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This dissertation is concerned with the small-noise asymptotics of stochastic

differential equations and stochastic partial differential equations. In the first part

of the manuscript, we present an overview of large deviations theory in the context

of stochastic differential equations, with a particular focus on describing the long

time behavior of the system in the presence of point attractors. We then present

results describing a novel algorithm for computing the quasi-potential, a key quantity

in large deviations theory, for two-dimensional stochastic differential equations. Our

solver, the Efficient Jet Marcher, computes the quasi-potential U(x) on a mesh by

propagating U and ∇U outward away from the attractor. By using higher-order

interpolation schemes and approximations for the minimum action paths, we are able

to achieve 2nd order accuracy in the mesh spacing h.

In the second part of the manuscript, we consider two important problems



in large deviations theory for stochastic partial differentiable equations. First, we

consider stochastic reaction-diffusion equations posed on a bounded domain, which

contain both a large diffusion term and a small noise term. We prove that in the joint

small noise and large diffusion limits, the system satisfies a large deviations principle

with respect to an action functional that is finite only on paths that are constant in

the spatial variable. We then use this result to compute asymptotics of the first exit

time of the solution from bounded domains in function spaces. Second, we consider

the two-dimensional stochastic Navier-Stokes equations posed on the torus. In the

simultaneous limit as the noise magnitude and noise regularization are both sent to

0, the solutions converge to the deterministic Navier-Stokes equations. We prove

that the invariant measures, which converge to a Dirac mass at 0, also satisfy a large

deviation principle with action functional given by the enstrophy.
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Chapter 1: Introduction to the dissertation

The mathematical modeling of rare events in physical systems is a difficult, yet practi-

cally important problem. In many real-world applications, it is often the unexpected

outcomes that have the greatest impact – whether it is the spontaneous failure of

an engine or a short-term flash crash of the stock market [52]. Both data-based and

simulation-based methods for estimating rare event probabilities typically suffer from

the issue of small observation counts, which tend to yield estimates of very low sta-

tistical power. Significant research is conducted into fields like importance sampling

[11] to improve our ability to observe rare events via simulation, but the presence of

small sample sizes remains as a significant computational hurdle.

Instead, this dissertation takes the perspective of quantifying probabilities of

rare events by applying analytic tools directly to the probabilistic mathematical mod-

els themselves. These types of results are typically placed under the umbrella of large

deviations theory, a general framework for quantifying rare events in probabilistic

systems. The earliest ideas in the theory date back to Harald Cramer in the early

1900s, who priced insurance premiums by estimating the probabilities and potential

amounts of future insurance claims [45]. The general abstract framework for the the-



ory is first attributed to Varadhan in 1966 [65], and the ideas have since been applied

to all sorts of asymptotic problems in probability theory.

The content of this manuscript concerns the theory of large deviations applied

to the setting of dynamical systems perturbed by small amounts of random noise,

a field referred to as Freidlin-Wentzell theory as it was pioneered by Freidlin and

Wentzell in the 1960s and 1970s [34, 35, 37]. This particular branch of probability

theory and differential equations has attracted immense attention over the last 40

years and a number of sophisticated techniques have been developed. In Chapter 2

we present a brief summary of some of the main results, which form the foundation

for our work in the later chapters.

The original work in Chapters 3, 4 and 5 can be broken down into two cate-

gories within the Freidlin-Wentzell theory umbrella. In Chapter 3, we consider the

computational problem of finding numerically some of the important quantities in

the theory. In particular, we design a novel technique for numerically evaluating the

quasi-potential, an energy function that describes the leading order asymptotics of

rare event probabilities in the small-noise limit.

On the other hand, Chapters 4 and 5 consider theoretical problems of proving

large deviations type results in the small-noise limit for multi-scale stochastic partial

differential equations. The goal of our work there is to study the interaction between

the small-noise limit and other asymptotic features of infinite-dimensional equations.

Specifically, in Chapter 4 we consider the interaction between the small-noise limit
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and fast transport limit for stochastic reaction-diffusion equations, while in Chapter 5

we consider the simultaneous small-noise and singular noise limits for the stochastic

Navier-Stokes equations in dimension 2 on the torus. In the remainder of this chapter,

we present an executive summary of the body of this manuscript.

1.1 Large deviations theory for stochastic equations

In Chapter 2, we survey many of the key ideas in Freidlin-Wentzell theory, upon

whose framework the work in the later chapters is built. There, we discuss asymptotic

properties of the solution Xε
t to the stochastic differential equation in Rd

dXε
t = b(Xε

t )dt+
√
εWt, X0 = x, (1.1.1)

where b : Rd → Rd is a vector field, Wt is a d-dimensional Brownian motion, x ∈ Rd

and ε > 0 is a small parameter. The solution Xε
t can be viewed as a perturbation of

the solution Xt to the ordinary differential equation

dXt = b(Xt)dt, X0 = x. (1.1.2)

Indeed, one can prove that for any T > 0 the solution Xε
t of the stochastic equation

(1.1.1) converges in probability as ε ↓ 0 in the space C([0, T ];Rd) to the solution Xt

of the deterministic equation (1.1.2).

The primary goal of large deviations theory in this context is to compute leading

order asymptotics of the probabilities that Xε
t experiences significant deviations from

its “expected” behavior Xt. These probabilities will in general decay exponentially
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in ε−1 as ε → 0 with an exponential rate that can be determined by a least action

principle. For example, suppose that

A := {ϕ ∈ C([0, T ]) : max
t∈[0,T ]

‖ϕt −Xt‖ > δ},

represents the set of “rare” trajectories consisting of paths ϕ that deviate from the

expected path Xt by at least δ for some t ∈ [0, T ]. Due to the aforementioned

convergence in probability ε→ 0, the probability P(Xε
t ∈ A) certainly decreases to 0,

but in addition its leading order asymptotics can be determined via large deviation

theory. Namely,

P(Xε
t ∈ A) � exp

(
− 1

ε
inf
ϕ∈A

1

2

∫ T

0

‖ϕ̇t − b(ϕt)‖2 dt
)
, (1.1.3)

where ‖·‖ denotes Euclidean norm on Rd, while � denotes logarithmic equivalence in

the ε→ 0 limit (see Chapter 2). An important observation here is that the probability

of Xε
t realizing the rare event A only depends on the particular paths ϕ ∈ A that

minimize the action function (the integral in (1.1.3)). In other words, the leading

order term of the probability of event A is determined entirely by its least unlikely

member, which can be determined by finding the solution to a least action problem.

The process Xε
t is said to satisfy a large deviations principle if statements of

the form (1.1.3) hold for a general class of events A (see Section 2.1). The majority

of Chapter 2 discusses techniques for proving large deviations principles for equa-

tion (1.1.1). Considerable focus is given towards viewing large deviations from the

weak convergence perspective, an approach that is utilized several times in our main

theoretical results in Chapters 4 and 5.

4



Considerable attention is also given to the long-time dynamics of equation

(1.1.1) in the case where the drift field b possesses a stable, globally-attracting equi-

librium O. In such a case, the solution Xε
t will typically stay very close to the

attractor O for exponentially in ε−1 long periods of time, before occasionally experi-

encing O(1) sized excursions. The central tool in the analysis of such systems is the

time-stationary probability measure µε of equation (1.1.1). While the measures µε

may not individually be Gibbs measure for fixed ε > 0, it turns out that in the ε→ 0

limit, the measures µε asymptotically resemble Gibbs measures

dµε

dx
� exp

(
− U(x)

ε

)
, (1.1.4)

for some function U(x).

This near-Gibbsian structure will allow for the statement and proof of powerful

estimates of the first escape time of the process Xε
t from an arbitrary bounded set.

In a similar fashion, one can make asymptotic estimates on the frequency of noise-

induced transitions between different attractors of b in the case where b has multiple

attractors, known as meta-stable transitions. The exponent U(x) in (1.1.4), called

the quasi-potential, features prominently in all of these asymptotic estimates, and

much of the later part of Chapter 2 is devoted to providing a thorough description of

U(x) and its important properties. In short, this U(x) is the minimum of the action

integral (in equation (1.1.3)) over all times T > 0 and paths ϕ ∈ C([0, T ];Rd) such

that U(0) = O and U(T ) = x. In practical terms, the quasi-potential U(x) provides

the cheapest cost of moving from the attractor O to the point x.
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We emphasize that none of the work in Chapter 2 is original work, but rather

is intended purely to be expository preparation for the remaining chapters. Much of

the chapter is attributable to Freidlin and Wentzell, and most of the results can be

found in more detail in Chapter 3, 4 and 6 of their book [37]. The weak convergence

approach is attributable to Dupuis and Ellis, among others, and can be found in the

book [30] and articles [7, 12, 13].

1.2 Efficient Jet Marcher for computing the quasi-potential

Chapter 3 is concerned with the development of numerical tools for computing the

quasi-potential U(x) for equation (1.1.1) in 2-dimensions. The quasi-potential is

important for quantifying much of the long-time asymptotic behavior of (1.1.2) (see

Section 2.3.4 and Ch. 4 of [37]), and is of particular interest in biological and ecological

systems exhibiting metastability, a phenomenon in which there occasionally occur

noise-induced transitions between stable attractors. For example, in [49], they use a

2-dimensional nonlinear SDE to model the populations of two interacting plankton

species. Their model supports multiple stable population configurations so that meta-

stable transitions may occur. In order to quantify the expected transition rate, they

numerically compute the quasi-potential in the relevant region of phase space.

In practice, there are two primary families of methods for solving for the quasi-

potential. The first category of methods, which we refer to as path-based techniques,

attempt to numerically minimize the action integral directly in order to compute
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the minimum action path (MAP) from the attractor O to a given point x. The

quasi-potential U(x) is then computed by numerical integration of the action along

this MAP. Prominent path-based methods include the Adaptive Minimum Action

Method [67] and Geometric Minimum Action Method [38].

The second family of quasi-potential solvers consists of what we refer to as

mesh-based solvers. These solvers attempt to solve for the quasi-potential directly on

an entire region of space by numerically finding the quasi-potential solution to the

Hamilton-Jacobi equation (see Section 2.3.4)

‖∇U(x)‖2 +
1

2
b(x) · ∇U(x) = 0, U(O) = 0. (1.2.1)

Mesh-based quasi-potential solvers typically treat equation (1.2.1) like an eikonal

equation and possess a structure similar to Sethian’s Fast Marching method [57].

These methods work by discretizing the domain into a mesh and computing U(x) at a

mesh point x from the values of U(y) at nearby mesh points y by locally approximating

a portion of the MAP from O to x. Since these techniques solve for U(x), they are

largely restricted to 2 and 3 dimension in practice. We describe in complete detail

the structure of these two families of methods in Chapter 3.

Our main novel result in Chapter 3 is the development of a efficient mesh-

based quasi-potential solver in two-dimensions that is second order accurate O(h2)

in the mesh spacing h. This algorithm, the Efficient Jet Marcher (EJM), is the

first such 2nd order method for computing the quasi-potential, to our knowledge.

Previous quasi-potential solvers [21, 22] in general displayed O(h) convergence rates
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with superconvergence on highly rotational drift fields.

Our solver contains two distinguishing features. The first, inspired by the Jet

solver [54], involves an approximation of the MAP between mesh points as a cubic

curve, paired with a cubic interpolation of the quasi-potential U(x) mesh points. Past

methods have been restricted to the use of linear approximations and linear interpo-

lations, respectively. The higher order interpolation, which is the key to overcoming

the O(h) bottleneck, is possible by letting ∇U be part of the solution along with U

and by using the following geometric relation between U(x) and the MAP φ passing

from O to x (see Section 2.3.4):

∇U(x) = ‖b(x)‖ φ̇− b(x). (1.2.2)

The second key feature is the use of anisotropic stencils, inspired by [47], to determine

which neighboring mesh points of x one should use to search for the MAP. These

anisotropic stencils form a smaller and more targeted neighborhood than traditionally

used neighborhoods, and they allow for a significant reduction in the number of MAP

searches and hence, runtime.

1.3 Exit problem for fast transport Reaction-Diffusion equations

In Chapter 4, we move to the infinite dimensional setting of stochastic partial differ-

ential equations. We consider the following multi-scale stochastic reaction-diffusion
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equation posed on a bounded domain D in Rd with Neumann boundary conditions,
∂tu(t, x) =

1

ε
∆u(t, x) + f(u(t, x)) +

√
εg(u(t, x))∂tW (t, x),

∇u(t, x) · n̂|∂D = 0, u(0, x) = u0(x),

(1.3.1)

where ε� 1 is a small parameter and W is a Wiener process in L2(D) with covariance

operator Q. Actually, in Chapter 4 we consider a more general version of equation

(1.3.1) containing an arbitrary elliptic operator A as well as additional noise acting

only on the boundary; however, we restrict here to the simpler version (1.3.1) for

expository purposes.

The most notable feature of this model (1.3.1) is the presence of three distinct

scales: the large fast transport term ∆/ε, the moderate non-linear reaction term

f(u), and the small stochastic reaction term
√
εg(u)dW . Such a scaling is relevant

for chemical systems where local changes in concentration diffuse extremely rapidly

and are almost immediately “averaged” across the domain D. In fact, the interac-

tion between this averaging effect and the small-noise limit is the key mathematical

phenomena we investigate in this chapter.

One can view the rapid averaging as an agent that reduces the complex infinite

dimensional dynamics into something more akin to a finite dimensional problem.

Indeed, one may be interested in approximating the SPDE with a simpler ordinary

differential equation that treats the concentration u as constant in space. It can be

shown [16] that the solutions converge to the solution of the 1-dimensional ordinary
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differential equation

dū

dt
(t) = f̄(ū), ū(0) =

1

|D|

∫
D
u0(x)dx,

where f̄(r) = 1
|D|

∫
D f(u)dx is the averaged version of reaction function f . We re-

mark that the integration in the averaging is performed with respect to the invariant

measure of the semi-group et∆, which happens to be the scaled Lebesgue measure on

D. However, for the case of a general elliptic operator A which we will consider, the

invariant measure for the semi-group etA will be some other measure on D that is

absolutely continuous with respect to Lebesgue measure.

Our first main result in Chapter 4 (formally from [18]) is that the solutions to

(1.3.1) satisfy a large deviations principle in the space C([δ, T ];L2(D)) for any T > 0

and any positive δ > 0. The action functional for the large deviations principle, which

is spelled out explicitly in Chapter 4, is only finite on paths ϕ ∈ C([δ, T ];L2(D)) taking

values in the 1-dimensional subspace of L2(D) consisting of constant functions. The

requirement of considering intervals [δ, T ] rather than [0, T ] is to allow the diffusion

time to “dissipate” all of the non-constant modes of the initial condition. In fact, if

the initial condition u0 is a constant function, then the large deviation principle will

hold in C([0, T ];L2(D)).

We then consider the problem of the exit of the solution of (1.3.1) from a

bounded subdomain G of L2(D), supposing that the “averaged” nonlinearity f̄ con-

tains a stable globally attracting equilibrium. Our second main result is the proof of
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the statement

lim
ε→0

ε logEτ ε = inf
x∈G

U(x),

where U is an appropriately defined quasi-potential that is finite only on constant

functions in L2(D). To prove this, we follow a modified version of the finite-dimensional

strategy given in [37] and [28] (see Section 2.3.1 for a sketch). A typical issue when

extending this strategy into infinite dimensions is the requirement that the limits in

the large deviations principle must be uniform with respect to any initial conditions

of the SPDE in a bounded set of L2(D). In general, there exist a number approaches

for obtaining this uniformity with respect to compact sets (see [13], [25]), but it is

trickier to obtain for bounded sets. For (1.3.1), we are able to solve this issue by uti-

lizing the fact that the spatial averaging turns bounded sets in L2(D) into “nearly”

compact sets in a very short amount of time.

1.4 Large deviations for the invariant measure of the stochastic

Navier-Stokes equations

In the final chapter, we study the following 2-D stochastic Navier-Stokes equations

on the periodic box [0, 2π]2:
∂tu(t, x) + (u(t, x) · ∇)u(t, x) = ∆u(t, x) +∇p(t, x) +

√
ε∂tWδ(ε)(t, x),

div u(t, x) = 0, u(0, x) = u0(x), u is periodic.

(1.4.1)
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Here, ε � 1 is a small parameter and Wε is a Wiener process in H = (L2([0, 2π]2))2

with spatial correlation on the scale of δ. As the correlation scale δ = δ(ε) is sent

to 0, the driving force ∂tWδ(ε) tends to the space-time white noise. Since the Navier-

Stokes equations driven by space-time white noise are not well-posed in C([0, T ];H)

in dimension greater than 1, problem (1.4.1) is a singular limit problem. Imposing the

spatial correlation δ(ε) allows us to study this singular limit by instead considering

the regularized problem in the space C([0, T ];H) and then taking ε and δ(ε) to 0.

As ε → 0, one can prove that the solutions to (1.4.1) converge in C([0, T ];H)

as ε→ 0 to the solution to the corresponding deterministic Navier-Stokes equations,

provided that δ(ε) does not decay to 0 too slowly. Moreover, in [15], it is shown that

the solutions also satisfy a large deviations principle in C([0, T ];H) for any T > 0.

Following the strategy of [60], it is often possible to use the large deviations princi-

ple for the paths to prove a large deviations principle for the invariant probability

measures of the system. This was done for equation (1.4.1) with fixed smooth noise,

independent of ε in [8].

This is particularly interesting for the case of δ(ε) converging to 0 because the

limiting noise is isotropic, which allows the quasi-potential to be written down ex-

plicitly. In fact, due to the orthogonality relation on the torus between the Laplacian

and Navier-Stokes nonlinearity,

0 = 〈∆u, (u · ∇)u〉H ,

this equation can be considered an infinite-dimensional example of the transverse

12



drift decomposition (2.3.9) discussed in Section 2.3.1. Therefore, the quasi-potential

U : H → [0,+∞] corresponding to equation (1.4.1) is simply the function

U(h) = ‖∇h‖2
H .

By sharpening the results of [15] and [8] we are able to prove that the invariant

probability measures µε of equation (1.4.1) satisfy a large deviation principle in H

with respect to the action functional U(h). Effectively, this is a generalization of

the statement (1.1.4) to an infinite-dimensional setting where the global attractor is

O ≡ 0 ∈ H, and the attracting component of the drift field is provided by viscous

diffusion in the Navier-Stokes equations.
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Chapter 2: Large deviations theory for stochastic differential equa-

tions

This chapter provides a brief introduction to some of the main topics in large devia-

tions theory in the context of stochastic differential equations. Both the theoretical

and numerical material in the later chapters relies heavily on the theory introduced

here. We do not provide full proofs in this chapter, but instead try to include intuitive

explanations of the main ideas and techniques, while providing references to where

full proofs may be found. The chapter is designed for the audience possessing ba-

sic understanding of measure theoretic probability theory and stochastic differential

equations.

Much of the work discussed in this chapter is attributable to the pioneering

work of Mark Freidlin and Alexander Wentzell, beginning in the 1960s. Many of

the key results in the field can be found in their book [37], and the majority of the

topics discussed in this chapter, in particular, are covered in more detail in Chapters

3 and 4 of [37]. Another excellent overview of the large deviations theory field is

given by Amir Dembo and Ofer Zeitouni in the book [28]. A third resource which

we rely heavily on in this chapter is the book [30] by Paul Dupuis and Richard Ellis,



which provides an alternative perspective on the theory of large deviations from the

vantage point of weak convergence of probability measures. This is a perspective we

take several times in Chapters 4 and 5 in order to prove large deviations principles

for solutions to multi-scale stochastic partial differential equations.

In order to avoid obfuscating the main ideas of the theory, we consider through-

out this chapter only the following simple finite-dimensional stochastic differential

equation. Nonetheless, most of the results and techniques will apply to more com-

plicated equations as well. For a fixed ε > 0, let Xε
t ⊂ Rd be the solution to the

stochastic differential equation

dXε
t = b(Xε

t )dt+
√
εdWt, X0 = x0, (2.0.1)

where b : Rd → Rd is a vector field, Wt is a standard d-dimensional Brownian motion

on some probability space (Ω,F , {Ft}t≥0,P) and x0 ∈ Rd. Throughout this chapter,

we will always assume that b is Lipschitz continuous so that equation (2.0.1) is well-

posed in the strong probabilistic sense in the space of continuous paths C([0, T ];Rd)

for any T > 0.

We are interested in what happens to the solution Xε
t as the magnitude of

the noise ε is taken to 0. Intuitively, one would expect that Xε
t should behave very

similarly to the solution Xt of the ordinary differential equation

dXt

dt
= b(Xt), X0 = x0, (2.0.2)

and that the size of the deviations of Xε
t from Xt should decrease as ε ↓ 0, as we see in

Figure 2.1. This is true of course, and much of the time the behavior of system (2.0.1)

15



is well approximated by the behavior of system (2.0.2). For example, convergence in

probability of Xε
t to Xt as ε → 0 is immediate due to the Lipschitz condition on

b. Large deviations theory, on the other hand, is concerned with understanding the

regime where this approximation of (2.0.1) by (2.0.2) fails. In particular, it answers

the questions of how often and in what ways the random process Xε
t experiences

significant deviations from its expected behavior, given by Xt.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.7

0.8

0.9

1

1.1

1.2

1.3

t

ε = 10−1

ε = 10−2

ε = 10−3

ε = 0

A

B

Fig. 2.1: Sample trajectories of equation (2.0.1) in R1 for b(x) = −x/5 and x0 = 1. As ε ↓ 0,

the probability of Xε
t remaining in region A approaches 1, while the probability of

Xε
t crossing into region B approaches 0.

A simple question one can ask is: how probable is it for the solution Xε
t to lie in

a given set of trajectories A? For instance, suppose A ⊂ C([0, T ];Rd) is a particular
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subset of the continuous paths in Rd. If A contains an open ball in C([0, T ];Rd) (or

a tube, in this case) around the solution to the deterministic limit (2.0.2), then one

certainly expect that P(Xε ∈ A) should approach 1 as ε ↓ 0. On the other hand,

if the set A fails to contain such an open set, one would expect the probability to

converge to 0. For instance, using the sets A and B defined in Figure 2.1, we have

lim
ε↓0

P(Xε
t ∈ A for all t ∈ [0, 1]) = 1, (2.0.3)

lim
ε↓0

P(Xε
t ∈ B for some t ∈ [0, 1]) = 0. (2.0.4)

Large deviations theory is concerned with the latter type of statement. In particular,

the theory aims to more precisely quantify the rate at which limit (2.0.4) occurs.

Refinement of the former statement (2.0.3) falls more under the domain of central

limit-type theorems, which aim to more precisely quantify probabilities of the most

likely outcomes. The study of extremely unlikely events on the other hand typically

falls far outside the domain of applicability of the central limit theorem.

2.1 Large deviations for sample paths

Before trying to more precisely refine (2.0.4) for stochastic differential equations, it is

helpful to first consider the very simple case of a family of Gaussian random variables.

Let ξε :=
√
εξ where ξ is a standard normal N (0, 1) random variable. As we send ε to

0 it is clear that ξε converges in probability to 0. Instead, suppose one was interested

in the probability P (ξε > a) for some a > 0. For small ε > 0, one can compute

17



explicitly

P(ξε > a) =
1

√
ε
√

2π

∫ ∞
a

exp
(
− x2

2ε

)
dx

=

√
ε

a
√

2π
exp

(
− a2

2ε

)
−
√
ε√

2π

∫ ∞
a

1

x2
exp

(
− x2

2ε

)
dx

≈
√
ε

a
√

2π
exp

(
− a2

2ε

)
, (2.1.1)

by integrating by parts in the second line and noting the integral term is negligible

for small ε > 0. Hence, we see that the probabilities of the rare event {ξε > a} decay

exponentially in ε−1, which is entirely unsurprising due to the exponential density of

the Gaussian distribution.

It is helpful to rephrase (2.1.1) in the following way. Let A := [a,∞) so that

(2.1.1) can be re-interpreted in the form

lim
ε→0

ε logP(ξε ∈ A) = −a
2

2
= min

x∈A
Iξ(x) (2.1.2)

where Iξ(x) := x2/2. Equation (2.1.2) relates the exponential decay rate of the

probability of ξε landing in set A to the minimum of a non-negative action functional

Iξ on that set. The purpose of this re-framing is to illustrate the point that P(ξε ∈ A)

is really only determined by one member of the set A, namely its most likely member

a. Thus, in the ε→ 0 limit the event of ξε landing in A is effectively indistinguishable

from the event of ξε landing in an arbitrarily small neighborhood of A’s most likely

element. In other words, when a rare event occurs, it will occur with overwhelming

probability in the least unlikely way possible, where the unlikeliness is in general

measured by an nonnegative action functional.
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2.1.1 Definitions

The primary goal of the majority of this chapter is to justify large deviations state-

ments of the form of (2.1.2) for solutions to stochastic differential equations. The

idea will be fundamentally the same as in the toy example above – namely, the prob-

ability of the rare event will decay exponentially fast in ε−1 with an exponential rate

determined by the least unlikely way for the rare event to happen.

We begin by stating the definition of the large deviations principle. We note

that there exists a number of definitions, several of which are used in this manuscript,

which all formalize statements of the form (2.1.2) in slightly different ways. A very

thorough survey of these different formulations and discussion of their equivalences

is given in [55]. The assumptions under which the equivalences hold are of some

importance in our works in Chapters 4 and 5 of this manuscript.

Definition 2.1.1. Let X be a Polish space, i.e. a complete separable metric space.

A lower-semicontinuous function I : X → [0,+∞] is called a good rate function if the

level sets, Φ(s) := {x ∈ X : I(x) ≤ s} are compact for arbitrary s ∈ [0,∞).

Definition 2.1.2. Let {ξε}ε>0 be a collection of X -valued random variables. The

family ξε is said to satisfy a large deviations principle in X with good rate function

I and speed ε provided that

(a) for any open set G ∈ B(X ),

lim inf
n→∞

ε logP(ξε ∈ G) ≥ −I(G), (2.1.3)
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(b) for any closed set F ∈ B(X ),

lim sup
n→∞

ε logP(ξε ∈ F ) ≤ −I(F ). (2.1.4)

Remark 2.1.1. Throughout the remainder, we will use the notation I(A) to denote

infx∈A I(x) for a given set A. Moreover, we will also talk about large deviations

principle satisfied by collections of measures {µε}ε≥0, in which it is implied that the

same definition is intended, but with P(ξε ∈ G) and P(ξε ∈ F ) replaced by µε(G) and

µε(F ), respectively.

�

Another definition of the large deviation principle that we will use is the follow-

ing.

Definition 2.1.3. Let {ξε}ε>0 be a collection of X -valued random variables. The

family ξε is said to satisfy a large deviations principle in X with good rate function

I and speed ε provided that

(a) For every x ∈ X and δ > 0,

lim inf
ε→0

ε logP(ξε ∈ B(x, δ)) ≥ −I(x).

(b) For every s ≥ 0 and δ > 0

lim sup
ε→0

ε logP(ξε ∈ Bc(Φ(s), δ)) ≤ −s,

where Bc(Φ(s), δ) := {h ∈ X : distX (h,Φ(s)) ≥ δ}.
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Remark 2.1.2. Definitions 2.1.2 and 2.1.3 can be shown to be equivalent. In particular,

(a) of Definition 2.1.2 is equivalent to (a) of Definition 2.1.3 while (b) of Definition

2.1.2 is equivalent to (b) of Definition 2.1.3. These definitions are not equivalent,

however, if I is not a good rate function, i.e. does not have compact level sets.

�

2.1.2 Schilder’s Theorem

We hope to prove the validity of a large deviations principle for the solutions to (2.0.1).

The first step in achieving this is to consider the simple case of b ≡ 0; namely, the

case of Brownian motion Xε
t =
√
εWt.

Theorem 2.1.1 (Schilder’s Theorem). For any T > 0, the family
√
εWt satisfies a

large deviations principle in C([0, T ];Rd) with good rate function

I(ϕ) :=


1

2

∫ T

0

‖ϕ̇t‖2 dt, if ϕ is absolutely continuous and ϕ(0) = 0,

+∞, otherwise.

(2.1.5)

Remark 2.1.3. Before discussing the proof of Schilder’s theorem, we remark on the

structure of any typical proof of a large deviations principle. In general, the lower

bound (2.1.3) is obtained by shifting the probability measure to a new measure where

the rare event is now an expected event. After a law of large numbers type argu-

ment, the resulting likelihood ratio from the change of measures gives a lower bound

on the original probability. The “best” lower bound will then come from the par-

ticular change of measures with the largest likelihood ratio; that is, from the new
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measure that is closest to the original measure (formally this is measured by relative

entropy, see Section 2.2). The upper bound of (2.1.3) is then shown by verifying that

the aforementioned change of measure actually gives the best possible lower bound

to exponential order. Typically this is done by the use of exponential Chebyshev

inequalities.

We illustrate this abstract discussion in the simple example of the family of

Gaussian random variables introduced above. To compute P(
√
εξ ∈ [a,∞)), a natural

thing to do would be to shift probability measures so that
√
εξ has an expected value

lying in the interval [a,∞) under the new measure. Indeed, if
√
εξ ∼ N(b, ε) for any

b ≥ a, then the event
√
εξ ∈ [a,∞) becomes likely in the ε → 0 limit. Each of these

change of measures corresponding to a value of b ≥ a provides a lower bound, since

P(
√
εξ ∈ [a,∞)) =

1√
2πε

∫ ∞
a

exp
(
− x2

2ε

)
dx

=
1√
2πε

exp
(
− b2

2ε

)∫ ∞
−(b−a)

exp
(
− y2

2ε

)
exp

(
− by

ε

)
dy

=
1√
2πε

exp
(
− b2

2ε

)
E
[

exp
(
− bξ

ε

)
1√εξ≥−(b−a)

]
≥ 1

2
√

2πε
exp

(
− b2

2ε

)
.

where the final inequality occurs because the event {
√
εξ ≥ −(b−a)} is asymptotically

likely as ε→ 0 and the exponential contribution to the integral can be bounded below

by 1 by a convexity argument. Of course, the sharpest (and correct) lower bound

comes from the value b = a, which corresponds to the closest such measure N(b, 1)

to the original N(0, 1).
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Outline of proof. A full proof of Schilder’s Theorem can be found, for instance in

Theorem 2.1 and 2.2 of Chapter 3 of [37] or Theorem 5.2.3 of [28]. In light of the

above remark, we see that the constructive step in the proof will occur in the lower

bound, and we thus restrict our focus to this direction. This will be a recurring

theme throughout all of the main results mentioned in this chapter, and we will

correspondingly restrict most of our attention to the proofs of the lower bounds.

(Lower Bound) We are interested in proving (2.1.3). Since we are consider-

ing Brownian motion, the natural tool to shift probability measures will be the

Girsanov Theorem, quoted below in Theorem 2.1.2. Suppose ϕ ∈ C([0, T ];Rd) is

such that I(ϕ) < ∞. We will consider the sets B(ϕ, δ) = {h ∈ C([0, T ];Rd) :

supt∈[0,T ] ‖ht − ϕt‖ < δ} for some δ > 0 and show the lower bound corresponding to

the second definition of the large deviations principle, Definition 2.1.3. As mentioned

above, to bound the probability of this event we shift measures to transform B(ϕ, δ)

into a likely event. Defining the new measure Pϕ by its density

dPϕ

dP
= Rϕ := exp

( 1√
ε

∫ T

0

ϕ̇tdWt −
1

2ε

∫ T

0

‖ϕ̇t‖2 dt
)
,

we have by Girsanov’s theorem that the shifted process Wϕ := W− ϕ√
ε

is a Brownian

motion under Pϕ. Denoting Eϕ as the expectation with respect to the measure Pϕ,
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we then have

P(
√
εW ∈ B(ϕ, δ)) = P(

√
εWϕ ∈ B(0, δ))

= E1√εWϕ∈B(0,δ) (2.1.6)

= Eϕ
[
(Rϕ)−1

1√εWϕ∈B(0,δ)

]
(2.1.7)

= Eϕ
[

exp
(
− 1√

ε

∫ T

0

ϕ̇t · dWt +
1

2ε

∫ T

0

‖ϕ̇t‖2 dt
)
1Wϕ∈B(0,δ)

]
= exp

(
− 1

2ε

∫ T

0

‖ϕ̇t‖2 dt
)
Eϕ
[

exp
(
− 1√

ε

∫ T

0

ϕ̇t · dWϕ
t

)
1√εWϕ∈B(0,δ)

]
.

(2.1.8)

Indeed, the probability of the event Wϕ ∈ B(0, δ) will converge to 1. Moreover, the

other term in the expectation can be shown via exponential Chebyshev inequality (or

alternatively, by using the fact that −W h is also a Brownian motion) to decay slower

than exp(−ε−1). Hence it follows from (2.1.6) that

lim inf
ε→0

ε logP(
√
εW ∈ B(ϕ, δ)) ≥ −1

2

∫ T

0

‖ϕ̇t‖2 dt = −I(ϕ).

(Upper Bound) The upper bound (2.1.4) can be established by discretizing the

Brownian motion in time, and using the large deviations principle upper bounds for

families of Gaussian random variables.

Theorem 2.1.2 (Girsanov Theorem). Let Wt be a Brownian motion with respect to

some probability space (Ω,F , {Ft}t≥0,P). Let ht be a measurable Rd-valued process

adapted to Ft such that h0 = 0. Define a new probability measure Ph by the formula

dPh

dP
:= exp

(∫ T

0

ht · dWt −
1

2

∫ T

0

‖ht‖2 dt
)
,
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Then, the process Wt −
∫ t

0
hsds is a Brownian motion with respect to the probability

measure Ph.

2.1.3 SDEs

Next, we build large deviations principles for the solutions to (2.0.1) by transferring

the large deviations principle for Brownian motion. This can be done by the contrac-

tion principle, which asserts that large deviations principles are transferable through

continuous mappings.

Theorem 2.1.3. Suppose that the family Xε satisfies a large deviations principle in

Polish space X with action functional IX . Let f : X → Y be a continuous map-

ping between X and Polish space Y. Then the family Y ε := f(Xε) satisfies a large

deviations principle in Y with good rate function

IY (ϕ) := inf{IX(φ) : φ ∈ X , ϕ = f(φ)}.

Proof. Let G ⊂ Y be an open set. Then since f is continuous, f−1(G) ⊂ X is an

open set. Thus

lim inf
ε→0

ε logP(Y ε ∈ G) = lim inf
ε→0

ε logP(Xε ∈ f−1(G)) ≥ − inf
x∈f−1(G)

IX(x) = − inf
y∈G

IY (y).

The upper bound is similar. Moreover, it is immediate to show that IY is a good rate

function.

Now we suppose that Xε
t is the solution to (2.0.1) with Lipschitz continuous

drift b : Rd → Rd. If we denote the transformation G : C([0, T ];Rd) → C([0, T ];Rd)
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defined by G(φ) = ψ where ψ is the solution to

ψ(t) = x0 +

∫ t

0

b(ψ(s))ds+ φ(t), (2.1.9)

then we can immediately apply the contraction principle. Note here that Lipschitz

continuity of b implies Lipschitz continuity of G, since if ψ1 = G(φ1) and ψ2 = G(φ2),

then for any t ∈ [0, T ]

‖ψ1(t)− ψ2(t)‖ ≤ cT

∫ t

0

‖b(ψ1(s))− b(ψ2(s))‖ ds+ ‖φ1(t)− φ2(t)‖

≤ cT,b

∫ t

0

‖ψ1(s)− ψ2(s)‖ ds+ ‖φ1(t)− φ2(t)‖ .

This gives Lipschitz continuity of G in C([0, T ];Rd) when combined with the Gronwall

inequality.

Therefore, by the contraction principle, Xε
t satisfies a large deviations principle

in C([0, T ];Rd) with action functional

I(ϕ) = inf
{1

2

∫ T

0

‖φ(t)‖2 dt : φ ∈ C([0, T ];Rd), ϕ = G(φ)
}

=


1

2

∫ T

0

‖ϕ̇t − b(ϕt)‖2 dt, if ϕ is absolutely continuous and ϕ(0) = x0,

+∞, otherwise,

(2.1.10)

where the 2nd line holds by noting the definition of G (2.1.9).

2.1.4 Drawbacks

In situations such as equation (2.0.1), the large deviations principle can be estab-

lished by obtaining a large deviations principle for an underlying Gaussian measure
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(Schilder’s theorem), and then transferred by a contraction principle to a nonlinear

SDE. This is convenient when one can construct the object of interest as a continuous

mapping from a simpler measure (in our case a Gaussian measure) where a large de-

viations result is known. In Chapters 2 and 3, we require large deviations principles

for situations where this is not so simple because the scale parameter ε shows up in

multiple locations. In Chapter 3, we consider a version of the stochastic heat equation

du(x, t) =
1

ε
∆u(x, t)dt+ b(u(x, t))dt+

√
εdW,

where the Laplacian term scales with 1/ε. It is now no longer possible to view the

solution as a linear from a simple Gaussian measure
√
εdW . Similarly, in Chapter 4,

we consider the Navier-Stokes equations perturbed by a Gaussian-noise whose spatial

covariance operator Qε also scales with ε.

du(t, x) + (u · ∇u)(t, x)dt = ∆u(t, x)dt+
√
εQεdW (t).

