left figure, a 
hyperplastic ACF shows the typical 
slit-shaped lumen in methylene blue 
staining, and a serrated morphology 
with H&E. In the bottom left figure, a 
dysplastic focus with a deformed and 
slightly raised shape is seen. The 
lumens of the crypts are compressed. 
This large ACF shows the histological 
signs of dysplasia, seen bottom right, 
including enlarged and enlongated 
crypts, loss of nuclear polarity as well 
as many hyperchromatic nuclei. 
Reproduced with permission from 
Takayama et al., 1998, Copyright 
Massachusetts Medical Society. 
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2.2.4 Colonic Polyps 

Epithelial polyps are localized, well-demarcated tumors which typically project above 

the surface of the surrounding mucosa, however flat and depressed neoplasms also 

occur52. The abnormal tissue architecture first observed in ACF is exacerbated and 

epithelial polyps are larger than ACF. They are present in ~45% of adults over 50 

years old and are divided into two main types, non-neoplastic and neoplastic, based 

on their morphology53. Non-neoplastic polyps, also referred to as hyperplastic polyps, 

have a serrated morphology in the top-half of their elongated crypts54. No dysplasia is 

evident, and the risk of malignant progression is minute54-56. Neoplastic polyps, also 

referred to as adenomas, present dysplastic growth and may refer to: traditionally 

serrated polyps, adenomatous polyps, or mixed polyps54. Sessile serrated polyps are 

also referred to as neoplastic polyps or adenomas, though they are not dysplastic. 

Instead, they contain L- or T-shaped crypts in which the proliferative zone of the crypt 

has shifted up to the wall of the crypt54. The neoplastic polyps are characterized based 

on morphology, with the sessile serrated and traditionally serrated polyps, as their 

names imply, presenting a serrated morphology54. Adenomatous polyps exhibit a 

smooth, lobulated morphology, while mixed polyps present a combination of the two56. 

The majority (~80%) of the serrated polyps (hyperplastic, sessile serrated, and 

traditionally serrated) are hyperplastic, while ~15% are sessile serrated polyps54. 

Traditionally serrated polyps, which are the rarest, account for ~5%54. The majority 

(~90%) of polyps are non-neoplastic, while the remaining ~10% are neoplastic43. 
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The histology of adenomatous polyps is characterized 

as tubular, tubulovillous, or villous, which aids in 

classifying the stage of the adenoma56 (Figure 7). 

Tubular adenomas consist of closely packed epithelial 

tubules, separated by lamina propria, which branch 

horizontally to the muscularis mucosae56. The tubules 

can have a regular, well-differentiated structure, or may 

be highly branched. Villous adenomas consist of finger-

like processes, comprised of a lamina propria core, 

covered by epithelial cells growing vertically towards the 

lumen56. The epithelium rests on the muscularis 

mucosae when not supported by the processes of the 

lamina propria. Tubulovillous adenomas contain a 

combination of both tubule and villous morphologies. 

Adenomas with more than 75% villous features are 

classified as villous adenomas, while those with 25% to 

75% villous features are tubulovillous. 

 

Adenomas which contain at least 25% villous features, or high-grade dysplasia, are 

considered advanced, given their higher malignant potential57,58. Therefore, villous and 

tubulovillous adenomas are considered advanced. The majority (~75%) of adenomas 

are tubular, while ~15% are tubulovillous, and ~10% are truly villous56,57. While the 

carcinoma stage has yet to be described, Figure 7 demonstrates the increasing loss 

of tissue organization observed during the progression to colon cancer. 

Figure 7 | Histology of colon 
tumorigenesis. The topmost 
image shows the normal 
colonic epithelium with well-
organized crypts. The center 
image shows the more unruly 
organization of a tubular 
adenoma. The bottommost 
image reveals the chaotic 
histology of a tubulovillous 
carcinoma. Reproduced with 
permission from Cardoso et 
al., 2007. 
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Size is also an important marker for classifying adenomas, and polyps are grouped 

into three different categories: diminutive (1 to 5 mm in diameter), small (6 to 9 mm), 

or large (>10 mm)57-59 (Figure 8). Large adenomas are considered advanced, 

regardless of histology. Approximately 60% of polyps are diminutive or small, while 

~40% are large58. Additionally, as polyps grow, their structural architecture changes. 

The majority (~75%) of tubular adenomas are small polyps, ~50% of tubulovillous 

polyps range from 10-20mm, and ~60% of villous polyps are 20mm or larger58. 

However, ~15% of villous polyps are 9mm or less, demonstrating that even small 

lesions have the potential to progress towards malignancy. 

 

Neoplastic colonic polyps are considered the successor of ACF and the predecessor 

of colon cancer since patients diagnosed with polyps or carcinomas, have an 

increased ACF burden at all ages and these three growths occur primarily within the 

same anatomical location, the sigmoid colon44,57. Additionally, the occurrence of ACF, 

adenomas, and colon cancer all increase with age44,60. Morphologically, polyps 

resemble dysplastic ACF, though with a more severely disorganized histology56. 

However, some dysplastic ACF have been referred to as microadenomas, reflecting 

their morphological similarities47,50,61. In regards to malignant progression, remnants of 

Figure 8 | Phenotypes of colon tumorigenesis. The leftmost image is indicative of a normal 
colon, with a smooth luminal lining. The left-center image shows small polyps (some shown 
by arrows). The right-center image shows a large adenomatous polyp, while the rightmost 
image shows a colon carcinoma. Reproduced with permission from Cardoso et al., 2007. 
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adenomas have been found in carcinomas, with higher incidence found in earlier stage 

carcinomas (those which have not yet breached the submucosa) and microscopic foci 

of carcinoma, have been found in adenomas55,58,62,63. Furthermore, the most common 

genetic alterations occurring in colon cancer, some of which are observed in ACF, are 

also present in colonic polyps64,65. Colonic polyps therefore represent the intermediary 

stage in colon tumorigenesis as they demonstrate a similar yet more severe histology 

to dysplastic ACF, but nevertheless exhibit more organized tissue architecture than 

observed in colon cancer. The shared characteristic mutations of colon cancer and 

progressive deterioration of tissue architecture support a sequence from ACF-

adenoma-carcinoma. This sequence takes from 5-30 years to develop58. 

2.2.5 Colon Cancer 

A colonic tumor is classified as a carcinoma when it displays high-grade dysplasia66. 

Its growth pattern ranges from polyp-like masses of tissue to flat lesions which are 

often inflamed27,66. The polyp-like lesions protrude into the lumen, and as they are 

usually asymptomatic, can grow to large sizes (>20mm). The flat lesions are ulcerated 

with raised edges surrounding the luminal side of the tumor mass. A 2-tiered grading 

system is used to describe carcinoma histology67. Tumors are considered low-grade 

when 50% or more of the tumor is gland forming, while a high-grade tumor contains 

less than 50% gland forming tissue67. Generally, low-grade is associated with higher 

patient survival, likely due to retention of differentiated cell function67-69. 

 

Colon carcinoma is also pathologically staged, according to the TNM (Tumor, Node, 

Metastasis) Staging System of the American Joint Committee on Cancer (AJCC) and 

the International Union Against Cancer (UICC)15,67,70. The ‘T’ refers to the first 
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resection of the primary tumor. The ‘N’ refers to the status of the regional lymph nodes, 

and the ‘M’ refers to distant metastatic disease. TNM code definitions are given in 

Table 1 and staging information in Table 2. For example, T1 refers to a Stage I colon 

carcinoma that has invaded the submucosa, which has not yet metastasized. Tumor 

TNM staging is the most useful tool in determining survival69,71,72. 

 

Table 1 | TNM code descriptions 
(left). Reproduced with permission 
from Compton et al., 1999. 

Table 2 | Colon cancer staging 
according to TNM codes (above). 
Reproduced with permission from 
Compton et al., 1999. 

 

 

 

 

 

Stage TNM Codes 
Stage 0 Tis N0 M0 

Stage I T1 N0 M0 

T2 N0 M0 

Stage II T3 N0 M0 

T4 N0 M0 

Stage III Any T N1 M0 

Any T N2 M0 

Stage IV Any T Any N M1 

Code Phenotype 
Primary Tumor (T) 
T0 No evidence of primary tumor 

Tis  Carcinoma in situ (intraepithelial or 
intramucosal carcinoma) 

T1 Tumor invades the submucosa 

T2 Tumor invades the muscularis 
propria 

T3 Tumor invades through the 
muscularis propria into the subserosa 
or into the non-peritonealized 
pericolic or perirectal tissues 

T4 Tumor directly invades other organs 
or structures (T4a) or perforates the 
visceral peritoneum (T4b) 

  
Regional Lymph Nodes (N) 
N0 No regional lymph node metastasis 

N1 Metastasis in 1-3 lymph nodes 

N2 Metastasis in 4 or more lymph nodes 

Distant Metastasis (M) 
M0 No distant metastasis 

M1 Distant metastasis 
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The majority of colon cancers (95%) are adenocarcinomas, which are cancers 

originating in gland-forming epithelium. A fraction of adenocarcinomas (~10%) are 

mucinous, while less frequent types include signet-ring cell adenocarcinoma (1%), 

medullary-type adenocarcinoma (0.1%), and squamous carcinoma (<0.01%)27,66. 

 

Adenocarcinoma of the colon is the most frequent carcinoma observed. The majority 

of adenocarcinomas are low-grade at diagnosis, though ~40% present with metastasis 

to regional lymph nodes, and ~20% have metastasized to the liver at diagnosis27,43,66. 

The 5-year survival rate of patients without metastasis is approximately 80%, which 

decreases to ~50% in patients with a regional lymph node metastasis15,72. Survival 

drops precipitously for patients with distant metastatic disease to ~3%. Metastasis is 

therefore the greatest determinant of survival. Carcinoma size, which contrasts with 

the importance of size at the adenoma stage, does not influence survival71. Metastasis 

becomes possible once the cancerous cells have breached the muscularis mucosae 

and have accessed the submucosa, where they can enter the lymph and blood 

vessels43. Tumors limited to the mucosa have not been observed to metastasize43. 

 

The most common sites of metastasis are determined by the vasculature of the body. 

Adenocarcinomas of the right colon first metastasize to the ileocaecal, right colic, and 

middle colic lymph nodes, and subsequently, to the superior mesenteric nodes. Lymph 

from the left colon is drained to the left colic, sigmoidal, and lower mesenteric lymph 

nodes. Hematogenous metastasis usually occurs first in the liver, since the large 

majority of venous blood leaves the colon through the portal system, which flows 

towards the liver. The lungs are the second most commonly colonized site15,27. 
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Mucinous Adenocarcinoma is an infrequent (~10%) variant of adenocarcinoma 

wherein 50%, or more, of the tumor volume is comprised of extracellular mucin73,74. 

Prognosis of patients with mucinous adenocarcinoma is controversial, though many 

occur in patients with hereditary nonpolyposis colorectal cancer (Lynch Syndrome), 

and thus are commonly microsatellite instable – high (MSI-H) tumors, which typically 

behave in a low-grade fashion75,76. However, mucinous adenocarcinomas may also be 

microsatellite stable (MSS) and therefore behave more aggressively. 

 

Signet Ring Cell Adenocarcinoma is rare in the colorectum and accounts for ~1% 

of all colorectal carcinomas77. These carcinomas are defined by the presence of a 

large mucin-filled vacuole, which pushes the nucleus to the periphery of the cell. 

However, more than >50% of the tumor cells must have a mucin-filled vacuole to 

classify the tumor as a signet ring cell adenocarcinoma78. These tumors are poorly 

differentiated and carry a worse outcome than conventional adenocarcinoma66,79. 

Metastasis to the peritoneum is frequent, though hematogenic metastasis to the liver 

or lungs is rare78,80. However, some may be MSI-H, and act in a low-grade fashion66. 

 

Medullary carcinoma is extremely rare and accounts for <0.1% of all colorectal 

cancers81. This tumor is characterized by sheets of neoplastic, epithelioid cells with 

large, vesicular nuclei, prominent nucleoli, and intraepithelial lymphocytic infiltrate66,82. 

This type of cancer is usually MSI-H and therefore has a favorable prognosis82. 
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2.2.6 Colon Cancer Development 

Colon cancer develops in a stepwise progression with growth becoming increasingly 

aberrant as cells progress from ACF to adenoma to carcinoma (Figure 9). This 

process, which can take decades, appears to progress through two mutually exclusive 

pathways. The chromosome instability (CIN) pathway, which accounts for ~85% of 

colon cancers, and the microsatellite instability (MIN) pathway (~15%)83,84. 

The CIN pathway is initiated by a genetic perturbation which activates the WNT 

signaling pathway, most commonly via mutation or loss of APC, a key negative 

regulator of WNT signaling64,85,86. APC plays a crucial role in colorectal tumorigenesis 

as inheriting an APC mutation, or APC loss, causes familial adenomatous polyposis 

(FAP), a condition which predisposes affected individuals to colorectal cancer87-89. 

APC mutation results in the growth of a dysplastic ACF, though prevalence of APC 

mutations in ACF is generally low64,90. The low rate (~4%) of APC mutation in ACF 

may explain the fact that most ACF do not progress into an adenoma. In support of 

this, the majority of adenomatous polyps (~70%) harbor an APC mutation, indicating 

the selection of mutated APC64,85. Chromosomal instability, or aneuploidy, which is the 

characteristic feature of the CIN pathway, also occurs early in colorectal 

tumorigenesis. The acquisition and maintenance of specific chromosomal 

Figure 9 | The path to colon cancer. This diagram demonstrates the most common progression 
from normal epithelium to carcinoma. Reproduced with permission from Vogelstein et al., 2013. 
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aneuploidies, such as the gain of chromosome 7, suggests selection, and supports 

aneuploidy as a cause, as opposed to consequence, of colorectal cancer91,92. Mutation 

of APC combined with aneuploidy results in a small adenoma. Additional mutations 

are required for the progression from adenoma to carcinoma83,93-95. KRAS is frequently 

mutated in colorectal adenocarcinomas, and mutations are found in ~25% of both 

dysplastic and non-dysplastic polyps64. Given the relatively equal distribution of KRAS 

mutations between dysplastic and non-dysplastic polyps, this suggests that APC, and 

not KRAS, is the driving force behind dysplasia. Instead, the mutation of KRAS in an 

APC mutated adenoma results in an increased growth rate and clonal expansion, 

advancing a small adenoma into a larger one93,96. The APC and KRAS mutations 

therefore function together to promote tumor growth. Inactivating mutations in SMAD4 

and TP53, or loss of these genes due to chromosomal aneuploidy, complete the 

malignant transformation and advance the large adenoma into a carcinoma83,93-95. 

Loss of 17p (TP53) is infrequently observed in adenomas, yet is present in more than 

~75% of carcinomas, identifying it as a late event in the CIN pathway93,96,97. 

 

The MIN pathway is initiated by mutation of the KRAS or BRAF proto-oncogenes, 

which leads to the development of hyperplastic ACF and hyperplastic polyps90,98-101. 

KRAS mutations are found in ~65% of ACF98,100. However, the prevalence of KRAS 

mutation decreases to ~20% in hyperplastic polyps, while BRAF mutations are found 

in ~70% of hyperplastic polyps102. Methylation-induced silencing of various tumor 

suppressor or DNA repair genes, referred to as a CpG island methylator phenotype 

(CIMP) then promotes the progression to a serrated adenoma102-105. The prevalence 

of KRAS and BRAF mutations in serrated adenomas was similar to that observed in 
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hyperplastic polyps (~30% and 60%, respectively)102. Mutations in KRAS or BRAF 

appear to be mutually exclusive102. The final step is the silencing or loss of MLH1, 

which leads to microsatellite instability, the characteristic feature of this pathway. Loss 

of MLH1 is associated with high-grade dysplasia104. 
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2.3 Colon Cancer: Etiology 

2.3.1 WNT Signaling 

WNT signaling is an ancient pathway found in all three major metazoan clades 

(deuterostomes, ecdysozoans, and lophotrochozoans)106. Across the animal kingdom, 

WNT signaling is responsible for regulating cell growth and spatial orientation in 

developing embryos and maintaining stem cells in adult tissues107. WNT signaling is 

therefore crucial throughout the lifespan of the organism. 

Canonical WNT signaling is initiated by a WNT ligand, which is a small (40kDa), 

cysteine rich protein, called a WNT108 (Figure 10). Humans have 19 WNTs, with limited 

functional overlap, as distinct phenotypes result from the genomic deletion of various 

WNTs108,109. As part of their maturation, WNTs are lipid modified by the addition of a 

palmitoleic acid, which is necessary for secretion and receptor binding110,111. The lipid 

group is attached to the WNT (Ser-209 on WNT3A) by Porcupine, an O-

acyltransferase, in the endoplasmic recticulum111,112. The lipidated WNT is transferred 

Figure 10 | Diagram of the WNT Signaling Pathway in the OFF (left) 
and ON (right) states. Reproduced with permission from Gehart and 
Clevers, 2019. 
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to the Golgi where it is bound by Wntless, a transmembrane protein, which is required 

for ferrying WNTs to the plasma membrane for presentation or secretion113-115. While 

most WNT interactions likely occur via cell-to-cell contact, it remains unclear whether 

WNTs may also act at longer ranges, like typical morphogens107,116. It has been shown 

that WNTs may traverse to their target cell on the surface of secretory vesicles in an 

exposed position for binding117,118. However, diffusion of a lone WNT through the 

extracellular environment is unlikely due to palmitoylation-induced hydrophobicity110. 

 

WNT binds two receptors, FZD and LRP5/6, at the target cell plasma membrane to 

form a complex119,120. FZD receptors are comprised of a 7-transmembrane domain and 

a cysteine-rich domain (CRD), which lies in the extracellular environment121. WNT 

ligands bind the CRD domain with nM affinity in a pincher-like conformation formed by 

the palmitoyl-group and the WNT C-terminus119,120,122. Humans have 10 FZD receptors 

which bind promiscuously with multiple, but not all, WNTs107. The downstream 

consequences of all WNT-FZD binding interactions are still under investigation, though 

several WNTs initiate the canonical WNT signaling pathway while others are involved 

in non-canonical WNT signaling. The remaining coreceptor, either LRP5 or LRP6, is a 

single-span transmembrane protein with extracellular Epidermal Growth Factor (EGF) 

repeats and Low-Density Lipoprotein Related (LDLR) repeats linked via a single-span 

transmembrane domain to five intracellular Pro-Pro-Pro-Ser-Pro (PPPSP) motifs123,124. 

Association of FZD with LRP5/6, caused by WNT binding, results in the 

phosphorylation of the PPPSP motifs of LRP5/6, generating a docking site for the 

cytoplasmic scaffolding protein AXIN on the FZD/LRP complex at the plasma 

membrane123-125. In the cytoplasm, AXIN organizes a complex comprised of APC, CKI, 
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GSK3, and β-catenin, referred to as the destruction complex. Relocation of AXIN from 

the cytoplasm to the FZD/LRP complex, which requires the protein DVL, relocates the 

destruction complex to FZD/LRP126,127. Once relocated, the destruction complex is 

unable to facilitate the proteasomal degradation of β-catenin128. This results in the 

accumulation of phosphorylated β-catenin in the destruction complex, now 

sequestered to the plasma membrane, as well as the accumulation of β-catenin in the 

cytoplasm128. Once sufficient cytoplasmic levels have been reached, β-catenin 

migrates to the nucleus where it binds the TCF/LEF family of transcription factors, 

which mediate canonical WNT signaling target gene expression129,130. 

 

 

Humans have four TCF/LEF transcription factors, TCF1, TCF3, TCF4, and LEF1, 

which are encoded by TCF7, TCF7L1, TCF7L2, and LEF1, respectively131-135. These 

transcription factors are comprised of a highly conserved HMG box, a basic tail, a β-

catenin binding domain, a TLE binding domain, a CtBP binding domain, and a C-

clamp136 (Figure 11). These transcription factors can not activate or repress 

transcription on their own, as they do not contain the appropriate domains129,137. 

Instead, their function is determined by their binding partner(s). The HMG box confers 

DNA sequence specific binding, while the basic tail binds the DNA backbone and 

functions as a nuclear localization signal131-133,138. The TCF/LEF HMG box recognizes 

a consensus sequence of 5’ – SCTTTGATS – 3’ and binds the minor groove of DNA, 

which results in a sharp bend (130°) in the DNA131,139-141. The β-catenin binding domain 

Figure 11 | Typical structure of the TCF/LEF family of transcription factors. 
Reproduced with permission from Cadigan and Waterman, 2012. 
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lies at the N-terminus of the TCF/LEFs and, when bound to β-catenin, converts the 

TCF/LEF factors into potent transcriptional activators129,130. Deletion of this domain 

results in truncated, dominant negative proteins which no longer bind β-catenin and 

instead, suppress WNT signaling activity129. Suppression of WNT signaling activity 

occurs through a variety of proteins, however the best studied are the Transducin-

Like-Enhancer of Split (TLE) repressors136,142,143. The TLE factors bind at multiple sites 

along the TCF/LEF proteins, specifically the central portion, as well as the HMG 

domain144,145. However, β-catenin binding displaces the inhibitory TLE factors, 

converting the TCF/LEF factors into transcriptional activators144. Another group of 

inhibitory co-repressors are the CtBP proteins, which bind to the C-terminus of the 

TCF/LEFs146,147. The C-clamp is the final domain of the TCF/LEF factors and functions 

as a second DNA binding domain. It is called a C-clamp due to four conserved cysteine 

residues required for DNA binding141,148,149. The C-clamp binds a GC-rich helper 

sequence, which may facilitate more stable binding of the TCF/LEF factors to the DNA 

at specific sites where the GC-rich motif is appropriately spaced with the HMG binding 

sequence148,149. However, not every TCF/LEF protein has a C-clamp136,148. The 

downstream consequences of WNT signaling therefore depend upon the TCF/LEF 

factors present, the relative abundance of their co-activators and co-repressors, as 

well as the sequence and spacing of the gene regulatory elements at the locus. 

 

 

 

 



 

 
 
 

31 
 

TCF1 plays a role in the development and differentiation of the thymocytes150. Loss of 

TCF1 in mice results in a relatively mild phenotype as animals are viable and fertile, 

however display a block in T-lymphocyte differentiation150. The mild phenotype is due 

to functional redundancy with LEF1, which also facilitates development of the immune 

system132,133. TCF1 regulates transcription by two mechanisms: binding with β-catenin 

to activate target gene expression, or by binding to the TCFα enhancer and bending 

the DNA such that two separate motifs along the genome become closely oriented in 

three-dimensional space131,134. However, different isoforms of TCF1, which lack the β-

catenin binding domain, are found in mammary and intestinal tissue151. These isoforms 

function as repressors since they retain the TLE binding domain151. Adult animals 

lacking TCF1 develop higher numbers of mammary gland and intestinal adenomas, 

indicating a tumor suppressive role for this transcription factor151. TCF7 contains the 

C-clamp, however lacks the CtBP binding domain. 

 

TCF3 is one of the earliest expressed WNT transcription factors and mouse embryos 

lacking TCF7L1 die around embryonic day 9.5 (E9.5)152. In contrast to the generally 

activating roles of other WNT transcription factors, TCF3 appears to be largely 

repressive146,153. In adults, TCF7L1 is highly produced in several organs including the 

cervix, breast, colon, and adipose tissues154. TCF7L1 does not contain the C-clamp, 

however does include binding sites for the transcriptional repressor, CtBP154. 
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TCF4 is the best studied of the TCF/LEF factors. It is necessary for development of 

the gut in embryonic mice as well as the maintenance of the colonic epithelium in adult 

mice, establishing TCF4 as a crucial transcription factor in the colon155,156. Perturbation 

of TCF7L2 results in loss of the proliferative compartments of the intestinal epithelium, 

demonstrating that TCF4 is necessary for maintaining the stem cells155,156. Activating 

WNT pathway mutations lead to increased levels of nuclear β-catenin, which results 

in the activation of WNT target genes, such as MYC and CCND1, via βcat/TCF4 

complexes157,158. TCF7L2 contains both the C-clamp and the CtBP binding domains. 

 

LEF1 is widely expressed during mouse embryonic development and mice lacking 

LEF1 die one to two weeks after birth due to skin, hair, teeth, and mammary gland 

defects159. While LEF1 also plays a role in lymphocyte development, no apparent 

alteration in the lymphocyte population was observed upon LEF1 perturbation, likely 

due to the action of TCF1, which is also expressed in lymphocytes131,134,159. LEF1 

activates target gene expression by two mechanisms: binding with β-catenin to 

activate gene transcription, or by binding to the TCRα enhancer and, via bending of 

the DNA, aligning the binding motifs of other transcription factors132,133. LEF1 does not 

contain the C-clamp domain or the CtBP binding domains136,146. 
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When the FZD and LRP5/6 coreceptors are not bound by a WNT ligand, AXIN is not 

sequestered to LRP5/6. Instead, AXIN remains in the cytoplasm, bound to the 

members of the destruction complex: APC, β-catenin, CKIα, and GSK3. CKIα 

phosphorylates β-catenin on Ser45, which is followed by the sequential 

phosphorylation of β-catenin on residues Thr41, Ser37, and Ser33 by GSK3160. 

Phosphorylation of β-catenin generates a motif recognized by β-TrCP, an F-box-

containing ubiquitin ligase, leading to the ubiquitination and proteasomal degradation 

of β-catenin161,162. In the absence of a WNT ligand, β-catenin is rapidly degraded and 

does not accumulate in the cytoplasm. The TCF/LEF transcription factors remain 

bound to TLE factors in the nucleus, repressing target gene expression. 
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2.3.2 RAS Signaling 

RAS signaling is crucial for mediating cellular growth, differentiation, and survival163. 

Members of the RAS signaling pathway, most notably KRAS, are frequently mutated 

in cancer164. Approximately 50% of all colon cancers harbor a mutation in KRAS164. 

The key event in the activation of RAS signaling is the exchange of GDP with GTP on 

RAS, which is facilitated by Guanine Nucleotide Exchange Factors (GEFs)165. The 

inactivation of RAS signaling is mediated by GTPase-Activating Proteins (GAPs), 

which induce GTP hydrolysis and a return to the GDP-bound state of RAS166,167. When 

activated (bound by GTP) RAS activates the protein serine/threonine kinase RAF (c-

RAF1, BRAF, or ARAF)168. Then, activated RAF phosphorylates, and by doing so 

activates, the mitogen-activated protein kinase kinases 1 and 2 (MEK1 and MEK2), 

though MEK1 and MEK2 may also be activated independently of RAF169. These 

kinases then activate the mitogen-activated protein kinases (MAPKs) ERK1 and 

ERK2170. The MAPKs can be transported to the nucleus following activation, resulting 

in the activation of both cytosolic and nuclear substrates. ERK phosphorylates a 

variety of transcription factors including the ETS transcription factors, as well as c-

JUN168,171. The stimulation of these transcription factors results in the expression of 

key cell-cycle regulatory proteins which promote proliferation and survival. Mutation of 

KRAS in colon cancer holds an additional benefit, as c-JUN, which is activated by 

KRAS, interacts with β-catenin and TCF4, thereby stabilizing WNT signaling activity. 
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2.3.3 TGFβ Signaling 

TGFβ signaling influences a diverse array of cellular processes throughout the lifespan 

of the organism including proliferation, differentiation, morphogenesis, and 

regeneration172. In the colonic epithelium, finely regulated gradients of TGFβ signaling 

alongside WNT signaling mediate differentiation of the intestinal stem cells and in 

colon cancer, mutations influencing TGFβ signaling activity are typically one of the last 

genetic perturbations to occur before the transition to colon carcinoma34,94. TGFβ 

signaling is initiated by the binding of a ligand from either the TGFβ-activin-Nodal or 

the BMP subfamilies173. Ligand binding results in the formation of a receptor complex 

consisting of two Type I (signal-propagating) and two Type II (activating) components, 

which are both serine/threonine kinases174. Complex formation results in 

phosphorylation of the Type I receptor by the Type II receptor, which allows the Type 

I receptor to activate the receptor-associating SMAD (R-SMAD) proteins174. SMAD1, 

SMAD5, and SMAD8 are phosphorylated by the BMP-binding receptors, while SMAD2 

and SMAD3 are phosphorylated by the TGFβ-, activin-, and Nodal-binding 

receptors173. Activated R-SMADs then bind with SMAD4, which acts as a promiscuous 

partner of all R-SMADs. Trimers of two R-SMADs and one SMAD4 are considered the 

principal functional units of TGFβ-mediated transcriptional activity173. The R-

SMAD/SMAD4 trimers are then imported into the nucleus, where they associate with 

other DNA-binding transcription factors to facilitate target gene expression175,176. 
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Chapter 3: Methods 
3.1 Cell Culture Techniques 

3.1.1 Cell Passaging 

The COLO201, DLD1, HCT116, HT29, LoVo, LS174T, SW480, and SW620 colon 
cancer cell lines were purchased from the American Type Culture Collection (ATCC). 
COLO201, DLD1, SW480, and SW620 were cultured in RPMI-1640 (Thermo Fisher; 
11875093). HCT116 and HT29 were cultured in McCoy’s 5A Modified Medium 
(Thermo Fisher; 16600082). LoVo was cultured in Ham’s F-12 (Thermo Fisher; 
11765054), while LS174T was cultured in Minimum Essential Medium (Thermo Fisher; 
11095080). All growth media were fortified to 10% FBS (Thermo Fisher; 16140071) 
and 2mM L-Glutamine (Thermo Fisher; 25030081). Cell lines were primarily grown in 
T75 Culture Flasks (Corning; 430641U) at 37°C in a humidified environment 
containing 5% CO2. Cells were split upon reaching 70% confluence, approximately 
every two days. Present culture medium was aspirated, and cells were washed in 
10mL of 1X PBS (Thermo Fisher; 10010023). Cells were dissociated from the cell 
culture flask by the addition of 3mL Trypsin-EDTA (Thermo Fisher; 25200056). During 
trypsinization, cells were incubated at 37°C in a humidified environment containing 5% 
CO2. Following trypsinization, 5mL of fresh culture medium was added and cells were 
centrifuged at 1000 rpm for 5 minutes. The supernatant was aspirated and the cell 
pellet was resuspended in 5mL of fresh culture medium. Approximately 1mL of the cell 
suspension was added to a fresh T75 flask containing 9mL of the appropriate culture 
medium. Cell line identity, assessed via STR Profiling, and the absence of 
mycoplasma contamination, assessed via PCR (Genlantis; MY01050), was confirmed 
every six months. 