Due to the presence of these additional ε, often the strategy described ear-

lier may become infeasible. There is an alternative approach, the weak convergence

approach [30], relying on a different set of tools. The technique will still rely on

appropriate mappings between the Gaussian objects and solutions to the SPDEs,

however it will allow for solution mappings that themselves are allowed to depend

on the parameter ε. This is achieved by certain compactness arguments. We outline

this approach finite dimensions, and make comments about its extension to infinite

dimensional settings.
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The weak convergence approach relies fundamentally on a variational represen-

tation of functionals of random variables by way of the Kullback–Leibler divergence,

also known as the relative entropy.

2.2 The weak convergence approach

In this section, we look at large deviations through the lens of Laplace asymptotics

and stochastic control theory. Our main goal is the intuitive description of the weak

convergence approach towards large deviations analysis. The first use of weak con-

vergence and stochastic control theory ideas in the setting of large deviations for

diffusion processes came from Fleming in 1978 [33]. The general framework for a

weak convergence approach to large deviations, however, was developed largely by

Dupuis and Ellis [30], and is based on several ideas of Varadhan [65]. This framework

was applied to the setting of sample path large deviations first in [7], with extensions

to the infinite dimensional case in [12, 13]. A complete description of these methods

with full proofs is given there.

To motivate the approach, let us return to the simple example of the family of

Gaussian random variable ξε :=
√
εξ for ξ ∼ N(0, 1). As before, we are concerned

with the asymptotic evaluation of probabilities of ξε lying in some set A. Note that

we can always express the probability in the form

ε logP(ξε ∈ A) = ε logE exp
(
− hA(ξε)

ε

)
, (2.2.1)
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where

hA(x) :=


0 if x ∈ A,

+∞ if x /∈ A.

The main idea of the weak convergence approach is to approximate hA by bounded,

continuous functions, and then evaluate the right hand side of (2.2.1) on the approxi-

mations of hA using Laplace method techniques. In our particular simple example of

Gaussian random variables, this expectation becomes the integral of an exponential

function, so that if h ∈ Cb(R), we have

lim
ε→0

ε logE exp
(
− h(ξε)

ε

)
= lim

ε→0
ε log

∫
R

exp
(
−
h(x) + x2

2

ε

)
dx

= − inf
x∈R

[x2

2
+ h(x)

]
, (2.2.2)

where the 2nd line is obtained by using Laplace’s method. Thus, we see that if (2.2.2)

were also true for h = hA, then we would reproduce the large deviations statements

(2.1.4) and (2.1.3) since

inf
x∈R

[x2

2
+ hA(x)

]
= inf

x∈A

x2

2
.

This is, in fact, the case (up to topological considerations of the setA that we ignored)

and we can obtain the desired statements (2.1.4) and (2.1.3) by taking appropriate

limits of (2.2.2) for a sequence of continuous approximations of hA.

This is the main crux of the weak convergence approach. Rather than proving

the asymptotic probability statements (2.1.3) and (2.1.4) for the family of random

variables directly, one proves Laplace method type statements of the form (2.2.2) for

29



an arbitrary bounded continuous function h. As we will shortly see, the Laplace’s

method type statement (2.2.2) will be provable for general random variables by uti-

lizing a variational representation of expectations of exponential functions.

2.2.1 Definitions

Let us first formalize statements (2.2.2) for a general family of random variables on

a Polish space X .

Definition 2.2.1. Let I be a good rate function on X . Then the family Xε of random

variables is said to satisfy the Laplace principle on X with rate function I if for all

h ∈ Cb(X ),

lim
ε→0

ε logE exp
(
− h(Xε)

ε

)
= − inf

x∈X
{I(x) + h(x)}. (2.2.3)

As motivated by the previous section, the space of continuous bounded functions

is sufficiently rich that the Laplace principle implies the large deviations principle.

In fact, the converse is also true when the space X is Polish. For weaker topological

spaces, only the implication Laplace principle =⇒ LDP holds.

Theorem 2.2.1. Suppose that X is a Polish space and I is a good rate function on

X . Then the family Xε of random variables satisfies a Laplace principle on X with

rate function I if and only if it satisfies a large deviations principle on X with rate

function I.

Outline of proof. A full proof of this result can be found for instance in Chapter 1 of

[30]. The backward direction (LDP =⇒ Laplace principle) is attributed to Varadhan
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[65]. We restrict our remarks here to those concerning the forward direction, since

this is the implication relevant for our purposes.

Both the upper bound (and lower bound) in Definition 2.1.2 can be proven by

taking suitable continuous approximations of hF (and hG). For the upper bound, one

may take for instance functions hj(x) = j(d(x, F )∧1) where d is the metric on X and

d(x, F ) := infy∈F d(x, y). It is easy to show that the upper bound follows by taking

advantage of the lower semicontinuity of I. For the lower bound, the construction is

a function heavily peaked on a ball B(x∗, δ) where x∗ is a point in the set G near the

minimizer of action I on G.

In the simple Gaussian example discussed above, the Laplace principle was seen

to be immediately true by using Laplace method for evaluating the asymptotics of a

single exponential integral over R. This in general will not be possible. Instead, the

main tool towards proving the validity of Laplace principles is the relative entropy,

also known as the Kullback-Leibler divergence.

Definition 2.2.2. For θ ∈ P(X ), the space of probability measures on X , the relative

entropy R(·||θ) is a mapping from P(X)→ [0,∞] defined by

R(γ||θ) =


∫
X

log
dγ

dθ
dγ if γ is absolutely continuous with respect to θ,

∞ otherwise.

Remark 2.2.1. Non-negativity of relative entropy is seen by noting the inequality

x log x − x ≥ −1 for all x ≥ 0. Thus, for an arbitrary measures γ that is absolutely
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continuous with respect to measure θ, it follows that

R(γ||θ) =

∫
X

dγ

dθ
log

dγ

dθ
dθ ≥

∫
X

(dγ
dθ
− 1
)
dθ = 0.

Moreover, we see that R(γ||θ) = 0 if and only if γ = θ so that dγ
dθ
≡ 1.

�

Remark 2.2.2. Relative entropy R(γ||θ) provides a measure of how “far apart” the

measures γ and θ are, although it is not quite a metric on the space of probability

measures. However, a consequence of Pinsker’s inequality is that convergence in

relative entropy implies convergence in total variation norm on P(X ).

�

In the context of large deviations, relative entropy will play the role of the action

functional. This connection is immediately seen in view of the following representation

formula [30].

Proposition 2.2.1. [Proposition 1.4.2 of [30]] Suppose that h : X → R is a measur-

able, bounded function. Then for any θ ∈ P(X),

− log

∫
X

e−h(x)dθ(x) = inf
γ∈P(X)

{
R(γ||θ) +

∫
X

h(x)dγ(x)
}
. (2.2.4)

Proof. Let h be a bounded, measurable function. Define the measure γ0 by

dγ0

dθ
(x) =

e−h(x)∫
X
e−h(x)dθ(x)

.
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Because of the normalization, γ0 is a probability measure. Moreover, because the

density is strictly positive, γ0 � θ and γ0 � θ. By construction, we then have that

R(γ0||θ) +

∫
X

h(x)dγ0(x) = − log

∫
X

exp−h(x) dθ(x).

Moreover, for any other γ ∈ P(X) that is absolutely continuous with respect to θ, we

have

R(γ||θ) +

∫
X

h(x)dγ(x) =

∫
X

log
dγ

dθ
dγ +

∫
X

hdγ

=

∫
X

log
dγ

dγ0

dγ +

∫
X

log
dγ0

dθ
dγ +

∫
X

hdγ

= R(γ||γ0)− log

∫
X

e−h(x)dθ(x)

≥ − log

∫
X

e−h(x)dθ(x).

with equality in the last line if and only if γ ≡ γ0.

2.2.2 Another route to Schilder’s Theorem

In this section we apply the variational formula (2.2.4) to Brownian motion in Rd

to provide an alternate route to Schilder’s Theorem. This route will open the door

for additional flexibility when trying to prove large deviations results for stochastic

equations.

We begin with the variational representation for Brownian motion. The proof

given in finite dimensions can be found in [7], while an analogous prove for infinite

dimensional Wiener processes can be found in [13].

33



Proposition 2.2.2. Let Wt be a Brownian motion in Rd on probability space (Ω,F ,

{Ft}t≥0,P) and let h : C([0, T ];Rd) → R be a bounded, Borel measureable function.

Then

− logEe−h(W ) = inf
v∈A

E
[1

2

∫ T

0

‖vt‖2 dt+ h(W· +

∫ ·
0

vsds)
]
, (2.2.5)

where A is the space of progressively measurable random processes v such that

E
∫ T

0

‖vt‖2 dt <∞.

Here, we are using the notation h(W· +
∫ ·

0
vsds) to emphasize that h is a function

acting on each entire path on [0, T ] of the continuous random process Wt +
∫ t

0
vsds.

Outline of proof. As with the proof of Theorem 2.1.1, we discuss only the proof of

the lower bound which constitutes the more constructive step. We seek to apply the

variational formula (2.2.4) to the Wiener measure θ on C([0, T ];Rd).

(Lower bound) The main idea of the proof of the ≥ direction in formula (2.2.5)

is that the set of measures on C([0, T ];Rd) that are absolutely continuous with respect

to θ can be approximated by measures γv of the form

dγv

dθ
= exp

(∫ T

0

vtdWt −
1

2

∫ T

0

‖vt‖2 dt
)
,

for some v ∈ A. For these Girsanov shifted measures, the right hand side of (2.2.4) can

be computed for a bounded Borel function h : C([0, T ];Rd) → R. We let Ev denote

the expectation with respect to this measure. As before, we know by Girsanov’s
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Theorem that W v
t := Wt −

∫ t
0
v(s)ds is a Brownian motion under γv. Hence,

R(γv||θ) +

∫
C([0,T ];Rd)

h(x)dγv(x)

= Ev
[ ∫ T

0

vtdWt −
1

2

∫ T

0

‖vt‖2 dt
]

+ Evh(W )

= Ev
[ ∫ T

0

vtdW
v
t +

1

2

∫ T

0

‖vt‖2 dt
]

+ Evh(W v +

∫ ·
0

vsds)

= Ev
[1

2

∫ T

0

‖vt‖2 dt
]

+ Evh(W v +

∫ ·
0

vsds),

where the expectation of the stochastic integral vanishes due to the martingale prop-

erty of the stochastic integral. In view of Proposition 2.2.1, this gives

− logEe−h(W ) ≤ inf
v∈A

Ev
[1

2

∫ T

0

‖vt‖2 dt+ h(W v +

∫ ·
0

v(s)ds)
]
. (2.2.6)

This is not quite in the form presented in the statement of theorem. Indeed, the

expectations are computed with respect to the measures γv rather than θ. But in

fact, for each v ∈ A, it is possible to construct a new ṽ ∈ A such that

Ev
[1

2

∫ T

0

‖vt‖2 dt+ h(W h +

∫ ·
0

vsds)
]

= E
[1

2

∫ T

0

‖ṽt‖2 dt+ h(W +

∫ ·
0

ṽsds)
]
,

so that the infimum in (2.2.5) is the same as the infimum in (2.2.6). We omit the

construction, which is somewhat complicated, but it can be found in the proof of

Theorem 3.1 in [7].

(Upper Bound) The fact that the inequality is indeed an equality can be shown

using the martingale representation theorem. Indeed, it can be shown that the unique

measure γ0 in the representation formula (2.2.4) does correspond to a Girsanov shift

of θ by some v ∈ A.
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Theorem 2.2.2. The family
√
εW satisfy a Laplace principle in C([0, T ];Rd) with

good rate function given by (2.1.5).

Outline of proof. In view of the similarity between this variational formulation (2.2.5)

and the desired Laplace principle (2.2.3) for the family
√
εW , the desired result is in

sight. We discuss only the proof of the upper bound of the limit in (2.2.3), which is the

more difficult direction that also provides better insight into the required conditions

discussed in the subsequent sections.

(Upper bound) Indeed, to show the validity of a Laplace principle upper bound

for the family
√
εW , we note that

−ε logE exp
(
− h(

√
εW )

ε

)
= inf

u∈A
E
[ ε

2

∫ T

0

‖ut‖2 dt+ h(
√
εW +

√
ε

∫ ·
0

usds)
]

= inf
u∈A

E
[1

2

∫ T

0

‖ut‖2 dt+ h(
√
εW +

∫ ·
0

usds)
]
,

where the second line follows by absorbing the ε into the infimum. The necessary

upper bound can obtained by for each ε > 0 taking a uε ∈ A such that

−ε logE exp
(
− h(
√
εW )

ε

)
≥ E

[1

2

∫ T

0

‖uεt‖
2 dt+h(

√
εW +

∫ ·
0

uεsds)
]
− ε. (2.2.7)

We would like the right hand side to ideally convergence to something useful. In-

deed, since inequality (2.2.7) provides a uniform bound in L2(Ω;L2(0, T ;Rd)) on uε,

it follows by Prokhorov’s theorem we can extract a subsequence uεk converging to

some u ∈ A in distribution with respect to the weak topology of L2(0, T ;Rd) (since

unit balls in L2(0, T ;Rd) are compact in the weak topology). In effect, our main
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consideration then turns to the h term in (2.2.7). If we could show that

lim
ε→0

Eh
(√

εkW +

∫ ·
0

uεks ds
)

= Eh
(∫ ·

0

usds
)
, (2.2.8)

then it would follow rather easily that

lim inf
ε→0

ε logE exp
(
− h(

√
εW )

ε

)
= − lim sup

ε→0
−ε logE exp

(
− h(

√
εW )

ε

)
≤ − inf

v∈L2(0,T ;Rd)

[1

2

∫ T

0

‖ut‖2 dt+ h(

∫ ·
0

usds)
]
,

(2.2.9)

which is precisely the desired upper bound.

The convergence (2.2.8) is where the method’s namesake comes into play since

this is really a statement about weak convergence of random variables. For the

case of Brownian motion, we see that the convergence in (2.2.8) is equivalent to

saying (dropping the subsequence notation) that the solution Xε,uε

t to the controlled

stochastic equation

dXε,uε

t =
√
εWt + uεtdt, Xε,uε

0 = x0,

converges weakly as a C([0, T ];Rd) random variable to the solution Xu
t to the con-

trolled random equation

dXu
t = utdt, Xu

0 = x0,

whenever uε is a sequence converging in distribution to u with respect to the weak

topology of L2(0, T ;Rd). However, this is indeed immediate since

Xε,uε

t −Xu
t =
√
εWt +

∫ t

0

(uεs − us)ds,
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and process
√
εW converges pointwise to 0 in C([0, T ];Rd) while

∫ ·
0
(uεs − us)ds con-

verges weakly to 0 in the Sobolev space W 1,2(0, T ;Rd), which is compactly embedded

in C([0, T ];Rd).

2.2.3 SDEs

In the previous section we outlined the proof of a large deviations principle for Brown-

ian motion via the weak convergence route. Now, we want to prove a large deviations

principle for the solution Xε
t to the SDE (2.0.1). Of course, we could simply use

the contraction principle. However, it will prove advantageous to instead prove the

Laplace principle directly for Xε
t in the exact same manner that we did for Brownian

motion.

Indeed, the utility of the weak convergence approach will be very much evident

in the step (2.2.8). As before, let us denote the solution map G that maps a trajec-

tory of the driving noise
√
εW to a trajectory of solution Xε

t . Then, for arbitrary

continuous bounded function h ∈ Cb([0, T ];Rd) we have that h ◦ G is bounded and

Borel measurable so that

−ε logE exp
(
− h(Xε

t )

ε

)
= inf

u∈A

[1

2

∫ T

0

‖ut‖2 dt+ h ◦ G(
√
εW +

∫ ·
0

usds)
]
,

due to the representation formula (2.2.5). In particular, the solution map G need not

be continuous. The proof of Theorem 2.2.2 would then proceed the same way. The

only difference would then be in showing the step (2.2.8). In this case, we would
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instead need to show the convergence

G(
√
εW +

∫ ·
0

uεsds) ⇀ G(

∫ ·
0

usds) (2.2.10)

in distribution in C([0, T ];Rd) as ε → 0 whenever uε is a sequence that converges in

distribution to u with respect to the weak topology of L2(0, T ;Rd). Or equivalently,

the solution Xε,u
t to the controlled stochastic equation

dXε,uε

t = b(Xε,uε

t )dt+
√
εdWt + uεtdt, Xε,uε

0 = x0,

converges in distribution in C([0, T ];Rd) to the solution to the random equation

dXu
t = b(Xu

t )dt+ utdt, Xu
0 = x0.

This convergence is easy to show in the case where b is Lipschitz continuous. We note

also that the right hand side of (2.2.9) that we would get by proceeding through the

proof of Theorem 2.2.2 reproduces the action functional (2.1.10). Indeed,

lim
ε→0

ε logE exp
(
− h(Xε

t )

ε

)
= − inf

u∈L2(0,T ;Rd)

[1

2

∫ T

0

‖ut‖2 dt+ h ◦ G(

∫ ·
0

usds)
]

= − inf
u∈L2(0,T ;Rd)

{1

2

∫ T

0

‖ut‖2 dt+ h(ϕ) : ϕ = G
(∫ ·

0

usds
)}

= − inf
ϕ∈C([0,T ];Rd)

{1

2

∫ T

0

‖ϕ̇t − b(ϕt)‖2 dt+ h(ϕ) : ϕ(0) = x0

}
Remark 2.2.3. The key utility here is that we did not require the solution map to

be continuous like we did with the contraction principle. Instead, we needed only

to show the relation (2.2.10). Moreover, there is no reason why one cannot consider

solution maps Gε that depend on ε, so long as the convergence result holds. For
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example, one could consider equations of the form

dXt = bε(Xt)dt+ σε
√
εdWt.

Then, provided there exists some limiting solution map G such that

Gε(
√
εW +

∫ ·
0

uεsds) ⇀ G(

∫ ·
0

usds),

a Laplace principle will follow. This will prove extremely useful when studying the

models (1.3.1) and (1.4.1), which both display dependence on ε in multiple places.

We provide a rigorous description of all the required conditions in the most general

case in Section 2.2.4.

�

2.2.4 Formalizations

In this section, we formalize the statements of the weak convergence approach in the

version suited for infinite dimensional problems from [13]. First we formally define a

version of the Laplace principle that is uniform with respect to initial conditions.

Definition 2.2.3 (ULP). Let {Ix}x∈E0 be a family of good rate functions on a Polish

space X , parametrized by a parameter x in some Polish space E0 and let A be some

Borel subset of E0. The family of X -valued random variables {ξεx}ε>0,x∈A is said to

satisfy the Laplace principle on X with rate functions Ix, uniformly for x ∈ A, if for

any continuous and bounded h : X → R

lim
ε→0

sup
x∈E0

∣∣∣γ(ε) logE exp

(
−h(ξεx)

γ(ε)

)
+ inf

y∈X
(Ix(y) + h(y))

∣∣∣ = 0. (2.2.11)
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For the remainder of this section, we assume here as background the basics of

Gaussian measure theory in infinite dimensional Hilbert spaces (for an introduction,

see [26]). Let H be a separable Hilbert space H, and suppose W is an H-valued

Q-Wiener process, where the covariance operator Q is a strictly positive, trace class

operator on H. Let H0 = Q1/2H be its reproducing kernel space endowed with the

inner product 〈h, k〉H0 = 〈Q−1/2h,Q−1/2k〉H .

Assume that X is a Polish space (of paths) and let E0 be a Polish space (of

initial conditions). Suppose that Gε : E0 × C([0, T ] : H) → X is a family of Borel

measurable mappings. We define the spaces

SN(H0) :=
{
u ∈ L2(0, T ;H0) :

∫ T

0

‖ut‖2
H0
dt ≤ N

}
,

AN(H0) := {u ∈ A : u(ω) ∈ SN(H0),P− a.s.}.

Moreover, the space SN(H0) is a compact metric space when endowed with the metric,

d(x, y) =
∞∑
i=1

1

2i

∣∣∣ ∫ T

0

〈xs − ys, ei(s)〉H0ds
∣∣∣.

Hypothesis 2.2.1. There exists a measureable map G0 : E0 × C([0, T ] : H) → X

satisfying the following conditions.

1. For every M <∞ and compact set K ⊂ E0, the set

ΓM,K :=
{
G0
(
x,

∫ ·
0

usds
)

: u ∈ SM(H0), x ∈ K
}
,

is a compact subset of X .
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2. For any M < ∞, any sequence xε → x in E0 and any sequence {uε}ε∈(0,1] ⊂

AM(H0) with uε converging in to u in distribution as SM(H0) valued random

elements (endowed with the topology generated by the metric above), we have

Gε
(
xε,
√
εW +

∫ ·
0

uεsds
)
→ G0

(
x,

∫ ·
0

usds
)
,

where the convergence is in distribution in the strong topology of X .

Next, define the functional I : X → [0,∞],

Ix(ϕ) := inf
{1

2

∫ T

0

‖ut‖2
0 dt : u ∈ L2(0, T ;H0), ϕ = G0

(
x,

∫ ·
0

usds
)}

(2.2.12)

Theorem 2.2.3 (Theorem 5 in [13]). Let Xε = Gε(x,
√
εW ) and suppose that the

assumptions above hold and that for all ϕ ∈ X , Ix(ϕ) is lower semi-continuous map-

ping from E0 to [0,+∞. Then for each x ∈ E0, Ix(f) is a good rate function and the

family {Xε} satisfies the Laplace principle on X with rate functions Ix(ϕ), uniformly

for x in any compact subset of E0.

2.2.5 Equivalences of uniform large deviations principles.

When studying the asymptotics of the long-time dynamics of equation (2.0.1), it will

be critical that the limits (2.1.3) and (2.1.4) in the large deviations principle are

uniform with respect to initial conditions. Theorem 2.2.3 provides the mechanism

for obtaining a Laplace principle that is uniform with respect to initial conditions.

However, unlike the corresponding non-uniform case, validity of the uniform Laplace

principle does not necessarily imply validity of the uniform large deviations principle.
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Moreover, the two equivalent large deviations principle definitions (Definitions 2.1.2

and 2.1.3) are no longer necessarily equivalent when one considers their suitably

modified uniform versions. The article [55] investigates the necessary conditions for

equivalence between the different formulations and provides examples justifying these

conditions. In this section, we merely quote some of their main results, which we will

be using in Chapters 4 and 5.

First, we define the uniform versions of Definition 2.1.2 and Definition 2.1.3.

Sticking with the convention of [55], we refer to the uniform version of Definition

2.1.2 as the Dembo-Zeitouni Uniform Large Deviations Principle (DZULDP) and the

uniform version of Definition 2.1.3 as the Freidlin-Wentzell Uniform Large Devia-

tions Principle (FWULDP). In many typical finite-dimensional settings, such as that

given by (2.0.1), the three definitions ULP, DZULDP and FWULDP will typically be

equivalent. However, this will not be the case in general in infinite dimensions.

Definition 2.2.4 (DZULDP). Let {Ix}x∈E0 be a family of good rate functions on a

Polish space X , parametrized by a parameter x in some Polish space E0 and let A be

some Borel subset of E0. The family of X -valued random variables {ξεx}ε>0,x∈A is said

to satisfy the Dembo-Zeitouni large deviations principle on X with rate functions Ix,

uniformly for x ∈ A, if the following statement holds.

(i) For any γ > 0 and open set G ⊂ X , there exists ε0 > 0 such that

inf
x∈A

P(ξεx ∈ G) ≥ exp

(
−1

ε

[
sup
x∈A

inf
u∈G

Ix(u) + γ

])
, ε ≤ ε0.
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(ii) For any γ > 0 and closet set F ⊂ E, there exists ε0 > 0 such that

sup
x∈A

P(ξεx ∈ F ) ≤ exp

(
−1

ε

[
inf
x∈A

inf
u∈F

Ix(u)− γ
])

, ε ≤ ε0.

Definition 2.2.5 (FWULDP). Let {Ix}x∈E0 be a family of good rate functions on a

Polish space X , parametrized by a parameter x in some Polish space E0 and let A be

some Borel subset of E0. The family of X -valued random variables {ξεx}ε>0,x∈A is said

to satisfy the Freidlin-Wentzell large deviations principle on X with rate functions

Ix, uniformly for x ∈ A, if the following statement holds.

(i) For any s ≥ 0, δ > 0 and γ > 0, there exists ε0 > 0 such that

inf
x∈A

(
P
(
ξεx ∈ B(x, δ)

)
− exp

(
− Ix(ϕ) + γ

ε

))
≥ 0, ε ≤ ε0,

for any y ∈ Φx(s), where Φx(s) := {h ∈ X : Ix(h) ≤ s}.

(ii) For any s0 ≥ 0, δ > 0 and γ > 0, there exists ε0 > 0 such that

sup
x∈A

P
(
ξεx ∈ Bc(Φx(s), δ)

)
≤ exp

(
− s− γ

ε

)
, ε ≤ ε0,

for any s ≤ s0, where

Bc(Φx(s), δ) = {h ∈ X : distX (h,Φx(s)) ≥ δ}.

The following two proposition of [55] shows necessary conditions in order to

have the equivalences ULDP ⇐⇒ FWULDP and FWULDP ⇐⇒ DZULDP,

respectively.
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Proposition 2.2.3 (Theorem 2.5 of [55]). Let {Ix}x∈E0 be a family of good rate

functions on a Polish space X . Suppose that A is a set such that for any s ≥ 0 the

set

Λs,A :=
⋃
x∈A

Φx(s)

is compact in X . Then the family of X -valued random variables {ξεx}ε>0,x∈A satisfies

the Laplace principle on X with rate functions Ix, uniformly for x ∈ A, if and only if

it satisfies the Freidlin-Wentzell large deviations principle on X with rate functions

Ix, uniformly for x ∈ A.

Proposition 2.2.4 (Theorem 2.7 of [55]). Let {Ix}x∈E0 be a family of good rate

functions on a Polish space X . Suppose that A is a compact subset of a Polish space

E0 and that the mapping x 7→ Φx(s) from A to B(X ) is continuous in the Hausdorff

metric for any s ≥ 0, i.e.

xn → x, as n→∞ =⇒ lim
n→∞

λ(Φxn(s),Φx(s)) = 0, (2.2.13)

where for any A1, A2 ∈ B(X ),

λ(A1, A2) := max

{
sup
y∈A1

distX (y, A2), sup
y∈A2

distX (y, A1)

}
.

Then the family of X -valued random variables {ξεx}ε>0,x∈A satisfies the Dembo-Zeitouni

large deviations principle on X with rate functions Ix, uniformly for x ∈ A, if and

only if it satisfies the Freidlin-Wentzell large deviations principle on X with rate

functions Ix, uniformly for x ∈ A.
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Remark 2.2.4. It turns out that in the case where E0 is a reflexive space, then the

requirement that A be a compact set can be weakened to the requirement that A

be a closed and bounded set, as long as (2.2.13) still holds for any sequence xn that

converges to x weakly in E0. We will use this refinement of Proposition 2.4 in Chapter

4.

�

Finally, we also include the following uniform version of the contraction princi-

ple, which we will use in Chapter 5.

Theorem 2.2.4 (Uniform Contraction Principle). Let X1 and X2 be two Polish spaces

and let J be a good rate function on X1. Assume the family {ζε} of X1-valued random

variables satisfies the large deviations principle on X1 with good rate function J .

Suppose that {Gx}x∈A is a family of continuous mappings from X1 to X2, indexed

by x lying in some set A. Moreover, assume that the Gx are Lipschitz continuous,

uniformly over x ∈ A, i.e.

sup
x∈A

sup
φ1 6=φ2

‖Gx(φ1)− Gx(φ2)‖X2

‖φ1 − φ2‖X1

=: L <∞.

Then the family {Gx(ξε}ε>0,x∈A} of X2-valued random variables satisfies a Freidlin-

Wentzell large deviations principle in X2 with good rate functions Ix, uniformly for

x ∈ A, where Ix is given by

Ix(ϕ) := inf{J(ψ) : ψ ∈ X1, ϕ = Gx(ψ)}.
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Proof. (Lower Bound.) Fix s ≥ 0, δ > 0 and γ > 0. For each x ∈ A, let ϕx ∈ X2

be such that Ix(ϕx) ≤ s. Therefore, for each x ∈ A there exists ψx ∈ X1 such that

ϕx = Gx(ψx) and J(ψx) ≤ Ix(ϕx) + γ/2. Since J(ψx) ≤ s + γ/2, for each x ∈ A, we

have

P(ξεx ∈ BX2(ϕx, δ)) = P(ζεx ∈ {f ∈ X1 : ‖Gx(f)− ϕx‖X2
< δ})

≥ P
(
ζεx ∈

{
f ∈ X1 : ‖f − ψx‖X1

<
δ

L

})
≥ exp

(
− J(ψx) + γ/2

ε

)
≥ exp

(
− Ix(ϕx) + γ

ε

)
,

for any ε ≤ ε0 with ε0 > 0 only depending on s, γ, δ and L.

(Upper Bound.) Fix s0 ≥ 0, δ > 0 and γ > 0 and observe that

P(ξεx ∈ Bc
X2

(Φx(s), δ)) = P
(
ζεx ∈

{
f ∈ X1 : inf

ϕ∈X2 : Ix(ϕ)≤s
‖Gx(f)− ϕ‖X2

≥ δ
})
.

Note that for a given f ∈ X1, if there exists ψ ∈ X1 such that J(ψ) ≤ s and

‖f − ψ‖X2
< δ

L
, then Ix(Gx(ψ)) ≤ J(ψ) ≤ s and ‖Gx(f)− Gx(ψ)‖ < δ for any x ∈ A.

Hence, there exists some ε0 > 0 such that

P(ξεx ∈ Bc
X2

(Φx(s), δ)) ≤ P
(
ζεx ∈

{
f ∈ X1 : inf

ψ∈X1 : J(ψ)≤s
‖f − ψ‖X1

≥ δ

L

})
≤ exp

(
− s− γ

ε

)
,

for any ε ≤ ε0.
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2.3 Long time asymptotics

Thus far, we have considered rare events for stochastic equations in the space of

trajectories C([0, T ];Rd) for fixed time horizon [0, T ]. We now seek to understand the

small noise asymptotics of the long-time behavior of the dynamical system.

2.3.1 Exit problem

∂D

O
D

Fig. 2.2: Drift field with global attractor O.

Let Xε
t be the solution to SDE

(2.0.1) in Rd. We now assume

that the drift field b : Rd → Rd

is a smooth vector field that ad-

mits a stable, globally attracting

equilibrium at the point O, as in

Figure 2.2.

Let us consider what hap-

pens to the solution Xε
t when ε is small. Since O is an attractor of the deterministic

system (2.0.2), the solution Xε
t will follow closely the deterministic trajectories until

very close to the attractor O. Once there, Xε
t will typically remain close to the at-

tractor O for large periods of time, taking only minor noise-induced excursions away

from O. However, when observed over an exponentially large in ε−1 time horizon,

larger noise-induced excursions away from O will eventually happen.

To study this phenomenon, we consider the problem of the exit of Xε
t from a

48



domain D ⊂ Rd. As in the figure, we suppose D ⊂ Rd is a connected and compact

set with smooth boundary that contains the attractor O. Moreover, we suppose that

every trajectory of the deterministic system (2.0.2) that starts inside D stays inside

D for all future times, and we assume that the initial condition x0 of (2.0.1) also lies

in D. We are interested in quantifying the first exit time of the solution Xε
t from D.

Thus, we let the stopping time

τ ε := inf{t > 0 : Xε
t /∈ D̄},

denote the time of first exit of Xε
t from D. Under certain growth assumptions on b,

it can be shown that for any ε > 0 the exit time τ ε is finite almost surely. The escape

times τ ε will of course grow to +∞ as the noise magnitude ε is sent to 0; however, it

turns out that we can more closely quantify this growth rate.

In addition to quantifying the escape times, it is also possible to identify the

most likely path that Xε
t will take to exit the bounded domain D. In view of the

structure of the large deviations theory in the previous sections, we expect that the

most likely exit path will satisfy a least action principle as before, and this is indeed

the case. Since we now must consider paths of arbitrary time length T to minimize

over, it is useful to define the cost function

U(x, y) := inf{ST (ϕ) : T > 0, ϕ ∈ C([0, T ];Rd), ϕ(0) = x, ϕ(T ) = y}, (2.3.1)
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where ST denotes the action integral

ST (ϕ) :=


1
2

∫ T
0
‖ϕ̇t − b(ϕt)‖2 dt, if ϕ is absolutely continuous,

+∞, otherwise.

(2.3.2)

The quantity U(x, y) thus represents the cost, in terms of the action, of the cheapest

path from x to y. However, it is important to note that in this exit problem, any path

starting in D will first get sucked in very close to the attractor O with overwhelming

probability, regardless of where it starts. In other words, the initial condition of the

path is effectively transient, so that the only cost that will matter when determining

exit times will be the cost of moving from the attractor O to the boundary ∂D. In

view of this, we define the function U : Rd → [0,+∞], called the quasi-potential with

respect to the attractor O,

U(x) := U(O, x).

It turns out that the quasi-potential controls much of the asymptotics of the escape

time and most likely exit trajectory. Indeed, if there is a unique minimizer z∗ of

U on the boundary ∂D, then with overwhelming probability as ε → 0, the escape

trajectory will exit in an arbitrarily small neighborhood of x∗. Moreover, the portion

of the escape trajectory away from O will fall within an arbitrary delta tube of the

minimum action path φ∗ that terminates at x∗. These results concerning the manner

of exit are proven by Freidlin and Wentzell [37], and are, respectively, Theorems 2.1

and 2.3 of [37]. Since the latter is somewhat complicated, we state only the former

here.
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Theorem 2.3.1 (Theorem 2.1 of [37]). Suppose there exists x∗ ∈ ∂D which is the

unique minimizer of U on ∂D. Then for any δ > 0.

lim
ε→0

P(‖Xε
τε − x∗‖ < δ) = 1.

Remark 2.3.1. If there is not a unique minimizer of U on the boundary, the distribu-

tion of exit locations on ∂D will converge to a measure on the set of global minimizers

of U on ∂D.

�

Perhaps more surprising is that the leading order term in the asymptotics of the

first escape time τ ε are also entirely determined by the minimum of the quasi-potential

along the boundary.

Theorem 2.3.2 (Theorem 4.1 of [37]). Assume that the domain D is attracted to O

and that the boundary ∂D is smooth. Then for any initial condition x in the interior

of D,

lim
ε→0

ε logEτ εx = min
y∈∂D

U(y), (2.3.3)

where τ εx is the first exit time corresponding to the process Xε
t with initial condition

x.

Outline of proof of Theorem 2.3.2. (Upper bound) The critical step in the upper bound

is the claim that for any η > 0 there exists time T0 large enough that

lim inf
ε→0

ε log inf
x∈D

P(τ εx ≤ T0) > − min
y∈∂D

U(y)− η. (2.3.4)
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Equation (2.3.4) immediately provides an exponential lower bound on the proba-

bility of τ εx landing in a fixed ε-independent time interval. From there, the upper

bound of (2.3.3) can be established by applying (2.3.4) on each of the intervals

[0, T0], [T0, 2T0], ... etc. Indeed,

Eτ εx =

∫ ∞
0

P(τ εx > t)dt ≤ T0

∞∑
k=0

sup
x∈D

P(τ εx > kT0)

≤ T0

∞∑
k=0

(1− inf
x∈D

P(τ εx ≤ T0))k =
T0

infx∈D P(τ εx ≤ T0)

≤ T0 exp
(miny∈∂D U(y) + η

ε

)
,

and the upper bound follows. The critical component is then the justification of

(2.3.4). This statement can be deduced from the large deviations statement for the

paths. In particular, for any initial point x ∈ D, one can construct the three-stage

path ϕx ∈ C([0, T0];Rd) for T0 = T1 + 1 + T2 by the recipe below where T1 and T2

are to be determined but picked independently of x. The construction is illustrated

in Figure 2.3.

• Stage (i): Follow the deterministic trajectory (2.0.2) on [0, T1] for fixed large

time T1.

• Stage (ii): Follow a straight line path on [T1, T1 + 1] with uniform speed chosen

such that ϕ(T1 + 1) = O.