3.1.2 Inverted siRNA Transfections 

Cells were seeded in a 6-well tissue culture plate (Corning; 353046) at a density of 
150,000 cells per well. The wells contained 2mL of RPMI-1640 growth medium fortified 
to 10% FBS and 2mM L-Glutamine. Silencer Select siRNAs (Thermo Fisher), Negative 
Control #1 (4390843) and siTCF7L2-s13880 (4392420), were delivered to the cells 
using the Lipofectamine RNAiMAX Transfection Reagent (Thermo Fisher; 13778150) 
and Opti-MEM Medium (Thermo Fisher; 31985070), according to the manufacturer’s 
instructions. This resulted in the addition of 7.5μL of RNAiMAX and 25pmol of siRNA 
per well of the 6-well plate. The time series was constructed thus: 0- and 72-hour time 
points were transfected with siNEG and siTCF7L2, respectively, 24 hours after 
seeding. The 48-hour time point was transfected, with siTCF7L2, 24 hours after the 0- 
and 72-hour time points. The 24-hour time point was transfected, with siTCF7L2, 24 
hours after the 48-hour time point. The cells were harvested 24 hours later, resulting 
in exposure to siTCF7L2 for 72, 48, and 24 hours. The 0-hour time point spent 0 hours 
in siTCF7L2 and serves as a transfection control for the siTCF7L2 72-hour time point. 
The siRNA:Lipofectamine complexes were not removed during the time course. This 
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process is illustrated in Figure 12, which demonstrates the advantages of the inverted 
transfection over the conventional transfection in terms of cell cycle homogeneity. 
 

 
 

Figure 12 | Comparison of conventional and inverted transfection time series methodologies. 
In A, the conventional transfection methodology is shown, which consists of the simultaneous 
addition of siRNA to multiple cell culture vessels. The time course structure is generated by 
successive harvesting of the cells at defined time points from different vessels. Cells harvested 
at different time points are grown for different amounts of time, resulting in varying cell cycle 
distributions for each time point, shown in B. The G1 peak is the leftmost peak in red, the G2 
peak is the rightmost peak in red, which decreases in size as time progresses. S-phase is 
denoted by the angled lines against a clear background found between the G1 and G2 peaks. 
Cellular debris is shown in purple and aggregates in light green. Given that the number of cells 
in G1 varies from ~20% at Time 0 to ~80% at Time 72, we find this transfection methodology 
unsuitable for Hi-C analysis as differences in chromatin structure between the time points arise 
as a result of varying cell cycle distributions. Subfigure C shows the Inverse Transfection 
methodology, in which the cells are grown equal amounts of time, with successive addition of 
siRNA at defined time points. Cells are then harvested simultaneously. The time course was 
performed until 72 hours post-transfection based on the silencing efficiency, the capability to 
synchronize cells by this time point, as well as the results of a preliminary gene expression 
microarray, which demonstrated that the majority of changes in gene expression found at a later 
time point (96 hours post-transfection) also appeared at 72 hours post-transfection (results not 
shown). The inverted transfection methodology resulted in ~70% of the cells in the G1/G0 phase 
of the cell cycle across the time points, seen in D, thereby permitting time series Hi-C analysis. 
The population of cells in G1 is shown in red and is the leftmost peak on the graph. 
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3.1.3 Dual-Luciferase Assay 

SW480 cells were seeded in an opaque, white 96-well tissue culture plate (Corning; 
3917) at a density of 5,000 cells per well. Cells were transfected 24 hours later with 
the Cignal TCF/LEF Reporter Assay Kit (Qiagen; CCS018L), using Lipofectamine 
3000 (Thermo Fisher; L3000008) according to the manufacturer’s instructions. Cells 
were simultaneously transfected with siTCF7L2 or siNEG, according to the Inverted 
Transfection protocol, using RNAiMAX. Cell lysates were prepared after the time 
course had been completed using the Dual-Luciferase Reporter Assay System 
(Promega; E1910), based on the manufacturer’s instructions for Passive Lysis. Twice 
the recommended amount of 1X PLB (40μL) was added per well. Luciferase 
luminescence was measured according to the Dual-Luciferase Reporter Assay 
System instructions, using a Centro XS3 LB 960 Microplate Luminometer (Berthold 
Technologies). Specifically, 100μL of LAR II was injected into a well, followed by a 2 
second delay, followed by a 10 second measurement period. Immediately thereafter, 
100μL of Stop & Glo reagent was injected, followed by a 2 second delay, and 
concluded with a 10 second measurement period. Each biological replicate consisted 
of three wells containing TCF/LEF Reporter Plasmid, one well containing Negative 
Control, one well containing Positive Control, and one well containing Non-Transfected 
Control for each sample. Three biological replicates were performed. Fold change was 
calculated according to a technical note from Promega, using the median value of the 
three TCF/LEF Reporter Plasmid transfected wells. 

3.1.4 Growth Assay 

SW480 cells transfected with the EV, APC, APC 60, APC 70, or APC 80 plasmid were 
selected with neomycin and then seeded in a 6-well tissue culture plate (Corning; 
353046) at a density of 20,000 cells per well. The wells contained 2mL of RPMI-1640 
growth medium fortified to 10% FBS and 2mM L-Glutamine. Six wells per sample were 
plated. Every 24 hours, cells from one well were trypsinized, centrifuged, and counted, 
using a hemocytometer, to determine the number of cells per well. Trypsinized wells 
were inspected using a light microscope to ensure that all cells had successfully 
detached. The growth assay occurred for 144 hours or 6 days. The growth rate was 
determined by dividing the number of cells on any given day by the number of cells on 
the first day. 
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3.2 Molecular Biology Techniques 

3.2.1 Quantitative Polymerase Chain Reaction (qPCR) 

RNA was extracted from at least three independent inverted transfections using the 
RNeasy Mini Kit and on-column DNase treatment (Qiagen; 74104, 79254), according 
to the manufacturer’s instructions. RNA concentration was determined using a 
NanoDrop 1000 spectrophotometer (Thermo Fisher). Synthesis of cDNA was 
performed with 800ng of RNA using the Verso cDNA Synthesis Kit (Thermo Fisher; 
AB1453B), based on the manufacturer’s instructions. The optional RT Enhancer was 
used and equal amounts of both the Anchored Oligo dT and Random Hexamers were 
added. The cycling protocol consisted of a 30 minute incubation at 42°C, a 2 minute 
incubation at 95°C, and concluded with a 4°C hold. Quantitative PCR was performed 
for TCF7L2, LEF1, CEACAM1, CtBP1, CtBP2, and YWHAZ on an ABI PRISM 7000 
Sequence Detection System (Applied Biosystems) or on a Lightcycler 480 II (Roche) 
using Power SYBR Green PCR Master Mix (Thermo Fisher; 4367659), according to 
the manufacturer’s instructions. The thermocycling protocol consisted of a 2 minute 
incubation at 50°C, which proceeded into a 10 minute incubation at 95°C, followed by 
40, two-step cycles consisting of 15 seconds at 95°C and 1 minute at 60°C. The cycling 
protocol was concluded with a melting curve analysis. Fold change was determined 
using YWHAZ as the reference gene and the 2-deltadeltaCT method. Primer sequences 
can be found in Table 3. 
 
Primer Sequence Tm (°C) Product (bp) 
TCF7L2_qPCR_F CCTCACGCCTCTTATCACGTA 57 145 
TCF7L2_qPCR_R AGGCGATAGTGGGTAATACGG 57  

LEF1_qPCR_F CGATGACGGAAAGCATCCAG 57 336 

LEF1_qPCR_R CCACCCGGAGACAAGGGATA 59  

YWHAZ_qPCR_F ACTTTTGGTACATTGTGGCTTCAA 57 94 

YWHAZ_qPCR_R CCGCCAGGACAAACCAGTAT 58  

CAECAM1_qPCR_F GACTCAGGACACAACCTACCTG 58 208 

CAECAM1_qPCR_R GGTGTCCGGGCCATAGGTG 61  

CtBP1_qPCR_F GTGCCACATCCTGAACCTGTA 58 218 

CtBP1_qPCR_R AAGGGTCGTAGAAGAGCACG 57  

CtBP2_qPCR_F CAGCGGACTCTACCATCTGC 58 206 

CtBP2_qPCR_R AAAGGCCTTGGCTCGAACTG 59  

Table 3 | qPCR primer sequences, annealing temperatures (Tm), and product sizes used in this 
dissertation are given in the table. 
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3.2.2 Western Blot 

Nuclear and cytoplasmic protein fractions were extracted using the NE-PER Nuclear 
and Cytoplasmic Extraction Reagents (Thermo Fisher; 78833), according to the 
manufacturer’s instructions. Protein was prepared for quantification using the Pierce 
BCA Protein Assay Kit (Thermo Fisher; 23225), according to the manufacturer’s 
instructions, and quantified on a SpectraMax M2e microplate reader (Molecular 
Devices). Western blot samples were generated with 30µg protein, NuPAGE LDS 
Sample Buffer (Thermo Fisher; NP0007), and Molecular Biology Grade Water 
(Corning; 46000CM). Samples were heated to 70°C for 10 minutes. The samples, 
25µL in volume, were electrophoresed for 50 minutes at 200V through a 4-12% Bis-
Tris gel (Thermo Fisher; NP0321BOX) in an XCell SureLock Mini-Cell (Thermo Fisher; 
EI0001) with MOPS Running Buffer (Thermo Fisher; NP0001). Proteins were 
transferred into an Immobilon-P PVDF Membrane (Millipore; IPVH00010) for 90 
minutes at 30V using Transfer Buffer (Thermo Fisher; NP00061) and an XCell II Blot 
Module (Thermo Fisher; EI9051). Membranes were washed once for 5 minutes in TBS 
(Takara; T903) and blocked in TBS with 5% milk (VWR; M20310G). Membranes were 
then washed 3 times for 5 minutes each, shaking at room temperature, in TBS. 
Membranes were incubated overnight at 4°C in TBS with 5% BSA (Roche; 
03117332001) and the primary antibody. Primary antibody dilutions recommended by 
the manufacturer were used (usually 1:1000). Then, membranes were washed 3 times 
for 5 minutes each in TBS, shaking, at room temperature. Membranes were then 
incubated with an HRP-linked secondary antibody in TBS for 1 hour at room 
temperature, shaking. Secondary antibody dilutions recommended by the 
manufacturer were used (1:2000). The membrane was then washed 3 times for 5 
minutes each in TBS, shaking, at room temperature. Antibodies were detected using 
SuperSignal West Pico Chemiluminescent Substrate (Thermo Fisher; 34080) for 5 
minutes in the dark. Blots were imaged using an Azure c600 Gel Imaging Station 
(Azure Biosystems). Primary antibodies used in this study targeted TCF4 (CST; 
2569S), LEF1 (CST; 2230S), β-catenin (CST; 9587S), Active β-catenin (Millipore; 
05665), CtBP1 (CST; 8684S), CtBP2 (CST; 13256S), or TBP (CST; 8515S). The 
secondary antibodies used in this study were Goat Anti-rabbit IgG, HRP-linked and 
Horse Anti-mouse IgG, HRP-Linked (CST; 7074S, 7076S). 

3.2.3 RNA Sequencing 

RNA was extracted from three independent inverted transfections using the RNeasy 
Mini Kit and on-column DNase treatment (Qiagen; 74104, 79254), according to the 
manufacturer’s instructions. RNA concentration was determined using a NanoDrop 
1000 spectrophotometer (Thermo Fisher). Silencing of TCF7L2 or LEF1 was 
determined using qPCR. RNA Integrity was determined by the Center for Cancer 
Research Genomics Core using the 4200 TapeStation (Agilent). RNA samples with an 
RNA Integrity Number (RIN) of 9 or higher were used for library preparation. Libraries 
were prepared and sequenced by the Center for Cancer Research Sequencing 
Facility. Libraries were prepared using the TruSeq Stranded Total RNA Library Prep 
Gold Kit (Illumina; 20020598), according to the manufacturer’s instructions. Samples 
were sequenced on a HiSeq 3000 generating 125 base pair, paired-end reads. 
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Replicate concordance was determined using PCA. Replicates from the same time 
points clustered together and moved progressively over time. 

3.2.4 Chromatin Immunoprecipitation (ChIP-seq) 

Chromatin Immunoprecipitation followed by high-throughput sequencing, or ChIP-seq, 
was performed using the SimpleChIP Plus Enzymatic Chromatin IP Kit (CST; 9005S), 
based on the manufacturer’s instructions. Reagent numbers, e.g., #7005, refer to a 
specific component of the SimpleChIP Kit. 
 
DNA-protein crosslinks were formed by incubating SW480 cells for precisely 10 
minutes in a 1% formaldehyde low-serum solution generated by adding 54μL of a 37% 
formaldehyde solution (Sigma; F8775-25ML) per well of a 6-well plate containing 2mL 
Opti-MEM Serum Reduced Medium (Thermo Fisher; 31985070). Immediately 
thereafter, 200μL of a 10X glycine solution (#7005) was added and the 6-well plate 
was swirled to mix the solutions and incubated for 5 minutes at room temperature. The 
solution was aspirated and cells were washed twice with 2mL of ice-cold 1X PBS 
(Thermo Fisher; 10010023). Then, 2mL of ice-cold PBS containing protease inhibitors 
(#7012) was subsequently added and the cells were scraped and collected into a 
15mL conical tube. Cells were centrifuged at 1,500 rpm for 5 minutes at 4°C and the 
resulting supernatant was aspirated. Cells were resuspended in 3mL of ice-cold Buffer 
A (#7006) supplemented with DTT (#7016) and protease inhibitors, then incubated on 
ice for 10 minutes with inversion every 3 minutes. The suspension was centrifuged at 
2,500 rpm for 5 minutes at 4°C and the supernatant was aspirated. The pellet was 
then resuspended in 3mL of ice-cold Buffer B (#7007) supplemented with DTT. The 
centrifugation was repeated, the supernatant was aspirated, and the pellet was 
resuspended in 300µL of ice-cold Buffer B, supplemented with DTT. Then, 1µL 
Micrococcal Nuclease (#10011) was added to the 300µL of nuclei and the mixture was 
incubated at 37°C for 20 minutes, with mixing by flicking every 4 minutes. The 
digestion was stopped by the addition of 30µL of 0.5M EDTA (#7011) and a 2 minute 
incubation on ice. The nuclei were pelleted by centrifugation at 16,000 rcf for 1 minute 
at 4°C, and the supernatant was removed. The pellet was resuspended in 300μL 1X 
ChIP Buffer (#7008) containing protease inhibitors and incubated on ice for 10 
minutes. The lysate was then sonicated with a Branson 450 Sonicator (Branson 
Ultrasonics Corporation) for 10 seconds at 10% capacity. The use of a Dounce 
homogenizer for nuclei homogenization was entertained and found to be useless, we 
recommend against its use. The lysates were then centrifuged at 9,400 rcf for 10 
minutes at 4°C. The supernatant was then transferred to a DNA low-binding tube 
(Eppendorf; 022431021) and 30µL were removed to analyze chromatin digestion and 
yield. 
 