• Stage (iii): Follow an “almost” optimal escape path φ̃ from O to just past the

boundary that satisfies ST2(φ̃) ≤ miny∈∂D U(y) + η/2. Let δ > 0 be the final
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O

D
x

(i)

(ii)

(iii)φ

δ

∂D

Fig. 2.3: Illustration of the three stage path ϕx ∈ C([0, T1 + 1 + T2];Rd). The dashed path

φ is the optimal escape trajectory from O to the boundary ∂D.

distance past the boundary.

Note that Stage (i) contributes nothing to the action ST0(ϕx) and that T1 can be

picked large enough that the action contribution from Stage (ii) is less than η/2 for

any x. Therefore, ST0(ϕx) ≤ miny∈∂D U(y)+η for each x ∈ D. Then, equation (2.3.4)

follows by applying the uniform large deviations principle lower bound to the set

Ψ :=
⋃
x∈D̄

{ψ ∈ C([0, T0];Rd) : sup
0≤t≤T0

‖ψt − ϕx(t)‖ < δ/2},

and noting that P(Xε
t ∈ Ψ) ≤ P(τ εx ≤ T0) since every path in Ψ exits the domain. Ac-

tually, since the set Ψ is open in C([0, T0];Rd), either the FWULDP or the DZULDP

lower bound is sufficient.

Remark 2.3.2. We emphasize that it is crucial that the large deviations principle for

the paths is uniform on the domain D so that (2.3.4) holds with the infimum within
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the limit. This entails the need for a large deviations principle that is uniform with

respect to initial conditions in bounded sets. This does not present an issue in the

finite dimensional setting where bounded sets are pre-compact; however, when one

tries to prove the analog of Theorem 2.3.2 for an infinite dimensional problem, one

typically encounters the problem of only being able to prove a Laplace principle that

is uniform on compact sets.

�

2.3.2 Gradient systems

In order to understand the structure of the quasi-potential, it is helpful to consider a

simpler class of SDEs: namely, those given by a gradient system. We assume for this

section that b = −∇F for some smooth potential F : Rd → R. We assume also that

F is bounded below with a global minimum at O and that O is globally attracting.

In this case, the quasi-potential actually coincides with the potential function,

up to a multiplicative factor of 2. Indeed, for any path ϕ ∈ C([0, T ];Rd)

ST (ϕ) =
1

2

∫ T

0

‖ϕ̇t +∇F (ϕt)‖2 dt

=
1

2

∫ T

0

‖ϕ̇t −∇F (ϕt)‖2 dt+ 2

∫ T

0

ϕ̇t · ∇F (ϕt)dt

=
1

2

∫ T

0

‖ϕ̇t −∇F (ϕt)‖2 dt+ 2F (ϕT )− 2F (ϕ0). (2.3.5)

In view of the definition of the quasi-potential (2.3.1) and assuming without loss of
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generality that F (O) = 0, we then have

U(x) = 2F (x) + inf
T>0

{1

2

∫ T

0

‖ϕ̇t −∇F (ϕt)‖2 dt :

ϕ ∈ C([0, T ];Rd, ϕ(0) = O, ϕ(T ) = x
}
. (2.3.6)

However, the infimum on the right hand side can be made arbitrarily small by con-

sidering the time reversal of the solution to

φ̇t = −∇F (φt), φ(0) = x. (2.3.7)

Indeed, if T is large, then the path ϕt = φT−t starts near O, contribute nothing to

the integral in (2.3.6) and ends at x. Moreover, the integral contribution of adding a

small segment from O to φT at the beginning of ϕ can be made arbitrarily small by

taking T arbitrarily large. Thus for the gradient system case, we simply have

U(x) = 2F (x). (2.3.8)

Remark 2.3.3. The characterization (2.3.8) also holds true in the event where the

drift has the structure

b(x) = −∇F (x) + `(x), (2.3.9)

where F is continuously differentiable and `(x) · ∇F (x) for each x ∈ Rd. Indeed, the

computation (2.3.5) holds true in the same manner.

�
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We next consider the invariant probability µε ∈ P(Rd) measure of system (2.0.1)

in the case where b(x) = −∇F (x). There are a number of ways to identify µε. One

is to consider the stationary Fokker-Planck equations for the density pε(x) of µε:

0 = −∇ ·
[
b(x)pε(x)

]
+
ε

2
∆pε(x),

∫
Rd
pε(x)dx = 1. (2.3.10)

Indeed by inspection, one can see that the Gibbs measures on Rd with density

pε(x) = C exp
(
− 2F (x)

ε

)
= C exp

(
− U(x)

ε

)
, (2.3.11)

where C is a normalization factor, gives a solution to (2.3.10). In particular, the

Gibbsian nature of the invariant measure implies that for a (sufficiently regular) set

D ⊂ Rd

lim
ε→0

ε log µε(D) = − inf
y∈D

U(y). (2.3.12)

Remark 2.3.4. In the case of b(x) = −∇F (x) + `(x), we see that the time invariant

measure µε is the same Gibbs measure if in addition ` is divergence free.

2.3.3 Stationary measures

In the case of a general drift field b admitting a globally attracting equilibrium O, ex-

plicit formulas for the quasi-potential and invariant measure are unavailable. Indeed,

the stationary measure will not in general be a Gibbs measure. However, it turns out

that the asymptotic relationship (2.3.12) between the quasi-potential and stationary

measure µε will still hold. In fact, (2.3.12) is really a statement that the invariant

measures satisfy a large deviations principle in Rd with good rate function U .
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Theorem 2.3.3 (Theorem 4.3 of [37]). Assume the whole space is attracting to O

and assume b is such that equation (2.0.1) admits a unique invariant measure µε.

Then the family µε satisfies a large deviations principle in Rd with good rate function

U .

Outline of proof. The structure of the proof to this is similar to the proof of 2.3.2.

(Lower Bound) The lower bound follows by using the invariance property of the

measures µε. Let η > 0. For any x ∈ Rd and δ > 0, we have for any t ≥ 0

µε(B(x, δ)) =

∫
Rd

P(‖Xε
t − x‖ < δ)dµ(y).

If we then restrict to any ball B(0, R) for R > 0, we can construct a collection of

paths {ϕy}y∈B(0,R) ⊂ C([0, T0];Rd), constructed in exactly the same way and with

same T0 as in the proof of 2.3.2, such that ϕy(0) = y and ST0(ϕy) < U(x) + η/2.

Here, B(0, R) is taking the place of the bounded set D. Then, taking t = T0 we have

µε(B(x, δ)) ≥
∫
Rd

P( sup
0≤t≤T0

‖Xε
t − ϕ

y
t ‖ < δ/2)dµ(y)

≥ µε(B(0, R)) inf
y∈B(0,R)

P(‖Xε − ϕy‖C([0,T0];Rd) < δ/2)

Then, since µε(B(0, R)) goes to 1 as ε→ 0, by the uniform large deviations principle,

we have for sufficiently small ε

µε(B(x, δ)) ≥ 1

2
exp

(
− 1

ε
(U(x) + η)

)
.
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Theorem 2.3.3 tells us that the primary term in the Gibbsian asymptotics of the

invariant measure is the quasi-potential. We can investigate the invariant measure

further by considering again the Fokker-Planck equations with the WKB ansatz that

the density takes the form of Gibbs density multiplied by a subexponential pre-factor

pε(x) = C(x) exp
(
− U(x)

ε

)
.

Justification for the WKB approximation is given in e.g. [62, 44]. By plugging the

ansatz into the Fokker-Planck equations and grouping by order in ε, we obtain

0 = −p
ε(x)

ε

[
b(x) · ∇U(x) +

1

2
‖∇U(x)‖2

]
− exp

(
− U(x)

ε

)[
(∇ · b+

1

2
∆U)(x)C(x) + (b+∇U)(x) · ∇C(x)

]
+
ε

2
(∇ · C)(x) exp

(
− U(x)

ε

)
.

Taking the lowest order expansion then gives the Hamilton-Jacobi-Bellman equation

b · ∇U +
1

2
‖∇U‖2 = 0, (2.3.13)

while taking the next order in the perturbation series provides a transport equation

for the leading order term in the exponential prefactor

(∇ · b+
1

2
∆U)C + (b+∇U) · ∇C = 0. (2.3.14)

Remark 2.3.5. We remark that in general the quasi-potential is not continuously

differentiable. However, it can be shown that it is at worst Lipschitz continuous [37]
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and the Lebesgue measure of the set of points for which it is not differentiable is 0.

Moreover, it can be shown that when U is continuously differentiable, it is a classical

solution to (2.3.13) endowed with the boundary condition U(O) = 0 , and a viscosity

solution otherwise.

�

2.3.4 The quasi-potential

It is important to note that in general the infimum in T in the definition of the quasi-

potential is never achieved. We observed this directly in the case of a gradient system

where one cannot have the integral term in (2.3.6) be 0 for finite T , but instead must

be taken as a limit as T → ∞. Physically, this occurs because the optimal escape

path leaves the attractor O with infinitesimal initial speed.

On the other hand, a single minimizing path in Rd in general will exist if a differ-

ent parametrization, such as an arclength parametrization, is considered. Toward the

purpose of identifying this minmizing path, it is convenient to introduce an alternate

action functional, called the geometric action S̃L : C([0, T ];Rd)→ [0,+∞] given by

S̃L(ϕ) :=


∫ L

0

[
‖b(ϕr)‖ ‖ϕ̇r‖ − b(ϕr) · ϕ̇r

]
dr, if ϕ is absolutely continuous,

+∞, otherwise.

(2.3.15)

Lemma 2.3.1. For any x in the well of attraction of O, it holds that

U(x) = inf{S̃L(φ) : L > 0, φ ∈ C([0, L];Rd), φ0 = O, φL = x}. (2.3.16)
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Proof. Observe that

ST (ϕ) =
1

2

∫ T

0

‖ϕ̇t − b(ϕt)‖2 dt

=
1

2

∫ T

0

[
‖ϕ̇t‖2 + ‖b(ϕt)‖2 − 2b(ϕt) · ϕ̇t)

]
dt

≥
∫ T

0

[
‖b(ϕt)‖ ‖ϕ̇t‖ − b(ϕt) · ϕ̇t

]
dt (2.3.17)

Hence U(x) is greater than the right hand side of (2.3.16). Next, suppose that φ ∈

C([0, T ];Rd) is such that φ(0) = O and φ(T ) = x. Let φ̃ be a re-parametrization of φ

such that
∥∥∥φ̇r∥∥∥ = ‖b(φr)‖ for all r in the domain of the new variable [0, L]. Then the

inequality in (2.3.17) is an equality and ST (φ) = S̃L(φ̃). Hence we get (2.3.16).

The Hamilton-Jacobi equation (2.3.13) for the quasi-potential we obtained from

the WKB ansatz can be derived rigorously from the minimum action definition of

U using standard techniques in Hamiltonian mechanics (see [1], for example). We

present a third route to this equation by viewing the quasi-potential definition as an

instantaneous optimal control problem. This route will provide useful information

that we will use in Chapter 3. Consider U defined via the geometric action (2.3.16).

We can re-write the quasi-potential as

U(x) = inf
y∈Rd
{U(x− y) + U(x− y, x)}

= inf
L>0

inf
ϕ∈C([0,L];Rd):

ϕL=x

{
U(ϕ(0)) + S̃L(ϕ)

}

= inf
L>0

inf
ϕ∈C([0,L];Rd):

ϕL=x

{
U(x−

∫ L

0

ϕ̇rdr) + S̃L(ϕ)
}
. (2.3.18)

60



In addition, if we restrict to an arclength parameterization of the paths in the geo-

metric action so that L indicates the length of curve ϕ, then the equality in (2.3.18)

actually holds for each L individually less than the arclength of the minimum action

path (MAP) passing through x. Thus for any small δ > 0, we have

U(x) = inf
ϕ∈C([0,δ];Rd):
ϕδ=x, ‖ϕ̇r‖=1

{
U(x−

∫ δ

0

ϕ̇rdr) +

∫ δ

0

[‖b(ϕr)‖ − b(ϕr) · ϕ̇r]dr
}

= inf
φ∈Rd:‖φ‖=1

{
U(x)− δ∇U(x) · φ+ δ(‖b(x)‖ − b(x) · φ) +O(δ2)

}
,

where in the last line, we assume that the quasi-potential is continuously differentiable

at x. By taking δ → 0, we obtain the instantaneous cost minimization problem

0 = inf
φ∈Rd:‖φ‖=1

[
‖b(x)‖ − (b+∇U)(x) · φ

]
.

In this formulation, the minimizing direction φ corresponds to the direction at x of

the minimum action path from O to x. We see also that this minimizing direction φ

is in the b+∇U direction. Indeed, taking φ =
b+∇U
‖b+∇U‖

, we obtain

0 = ‖b(x)‖ − ‖b(x) +∇U(x)‖ , (2.3.19)

which can be rewritten as equation (2.3.13). The utility of this approach, however, is

that we see directly the geometric relationship between the quasi-potential at a point

and the MAP. Namely, for each x where the quasi-potential is differentiable, we have

∇U(x) = ‖b(x)‖φx − b(x), (2.3.20)

where φx is the unit velocity vector of the MAP from O to x at the point x. This
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will be a fundamental piece of information in our development of our Jet solver in

Chapter 3.
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Chapter 3: Efficient Jet Marcher for computing the quasi-potential

3.1 Introduction

We return again to the finite-dimensional setting. Consider the stochastic differential

equations in Rd,

dXt = b(Xt)dt+
√
εdWt, X0 = x0 ∈ Rd, (3.1.1)

where b : Rd → Rd, Wt is a standard Brownian motion in Rd and ε > 0 is a small

parameter. As in Section 2.3.1, we assume that b admits a stable, attracting equi-

librium at O ∈ Rd. As we have seen, the quasi-potential U(x) (defined by (2.3.1))

with respect to O controls much of the small-noise and long-time asymptotic behavior

of equation (3.1.1). In this chapter, we discuss existing techniques for numerically

computing the quasi-potential, and then describe a novel algorithm for computing

the quasi-potential on a mesh in the 2-dimensional case.

As discussed in Chapter 2, the quasi-potential U(x) can be seen as the cost of

the cheapest possible path that begins at the attractor O and ends at the point x,

where the cost is measured by either the Freidlin-Wentzell action functional (2.3.2)

or the geometric action functional (2.3.15). Hence, a logical way to compute U(x)



for a given x is to try to conduct this minimization numerically. Indeed, one can

construct a numerical version of the action function via quadrature and then perform

a high-dimensional minimization over a suitably rich path space. Since methods of

this form invariably return the minimum action paths (MAP) themselves, we refer to

them as path-based methods.

In practice, techniques conducting the minimizations of both types of action

functionals are used. The Minimum Action Method (MAM) [31] and Adaptive Min-

imum Action Method (AMAM) [67] find MAPs by minimizing the Freidlin-Wentzell

action, while the Geometric Minimum Action Method (GMAM) [38] does so by min-

imizing the geometric action. We describe the key details of these approaches in

Section 3.2. By design, these techniques are applicable to both finite and infinite

dimensional problems. For example, the GMAM was used to find the MAP between

two stationary solutions of a 2D reaction-diffusion partial differential equation in [38]

and to find the MAP between two solitary waves of different amplitudes of nonlinear

Schrodinger equations in [53].

An important advantage of path-based methods is that they are computationally

cheap and suitable for any dimension. However, a number of key drawbacks. First,

they allow for computation of the quasi-potential along a single MAP, but do not

provide a mechanism for efficient computation of the quasi-potential over an entire

region of space. In particular, they are ill suited for the task of identifying quasi-

potential minima. As we have seen, locating quasi-potential minima is an important
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step in quantifying exit locations and escape times for the exit problem (Section

2.3.1). Second, path-based techniques work well if the MAP is relatively simple, but

their convergence tends to stall if the MAP exhibits spiraling or other complicated

behavior. Finally, the MAPs obtained by these methods are biased by the initial

guess, typically taken to be straight line segments, and may only be local minimizers

of the action that lead to incorrect estimates of the quasi-potential. While various

attempts have been undertaken to address these issues [63, 42], none of the proposed

solutions have become commonly used due to complexity and lack of robustness.

With the application of determining quasi-potential minima in mind, the ma-

jority of this chapter focuses on mesh-based quasi-potential solvers, whose objective

is the efficient computation of U(x) on a mesh. As with all numerical PDE solvers,

these methods suffer from the curse of dimensionality, so that solving for U(x) on a

mesh in a high-dimensional space is infeasible. Current mesh-based quasi-potential

solvers are implemented only in 2 [14, 21, 22] and 3 dimensions [66]. Our algorithm,

the Efficient Jet Marching (EJM) method, which is described in full detail in Section

3.4, addresses only the d = 2 case with additive noise. The task of extending this

algorithm to 3-dimensions remains as future work.

A full description of mesh-based quasi-potential solvers is provided in Section

3.3, although we make a few preliminary remarks here. The discussed methods are all

descendants of Dijkstra’s algorithm for identifying the shortest path in a network [29],

and, more specifically, of Sethian’s Fast Marching algorithm for solving the eikonal
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equation [57]. Indeed, recall from Section 2.3.4 that the quasi-potential is a viscosity

solution to the Hamilton-Jacobi-Bellman equation

‖∇U(x)‖2 + 2b(x) · ∇U(x) = 0, U(O) = 0, (3.1.2)

which can be interpreted as an anisotropic eikonal equation for the evolution of a

wavefront so that the ideas of Sethian’s fast marching algorithm and its related de-

scendants [58, 59] can be applied.

At their core, these types of methods treats the quasi-potential U(x) as the first

hitting time at location x of a fictitious wavefront propagating outwards from the point

attractor O, as illustrated in Figure 3.1. In this analogy, the level set {x : U(x) = T}

represents the state of the wavefront at “time” T . The MAP passing through a point

x can be seen as representing the liftetime trajectory of the particular particle that

was the first to reach x. Fast-marching algorithms seek to identify these “leading”

particles and make local approximations of their paths between nearby mesh points,

from which estimates of the wavefront arrival times are made. There are, however,

some key difficulties in extending the fast marching algorithm to the quasi-potential

problem; most notably the potential unboundedness of the particle velocity function.

The first such algorithm for solving the quasi-potential was introduced in [14], in

which a thorough discussion of the the obstacles and necessary modifications is given.

In Section 3.4, we describe in detail our EJM algorithm, which is a descendant

of the fast-marching based methods of [14, 21]. We also briefly mention here the two

key features that distinguish it from previous quasi-potential solvers.
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{x : U(x) = 1}

{x : U(x) = 2}

O

Fig. 3.1: The quasi-potential problem as a wavefront propagation problem.

The first key feature is the use of higher-order approximations of (a) the quasipo-

tential between mesh points and (b) local segments of MAPs. Concerning (a), our

solver propagates the quasipotential and its gradient by taking advantage of the ge-

ometric relationship (see Section 2.3.4)

∇U(x) = ‖b(x)‖ φ̇− b(x), (3.1.3)

between the quasi-potential U(x) and MAP φ passing through x. This enables us to

use Hermite cubic interpolation of U between mesh points rather than linear interpo-

lation as done in [14, 21, 22, 66]. The idea of using Hermite interpolation originally

comes from the jet scheme for solving an advection equation [48]. Concerning (b),

our solver approximates MAP segments using cubic curves, while all previous quasi-

potential solvers have approximated them with straight line segments. We remark

that a similar family of jet marching methods for isotropic eikonal equations was

recently introduced in [54].

Although rigorous numerical analysis remains as future work, we expected the
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improved approximation scheme to provide our method with an O(h2) accuracy con-

vergence rate with respect to the mesh spacing h. As we show in Section 3.5, this is

precisely what we have observed empirically in all but the most extreme scenarios.

To our knowledge, this is the first such quasi-potential solver with second order in h

accuracy.

The aforementioned improvement in accuracy does come at the cost of an

increase in computing time due to the more computation-intensive MAP approx-

imations. However, this increase in runtimes is offset by the algorithm’s second

key feature: implementation of pre-computed anisotropic stencils, inspired by the

Anisotropic Stencil Refinement (ASR) algorithm of Mirebeau [47]. Roughly speaking,

the presence of potentially unbounded particle speeds in the quasi-potential problem

requires the searching of very large “neighborhoods” of mesh points in the search for

MAPs. Mirebeau’s ASR algorithm pre-computes smaller, more targeted neighbor-

hoods, which results in a significantly smaller number of total MAP searches at a

comparable overall accuracy. Adoption of a modified version of these ideas provided

EJM with a significant reduction in computation time. A description of Mirebeau’s

ASR algorithm is given in Section 3.3.

A full analysis of the accuracy-speed trade-off is provided in Section 3.5. There,

we compare the performance of the EJM algorithm with other mesh-based quasi-

potential solvers on a variety of different drift fields b.

68



3.2 Path-based approaches

In this section, we briefly describe two commonly used path-based techniques for

identifying the MAP from an attractor O to a point x. Both techniques are suitable

for finite and infinite dimensional problems.

AMAM. The adaptive minimum-action method (AMAM) [67] solves for the MAP

from O to point x by numerically minimizing the Freidlin-Wentzell action functional

ST (2.3.2) for some large value of T . To do so, the action ST is approximated using

a midpoint quadrature rule on a partition {tk}mk=0 of [0, T ]. More precisely, if the

path ϕ ∈ C([0, T ];Rd) is approximated by its values at its values Φk := ϕtk , then the

numerical action is given by

St0,...,tm =
1

2

m−1∑
k=0

∥∥∥∥Φk+1 − Φk

∆tk
− b(ϕk+1/2)

∥∥∥∥2

∆tk, (3.2.1)

where ∆tk = tk+1−tk and Φk+1/2 = (Φk+1+Φk)/2. The key difficulty with minimizing

this discretized action is the question of how to select the mesh {tk}mk=1. Indeed, the

true MAP spends much more time near the attractor O, whence the integrand of

ST is very small. For this reason, minimization of (3.2.1) along a simple uniformly

spaced mesh on [0, T ] will provide poor results, and a more strategically refined mesh

is needed.

The AMAM solves this issue by implementing a moving mesh technique, in

which the t-mesh for discretizing ST (ϕ) changes along with the optimal path {Φk}mk=0.
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Indeed, an satisfactory time mesh {tk}mk=0 is one for which each term in the sum (3.2.1)

is of the same order of magnitude. To achieve this AMAM weights the time steps by

the monitor function

w(t) :=
1√

1 + C ‖ϕ̇t‖2
,

for some large C > 0 and choose {tk}mk=0 such that the product w(tk)∆tk is ap-

proximately constant for each k = 0, ...,m − 1. These can be found by solving the

Euler-Lagrange equation

d

dt

( 1

w(t)

dα

dt

)
= 0, α(0) = 0, α(T ) = T, (3.2.2)

by finite difference for the re-weighted mesh variable α over the uniform partition of

[0, T ]. The optimal mesh is then given by the solution α discretized over the uniform

partition of [0, T ], i.e. tk := α(kT
m

).

In view of this re-weighting procedure, the AMAM algorithm attempts to solve

for the MAP terminating at x by proceeding as follows.

• (Step 1). Set mesh {tk}mk=0 to the uniform partition of [0, T ], and start with the

initial guess {Φk}mk=0 corresponding to a straight line path ϕ from O to x.

• (Step 2). Solve the Euler-Lagrange equation (3.2.2) numerically to construct a

new mesh {tk}mk=0.

• (Step 3). Run R iterations of a high-dimensional optimization routine (such as

L-BFGS) on the right hand side of (3.2.1) for the partition {tk}.
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• (Step 4). Terminate if the optimization termination condition is met and if the

quantity {w(tk)∆tk} are sufficiently uniform in k to meet a mesh termination

condition. Otherwise, return to step 2 to re-compute the mesh on the current

iterate of {Φk}mk=0.

GMAM. The geometric minimum action method (GMAM) [38] solves for the MAP

from O to x by instead minimizing the geometric action S̃L (2.3.15). By a standard

calculus of variations computation, it can be shown that a minimizing path φ of S̃L

satisfies the Euler-Lagrange equations

0 =
dS̃

dϕ
(φ) = −λ2φ̈r+λ

[
∇b(φr)−(∇b(φr))T )

]
φ̇r+(∇b(φr))T b(φr)−λ

dλ

dϕ
φ̇r, (3.2.3)

where λ = ‖b(φr)‖ /
∥∥∥φ̇r∥∥∥ and d

dϕ
denotes functional derivative. GMAM will solve a

discretized version of (3.2.3) with L = 1, subject to the constraints
∥∥∥φ̇r∥∥∥ = constant,

φ0 = O and φ1 = x. The constant speed condition will ensure that the sampled points

along the path φ are equi-spaced to avoid the issue of under-sampling important

regions discussed in the previous section.

GMAM solves for a discretized version {Φk}mk=0 of the MAP by following an

implicit gradient descent scheme. The scheme begins with an initial guess, usually

taken to be an uniformly-spaced sampling of the straight line path from O to x. The

next iteration of {Φk}mk=0 is computed via a gradient descent step using a semi-implicit

discretization of (3.2.3). The exact discretization of (3.2.3), which we omit to preserve

simplicity, contains implicit centered finite differences for the second derivatives φ̈r

and explicit centered finite differences for the first derivatives φ̇r. Each update step
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thus requires the solving of a tri-diagonal matrix system. After every update step,

the solution is re-normalized such that points Φk are uniformly spaced apart. More

precisely, by interpolating the discretized values of {Φk}mk=0 into a continuous path,

one can set Φk := Ψk where the {Ψk}mk=0 lie along the interpolated path and satisfy

‖Ψk+1 −Ψk‖ = ‖Ψk −Ψk−1‖ for each k = 1, ...,m− 1.

3.3 Mesh-based label-setting algorithms

In this section, we describe the structure of Dijkstra-like solvers of anisotropic eikonal

equations. We also provide a description of Mirebeau’s design for the anisotropic

(ASR) algorithm [47] as well as the Ordered Line Integral Methods (OLIM), the

most recent mesh-based quasi-potential solvers [21].

3.3.1 Dijkstra-like eikonal solvers

Consider the geometric action (2.3.15) expressed in the line integral form

S̃L(ϕ) =

∫ L

0

s(ϕr, ϕ̇r) ‖ϕ̇r‖ dr =

∫ L

0

‖ϕ̇r‖
f(ϕr, ϕ̇r)

dr, (3.3.1)

where s(x, v) = ‖b(x)‖ − b(x) · v

‖v‖
=:

1

f(x, v)
. Written in this way, S̃L(ϕ) gives the

cost of trajectory ϕ using the instantaneous anisotropic cost function s(x, v). If we

are to proceed with the wavefront analogy introduced in Section 3.1, we can interpret

f(x, v) as the instantaneous speed of particles moving in the v direction at point x.

At each point along the wavefront, one can envision more particles being spawned

and sent out in all directions with speed f(x, v). For this reason, we call the function
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f(x, v) the speed function and s(x, v) the slowness function. The quasi-potential U(x)

will then measure the quickest time for one of these particle to hit the point x, while

the MAP passing through x will trace that particles path back to its origin at O.

An alternative perspective can be taken by expressing the HJB equation (3.1.2)

for the quasi-potential in the form

F (x, n̂) ‖∇U(x)‖ = 1, U(O) = 0, (3.3.2)

where F (x, n̂) =
1

−2b(x) · n̂(x)
and n̂(x) =

∇U(x)

‖∇U(x)‖
is the outward pointing normal

vector to the level set of the quasi-potential. Here, the quantity F (x, n̂) ≥ 0 can

be interpreted as the speed at which the wavefront expands outward in the normal

direction.

For a general F , equation (3.3.2) is referred to as an anisotropic eikonal equation

or static Hamilton-Jacobi equation. When the front speed F does not depend on

direction v, we refer to it just as an eikonal equation. In general, the front speed F

can be reconstructed from the particle speed function f by taking the weighted dual

norm

F (x, u) = max
v 6=0

u · v
‖v‖

f(x, v). (3.3.3)

Moreover, equation (3.3.2) can be derived from the least cost problem with action

(3.3.1) for a general f in a manner similar to as done in Section 2.3.4.

Note that in the isotropic case, it is clear from (3.3.3) that F (x) = f(x). Namely,

particle speeds are equal in all directions. In particular, this implies that the MAPs

73



will always be normal to the wavefront. This is not the case for the quasi-potential

problem, where instead the direction of travel is given by (3.1.3). As we will see, this

lack of orthogonality will pose some computational difficulties.

We now introduce the main ideas of Sethian’s fast marching algorithm for com-

puting the viscosity solution U(x) to equation (3.3.2) in 2-dimensions. Let X be a

discretization of the domain D into a uniform rectangular mesh with common hori-

zontal and vertical spacing h > 0. We assume for simplicity that the attractor O is a

member of the mesh X . Dijkstra-like algorithms rely on the partition of X into the

following three disjoint groups:

• Unknown: Mesh points for which no value of U has been computed. The value

of U defaults to +∞.

• Considered: Mesh points for which a tentative value of U has been computed.

• Accepted: Mesh points for which a final, immutable value of U has been com-

puted.

Initially, all mesh points will begin in the Unknown category. As the algorithm pro-

ceeds, points will be gradually moved from Unknown to Considered as tentative values

of U are computed. For each mesh point, one of those tentative values will eventually

be finalized, at which time that point will be moved into the Accepted category. Fig-

ure 3.2 displays a snapshot in time of what this setup may look like, while Algorithm

1 provides a template for fast marching Dijkstra-like eikonal solvers.
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Algorithm 1 Fast marching method template for solving eikonal equations

Initialization

Start with all mesh points in X in Unknown and set them to U = +∞.

Set U(O) = 0 and add O to Considered.

Main Body

1: while (Considered is non-empty) do

2: Set x := arg min
z∈X

{
U(z) : z ∈ Considered

}
.

3: Switch x from Considered to Accepted and finalize its current value of U(x).

4: for each neighbor y of x such that y /∈ Accepted do

5: Compute a value Unew(y) using the values of U(x) and possibly U(z) for

other z ∈ Accepted.

6: Set U(y) := min(U(y), Unew(y)).

7: Switch y to Considered if it was previously in Unknown.
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xx

O
x

Considered

Accepted

Unknown

Fig. 3.2: Algorithm snapshot as mesh point x is added to the Accepted list. The dashed

blue line represents a possible implied current state of the wavefront.

The procedure described in Algorithm 1 can be visualized quite handily in

terms of the propagating wavefront analogy, in which the objective is to determine

the first arrival time U(x) of the front at x ∈ X . A mesh point x ∈ X begins in

the Unknown category when the wavefront is far away from x. Once the front gets

sufficiently near, an observer at x can construct an estimated time of arrival (eta)

of the wavefront at x, based on the arrival times reported by observers at nearby

Accepted mesh points. Once x’s first eta is calculated, the mesh point is switched

from Unknown to Considered. Then, once the front actually hits x, it is switched to the

Accepted category, and one of the previously computed eta’s becomes the locked-in

value of U(x). This now finalized value of U(x) is then subsequently used in the eta

computations of other Considered and Unknown neighbors.

76



For the purposes of this analogy, we assume the observers do not have clocks or

other means of actually telling the passage of time. Instead, they have to estimate the

wave arrival time by using only the reported values of U for Accepted points and their

knowledge of the velocity field f . In order to make such an estimate, the observer at

x must determine (a) where the particle that will hit x first is currently located, (b)

the remaining path this particle will take before it gets to x, and (c) the time it will

take to traverse this path. Indeed, these are also three of the main decisions that a

numerical algorithm must make, and largely will be the key factors in determining

the accuracy of the method.

Let us remark on some of the key steps of Algorithm 1. First, in line 2, the mesh

point x with the smallest tentative value of U among all Considered points is selected.

This point is effectively the next point to be “hit” by the expanding wavefront, and

one can envision the level set {r ∈ Rd : U(r) = U(x)} as actually representing

the current state of the front, as illustrated in Figure 3.2. Since the minimizer will

need to be extracted from the Considered list at each iteration, the Considered list is

often given a heap-sort structure in practice so that the argmin can be computed in

O(logN) operations.

Next, we note that the definition of neighbors (line 4) and the process for com-

puting estimates Unew(y) (line 5) are left unspecified in Algorithm 1. These are the

main areas in which Dijkstra-like eikonal solvers will differ, and we describe below

some of the possible choices for these procedures in full detail.
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x

z

y

xλ∗

Fig. 3.3: The MAP of Considered or Unknown point y passes between nearby Accepted points

x and z.

Finally, we note that after computing a new tentative value Unew(y), this value

replaces the previous tentative value only if it is smaller. This particular choice of

Accept/Reject rule tries to filter out those estimates of U(y) that come from mesh

points x which are not necessarily near the MAP passing through y.

Computation of Unew: We discuss techniques for computing the update value

Unew(y) in line 5 of Algorithm 1. Suppose, as in Algorithm 1 that x has just been

switched to Accepted and we are now interested in using U(x) to compute a tentative

value of U(y) for a nearby “neighbor” y. Appropriate definitions of “neighbor” are

made precise under the next subheading.

To compute U(y), we seek to identify the MAP that passes through y (Figure

3.3). In general, this MAP will not pass directly through x; however, it may pass

between x and another neighboring mesh point z that also lies in the Accepted group.

In this case, the MAP will pass through the point xλ∗ = (1 − λ∗)x + λ∗z for some
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λ∗ ∈ [0, 1]. By noting that U(y) is the minimum cost (geometric action in the quasi-

potential case) over all paths terminating at y, we can write

U(y) = min
λ∈[0,1]

[
U(xλ) (3.3.4)

+ inf
L>0,ϕ∈C([0,L];Rd)

{
∫ L

0

‖ϕ̇(r)‖ dr
f(ϕ(r), ϕ̇(r))

: ϕ(0) = xλ∗ , ϕ(L) = y}
]
.

(3.3.5)

The key decisions to be made concern how best to approximate the right hand side of

equation (3.3.4). This requires determining (a) how to interpolate U(xλ), since xλ in

general lies between mesh points, (b) what path-space to take the inner minimization

over, and (c) what quadrature rule to use to approximate the action integral.

The simplest answers to these three questions are to (a) linearly interpolate

U(xλ) between the finalized values of U(x) and U(z), (b) use a linear path connecting

xλ and y, so that no inner minimization need occur at all, and (c) use right endpoint

quadrature (at y) of the action integral. This route is taken, for instance, by the

Ordered Upwind Method (OUM) of [59]. With these approximations, (3.3.4) becomes

Unew(y) = min
λ∈[0,1]

[
(1− λ)U(x) + λU(z) +

‖y − xλ‖
f(y, y−xλ

‖y−xλ‖
)

]
. (3.3.6)

This univariate minimization can then easily be carried out numerically. For the

isotropic case where f(y, v) = f(y), the minimizer λ∗ can be found analytically by

solving a quadratic equation.

The ordered line integral methods (OLIMs) [21, 22] for solving for the quasi-

potential also use linear interpolation for U(xλ) and linear paths, but they employ
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higher order quadrature rules instead of the right-hand rule. The most efficient choice

turned out to be the midpoint rule, which reduced the error constants by two-to-three

orders of magnitude compared to right-hand rule quadrature.

Update formula (3.3.6) in general leads to a first order O(h) error convergence

rate. It is perfectly valid for the quasi-potential problem, however in EJM we will opt

for higher order approximations of (3.3.4) in pursuit of a O(h2) convergence rate.

Neighborhoods The remaining undiscussed components of Algorithm 1 are

(i) how to choose the neighbors y to update from x (line 4) and (ii) how to choose

points z to pair with a given x and y for the computation of (3.3.6) (line 5).

The goal of neighborhood design is to assure that every mesh point y experiences

at least 1 of the (3.3.4) updates with an x and z that straddle its MAP as in Figure 3.3.

Since we do not a priori know where the MAPs will be coming from, many updates

will necessarily have to be performed where x and z do not surround the MAP at

all. These minimizations should result in boundary (λ = 0 and λ = 1) minimizers

of equation (3.3.4). Moreover, these solutions will typically result in proposed values

of Unew(y) that are larger than the true value. Therefore, they should eventually be

discarded by the Accept/Reject rule of line 6 if a proper interior solution is found.

However, for this to happen, the neighborhoods must be large enough to include

a valid 4xzy triangle where the MAP passes between x and z. We refer to such a

triangle 4xzy of mesh points, where U(x) < U(y), U(z) < U(y), and y’s MAP passes

between x and z, as a causal triangle.
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Due to this filtering system, it is in general harmless to increase the size of the

neighborhoods, since any extraneous updates will automatically be filtered out by the

Accept/Reject rule in the end. The drawback of using very large neighborhoods is

simply the additional computation time present in performing the additional mini-

mizations (3.3.4). The main goal of design is then to create neighborhoods that are

just large enough to ensure that at least one causal triangle is checked for each y.