To determine chromatin yield and the extent of digestion, 120µL of Molecular Biology 
Grade Water (Corning; 46000CM), 6µL of 5M NaCl (#7010), and 2µL of RNase A 
(#7013) were added to each of the 30µL chromatin samples. The samples were mixed 
well by pipetting up-and-down and incubated at 37°C for 30 minutes. Following 
incubation, 2µL of Proteinase K (#10012) was added, the samples were mixed well, 
and the reaction was incubated at 65°C for 2 hours. The DNA was then purified using 
the supplied DNA Purification Columns and the purification procedure described at the 



 

 
 
 

42 
 

end of this methodology. The purified DNA was run on a 1.5% agarose gel and the 
concentration was tested using a NanoDrop 1000 spectrophotometer (Thermo Fisher). 
The average concentration per sample was approximately 150ng/μL. The chromatin 
was digested to fragments ~150, 300, 450, 600, 750, and 900bp in length. The majority 
of the chromatin was either 150 or 300bp in length. 
 
For chromatin immunoprecipitation, 7.5µg of digested, cross-linked chromatin was 
diluted in sufficient 1X ChIP Buffer and protease inhibitors to bring the total reaction 
volume to 500μL. A 10µL aliquot was removed, which represents the 2% Input 
Sample. Antibodies targeting TCF4 (Millipore; 1710109) and LEF1 (Millipore; 17604). 
The amount of each antibody per reaction was: TCF4 – 5μg and LEF1 – 4μg. The 
samples were then incubated overnight at 4°C with rotation, using a Mini Lab Roller 
Dual Format Rotator (Labnet). 
 
ChIP-Grade Protein G Magnetic Beads (#9006) were resuspended by gentle vortexing 
and pipetting up-and-down. Immediately thereafter, 30µL of beads were added to each 
IP reaction and incubated at 4°C for 4 hours with rotation. The magnetic beads were 
then separated by placing the tubes in a magnetic separation rack (CST; 14654) for 2 
minutes. The supernatant was then carefully removed, and the magnetic beads were 
resuspended in 1mL of low salt wash and incubated for 5 minutes at 4°C with rotation. 
Beads where then separated by placing tubes in the magnetic rack and the 
supernatant was carefully removed. The low salt wash procedure was repeated two 
more times, for a total of three low salt washes. After the final low salt wash, the beads 
were resuspended in 1mL of high salt wash and incubated for 5 minutes at 4°C with 
rotation. Beads were then separated in the magnetic separator and the supernatant 
was carefully removed. 
 
To elute chromatin from the antibody/protein G magnetic beads complex, 150µL of 1X 
ChIP Elution Buffer (#7009) was added to each IP sample. The IP samples were then 
incubated at 65°C for 30 minutes with gentle vortexing (1200 rpm). The magnetic 
beads were collected by placing the tubes in the magnetic separator and the 
supernatant was carefully transferred to a new DNA low-binding tube. For crosslink 
reversal, 150μL of 1X ChIP Elution Buffer was added to the 2% Input Sample. 
Crosslinks were reversed by adding 6µL 5M NaCl and 2µL Proteinase K to all tubes 
(including the Input samples), and incubating overnight at 65°C. 
 
The DNA was then purified by adding 750µL of DNA Binding Buffer (#10007) to each 
DNA sample and pipetting up-and-down. Then, 450µL of each sample was transferred 
to a DNA Purification Column (#10010). The columns were centrifuged at 14,000 rcf 
for 30 seconds to bind the DNA to the column. The flowthrough was discarded and the 
remaining 450µL of each sample was transferred to the DNA Purification Column. The 
centrifugation step was repeated and the flowthrough was discarded. Then, 750μL 
DNA Wash Buffer (#10008) was added to the DNA Purification Column and 
centrifuged at 14,000 rcf for 30 seconds to wash the column. The flowthrough was 
discarded. The centrifugation step was repeated, at 14,000 rcf for 30 seconds, to 
collect all remaining liquid in the column. The column was transferred to a new 
collection tube and 50µL of DNA Elution Buffer (#10009) was added. The column was 
incubated at room temperature for 10 minutes. Elution was completed by 
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centrifugation at 14,000 rcf for 1 minute. The used DNA Purification Column was 
subsequently discarded. 
 
Immunoprecipitated DNA quality and size distribution was determined using an Agilent 
TapeStation 4200, performed by the Center for Cancer Research Genomics Core. 
Samples which passed the quality control threshold were sent to the Center for Cancer 
Research Sequencing Facility for library preparation and sequencing. Libraries were 
prepared using the TruSeq ChIP Library Preparation Kit (Illumina; IP2021012), 
according to the manufacturer’s instructions. Samples were sequenced on a HiSeq 
4000 generating 125 base pair, paired-end reads. 

3.2.5 Chromosome Conformation Capture (Hi-C) 

The in situ Hi-C protocols from Rao et al. were adapted with slight modifications177. 
SW480 cells, which had undergone the inverse transfection time series, were 
crosslinked in a 1% formaldehyde solution (Sigma; F8775-25ML) for 10 minutes. 
Formadehyde was quenched by the addition of glycine (Sigma; 50046-250G). For 
each Hi-C library, approximately five million cells were incubated in 250µL of ice-cold 
Hi-C Lysis Buffer (Corning; 46-000-CM, Thermo Fisher; 15568025, Thermo Fisher; 
AM9760G) with 50µL of protease inhibitor cocktail (Sigma; P8340-1ML) on ice for 30 
minutes and washed with 500µL of Hi-C Lysis Buffer. The nuclei were pelleted by 
centrifugation at 2500 rcf for five minutes at 4°C, resuspended in 50µL of 0.5% sodium 
dodecyl sulfate (SDS)(Sigma; 71736-100ML) and incubated at 62°C for 10 minutes. 
Afterwards, 145µL of water and 25µL of 10% Triton X-100 (Sigma; 93443-100ML) 
were added and incubated at 37°C for 15 minutes. 
 
Chromatin was digested with 100 units of MboI (NEB; R0147S) overnight at 37°C with 
rotation. Chromatin end overhangs were filled in and marked with biotin-14-dATP by 
adding the following reagents to the reaction: 37.5µL of 0.4mM biotin-14-dATP 
(Thermo Fisher; 19524016), 1.5µL of 10mM dCTP (NEB; N0446S), 1.5µL of 10mM 
dGTP (NEB; N0446S), 1.5µL of 10mM dTTP (NEB; N0446S), and 8µL of 5U/µL DNA 
Polymerase I, Large (Klenow) Fragment (NEB; M0210S). The marked chromatin ends 
were ligated by adding 900µL of ligation master mix consisting of 663µL of water, 
120µL of 10X NEB T4 DNA Ligase Buffer (NEB; B0202S), 100µL of 10% Triton X-100, 
12µL of 10mg/mL BSA (Roche; 03117332001) and 5µL of 400U/µL T4 DNA Ligase 
(NEB; M0202S) and were then incubated at room temperature for four hours. 
 
Crosslinking was reversed by adding 50µL of 20mg/mL proteinase K (NEB; P8107S) 
and 120µL of 10% SDS followed by an incubation at 55°C for 30 minutes. Then, 130µL 
of 5M sodium chloride was added and crosslinks were reversed at 68°C overnight. 
DNA was precipitated with ethanol, washed with 70% ethanol (Sigma; E7023-1L), and 
dissolved in 130µL of 10mM Tris-HCl, pH 8.0. DNA was sheared on a Covaris S2 
sonicator. Biotinylated DNA fragments were pulled down with MyOne Streptavidin T1 
beads (Thermo Fisher; 65601). To repair the ends of sheared DNA and remove biotin 
from unligated ends, DNA-bound beads were resuspended in 100µL of mix containing 
82µL of 10X NEB T4 DNA Ligase Buffer, 10µL of 25mM dNTP Mix, 5µL of 10U/µL 
NEB T4 PNK (NEB; M0201S), 4µL of 3U/µL T4 DNA Polymerase (NEB; M0203S), 
and 1µL of 5U/µL DNA polymerase I, large (Klenow) fragment. After end-repair, dATP 
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attachment was carried out in 100µL of mix consisting of 90µL of 1X NEBuffer 2 (NEB; 
B7002S), 5µL of 10mM dATP, 5µL of 5U/µL Klenow exo- minus (NEB; M0212S), and 
incubated at 37°C for 30 minutes. The beads were then cleaned for Illumina 
sequencing adaptor ligation which was done in a mix containing 50µL of 1X NEB Quick 
Ligation Reaction Buffer (NEB; B6058), 3µL of NEB DNA Quick Ligase (NEB; 
M2200S), and 2µL of a 15µM Illumina indexed adapter (Illumina; 20015960) at room 
temperature for 1 hour. DNA was dissociated from the beads by heating at 98°C for 
10 minutes, separated on a magnet, and transferred to a clean tube. Final amplification 
of the library was carried out in multiple PCR reactions using Illumina PCR primers. 
The reactions were performed on a 25µL scale consisting of 25ng of DNA, 2µL of 
2.5mM dNTPs, 0.35µL of each primer at a 10µM concentration, 2.5µL of 10X PfuUltra 
Buffer (Agilent; 600672), and 0.5µL of PfuUltra II Fusion DNA polymerase (Agilent; 
600672). The PCR cycle conditions were set to 98°C for 30 seconds as the denaturing 
step, followed by 18 cycles of 98°C for 10 seconds, 65°C for 30 seconds, and 72°C 
for 30 seconds with a final extension step at 72°C for 7 minutes. After PCR 
amplification, products from the same library were pooled and fragments ranging from 
300-500 bp were selected using AMPure XP beads (Beckman Coulter; A63880). The 
size-selected libraries were sequenced on a HiSeq 2500 using Illumina TruSeq v4 
chemistry generating 125 base pair, paired-end reads. 
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3.3 Bioinformatics 

3.3.1 Data Retrieval – GTEx 

GTEx data was downloaded from the GTEx Dataset Portal 
(https://gtexportal.org/home/datasets). The most recent RNA Sequencing data 
release, GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.0_gene_tpm.gct.gz, which 
was aligned to reference genome hg38, was used. 

3.3.2 Data Retrieval – TCGA 

TCGA data was retrieved using the TCGAbiolinks (Version 2.16.4) package in R. The 
newest release, which was aligned to reference genome hg38, was used. 

3.3.3 RNA Sequencing Data Analysis 

RNA sequencing data was processed using the CCBR Pipeliner Version 4.0.2. Briefly, 
FASTQC was used to assess sequencing quality and Cutadapt was used to remove 
adapter sequences and perform quality trimming, respectively. Kraken, KronaTools, 
and FastQScreen were used to assess microbial contamination. Our samples were 
confirmed to be free of microbial contamination. STAR (two-pass) was used to align 
reads to the hg38 reference genome. Picard, Preseq, SAMtools, and RSeQC were 
used to assess alignment quality. Gene expression was quantified using RSEM. 
Transcripts per million (TPM) were computed to normalize gene expression values. 
Differential gene expression was performed using limma. Volcano plots were 
generated using the EnhancedVolcano R package. 

3.3.4 Gene Set Enrichment Analysis (GSEA) 

Gene Set Enrichment Analysis was performed using R and the fgsea package, 
available through Bioconductor. Differentially expressed genes, as calculated using 
limma, were pre-ranked according to their log2 fold change values. Gene set 
enrichment was calculated using the fgsea command and the Hallmark gene sets 
available from MSigDB. The minSize and maxSize parameters were set to 15 and 500, 
respectively. The heatmap was generated using the Normalized Enrichment Scores, 
generated by fgsea, and the ComplexHeatmap R package178. 
 

3.3.5 ChIP Sequencing Data Analysis 

ChIP sequencing data was processed using the CCBR Pipeliner Version 4.0.2 and 
aligned to the hg38 reference genome. The pipeline employs FASTQC, FastQScreen, 
Kraken, and KronaTools to assess sequencing quality and microbial contamination. 
Our samples were confirmed to be free of microbial contamination. DeepTools was 
used to generate a fingerprint plot and Picard was used to asses duplicates (~90% 
read pairs were unique). Samples passed ChIP-seq specific metrics such as NRF, 
NSC, PBC1, PBC2, and RSC and contained at least 32 million uniquely mapped reads 

https://gtexportal.org/home/datasets
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per sample. Peaks were identified using MACS2 narrow. Input-normalized bigwig files 
were loaded into IGV (version 2.8.2) for visualization. 
 

3.3.6 Hi-C Data Analysis 

Hi-C data analysis was performed in its entirety by Gabrielle Dotson from the 
Laboratory of Dr. Indika Rajapakse at the University of Michigan, Ann Arbor. 
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Chapter 4: TCF4 and LEF1 WNT Transcription Factors 
in Colon Cancer 
4.1 Interactions of the WNT Signaling Transcription Factors 

4.1.1 WNT Transcription Factor Expression in Non-Diseased Colon 

Canonical WNT signaling activity is crucial for colon homeostasis as well as for the 

initiation and maintenance of colon cancer. When WNT signaling is active, β-catenin 

migrates to the nucleus where it binds the TCF/LEF family of transcription factors, 

which transmits the canonical WNT signal. Since each of these factors can interact 

with β-catenin, yet each initiates a different transcriptional program, it is important to 

understand which TCF/LEF factors are expressed in normal and cancerous colon 

tissue. Understanding the expression patterns of these factors establishes a 

foundation for understanding WNT signaling output in colon tissue. 

 

To understand the expression levels of the four WNT signaling transcription factors in 

the non-diseased human colon, I downloaded data from the open-access Genotype-

Tissue Expression (GTEx) project. GTEx is an ongoing effort designed to generate a 

comprehensive resource of tissue-specific gene expression and regulation data 

collected from nearly 1,000 individuals across 54 non-diseased tissues, including the 

colon. Data was downloaded from the GTEx website, loaded into R, and samples from 

the sigmoid and transverse colon were selected. Several steps were taken to ensure 

proper data quality: patient samples with severe autolysis were removed, samples with 

an exonic rate less than 80% were removed, and samples must have been sequenced 

using the TruSeq.v1 sequencing chemistry. In some instances, multiple samples 

corresponded to a single patient, as samples were extracted at multiple sites. 
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Given the intention of identifying breadth of expression of the WNT transcription 

factors, only one sample per patient was selected. This resulted in a total of 379 

samples split evenly between the sigmoid and transverse regions (47% and 53%). 

The expression of the four WNT signaling transcription factors in a representative 

subset consisting of 75 patient samples was then plotted (Figure 13). The subset was 

plotted to facilitate inspection of the expression, plotted as transcripts per million 

(TPM), of the WNT transcription factors within a sample. As has been previously 

reported in the literature, TCF7L2 is the dominant WNT 

signaling transcription factor in the colon and is 

expressed in 100% of samples (379/379). TCF7L1 is 

expressed in 87% of the samples (329/379). TCF7 and 

LEF1 are not appreciably expressed across the normal 

colon samples, at 8% and 1%, respectively. In terms of 

expression intensity, as opposed to breadth, TCF7 and 

LEF1 are lowly expressed at ~3 and 1.5 TPM, while 

TCF7L2 and TCF7L1 are strongly expressed, at ~21 

and 30 TPM, respectively (Figure 14). 

Figure 14 | Average WNT 
TF Expression from GTEx 
(n=379). Error bars show 
the standard deviation. 

Figure 13 | WNT TF Expression, plotted as rows, from GTEx with samples 
plotted as columns (n=75). 
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4.1.2 WNT Transcription Factor Expression in Colon Cancer 

To determine the expression of the four WNT signaling transcription factors in colon 

cancer, I downloaded data from The Cancer Genome Atlas (TCGA). TCGA is a 

landmark cancer genomics program which molecularly characterized over 20,000 

tumors across 33 cancer types. The data is publicly available and was accessed using 

the R package, TCGAbiolinks (2.16.4). RNA sequencing data was queried from the 

“TCGA-COAD” project. Samples generated with the same workflow method, HTseq, 

and normalized to fragments per kilobase million (FPKM) were selected. Instances in 

which multiple samples corresponded to a single patient, were, as previously, removed 

to limit one sample per patient. This resulted in a total of 254 samples, which were 

derived from four regions: the ascending (26%), transverse (12%), descending (6%), 

and sigmoid colon (56%). While not an even split, the sample distribution follows the 

distribution of colon cancer found in humans, with higher tumor prevalence in the left 

colon (descending and sigmoid), than in the right colon (ascending and transverse). 

 

 

 

Figure 15 | WNT TF Expression, plotted as rows, from TCGA with samples 
plotted as columns (n=75). 
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The expression of the four WNT signaling transcription 

factors in a representative subset consisting of 75 

patient samples was plotted (Figure 15). TCF7L2 

remains the dominant transcription factor in colon 

cancer and is expressed in 100% of the samples 

(254/254), while the expression of TCF7L1 is observed 

in only 3% of the samples (8/254). The expression of 

TCF7 and LEF1 is evident in 90% and 42% of samples, 

respectively. Across the samples, TCF7L2 remains the 

highest expressed WNT transcription factor at ~12 FPKM, while expression of TCF7L1 

is the lowest at ~1.3 FPKM. The expression of TCF7 and LEF1 is ~7 and 3.5 FPKM, 

respectively, which is approximately one-half the expression of TCF7L2 (Figure 16). 

Average transcription factor expression was calculated from all 254 TCGA samples. 

 

A confounding factor in the TCGA data is tumor purity, as some cancers may have 

large numbers of tumor-infiltrating lymphocytes. The inclusion of these cells in 

samples for RNA sequencing may result in artificially increased levels of immune 

system centric genes, such as TCF7 and LEF1. To determine the influence of tumor 

purity on WNT transcription factor expression, I obtained various measures of tumor 

purity from TCGAbiolinks including ESTIMATE, ABSOLUTE, LUMP, IHC, and CPE. 

ESTIMATE is based on gene expression profiles of 141 immune genes and 141 

stromal genes, ABSOLUTE uses somatic copy-number data, LUMP is based on 

methylation data from 44 non-methylation immune-specific CpG sites, IHC is an 

estimate based on image analysis of haematoxylin and eosin stained slides, and CPE 

Figure 16 | Average WNT 
TF Expression from TCGA 
(n=254). Error bars show 
the standard deviation. 
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is a consensus measurement of the median purity level after normalizing levels from 

all methods to give them equal means and standard deviation. 

 

I found no correlation between the expression of 

TCF7 or LEF1 with any of the purity measures, 

confirming that the expression of TCF7 and 

LEF1 can not be attributed to the presence of 

tumor-infiltrating lymphocytes. Interestingly, 

ESTIMATE had the strongest correlation with 

LEF1 (Table 4). ESTIMATE is based on the 

expression of immune and stromal genes. If a 

cancer ectopically expresses an immune system 

regulating transcription factor, the expression of immune system genes would likely 

increase, regardless of invading lymphocytes. Tumor purity, as determined from 

ESTIMATE, should therefore be interpreted with caution and compared with other 

measures of tumor purity (such as ABSOLUTE and IHC). 

4.1.3 WNT Transcription Factor Expression in Transverse and Sigmoid Colon 

The most dramatic difference in WNT transcription factor expression occurred in 

TCF7L1, whose expression breadth was 87% of non-diseased samples yet only 3% 

of samples in colon cancer. In colon cancer samples where TCF7L1 is present, it is 

expressed at a low degree. TCF7L1 is typically recognized as a repressive WNT factor 

and its loss may be required for colon cancer cells to take advantage of activated WNT 

signaling. Given the potential connection between TCF7L1 expression and colon 

cancer, I checked if the expression of the WNT transcription factors varied between 

Purity Metric TCF7 LEF1 
   
ESTIMATE 0.09 -0.15 

ABSOLUTE 0.15 0.01 

LUMP  0.12 -0.08 

IHC -0.01 -0.07 

CPE 0.28 -0.08 

   
Table 4 | Pearson correlation between 
TCF7 or LEF1 expression and tumor 
purity metrics. 
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regions within the non-diseased colon (transverse and sigmoid), since colon cancer 

has been consistently reported to occur more frequently in the left colon. This would 

provide insight into whether an expression bias between different regions of the normal 

colon (left and right) may contribute to colon cancer incidence (Figure 17). 

The expression of TCF7L1, TCF7L2, and LEF1 are all significantly different in the 

sigmoid and transverse colon when using Student’s two-sided t-test (p < 0.01). This is 

driven by the large number of samples. The difference in expression of 2 TPM 

observed in TCF7L2 and LEF1 likely has no impact on biological function. The higher 

expression levels of TCF7L1 in the sigmoid colon, may influence colon cell behavior 

and may play a protective role against colon tumorigenesis in the sigmoid colon. 

 

 

Figure 17 | WNT TF expression in the Transverse and 
Sigmoid Colon from GTEx (n=199, 180). The bars show 
the average and the error bars denote the standard 
deviation. Significance was calculated using Student’s 
two-sided t-test (*p < 0.05, **p < 0.01). 
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4.1.4 WNT Transcription Factor Expression Ratios 

Since all WNT transcription factors can interact with β-

catenin, the canonical WNT activator, the relative 

expression of the four WNT transcription factors was 

determined to explore how WNT signaling output may shift 

as the ratio of the WNT signaling transcription factors 

changes during the progression from normal to cancer. 

The percent expression of each WNT transcription factor 

was calculated across all GTEx (379) and TCGA (254) 

samples and averaged to estimate the relative abundance of each WNT transcription 

factor (Figure 18). I found that in normal tissue, TCF7L1 and TCF7L2 are the two 

dominant transcription factors through which the WNT signal is most likely to be 

relayed. The expression of LEF1 and TCF7 accounted for ~8% of total WNT 

transcription factor expression in normal tissue. This arrangement shifts dramatically 

in colon cancer, where LEF1 and TCF7 now account for ~43% of WNT transcription 

factor expression, while TCF7L2 accounts for 52%. TCF7L1, its expression almost 

entirely lost, now accounts for 6% of total WNT transcription factor expression. How 

does a different balance of WNT transcription factor expression influence downstream 

target gene expression? Given that colon cancers have activated WNT signaling 

activity, and that expression of TCF7L2 is still high, the likelihood that LEF1 and TCF1 

drive a similar transcriptional program to TCF4 is unlikely as further up-regulating 

already activated target genes carries little functional benefit. Instead, given that LEF1 

and TCF1 are primarily involved in the activation of the expression of immune system 

genes in adults, which differs from the role of TCF4, one anticipates increased 

Figure 18 | WNT TF Percent 
Expression (n=379, 254). 
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expression of lymphoid genes. However, since all of the WNT transcription factors can 

bind the cognate WNT motif (5’-SCTTTGATS-3’), through their highly conserved HMG 

domain, there may be functional overlap between the target genes of LEF1, TCF1, 

and TCF4, resulting in synergistic expression of WNT target genes, in addition to the 

up-regulation of lymphatic genes by LEF1 and TCF1 alone. Additionally, TCF7, LEF1, 

and TCF7L2 have been reported to be WNT target genes themselves, so a shift in 

WNT signaling activity could perturb their expression pattern. We therefore decided to 

study the impact of TCF7L2, the dominant WNT signaling transcription factor in the 

colon, on transcriptional dynamics and nuclear structure in colon cancer. 
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4.2 The Influence of TCF7L2 on Transcriptional and Structural Dynamics 

4.2.1 TCF7L2 Silencing 

TCF7L2 was silenced across three time points, each 24 hours apart, by successive 

transfection of a small interfering RNA (siRNA) into SW480 colon cancer cells. Initially, 

the efficiency of three different siRNAs, each binding a different region of TCF7L2, 

were tested. The most effective siRNA targeted the 3’ UTR of TCF7L2 and therefore, 

was capable of down-regulating nearly all variants of TCF4. This siRNA was used 

throughout the study. To minimize confounding factors based on varying cell cycle 

distributions, I developed an inverse transfection protocol, which resulted in ~70% of 

the cell population in G1 at harvesting. Conventional transfection methodologies result 

in varying cell cycle distributions with ~20% of cells in G1 at the first time point, while 

~80% of cells are in G1 at the last time point. A detailed description and diagram can 

be found in the Methods chapter (Figure 12). 

 

Silencing of TCF7L2 was confirmed at the RNA level using qPCR, which demonstrated 

a 4-fold reduction in TCF7L2 transcript abundance by Time 72 (Figure 19). TCF7L2 

transcript abundance was normalized to the expression of the reference gene 

YWHAZ. Loss of TCF4 protein in the nuclear fraction of cell lysates was established 

using western blot, with a 5% decrease by Time 24, an 80% decrease by Time 48 and 

a 97% decrease by Time 72 (Figure 19). The western blot demonstrates down-

regulation of multiple isoforms (78 kDa and 58kDa) of TCF4. The TATA Binding 

Protein (TBP) was used as loading control and TCF4 was not detected in the 

cytoplasmic fraction (results not shown). 
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Following successful silencing of TCF7L2, RNA sequencing was performed. RNA was 

harvested from TCF7L2-silenced cells and treated with DNase I to degrade potential 

genomic DNA. RNA integrity was determined by the CCR Genomics Core using an 

Agilent TapeStation 4200. Samples with an RNA Integrity Number (RIN) of 9 or higher 

were sent to the CCR Sequencing Facility for library preparation and sequencing. 

4.2.2 A Disproportionate Up-Regulation in Gene Expression 

Silencing of TCF7L2 resulted in a progressive change in the transcriptome over the 

time series. Given that TCF4 is required for maintaining colon cell homeostasis and 

that WNT signaling is constitutively activated in the SW480 colon cancer line, the 

anticipated role of TCF4 is one of a transcriptional activator alongside β-catenin. 

However, we observe a disproportionate up-regulation of gene expression following 

the silencing of TCF7L2, suggesting that TCF4 may function simultaneously as a 

transcriptional repressor. This is not entirely unexpected, given that TCF4 can interact 

Figure 19 | TCF7L2 transcript abundance was assayed with qPCR against the 
reference gene YWHAZ (left). Three biological replicates are plotted for each time 
point, shown as green dots (n=3). The green line represents the average and the 
shaded ribbon denotes the standard deviation. Statistical significance was calculated 
using Student’s two-sided t-test (*p < 0.05, **p < 0.01). TCF4 abundance was 
determined via western blot (right) with TBP as loading control. 
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with transcriptional repressors, though this is thought not to occur in cells with high 

amounts of nuclear β-catenin. Differential gene expression was calculated using limma 

and visualized on volcano plots, which show the log2 fold change as well as the 

adjusted p-value (FDR) for each gene (Figure 20). At 48 hours post-transfection, 124 

genes were significantly up-regulated and had a log2 fold change in expression of two 

or greater when compared to the control (siNeg treated cells). Four times the number 

of genes were up-regulated as compared to down-regulated at 48 hours and 

approximately twice the number of genes were up-regulated as down-regulated at 72 

hours post-transfection. Results at 24 hours post-transfection were not interpreted due 

to the negligible reduction in TCF4 levels observed in the western blot. 

 

 

 

 

Figure 20 | Differential gene expression in TCF7L2-silenced SW480 cells. The threshold for 
log2 fold change was set to two and the threshold for the FDR adjusted p-value was set to 0.05. 
The genes which exceeded the fold change threshold and were below the p-value threshold 
are colored green for up-regulated and red for down-regulated. The number of genes in each 
category are shown in the corresponding color. Two biological replicates were used (n=2). 
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To explore the biological relevance of the transcriptomic changes, I used Gene Set 

Enrichment Analysis (GSEA). GSEA uses gene sets, comprised of genes associated 

with a biological function, and a list of genes ranked by expression to compare which 

gene sets are more active, based on the expression rank of the genes they contain. 

An enrichment score is then generated, and normalized based on the size of the 

pathway, yielding a normalized enrichment score (NES). I used the Hallmark 

Genesets, which are a set of 50 commonly used, publicly available gene sets available 

from the Molecular Signatures Database (MSigDb). The NES for all 50 pathways were 

calculated for each time point and the top ten up-regulated and the top ten down-

regulated pathways, based on their adjusted p-value at the last time point (72 hours), 

were selected (Figure 21). Up-regulated pathways included immune response 

Figure 21 | GSEA for TCF7L2-silenced SW480 cells. The NESs 
for all 50 Hallmark gene sets were calculated and the top ten up-
regulated as well as the top 10 down-regulated pathways, based 
on their adjusted p-value at the last time point, were plotted. 
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pathways such Interferon Alpha, Interferon Gamma, and Allograft Rejection, while 

down-regulated pathways included MYC Targets V2, MYC Targets V1, as well as E2F 

Targets. The down-regulation of the MYC gene sets is anticipated, since TCF4 is a 

potent driver of MYC expression in the colon. E2F is also logical as previous studies 

have reported that interfering with TCF4 function results in accumulation of cells in G1 

due to a block at the G1/S transition. E2F targets are known to facilitate progression of 

cells into S phase, which may explain the G1/S block. This may work in concert with 

MYC, as MYC also facilitates entry into S phase. The expression enrichment in most 

pathways is significant, with the exception of the DNA Repair, Cholesterol 

Homeostasis, Estrogen Response, Notch Signaling, MTORC1 Signaling, and G2M 

Checkpoint pathways., which did not display a significant change in activity. 

 

Closer inspection of the changes in pathway activity shows that the Apoptosis, 

Interferon Gamma and EMT pathways respond in a similar fashion, with an initial 

decrease in activity at the 24-hour time point followed by a strong increase in 

enrichment at the 48- and 72-hour time points. Similarly, the MTORC1, Notch, 

Estrogen Response and Cholesterol pathways share a similar response to TCF7L2 

silencing. This coordinated response suggests that these pathways may function 

cooperatively when the cell is responding to a specific stimulus. While not further 

explored here, generating an overview of changing pathway dynamics may prove 

fruitful in understanding how responses to a stimulus are propagated through the cell. 

This would prove most useful when analyzing how a tumor responds to treatment and 

what specific pathways function together to mount a response to negate the treatment. 
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4.2.3 A/B Compartment Switching 

Given that changes in nuclear structure can dramatically influence gene expression, 

we sought to explore if TCF7L2 silencing alters nuclear structure as a means of 

regulating gene expression. We found this to be logical as β-catenin, the 

transcriptional activator of the TCF/LEF transcription factors, recruits a variety of 

chromatin remodeling factors and may therefore influence the organization of the 

chromatin surrounding WNT signaling target genes. I performed Hi-C on TCF7L2-

silenced SW480 cells over the inverted transfection time series. Hi-C libraries were 

sequenced and analysis was performed by Gabrielle Dotson, a graduate student in 

the Laboratory of Dr. Indika Rajapakse at the University of Michigan, Ann Arbor. 