To discuss minimum neighborhood sizes, we assume first the isotropic case where

f(y, v) = f(y). As we have seen, the MAPs are guaranteed to be orthogonal to the

level sets of U wherever U is differentiable, which is the case on a set of full Lebesgue

measure. Provided the MAP and level set of U are sufficiently flat (which can be

achieved for small enough h), a sufficient “neighborhood” of x in line 4 of Algorithm 1

is simply the 4-point diamond nearest neighborhood of x (Figure 3.4a). In such a case,

one could conduct update (3.3.4) using two different values of z: the two neighboring

members of y in the 4-point neighborhood of x (z1 and z2 in Figure 3.4a). It is easy to

see geometrically that because of the orthogonality relation between MAP and level

set, this procedure guarantees that a causal triangle is checked for every y. In fact,

the such a triangle will also necessarily be a right triangle with hypotenuse
√

2h.

Unfortunately, in the anisotropic case, where the orthogonality relation between

MAP and level set of U no longer holds, it is clear that the 4-point diamond neigh-

borhood is no longer sufficient, as shown by Figure 3.4b. The neighborhoods must be

larger in order to guarantee that update (3.3.4) is checked on a causal triangle. For
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Fig. 3.4: An illustration for what is a sufficiently large neighborhood. Red curves depict

level sets of the solution, blue curves represent MAPs, and gray-shaded areas repre-

sent Accepted mesh points. (a) Isotropic eikonal equation: 4-point neighborhoods

always guarantee a causal triangle since MAPs and level sets are orthogonal. (b,c)

Anisotropic eikonal equation: Larger neighborhoods are needed. In this example,

a 4-point neighborhood is insufficient, but an 8-point neighborhood is sufficient to

guarantee a causal triangle.

instance, in Figure 3.4b, an 8-point square nearest neighborhood would be sufficiently

large, as illustrated by Figure 3.4c.

It is intuitively clear that the necessary size of neighborhood will increase as

the angle between MAP and level set of U decreases. Since this angle is related to

the particle veloctiy speed anisotropy, a minimum possible neighborhood size can be
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determined by the anisotropy ratio

ρ := sup
x

supv f(x, v)

infv f(x, v)
.

For full descriptions of how neighborhood size can be determined from the anisotropy

ratio, see [59] and [21].

3.3.2 Anisotropic stencil refinement

In this section we describe the Anisotropic Stencil Refinement (ASR) algorithm of

Mirebeau [47] for solving anisotropic eikonal equations. The ASR algorithm follows

the prescription of Algorithm 1 and uses the approximation scheme (3.3.6), but with

pre-computed stencils serving as the “neighborhoods”. These stencils are significantly

smaller than the neighborhoods used in [59], so that the ASR algorithm is significantly

faster than OUM and only slightly less accurate.

Suppose we wish to solve the minimum cost problem associate with an action

of the form (3.3.1) where f has a finite anisotropy ratio ρ. For each mesh point

y, we first construct the stencil N (y), representing the candidates for x and z in a

potentially causal triangle4xyz. The neighborhood referred to in line 4 of Algorithm

1 will then be the reversed stencil

N−1(x) := {y ∈ X : x ∈ N (y)},

which represents the points y of which x might be a member of a causal triangle.

Next, we define the function

F(x, v) := s(x, v) ‖v‖ ,
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representing the integrand in the action functional (3.3.1). We assume that for each x,

the mapping F(x, ·) : R2 → [0,+∞) is an asymmetric norm, that is, it is subadditive

and positive definite, but only satisfies positive homogeneity: F(x, λv) = λF(x, v)

for all λ ≥ 0.

Definition 3.3.1. The vectors u and v are said to form an acute angle with respect

to an asymmetric norm G : R2 → [0,+∞) (or G-acute angle, for short) provided that

G(u+ δv) ≥ G(u), and G(v + δu) ≥ G(v), (3.3.7)

for all δ ≥ 0.

Remark 3.3.1. We note that if the asymmetric norm G is differentiable, it is easy to

see that acuteness conditions (3.3.7) are equivalent to

u · ∇vG(v) ≥ 0, and v · ∇vG(u) ≥ 0.

�

The objective will then be to construct a stencil N (y) for any y that is a collec-

tion of directions such that neighboring line segments terminating at y form F(y, ·)-

acute angles. That is, for each mesh point y, we seek to construct a finite (and

rotationally ordered) collection of mesh points N (y) = {yk}nyk=1, such that y− yk and

y − yk+1 form a F(y, ·)-acute angle for each k = 1, ..., ny.

Note that when s(x, v) = s(x), the norm F(x, ·) is a multiple of the standard

Euclidean norm so that F(x, ·)-acute angles become ordinary Euclidean acute angles.
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Thus, the standard 4-point diamond neighborhood discussed in the previous section

is an admissible stencil, since neighboring directions are separated by right angles.

The guarantee that such a stencil creates causal triangles is provided by the

following causality property.

Proposition 3.3.1 (Proposition 1.3 of [47]: Causality Property). Let G be an asym-

metric norm on R2. Let u, v ∈ R2 be linearly independent and let du, dv ∈ R. Assume

that u and v form an G-acute angle. Define

dw := min
t∈[0,1]

tdu + (1− t)dv +G(tu+ (1− t)v), (3.3.8)

and assume that this minimum is not attained for t ∈ {0, 1}. Then du < dw and

dv < dw.

We do not provide the proof here, but rather defer it to [47]. It can be done

rather succinctly using Lagrange multipliers. We do, however, provide a geometric

proof in Section 3.4 of a similar statement in the quasi-potential case that sheds more

light on why this acuteness condition is relevant.

Let us remark on Proposition 3.3.1. The right hand side of (3.3.8) is precisely the

right hand side of the update formula (3.3.6) for Unew(y), if u = x, v = z, du = U(x)

and dv = U(z). Thus Proposition 3.3.1 can be interpreted as saying that if the xy

and zy legs of the xyz triangle form a F(y, ·)-acute angle and an interior minima is

found, then necessarily U(x) < Unew(y) and U(z) < Unew(y). This means, assuming

U(x) > U(z) without loss of generality, that when x is switched to Accepted, z would
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already be an Accepted point so that the triangle 4xyz would yield a valid interior

update, as desired.

The final step is then to define a method for creating causal stencils for a given

problem. In [47], Mirebeau defines stencils via Algorithm 2, in which the base stencil

is a 4-point diamond that will be refined as necessary, until all neighboring angle are

F(y, ·)-acute. For completeness, we also provide the full description of the FM-ASR

in Algorithm 3.

Algorithm 2 FM-ASR Stencil Design [47]

for y ∈ X do

Set L := [(1, 0)] and M := [(1, 0), (0,−1), (−1, 0), (0, 1)].

while M is non-empty. do

Set u and v to the last elements of L and M , respectively.

if u and v are F(y, ·)-acute then

Remove v from M and append v to L.

else

Append u+ v to M .

Set N (y) := y − L.

Output {N (y)}y∈X .
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Algorithm 3 Fast March Anisotropis Stencil Refinement (FM-ASR) [47]

Initialization and Pre-processing

Start with all mesh points in X in Unknown and set them to U = +∞.

Set U(O) = 0 and add O to Considered.

Compute the stencils {N (y)}y∈X via Algorithm 2.

Compute the reversed stencil {N−1(x)}x∈X by inverting the stencils {N (y)}y∈X .

Main Body

1: while (Considered is non-empty) do

2: Set x := arg min
z∈X

{
U(z) : z ∈ Considered

}
.

3: Switch x from Considered to Accepted and lock in its current value of U(x).

4: for each y ∈ N−1(x) such that y /∈ Accepted do

5: Letting N (y) = {yi}nyi=1 and supposing x = yk, define z1 := yk−1 and

z2 := yk+1.

Set Unew = min(Unew,1, Unew,2), where Unew,i is computed via (3.3.6) over

the triangle 4xziy.

6: Set U(y) := min(U(y), Unew(y)).

7: Switch y to Considered if it was previously in Unknown.
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3.4 Our algorithm: Efficient Jet Marcher

Like the previously discussed solvers, our Efficient Jet Marcher (EJM) algorithm

follows the general template of Algorithm 1. Unlike the previously discussed solvers,

EJM will instead use a higher order MAP approximation scheme as compared to

(3.3.6), as well as a modified version of Mirebeau’s pre-computed stencils. The full

structure of the solver is shown in Algorithm 4.

We remark briefly on key observations about Algorithm 4; detailed descriptions

are provided in the subsequent sections. The first observation is that the gradient∇U ,

is now treated as part of the solution and is included in all of the update computations.

This will be necessary to perform the higher order MAP interpolations in the update

step of line 7 (Section 3.4.2).

As in the OLIM methods [21, 22], we apply a slightly a more involved initial-

ization process. This is typically only needed when the MAPs exhibit significant

curvature near the origin. The most common technique is to simply initialize U and

∇U with the exact solution corresponding to a linearized version of b around the

attractor O. We discuss initializations in more detail in Section 3.4.5.

Concerning the construction of anisotropic stencils, we follow the ideas of Mire-

beau [47], discussed in Section 3.3.2. However, we also use the fact that stencils only

depend on the angle of b(x) and not its magnitude, to save the stencils only for a

binned collection of possible angles of b. This drastically reduces the memory require-
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ment and the runtime of pre-processing phase. Moreover, this allows us to skip the

stencils entirely and compute the reversed stencils directly, since these are ultimately

the objects used in the body of Algorithm 4. We also use a slightly different stencil

construction algorithm. All of which is described in Section 3.4.1.

The if-statement and subsequent fail-safe method, mentioned in lines 3 and

4, are used to prevent values of U(x) computed from one-point updates (boundary

solutions to the update minimization problem (3.3.4)) from becoming finalized values.

As we will see, due to practical reasons the stencils are not perfect and will occasionally

fail to find causal triangles. If these failures are not caught and corrected, the higher

order accuracy may not be achieved. This fail-safe is called only very rarely. When

called, it searches a much larger area than the stencil until it finds a successful triangle

update (interior solution of (3.3.4)).

Finally, the most important difference lies in the structure of the update pro-

cedure (line 7) and prescription for computing the right hand side of (3.3.4). This

procedures is responsible for the O(h2) error convergence rate. It is discussed in detail

in Section 3.4.2.

3.4.1 Anisotropic stencils

We return to the anisotropic stencil ideas introduced in Section 3.3.2. For the quasi-

potential problem, we have

F(y, v) = ‖b(x)‖ ‖v‖ − b(x) · v.
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Algorithm 4 Efficient Jet Marching Algorithm (EJM)

Initialization and Pre-processing

Start with all mesh points in X in Unknown and set them to U = +∞ and ∇U =

(∞,∞).

Initialize the U and∇U values of an 8-point rectangular neighborhood of the attractor

O (Section 3.4.5).

Switch each of these points into Considered.

For each θk = 2πk
Nbins

, k = 0, ..., Nbins−1, construct the reversed stencilsN−1(θ) (Section

3.4.1).

For each x ∈ X ∼ {O}, assign N−1(x) := N−1(θk) where k is such

−∠b ∈
(
θk −

π

Nbins

, θk +
π

Nbins

]
.

Main Body

1: while (Considered is non-empty) do

2: Set x := arg min
z∈X

{U(z) : z ∈ Considered}.

3: if x’s last update is a one-point update then

4: Run the fail-safe on x (Section 3.4.4).

5: Switch x from Considered to Accepted.

6: for each y ∈ N−1(x) such that y /∈ Accepted do

7: Update U(y) and ∇U(y) from x and possibly other z ∈ Accepted (Section

3.4.2).

8: Switch y to Considered if it was previously in Unknown.
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This is subadditive and positive homogeneous, but not positive definite, since

F(y, λb(x)) = 0,

for any y and any λ > 0. Nonetheless, the machinery of the ASR method can still be

applied, for instance, by considering instead a modified function

Fα(y, v) = ‖b(y)‖ ‖v‖ − αb(y) · v,

where α = 1− δ for some δ > 0 very small. Such an Fα(y, ·) is an asymmetric norm

for any x such that b(x) 6= 0.

For each y ∈ X , we seek to construct a stencil N (y) such that neighboring

points yk, yk+1 ∈ N (y) form line segments u = y−yk
‖y−yk‖

and v = y−yk+1

‖y−yk+1‖
that satisfy

the acuteness conditions (3.3.7), which, in the quasi-potential case, reduces to the

conditions

u · v ≥ u · (−b(y)), and u · v ≥ v · (−b(y)).

It is not intuitively clear where these acuteness conditions come from. To motivate

them, we provide a simple geometric proof of the following proposition, which is

essentially a corollary of Proposition 3.3.1 for the specific case of the quasi-potential

problem.

Proposition 3.4.1. Suppose the drift field b is smooth, fix y ∈ R2 and let φ denote

the MAP passing through y. Suppose that D is a rotationally ordered collection of

unit directions in R2 such that any neighbors û, v̂ ∈ D satisfy

û · v̂ ≥ max
(
− û · b̂,−v̂ · b̂, 0

)
, (3.4.1)
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where b̂ = b(y)/|b(y)|. Then there exists neighbors û, v̂ ∈ D and h > 0 small enough

that φ passes between A := y + hû and B := y + hv̂ while U(A) < U(z) and U(B) <

U(z).

Proof. Suppose first that U is continuously differentiable at y. Let τ̂ be the tangent

vector of the level set {y : U(y) = U(z)} at z. Picking scale h > 0 such that U and

φ are locally flat, the setup looks like Figure 3.5. By taking the dot product of both

sides of equation (3.1.3) with τ̂ , we immediately have that

( φ′

‖φ′‖

)
· τ̂ = b̂ · τ̂ =: cos(θ).

b̂

v̂

û

τ̂

φ′

θ

θy

Fig. 3.5: If (3.4.1) is satisfied, there must exist neighbors û, v̂ ∈ D that sandwich the

incoming MAP ϕ and both lie in the shaded region {x : U(x) < U(z)}.

The result then follows by noting that there must exist a direction û ∈ D lying

between −φ′ and −τ̂ , as in Figure 3.5. We can see this by realizing that there cannot

exist neighbors û, v̂ ∈ D that straddle the wedge created by −τ̂ and −φ′. If there did
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exist such neighbors, û between −b̂ and −τ̂ and v̂ between b̂ and −φ′, then we would

immediately contradict the acuteness requirement, since

−b̂ · û > −b̂ · −τ̂ = cos θ = −
( φ′

‖φ′‖

)
· −τ̂ > û · v̂.

Hence nearest neighbors cannot straddle the wedge, and there must be neighbors

û, v̂ ∈ D surrounding φ′ that both lie in the half-plane of directions opposite ∇U .

We now seek to construct stencils such that neighboring directions satisfy acute-

ness condition (3.4.1). To do this, we make the following two approximations to reduce

computation time and memory requirements.

(1) We take the reversed stencils to be

N−1(y) = −N (y), (3.4.2)

so that the reversed stencils are readily obtained by choosing a set of directions

satisfying

û · v̂ ≥ max(û · b̂, v̂ · b̂, 0).

and the original stencils N (y) need not be computed at all.

(2) We save reversed stencils only for Nbin different uniformly spaced values of the

angle of b(x).

Approximation (1) is taken to speed up the computation time of the pre-

processing phase of Algorithm 4. The process of inverting the stencil can be time
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consuming for fine meshes, since its complexity is O(K(N )h−2) where K(N ) is the

average stencil cardinality. Moreover, the approximation (3.4.2) is very close to exact

on a scale h > 0 such that the MAPs are approximately flat.

Approximation (2) is taken to reduce memory requirements of the algorithm.

Here, we take use of the fact that the metric F(x, ·) only depends on the angle of

b(x). Therefore, the reversed stencils can be saved for a common set of θ = ∠b values

rather than one for every mesh point x ∈ X . Angles are binned as mentioned in the

pre-processing phase of Algorithm 4. We do note however, that this shortcut is only

possible because we are using a mesh that is translation invariant, so that we need

only to store the shifts in the reversed stencil. This would not be possible if instead

we were using a non-uniform mesh.

To construct the reversed stencils, one option is to follow the prescription of

Algorithm 2. However, since F(x, ·) is not positive definite, one should modify the

process or else it will never terminate, as it will attempt to refine the reversed stencil

in the direction of −b(x) indefinitely. One solution, is to instead use the modified

version of Fα, mentioned above, for some α very slightly below 1. The value of α will

control how refined the reversed stencil is in the −b(y) direction: our typical values

is 0.9999. An alternative options is simply to cut off the production algorithm once

the leg in the direction of −b(y) reaches some maximum threshold value.

We opted to construct the reversed stencils via another route. Instead, we noted

that for a given value of ∠b, a minimal set of directions satisfying relations (3.4.1) can
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α0

α1

α2

α3

α−1

α−2

α−3

b̂

Fig. 3.6: The infinite collection of angles {αk}∞k=0 with αk given by (3.4.3) satisfy (3.3.1)

with equality except right at the direction b̂.

be easily written down. In fact, consider the infinite collection of angles {αk}∞k=−∞

where

αk = ∠b̂+ sgn(k)
π

2|k|
, (3.4.3)

which is displayed in Figure 3.6. Here, it is clear that αk+1 − αk = αk − ∠b so

that relation (3.4.1) holds with equality. Such a simple characterization of an “ideal”

stencil is certainly not possible for the general case of an anisotropic eikonal equation.

Thus, rather than following Algorithm 2 which is designed to work for the general

case, we seek to construct stencils by directly discretizing rotated versions of the

collection shown in Figure 3.6.

The construction of our discretization of Figure 3.6 is given in Algorithm 5, with

the supporting Figure 3.7. The reversed stencil consists of a discretization of |k| − 1
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equi-spaced points along each of the αk rays in Figure 3.6, up until some maximum

k value. Since these are all non-integer points, their nearest neighbor in Z2 is added

instead. In addition to these points, the standard 8-point neighborhood is included.

Algorithm 5 is a rather simple method for discretizing Figure 3.6 in a way that

is both non-hollow and elongated in the direction of b̂. Example stencils created via

the two methods are displayed in Figure 3.8. The stencil created via Algorithm 5

is slightly less concentrated in the direction of anisotropy and has denser interior:

properties that have shown to perform slightly better in practice.

Algorithm 5 Construction of dense oblong reversed stencils

Let θ be the binned value of −∠b.

Set kcutoff = largest k to include in discretization of αk (Figure 3.6). Value kcutoff = 4

is typical.

Set dgap = spacing between sampled points on each ray (in multiples of h). Value

dgap = 3 is typical.

1: Add {(1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1,−1), (0,−1), (1,−1)} to N−1(θ).

2: Let M be an empty list of points.

3: for k = 2 : kcutoff do

4: for n = 1 : |k| − 1 do

5: Add n · dgap · (cos(θ + π
2k

), sin(θ + π
2k

) to M

6: for each point (x, y) ∈M do

7: Add the closest integer pair (round(x), round(y)) to N−1(θ).
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z

b̂

π/4

π/8 π/16
π/32 = αkcutoff

π/2

dgap

Fig. 3.7: The stencil consists of all of the blue circled mesh points, along with the analog

procedure done on the other side of b̂ and overlayed with a standard 8-point

neighborhood of z.

3.4.2 Update procedure

In this section, we discuss how the update procedure (line 7 of Algorithm 4) is con-

ducted. In EJM, this procedure is considerably more involved than the OUM where a

quadratic equation is solved, and the OLIMs where only a 1D minimization problem

is solved. We provide a full description of the update process in Algorithm 6 at the

end of this section.

As mentioned in Section 3.4, we henceforth distinguish between the process

of checking for interior and exterior solutions to (3.3.4), which we refer to as one-

point updates and triangle updates, respectively. That is, one-point updates compute

values of U(y) and ∇U(y) from a single mesh point x, while triangle updates, when

successful, compute values of U(y) and ∇U(y) from two mesh points x and z.

One-point updates: As in Algorithm 4, we suppose that mesh point x has just

been switched to Accepted, and the mesh point y ∈ N−1(x) is to be updated from x.
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(a) FM-ASR Reversed Stencil
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(b) Dense Oblong Reversed Stencil

Fig. 3.8: Sample Reversed Stencils created using Algorithms 2 and 5, respectively. Both of

these stencils have the same cardinality.

Let φ be the MAP that passes through y. We assume throughout the remainder that

the drift field b(x) is twice continuously differentiable. In view of equation (3.3.4), it

follows that

U(y) ≥ U(x) + inf
L>0,ϕ∈C([0,L];Rd)

{
∫ L

0

‖ϕ̇(r)‖ dr
f(ϕ(r), ϕ̇(r))

: ϕ(0) = x, ϕ(L) = y}, (3.4.4)

with equality if and only if x lies on the MAP φ. The one-point update will be a

numerical approximation of this right-hand side. The resulting proposed value of

U(y), will in general only be a good estimate of the true value if x lies very near φ.

It will be a significant overestimate otherwise.

In approximating the right hand side of (3.4.4), we opt to conduct the mini-

mization over the two-parameter family of paths ϕ̃α,β : [0, 1]→ R2 consisting of cubic

curves with fixed endpoints at x and y. This family is parametrized by the entry and
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exit angles α and β (Figure 3.9a), while each individual path ϕ̃α,β is parametrized by

its normalized coordinate in the y − x direction. Complete formulas can be found in

the Appendix.

For a given path ϕ̃α,β, we approximate the integral in (3.4.4) by using a Simp-

son’s quadrature rule. We also adopt the notation Ux
new(y) and ∇Ux

new(y) to denote

the proposed values of U(y) and ∇U(y), respectively, from the one-point update from

mesh point x. Hence, we set

Ux
new(y) := U(x)+ min

α,β∈[0,2π]

‖y − x‖
6

[ ∥∥ϕ̃′α,β(0)
∥∥

f(x, ϕ̃′α,β(0))
(3.4.5)

+ 4

∥∥ϕ̃′α,β(1/2)
∥∥

f(ϕ̃α,β(1/2), ϕ̃′α,β(1/2))
+

∥∥ϕ̃′α,β(1)
∥∥

f(y, ϕ̃′α,β(1))

]
. (3.4.6)

We conduct this two-dimensional minimization over α and β by using Newton’s

method. The cumbersome derivatives are implemented by hand, but we note that this

could potentially be improved by implementing automatic differentiation techniques.

In view of relation (3.1.3), the proposed one-point update value of the gradient

U is

∇Ux
new(y) = ‖b(y)‖ ϕ̃′α∗,β∗(1)− b(y),

where α∗ and β∗ are the minimizing angles of (3.4.5).

We remark that if the numerical solver fails to find a minimizer of (3.4.5), then

the values α = 0 and β = 0 are used to compute Ux
new(y) and∇Ux

new(y). The proposed

update value then represents an approximation of using a linear MAP and Simpson’s

rule quadrature. From our empirical observations, such a failure is extremely rare
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Fig. 3.9: Diagrams for the (a) One-point updates and (b) triangle updates. The MAP

is approximated by minimizing the geometric action over the families ϕ̃α,β and

ϕ̃α,β,λ, respectively.

unless there is a significant amount of curvature of the MAP over the one-point

update in question. In scenarios where the MAP is very flat, minimizing values of α

and β are very close to 0 and the Newton solver has little difficulty finding them.

Triangle Updates: Conversely, suppose now that points x and z are Accepted

and that we seek to update the values of U(y) and ∇U(y) using x and z. The triangle

update will search for interior (in λ) minimizers of (3.3.4) corresponding to a situation

described by Figure 3.3.

As in the case of the one-point update, we approximate the MAP with a cubic

polynomial terminating at y. However, here the starting point xλ = (1− λ)x+ λz is

allowed to vary on along the xz line segment as part of the minimization.

In approximating the right hand side of (3.3.4), we opt to conduct the mini-
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mization over the three-parameter family of paths ϕ̃α,β,λ : [0, 1] → R2 consisting of

cubic curves with fixed endpoints at xλ and y (Figure 3.9b). As before, this family

is parametrized by the entry and exit angles α and β, in addition to the value of

λ ∈ [0, 1]. Each path ϕ̃α,β,λ is parametrized by its normalized coordinate in the y−xλ

direction. In particular, the coordinate systems vary with the value of parameter λ.

Notice that in the one-point update, we did not use the value of ∇U(x) in

order to perform the update. We use it here, however, to interpolate the value of

U(xλ). In particular, we interpolate U(xλ) with the unique cubic Hermite polynomial

p : [0, 1]→ R satisfying boundary conditions
p(0) = U(x), p′(0) = ∇U(x) · (z − x),

p(1) = U(z), p′(1) = ∇U(z) · (z − x).

Then, similar to the case of the one-point update, we take a Simpson’s rule

approximation of the integral in (3.3.4). As before, we adopt the notation Ux,z
new(y)

and ∇Ux,z
new(y) to denote the proposed values of U(y) and ∇U(y), respectively, from

the triangle update of y from x and z. Thus, we set

Ux,z
new(y) := min

λ∈[0,1],α,β∈R

(
p(λ) +

‖y − xλ‖
6

[ ∥∥ϕ̃′α,β,λ(0)
∥∥

f(xλ, ϕ̃′α,β,λ(0))

+ 4

∥∥ϕ̃′α,β,λ(1/2)
∥∥

f(ϕ̃α,β,λ(1/2), ϕ̃′α,β,λ(1/2))
+

∥∥ϕ̃′α,β,λ(1)
∥∥

f(y, ϕ̃′α,β,λ(1))

])
. (3.4.7)

As before, we perform the three-dimensional minimization over α, β and λ using

Newton’s method with exact derivatives. Similarly, the proposed update value of the
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gradient is

∇Ux,z
new(y) = ‖b(y)‖ ϕ̃′α∗,β∗,λ∗(1)− b(y),

where α∗, β∗, λ∗ are the minimizing parameter values i of (3.4.7).

Unlike in the linear approximation minimization problems, (3.3.6), here we are

only interested in interior solutions since exterior solutions are handled by the separate

one-point updates. As such, we terminate the numerical solver once the working

value of λ leaves the interval [0, 1] and return failure of the triangle update. Since the

triangle update should only succeed if the MAP passes through the xz line segment,

the vast majority of attempted triangle updates should result in failure.

We now state the full update procedure (Algorithm 6). Justification for the

Accept/Reject rule (lines 2 and 7, and Condition 3.4.1) and the choice of points z for

the triangle updates (line 4) are given in the next section.

Condition 3.4.1. Let Ux,z
new(y) and∇Ux,z

new(y) be the values proposed from a successful

triangle update with minimizing λ value λ∗. The proposed values are Accepted if and

only if

(A) Ux,z
new(y) is smaller than all previous proposed one-point update values U ·new(y)

of y.

(B) If the current tentative value of U(y) came from a triangle update 4xoldzoldy,

then we must have

‖xλ∗ − y‖ <
∥∥xλ∗old

− y
∥∥ ,
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Algorithm 6 Update neighbors y of x (line 7 of Algorithm 4)

Let x be newly Accepted and y ∈ N−1(x) be Unknown or Considered.

1: Compute one-point update values Ux
new(y) and ∇Ux

new(y) from (3.4.5).

2: if Ux
new(y) < U(y) then

3: Set U(y) := Ux
new(y) and ∇U(y) := ∇Ux

new(y).

4: for z in 8 point nearest neighborhood of x (Figure 3.10a) do

5: if z is Accepted then

6: Compute triangle update values Ux,z
new(y) and ∇Ux,z

new(y) from (3.4.7).

7: if triangle update is successful and Condition 3.4.1 is met. then

8: Set U(y) := Uxz
new(y) and ∇U(y) := ∇Uxz

new(y).

where xλ∗old
= (1 − λ∗old)xold + λ∗oldzold and λ∗old is the minimizing λ from the

xoldzoldy update.

3.4.3 Practical difficulties

There are several key algorithmic difficulties that arise in our higher order O(h2)

solver but are not present in the previous O(h) solvers. We describe these in detail

in this section, in order to justify the decisions made in Algorithm 6 and the fail-safe

method, discussed in the next section.

Large triangles. First, we note that with cubic interpolation, the error in the

approximation of U(xλ) in the triangle updates grows more quickly with respect to

the length of the xz line segment. If we suppose that U(x), U(z), ∇U(x) and ∇U(z)
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are equal to the correct values, then the interpolated polynomial p(λ) should satisfy

sup
λ∈[0,1]

|p(λ)− Ucorrect(xλ)| ≈ O(|x− z|4),

whereas a linear interpolation has worst case error that grows with O(|x− z|2).

As such, it is critical to reduce the size of the xz leg of triangle updates as

much as possible. To this purpose, we deviate from the procedure used in the ASR

algorithm. Instead of using x and its two neighboring elements in the stencil N (y)

(line 5 of Algorithm 3) as candidates for the point z, we opt to run a triangle update

with x and each of its 8-point nearest neighbors as z. This limits the xz leg to a length

of either h or
√

2h, compared to a potentially much larger xz length when neighboring

elements of the stencil are used (Figure 3.10). The cost of this improvement in

accuracy, however, is the requirement of between 2 and 3 times as many total triangle

updates to be performed.

A more difficult but related problem to handle is the reduction of the size of the

update length |xλ− y| in both the triangle updates and the one-point updates. Here,

due to the Simpsons rule quadrature we expect the local error of a (3.4.7) update to

scale with update length on the order of O(|xλ − y|5).

This issue unfortunately is much more difficult to handle. There are cases where

it is unavoidable to have a large update length |xλ − y| when the angle between the

MAP and level set of U is small (see Figure 3.12 for example). In fact, we see

very clearly that in those situations the accuracy benefits of the EJM algorithm are

significantly reduced (see Section 3.5).
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x

y

(a) Triangle update is performed for each z

in the 8-point neighborhood of x, as in

Algorithm 6.

x

y

(b) Triangle update is performed with z be-

ing the two mesh points next to x in

N (y), as in Algorithm 3.

Fig. 3.10: Possible choices of z for triangle updates. Dashed lines indicate bases used for

triangle updates, while blue dashed lines indicate bases that should result in

successful triangle updates.

Our solution to minimizing this triangle leg is the enforcement of Condition 3.4.1

(B). Instead of using the U(y) := min(U(y), Unew(y)) Accept/Reject rule of Algorithm

1, we instead accept a new triangle update over a previous triangle update, only if

the new update length |xλ− y| leg is smaller than the previous update length. We do

not, however, require that the new triangle update propose a smaller value of U(y)

than the previous triangle update value because the value with a longer update length

may be artificially too small.

In addition, to reduce the effect of the increased quadrature error of formulas

(3.4.5) and (3.4.7) for large triangles, we increase the refinement of the Simpsons rule

quadrature. Specifically, once the minimizing path ϕ̃α∗,β∗,λ∗ of (3.4.7) is found, the

actual proposed update value Ux,z
new(y) is computed with a Simpson’s rule approxi-
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mation of (3.3.4) along ϕ̃α∗,β∗,λ∗ , but with a larger number of nodes sampled along

ϕ̃α∗,β∗,λ∗ . For the number of nodes, we typically use the smallest odd number greater

than 1+|xλ∗−y|/h. Thus, for update lengths of h and
√

2h, the number of nodes used

in the Simpsons rule evaluation is the usual 3, but for larger triangles, the number

of nodes is proportional to |xλ∗ − y|. This refinement significantly reduce quadrature

error when there is a large number of long-distance updates.

Missed triangle updates. Second, the vast reduction in the error from tri-

angle updates (3.4.7), causes the error from one-point updates to be unacceptably

large by comparison. The error discrepancy between the two types of updates is still

present in earlier quasi-potential solvers, but is of far smaller magnitude. In fact, with

the EJM method, a small handful of mesh points whose final updates are one-point

updates will destroy the expected O(h2) error convergence rate. It is therefore es-

sential that the final Accepted value of U(y) for each y comes from a triangle update

rather than a one-point update. This is precisely the purpose of the fail-safe discussed

in Section 3.4.4.

Undesirable local minima. Finally, there is a third more subtle problem

introduced by adopting (B) of Condition 3.4.1 as part of the Accept/Reject rule:

namely, that the right hand side of (3.4.7) may have local minima that have nothing

to do with the desired MAP. An example of such a local minimum that does not

correspond to a MAP is shown in Figure 3.11a. Under the traditional Accept/Reject

rule U(y) := min(U(y), Unew(y)), the presence of these local minima is not an issue
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Fig. 3.11: Pitfalls: (a) A situation where a local minimizer (red) of (3.4.7) exists which does

not correspond to the true MAP (blue) and (b) a situation where no successful

triangle update occurs for a point y near the attractor O because the curvature

of the MAP (blue) is too great .

since these “fake” paths necessarily correspond to overestimates of U(y) and are hence

filtered out. This is not the case when we just use Condition (B) as the accept rule,

since we are filtering based on update length.

To mitigate this problem, we introduction (A) of Condition 3.4.1. With (A),

a valid triangle update must propose a value of U(y) smaller than any previously

proposed one-point update values of U(y). This filters out any “fake” paths that

lead to answers worse than the best of the one-point updates. This is certainly not a

guarantee that all of the other possible local minima will be prevented, but rather,

a guarantee that the ones that do slip by, will provide update values at least as good

as the best one-point update.
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A

B

y

U(x) = U(y)

ϕ

B1 B2 B3 B4 B5

Fig. 3.12: The fail-safe will check Bk for each k until a successful two-point update is found.

Here the first time a two-point update should be successful is on iteration k = 5

with x = A and z = B.

3.4.4 Fail-safe

As mentioned above, it is critical that Accepted mesh points have a final value of U

coming from a triangle update, rather than from a one-point update. To ensure this

is the case we run the following fail-safe procedure on any mesh points whose final

update is a one-point update.

Let x be the Considered mesh point with the smallest value of U in Considered as

in Algorithm 4. Suppose that x’s most recent update is a one-point update. As shown

in Figure 3.12, let Bk be the set of mesh points a distance kh in `1 norm away from

y. We simply search each Bk, starting from k = 1, for a pair of Accepted neighbors A
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and B in Bk that provide a successful triangle update of x. If we find such a pair, we

use the associated triangle update values of U(x) and ∇U(x). If the procedure does

not succeed through some large k threshold (we typically use k = 20), we revert to

the prior one-point update value of U(x).

It is important to note that since the value of U(x) is changed (and typically

lowered) after x was selected from the Considered list, we may lose the monotonic

ordering of points in Accepted. That is, a mesh point may have its value of U lowered

during the fail-safe procedure such that it is now smaller than some points already

in the Accepted list. This would have some significant adverse consequences if the

fail-safe is called too frequently. However, provided that the fail-safe is called only

a small percentage of mesh points, these potential deviations from causality have a

negligible impact.

We note also that the presence of the fail-safe allows some flexibility in the

creation of the stencils. As long as the stencils are reasonably well refined in the

direction of anisotropy, the fail-safe will correct for the few cases where the MAP

might be able to sneak by the stencils.

3.4.5 Initialization

When the attrator O is a point attractor, the importance of the initialization largely

depends on the linearization of the drift field around O. For highly rotational fields

(see Figure 3.11b) where the MAP undergoes infinite curvature at O, the ever-

109



important triangle updates are not going provide satisfactory approximations of the

MAP. Since the performance fundamentally depends on the triangle updates, the

standard initialization procedure of Algorithm 1 is insufficient here.

In most cases, it is sufficient to initialize the MAP on the 8-point nearest neigh-

borhood of the attractor O. Here, we approximate the solution U and ∇U on this

neighborhood by the linearized solution. That is, suppose that b is continuously

differentiable in a neighborhood of O, and let

b(x) =

b11 b12

b21 b22


x1

x2

+O(|x|2),

in a neighborhood of O (assuming without loss of generality that O = (0, 0)). The

quasi-potential corresponding to equation (3.1.1) with instead the linear drift is ex-

plicitly known (Section 4.1.2 of [14]) and we use this known formula to initialize the

values of U and ∇U .

Due to the possibility of the situation shown in Figure 3.11b, this may not be

sufficient if the MAPs still display heavy curvature in the 8-point neighborhood of O.

For these situations, it may be necessary to initialize by running run a separate, more

heavily refined quasi-potential solving routine on the neighborhood where curvature

is strong.
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3.5 Results

In this section, we compare the performance of the EJM with several other methods

on a pair of test problems. In particular, we are interested in the error convergence

rates with respect to the mesh spacing h displayed by the EJM.

3.5.1 Nonlinear drift with varying rotational components

As our first example, we consider the nonlinear drift field

b(x, y) = −1

2

4x+ 3x2

2y

+
a

2

 −2y

4x+ 3x2

 . (3.5.1)

Written this way, we immediately have the orthogonal decomposition b = −1
2
∇U + `

with ` ⊥ ∇U , as in Remark 2.3.3. Here, the potential is given by U(x, y) = 2x2 +

x3 + y2. The parameter a controls the rotational component of the drift field. The

flow lines of (3.5.1) (sample trajectories of the deterministic system Ẋ = b(X)) are

shown in Figures 3.13 and 3.15 for different values of a.

The drift field b admits a stable attracting equilibrium at O = (0, 0) and a

saddle at the point x0 = (−4/3, 0), for any value of a. As we see in Figure 3.13, for

a = 0.1 the eigenvalues of the linearization of b around O are both real, and there is

no spiraling of the flow lines. The cases a = 1 and a = 10 correspond to flow lines

displaying a moderate and large amount, respectively, of spiraling around O.

Moreover, as can be seen by Figure 3.5, the MAPs behave in the same way as

the flow lines, but with a flipped rotational component. Thus, they exhibit the same
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degree of spiraling. Some sample MAPs are shown for (3.5.1) in Figure 3.14.
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Fig. 3.13: Flow lines for drift field (3.5.1) for three values of a.
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Fig. 3.14: Some MAPs for drift field (3.5.1) for three values of a.

For this problem, we compute the quasi-potential on the box D = [−1, 1] ×

[−1, 1], discretized into an N ×N square mesh with common horizontal and vertical

mesh spacing h = 2/N . We run EJM for the values N = 2k for k = 7, ..., 12.

The solver is terminated once the first boundary mesh point is added to Accepted,

corresponding to the first time the “wave” hits the edge of the box. Since this domain
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Fig. 3.15: Flow lines for drift field (3.5.1) with a = 1. The red marker indicates the attractor

O = (0, 0) while the black marker indicates the unstable saddle at (−4/3, 0).

D is within the well of attraction of O, the solution U(x) = 2x2 +x3 +y2 is the quasi-

potential. We remark that outside the well of attraction, this is not the case.

We compare the performance of EJM to three other quasi-potential solvers. The

primary comparison benchmark is the OLIM with midpoint quadrature [21, 22], the

highest prior performing mesh-based quasi-potential solver. In addition, we compare

EJM to a routine that uses the same cubic Hermite update formulas developed for

EJM, but with the neighborhood selection strategy used in the OLIMs, rather than

the anisotropic stencil strategy used in EJM. This benchmark is used to gauge the

improvement in computing time obtained by the use of anisotropic stencils. Finally,

we compare the EJM to Mirebeau’s ASR algorithm directly [47], using linear up-

date formulas with endpoint quadrature and anisotropic stencils constructed from

the asymmetric norms Fα (see Section 3.4.1). Each of these three benchmark meth-
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ods we run on the same set of N values for the three different values of a.

Errors in U . In the left column of Figure 3.16, we plot the maximum error of

U over all Accepted points versus N for each of the 4 methods and each of the three

values of a. Best polynomial fits were computed and are shown in Table 3.1.

The most important takeaway is the clear 2nd order convergence rate in the

errors for EJM for the cases of mild and moderate rotational components of the

drift (left panel of Figures 3.16a and 3.16b). Best fit rates are 1.96 and 1.94 for

a = 0.1 and a = 1, respectively. On the other hand, OLIM-midpoint, the prime

metric of comparison, displays rates of 1.24 and 1.41, respectively, consistent with

the super-linear, but not 2nd order convergence rates seen in [21]. For the largest

grid size N = 4096 that we sampled, the performance difference between EJM and

OLIM-midpoint is over 4 orders of magnitude for a = 0.1 and a = 1.

The accuracy improvement when the rotational component is large (a = 10,

left panel of Figure 3.16c), is much smaller. Part of this is due to the significantly

improved performance of OLIM-midpoint on drift fields with high-rotational compo-

nents (discussed in [21]), while part of this due to the poorer performance of EJM on

high-rotational drift fields. Nonetheless, EJM still performs better but not quite at

a second order rate – the best convergence rates is 1.73. The decreased performance

of EJM for this case is explained by the presence of more long-distance triangle up-

dates, which is a consequence of the small angles between MAP and level set of U

(see Section 3.4.3 and Figure 3.12).
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Runtime. To analyze the utility of the anisotropic stencils, we compare the

EJM with the OLIM-cubic method. As we see in the left panel of Figure 3.16, in the

a = 0.1 and a = 1 case the errors of these two methods are indistinguishable, while in

the a = 10 case they are very close. This is expected since these two methods differ

only in the choice of neighborhoods and not in the update procedures.

The important piece of information is the difference in runtime between these

two methods, shown in the right panel of Figure 3.16. For the a = 0.1 and a = 1

cases, EJM is consistently between 7 and 8 times faster. In the a = 10 case, the

improvement factor is only about 5, likely due to a larger number of fail-safe calls due

to stencil sparsity.

Tab. 3.1: Best fits for the supremum error of U as a function of N .

a = 0.1 a = 1 a = 10

EJM 0.14 ∗N−1.96 0.20 ∗N−1.94 3.54 ∗N−1.73

OLIM-cubic 0.17 ∗N−1.98 0.22 ∗N−1.95 4.13 ∗N−1.85

ASR-endpoint 0.72 ∗N−0.99 0.70 ∗N−0.99 0.52 ∗N−1.02

OLIM-midpoint 2.86 ∗N−1.24 5.95 ∗N−1.41 5737.55 ∗N−2.32

Errors in ∇U . Next we consider the error of ∇U . Although rigorous numerical

analysis remains as future work, we expect that the gradient ∇U should demonstrate

2nd order in h convergence.

In Figure 3.17 we plot both the sup error (left panels) and root mean square
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Fig. 3.16: Error plots of U for drift field (3.5.1) for the three values of a. Sup error of U

over all Accepted mesh points is plotted against N and computation time.
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(RMS) error (right panels) of ∇U against N . Best polynomial fits for these plots are

included in Tables 3.2 and 3.3. The behavior of sup error and RMS error are markedly

different. For the sup error (right panel), all 4 methods, including EJM, display linear

in h convergence rates. For the EJM, this is simply due to a few one-point updates

making it into the final cut, and is not overly significant.

The RMS errors for EJM, on the other hand, display higher order convergence.

Indeed, the best fit convergence rates (Table 3.2) are 1.81, 1.75 and 1.73 for a = 0.1,

1 and 10, respectively. These are superlinear, but not quite 2nd order. Presently, the

reason for this is unclear. On the other hand, OLIM-midpoint displays the expected

1st order in h convergence of ∇U associated with linear methods, and the super-

convergence in U displayed by OLIM-midpoint does not carry over to ∇U .

Tab. 3.2: Best fits for the RMS error of ∇U as a function of N .

a = 0.1 a = 1 a = 10

EJM 0.40 ∗N−1.81 1.02 ∗N−1.75 43.74 ∗N−1.73

OLIM-cubic 0.47 ∗N−1.81 1.22 ∗N−1.75 23.00 ∗N−1.70

ASR-endpoint 0.90 ∗N−0.82 3.38 ∗N−0.98 169.58 ∗N−1.10

OLIM-midpoint 2.24 ∗N−0.99 8.63 ∗N−1.08 281.61 ∗N−1.06
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Fig. 3.17: Error plots of ∇U for drift field (3.5.1) for the three values of a. Sup error and

RMS error of ∇U are plotted against N .
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Tab. 3.3: Best fits for the supremum error of ∇U as a function of N .

a = 0.1 a = 1 a = 10

EJM 0.12 ∗N−1.10 0.50 ∗N−1.01 11.21 ∗N−0.85

OLIM-cubic 0.14 ∗N−1.03 0.67 ∗N−1.04 9.02 ∗N−0.99

ASR-endpoint 14.48 ∗N−0.92 66.24 ∗N−1.06 630.60 ∗N−1.05

OLIM-midpoint 15.31 ∗N−0.97 78.83 ∗N−1.04 866.65 ∗N−1.04

3.5.2 Maier-Stein model

The problems of determining exit locations and exit trajectories from arbitrary do-

mains are particularly suited for mesh-based solvers. In order to apply path-based

methods, one has to know a-priori the exit location, which in general corresponds

to a quasi-potential minima. Mesh-based solvers provide an easy way to determine

this minima by simply interpolating the quasi-potential along the boundary of the

domain of interest. Once the exit location is discovered, a path-based method can

be used to determine the exit trajectory. However, one can also construct the exit

trajectory by using the already calculatd mesh of ∇U values. In fact, this can be

done with a negligible runtime, without the need to use a path-based method at all.

In this section, we investigate the accuracy of reconstructing MAPs from the ∇U field

obtained by EJM.
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The test example we consider is the Maier-Stein system [44]

dXt = bMS(Xt)dt+
√
εdWt, X0 = x0 ∈ R2,

where

bMS(x, y) :=

x− x3 − βxy2

−(1 + x2)y

 . (3.5.2)

Here, β is a positive parameter. For any β > 0, the drift (3.5.2) admits stable

attracting equilibria at O− := (−1, 0) and O+ := (1, 0) and an unstable saddle at

O∗ := (0, 0). In particular, the solution Xt displays metastability in the ε→ 0 limit.

Namely, the solution will spend exponentially long periods of time near attractor O−,

before experiencing a noise-induced transition to attractor O+, followed by another

exponentially long time period near O+, and so forth. We are interested in exploring

the maximum likelihood switching path between the two attractors. For this purpose,

we assume x0 = O− and consider the MAP ϕ∗ that starts at O− and ends at O+. As

we saw in Chapter 2, as ε → 0, the actual transition path becomes overwhelmingly

likely to occur within an arbitrarily narrow tube around this path ϕ∗. The flow lines

of bMS and maximum likelihood transition paths for a variety of β values are shown

in Figure 3.18.

The first thing to notice about the Maier-Stein drift bMS is that for any value of

β > 0, the half-plane {x < 0} lies in the well of attraction of O− while the half-plane

{x > 0} lies in the well of attraction of O+. This can be seen by symmetry or by

viewing the plots of the drift field in Figure 3.18. Since the drift field is symmetric
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(a) β = 1 (b) β = 3.8

(c) β = 4.2 (d) β = 10

Fig. 3.18: Flow lines for the Maier Stein system as well as the maximum likelihood transition

path (red) from O− = (−1, 0) to O+ = (1, 0) for four values of β. For (c) and (d)

where β > 4, the transition path is not unique, as both the positive and negative

arcs in the left half-plane constitute minimum action paths.

about y = 0, the maximum likelihood transition path ϕ∗ will necessarily pass through

the saddle O∗. Moreover, since the MAP from O∗ to O+ is just the flow line from

O∗ to O+, the portion of ϕ∗ in the half-plane {x > 0} will simply be the straight
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line from O∗ to O+. The behavior of ϕ∗ in the left half-plane {x < 0} on the other

hand, will depend on the value of β. It turns out that the MAP will exhibit different

behaviors for β < 4 and β > 4.

The simplest case to study is the β = 1 case, where bMS is the gradient of a

potential function. In particular,

bMS(x, y) = ∇
[1

2
x2 − 1

2
y2 − 1

4
x4 − 1

2
x2y2

]
.

As we saw in Chapter 2, for gradient systems, MAPs are given by time-reversals of

the deterministic flows. Therefore, the portion of the MAP ϕ∗ in the left half-plane is

simply the straight line connecting O− to O∗ (Figure 3.18a). It turns out that this is

also the case for any β < 4. One can interpret these values of β as being the “near”

gradient system cases.

At the critical value of β = 4, however, two non-trivial MAPs begin to emerge,

as shown in Figures 3.18c and 3.18d. Indeed, for β > 4, the MAP is no longer

unique and there exist symmetric positive and negative arcs which both minimize

the geometric action in the left half-plane. An interesting consequence of this non-

uniqueness is that the quasi-potential at their point of intersection, the saddle O∗, is

not differentiable.

The task in this section is to reconstruct the MAP ϕ∗ for the β = 10 case from

the EJM mesh of ∇U values by using the following procedure. Assume that we have

run EJM on a uniform discretization of [−2, 0] × [−1, 1]. In view of (3.1.3), we can

construct a discrete approximation to the path ϕ∗ by defining iteratively the sequence
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ϕk = (xk, yk)

ϕk+1 = ϕk − h̄
(∇U(ϕk) + b(ϕk)

‖b(ϕk)‖

)
, ϕ0 = O∗, (3.5.3)

for some step size h̄. We took h̄ = h/10 where h is the mesh spacing used in the run

of the EJM. The iteration is terminated once ϕk is sufficiently close to the attractor

O−. To compute the values ∇U(ϕk) in (3.5.3), when ϕk = (xk, yk) is not a mesh

point, we simply use bi-linear interpolation of ∇U between the nearest mesh points.

To evaluate the error of our computed paths {ϕk}Kk=0 by this method, we con-

struct a master solution ϕGMAM by running GMAM (Section 3.2) with a large number

of degrees of freedom. In particular, ϕGMAM is a piecewise-linear path with 10,000

nodes. To compute the error of a discretized path ϕ = {ϕk}Kk=0 reconstructed from

EJM, we simply compute

Err(ϕ) = sup
k=0,...,K

dist(ϕk, ϕGMAM).

The distances can be computed analytically since ϕGMAM is piecewise-linear. These

errors are plotted in Figure 3.19 as a function of the number of steps N = 2/h used

in the EJM algorithm. We compare this to the errors of the MAP reconstructed in

the same way from the OLIM with midpoint quadrature.

In both cases, the convergence is 1st order in h, although the error constant is

significantly better for the EJM method. However, in view of the nearly 2nd order

convergence of ∇U displayed by EJM (see Figure 3.17), we would expect near 2nd

order convergence in MAP accuracy. This is not achieved because we are using only
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Fig. 3.19: Errors of the reconstructed maximum likelihood transition path from O− to O∗

for the Maier-Stein model.

bi-linear interpolation of ∇U between mesh points. Indeed, if we change this to

bi-cubic interpolation, we expect to get near second order convergence in Err(ϕ).

3.5.3 Future applications

When the quasi-potential is twice continuously differentiable, a key benefit of a 2nd

order convergence rate for the gradient ∇U , is the implied convergence of 2nd deriva-

tive matrix ∇2U . Since, the sub-exponential pre-factors of stationary measures and

expected transition times in general depend on second derivative information about

U (as in equation (2.3.14), for instance), one may hope to numerically compute pre-

factors to reasonable accuracy.

Indeed, suppose for instance that, as in the Maier-Stein model, a drift field b

admits two stable attractors at x− and x+. Let τx−→x+ be the expected transition
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time from x− to x+. If the quasi-potential is twice continuously differentiable at the

saddle point x∗ between x− and x+, Bouchet and Reygner [6] showed that

Eτx−→x+ � 2π

λ∗+

√
|detH(x∗)|
detH(x−)

exp
(∫ L

0

F (ϕ∗s)ds
)

exp
(U(x∗)

ε

)
. (3.5.4)

where H is the Jacobian matrix of the quasi-potential, λ∗+ is the unique positive

eigenvalue of the Jacobian matrix at the saddle x∗, ϕ∗ is the MAP from x− to x+ and

F (x) := ∇ ·
(
b(x) +

1

2
∇U(x)

)
.

This can be seen as a generalization of the Eyring-Kramer formula to non-gradient

systems. For a nice survey of results and techniques in this direction, see the article

[2].

Convergence of the 2nd derivative matrix ∇2U obtained by the EJM would

suggest the possibility of computing the exponential prefactor numerically. Indeed,

using the MAP solver discussed above (or a path-basd method) along with values of

∆U computed using finite differences, one could expect to obtain convergence of a

numerical computation of the right hand side of (3.5.4).

We note however, that the requirement of U being twice continuously differen-

tiable at the saddle is often not met in practice. For instance, the Maier Stein example

with β = 10, does not satisfy this condition. This can be seen as a consequence of the

fact that the two MAPs (up and down arcs) intersect at the saddle point O∗. On the

other hand, for β < 4, we would expect that the quasi-potential is twice continuously

differentiable at O∗. In fact, for the β = 1 case, where the solution U is explicit,
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one could compute the pre-factor analytically and compare this to an approximate

solution obtained by computing the right hand side of (3.5.4) using the techniques

discussed. This remains as future work.

3.6 Conclusions

Thus far, we have tested the efficacy of EJM on nonlinear drift fields that have

known, smooth solutions. In such cases, it has proven far more accurate than previous

techniques when the drift fields contain at most moderate rotational components. In

particular, it displays 2nd order convergence in the error of U and close to 2nd order

convergence in the gradient∇U . Nonetheless, it remains to test our algorithm in more

diverse settings, including in situations where the quasi-potential may be rougher.

Admittedly, our solver suffers from an issue of over-complexity in a couple of

areas. First, the higher order updates require minimizations (3.4.5) and (3.4.7) that

are performed via Newton’s method with first and second order derivatives computed

and implemented by hand. These formulas are extremely lengthy and complicated,

which make EJM a very difficult algorithm to implement from scratch. We have yet

to explore the efficacy of using finite differences for the 2nd order derivatives and of

implementing automatic differentiation techniques.

Second, the Accept/Reject procedure described in Algorithm 6 and Condition

3.4.1 are more complicated than in traditional Fast Marching methods, which accept

a new proposed update Unew value if it is smaller than any previously proposed values.
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Instead, EJM requires a more complicated rule. The two key issues cause this are

the (a) unacceptably large errors coming from triangle updates computed over large

distances and (b) the presence of undesired local minimizers of (3.4.7). The procedure

presented in this chapter is our best attempt to simultaneously circumvent both of

these issues, but it is possible there exist more concise solutions.
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Chapter 4: Large deviations for fast transport reaction-diffusion equa-

tions

4.1 Introduction

In the remaining two chapters, we shift our focus towards the application of Freidlin-

Wentzell theory in the infinite-dimensional setting. Using the flexibility of the weak

convergence approach (Section 2.2) as well as many of the ideas detailed in Chapter

2, we study the small-noise asymptotics of a pair of important multi-scale stochastic

partial differential equations.

In this chapter we study reaction-diffusion equations, a class of partial differ-

ential equations most commonly used to describe the evolution of chemical concen-

trations in reactions in which the concentrations vary in space. We consider the case

where random changes in time and space of the rates of reaction occur, and we allow

for the possibility of different sources of noise acting on the interior and exterior of

the spatial domain, respectively. Equations containing boundary noise are typically

used when there exists some random mechanism that acts only along a particular

interface; for example, in the modeling of heat transfer within a solid that is in a



contact with a fluid [40] or in the modeling of interactions between air and water

on the surface of oceans [50]. In applications, it is often the case that the rates of

chemical reactions and the diffusion coefficients have different orders of magnitude.

Here, we address the particular regime where the relative size of the diffusion is much

larger than the rates of reaction and, in addition, the deterministic rate of reaction

is much larger than the stochastic rate of reaction.

More precisely, we consider the following class of stochastic reaction-diffusion

equations,
∂uε
∂t

(t, ξ) = ε−1Auε(t, ξ) + f(t, ξ, uε(t, ξ)) + α(ε) g(t, ξ, uε(t, ξ))
∂WQ

∂t
(t, ξ), ξ ∈ D,

∂uε
∂ν

(t, ξ) = ε β(ε)σ(t, ξ)
∂WB

∂t
(t, ξ), ξ ∈ ∂D, uε(0, ξ) = x(ξ), ξ ∈ D,

(4.1.1)

for 0 < ε� 1 and for some positive functions α(ε) and β(ε), both converging to zero,

as ε → 0. Here, D is a bounded domain in Rd, d ≥ 1, with a smooth boundary, A

is a uniformly elliptic second order differential operator, and ∂/∂ν is the associated

co-normal derivative acting at ∂D. The coefficients f, g : [0,∞) × D × R satisfy

a Lipschitz condition with respect to the third variable. The noises WQ and WB

are cylindrical Wiener processes valued in H = L2(D) and Z = L2(∂D), respectively,

with covariances Q ∈ L+(H) and B ∈ L+(Z). The full description of our assumptions

is given in the next section.

We assume here that the diffusion Xt associated with the operator A, endowed

with the co-normal boundary condition, admits a unique invariant measure µ and a
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spectral gap occurs. Namely, there exists some γ > 0 such that for any h ∈ L2(D, µ),

∫
D
|Eξh(Xt)− 〈h, µ〉|2 dµ(ξ) ≤ c e−2 γt ‖h‖2

L2(D,µ) , t ≥ 0, (4.1.2)

where 〈h, µ〉 =
∫
D h(ξ)dµ(ξ). Physically, the measure µ and the spectral gap γ rep-

resent the averaged distribution across D resulting from the diffusion A and the

corresponding exponential rate of averaging, respectively. In the prototypical case of

uniform diffusion in which A is the Laplacian operator ∆, the invariant measure µ is

simply the scaled Lebesgue measure, so that the system tends towards a concentration

that is uniform in space.

In fact, if the deterministic and stochastic rates of reaction in (4.1.1) were

of order one (i.e. α(ε) = O(1)), then the diffusion term would disappear in the

ε→ 0 limit, and the effective dynamic would be described by an “averaged” ordinary

stochastic differential equation. Indeed, in [16] (see also [5]) it was shown that, for

every 0 < δ < T and p ≥ 1, the solutions uxε to (4.1.1), corresponding to α(ε) =

β(ε) = 1, converge in Lp(Ω;C([δ, T ];L2(D, µ))) to the solution of the averaged one-

dimensional stochastic differential equation

du(t) = F̄ (t, u(t))dt+ Ḡ(t, u(t))dWQ(t) + Σ̄(t)dWB(t), u(0) = 〈x, µ〉. (4.1.3)

Here, F̄ , Ḡ, and Σ̄ are all obtained by taking suitable spatial averages of their coun-

terparts, f, g and σ, with respect to the invariant measure µ. Since the averaging still

takes time, convergence in C([0, T ];L2(D, µ)) only occurs if the initial condition x is

already constant in space.
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We are interested in studying the fast transport approximation described above

in the small noise regime (i.e. α(ε)→ 0 and β(ε)→ 0). In this case, the noisy terms

vanish entirely from the limit and the solution to (4.1.1) converges in Lp(Ω;C([δ, T ];L2(D, µ)))

to the solution of the ODE

du

dt
= F̄ (t, u(t)), u(0) = 〈x, µ〉. (4.1.4)

Thus, we believe it is of interest to study the validity of a large deviation principle

for the family {uxε }ε>0 in the space C([δ, T ];L2(D, µ)), and, in particular, to under-

stand its interplay with the fast transport limit. It turns out that, depending on the

following different scalings between α(ε) and β(ε)

lim
ε→0

β(ε)

α(ε)
= ρ̄ ∈ [0,+∞],

the action functional and the speed governing the large deviation principle for equa-

tion (4.1.1) are precisely the same as those governing the large deviation principle for

the stochastic ordinary differential equation

du(t) = F̄ (u(t)) dt+ (α(ε) + β(ε))
√
Hρ̄(t, u(t)) dβt, u(0) = 〈x, µ〉,

where

Hρ̄(t, u) =
1

(1 + ρ̄)2

[∥∥∥√Q [G(t, u)m]
∥∥∥2

H
+ ρ̄2

∥∥∥δ0

√
B
[
Σ(t)N∗δ0m

]∥∥∥2

Z

]
, (4.1.5)

(here m is the density of the invariant measure µ). This means in particular that

the fast transport asymptotics for equation (4.1.1) is consistent with the small noise

limit.
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After obtaining the large deviations principle for the paths, we then study the

problem of the exit of the solutions uxε to (4.1.1) from a bounded domain D in the

functional space L2(D, µ). As in Section 2.3.1, we consider the case where the limiting

equation (4.1.4) has an attractive equilibrium at 0, and we prove Freidlin-Wentzell

type exit time estimates of the form (2.3.3). More precisely, if we define

τxε := inf{t ≥ 0 : uxε (t) ∈ ∂D},

then we show that for any initial condition x ∈ D ⊂ L2(D, µ),

lim
ε→0

(α(ε) + β(ε))2 logEτxε = inf
y∈∂D

V (y), (4.1.6)

where V : L2(D, µ)→ R+ is the quasi-potential corresponding to the action functional

governing the large deviation principle, defined as in (2.3.1). If the interior noise is

additive, i.e. g ≡ 1 in (4.1.1), then the quasi-potential can be written explicitly.

Namely,

V (y) = −2H−1
ρ̄

∫ y

0

F̄ (r)dr.

where Hρ̄ is obtained from (4.1.5) by setting G(t, u) = Id and by assuming Σ constant

in time. For example, when A is a divergence type operator, we have m = |D|−1 and

hence

V (y) = − (1 + ρ̄)2

c1 + c2 ρ̄2

∫ y

0

∫
D
f(ξ, σ) dξ dσ,

for some non-negative constants c1 and c2, depending on Q and B, and not simul-

taneously zero. In the general case of multiplicative noise, we do not have such an

explicit representation of the quasi-potential; however, the result (4.1.6) still holds.
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As we saw in Section 2.3.1, in order to obtain results of the form (4.1.6), a large

deviations principle for the paths that is uniform with respect to initial conditions

in bounded sets of L2(D, µ) is needed. Here, we are able to prove the validity of

a large deviations principle for the family {uxε }ε>0 in the space C([δ, T ];L2(D, µ))

by using the weak convergence approach described in Section 2.2. In particular, we

let the space of initial conditions (E0 in Section 2.2) be the compact Polish space

of L2(D, µ) endowed with the topology of weak convergence, so that the Laplace

principle proven via the weak convergence approach will be uniform with respect to

initial conditions in bounded sets of L2(D, µ). This can then be extended into a

uniform large deviations principle by verifying the conditions of Propositions 2.2.3

and 2.2.4. The task of proving the uniform large deviations principle for the paths

then reduces to the problem of proving the validity of Hypothesis 2.2.1.

Once we have established a large deviation principle that is uniform with respect

to initial conditions in a bounded set, we prove (4.1.6) by adapting the method used

in finite dimension (see Chapter 4, Section 2 of [37] and Chapter 5.7 of [28]) to our

infinite dimensional setting (see [17], [9] and [20] for some previous results in this

direction). In our model, several complications arise in obtaining the lower bound of

Eτxε . Actually, when ε is small, equation (4.1.1) behaves like the linear heat equation

for t on the order of ε. However, for times on the order of 1, the averaging has already

taken place so that the solution is essentially constant in space and evolves according

to (4.1.4). So to establish any kind of lower bound on the exit time, we require a
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domain that is both invariant with respect to the semigroup etA and invariant with

respect to trajectories of equation (4.1.4).

4.2 Notations and preliminaries

4.2.1 Assumptions on the semigroup

We assume that D is a bounded domain in Rd, d ≥ 1, with a smooth boundary,

satisfying the extension and exterior cone properties. We denote H := L2(D) and

Z := L2(∂D), and, for any α > 0, we denote Hα := Hα(D) and Zα := Hα(∂D).

We assume that A is a second order differential operator of the form

A =
d∑

i,j=1

∂

∂ξi

(
aij(ξ)

∂

∂ξj

)
+

d∑
i=1

bi(ξ)
∂

∂ξi
, ξ ∈ D.

The matrix a(ξ) = [aij(ξ)]i,j is symmetric and all entries aij are differentiable, with

continuous derivatives in D̄. Moreover, there exists some a0 > 0 such that

inf
ξ∈D̄
〈a(ξ)η, η〉 ≥ a0|η|2, η ∈ Rd. (4.2.1)

Finally, the coefficients bi are continuous on D̄.

In what follows, we shall denote by A the realization in H of the differential

operator A, endowed with the conormal boundary condition

∂h

∂ν
(ξ) := 〈a(ξ)ν(ξ),∇h(ξ)〉 = 0, ξ ∈ ∂D.

The operator A generates a strongly continuous analytic semigroup in H, which we
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will denote by etA. Moreover (see [41] for a proof)

D(Aα) ⊆ H2α, for α ≥ 0, D(Aα) = H2α, for 0 ≤ α <
3

4
, (4.2.2)

In general, the realization of A in Lp spaces under the same boundary conditions

will also generate a strongly continuous, analytic semigroup, for p > 1. It is proved in

[27] that under the above conditions on A and D, the semigroup admits an integral

kernel kt(ξ, η) that satisfies

0 ≤ kt(ξ, η) ≤ c (t−
d
2 + 1), t > 0, (4.2.3)

In what follows, we shall assume that etA satisfies the following condition.

Hypothesis 4.2.1. The semigroup etA admits a unique invariant measure µ, and

there exist γ > 0 and c > 0 such that, for any h ∈ L2(D, µ) and t ≥ 0,∥∥∥∥etAh− ∫
D
h(ξ)dµ(ξ)

∥∥∥∥
L2(D,µ)

≤ c e−γt ‖h‖L2(D,µ) . (4.2.4)

In what follows, we shall denote

Hµ := L2(D, µ), 〈h, µ〉 :=

∫
D
h(ξ)dµ(ξ), h ∈ Hµ.

Remark 4.2.1. Hypothesis 4.2.1 is satisfied for example if A is a divergence-type

operator. Actually, in this case the Lebesgue measure is invariant under the semigroup

etA, so that we can define

µ = |D|−1λd,

where λd is the Lebesgue measure on Rd. SinceA is self-adjoint, we can find a complete

orthonormal system {ek}k≥0 in H, and an increasing nonnegative sequence {αk}k≥0
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such that Aek = −αkek. Clearly, α0 = 0 and e0 = |D|−1/2, so that 〈x, µ〉 = 〈x, e0〉H e0,

for any x ∈ H. This implies that

∥∥etAx− 〈x, µ〉∥∥2

Hµ
= |D|−1

∞∑
i=1

e−2tαi〈x, ei〉2H ≤ e−2tα1 ‖x‖2
Hµ
,

so that (4.2.4) holds for γ = α1.

�

Remark 4.2.2. We have the continuous embedding H ↪→ Hµ. This follows from the

invariance of µ with respect to etA, and from the boundedness of the integral kernel

(4.2.3). Actually, for h ∈ H, we have

‖h‖2
Hµ

=

∫
D
e1A|h|2(ξ)dµ(ξ) =

∫
D

∫
D
k1(ξ, η)|h(η)|2dη dµ(ξ) ≤ c ‖h‖2

H .

We also note that, due to the invariance of µ, etA acts as a contraction in Hµ

∥∥etAh∥∥2

Hµ
≤
∫
D
etA |h(ξ)|2 dµ(ξ) = ‖h‖2

Hµ
.

�

Remark 4.2.3. In fact, one can show that the invariant measure µ is absolutely con-

tinuous with respect to the Lebesgue measure on D and has a nonnegative density

m ∈ L∞(D) (for a proof, see [16]).

�
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4.2.2 Assumptions on the coefficients and noise

Concerning the coefficients f, g, and σ, we make the following assumptions.

Hypothesis 4.2.2.

(i) The mappings f, g : [0,∞)×D×R→ R are measurable and Lipschitz continuous

in the third variable, uniformly with respect to (t, ξ) ∈ [0, T ]×D, for any fixed

T > 0. In addition, for any T > 0, f and g satisfy

sup
0≤t≤T

‖f(t, ·, 0)‖L∞(D) < +∞, sup
0≤t≤T

‖g(t, ·, 0)‖L∞(D) < +∞,

(ii) The mapping σ : [0,∞)× ∂D → R is measurable and satisfies for any T > 0

sup
0≤t≤T

‖σ(t, ·)‖L∞(∂D) < +∞,

In what follows, for h1, h2 ∈ H and ξ ∈ D, we define

F (t, h1)(ξ) := f(t, ξ, h1(ξ)),

and

[G(t, h1)h2](ξ) := g(t, ξ, h1(ξ))h2(ξ).

The uniform Lipschitz assumptions on f and g in Hypothesis 4.2.2 imply that the

mappings F (t, ·) : H → H, G(t, ·) : H → L(H,L1(D)), andG(t, ·) : H → L(L∞(D), H)

are all well-defined and Lipschitz continuous, uniformly with respect to t ∈ [0, T ], for

any T > 0.
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Next, for z ∈ Z and ξ ∈ ∂D, we set

[Σ(t)z](ξ) := σ(t, ξ)z(ξ).

Hypothesis 4.2.2 implies that Σ(t) ∈ L(Z) and sup
0≤t≤T

‖Σ(t)‖L(Z) <∞.

Concerning the noisy terms, we assume that WQ(t) and WB(t) are cylindri-

cal Wiener processes in H and Z, with covariances Q ∈ L+(H) and B ∈ L+(Z),

respectively. That is,

WQ(t) =
∞∑
k=0

√
Qekβk(t), WB(t) =

∞∑
k=0

√
Bfkβ̃k(t),

where {ek}k≥0 is an orthonormal basis of H, {fk}k≥0 is an orthonormal basis of Z

and {βk(t)}k≥0 and {β̃k(t)}k≥0 are sequences of independent real-valued Brownian

motions defined on a common stochastic basis (Ω,F , {Ft}t≥0,P).

We assume for simplicity that {ek}k≥0 diagonalizes
√
Q with eigenvalues {λk}k≥0,

and {fk}k≥0 diagonalizes
√
B with eigenvalues {θk}k≥0. We do not assume that the

operators Q and B are trace class, so the sums above do not necessarily converge in

H and Z, respectively. However, both of the sums converge in larger Hilbert spaces

containing H and Z, respectively, with Hilbert-Schmidt embeddings.

We make the following assumption regarding the eigenvalues of Q and B.

Hypothesis 4.2.3. If d ≥ 2, then there exist ρ < 2d/(d − 2) and β < 2d/(d − 1)

such that

∑
k∈N

λρk ‖ek‖
2
∞ =: κQ <∞,

∑
k∈N

θβk =: κB <∞. (4.2.5)
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4.2.3 Mild solutions

In the present paper, we are dealing with the following class of equations

∂uε
∂t

(t, ξ) = ε−1Auε(t, ξ) + f(t, ξ, uε(t, ξ)) + α(ε) g(t, ξ, uε(t, ξ))
∂WQ

∂t
(t, ξ), ξ ∈ D,

∂uε
∂ν

(t, ξ) = ε β(ε)σ(t, ξ)
∂WB

∂t
(t, ξ), ξ ∈ ∂D, uε(0, ξ) = x(ξ), ξ ∈ D.

(4.2.6)

Under the above assumptions on the differential operator A and the domain D,

it can be shown (see [43]), that there exists δ0 ∈ R such that for any δ ≥ δ0 and

h ∈ Z, the elliptic boundary value problem

(δ −A)u(ξ) = 0, ξ ∈ D, ∂u

∂ν
= h(ξ), ξ ∈ ∂D,

admits a unique solution u ∈ H. We define the Neumann map, Nδ : Z → H, to be

the solution map of this equation, i.e. Nδh := u. One can show that

Nδ ∈ L(Zα, Hα+3/2). (4.2.7)

Next, we consider the deterministic parabolic problem

∂y

∂t
(t, ξ) = Ay(t, ξ), ξ ∈ D

∂y

∂ν
= v(t, ξ), ξ ∈ ∂D, y(0, ξ) = 0, ξ ∈ D.
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One can show that for smooth v and large enough δ, the solution to this equation is

given explicitly by

y(t) = (δ − A)

∫ t

0

e(t−s)ANδv(s)ds.

This formula can be extended by continuity to provide a notion of mild solution for

less regular v. In our case, we are interested in the boundary value problem

∂y

∂t
(t, ξ) =

1

ε
Ay(t, ξ), ξ ∈ D,

∂y

∂ν
= ε β(ε)σ(t, ξ)

∂WB

∂t
(t, ξ), ξ ∈ ∂D, y(0, ξ) = 0, ξ ∈ D,

(4.2.8)

So, upon taking δ = δ0/ε, we say that the process

β(ε)wεA,B(t) := β(ε) (δ0 − A)

∫ t

0

e(t−s)A
ε Nδ0 [Σ(s) dWB(s)]

is a mild solution to problem (4.2.8). (see [25] for details, and see [36], [56] and [61]

for other papers where the same type of equations has been studied). This motivates

the following.

Definition 4.2.1. Let p ≥ 1 and T > 0. An adapted process uε ∈ Lp(Ω;C([0, T ];H))

is called a mild solution to problem (4.2.6) if, for any t ∈ [0, T ],

uε(t) = et
A
ε x+

∫ t

0

e(t−s)A
ε F (s, uε(s))ds+ α(ε)wεA,Q(uε)(t) + β(ε)wεA,B(t),

where, for any u ∈ Lp(Ω;C([0, T ];H)), we define

wεA,Q(u)(t) :=

∫ t

0

e(t−s)A
ε G(s, u(s))dWQ(s).
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4.2.4 Well-posedness and averaging results

In this section, we recall some important preliminary results from [16].

Lemma (3.1 of [16]). Assume Hypotheses 4.2.2 and 4.2.3 hold. Then, for any ε > 0,

p ≥ 1 and T > 0, the process wεA,B belongs to Lp(Ω;C([0, T ];H)) and satisfies

sup
ε∈(0,1]

E
∥∥wεA,B∥∥pC([0,T ];H)

< +∞. (4.2.9)

Lemma (3.3 of [16]). Assume Hypotheses 4.2.2 and 4.2.3 hold. Then for any ε > 0,

p ≥ 1 and T > 0, the mapping wεA,Q(·) maps Lp(Ω;C([0, T ];H) into itself and satisfies

sup
ε∈(0,1]

E
∥∥wεA,Q(u)

∥∥p
C([0,T ];H)

≤ cT,p

(
1 + E

∫ T

0

‖u(s)‖pH ds
)
. (4.2.10)

Moreover, it is Lipschitz continuous and

sup
ε∈(0,1]

∥∥wεA,Q(u)− wεA,Q(v)
∥∥
Lp(Ω;C([0,T ];H))

≤ LT ‖u− v‖Lp(Ω;C([0,T ];H)) , (4.2.11)

for some constant LT > 0, independent of ε ∈ (0, 1], such that LT → 0, as T → 0.