Sequencing resulted in ~150 million total reads per sample and ~125 million uniquely 

mapped reads. The genome was divided into 100kb bins, which were then partitioned 

into A/B compartments according to the sign of the chromatin accessibility metric 

called the Fiedler vector, which is the eigenvector corresponding to the second 

smallest eigenvalue of the normalized Laplacian matrix. Positive vector values denote 

the ‘A’ compartment, which corresponds to euchromatin, and negative vector values 

denote the ‘B’ compartment, which corresponds to heterochromatin. Gene expression 

values are shown in blue for chromosomes 13 and 20 at the first and last time points 

(control and 72 hours post-transfection)(Figure 22). The A/B compartments are shown 

immediately below in green (euchromatin) or red (heterochromatin). Euchromatin 

domains correspond closely with gene expression (Figure 22). Chromosomes 13 and 

20 were selected as they are commonly gained in colon cancer. 
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To understand A/B compartment dynamics over time, the number of A/B compartment 

domains were determined for each chromosome at each time point. Overall, ~4% of 

the genome underwent an A/B compartment switch at each time point, which 

encompassed 1,305 genes. K-means clustering was used to divide A/B compartment 

switching into eight patterns, representing either a unidirectional switch (from A to B 

or B to A) or a bidirectional switch (a permutation of A-to-B-to-A) over the time series 

(Figure 22). Despite the switching events, the overall ratio of A/B compartments 

genome-wide remained relatively unchanged with slightly more loci residing in the A 

compartment (~52%) than in the B compartment (48%). The influence of A/B 

compartment switching on gene expression was minimal as only 1.3% of the genes 

within the A/B switching regions underwent a significant change in gene expression. 

Figure 22 | Influence of A/B compartment partitioning on gene expression. Gene expression for 
Chromosome 13 (left) and Chromosome 20 (middle) is shown in blue, while A/B compartments 
are shown in green and red. Contact matrices are shown on the bottom in red. A/B compartment 
switching dynamics are shown on the right. A/B compartment switching was clustered into eight 
distinct groups, represented by roman numerals on the left, with the number of genes falling 
into each specific pattern shown on the right. 
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4.2.4 Local Chromatin Organization and the CEACAM Genes 

Local partitioning of chromatin into topologically associating domains (TADs) provided 

insight into the coupling of structure and function. Genes occupying the same TADs 

have been shown to be co-expressed, likely by accessing the same cluster of 

transcriptional machinery as a result of their spatial proximity. The number of TADs 

genome-wide fluctuated by ~5% over the time series. To gain insight regarding which 

factors may be involved in the TAD domain switching, we used publicly available CTCF 

and TCF4 ChIP-seq data sets from 

the HCT116 colorectal cancer cell 

line. We observed that the binding 

locations of CTCF in HCT116 

matched ~75% of the TAD 

boundaries of SW480 while the 

binding locations of TCF4 matched 

~41% of the TAD boundaries. 

However, while TAD boundary 

binding by CTCF was relatively 

consistent across chromosomes, 

the binding of TCF4 fluctuated, with 

the highest degree of TCF4 binding 

found on chromosome 19. 

 

 

Figure 23 | Expression of the CEACAM loci at 0 hours 
(bottom) and 72 hours (top) with TCF4 and SP1 DNA 
binding in red and Hi-C contact matrices in pink with 
calculated TADs denoted by the solid (0 hours) and 
dotted (72 hours) black lines. 
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On chromosome 19, an ~10Mb span of the genome houses a group of CEACAM 

family genes, which are involved in colorectal cancer progression and metastasis. 

Several CEACAM genes in this region were potently up-regulated over the time series. 

At the initial time point, CEACAM5, CEACAM6, and CEACAM7 were located within 

the same TAD, while CEACAM1 and CEACAM8 were located in an adjacent, smaller 

TAD (Figure 23). Changes in expression of the two CEACAM gene clusters after 24 

hours were negligible. However, after 48 hours, the boundary separating the two TADs 

was lost, joining CEACAM5, CEACAM6, and CEACAM7 into a larger TAD with 

CEACAM1 and CEACAM8. Combination of the TAD domains as well as a significant 

increase in expression for both CEACAM groups occurred seemingly simultaneously 

at 48 hours. Gene expression for both groups continued to increase following the TAD 

boundary loss. The increase in gene expression likely represents increased 

accessibility to the transcriptional machinery for both gene clusters. 

 

To identify which transcription factors may be mediating this TAD partitioning loss, a 

transcription factor enrichment analysis was performed using oPOSSUM-3. Over-

representation of transcription factor binding sites (TFBS) in the DNA sequences of 

the 64 genes occupying the differentially conformed region of chromosome 19 were 

investigated. The top hit, SP1, is found ubiquitously and is involved in chromatin 

remodeling. To further explore the role of SP1, and TCF4, in mediating this TAD 

boundary change, we used publicly available SP1 and TCF4 ChIP-seq data from the 

HCT116 colorectal cancer cell line. We found that both SP1 and TCF4 bind the TAD 

boundary region observed in SW480 and it is therefore feasible that they are 

responsible for the repartitioning of this domain (Figure 23). 
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To determine whether CEACAM1 up-

regulation is prevalent in colon cancer or if it is 

unique to SW480, we used several colon 

cancer lines with varying genetic backgrounds 

which span the major molecular subtypes of 

colon cancer. SW480 has biallelic mutations in 

APC and is microsatellite stable (MSS), while 

DLD1 has biallelic APC mutations and is 

microsatellite instable (MSI). HCT116 and 

LS174T have wild-type APC and instead carry 

activating mutations in CTNNB1 and are both 

MSI. COLO201 has biallelic APC mutations, is MSS, however was derived from a 

metastasis, whereas SW480 was derived from a primary tumor. Silencing of TCF7L2 

was performed in each of the cell lines and RNA was extracted, converted to cDNA, 

and qPCR was performed using primers for TCF7L2 and CEACAM1, and normalized 

to the expression of the reference gene YWHAZ. Silencing of TCF7L2 resulted in up-

regulation of CEACAM1 in SW480, DLD1, HCT116, and LS174T, demonstrating that 

the up-regulation of CEACAM1 is observed across the spectrum of colon cancer lines 

(Figure 24). The up-regulation is weak in COLO201, though the cause is unknown. 

 

 

 

Figure 24 | Up-regulation of CEACAM1 
upon silencing of TCF7L2 in a select 
group of colon cancer lines (n=3). 
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4.2.5 Chromatin Structure and Gene Expression 

Following the exploration of the influence of TCF4 at the genome-wide and local levels, 

we sought to compare how structural organization may influence the expression of 

genes associated with specific biological functions. We utilized the Frobenius norm, 

which describes the space of a vector (gene expression) or matrix (chromatin 

interaction frequencies). We find that, generally, the pathways which undergo more 

drastic changes in expression originally occupy a more open conformation (Figure 25). 

 

 

 

 

Figure 25 | Gene expression (left) and chromatin structure (right) dynamics for the top 
ten up-regulated and top ten down-regulated pathway gene sets. Gene expression is 
ordered by decreasing NES score. Chromatin structure is ordered based on both the 
Frobenius norm and the order from gene expression. 



 

 
 
 

66 
 

For instance, strongly down-regulated pathways such as E2F Targets, MYC Targets 

V1, MYC Targets V2, and Unfolded Protein Response pathway genes reside in a more 

open conformation than do the moderately down-regulated genes in the MTORC1, 

Notch, G2M Checkpoint, and Estrogen Response Early pathways. This remains 

largely true for the up-regulated pathways. However, the exceptions are the EMT, 

Cholesterol Homeostasis, and DNA Repair pathways. The EMT pathway undergoes 

the most dramatic up-regulation in expression, yet is in the most constricted 

conformation, while the Cholesterol Homeostasis and DNA Repair pathways have the 

least change in expression yet still reside in one of the most open conformations. 

 

According to these results, we find that the conformation of the chromatin is not a 

necessary determinant of gene expression, but rather, functions as a filter. Genes 

which reside in open conformations are easily accessed by the transcriptional 

machinery and are more likely to experience drastic responses in gene expression, 

while genes in a more constricted environment are less accessible and therefore 

undergo less dynamic changes in expression. Results from this study, regarding the 

influence of TCF4 on genome structure, have been published179. 
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4.3 A WNT Signaling Intrinsic Feedback Loop: TCF4 and LEF1 

4.3.1 TCF7L2 Silencing and the other WNT Transcription Factors 

Upon silencing of TCF7L2, I determined the expression of the other WNT signaling 

factors, as WNT signaling is known to contain several self-regulating feedback loops. 

I noticed a potent up-regulation of LEF1, while expression of TCF7 and TCF7L1 

remained relatively constant (Figure 26). As previously shown, the expression of 

TCF7L1 and TCF7L2 is high in normal colon while the expression of TCF7 and LEF1 

is low. In colon cancer, the expression of TCF7L2 remains high, the expression of 

TCF7L1 is lost, while the expression of TCF7 and LEF1 is increased. However, does 

the expression of TCF7 and LEF1 have a functional impact or is it a common byproduct 

of a mutated WNT signaling pathway aimed at increasing nuclear β-catenin levels? 

 

Figure 26 | WNT transcription factor expression upon silencing of TCF7L2. The dots 
represent biological replicates (n=2), the line represents the average expression, and the 
shaded ribbon represents the standard deviation. 
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Given the potent induction of LEF1, I considered pursuing the function of LEF1, as 

well as the mechanisms by which TCF4 mediates LEF1 repression, to be worthwhile. 

Previous reports in the literature have suggested that the LEF1 isoforms expressed in 

colon cancer contain the β-catenin binding domain and are therefore considered to be 

activating. To determine whether the LEF1 isoforms are transcriptionally competent, I 

performed a western blot to confirm that the up-regulation of LEF1 results in increased 

LEF1 (protein) abundance as well as a dual-luciferase reporter assay to determine the 

impact of TCF7L2 silencing and LEF1 over-

expression on WNT transcriptional activity. 

 

The western blot for LEF1 up-regulation was 

performed using the same samples that were used 

for the western blot in Figure 19. As can be seen, 

the amount of nuclear LEF1 protein increased 

progressively over the time series, matching the up-

regulation of LEF1 observed at the RNA level 

(Figure 27). No LEF1 protein was found in the 

cytoplasmic protein fraction (results not shown). To 

determine whether the expressed isoforms of LEF1 

were transcriptionally competent, I performed a 

dual-luciferase assay on TCF7L2-silenced SW480 

cells. The luminescence from the firefly luciferase, 

under the control of the TCF/LEF cognate motif, 

was normalized to the luminescence from the renilla 

Figure 27 | Western blot for LEF1 
upon silencing of TCF7L2 (top) and 
WNT Reporter assay (bottom) for 
silencing of TCF7L2 alone (n=3) or 
TCF7L2 and LEF1 simultaneously 
(n=3). The dots represent the 
replicates, the bars represent the 
average, and the significance was 
calculated with Student’s two-sided 
t-test (*p < 0.05). 
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luciferase, which was constitutively active. Negative control samples exhibited basal 

levels of firefly luciferase expression, while positive control samples were highly 

luminescent (results not shown). The fold change in expression was determined 

between the time points (24, 48, and 72) and the control (0 hours). Upon silencing of 

TCF7L2, which results in potent over-expression of LEF1, we observe a 2.5-fold 

increase in reporter activity, shown in green (Figure 27). To determine whether this 

was a result of LEF1 up-regulation, I then performed a double-silencing reporter assay, 

shown in purple, in which TCF7L2 was silenced (to induce LEF1 over-expression) and 

LEF1 was simultaneously silenced (to suppress the LEF1 over-expression). The 

increase in reporter activity caused by silencing TCF7L2 alone was lost, demonstrating 

that LEF1 was responsible for the increase in reporter activity. The expressed LEF1 

isoforms are therefore transcriptionally competent. 

 

I then confirmed that the TCF4-LEF1 

response was not a result of siRNA off-target 

effects by using three different siRNAs, each 

of which binds a different region of the TCF7L2 

transcript (Figure 28). All three siRNAs 

resulted in LEF1 up-regulation, the strength of 

which depended upon the efficiency of 

TCF7L2 silencing, indicating a dose-

dependent response. Then, to ensure that the 

TCF4-LEF1 response was not unique to 

SW480, I silenced TCF7L2 in several colon 

Figure 28 | TCF4-LEF1 response in 
SW480 with several siRNAs. Significance 
was calculated using Student’s two-sided 
t-test (*p < 0.05, **p < 0.01). 
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cancer cell lines spanning various molecular subtypes of colon cancer. HCT116 and 

LS174T have wild-type APC, while the remaining cell lines have mutated APC. LoVo, 

SW620, and Colo201 are derived from metastatic sites, while HT29, SW480, and 

DLD1 were extracted from the primary tumor. The TCF4-LEF1 response was found in 

SW480 and DLD1, which are the most common colon cancer subtypes (Figure 29). 

4.3.2 LEF1 Silencing and the other WNT Transcription Factors 

To determine the extent to which LEF1 influences the transcriptome of SW480, I 

applied for a small NIH internal grant (STARS award) to perform another round of RNA 

sequencing. The grant was awarded and a new set of transfections were performed 

for LEF1 silencing, using the same procedure used to silence TCF7L2. Silencing of 

LEF1 had previously been confirmed at the RNA and protein levels (Figure 30). LEF1 

transcript abundance decreased by 2-fold 48 hours post-transfection and 4-fold by 72 

hours post-transfection. Abundance of LEF1 protein remained unchanged at 24 hours, 

decreased ~75% by 48 hours, and decreased ~97% by 72 hours post-transfection. 

Figure 29 | TCF4-LEF1 response in several colon cancer cell lines which 
represent various WNT signaling backgrounds. The dots represent biological 
replicates (n=3) and the bars represent the average. Significance was 
calculated using Student’s two-sided t-test (*p < 0.05, **p < 0.01). 
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Following successful silencing of LEF1, RNA sequencing was performed. RNA was 

harvested from LEF1-silenced SW480 cells and treated with DNase I to degrade 

potential contaminating genomic DNA. RNA integrity was determined by the CCR 

Genomics Core using an Agilent TapeStation 4200. Samples with a RIN of 9 or higher 

were sent to the CCR Sequencing Facility for library preparation and sequencing. 

 

The expression of the WNT signaling transcription factors was plotted to determine 

their response to LEF1 silencing (Figure 31). The expression of LEF1 was potently 

down-regulated, confirming successful silencing, while the response of TCF7 and 

TCF7L1, similar to their response to TCF7L2 silencing, did not demonstrate a clear 

trend. TCF7L2 demonstrated a slight increase at the last time point, though no clear 

trend was observed for TCF7L2 (Figure 31). The silencing of LEF1 therefore leaves 

the expression of the remaining TCF/LEF factors largely unperturbed. The interaction 

Figure 30 | LEF1 silencing in the SW480 cell line. LEF1 transcript abundance (left) was 
determined using qPCR and normalized against the YWHAZ reference gene. The dots 
represent biological replicates (n=3), the line represents the average, and the shaded purple 
ribbon represents the standard deviation. Significance was calculated using Student’s two-
sided t-test (*p < 0.05, **p < 0.01). LEF1 protein abundance was determined using western blot 
(right) with TBP as loading control. 
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between LEF1 and TCF7L2 is therefore not reciprocal, as TCF7L2 silencing results in 

a clear up-regulation of LEF1, while the silencing of LEF1 does not result in a clear 

up-regulation of TCF7L2. The up-regulation of LEF1 upon silencing of TCF7L2 

suggests that TCF4 has repressive capabilities which LEF1 lacks. 