Theorem (3.4 of [16]). Assume Hypotheses 4.2.2 and 4.2.3 hold. Then for any

ε > 0, p ≥ 1 and T > 0 and for any initial condition x ∈ H, equation (4.2.6) has a

unique adapted mild solution uxε ∈ Lp(Ω;C([0, T ];H)), which satisfies

sup
ε∈(0,1]

E ‖uxε ‖
p
C([0,T ];H) ≤ cT,p (1 + xpH). (4.2.12)

Next, for any t ≥ 0 and h ∈ Hµ, we define

F̄ (t, h) := 〈F (t, h), µ〉 =

∫
D
f(t, ξ, h(ξ))dµ(ξ).
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Moreover, for any t ≥ 0 and h1, h2 ∈ Hµ, we define

Ḡ(t, h1)h2 := 〈G(t, h1)h2, µ〉 =

∫
D
g(t, ξ, h1(ξ))h2(ξ) dµ(ξ), (4.2.13)

and for any t ≥ 0 and z ∈ Z, we define

Σ̄(t)z = δ0 〈Nδ0Σ(t)z, µ〉 = δ0

∫
D
Nδ0 [σ(t, ·)z](ξ) dµ(ξ).

Hypothesis 4.2.2 implies that F̄ (t, ·) : Hµ → R is Lipschitz continuous, uniformly

with respect to t ∈ [0, T ]. Concerning Ḡ, we observe that for any h ∈ Hµ and T > 0

|Ḡ(t, h1)h− Ḡ(t, h2)h|2 ≤ ‖h‖2
Hµ

∫
D
|g(t, ξ, h1(ξ))− g(t, ξ, h2(ξ))|2dµ(ξ)

≤ c ‖h‖2
Hµ
‖h1 − h2‖2

Hµ
, h1, h2 ∈ Hµ, t ∈ [0, T ].

(4.2.14)

Therefore, Ḡ(t, ·)h : Hµ → R is Lipschitz continuous, uniformly with respect to

t ∈ [0, T ] and h in a bounded set of Hµ (and hence H). Finally, the linear functional

Σ̄(t) : Z → R is bounded due to (4.2.7).

With these notations, we introduce the equation

dvx(t) = F̄ (t, vx(t))dt+ Ḡ(t, vx(t))dWQ(t) + Σ̄(t)dWB(t), vx(0) = 〈x, µ〉. (4.2.15)

Theorem (4.1 of [16]). Assume that Hypotheses 4.2.1, 4.2.2 and 4.2.3 hold, and let

α(ε) = β(ε) ≡ 1. Then, for any x ∈ H, p ≥ 1, and 0 < δ < T , we have

lim
ε→0

E sup
δ≤t≤T

‖vxε (t)− vx(t)‖pHµ = 0, (4.2.16)

where vxε is the mild solution to (4.2.6) with α(ε) = β(ε) ≡ 1 and vx is the solution of

equation (4.2.15).
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4.3 Main results and description of the methods

We are here interested in the validity of a large deviation principle for the family

{L(uxε )}ε∈(0,1], as ε → 0, where uxε is the solution to the equation (4.2.6) with initial

condition x ∈ H.

In [16], equation (4.2.6) was studied with α(ε) = β(ε) ≡ 1, and it was shown

that for every δ > 0, the solutions converge in Lp(Ω;C([δ, T ];Hµ)) to the solution of

the one-dimensional stochastic differential equation (4.2.15). Therefore, if

lim
ε→0

α(ε) = lim
ε→0

β(ε) = 0,

thanks to the bounds (4.2.9), (4.2.10) and (4.2.12), the solution uxε will converge in

the space Lp(Ω;C([δ, T ];Hµ)) to the solution of the deterministic one-dimensional

differential equation,

du

dt
= F̄ (t, u(t)), u(0) = 〈x, µ〉. (4.3.1)

In what follows, we shall assume that the following conditions are satisfied

Hypothesis 4.3.1. (i) We have

lim
ε→0

α(ε) = lim
ε→0

β(ε) = 0, lim
ε→0

β(ε)

α(ε)
= ρ̄ ∈ [0,+∞]. (4.3.2)

(ii) For every t ≥ 0, w ∈ R and ρ ∈ [0,+∞], we define

Hρ(t, w) =
1

(1 + ρ)2

[∥∥∥√Q [G(t, w)m]
∥∥∥2

H
+ ρ2

∥∥∥δ0

√
B
[
Σ(t)N∗δ0m

]∥∥∥2

Z

]
, (4.3.3)
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where m is the density of the invariant measure µ. Then, if ρ̄ is the constant

introduced in (4.3.2), we have

inf
(t,w)∈[0,∞)×R

Hρ̄(t, w) > 0. (4.3.4)

Now, for every 0 ≤ δ < T , we denote by Ψδ,T the subset of C([δ, T ];Hµ) con-

taining all functions u ∈ C([δ, T ];Hµ) that are absolutely continuous in t and are

constant in the spatial variable ξ. Then, if u ∈ Ψδ,T , we define

Ixδ,T (u) = inf
w∈C([0,T ];R)

w(0)=〈x,µ〉, w|[δ,T ]=u

1

2

∫ T

0

|w′(t)− F̄ (t, w(t))|2

Hρ̄(t, w(t))
dt. (4.3.5)

For any other u ∈ C([δ, T ];Hµ), we set Ixδ,T (u) = +∞.

We will show that, in fact, the laws of the family {uxε (t)}ε∈(0,1] satisfy a large

deviation principle in the space C([δ, T ];Hµ), with respect to the action functional

Ixδ,T .

Theorem 4.3.1. Assume that all Hypotheses 4.2.1 to 4.3.1 are satisfied. Fix any

T > 0 and 0 < δ < T and let uxε denote the solution to equation (4.2.6), with initial

condition x ∈ H. Moreover, let us define

γ(ε) =: (α(ε) + β(ε))2 , ε > 0. (4.3.6)

Then, the following facts hold.

(i) The family {L(uxε )}ε∈(0,1] satisfies both a Freidlin-Wentzell large deviations prin-

ciple and Dembo-Zeitouni large deviations principle in C([δ, T ];Hµ) with speed

144



γ(ε) and good rate functions functional Ixδ,T , uniformly for x in any closed,

bounded subset of H.

(ii) If in addition x is constant, then {L(uxε )}ε∈(0,1] satisfies both a Freidlin-Wentzell

large deviations principle and Dembo-Zeitouni large deviations principle in C([0, T ];Hµ)

with speed γ(ε) and good rate functions Ix0,T , uniformly for x in any closed,

bounded subset of H.

To prove Theorem 4.3.1, we follow the weak convergence approach, and instead

prove the validity of a uniform Laplace principle, as described in Theorem 4.3.2. This,

combined with Propositions 2.2.3 and 2.2.4 will yield both versions of the uniform

large deviations principle, with same rate and same action functional.

In view of the formalisms introduced in Section 2.2.4, we first introduce some

notation. We denote by V the product Hilbert space H ×Z, endowed with the inner

product

〈v1, v2〉V := 〈h1, h2〉H + 〈z1, z2〉Z ,

for every v1 = (h1, z1), v2 = (h2, z2) ∈ V . Next, we define the linear operator,

Sv = (Qh,Bz), v = (h, z) ∈ V.

Notice that S ∈ L+(V ) and the process wS(t) := (WQ(t),WB(t)), t ≥ 0 is an S-

Wiener process. Next, we let P(V ) be the set of predictable processes in L2(Ω ×

[0, T ];V ). For every fixed M > 0, we define

SM(V ) :=

{
u ∈ L2(0, T ;V ) :

∫ T

0

‖u(s)‖2
V ds ≤M

}
,
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and

PM(V ) :=
{
ϕ ∈ P(V ) : ϕ ∈ SM(V ), P− a.s.

}
For any ϕ(t) = (ϕH(t), ϕZ(t)) ∈ PM(V ), we denote by ux,ϕε the unique mild

solution of the controlled stochastic PDE

∂u

∂t
(t, ξ) = ε−1Au(t, ξ) + f(t, ξ, u(t, ξ))

+
α(ε)√
γ(ε)

g(t, ξ, u(t, ξ))

[√
QϕH(t, ξ) +

√
γ(ε)

∂WQ

∂t
(t, ξ)

]
, ξ ∈ D,

∂u

∂ν
(t, ξ) = ε β(ε)

√
γ(ε)σ(t, ξ)

[√
BϕZ(t, ξ) +

√
γ(ε)

∂WB

∂t
(t, ξ)

]
, ξ ∈ ∂D,

u(0, ξ) = x(ξ), ξ ∈ D,

(4.3.7)

where γ(ε) is the function defined in (4.3.6). Moreover, we denote by ux,ϕ the unique

solution of the random ODE

du

dt
= F̄ (t, u(t))+

1

1 + ρ̄
Ḡ(t, u(t))

[√
QϕH(t)

]
+

ρ̄

1 + ρ̄
Σ̄(t)

[√
BϕZ(t)

]
, u(0) = 〈x, µ〉.

(4.3.8)

We will prove the well-posedness of both of these equations in the next section. In

what follows, we denote

Gδ(x, ϕ) := ux,ϕ|[δ,T ].

Theorem 4.3.2. For any x ∈ H, 0 < δ < T and u ∈ C([δ, T ];Hµ), let

Îxδ,T (u) := inf
ϕ∈L2(0,T ;V )
Gδ(x,ϕ)=u

1

2

∫ T

0

‖ϕ(s)‖2
V ds. (4.3.9)
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Suppose that the following conditions hold.

(i) If B ⊂ H is a closed and bounded set, then for every M <∞ the set

FM,B :=
{
u ∈ C([δ, T ];R) : u = Gδ(x, ϕ), ϕ ∈ SM(V ), x ∈ B

}
,

is compact in C([δ, T ];Hµ).

(ii) If {ϕε}ε>0 ⊂ PM(V ) is any family that converges in distribution, as ε → 0,

to some ϕ ∈ PM(V ) with respect to the weak topology of L2(0, T ;V ), and if

{xε}ε>0 ⊂ H is any family that converges weakly in H, as ε → 0, to some

x ∈ H, then the family {uxε,ϕεε }ε>0 converges in distribution, as ε → 0, to ux,ϕ

in the space C([δ, T ];Hµ), endowed with the strong topology.

(iii) For every u ∈ C([δ, T ;Hµ]), the mapping x 7→ Îxδ,T (u) is weakly lower semicon-

tinuous from H into [0,+∞].

Then the family {L(uxε )}ε>0 satisfies a Laplace principle in C([δ, T ];Hµ), with

speed γ(ε) and action functional Îxδ,T , uniformly in x on any closed, bounded subset of

H. Moreover, for any closed bounded set B ⊂ H and any s ≥ 0, the set

Λs,B :=
⋃
x∈B

{
u ∈ C([δ, T ];Hµ) : Îxδ,T (u) ≤ s

}
is compact in C([δ, T ];Hµ).

Remark 4.3.1. In the theorem above we allow the uniformity of the Laplace principle

for initial conditions x in closed and bounded sets B ⊂ H (rather than compact sets).

As noted in Remark 2.2.4, this is possible by simply changing the topology of H to
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the weak topology. Specifically, we require that the mapping x 7→ Îδ,T (u) is weakly

lower semicontinuous and that (2.2.13) must hold for any sequence {xε}ε>0 converging

weakly to x. The reason why we will be able to prove this stronger form of condition

is because the limiting equation (4.3.1) is finite dimensional. If, for example, the

averaging were only to occur in some but not all of the coordinates, then we would

not have this property and the stronger version of Hausdorff continuity would not be

met.

�

4.4 Proof of Theorem 4.3.1

4.4.1 Well-Posedness of the skeleton equations

Proposition 4.4.1. Assume that Hypotheses 4.2.2 and 4.2.3 hold, and fix any ε,M >

0 and p ≥ 1. Then for any ϕ = (ϕH , ϕZ) ∈ PM(V ) and x ∈ H, equation (4.3.7) has

a unique adapted mild solution, ux,ϕε ∈ Lp(Ω;C([0, T ];H)). Furthermore, if (4.3.2)

holds, we have

sup
ε∈(0,1]

E sup
0≤t≤T

‖ux,ϕε (t)‖pH ≤ cp,T,M (1 + ‖x‖pH) . (4.4.1)

Proof. The well-posedness of equation (4.3.7) follows from a fixed point argument in

the space of adapted processes in Lp(Ω;C([0, T ];H)). For u ∈ Lp(Ω;C([0, T ];H)), we
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define

Kεu(t) := et
A
ε x+

∫ t

0

e(t−s)A
ε F (s, u(s))ds+ α(ε)wεA,Q(u)(t) + β(ε)wεA,B(t)

+
α(ε)√
γ(ε)

∫ t

0

e(t−s)A
ε G(s, u(s))

[√
QϕH(s)

]
ds

+
β(ε)√
γ(ε)

(δ0 − A)

∫ t

0

e(t−s)A
ε Nδ0

[
Σ(s)
√
BϕZ(s)

]
ds.

We show that Kε is Lipschitz continuous from Lp(Ω;C([0, T ];H)) into itself, with

Lipschitz constant going to 0 as T → 0. This clearly implies the well-posedness of

equation (4.3.7) in Lp(Ω;C([0, T ];H)).

Thanks to (4.2.9), (4.2.10) and (4.2.11), since F (t, ·) : H → H is Lipschitz-

continuous, it suffices to show that the mapping Γε, defined by

Γε(u)(t) =
α(ε)√
γ(ε)

∫ t

0

e(t−s)A
ε G(s, u(s))

√
QϕH(s)ds

+
β(ε)√
γ(ε)

(δ0 − A)

∫ t

0

e(t−s)A
ε Nδ0

[
Σ(s)
√
BϕZ(s)

]
ds,

maps Lp(Ω;C([0, T ];H)) into itself and is Lipschitz continuous with Lipschitz con-

stant going to 0 as T → 0. To this purpose, we define ζ = 2ρ
ρ−2

, where ρ < 2d
d−2

satisfies

149



(4.2.5). Since ζ < d thanks to (4.6.1), for any u, v ∈ Lp(Ω;C([0, T ];H)), we have

sup
0≤t≤T

∥∥∥∥∫ t

0

e(t−s)A
ε (G(s, u(s))−G(s, v(s)))

[√
QϕH(s)

]
ds

∥∥∥∥p
H

≤ c sup
0≤t≤T

(∫ t

0

(
((t− s)/ε)−

d
2ζ + 1

)
‖u(s)− v(s)‖H ‖ϕH(s)‖H ds

)p

≤ cp (T
p
2 + T (1− d

ζ
) p

2 )

[(∫ T

0

‖ϕH(s)‖2
H ds

) p
2

sup
0≤t≤T

‖u(s)− v(s)‖pH

]

≤ cp,M,T sup
0≤t≤T

‖u(s)− v(s)‖pH ,

(4.4.2)

where, in the last step, we used the fact that ‖ϕH‖2
L2(0,T ;H) ≤ ‖ϕ‖

2
L2(0,T ;V ) ≤ M ,

P-a.s..

To conclude our proof of the well-posedness, we show that the second term in

Γε is in Lp(Ω;C([0, T ];H)). Due to (4.2.7) and (4.2.2), the operator

Sρ := (δ0 − A)
3−ρ

4 Nδ0 (4.4.3)

belongs to L(Z,H), for any ρ > 0. Therefore, for any t > 0, we have

(δ0 − A)etANδ0 = e
t
2
A(δ0 − A)

1+ρ
4 e

t
2
ASρ, (4.4.4)
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and ∥∥∥∥(δ0 − A)

∫ t

0

e(t−s)A
ε Nδ0 [Σ(s)

√
BϕZ(s)]ds

∥∥∥∥
H

≤
∫ t

0

∥∥∥e(t−s) A
2ε (δ0 − A)

1+ρ
4 e(t−s) A

2εSρ

[
Σ(s)
√
BϕZ(s)

]∥∥∥
H
ds

≤ c

∫ t

0

[
1 + (t− s)−

1+ρ
4

]
‖ϕZ(s)‖Z ds.

Thus, by taking the p-th moment and choosing ρ < 1, we get

sup
0≤t≤T

∥∥∥∥(δ0 − A)

∫ t

0

e(t−s)A
ε Nδ0 [Σ(s)

√
BϕZ(s)]ds

∥∥∥∥p
H

≤ c sup
0≤t≤T

(∫ t

0

[1 + s−
1+ρ

2 ]ds

) p
2
(∫ t

0

‖ϕZ(s)‖2
Z ds

) p
2

≤ cpM
p
2 (T

p
2 + T

p(1−ρ)
4 ).

(4.4.5)

Next, we prove that estimate (4.4.1) holds. To this purpose, we first remark

that due to (4.3.2)

lim
ε→0

α(ε)√
γ(ε)

=
1

1 + ρ̄
∈ [0, 1], lim

ε→0

β(ε)√
γ(ε)

=
ρ̄

1 + ρ̄
∈ [0, 1]. (4.4.6)

In particular, both α(ε)/
√
γ(ε) and β/

√
γ(ε) remain uniformly bounded, with respect

to ε ∈ (0, 1].

Thus, thanks to (4.4.6), by proceeding as in the proofs of (4.4.2) and (4.4.5),

due to (4.2.9) and (4.2.10), we have

E sup
0≤t≤T

‖ux,ϕε (t)‖pH ≤ cp (1 + ‖x‖pH)+cp,M,T

(
1 + E sup

0≤t≤T
‖ux,ϕε (t)‖pH

)
, ε ∈ (0, 1],
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for some constant cp,M,T > 0 such that cp,M,T → 0, as T → 0. This means that there

exists T0 > 0 such that

sup
ε∈ (0,1]

E sup
0≤t≤T0

‖ux,ϕε (t)‖pH ≤ 2 cp (1 + ‖x‖pH) .

By a bootstrap argument, this yields (4.4.1).

Proposition 4.4.2. Assume that Hypothesis 4.2.2 hold, and fix any M > 0. Then,

for any ϕ = (ϕH , ϕZ) ∈ PM(V ), the random differential equation (4.3.8) has a unique

adapted solution, ux,ϕ ∈ Lp(Ω;C([0, T ];R)), for any T > 0 and p ≥ 1.

Proof. As before, existence and uniqueness follows from the Lipschitz continuity of

the mapping

K : Lp(Ω;C([0, T ];R))→ Lp(Ω;C([0, T ];R)),

defined by

Ku(t) = 〈x, µ〉+

∫ t

0

F̄ (s, u(s))ds

+
1

1 + ρ̄

∫ t

0

Ḡ(s, u(s))
[√

QϕH(s)
]
ds+

ρ̄

1 + ρ̄

∫ t

0

Σ̄(t)
[√

BϕZ(s)
]
ds.

Let u, v ∈ Lp(Ω;C([0, T ];R)). Due to (4.2.14) and the fact that ϕ ∈ PM(V ), we have

E sup
0≤t≤T

∣∣∣ ∫ t

0

(
Ḡ(s, u(s))− Ḡ(s, v(s))

) [√
QϕH(s)

]
ds
∣∣∣p

≤ cE sup
0≤t≤T

(∫ t

0

‖ϕH(s)‖H |u(s)− v(s)| ds
)p
≤ cp T

p
2M

p
2E sup

0≤t≤T
|u(t)− v(t)|p.
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Moreover, due to (4.2.7), we easily have

E sup
0≤t≤T

∣∣∣ ∫ t

0

Σ̄(t)
[√

BϕZ(s)
]
ds
∣∣∣p= E sup

0≤t≤T

∣∣∣δ0

∫ t

0

〈Nδ0

(
Σ(s)[

√
BϕZ(s)]

)
, µ〉ds

∣∣∣p≤ c T
p
2M

p
2 .

Since F̄ (t, ·) : R → R is Lipschitz continuous, we conclude that K is Lipschitz con-

tinuous from Lp(Ω;C([0, T ];R) into itself, and the well-posedness of equation (4.3.8)

follows.

4.4.2 Convergence

Clearly, in Theorem 4.3.2 Condition (i) follows immediately from Condition (ii). On

the other hand, due to Skorokhod’s theorem, Condition (ii) in Theorem 4.3.2 follows

from the following convergence result.

Proposition 4.4.3. Assume that Hypotheses 4.2.1, 4.2.2 and 4.2.3 hold. Moreover,

assume that (4.3.2) holds. Suppose that {xε}ε>0 ⊂ H converges weakly to x ∈ H, as

ε → 0, and suppose that {ϕε}ε>0 ⊂ PM(V ) converges weakly in L2(0, T ;V ) to ϕ, as

ε→ 0, P-a.s. Then for any δ > 0 and p ≥ 1,

lim
ε→0

E sup
δ≤t≤T

‖uxε,ϕεε − ux,ϕ‖pHµ = 0. (4.4.7)
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Proof. We denote ϕε = (ϕεH , ϕ
ε
Z) and ϕ = (ϕH , ϕZ). We first write

uxε,ϕεε (t)− ux,ϕ(t) =
(
et
A
ε xε − 〈x, µ〉

)
+ α(ε)wεA,Q(uxε,ϕεε )(t) + β(ε)wεA,B(t)

+

(∫ t

0

e(t−s)A
ε F (s, uxε,ϕεε (s))ds−

∫ t

0

F̄ (s, ux,ϕ(s))ds

)

+
α(ε)√
γ(ε)

∫ t

0

e(t−s)A
ε G(s, uxε,ϕεε (s))

[√
QϕεH(s)

]
ds− 1

1 + ρ̄

∫ t

0

Ḡ(s, ux,ϕ(s))
[√

QϕH(s)
]
ds

+
β(ε)√
γ(ε)

(δ0 − A)

∫ t

0

e(t−s)A
ε Nδ0

[
Σ(s)
√
BϕεZ(s)

]
ds− ρ̄

1 + ρ̄

∫ t

0

Σ̄(s)
[√

BϕZ(s)
]
ds

=:
(
et
A
ε xε − 〈x, µ〉

)
+ α(ε)wεA,Q(uxε,ϕεε )(t) + β(ε)wεA,B(t) +

3∑
i=1

I iε(t).

Thanks to estimates (4.2.9), (4.2.10) and (4.4.1), as well as Lemmas 4.6.2, 4.6.3,

and 4.6.4 (where a-priori bounds for the terms I iε(t) are proven), there exists some

non-negative function rT,p(ε) going to 0, as ε→ 0, such that

E sup
δ≤t≤T

‖uxε,ϕεε (t)− ux,ϕ(t)‖2
Hµ

≤ sup
δ≤t≤T

∥∥∥etAε xε − 〈x, µ〉∥∥∥2

Hµ
+ rT,p(ε) + cT

∫ T

δ

E sup
δ≤s≤t

‖uxε,ϕεε (s)− ux,ϕ(s)‖2
Hµ
.

(4.4.8)
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We have

sup
δ≤t≤T

∥∥∥etAε xε − 〈x, µ〉∥∥∥2

Hµ
≤ 2 sup

δ≤t≤T

∥∥∥etAε xε − 〈xε, µ〉∥∥∥2

Hµ
+ 2
∣∣〈xε − x, µ〉∣∣2

≤ 2 c e−
2γδ
ε ‖xε‖Hµ + 2

∣∣〈xε − x, µ〉∣∣2.
Therefore, since the sequence {xε}ε>0 converges weakly to x in Hµ, we have

lim
ε→0

sup
δ≤t≤T

∥∥∥etAε xε − 〈x, µ〉∥∥∥2

Hµ
= 0.

This fact, together with (4.4.8) and Gronwall’s Lemma, allows us to conclude that

(4.4.7) holds for p ≥ 2. To obtain the result for p > 2, we use estimate (4.4.1) and

the dominated convergence theorem.

In the next section we show that for every u ∈ C([δ, T ];Hµ) the mapping

x ∈ H 7→ Îxδ,T (u) ∈ [0,+∞] is weakly lower semicontinuous. Due to the convergence

result proved in Proposition 4.4.3 and to Theorem 4.3.2, this implies that the family

{uxε }ε>0 satisfies a uniform Laplace principle in C([δ, T ];Hµ), with speed γ(ε) and

action functional Îxδ,T .

4.4.3 Conclusion

In this section, we first show that under Hypothesis 4.3.1, we have Îxδ,T = Ixδ,T where

Ixδ,T is the action functional defined in (4.3.1). Then, we show that the action function-

als Ixδ,T satisfy the properties required to extend the uniform Laplace principle into a

uniform large deviation principle (see Proposition 2.2.4). In particular, the mapping
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x 7→ Îxδ,T (u) ∈ [0,+∞] is weakly lower semicontinuous, for every u ∈ C([0, T ];Hµ).

This will conclude the proof of Theorem 4.3.1.

Lemma 4.4.1. For every 0 ≤ a < b, let us define

Ia,b(w) :=
1

2

∫ b

a

∣∣w′(t)− F̄ (t, w(t))
∣∣2

Hρ̄(t, w(t))
dt.

Then, we have

Îxδ,T (u) = Ixδ,T (u) = inf
w∈C([0,T ];R)

w(0)=〈x,µ〉, w|[δ,T ]=u

I0,T (w). (4.4.9)

Proof. First, we observe that Îxδ,T (u) =∞, if u(t, ξ) is any function depending on the

spatial variable ξ. Next, we notice that Îxδ,T (u) can be rewritten as

Îxδ,T (u) = inf
w∈C([0,T ];R)
w|[δ,T ]=u

inf
ϕ∈L2(0,T ;V )
ux,ϕ=w

1

2

∫ T

0

‖ϕ(s)‖2
V ds,

because the condition Gδ(x, ϕ) = u does not constrain the values of ϕ on the inter-

val (0, δ). We suppose now that w = ux,ϕ, for some x ∈ H and ϕ = (ϕH , ϕZ) ∈
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L2(0, T ;V ). Then, recalling that µ has a density m ∈ L∞(D), we have

|w′(t)− F̄ (t, w(t))| = 1

1 + ρ̄

∣∣∣Ḡ(t, w(t))
[√

QϕH(t)
]

+ ρ̄ Σ̄(t)
[√

BϕZ(t)
] ∣∣∣

=
1

1 + ρ̄

∣∣∣〈ϕH(t),
√
Q [G(t, w(t))m]〉H + ρ̄ δ0〈ϕZ(t),

√
B
[
Σ(t)N∗δ0m

]
〉Z
∣∣∣

≤ 1

1 + ρ̄
‖ϕH(t)‖H

(∥∥∥√Q [G(t, w(t))m]
∥∥∥
H

+ ρ̄ δ0 ‖ϕZ(t)‖Z
∥∥∥√B [Σ(t)N∗δ0m

]∥∥∥
Z

)

≤ 1

1 + ρ̄
‖ϕ(t)‖V

(∥∥∥√Q [G(t, w(t))m]
∥∥∥2

H
+ ρ̄2 δ2

0

∥∥∥√B [Σ(t)N∗δ0m
]∥∥∥2

Z

)1/2

= ‖ϕ(t)‖V
√
Hρ̄(t, w(t)).

On the other hand, equality is achieved with the choice,

ϕ̂(t) :=
1

1 + ρ̄

w′(t)− F̄ (w(t))

Hρ̄(t, w(t))

(√
Q [G(t, w(t))m] , ρ̄ δ0

√
B
[
Σ(t)N∗δ0m

])
.

Notice that ϕ̂ is well defined due to the non-degeneracy condition in Hypothesis 4.3.1.

Moreover, it is easy to see that w solves equation (4.3.8) with the control ϕ̂, so that

ux,ϕ̂ = w. This minimizing choice of ϕ = ϕ̂ gives rise to the action functional Ixδ,T .

Alternatively, we can write the action functional as

Ixδ,T (u) = inf
w∈C([0,δ];R)

w(0)=〈x,µ〉, w(δ)=u(δ)

I0,δ(w) + Iδ,T (u) =: Jδ(x, u) + Iδ,T (u) (4.4.10)

Jδ(x, u) depends only on the initial condition x ∈ H and the value of the path u at

t = δ, while Iδ,T (u) only depends on the path u.
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Lemma 4.4.2. Assume H is endowed with the weak topology. Then, for every 0 <

δ < T , the mapping Jδ : H × C([0, T ];R)→ [0,+∞) is continuous.

Proof. For every x ∈ H, u ∈ C([0, T ];R) and η > 0, we denote by wη(x, u) a path in

C([0, T ];R) such that

wη(x, u)(0) = 〈x, µ〉, wη(x, u)(δ) = u(δ), Jδ(x, u) ≥ I0,δ(wη(x, u))− η

4
.

Moreover, for every y ∈ H, v, w ∈ C([0, T ];R) and δ′ ∈ (0, δ), we denote by

ρδ′(y, v, w) the path in C([0, T ];R) defined by

ρδ′(y, v, w)(t) =



(δ′ − t)/δ′ 〈y, µ〉+ t/δ′w(δ′), t ∈ [0, δ′],

w(t), t ∈ [δ′, δ − δ′]

(δ − t)/δ′w(δ − δ′) + (t− (δ − δ′))/δ′ v(δ), t ∈ [δ − δ′, δ].

Since ρδ′(y, v, w) and w coincide in the interval [δ′, δ − δ′], we have

∣∣I0,δ(ρδ′(y, v, w))− I0,δ(w)
∣∣

≤
∣∣I0,δ′(ρδ′(y, v, w))

∣∣+
∣∣Iδ−δ′,δ′(ρδ′(y, v, w))

∣∣+ |I0,δ′(w)|+ |Iδ−δ′,δ(w)| .

(4.4.11)

Now, let us fix x ∈ H , u ∈ C([0, T ];R) and η > 0. Let {xn}n≥1 ⊂ H be a

sequence weakly convergent to x and let {un} ⊂ C([0.T ];R) be a sequence convergent

to u. For every n ∈ N and δ′ ∈ (0, δ), we have

Jδ(xn, un) ≤ I0,δ(ρδ′(xn, un, wη(x, u)))

≤ I0,δ(ρδ′(xn, un, wη(x, u)))− I0,δ(wη(x, u)) + Jδ(x, u) + η/4.

(4.4.12)
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Since the sequences {xn}n≥1 and {un}n≥1 are bounded and Hypothesis 4.3.1 holds

true, we have

|I0,δ′(ρδ′(xn, un, wη(x, u)))| ≤ c

∫ δ′

0

(
|wη(x, u)(δ′)− 〈xn, µ〉H |

δ′
+ 1

)2

dt

≤ c

(
|wη(x, u)(δ′)− wη(x, u)(0)|2

δ′
+
|〈xn − x, µ〉|2

δ′
+ δ′

)
.

Analogously,

|Iδ−δ′,δ(ρδ′(xn, un, wη(x, u)))| ≤ c

∫ δ

δ−δ′

(
|wη(x, u)(δ′)− un(δ)|

δ′
+ 1

)2

dt

≤ c

(
|wη(x, u)(δ − δ′)− wη(x, u)(δ)|2

δ′
+
|un(δ)− u(δ)|2

δ′
+ δ′

)
.

Therefore, as wη(x, u) ∈ W 1,2(0, δ), we can find δ′1 > 0 such that

|I0,δ′(ρδ′(xn, un, wη(x, u)))|+ |Iδ−δ′,δ(ρδ′(xn, un, wη(x, u)))| ≤ η/4, δ′ ≤ δ′1.

Moreover, as I0,δ(wη(x, u)) <∞, we can find δ′2 > 0 such that

|I0,δ′(wη(x, u))|+ |Iδ−δ′,δ(wη(x, u))| ≤ η/4, δ′ ≤ δ′2.

Thus, if we pick δ̄′ = min(δ′1, δ
′
2), thanks to (4.4.11) we conclude that

lim sup
n→∞

|I0,δ(ρδ′(xn, un, wη(x, u)))− I0,δ(wη(x, u))| < 3

4
η.

Thanks to (4.4.12), this implies that there exists n1
η ∈ N such that

Jδ(xn, un) ≤ Jδ(x, u) + η, n ≥ n1
η. (4.4.13)

Next, we want to prove that there exists n2
η ∈ N such that

Jδ(xn, un) ≥ Jδ(x, u)− η, n ≥ n2
η. (4.4.14)
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The proof of the inequality above follows the same line of the proof of inequality

(4.4.13). Actually, as in (4.4.12) we have

Jδ(x, u) ≤ |I0,δ(ρδ′(x, u, wη(xn, un)))− I0,δ(wη(xn, un))| − J0,δ(xn, un) + η/4.

Then, by using the same arguments used above, we can find a sequence {δ′n}n≥1 ⊂

(0, δ) such that

lim sup
n→∞

∣∣I0,δ(ρδ′n(x, u, wη(xn, un)))− I0,δ(wη(xn, un))
∣∣ < 3

4
η,

and (4.4.14) follows.

The continuity above is strictly due to the fact that δ > 0. If δ = 0 then certainly

the mapping x 7→ Ix(u) is not continuous, since Ix(u) is finite only if u(0) = x.

However, the lemma above easily implies the following weaker condition, which is

also true in the δ = 0 case.

Lemma 4.4.3. For every sequence {xn}n≥1 ⊂ H, weakly convergent to some x, and

for every u ∈ {ϕ ∈ C([δ, T ];R) : Ixδ,T (ϕ) ≤ s}, there exists a sequence {un}n≥1 such

that un → u in C([δ, T ];H) and

lim sup
n→∞

Ixnδ,T (un) ≤ s. (4.4.15)

When δ > 0, this is trivially satisfied by the sequence un = u by the previous

lemma. This condition can be used along with the following lemma to prove that the

conditions of Proposition 2.2.4 is satisfied in the model we are studying.
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Lemma 4.4.4. For any δ > 0, T > 0, s ≥ 0 and x ∈ H, we define the set

Φx
δ,T (s) := {ϕ ∈ C([δ, T ];R) : Ixδ,T (ϕ) ≤ s}.

Then, for any bounded set B ⊂ H, we have

lim
r→0+

sup
x∈B

λ(Φx
δ,T (s),Φx

δ,T (s+ r)) = 0.

Proof. Fix an ε > 0 and s > 0. We will show that there exist r > 0 small enough

that for any x ∈ B and u ∈ Φx
δ,T (s + r), there exists zu ∈ Φx

δ,T (s) such that

‖u− zu‖C([δ,T ];R) < ε.

Fix an r > 0. First we consider the case of x ∈ B and u ∈ Φx
δ,T (s+ r) such that

Iδ,T (u) > r. For such a path u, we may consider the continuous path zu ∈ C([δ, T ];R)

defined by

zu(t) =


u(t), if t ∈ [δ, T ∗],

uu(T ∗)(t− T ∗), if t ∈ [T ∗, T ],

where

T ∗ = T ∗(u, r) := inf{t ∈ [δ, T ] : It,T (u) ≤ r}.

Hence, zu ∈ Φx
δ,T (s). Moreover, since W 1,2([δ, T ]) ↪→ C([δ, T ];R), it is easy to see that

sup
x∈B

sup
u∈Φxδ,T (s+r)

‖u‖C([δ,T ];R) <∞.

Thanks to the Lipschitz condition on g, this implies that

sup
x∈B

sup
u∈Φxδ,T (s+r)

‖Hρ̄(u)‖C([δ,T ];R) <∞.
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Next, for any t ∈ [T ∗, T ] we have that

|u(t)− zu(t)|2 ≤
(∫ t

T∗

|u′(s)− F̄ (s, u(s))|ds+

∫ t

T∗

|F̄ (s, u(s))− F̄ (s, zu(s))|ds
)2

≤ cB (t− T ∗)
(
IT ∗,t(u) +

∫ t

T∗

|u(s)− zu(s)|2 ds
)
,

so that, thanks to the Gronwall lemma,

|u(t)− zu(t)|2 ≤ cT,B IT?,T (u).

Now, if we fix r < (ε c−1
T,B)1/2, then we have ‖u− zu‖C([δ,T ];R) < ε. Since the constant

cT,B is independent of x, this proves the result.

Next, we consider the case where u ∈ Φx
δ,T (s + r), but Iδ,T (u) ≤ r. Let w ∈

C([0, δ];R) be a path such that w(0) = 〈x, µ〉, w(δ) = u(δ) and I0,δ(w) ≤ J0,δ(x, u)+r.

Then similar to before we may define the path zu ∈ C([δ, T ];R) by

zu(t) = uw(T ∗)(t− T ∗), t ∈ [δ, T ],

where

T ∗ = T ∗(w, r) := inf{t ∈ [0, δ] : It,δ(w) ≤ 2r}.