Figure 31 | Expression of the WNT transcription factors in TCF7L2-silenced (top) or LEF1-
silenced (bottom) SW480 cells. Two biological replicates (n=2) are plotted for TCF7L2 
silencing with the solid line representing the average. The shaded ribbon denotes the 
standard deviation. Three biological replicates (n=3) are plotted for LEF1 silencing with the 
solid line representing the average and the shaded ribbon denoting the standard deviation. 
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After determining the response of the WNT signaling transcription factors to LEF1 

silencing, I explored the extent to which LEF1 influences the transcriptome. Volcano 

plots were used to visualize the results of differential gene expression analysis upon 

LEF1 silencing (Figure 32). The most dramatic changes in gene expression were again 

observed by the last time point, in accordance with the greatest reduction of LEF1 

protein seen by western blot and silencing of LEF1 transcripts observed with qPCR. 

Figure 32 | Volcano plots for differential gene expression upon silencing of TCF7L2 (top) or 
LEF1 (bottom). Two biological replicates were used for TCF7L2 and LEF1 (n=2). The threshold 
for log2 fold change was set to two and the significance was set to 0.05 (FDR adjusted p-value). 
Genes which exceeded the fold change threshold and were lower than the adjusted p-value 
were shaded green for up-regulated and red for down-regulated. 



 

 
 
 

74 
 

In contrast to the response seen upon silencing TCF7L2, wherein the majority of genes 

are up-regulated, the response to LEF1 silencing consisted of a general down-

regulation of gene expression. Put another way, an up-regulation is observed when 

LEF1 is over-expressed, as a result of silencing TCF7L2, and a down-regulation is 

observed when LEF1 is silenced. Given that LEF1 is the highest expressed WNT 

transcription factor in SW480, it may not be surprising that the general gene 

expression pattern follows the expression of LEF1 closer than TCF7L2. 

 

A second distinction between silencing TCF7L2 and LEF1 is the pattern of the 

response. When silencing TCF7L2, changes in gene expression occur incrementally, 

reaching a maximum by the last time point. While LEF1 silencing also reaches a 

maximum at the last time point, the 24-hour time point shows more up- and down- 

regulated genes than the 48-hour time point. This is counterintuitive since the levels 

of LEF1 appear unchanged at both the RNA and protein levels as shown by qPCR 

and western blot at the 24-hour time point. Closer inspection of the up- and down-

regulated genes from the 24-hour time point shows that they are similar to the genes 

from the 72-hour time point, with several immune system genes highly down-

regulated, suggestive of biological function (IL32, CD22, CD44). This is unlikely to be 

the result of a technical issue as the same procedure was used to generate the 

TCF7L2-silenced data. Lipofectamine toxicity is also unlikely as the 72-hour time point 

and the negative control (0 hours) were in lipofectamine reagent for longer periods of 

time than the 24-hour time point. One explanation is that the transfection for the LEF1 

protein used in the western blot may have been less efficient at the 24-hour time point, 

leading to higher levels of LEF1 than were observed in the RNA sequencing data. 
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4.3.3 Transcriptional Dynamics of LEF1 

After learning that LEF1 silencing influences the transcriptome of SW480, and results 

in a different outcome than silencing TCF7L2, I wanted to explore which pathways 

were affected by silencing of LEF1 and how this response differed from TCF7L2 

silencing. To this end, I used GSEA and determined the activity of the pathways 

identified previously, from TCF7L2 silencing, upon LEF1 silencing. The goal was to 

identify how the most differentially expressed pathways under TCF7L2 silencing (when 

LEF1 was over-expressed) behaved when LEF1 was silenced. The top ten up-

regulated and top ten down-regulated pathways from TCF7L2 silencing were taken 

and their NESs were calculated using the LEF1-silenced RNA sequencing data. 

 

 

 

Figure 33 | GSEA of TCF7L2- and LEF1-silenced SW480 cells. The top ten up-
regulated and top ten down-regulated pathways upon TCF7L2 silencing were plotted 
(left) and their activity upon LEF1 silencing was determined and plotted (right). 
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The results for TCF7L2 silencing are shown on the left, while the results for LEF1 

silencing, are shown in the same order, on the right (Figure 33). The difference in 

pathway dynamics is quite striking, as nine of the top ten up-regulated pathways upon 

silencing of TCF7L2 were down-regulated upon silencing of LEF1 by the last time 

point. This demonstrates that LEF1 plays a central role in regulating the transcriptional 

program of SW480 cells. The inverse was then performed, by determining the top ten 

up-regulated and top ten down-regulated pathways upon silencing of LEF1 and 

measuring the behavior of these pathways in the TCF7L2-silenced data (Figure 34). 

The top ten down-regulated and top nine up-regulated (there were only nine up-

regulated pathways) based on the 72-hour time point, were determined and are shown 

below on the left. The majority of down-regulated pathways were involved in the 

immune system, such as IL6, IL2, Interferon Alpha, and Inflammatory Response. 

Figure 34 | GSEA for LEF1- and TCF7L2-silenced SW480 cells. The ten most down-
regulated and nine most up-regulated pathways in LEF1-silenced cells were 
determined and plotted (left). The activity of these pathways was then determined in 
the TCF7L2-silenced data and plotted (right). 
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These results are anticipated given that LEF1 is involved in lymphocyte development 

and drives the expression of the TCRα enhancer in lymphocytes. Only a handful of 

pathways were up-regulated at more than one time point. When the activity of the most 

dynamically changing pathways in the LEF1-silenced cells are determined in the 

TCF7L2-silenced cells, we see that the majority of down-regulated pathways exhibit 

the opposite response and are up-regulated. This demonstrates the importance of 

LEF1 as a central driver of transcription in SW480. 
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4.3.4 TCF4 and LEF1 Target Genes 

After having learned that expressed LEF1 isoforms are transcriptionally competent 

and that LEF1 plays a noticeable role in mediating transcription in SW480 cells, the 

next goal was to generate a list of TCF4 and LEF1 specific target genes to better 

understand how these transcription factors coordinate transcription. I decided the best 

method to accomplish this was Chromatin Immunoprecipitation followed by high-

throughput sequencing (ChIP-seq) on TCF4 and LEF1. The previously described 

STARS award covered the costs of RNA sequencing as well as ChIP sequencing. The 

SimpleChIP Kit from Cell Signaling Technologies and ChIP-grade, validated 

antibodies for TCF4 and LEF1 were used. ChIP DNA was sent to the CCR Genomics 

Core for quality control using an Agilent DNA TapeStation and sent to the CCR 

Sequencing Facility for library preparation and sequencing. 

 

Sequencing results were collected 

from the sequencing facility and the 

CCBR Pipeliner for ChIP-seq was 

used to process the samples. A list 

of TCF4 and LEF1 binding sites was 

used to generate target gene lists for 

TCF4 and LEF1. The gene lists for 

both transcription factors were large 

and it was difficult to define whether 

genes represented true binding sites 

in which TCF4 or LEF1 could have a 
Figure 35 | Filtering strategy for identifying TCF4 and 
LEF1 target genes. 
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clear impact on gene expression. To navigate this, I designed a series of steps to 

generate a biologically relevant gene list combining RNA sequencing as well as ChIP-

seq data (Figure 35). The process began by generating a list of all peaks for TCF4 and 

LEF1 and filtering based on the location of the peak in relation to the gene. Peaks 

which were in the promoter region or upstream of the gene were selected, while genes 

residing within the body of the gene where discarded. A different list was then 

generated by correlating the expression of a gene to the expression of TCF7L2 or 

LEF1. If TCF4 or LEF1 have biologically relevant control over target gene expression, 

then their expression should be correlated (Pearson correlation >0.7 or < -0.7). Genes 

with low change in TPM or low fold change between the first and last time points were 

excluded as they are likely not biologically relevant. Genes occurring in both the ChIP-

seq based list and the RNA sequencing based list were considered ‘true’ target genes. 

 

Gene TF Correlation TPM Shift Log2FC TF Binding 
     
ENC1 -0.81 32.97 3.72 TCF4 

CD44 -0.77 104.73 3.41 TCF4 

LEF1 -0.77 38.90 1.64 TCF4 

MYC 0.93 -190.65 -0.89 TCF4 

CCND1 0.85 -65.53 -0.92 TCF4 

AXIN1 0.89 -10.14 -0.91 TCF4 

MYC 0.47 -28.38 -0.36 LEF1 

CCND2 0.64 -33.29 -0.33 LEF1 

Table 5 | TCF4 and LEF1 target gene list excerpts. The dotted line distinguishes the TCF4 from 
the LEF1 target genes with MYC being bound by both TCF4 and LEF1. 
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Analyzing the number of true target genes for TCF4 resulted in a list of 384 genes, an 

excerpt of which is shown in Table 5. The genes consisted mainly of known WNT 

signaling target genes including MYC, CCND1, AXIN1, ENC1, and CD44. The list also 

included LEF1. When performing the same procedure for LEF1, no true target genes 

were identified. The procedure was performed again with less strict requirements 

(correlation of 0.45 instead of 0.7). This resulted in 12 true target genes for LEF1. Two 

of the twelve target genes are in the WNT signaling pathway, MYC and CCND2 (Table 

5). Given that MYC is bound by both TCF4 and LEF1 suggests that over-expression 

of LEF1 in SW480 may benefit the colon cancer cell by facilitating the expression of 

MYC. However, given the strong effects of LEF1 on transcriptional patterns shown by 

GSEA, the small true target gene list is unexpected. A likely explanation for this is that 

LEF1 is not a transcription factor normally expressed in colon cells, as it is not detected 

in normal colon tissue. Given that all four TCF/LEF factors can bind the same WNT 

motif, due to their highly conserved HMG DNA binding domain, it is likely that 

accessory proteins exist which facilitate the binding of WNT transcription factors to 

their target genes. These accessory proteins are likely tissue specific and therefore 

associate with the WNT/LEF factor native to that tissue, as the amino acid sequence 

outside of the conserved HMG domain diverges between the different WNT 

transcription factors. This could explain the large number of TCF4 true target genes 

identified here. Given that LEF1 would not be able to bind these tissue specific 

accessory proteins, its ability to influence transcription would therefore be based on 

indirect interactions, which may facilitate the actions of other transcription factors, or 

the binding sites of LEF1 may lie outside of the promoter region, perhaps in distant 

enhancer regions, and therefore may have escaped detection in this analysis.  
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4.3.5 The Capability of TCF4 to Regulate the Expression of LEF1 

Thus far I have determined that LEF1 is highly expressed in SW480 colon cancer cells 

and LEF1 expression increases dramatically upon silencing of TCF7L2. The 

expressed variants of LEF1 are transcriptionally competent and these expressed 

variants are capable of dramatically changing the transcriptional landscape of SW480, 

which is accomplished by indirect as opposed to direct binding of LEF1 to its target 

genes. I then explored how TCF4 mediates repression of LEF1. Given that LEF1 

appeared as one of TCF4’s true target genes, the interaction is likely direct. Indeed, 

TCF4 shows a clear peak at the LEF1 promoter in SW480 cells (Figure 36). 

 

 

 

 

 

Figure 36 | TCF4 and LEF1 binding at the TCF7L2 (top) and LEF1 (bottom) loci in SW480 
colon cancer cells. Note that LEF1 is located on the reverse strand, going from right to left. 
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In SW480 cells, TCF4 is present and can bind the LEF1 promoter region. Silencing of 

TCF7L2, which greatly reduces TCF4 abundance results in a potent up-regulation of 

LEF1. These LEF1 isoforms are transcriptionally competent and lead to the activation 

of genes involved in EMT as well as various Immune System (IS) associated pathways 

(Figure 37). Given the direct interaction between TCF4 and LEF1, as well as the potent 

up-regulation of LEF1 expression upon TCF4 loss, suggests that TCF4 represses 

LEF1 expression. However, TCF4 is unable to influence transcription alone, so the 

question remains, which binding partner of TCF4 conveys the repressive function. The 

isoforms of TCF4 expressed in colon tissue are capable of repressing gene expression 

by two methods. The first method is by binding of a TLE transcriptional repressor to 

TCF4, which associates with histone deacetylases to repress gene transcription. The 

second method relies on the binding of a CtBP transcriptional repressor to TCF4. 

 

Figure 37 | Diagram depicting the TCF4-LEF1 relationship based 
on the data collected. 
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I first pursued the capability of the TLE factors to mediate TCF4-based repression 

since they are much better understood than the CtBP factors, and because several 

studies present conflicting evidence regarding the role of the CtBP factors in 

transcription. Influencing TLE activity can be initiated by several methods. The first 

approach is plasmid-based over-expression of TLE. This is unlikely to produce the 

intended effect since β-catenin has been reported to displace the TLE factors while 

binding to TCF4. Over-expression of TLE, in a colon cancer setting with abundant 

nuclear β-catenin, would likely be ineffective due to the competition between β-catenin 

and TLE. A second method is silencing of β-catenin to allow endogenous levels of TLE 

to resume their repressive function alongside TCF4 with decreased levels of β-catenin. 

The limitation of this approach is the effectiveness of the siRNA-mediated silencing of 

β-catenin as well as the levels of TLE necessary to influence a repressive effect. The 

third option was to reintroduce wild-type APC cDNA, via a plasmid, into SW480 cells, 

which have biallelic APC mutations. Given that the majority of colon cancers carry 

biallelic APC mutations, reintroduction of APC is likely the best method to constrain 

WNT signaling activity and reestablish the repressive effects of TCF4. 

 

A plasmid containing the cDNA for wild-type APC was purchased from Addgene. APC 

is a large protein (312kDa) and contains a variety of motifs. The domains for binding 

β-catenin and AXIN, a member of the destruction complex, lie closer to the C-terminus, 

and this region is the hotspot for mutations in colon cancer. Previous work in the 

inherited colorectal cancer syndrome, familial adenomatous polyposis, has 

demonstrated that the severity of polyposis depends on the location of the APC 

mutation, and its proximity to the mutation hotspot region, referred to as the Mutation 
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Cluster Region (MCR). The exact reason for the severe phenotype is not completely 

known, though β-catenin levels play a role. I hypothesized that, since APC mutations 

influence β-catenin levels, which may then influence the ability of TCF4 to repress 

LEF1, there may be a connection from APC to LEF1. I knew that the location of the 

APC mutation would influence β-catenin levels, so I hypothesized that down-regulating 

WNT signaling may influence the ability of TCF4 to mediate repression of LEF1. To 

test this hypothesis, I generated three truncated APC proteins of different lengths (60, 

70, and 80kDa) to mimic the different mutations in FAP and colon cancer. 

 

The APC, APC 60, and APC 70 plasmids all demonstrated relatively equal expression 

of APC, or of the appropriate fragment using qPCR (data not shown). The expression 

of APC 80 was ~50% lower, though the plasmid was used in experiments. Western 

blot could not be performed because no antibodies targeting the region of APC found 

in the fragments could be found. Additionally, efforts to generate a custom antibody 

with Rockland Immunochemicals, Inc. for the APC fragments proved unsuccessful. 

 

Figure 38 | SW480 cells were transfected with the EV, APC, APC 60, APC 70, or APC 80 
plasmid. Total protein was harvested and a western blot was performed for total β-catenin (left). 
Nuclear and cytoplasmic protein extractions followed by western blot for active β-catenin (right). 
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I proceeded to validate that reintroduction of APC had the intended effects on SW480. 

Total as well as nuclear and cytoplasmic protein fractions were harvested and a 

western blot was performed to determine β-catenin down-regulation. Reintroduction 

of APC, APC 60, and APC 70 decreased the amount of total β-catenin (left), while EV 

and APC 80 did not change total β-catenin levels (Figure 38). APC, APC 60, and APC 

70 also decreased nuclear β-catenin levels (Figure 38). EV and APC 80 samples 

demonstrated no decrease in nuclear β-catenin levels, similar to total β-catenin levels. 