This implies that

Ixδ,T (zu) = J0,δ(x, zu) ≤ I0,T ∗(w) = I0,δ(w)− IT ∗,δ(w) ≤ J0,δ(x, u)− r ≤ Ixδ,T (u)− r.

Therefore, zu ∈ Φx
δ,T (s). Finally, if we consider the path ũ(t) := w(t)I[T ∗,δ](t) +

u(t)I[δ,T ](t), then IT ∗,T (ũ) ≤ 3r. Thus by the same calculation as before we obtain

‖u− zu‖C([δ,T ];R) ≤
∥∥ũ− uw(T ∗)(· − T ∗)

∥∥
C([T ∗,T ];R)

≤ cT,B IT ∗,T (ũ),

which completes the proof upon taking r small enough.
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Lemma 4.4.5. Suppose xn ⇀ x in H. Then for any δ, T > 0 and s ≥ 0, we have

lim
n→∞

sup
u∈Φxδ,T (s)

dist(u,Φxn
δ,T (s)) = 0,

and

lim
n→∞

sup
u∈Φxnδ,T (s)

dist(u,Φx
δ,T (s)) = 0.

In particular, the requirements of Proposition 2.2.4 are satisfied.

Proof. For fixed u ∈ C([0, T ];R), the mapping x 7→ Ixδ,T (u) is lower semi-continuous.

Condition (i) of Proposition 2.2.4 then follows from Condition (i) in Theorem 4.3.2

(see the proof of Theorem 5 in [13]).

To show the first limit, it suffices to prove that for any {un}∞n=1 ⊂ Φx
δ,T (s) we

have

lim inf
n→∞

dist(un,Φ
xn
δ,T (s)) = 0. (4.4.16)

Since Ixδ,T is a good rate function, we may assume by taking a subsequence, if necessary,

that un → u ∈ Φx
δ,T (s). By (4.4.15), we may also find a sequence {zn}∞n=1 such that

zn → u and

lim sup
n→∞

Ixnδ,T (zn) ≤ s.

Then, for any r > 0 we have that

dist(un,Φ
xn
δ,T (s)) ≤ ‖un − zn‖C([δ,T ];R) + dist(zn,Φ

xn
δ,T (s+ r)) + dist(Φxn

δ,T (s+ r),Φxn
δ,T (s))

= ‖un − zn‖C([δ,T ];R) + dist(Φxn
δ,T (s+ r),Φxn

δ,T (s)).
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Therefore, due to the previous lemma, for every ε > 0 we can find rε > 0 such that

dist(un,Φ
xn
δ,T (s)) ≤ ‖un − zn‖C([δ,T ];R) + ε, n ≥ 0,

and this implies (4.4.16).

To show the second limit, it suffices to prove that for any {un}∞n=1 ⊂ C([δ, T ];R)

such that un ∈ Φxn
δ,T (s), we have

lim inf
n→∞

dist(un,Φ
x
δ,T (s)) = 0.

By condition (i), we may assume, by taking a subsequence if necessary, that un → u.

Then, thanks to Lemma 4.4.2, we obtain

lim inf
n→∞

Ixnδ,T (un) ≥ lim inf
n→∞

J0,δ(xn, un)+lim inf
n→∞

Iδ,T (un) ≥ J0,δ(x, u)+Iδ,T (u) = Ixδ,T (u).

In particular, this implies that Ixδ,T (u) ≤ s so that u ∈ Φx
δ,T (s)). Therefore,

distC([δ,T ];R)(un,Φ
x
δ,T (s)) ≤ ‖u− un‖C([δ,T ];R) ,

which concludes the proof.

Remark 4.4.1. In Proposition 4.4.3, we have proven that uxε,ϕεε converges to ux,ϕ in

C([δ, T ];Hµ), P-a.s., for every 0 < δ < T . The reason we do not have convergence (and

hence a large deviation principle) in C([0, T ];Hµ) is because et
A
ε x does not converge

to 〈x, µ〉 uniformly on t ∈ [0, T ] as ε → 0. On the other hand, for any k ≥ 1, due to

(4.2.4) we have

∫ T

0

∥∥∥etAε x− 〈x, µ〉∥∥∥k
Hµ
dt ≤ c

∫ T

0

e−tγk/ε ‖x‖kHµ dt ≤ c ε ‖x‖kHµ .
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This implies that uxε,ϕεε converges to ux,ϕ, as ε→ 0, in the space Lp(Ω;Lk(0, T ;Hµ))

for any p, k ≥ 1. Consequently, the family {L(uxε )}ε∈(0,1] satisfies a large deviation

principle in Lk(0, T ;Hµ).

�

Remark 4.4.2. The action functional Ixδ,T is the same action functional that governs

the large deviation principle in C([δ, T ];R) satisfied by the family {L(vxε )}ε>0, where

vxε is the solution to the one-dimensional SDE,

dv(t) = F̄ (v(t))dt+
√
γ(ε)H(t, v(t)) dβ(t), v(0) = 〈x, µ〉. (4.4.17)

The law of the solutions to (4.4.17) is equal to the law of the solutions to the SDE,

du(t) = F̄ (t, u(t))dt+

√
γ(ε)

1 + ρ̄

(
Ḡ(t, u(t))dWQ(t) + ρ̄ Σ̄(t)dWB(t)

)
, u(0) = 〈x, µ〉.

(4.4.18)

Now, in view of equation (4.2.16), we see that (4.4.18) is precisely the limiting equation

of (4.2.6) if the coefficients α(ε) and β(ε) are held fixed, while only the ε terms with

the diffusion A are taken to 0. Therefore, the large deviation principle would not be

affected if we were to take the spatial averaging limit to completion before allowing

the noises to decay.

�
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4.5 Applications to the exit problem

In this section we consider the problem of the exit of the process uxε , the solution of

equation (4.2.6), from a bounded domain D ⊂ Hµ. With this in mind, we make the

following assumptions on the domain D and the coefficients f, g and σ.

Hypothesis 4.5.1. (i) The coefficients f, g and σ are all independent of t. In

addition,

sup
(ξ,r)∈D×R

|g(ξ, r)| <∞.

(ii) For any x ∈ D̄, the unique solution ux of the one-dimensional ODE

du

dt
= F̄ (u(t)), u(0) = 〈x, µ〉,

satisfies ux(t) ∈ D̄, for any t ≥ 0. Moreover, for every c1, c2 > 0 there exists

T = T (c1, c2) > 0 such that

‖x‖Hµ ≤ c2 =⇒ ‖ux(t)‖Hµ ≤ c1, t ≥ T.

(iii) The domain D ⊂ Hµ is an open, bounded, connected set that contains x = 0.

In addition, D is invariant under the semigroup etA and 〈x, µ〉 ∈ D, for each

x ∈ D.

Remark 4.5.1. The invariance of D under etA will be necessary in order to prove a

lower bound on the exit time of the process uxε from the domain D. This is because
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when ε is small, equation (4.2.6) behaves likes the heat equation,

∂u

∂t
=

1

ε
Au,

for t on the order of ε. In fact, if D is not invariant under the semigroup etA, then

for some x ∈ D the process uxε will immediately exit the domain, as ε→ 0.

�

Lemma 4.5.1. Assume that A is a divergence type operator and pick any function

g : R → R that is of class C2 and convex and has quadratic growth at infinity. For

every r ∈ R, we define

Dg(r) := {x ∈ H : G(x) < r } ,

where

G(h) =

∫
D
g(h(ξ))dξ, h ∈ H.

Then, there exists r̄ ∈ R such that the domain Dg(r) satisfies Condition (iii) in

Hypothesis 4.5.1, for every r > r̄.

Proof. First of all, since g has no more that quadratic growth at infinity, the mapping

G : H → R is well defined. It is differentiable and G′(h) = g′ ◦ h, for every h ∈ H.

Moreover, since A is a divergence type operator, H = Hµ.

The convexity and the quadratic growth at infinity of g imply, respectively,

that Dg(r) is convex and bounded, for every r ∈ R. Moreover, 0 ∈ Dg(r), for every

r > g(0) |D| =: r̄.
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Now, we show that Dg(r) is invariant under the semigroup etA. Actually, if

x ∈ H and u(t) := etAx, by differentiating and integrating by parts we have

d

dt
G(u(t)) = 〈G′(u(t)), ∂tu(t)〉H = 〈g′(u(t)),Au(t)〉H

= −
∫
D
g′′(u(t, ξ))〈a(ξ)∇u(t, ξ),∇u(t, ξ)〉 dξ ≤ 0,

last inequality following from the fact that g is convex and from (4.2.1). This means

that the mapping t 7→ G(u(t)) is non-increasing, so that

x ∈ Dg(r) =⇒ G(etAx) ≤ G(x) < r, t ≥ 0.

Finally, we show that if x ∈ Dg(r), then 〈x, µ〉 ∈ Dg(r). We have

G(〈x, µ〉) =

∫
D
g(〈x, µ〉) dξ = |D| g(〈x, µ〉) ≤

∫
D
g(x(ξ)) dξ = G(x) < r.

We have seen that for every x ∈ H and δ > 0, the family {L(uxε )}ε>0 satis-

fies a uniform large deviation principle in C([δ, T ];Hµ) with action functional Ixδ,T .

Moreover, if x is constant then {L(uxε )}ε>0 satisfies a large deviation principle in

C([0, T ];Hµ) with action functional Ix0,T . On the basis of this, we define the quasipo-

tential V : Hµ → [0,+∞], by

V (y) := inf{ I0
0,T (u) : u ∈ C([0, T ];Hµ), u(T ) = y, T > 0 }.

Recalling that Ix0,T is finite only if u ∈ C([0, T ];R), it follows that

V (y) < +∞ =⇒ y is constant.
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Moreover, since we assume that D contains a ball around 0, it follows that both D and

∂D will contain some constant y ∈ Hµ. In particular, there will exist paths starting at

0 and ending at z ∈ ∂D that only travel along the subspace {y ∈ Hµ : y is constant}.

These paths will have finite values of the action functional, so that

V̄ (D) := inf
y∈∂D

V (y) < +∞. (4.5.1)

In addition, due to Condition (ii) of Hypothesis 4.5.1, the intersection of D and the

subspace R ⊂ Hµ is precisely an open interval containing 0. Therefore, if we denote

the endpoints of the interval R ∩D by y1 and y2, then V̄ (D) = min(V (y1), V (y2)).

Remark 4.5.2. Suppose g ≡ 1, so that the noise is additive. As discussed in Remark

4.4.2, Ix0,T is the action functional for the large deviation principle satisfied by the

family {L(vxε )}, where vxε is the solution of

dv(t) = F̄ (v(t))dt+
√
γ(ε)Hρ̄ dβ(t), v(0) = 〈x, µ〉,

with

Hρ̄ =
1

(1 + ρ̄)2

(∥∥∥√Qm
∥∥∥2

H
+ ρ̄2 δ2

0

∥∥∥√B[ΣN∗δ0m]
∥∥∥2

Z

)
.

Therefore, due to classical results (see [37]), we will have the explicit formula,

V (y) = − 2

Hρ̄

∫ y

0

F̄ (σ)dσ.

In the case that the noise is multiplicative, there is no such explicit representation of

the quasipotential, but the exit results we discuss below will still hold.
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Our goal in this section is to a prove Freidlin-Wentzell type estimates on the

exit time of uxε from the domain D. With this in mind, we define the stopping times,

τxε := inf{t ≥ 0 : uxε (t) ∈ ∂D}.

The main result is the following.

Theorem 4.5.1. Assume that all Hypotheses 4.2.1 to 4.5.1 are satisfied. Then for

any x ∈ D, we have

lim
ε→0

ε logEτxε = V̄ (D).

The proof of Theorem 4.5.1 is a consequence of the following series of lemmas.

Once these lemmas are established, the proof of Theorem 4.5.1 proceeds as in the

finite dimensional case (see Theorem 5.7.11 of [28]). We list the lemmas below, and

postpone their proofs until Appendix 4.7.

In what follows, we set

Bρ := {y ∈ Hµ : ‖y‖Hµ ≤ ρ},

and, for every ρ > 0 such that Bρ ⊂ D, we define the stopping times

σxε (ρ) := inf{t ≥ 0 : uxε (t) ∈ Bρ ∪ ∂D}.

Lemma 4.5.2. For any η > 0, there exists a T <∞ such that

lim inf
ε→0

γ(ε) log inf
x∈D

Px(τxε ≤ T ) > −(V̄ (D) + η).
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Lemma 4.5.3. Let ρ > 0 be such that Bρ ⊂ D. Then

lim
t→∞

lim sup
ε→0

γ(ε) log sup
x∈D

P(σxε (ρ) > t) = −∞.

Lemma 4.5.4. Let ρ > 0 be such that Bρ ⊂ D. Then, for any x ∈ D,

lim
ε→0

P (uxε (σ
x
ε (ρ)) ∈ Bρ) = 1.

Lemma 4.5.5. Let ρ > 0 be such that Bρ ⊂ D. Then for any η > 0, there exists

T <∞ such that

lim sup
ε→0

γ(ε) log sup
x∈Bρ

P( sup
0≤t≤T

‖uxε (t)− x‖Hµ ≥ 3ρ) < −η.

Lemma 4.5.6. Let ρ > 0 be such that B2ρ ⊂ D. Then, for any closed set N ⊂ ∂D,

we have

lim
ρ→0

lim sup
ε→0

γ(ε) log sup
x∈∂B2ρ

P (uxε (σ
x
ε (ρ)) ∈ N) ≤ − inf

z∈N
V (z).

4.6 Appendix A: Some Lemmas used in Section 4.4

We start with a first preliminary result.

Lemma 4.6.1. For every ϕ, ψ ∈ H and t > 0 we have

∥∥∥etA (ϕ
√
Qψ)

∥∥∥
Hµ
≤ c

(
t−

d
2ζ + 1

)
‖ϕ‖Hµ ‖ψ‖H . (4.6.1)

Proof. If we set ζ = 2ρ
ρ−2

, we have 1
ζ

+ 1
ρ

+ 1
2

= 1. Thus, for any t > 0 and ψ ∈ H, due
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to condition (4.2.5) we have∥∥∥etA(ϕ
√
Qψ)

∥∥∥
Hµ

=

∥∥∥∥∥∑
k

λk〈ψ, ek〉etA(ϕek)

∥∥∥∥∥
Hµ

≤

(∑
k

λρk ‖ek‖
2
∞

) 1
ρ
(∑

k

‖ek‖
− 2ζ
ρ

∞
∥∥etA(ϕek)

∥∥ζ
Hµ

) 1
ζ

|ϕ|H

≤ κ
1
ρ

Q ‖ψ‖H

(∑
k

∥∥etA(ϕek)
∥∥2

Hµ

) 1
ζ

sup
k

(
‖ek‖

− 2
ρ
∞
∥∥etA(ϕek)

∥∥ ζ−2
ζ

Hµ

)
.

(4.6.2)

By Remark 4.2.2, the semigroup is a contraction on Hµ. Then, since (ζ−2)/ζ = 2/ρ,

sup
k≥0
‖ek‖

− 2
ρ
∞
∥∥etA(ϕek)

∥∥ ζ−2
ζ

Hµ
≤ sup

k≥0
‖ek‖

− 2
ρ
∞ ‖ϕek‖

2
ρ

Hµ
≤ ‖ϕ‖

2
ρ

Hµ
. (4.6.3)

Moreover, thanks to (4.2.3) and the invariance of the semigroup with respect to the

measure µ, we obtain

∑
k

∥∥etA(ϕek)
∥∥2

Hµ
=

∫
D

∑
k

|〈kt(ξ, ·)ϕ(·), ek(·)〉|2dµ(ξ) =

∫
D
‖kt(ξ, ·)ϕ(·)‖2

H dµ(ξ)

≤ c (t−
d
2 + 1)

∫
D
etA|ϕ(ξ)|2dµ(ξ) = c (t−

d
2 + 1) ‖ϕ‖2

Hµ
.

Due to (4.6.2) and (4.6.3), this implies that (4.6.1) holds.

Now, we are ready to state and prove all lemmas used in Section 4.4.

Lemma 4.6.2. For every ε > 0, let us define

I1
ε (t) =

∫ t

0

e(t−s)A
ε F (s, uxε,ϕεε (s))ds−

∫ t

0

F̄ (s, ux,ϕ(s))ds,
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as in Proposition 4.4.3. Then for any p ≥ 1 and T > 0, we have

E sup
0≤t≤T

∥∥I1
ε (t)

∥∥p
Hµ
≤ rT,p(ε) + cT,p

∫ T

0

E sup
0≤s≤t

‖uxε,ϕεε (s)− ux,ϕ(s)‖pHµ ds, (4.6.4)

where rT,p(ε) is some non-negative function such that rT,p(ε)→ 0, as ε→ 0.

Proof. We can rewrite I1
ε (t) as follows.

I1
ε (t) = J ε1(t) + J ε2(t) :=

(∫ t

0

e(t−s)A
ε F (s, uxε,ϕεε (s))ds−

∫ t

0

F̄ (s, uxε,ϕεε (s))ds

)

+

(∫ t

0

[
F̄ (s, uxε,ϕεε (s))− F̄ (s, ux,ϕ(s))

]
ds

)
.

Concerning J ε1, thanks to (4.2.4) and the a priori estimate (4.4.1), we obtain

E sup
0≤t≤T

‖J ε1(t)‖pHµ ≤ cE sup
0≤t≤T

(∫ t

0

e−
γ(t−s)
ε |F (s, uxε,ϕεε (s))|Hµds

)p

≤ cp

(
1 + E sup

0≤t≤T
‖uxε,ϕεε (t)‖pHµ

)(∫ T

0

e−
γs
ε ds

)p
≤ εpcT,p,M(1 + ‖xε‖pH) ≤ εpcT,p,M ,

(4.6.5)

where the last inequality follows from the fact that the sequence {xε}ε>0 is weakly

convergent and hence resides in a bounded set of H. Next, concerning J ε2(t), we have

E sup
0≤t≤T

|J ε2(t)|p ≤ T p−1E
∫ T

0

|F̄ (s, uxε,ϕεε (s))− F̄ (s, ux,ϕ(s))|pds

≤ c T p−1

∫ T

0

E sup
0≤s≤t

|uxε,ϕεε (s)− ux,ϕ(s)|pHµdt.

This inequality, together with (4.6.5), implies (4.6.4).

173



Lemma 4.6.3. For every ε > 0, let us define

I2
ε (t) =

∫ t

0

e(t−s)A
ε G(s, uxε,ϕεε (s))

[√
QϕεH(s)

]
ds−

∫ t

0

Ḡ(s, ux,ϕ(s))
[√

QϕH(s)
]
ds,

as in Proposition 4.4.3. Then, for every p ≥ 1 and T > 0, the following estimate

holds.

E sup
0≤t≤T

∥∥I2
ε (t)

∥∥2

Hµ
≤ rT,p(ε) + cT,p

∫ T

0

E sup
0≤s≤t

‖uxε,ϕεε (s)− ux,ϕ(s)‖2
Hµ

dt,

where rT,p(ε) is some non-negative function such that rT,p(ε)→ 0, as ε→ 0.

Proof. We can rewrite I2
ε (t) as follows.

I2
ε (t) =

(∫ t

0

e(t−s)A
ε G(s, uxε,ϕεε (s))

[√
QϕεH(s)

]
ds−

∫ t

0

Ḡ(s, uxε,ϕε(s))
[√

QϕεH(s)
]
ds

)

+

(∫ t

0

Ḡ(s, ux,ϕ(s))
[√

Q(ϕεH(s)− ϕH(s))
]
ds

)

+

(∫ t

0

(
Ḡ(s, uxε,ϕεε (s))− Ḡ(s, ux,ϕ(s))

]
)
[√

QϕεH(s)
]
ds

)
=:

3∑
i=1

J εi (t).

Step 1. We first show that for any p ≥ 1,

lim
ε→0

E sup
0≤t≤T

‖J ε1(t)‖pHµ = 0. (4.6.6)
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Due to the invariance of the semigroup with respect to µ and (4.2.4), we have

‖J ε1(t)‖Hµ ≤
∣∣∣∣∣∣ ∫ t

0

e(t−s)A
ε G(s, uxε,ϕεε (s))

[√
QϕεH

]
ds

−
∫ t

0

〈e(t−s) A
2εG(s, uxε,ϕεε (s))

[√
QϕεH(s)

]
, µ〉ds

∣∣∣∣∣∣
Hµ

≤
∫ t

0

e−
γ(t−s)

2ε

∥∥∥e(t−s) A
2εG(uxε,ϕεε )

[√
QϕεH(s)

]∥∥∥
Hµ
ds.

Note that d
ζ
< 1 since ρ < 2d

d−2
. Then, by applying inequality (4.6.1) with θ =

g(s, ·, uxε,ϕεε (s, ·)) we conclude that

‖J ε1(t)‖Hµ ≤ c

∫ t

0

e−
γ(t−s)

2ε

[
((t− s)/ε)−

d
2ζ + 1

]
‖g(s, ·, uxε,ϕεε (s))‖Hµ ‖ϕ

ε
H(s)‖H ds

≤ c

(∫ T

0

e−
γt
ε

[
(t/ε)−

d
ζ + 1

]
ds

)1/2(∫ T

0

|ϕεH(s)|2Hds
)1/2(

1 + sup
0≤s≤t

‖uxε,ϕεε (s)‖Hµ

)

≤ cMε
1
2

(
1 + sup

0≤s≤t
‖uxε,ϕεε (s)‖Hµ

)
.

In view of estimate (4.4.1), since supε∈(0,1] |xε|Hµ <∞, we obtain (4.6.6) upon taking

the pth moment.

Step 2. We show that for any p ≥ 1

lim
ε→0

E sup
0≤t≤T

|J ε2(t)|p = 0. (4.6.7)

For every ψ ∈ L2(0, T ;H), we define

Λψ(t) :=

∫ t

0

Ḡ(s, ux,ϕ(s))
[√

Qψ(s)
]
ds, t ∈ [0, T ].
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First, we show that the family {ΛϕεH
}ε∈(0,1] is equi-continuous and equi-bounded in

[0, T ], P-a.s. Actually, we have

|ΛϕεH
(t+ h)− ΛϕεH

(t)| =
∣∣∣∣∫ t+h

t

Ḡ(s, ux,ϕ(s))
[√

QϕεH(s)
]
ds

∣∣∣∣

≤ c

(∫ t+h

t

∫
D
|g(s, ξ, ux,ϕ(s))|2dµ(ξ)ds

)1/2(∫ t+h

t

∫
D
|ϕεH(s, ξ)|2dµ(ξ)ds

)1/2

≤ c

(∫ t+h

t

(1 + |ux,ϕ(s)|2)ds

)1/2

‖ϕεH‖L2(0,T ;H) .

Then, since ux,ϕ ∈ C([0, T ];R), P-a.s., we have that

sup
ε∈(0,1]

sup
0≤t≤T

|ΛϕεH
(t+ h)− ΛϕεH

(t)| ≤ cM
√
h, P− a.s., (4.6.8)

for some random variable cM ∈ L2(Ω). Next, we observe that for each fixed t ∈ [0, T ]

the linear functional ψ ∈ L2(0, T ;H) 7→ Λψ(t) ∈ R is bounded. Therefore, by the

weak convergence of the sequence {ϕεH} to ϕH , we may conclude that

lim
ε→0

ΛϕεH
(t) = ΛϕH (t) =

∫ t

0

Ḡ(s, ux,ϕ(s))
[√

QϕH(s)
]
ds, P− a.s.,

and estimate (4.6.8) implies that this convergence is uniform with respect to t ∈ [0, T ].

Finally, noting that J ε2(t) = ΛϕεH
(t)−ΛϕH (t), we conclude that (4.6.7) holds from the

dominated convergence theorem.

Step 3. Using the Lipschitz continuity of g, we have

|J ε3(t)|2 ≤
(∫ t

0

∫
D

∣∣∣(G(s, uxε,ϕεε )−G(s, ux,ϕ))
[√

QϕεH(s)
] ∣∣∣ dµ(ξ)ds

)2

≤ c ‖uxε,ϕεε − ux,ϕ‖2
L2(0,T ;Hµ) ‖ϕ

ε
H‖

2
L2(0,T ;Hµ) ≤ cM

∫ T

0

sup
0≤s≤t

‖uxε,ϕεε (s)− ux,ϕ(s)‖2
Hµ
dt.
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This, together with (4.6.6) and (4.6.7), concludes the proof.

Lemma 4.6.4. For every ε > 0, let us define

I3
ε (t) = (δ0−A)

∫ t

0

e(t−s)A
ε Nδ0

[
Σ(s)
√
BϕεZ(s)

]
ds−δ0

∫ t

0

〈Nδ0

[
Σ(s)
√
BϕZ(s)

]
, µ〉ds,

as in Proposition 4.4.3. Then for any p ≥ 1,

lim
ε→0

E sup
0≤t≤T

∥∥I3
ε (t)

∥∥p
Hµ

= 0.

Proof. We can rewrite I3
ε as follows.

I3
ε (t) =

(
(δ0 − A)

∫ t

0

e(t−s)A
ε Nδ0 [Σ(s)

√
BϕεZ(s)]ds− δ0

∫ t

0

〈Nδ0 [Σ(s)
√
BϕεZ(s)], µ〉ds

)

+δ0

∫ t

0

〈Nδ0 [Σ(s)
√
B(ϕεZ(s)− ϕZ(s))], µ〉ds =: J ε1(t) + J ε2(t).

Concerning J ε1, the invariance of µ gives

‖J ε1(t)‖Hµ = ‖
∫ t

0

e(t−s) A
2ε (δ0 − A)e(t−s) A

2εNδ0 [Σ(s)
√
BϕεZ(s)]ds

−
∫ t

0

〈(δ0 − A)e(t−s) A
2εNδ0 [Σ(s)

√
BϕεZ(s)], µ〉ds‖Hµ

≤ c

∫ t

0

e−
γ(t−s)

2ε

∥∥∥(δ0 − A)e(t−s) A
2εNδ0 [Σ(s)

√
BϕεZ(s)]

∥∥∥
Hµ
ds.

Then, thanks to (4.4.4) and the boundedness of the operator Sρ defined in (4.4.3),

for any ρ > 0, we have

∥∥∥(δ0 − A)e(t−s) A
2εNδ0 [Σ(s)

√
BϕεZ(s)]

∥∥∥
Hµ
≤ c

[
1 + ((t− s)/ε)−

1+ρ
4

]
‖ϕεZ(s)‖Z .
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Hence, if ρ < 1, we obtain

E sup
0≤t≤T

‖J ε1(t)‖pHµ ≤ c

(∫ T

0

e−
γt
ε

[
(t/ε)−

1+ρ
2 + 1

]
ds

) p
2

E ‖ϕεZ‖
p
2

L2(0,T ;Z) ≤ cM ε
p
2 .

(4.6.9)

To estimate J ε2(t), we proceed as in Lemma 4.6.3 and for every ψ ∈ L2(0, T ;Z) we

define

Λψ(t) := δ0

∫ t

0

〈Nδ0 [Σ(s)
√
Bψ(s)], µ〉ds.

Then the family {ΛϕεZ
}ε∈(0,1] is uniformly equi-continuous in [0, T ], since

|ΛϕεZ
(t+ h)− ΛϕεZ

(t)| =
∣∣∣∣δ0

∫ t+h

t

〈Nδ0 [Σ(s)
√
BϕεZ(s)], µ〉ds

∣∣∣∣

≤ δ0

√
h

(∫ t+h

t

∫
D
|Nδ0 [Σ(s)

√
BϕεZ(s)](ξ)|2dµ(ξ) ds

)1/2

≤ c δ0

√
h ‖Nδ0 [Σ(·)ϕεZ ]‖L2(0,T ;Hµ) ≤ cM

√
h,

where the last inequality holds P-a.s., for some random variable cM ∈ L1(Ω). In

addition, for fixed t ∈ [0, T ], the linear functional ψ ∈ L2(0, T ;Z) 7→ Λψ(t) ∈ R is

bounded. Hence by the weak convergence of the sequence {ϕεZ} to ϕZ , we have

lim
ε→0

ΛϕεZ
(t) = ΛϕZ (t) = δ0

∫ t

0

〈Nδ0 [Σ(s)
√
BϕZ(s)], µ〉ds.

Moreover, this convergence is uniform in t ∈ [0, T ], so that

lim
ε→0

E sup
0≤t≤T

|J ε2(t)|p = lim
ε→0

sup
0≤t≤T

|ΛϕεZ
(t)− ΛϕZ (t)|p = 0

from the dominated convergence theorem. This, together with (4.6.9), concludes the

proof.
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4.7 Appendix B: Proofs of Lemmas in Section 4.5

Proof of Lemma 4.5.2. Fix η > 0. We first construct a collection of paths {zx}x∈D ⊂

C([0, T ];R) that leave the domain with a close to minimal energy.

Let ρ > 0 such that Bρ ⊂ D. Due to Condition (ii) in Hypothesis 4.5.1, we

can fix T1 large enough that ux(T1) ∈ Bρ, for any x ∈ D̄, where ux is the solution of

(4.3.1). Thus, we set zx(t) = ux(t) on the interval [0, T1]. Next, we set

zx(t) = zx(T1)(T1 + 1− t), if t ∈ [T1, T1 + 1],

so that zx(T1 + 1) = 0. Now, due to (4.5.1), there exists some T2 > 0 and some path

v(t) ∈ C([0, T2],R) such that v(0) = 0, v(T2) /∈ D̄ and I0
0,T2

(v) < V̄ (D) + η/4. We

then set zx(T1 + 1 + t) = v(t) for t ∈ [0, T2]. Hence, upon defining T ∗ = T1 + T2 + 1,

we have

Ix0,T ∗(z
x) = Ix0,T1

(zx) + IT1,T1+1(zx) + I0
T1+1,T ∗(z

x)

≤ c

∫ T1+1

T1

|zx′(t)− F̄ (zx(t))|2dt+ (V̄ (D) + η/4) ≤ c ρ2 +
(
V̄ (D) + η/4

)
.

Thus, taking ρ small enough, we obtain Ix0,T (zx) < V̄ (D) + η/2. We note that all of

these paths {zx}x∈D agree on the interval [T1 + 1, T ∗] and exit the domain on this

time interval. Let us now denote

h := sup
T1+1≤t≤T ∗

distHµ(zx(t), D̄) > 0.
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To prove the lemma, we pick any 0 < δ < T1 + 1 and define the open set

Ψ =
⋃
x∈D

{
u ∈ C([δ, T ∗];Hµ) : sup

δ≤t≤T ∗
|u(t)− zx(t)|Hµ < h

}
.

Then, thanks to Theorem 4.3.1 and the FWULDP lower bound (Definition 2.2.5),

there exists ε0 > 0 such that for any ε < ε0,

inf
x∈D

P(τ εx < T ∗) ≥ inf
x∈D

P(uxε ∈ Ψ) ≥ exp

(
− 1

γ(ε)

[
sup
x∈D

inf
ϕ∈Ψ

Ixδ,T ∗(ϕ) +
η

2

])

≥ exp

(
− 1

γ(ε)

[
sup
x∈D

Ixδ,T ∗(z
x|[δ,T ∗]) +

η

2

]}
≥ exp

{
− 1

γ(ε)
(V̄ (D) + η)

)
.

Proof of Lemma 4.5.3. In this lemma, the behavior of the process near t = 0 is not

a concern and so the same proof as in Lemma 5.7.19 in [28] holds.

Proof of Lemma 4.5.4. Fix some x ∈ D and let ρ > 0 be such that Bρ ⊂ D. If

x ∈ Bρ, there nothing to prove. Thus, we can assume that x /∈ Bρ.

We denote Tx := inf{t ≥ 0 : ux(t) ∈ Bρ/2} and ∆x := inft≥0 distHµ(ux(t), ∂D).

We clearly have Tx > 0 and, due to Condition (iii) of Hypothesis 4.5.1, we have

∆x > 0. Moreover, again thanks to Condition (iii) of Hypothesis 4.5.1, we have

dx := inf
t≥0

distHµ(etAx, ∂D) > 0.

This implies that for every 0 < δ < Tx

P (uxε (σ
x
ε (ρ)) ∈ ∂D)

≤ P
(

sup
0≤t≤δ

∥∥∥uxε (t)− etAε x∥∥∥
Hµ

> dx

)
+ P

(
sup

δ≤t≤Tx
‖uxε (t)− ux(t)‖Hµ > ∆x ∧ ρ/2

)
.
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(4.7.1)

Now, thanks to (4.2.9) and (4.2.10) and Lemma 4.6.2, for every T > 0 there exists

some function rT (ε) going to 0, as ε→ 0, such that

E sup
δ≤t≤T

‖uxε (t)− ux(t)‖Hµ ≤ c e−
γδ
ε ‖x‖Hµ + rT (ε) + cT

∫ T

δ

E sup
δ≤s≤t

‖uxε (s)− ux(s)‖Hµ dt.

Then, using Gronwall’s Lemma, we have

E sup
δ≤t≤T

‖uxε − ux‖Hµ ≤ c
(
e−

γδ
ε ‖x‖Hµ + rT (ε)

)
ecTT . (4.7.2)

Meanwhile, we can estimate the second term in (4.7.1) by using the bounds (4.2.9),

(4.2.10) and (4.4.1) to obtain

E sup
0≤t≤δ

∥∥∥uxε (t)− etAε x∥∥∥
Hµ
≤ c

√
γ(ε) + E sup

0≤t≤δ

∥∥∥∥∫ t

0

e(t−s)A
ε F (s, uxε (s))ds

∥∥∥∥
Hµ

≤ c
(√

γ(ε) + δ
(

1 + E ‖uxε ‖C([0,δ];Hµ)

))
≤ c (

√
γ(ε) + δ).

(4.7.3)

This, together with (4.7.1) and (4.7.2), implies that for every δ ∈ (0, Tx)

P (uxε (σ
x
ε (ρ)) ∈ ∂D) ≤ cT

(√
γ(ε) + δ + rT (ε) + e−

γδ
ε ‖x‖Hµ

)
.

Thus, by taking δ = εr for some 0 < r < 1, we get

P (uxε (σ
x
ε (ρ)) ∈ ∂D) = 0.

Proof of Lemma 4.5.5. We have

uxε (t)− x = et
A
ε x− x+

∫ t

0

e(t−s)A
ε F (s, uxε (s))ds+α(ε)wεA,Q(uxε )(t) + β(ε)wεA,B(t).
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Since the semigroup etA acts as a contraction on Hµ, we have that
∥∥∥etAε x− x∥∥∥

Hµ
≤

2 ‖x‖Hµ . Next we observe that, for t ∈ [0, T ],∥∥∥∥∫ t

0

e(t−s)A
ε F (s, uxε (s))ds

∥∥∥∥
Hµ

≤
∫ t

0

‖F (s, uxε (s))‖Hµ ds

≤ c T

(
1 + sup

0≤s≤t
‖uxε (s)‖Hµ

)
≤ c T

(
1 + ‖x‖Hµ + sup

0≤s≤T
‖uxε (s)− x‖Hµ

)
.

Therefore, if x ∈ Bρ, we can find a Tρ > 0 small enough that

sup
0≤t≤T

‖uxε (t)− x‖Hµ ≤
7ρ

3
+ α(ε) sup

0≤t≤Tρ

∥∥wεA,Q(uxε )(t)
∥∥
Hµ

+ β(ε) sup
0≤t≤Tρ

∥∥wεA,B(t)
∥∥
Hµ
.

Hence,

P
(
‖uxε − x‖C([0,T ];Hµ) ≥ 3ρ

)

≤ P
(
α(ε)

∥∥wεA,Q(uxε )
∥∥
C([0,T ];Hµ)

≥ ρ/3
)

+ P
(
β(ε)

∥∥wεA,B∥∥C([0,T ];Hµ)
≥ ρ/3

)
.

Thanks to Condition (i) of Hypothesis 4.5.1, the integrand of wA,Q(uxε ) is bounded,

so that we can use the exponential estimates for the stochastic convolution (see [51]).

In particular, for every T > 0 we have

P
(

sup
0≤t≤T

∥∥wεA,Q(uxε )(t)
∥∥
Hµ
≥ ρ

3α(ε)

)
≤ c exp

(
− ρ2

3cT α(ε)

)
≤ c exp

(
− ρ2

3 ct γ(ε)

)
,

where cT is a constant going to 0, as T → 0. We obtain a similar estimate for wεA,B,

with α(ε) replaced by β(ε). All together, for every T ≤ Tρ we have

γ(ε) log sup
x∈Bρ

P( sup
0≤t≤T

‖uxε (t)− x‖Hµ ≥ 3ρ) ≤ c γ(ε)− ρ2

cT
.