 

None of the plasmids reduced the amount of 

cytoplasmic β-catenin, demonstrating that the 

reduction in total β-catenin (seen left), is due to 

loss of nuclear β-catenin (seen right). To 

confirm that reduction in nuclear β-catenin 

resulted in a reduction in WNT signaling 

activity, a dual-luciferase assay was performed. 

Results from the WNT reporter assay show that 

APC, APC 70, and APC 60 exhibit the lowest 

WNT signaling activity, in line with the reduction 

in nuclear β-catenin protein levels (Figure 39). 

APC 80 also demonstrates a reduction in WNT 

signaling activity, which comes as a surprise 

given that no reduction in β-catenin levels were 

observed in the western blots. 

Figure 39 | Dual-luciferase assay was 
performed on SW480 cells transfected 
with EV, APC, APC 60, APC 70, or 
APC 80. Three biological replicates 
(n=3) are plotted for EV, APC, and 
APC 60, while two biological 
replicates (n=2) are plotted for APC 70 
and APC 80. Results are normalized 
to EV. Significance was calculated 
using Student’s two-sided t-test (*p < 
0.05, **p < 0.01). 
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Given that nuclear β-catenin levels are decreased in APC, APC 60, and APC 70 

transfected cells, as well as WNT signaling activity as measured with a WNT reporter 

assay, I performed a growth assay to confirm that reintroduction of APC or the APC 

fragments reduced the growth rate of SW480 cells (data not shown). Results from the 

growth assay confirmed the results from the nuclear western blot as well as the dual-

luciferase assay. Namely, the plasmids with the slowest growth were APC and APC 

70, followed by APC 60 and APC 80. Cells transfected with EV grew the fastest. 

 

After confirming the functionality of the APC 

plasmids, I then determined the expression of 

LEF1 in SW480 cells transfected with the 

various APC plasmids (Figure 40). Introduction 

of full-length APC into SW480 cells decreased 

the expression of LEF1 by ~40% which was 

similar to the effect of APC 60. APC 70 and 

APC 80 decreased the expression of LEF1 by 

~25%. I can conclude that reintroduction of 

APC, and fragments thereof, influence the 

expression of LEF1. However, the data is not 

sufficiently robust to determine whether there 

is a difference in LEF1 expression when 

different regions of APC are present. 

 

 

Figure 40 | LEF1 expression in APC 
plasmid transfected SW480 cells. 
Three biological replicates (n=3) are 
plotted per sample. Significance was 
calculated using Student’s two-sided 
t-test (*p < 0.05, **p < 0.01). 
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I then traveled to the Laboratory of Dr. Michael Boutros at the Deutsche 

Krebsforschungszentrum (DKFZ) in Heidelberg, Germany, to further explore the role 

of APC in regulating the feedback interaction between TCF4 and LEF1. The Boutros 

Laboratory has developed several APC model cell lines using colon cancer cell lines 

with wild-type APC. The wild-type APC were targeted with CRISPR, resulting in 

biallelic APC mutations. The mutations occurred in the MCR region of APC, therefore 

representing clinically relevant mutations. My goal for visiting the laboratory was to 

determine if APC influences the interaction between TCF4 and LEF1. 

 

I used two colon cancer cell lines with wild-type APC, HCT116 and RKO, as well as 

two clones from each cell line, which had biallelic mutations in APC artificially 

introduced using CRISPR. I silenced TCF7L2 in these cells and performed qPCR to 

determine whether the TCF4-LEF1 interaction was altered between the wild-type 

HCT116 and RKO lines and their APC mutated counterparts (Figure 41). I found 

mutation of APC had no impact on expression of LEF1 in HCT116 cells (left), while in 

wild-type RKO, silencing of TCF7L2 lead to an up-regulation of LEF1. In the APC 

mutated RKO clones, this relationship was maintained and the levels of LEF1 up 

regulation were similar to that of wild-type RKO. These results show that APC mutation 

alone is not sufficient for influencing the TCF4-LEF1 feedback interaction. 
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The other group of transcriptional repressors known to bind TCF4 are the CtBP family 

of proteins. In humans, this family consists of two members, CtBP1 and CtBP2. 

Conflicting roles for the CtBP proteins alongside TCF4 have been described, with 

some reports indicating a repressive function, while other reports describe an 

activating function for the CtBP proteins when complexed with β-catenin and TCF4, 

which occurs in colon cancer. To investigate the effects of the CtBP1 and CtBP2 

proteins in mediating the TCF4-LEF1 interaction, I used siRNAs to target the 

expression of CtBP1 and CtBP2. Western blot and qPCR were used to assess CtBP1, 

CtBP2, TCF4, LEF1, and TBP protein levels as well as TCF7L2 and LEF1 abundance. 

 

 

 

 

 

Figure 41 | TCF7L2 silencing in HCT116, RKO, and two clones with biallelically mutated 
APC from HCT116 and RKO. Transcript abundance of TCF7L2 and LEF1 was 
determined using qPCR. Three biological replicates (n=3) are plotted with TCF7L2 
abundance shown in green and LEF1 transcript abundance shown in purple. 
Significance was calculated using Student’s two-sided t-test (*p < 0.05, **p < 0.01). 
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Silencing of CtBP1 or CtBP2 led to a clear reduction of CtBP1 or CtBP2 protein levels, 

shown by western blot (Figure 42). Loss of CtBP1 or CtBP2 did not influence TCF4 

abundance, removing a possible confounding factor from interpreting LEF1 levels. 

Loss of CtBP1, but not CtBP2, resulted in a potent increase in LEF1 protein 

abundance, supporting the observation that the CtBP family members are 

transcriptional repressors. Results from qPCR confirmed the results from western blot. 

Figure 42 | Western blot (left) showing protein abundance of CtBP1, CtBP2, 
TCF4, LEF1, and TBP upon treatment with siNeg, siCtBP1, or siCtBP2. 
Transcript abundance, assayed via qPCR (right) of TCF7L2 or LEF1 following 
exposure to siNeg, siCtBP1, or SiCtBP2. Significance was calculated using 
Student’s two-sided t-test (*p < 0.05, **p < 0.01). 
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Chapter 5: Conclusions and Future Directions 
5.1.1 Consequences of TCF7L2 Silencing in Colon Cancer 

I studied the consequences of silencing TCF7L2, which encodes for TCF4, the major 

WNT signaling transcription factor in the colon. In colon cancer, activating mutations 

in the WNT signaling pathway, most often in APC, result in the nuclear localization of 

β-catenin and constitutive WNT pathway transcription mediated by β-catenin/TCF4 

complexes. This leads to high expression of MYC and CCND1 as well as other growth 

promoting genes. As a result of this, TCF4 is generally recognized to be a 

transcriptional activator due to its association with β-catenin in colon cancer. 

 

Silencing of TCF7L2 followed by RNA sequencing led to a disproportionate up-

regulation in gene expression suggesting that TCF7L2 may play a repressive, as well 

as an activating, role in colon cancer. Hi-C experiments on TCF7L2-silenced SW480 

cells resulted in ~4% of the genome undergoing an A/B compartment switch at each 

time point, however, the overall ratio of A/B compartments remained constant over the 

time series. A/B compartment switching did not have a significant influence on gene 

expression as only 1.3% of genes falling within A/B compartment switching regions 

also demonstrated a significant change in gene expression. Changes in local 

chromatin structure did, however, result in a noticeable up-regulation in two groups of 

CEACAM genes on chromosome 19. Over the time series, the two groups, originally 

located in different TADs, became combined in the same TAD and simultaneously 

underwent a significant increase in gene expression. TAD joining brought these two 

related gene groups in close physical space, allowing these previously separated 

genes to share the same transcriptional machinery, resulting in their up-regulation. 
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5.1.2 Consequences of LEF1 Silencing in Colon Cancer 

Silencing of TCF7L2 also resulted in the potent up-regulation of LEF1, one of the other 

WNT signaling transcription factors. LEF1 isoforms were capable of driving WNT 

signaling activity in a WNT reporter assay, and over-compensated for the loss of TCF4, 

in terms of overall WNT signaling activity. Concomitant silencing of TCF7L2 and LEF1 

abrogated the increase in WNT signaling activity, demonstrating that LEF1 was 

responsible for the increase. Upon silencing of TCF7L2, which results in a potent up-

regulation of LEF1, the expression of differentially expressed genes was 

disproportionately increased, while when LEF1 was silenced, the expression of 

differentially expressed genes disproportionally decreased. Taken together, these 

results demonstrate that LEF1 is a central regulator of transcription in SW480 cells. 

GSEA demonstrated down-regulation of MYC and G2M checkpoint pathways upon 

silencing of TCF7L2, in accord with the role of TCF4 as a regulator of MYC expression 

and cell cycle progression. Silencing of LEF1 resulted in the down-regulation of 

immune system centric pathways including IL2, IL6, as well as genes involved in the 

inflammatory response, in accord with the role of LEF1 as a regulator of the immune 

system. Comparing GSEA results between TCF7L2- and LEF1-silenced SW480 cells 

demonstrated that the most significantly up- and down-regulated pathways follow the 

expression pattern of LEF1. ChIP sequencing was then used to identify the target 

genes of TCF4 and LEF1. An algorithm was generated which identified true TCF4 and 

LEF1 target genes, by integrating ChIP-seq data, which demonstrated gene binding, 

with RNA sequencing data, which demonstrated biological relevance. Only a single 

gene was found to be overlapping between the two transcription factors, which was 

MYC. This shows that LEF1 in colon cancer can help TCF4 drive the expression of 
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MYC, however otherwise, LEF1 drives the expression of a different target gene set 

than TCF4. The pathways most affected by LEF1 expression in colon cancer are EMT, 

interferon alpha, and TNFA signaling, demonstrating that LEF1 adds a lymphoid-like 

gene expression pattern to the colon cancer cell. This influences the growth and 

migration capabilities of the colon cancer cell as LEF1 silencing, or loss, results in 

decreased growth rates and decreased rates of migration and invasion. It is also 

known that colon tumors interact with invading macrophages, in an attempt to 

inactivate the macrophages. The expression of immune regulatory genes, due to LEF1 

over-expression, may influence colon cancer-macrophage communication. 

5.1.3 The TCF4-LEF1 Interaction 

After determining the influence of TCF4 and LEF1 on gene expression in the colon 

cancer cell line SW480, I sought to understand how TCF4 mediated repression of 

LEF1, which was decreased upon silencing of TCF7L2. ChIP-seq data demonstrated 

that TCF4 bound the LEF1 promoter, suggesting a method for direct repression. There 

are two known families of transcriptional repressors which bind TCF4, the TLE family 

and the CtBP family. To determine whether the TLE family was mediating the 

repressive effect, I over-expressed APC, which facilitates the down-regulation of β-

catenin, helping to convert TCF4 from an activator to a repressor. I used APC as 

opposed to an siRNA targeting β-catenin since the inherited familial adenomatous 

polyposis syndrome (FAP) is caused by mutation or loss of APC. I reasoned that use 

of APC and various APC fragments mimicking the various sizes of mutated APC could 

be used to degrade β-catenin, and down-regulate the WNT signaling pathway thereby 

increasing the likelihood that TCF4 functions as a repressor to further down-regulate 

LEF1. I would therefore be able to provide a plausible link between LEF1 over-
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expression and FAP. Results from plasmid transfections used to over-express APC or 

the various APC fragments, demonstrated that transfected SW480 cells had lower 

levels of total as well as nuclear β-catenin, and that these results were mirrored in a 

dual-luciferase assay. Transfected SW480 cells also grew more slowly than EV 

transfected cells, in accordance with decreased WNT signaling activity. Over-

expression of APC as well as the APC 60, APC 70, and APC 80 fragments resulted in 

a ~25-50% reduction in the expression of LEF1, confirming my hypothesis. I then 

performed another set of TCF7L2 silencing experiments with the APC wild-type colon 

cancer cell lines, HCT116 and RKO, as well as with two HCT116 clones and two RKO 

clones, which had biallelically mutated APC. These experiments demonstrated that 

while APC may influence LEF1 expression in SW480, it is not a major regulator of 

LEF1 expression in other cell lines, and other mechanisms may be at play. 

 

I then explored the other family of transcriptional repressors, the CtBP family, and 

silenced the expression of the two CtBP genes in humans (CtBP1 and CtBP2). 

Silencing of CtBP1 resulted in a potent de-repression of LEF1 expression, which did 

not influence the abundance of TCF4, eliminating any confounding effects due to 

varying TCF4 levels. These results were confirmed at the transcript level. I therefore 

conclude that TCF4 mediates direct repression of LEF1 by binding with CtBP1, but not 

with CtBP2. In summation, I show that TCF4 is capable of simultaneously activating 

and repressing target gene expression in colon cancer, and that CtBP1 is required for 

this effect. TCF4 employs CtPB1 to maintain a TCF4-centric transcriptional program 

in colon cancer cells by repressing the expression of LEF1 (Figure 43). 
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5.1.4 Future Directions 

I am interested in pursuing the influence of CtBP1 in other colon cancer cell lines to 

verify that the de-repression of LEF1 is shared. Given that CtBP1 appears to repress 

WNT signaling transcription in an activated WNT background, it would be fascinating 

to further explore what factors mediate the ability of CtBP1 to repress WNT gene 

expression. For instance, is the strength of the repression predicted by the ratio of 

CtBP1 to TCF4? It appears that while TCF4 represses LEF1, it still activates the 

expression of other target genes. What determines the nature (activating or 

repressive) of TCF4 with its target gene, and is it possible to alter the target genes? 

For instance, can we repress MYC? 

 

 

 

Figure 43 | Final diagram illustrating the findings of the dissertation. 
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Another avenue to follow further explores the physical consequences of TCF7L2 

silencing and LEF1 over-expression. I have generated a WNT reporter cell line which 

expresses a degron-tagged eGFP protein. The degron-tag shortens the half-life of 

eGFP so that changes in WNT signaling activity are more quickly realized at the 

protein level. The purpose of this cell line is to monitor WNT signaling activity while 

measuring other properties, such as invasion or migration. The SW480 reporter cell 

line also offers a useful test bed for quickly screening compounds to identify WNT 

signaling regulators without the need to transfect reporter plasmids and normalize for 

transfection efficiency. Given that loss of TCF7L2 results in LEF1 over-expression, 

which results in an increase in WNT signaling activity, these cells would prove useful 

in the identification of compounds which target both TCF7L2 and LEF1. This is 

advantageous since compounds which only target TCF4, would not be able to address 

the LEF1 feedback response, which may complicate treatment response. 
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Glossary 

Benign: Non-invasive 

Differentiated Cell: A cell with limited proliferative potential which fulfills a specific 

function in the body. 

Epidemiology: The study of the incidence, distribution, and control of disease 

Epithelium: A thin layer of cells which separates the body from the external 

environment. 

Etiology: The cause, or set of causes, of a disease 

Malignant: Invasive 

Manifestation: A symptom or indicative marker of a disease 

Mortality: Death 

Mutation: An alteration in the DNA sequence 

Stem Cell: A cell capable of nearly indefinite proliferative potential whose progeny can 

differentiate into the cell types necessary to perform the functions of a given tissue. 

Tumor: A mass of cells exhibiting an abnormal growth pattern. A tumor may be 

comprised of benign or malignant cells, or a combination of the two. 
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