Upon taking T small enough, this gives us the desired result.
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Proof of Lemma 4.5.6. We modify the proof of Lemma 5.7.21 in [28] to account for

the behavior of uxε (t) near t = 0. Let N ⊂ ∂D be a closed set. Define the closed set

Ψδ,T (N) := {u ∈ C([0, T ];Hµ) : ∃ t ∈ [δ, T ] such that u(t) ∈ N}.

Then, for any T > 0 and δ < T ,

P(uxε (σ
x
ε (ρ)) ∈ N) ≤ P(τxε < δ) + P(σxε (ρ) > T ) + P(uxε ∈ Ψδ,T (N)). (4.7.4)

To bound the first term from above, we notice that

sup
x∈∂B2ρ

P(τ εx < δ) ≤ sup
x∈∂B2ρ

P
(

sup
0≤t≤δ

‖uxε (t)− x‖Hµ ≥ distHµ(x, ∂D)

)
.

Now, let ρ > 0 be small enough that infx∈∂B2ρ dist(x, ∂D) ≥ 6ρ. Then, by Lemma

4.5.5, the inequality above implies that for any η > 0 there exists δ > 0 small enough

that

lim sup
ε→0

γ(ε) log sup
x∈∂B2ρ

P(τ εx < δ) ≤ −η. (4.7.5)

Next, thanks to Lemma 4.5.3, we can find T > 0 large enough that

lim sup
ε→0

γ(ε) log sup
x∈∂B2ρ

P(σxε (ρ) > T ) < −η. (4.7.6)

Since the set Ψδ,T (N) is closed, we can use the upper bound in the DZULDP (Defi-

nition 2.2.4) to obtain that

lim sup
ε→0

γ(ε) log sup
x∈∂B2ρ

P(uxε ∈ Ψδ,T (N)) ≤ − inf
x∈∂B2ρ

Ixδ,T (Ψδ,T (N)). (4.7.7)

On the other hand, for fixed x, we have that

Ixδ,T (Ψδ,T (N)) = inf
ϕ∈Ψδ,T (N)

Ixδ,T (ϕ) ≥ inf
ϕ∈Ψ0,T (N)

Ix0,T (ϕ),
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because every path hitting N in the interval [δ, T ] has an extension to a path on [0, T ]

starting at x.

Next, we notice that for any x ∈ ∂B2ρ,

V (x) + inf
ϕ∈Ψ0,T (N)

Ix0,T (ϕ) ≥ inf
z∈N

V (z),

since any path on the left hand side is also Considered in the infima on the right hand

side. Now, due to Hypotheses 4.5.1, it is clear that limx→0 V (x) = 0. Hence, for any

γ > 0, if we choose ρ > 0 small enough then, thanks to (4.7.7), we have

lim sup
ε→0

γ(ε) log sup
x∈∂B2ρ

P(uxε ∈ Ψδ,T (N)) ≤ γ − inf
z∈N

V (z). (4.7.8)

Due to (4.7.4), (4.7.5), (4.7.6), (4.7.8) and the arbitrariness of γ, the result then

follows by picking η > infz∈N V (z).
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Chapter 5: Large deviations for the invariant measures of the stochas-

tic Navier-Stokes equations

5.1 Introduction

In this section, we continue our study of small-noise limits for multi-scale stochastic

partial differential equation. We consider the following two-dimensional incompress-

ible Navier-Stokes equations on the torus T2 = [0, 2π]2, perturbed by a small additive

noise:
∂tu(t, x) + (u(t, x) · ∇)u(t, x) = ∆u(t, x) +∇p(t, x) +

√
εQε ∂tW (t, x),

div u(t, x) = 0, u(0, x) = u0(x), u is periodic.

(5.1.1)

Here, the functions u(t, x) ∈ R2 and p(t, x) ∈ R denote the velocity and the pressure

of the fluid at any (t, x) ∈ R+ × T2. The random forcing ∂tW (t, x) is a space-time

white noise, while the operator
√
Qε provides spatial correlation to the noise on the

scale of size δ(ε). We are interested in the behavior of equation (5.1.1) as the noise

magnitude
√
ε and the correlation scale δ(ε) are simultaneously sent to 0.

In two dimensions, the incompressible Navier-Stokes equation driven by space-

time white noise is well-posed only in spaces of negative regularity (see [23]). The driv-



ing noise must have more regularity in the spatial variable in order to have function-

valued solutions. In our case, we consider a smoothing operator
√
Qε that provides

sufficient regularity to interpret equation (5.1.1) in the space C([0, T ]; [L2(T2)]2) for

any fixed ε > 0. In fact, the regularization
√
Qε can be chosen to decay to the identity

operator slowly enough for the
√
ε factor to compensate and produce a function-valued

limit.

Under present assumptions, the ε ↓ 0 limit of equation (5.1.1) in C([0, T ]; [L2(T2)]2)

is unsurprisingly the corresponding unforced Navier-Stokes equation. A more interest-

ing problem is the quantification of the convergence rate via large deviations theory.

In [15], it was shown that the solutions to the Leray-projected version of equation

(5.1.1) satisfy a large deviations principle in C([0, T ]; [L2(T2)]2) with rate function

I(u) =
1

2

∫ T

0

‖u′(t) + Au(t) +B(u(t))‖2
[L2(T2)]2 dt,

where A is the Stokes operator and B is the Navier-Stokes nonlinearity. This result

was proven using the weak convergence approach. The weak convergence method was

also used in [3] and [4] to prove large deviations principles for the stochastic Navier-

Stokes with a fixed noise regularization and viscosity vanishing at a rate proportional

to the strength of the noise, which is believed to be a relevant problem in the study

of turbulent fluid dynamics.

If the operator
√
Qε is simultaneously smoothing enough but not too degenerate,

then equation (5.1.1) will possess a unique ergodic invariant probability measure (see

[32]). In the ε ↓ 0 limit, it can be shown that these measures converge weakly to the

186



Dirac measure at 0. For fixed correlation strength δ(ε) = δ > 0, it was proven in [8]

that the invariant measures also satisfy a large deviations principle in [L2(T2)]2 with

rate function given by the quasipotential

Uδ(x) = inf
{
IδT (u) : T > 0, u ∈ C([0, T ]; [L2(T2)]2), u(0) = 0, u(T ) = x

}
,

where IT : C([0, T ]; [L2(T2)]2)→ [0,+∞] is the action functional for the paths defined

by

IδT (u) :=
1

2

∫ T

0

∥∥∥Q−1
δ

[
u′(t) + Au(t) +B(u(t))

]∥∥∥2

[L2(T2)]2
dt.

This result was generalized in [46] to the case of the Navier-Stokes equations posed on

a bounded domain with Dirichlet boundary conditions. In [46] they also considered

the case where the equation has a deterministic, time-independent forcing so that

the limiting dynamics may be nontrivial point attractors or sets of attractors. Both

papers established their results by following the general strategy of [60] for proving

large deviations principles for families of invariant measures.

In [9], it was also proven that the quasipotential Uδ(x), corresponding to the

problem on the torus with fixed correlation strength δ, converges pointwise to

U(x) = ‖x‖2
[H1(T2)]2 , (5.1.2)

as δ ↓ 0. This is a consequence of the orthogonality of Au and B(u) in [L2(T2)]2,

which in general does not hold for the problem posed on a bounded domain. In some

sense, U(x) is what one would expect the quasi-potential for the space-time white

noise case to be if the time-stationary problem were well-posed.
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The purpose of this chapter is to bridge the results of [8] and [9] with the

result of [15]. Rather than first taking ε ↓ 0 and then studying what happens as the

regularization is removed, we take ε and δ to 0 simultaneously. In analogy with the

result Theorem 2.3.3 in Chapter 2, we prove that the invariant measures of equation

(5.1.1) satisfy a large deviations principle with rate function given by the quasi-

potential (5.1.2), under suitable conditions on the regularization
√
Qε.

To prove this result, we first prove a large deviations principle for the solutions of

equation (5.1.1) in C([0, T ]; [L2(T2)]2) that is uniform with respect to initial conditions

in appropriate sets of initial conditions. This is done by proving a large deviations

principle for the linearized problem using the weak convergence approach and then

transferring this to the nonlinear problem via the contraction principle. We note that

this method allows for slower decay of the correlation scale δ(ε) than the methods

used in [15]. The proof of the large deviations principle for the invariant measures

then follows in a similar manner as in [8], but requires crucial modifications to account

for the decaying regularity of the driving noise.

Remark 5.1.1. Let us briefly put the results of this section into the context of the

finite dimensional results discussed in Section 2.3. Suppose that the covariance Qε in

(5.1.1) is instead the identity operator so that (5.1.1) can be formally re-written as

the evolution equation

dut = b(ut)dt+
√
εdWt, (5.1.3)

in [L2(T2)]2. Here, b(u) = −Au − B(u) and Wt is a cylindrical Wiener process in
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[L2(T2)]2, the infinite-dimensional analog of a standard Brownian motion. Let us

pretend as if this equation were well-posed so that the solution u(t, x) could be in-

terpreted as a continuous [L2(T2)]2-valued random process. As we saw in Chapter

2, one does not expect to be able to write down the quasi-potential for (5.1.3) ex-

plicitly, except in the case of a gradient system. But, in this particular case where

the problem is studied on the torus in two-dimensions, b(u) is already in the form

of the orthogonal decomposition −∇U + ` mentioned in Remark 2.3.3. In fact, the

orthogonality 〈Au,B(u)〉[L2(T2)]2 = 0 implies that

−∇U(u) = Au, `(u) = B(u),

where ∇U(u) denotes the functional derivative of U in [L2(T2)]2. This implies the

identification of (5.1.2) as the quasi-potential.

It should also be noted that the quasi-potential will still exist for the problem

studied on domains other than the torus, but it will not have the simple representation

given by (5.1.2). Nonetheless, one may still hope that a large deviations principle for

the invariant measures νε as ε → 0 and Qε → 1 will hold. While we suspect this is

likely true, presently, we are unable to prove this for a general domain. Our proof of

the upper bound of the large deviations principle for νε requires exponential bounds

of the solution on an H1 ball that we are presently only able to obtain in the case of

the problem on the torus by exploiting the orthogonality of Au and B(u). The lower

bound, on the other hand, remains valid for a general bounded domain.

�
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5.2 Preliminaries

We consider equation (5.1.1) posed on the space of square-integrable, mean zero,

space-periodic functions. For an introduction to the 2D Navier-Stokes equations on

the torus, see the book [64] by Temam. We follow the notations and conventions used

there. Denoting T2 := [0, 2π]2, we let

H :=
{
f ∈ [L2(T2)]2 :

∫
T2

f(x)dx = 0, divf = 0, f is periodic in T2
}
,

where the periodic boundary conditions are interpreted in the sense of trace. It can

be shown that H is a Hilbert space when endowed with the standard L2(T2) inner

product. We denote the norm and inner product on H by ‖·‖0 and 〈·, ·〉0, respectively.

Moreover, in what follows, for every p ≥ 1 we shall write Lp instead of Lp(T2).

We denote by HC, the complexification of H, and by Z2
0 the set Z2 \ {(0, 0)}.

The family {ek}k∈Z2
0
⊂ HC defined by

ek(x) =
1

2π

(k2,−k1)√
k2

1 + k2
2

eix·k, x ∈ T2, k = (k1, k2) ∈ Z2
0,

form a complete orthonormal system in HC. Similarly, the family {Re(ek)}k∈Z2
0
⊂ H

form a complete orthonormal system in H. In the remainder, we use the basis

{ek}k∈Z2
0

with the implicit assumption that we are only considering the real com-

ponents.

Next, we let P be the orthogonal projection from [L2(T2)]2 onto H, known as

the Leray projection. We define the Stokes operator by setting

Au := −P∆u, u ∈ D(A) := H ∩ [W 2,2(T2)]2.
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It is easy to see that A is a diagonal operator on H with respect to the basis {ek}k∈Z2
0
.

In particular, for any k ∈ Z2
0 we have

Aek = |k|2ek.

Since A is a positive, self-adjoint operator, for any r ∈ R we can define the fractional

power Ar with domain D(Ar). In fact, it can be shown that D(Ar) is the closure

of span({ek}k∈Z2
0
) with respect to the [W 2r,2(T2)]2 Sobolev norm. To simplify our

notations, we will denote V r := D(Ar/2) with norm given by the [W 2r,2(T2)]2 Sobolev

semi-norm

‖u‖2
r := ‖u‖2

D(Ar/2) = ‖u‖2
[Hr(T2)]2 =

∑
k∈Z2

0

|k|2r〈u, ek〉2H .

In particular, we have that V 2 = D(A) and V := V 1 = D(A1/2). For any r ≥ 0,

we denote by V −r the dual space of V r. In addition, for any p ≥ 1, we will use the

shorthands

Lp := [Lp(T2)]2, W k,p := [W k,p(T2)]2.

Next, we define the tri-linear form, b : V × V × V → R, by

b(u, v, w) :=

∫
T2

(u(x) · ∇)v(x) · w(x)dx, u, v, w ∈ V.
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From standard interpolation inequalities and Sobolev embeddings, it follows that

|b(u, v, w)| ≤ c



‖u‖1/2
H ‖u‖

1/2
1 ‖v‖1 ‖w‖

1/2
H ‖w‖

1/2
1 ,

‖u‖1/2
H ‖u‖

1/2
2 ‖v‖1 ‖w‖H ,

‖u‖H ‖v‖1 ‖w‖
1/2
H ‖w‖

1/2
2 ,

‖u‖1/2
H ‖u‖

1/2
1 ‖v‖1 ‖w‖

1/2
H ‖w‖

1/2
1 ,

(5.2.1)

for smooth u, v, w. These inequalities can then be extended to the appropriate Sobolev

spaces by continuity. We note that the first inequality in (5.2.1) implies that b is

indeed well-defined and continuous on V × V × V . The tri-linear form b also induces

the continuous mappings B : V × V → V ′ and B : V → V ′ defined by

〈B(u, v), w〉 := b(u, v, w),

B(u) := B(u, u),

for u, v, w ∈ V . Moreover, it can be shown that for any u, v ∈ D(A)

B(u, v) = P [(u · ∇)v].

It can be proven that

〈B(u, v), w〉H = −〈B(u,w), v〉H , u, v, w ∈ V. (5.2.2)

Moreover

〈B(u), Au〉H = 0, u ∈ D(A), (5.2.3)
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which implies that

〈B(u, v), v〉H = 0, u, v ∈ V.

Equation (5.2.2) is still true when considering the problem posed on a bounded

domains with Dirichlet boundary conditions. Equation (5.2.3), on the other hand,

only holds for the problem posed on the torus with periodic boundary conditions.

For a proof of equation (5.2.3), see for example [39]. We note that the proof of our

main result relies on equation (5.2.3) in several places, and hence will not immediately

generalize to the case of the Navier-Stokes equation on a bounded domain.

As for the random forcing in equation (5.1.1), we assume that W (t, x) is a

cylindrical Wiener process on the Hilbert space of mean-zero functions in [L2(T2)]2.

We then set w(t) := PW (t) so that w has the formal expansion

w(t, x) =
∑
k∈Z2

0

ek(x)βk(t), t ≥ 0, x ∈ T2,

where {βk}k∈Z2
0

are a collection of independent, real-valued Brownian motions on some

filtered probability space (Ω,F , {Ft}t≥0,P). We assume that the covariance operator

Qε ∈ L(H;H) takes the following form:

Qε := (I + δ(ε)Aβ)−1, (5.2.4)

for some β > 0 and δ(ε) > 0. Since we are concerned with the singular noise limit,

δ(ε) will be taken to be a strictly decreasing function of ε such that

lim
ε→0

δ(ε) = 0.
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Definition (5.2.4) implies that Qε is diagonal with respect to the basis {ek}k∈Z2
0
. It is

worth remarking that we only take this particular form of the covariance operator in

order to simplify the presentation. The results below can easily be adapted to more

general covariance operators with the same smoothing and ergodic properties.

The driving noise,
√
Qεw(t), can thus formally be written as the infinite series

√
Qεw(t) =

∑
k∈Z2

0

σε,k ek βk(t) :=
∑
k∈Z2

0

(1 + δ(ε)|k|2β)−1/2ek βk(t).

Since δ(ε) converges to zero, as ε ↓ 0, the covariance operator Qε convergences point-

wise to the identity operator as ε ↓ 0. For each fixed ε > 0, it is immediate to check

that
√
Qε ∈ L(V r, V r+β). In fact, one can show that

∥∥∥√Qεf
∥∥∥
r+q
≤ 1√

δ(ε)
‖f‖r , (5.2.5)

for any r ∈ R, q ≤ β and f ∈ V r. Moreover, Qε is a trace class operator in H if and

only if β > 1. This means that the Wiener process
√
Qεw is H-valued only when

β > 1.

By taking the Leray projection of equation (5.1.1), we obtain the following

stochastic evolution problem:
du(t) + (Au(t) +B(u(t)))dt =

√
εQε dw(t),

u(0) = x.

(5.2.6)

We assume the initial condition x is an element of H. As is well-known, (see [10]

or Chapter 15 of [25]), under the assumption that β > 0, equation (5.2.6) admits a
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unique generalized solution, uxε ∈ C([0, T ];H). That is, there exists a progressively

measurable process, uxε taking values in C([0, T ];H), P-a.s. for any T > 0, such that

〈uxε (t), h〉H = 〈x, h〉H −
∫ t

0

〈uxε (s), Ah〉H

+

∫ t

0

〈B(uxε (s), h), uε(s)〉H + 〈
√
εQεw(t), h〉H , P− a.s.,

for any h ∈ D(A) and t ∈ [0, T ].

The condition β > 0 is not enough to ensure the existence and uniqueness of an

invariant measure for equation (5.2.6). In the last twenty five years there has been an

extremely intense activity aimed to the study of the ergodic properties of randomly

perturbed PDEs in fluid dynamics and in particular of equation (5.1.1). As shown for

instance in the monograph [39], a sufficient condition for this is that Qε be trace-class

in H and σδ(ε),k 6= 0 for all k. Notice that if β > 1, then Qε is a trace-class operator

and by applying Itô’s formula we get

E ‖uxε (t)‖2
H + 2

∫ t

0

E‖uxε (s)‖2
V ds = ‖x‖2

H + t εTrQε ≤ ‖x‖2
H + t ε δ−1/β

ε . (5.2.7)

This means that uxε ∈ L2(Ω;C([0, T ];H) ∩ L2(0, T ;V )) and, in particular, for every

ε > 0 there exists an invariant measure.

Now, let {νε}ε>0 be this family of invariant measures. Each νε is ergodic in the

sense that

lim
T→∞

1

T

∫ T

0

f(uxε (t))dt =

∫
H

f(h)dνε(x),

for all x ∈ H and Borel-measurable f : H → R. If

sup
ε∈ (0,1)

ε δ−1/β
ε <∞, (5.2.8)
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we have that the family {νε}ε>0 is tight in H. Actually, due to (5.2.7) and the

invariance of νε, for every T > 0 we have∫
H

‖x‖2
V dνε(x) =

1

T

∫ T

0

∫
H

E ‖uxε (t)‖2
V dνε(x) dt =

1

T

∫
H

∫ T

0

E ‖uxε (t)‖2
V dt dνε(x)

≤ 1

2T

∫
H

‖x‖2
H dνε(x) +

1

2
ε δ−1/β

ε ≤ 1

2T

∫
H

‖x‖2
V dνε(x) +

1

2
ε δ−1/β

ε .

Then, thanks to (5.2.8), if we choose T > 1 we get

sup
ε∈ (0,1)

∫
H

‖x‖2
V dνε(x) <∞,

and this implies the tightness of {νε}ε∈ (0,1) in H. In fact, provided that

lim
ε→0

ε δ−1/β
ε = 0,

we have that

νε ⇀ δ0, as ε ↓ 0.

The purpose of this paper is to quantify the rate of this convergence through a

large deviations principle. The main result of this paper is the following.

Theorem 5.2.1. Assume that Qε has the form given in (5.2.4), for some β > 2.

Moreover, suppose that

lim
ε→0

δ(ε) = 0, lim
ε→0

ε δ(ε)−2/β = 0.

Then the family of invariant measures {νε}ε>0 of equation (5.2.6) satisfies a large
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deviations principle in H with rate function given by

U(x) =


‖x‖2

1 , x ∈ V,

+∞, x ∈ V \H.

(5.2.9)

We remark here that the rate function, U(x), is really the quasipotential cor-

responding to equation (5.2.6), whose definition is given in equation (5.4.1). The

quasi-potential has the explicit representation given in (5.2.9) in the case of the prob-

lem posed on a torus. That formula does not hold in general for the problem posed

on a bounded domain with Dirichlet boundary conditions.

5.3 Large deviation principle for the paths

The proof of Theorem 5.2.1 requires a large deviations principle for the solutions to

equation (5.2.6). One such large deviations principle is proven in [15], but here we have

to proceed differently in order to obtain a result that is uniform with respect to initial

conditions in bounded subsets of H. Unlike in [15], we first prove a large deviation

principle for the linearized Ornstein-Uhlenbeck process in the space C([0, T ];L4),

and then transfer it back to the appropriate Navier-Stokes process by means of the

contraction principle.
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5.3.1 LDP for the Ornstein-Uhlenbeck process

Assume that Qε has the form given in (5.2.4) for β > 0. For every ε > 0 let zε denote

the mild solution to the equation
dzε + Azεdt =

√
εQε dw(t),

zε(0) = 0.

(5.3.1)

It is well-known that zε is given by the stochastic convolution

zε(t) =

∫ t

0

S(t− s)
√
εQε dw(s), t ≥ 0,

where {S(t)}t≥0 is the analytic semigroup generated by the operator −A on H. More-

over, it can be shown that zε ∈ Lp(Ω;C([0, T ];V r)) for any r < β and p ≥ 1 (e.g. see

[26]). In this subsection, we prove that the family {zε}ε>0 satisfies a large deviations

principle in C([0, T ];L4). To do so, we first prove that the stochastic convolution zε

converges to 0 in C([0, T ];L4).

Lemma 5.3.1. For any ε > 0, the solution zε has trajectories in C([0, T ];Lp), P-a.s.

for any p ∈ [1,∞). Moreover,

lim
ε→0

ε log δ(ε)−1 = 0 =⇒ lim
ε→0

E sup
t∈ [0,T ]

‖zε(t)‖pLp = 0. (5.3.2)

Proof. Fix any p < ∞. Thanks to the Burkholder-Davis-Gundy inequality and the
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uniform boundedness of the basis {ek}k∈Z2
0
, we have

E sup
0≤t≤T

‖zε(t)‖pLp = εp/2E sup
0≤t≤T

∥∥∥∥∫ t

0

S(t− s)
√
QεdW (s)

∥∥∥∥p
Lp

≤ εp/2
∫
T2

E sup
0≤t≤T

∣∣∣ ∫ t

0

∑
k∈Z2

0

e−|k|
2(t−s)σδ(ε),kek(x)dβk(s)

∣∣∣pdx
≤ cp ε

p/2

∫
T2

(∑
k∈Z2

0

σ2
δ(ε),k|ek(x)|2

∫ T

0

e−2|k|2sds
)p/2

dx

≤ cp ε
p/2
(∑
k∈Z2

0

1

|k|2(1 + δ(ε)|k|2β)

)p/2
<∞.

Moreover, (5.3.2) follows by noting that

∑
k∈Z2

0

1

|k|2(1 + δ(ε)|k|2β)
≤
∫ ∞

1

1

r(1 + δ(ε)r2β)
dr =

∫ ∞
δ(ε)1/(2β)

1

r(1 + r2β)
dr

≤
∫ 1

δ(ε)1/(2β)

dr

r
+

∫ ∞
1

dr

r2β+1
≤ 1

2β
log

1

δ(ε)
+

1

2β
.

To prove that the family {zε}ε>0 satisfies a large deviations principle in C([0, T ];L4)

we follow the weak convergence approach, outlined in Section 2.2.Recall that this

approach involves proving convergence of the solutions to a sequence of controlled

versions of the equations. For φ ∈ L2(Ω;L2(0, T ;H)), we denote by zε,φ the solution

to the equation

dzε,φ(t) + Azε,φ(t) dt =
√
εQε dw(t) +

√
Qε φ(t) dt, zε,φ(0) = 0,

and we denote by zφ the solution to the so-called skeleton equation

dzφ
dt

(t) + Azφ(t) = φ(t), zφ(0) = 0. (5.3.3)
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In the present case, we are proving the non-uniform version of the Laplace principle,

so that the set E0 of initial conditions in Hypothesis 2.2.1 is simply E0 = {0}. In par-

ticular, the non-uniform Laplace principle implies the validity of the large deviations

principle. Therefore, Theorem 2.2.3 implies the following.

Theorem 5.3.1. Assume the following hold for any M ∈ [0,∞).

(i) The set

Φ(M) :=
{
z ∈ C([0, T ];L4) : z = zφ, φ ∈ L2(0, T ;H),

1

2

∫ T

0

‖φ(t)‖2
0 dt ≤M,

}
,

is a compact subset of C([0, T ];L4).

(ii) For every {ϕε}ε≥0 ⊂ L2(Ω;L2(0, T ;H)), such that

sup
ε∈ (0,1)

1

2

∫ T

0

‖ϕε(t)‖2
0 dt ≤M, P− a.s., (5.3.4)

if ϕε converges to ϕ0 in distribution with respect to the weak topology of L2(0, T ;H),

as ε ↓ 0, then zε,ϕε converges to zϕ0 in distribution in C([0, T ];L4), as ε ↓ 0.

Then the family {L(zε)}ε>0 satisfies a large deviations principle in C([0, T ];L4) with

rate function

JT (z) =
1

2
inf
{∫ T

0

‖φ(t)‖2
0 dt : φ ∈ L2(0, T ;H), z = zφ

}
. (5.3.5)

Thus, to prove the large deviations principle it remains to prove hypotheses (i) and

(ii) of the above theorem. Note that hypothesis (i) is precisely the statement that JT

is a good rate function.
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Theorem 5.3.2. Assume that

lim
ε→0

δ(ε) = 0, lim
ε→0

ε log
1

δ(ε)
= 0.

Then the family {L(zε)}ε>0 of solutions to equation (5.3.1) satisfies a large deviations

principle in C([0, T ];L4) with rate function

JT (z) =


1
2

∫ T

0

‖z′(t) + Az(t)‖2
0 dt if z ∈ W 1,2(0, T ;H) ∩ L2(0, T ;D(A)),

+∞ otherwise.

(5.3.6)

Proof. In view of Theorem 5.3.1, it suffices to show that conditions (i) and (ii) in

Theorem 5.3.1 hold true. Equality of the rate functions defined in equations (5.3.5)

and (5.3.6) follows immediately from the fact that zφ = zϕ implies that φ = ϕ.

Step 1. We first verify condition (i). Suppose that z ∈ Φ(M), so that z = zφ for some

φ ∈ L2(0, T ;H) satisfying

1

2

∫ T

0

‖φ(t)‖2
0 dt ≤M. (5.3.7)

For any ζ ∈ (0, 1), the function zφ(t) =
∫ t

0
S(t − s)φ(s)ds can be rewritten as zφ =

Γζ(Yζ(φ)) where

Γζ(Y )(t) := cζ

∫ t

0

(t− s)ζ−1S(t− s)Y (s)ds,

and

Yζ(φ)(s) :=

∫ s

0

(s− r)−ζS(s− r)φ(r)dr.
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It is possible to show that for any ζ ∈ (0, 1
2
), p ≥ 2, ρ ∈ (0, 1) and δ ∈ (0, 1

2
) such

that δ +
ρ

2
< ζ − 1

p
,

Γζ : Lp(0, T ;H)→ Cδ([0, T ];V ρ), (5.3.8)

is a continuous linear mapping (see Appendix A of [25]). Moreover, we have by

Young’s inequality that

‖Yζ(φ)‖pLp(0,T ;H) =

∫ T

0

∥∥∥∥∫ s

0

(s− r)−ζS(s− r)φ(r)dr

∥∥∥∥p
0

dt

≤
∫ T

0

(∫ s

0

(s− r)−ζ ‖φ(r)‖0 dr
)p
dt

≤
(∫ T

0

t−
2ζp
p+2dt

) p+2
2 ‖φ‖pL2(0,T ;H) , (5.3.9)

which is finite provided that ζ < 1
2

+ 1
p
. Hence z ∈ Cδ(0, T ;V ρ) for any δ, ρ satisfying

δ + ρ
2
< 1

2
. Moreover, thanks to (5.3.7),

‖z‖Cδ(0,T ;V ρ) ≤ cp,δ,ρ
√
M,

so that Φ(M) is a bounded subset of Cδ(0, T ;V ρ) and thus a compact subset of

C([0, T ];L4).

Step 2. Next, we verify condition (ii) in Theorem 5.3.1. Let M > 0 and

let {ϕε}ε≥0 be a sequence in L2(Ω;L2(0, T ;H)) satisfying (5.3.4). Thanks to the

Skorohod theorem, there exists a probability space (Ω̄, F̄ , {F̄t}t≥0, P̄), a cylindrical

Wiener process W̄ (t), and collection {ϕ̄ε}ε≥0 in L2(Ω̄;L2(0, T ;H)) such that ϕε and

ϕ̄ε have the same distributions and

lim
ε→0

ϕ̄ε = ϕ̄0, P− a.s.,
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with respect to the weak topology of L2(0, T ;H). If we show that zε,ϕ̄ε converges to

zϕ̄0 in C([0, T ];L4), P-a.s., then condition (ii) will follow.

To simplify our notation, we dispense with the bars. Now, for any t ≥ 0, we

have

zε,ϕε(t)− zϕ(t) =
√
ε

∫ t

0

S(t− s)
√
QεdW (s) +

∫ t

0

S(t− s)
[√

Qεϕε(s)− ϕ(s)
]
ds

=: J ε1(t) + J ε2(t).

Thanks to Lemma 5.3.1, we have

lim
ε→0

E‖J ε1‖4
C([0,T ];L4) = 0.

To handle the control terms, we observe that
√
Qε ϕε converges to ϕ weakly in

L2(0, T ;H). Indeed, for any h ∈ L2(0, T ;H), it follows that

∣∣∣〈√Qεϕε − ϕ, h〉L2(0,T ;H)

∣∣∣ =
∣∣∣〈ϕε, (√Qε − I)h〉L2(0,T ;H) + 〈ϕε − ϕ, h〉L2(0,T ;H)

∣∣∣
≤
√

2M
∥∥∥(
√
Qε − I)h

∥∥∥
L2(0,T ;H)

+
∣∣∣〈ϕε − ϕ, h〉L2(0,T ;H)

∣∣∣,
which converges to 0, P−a.s. as ε→ 0 since Qε converges to 1 pointwise in H and ϕε

converges to ϕ weakly. Moreover, we already showed in Step 1 that the solution map

Γ : L2(0, T ;H)→ C([0, T ];L4) given by

Γ(φ)(t) =

∫ t

0

S(t− s)φ(s)ds,

is a compact operator. Since compact operators map weakly convergent sequences to

strongly convergent sequences, it follows

lim
ε→0
‖J2‖C([0,T ];L4) = 0, P− a.s.
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5.3.2 Uniform LDP for the Navier-Stokes process

To obtain a uniform large deviations principle for the solutions to equation (5.2.6), we

will apply the contraction principle to the large deviations principle for the solutions

to equation (5.3.1).

For every x ∈ H, let Fx : L4(0, T ;L4)→ C([0, T ];H) be the family of mappings

that associate to any z ∈ L4(0, T ;L4) the solution to the equation
du(t) + Au(t)dt+B

(
u(t) + z(t)

)
dt = 0,

u(0) = x ∈ H.

In particular, we see that I + Fx maps a trajectory of zε to a trajectory of uxε .

Throughout the remainder, we will use the shorthand

BY (y, r) := {h ∈ Y : ‖h− y‖Y < r}, y ∈ Y, r > 0,

for the open ball in the Banach space Y , centered at y and of radius r. When y = 0

we will just write BY (r).

The proof of the following result is from [10]. Here we give a brief sketch of it

to emphasize the right dependence on the initial conditions.

Lemma 5.3.2. For every fixed T > 0 the mappings Fx : L4(0, T ;H)→ C([0, T ];L4)

are locally Lipschitz continuous, uniformly over x in bounded sets of H. That is, for
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any r > 0 and R > 0, there exists constant Lr,R > 0 such that

sup
x∈BH(r)

‖Fx(f)−Fx(g)‖C([0,T ];H) ≤ Lr,R ‖f − g‖L4(0,T ;L4) , f, g ∈ BL4(0,T ;L4)(R).

(5.3.10)

Proof. For every f, g ∈ BL4(0,T ;L4)(R), we define u := Fx(f)− Fx(g). By proceeding

as in [10], we have

‖u(t)‖2
H +

∫ t

0

‖u(s)‖2
1 ds ≤ c ‖g − f‖2

L4(0,t;L4)

[
‖Fx(f)‖L∞(0,T ;H) ‖Fx(f)‖L2(0,T ;V )

+ ‖Fx(g)‖L∞(0,T ;H) ‖Fx(g)‖L2(0,T ;V ) + ‖f‖2
L4(0,T ;L4) + ‖g‖2

L4(0,T ;L4)

]
+ c

∫ t

0

[
‖Fx(g)(s)‖2

1 + ‖g(s)‖4
L4

]
‖u(s)‖2

H ds.

Now, for an arbitrary f ∈ L4(0, T ;L4)

1

2
‖Fx(f)(t)‖2

H +

∫ t

0

‖Fx(f)(t)‖2
1 ds

≤ 1

2
‖x‖2

H +

∫ t

0

[
|b(Fx(f)(s), f(s),Fx(f)(s))|+ |b(f(s), f(s),Fx(f)(s))|

]
ds

≤ 1

2
‖x‖2

H +

∫ t

0

[
‖Fx(f)(s)‖1/2

H ‖Fx(f)(s)‖3/2
1 ‖f(s)‖L4 + ‖f(s)‖2

L4 ‖Fx(f)(s)‖1

]
ds

≤ 1

2
‖x‖2

H +
1

2

∫ t

0

‖Fx(f)(s)‖2
1 ds+ c

∫ t

0

‖f(s)‖4
L4 ‖Fx(f)(s)‖2

H ds+ c ‖f‖4
L4(0,t;L4) ,

(5.3.11)

which implies that

‖Fx(f)(t)‖2
H +

∫ t

0

‖Fx(f)(s)‖2
1 ds ≤ (‖x‖2

H + ‖f‖4
L4(0,t;L4)) exp

(
‖f‖4

L4(0,t;L4)

)
.
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This implies that if f, g ∈ BL4(0,T ;L4)(R), and x ∈ BH(R), there exists Lr,R > 0 such

that

‖u(t)‖2
H +

∫ t

0

‖u(s)‖2
V ds

≤ Lr,R ‖g − f‖2
L4(0,t;L4) exp

(
c

∫ t

0

[
‖Fx(g)(s)‖2

V + ‖g(s)‖4
L4

]
ds
)
.

(5.3.12)

By using again (5.3.11) to estimate Fx(g), we obtain (5.3.10)

In the proof of the main result, Theorem 5.2.1, both versions of the uniform

large deviations principle (see Section 2.2.5) will be required. As we saw in the

sketch of the proof of the lower bound of Theorem 2.3.3, we needed the validity of a

FWULDP that is uniform over initial conditions in bounded sets. Moreover, it turns

out that in the proof of the upper bound, we need the validity of a DZULDP that is

uniform over initial conditions in compact sets. The FWULDP over bounded sets will

be obtained via the uniform contraction principle Theorem 2.2.4 along with Lemma

5.3.2 and Theorem 5.3.2. The DZULDP over compact sets will be obtained from the

FWULDP using Proposition 2.2.4.

To define the Navier-Stokes rate function, we first define the Hamiltonian

H(u) := u′ + Au+B(u), u ∈ D(H) := W 1,2(0, T ;V −1) ∩ L2(0, T ;V )).

For u ∈ D(H) in this space, the nonlinearity B(u) is a well-defined element of

L2(0, T ;V −1). For any x ∈ H and u ∈ C([0, T ];H), we define

Ix(u) =


1

2

∫ T

0

‖H(u)(t)‖2
H dt if H(u) ∈ L2(0, T ;H), and u(0) = x,

+∞ otherwise.
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Theorem 5.3.3. Assume that

lim
ε→0

δ(ε) =, lim
ε→0

ε log
1

δ(ε)
= 0.

If uxε is the solution to equation (5.2.6), then for any R > 0, the family {L(uxε )}ε>0

satisfies a Freidlin-Wentzell uniform large deviations principle in C([0, T ];H) with

rate functions Ix uniformly with respect to x ∈ BH(R).

Proof. First of all, notice that uxε = (I + Fx)(zε). Lemma 5.3.2 implies that the

mapping

I + Fx : C([0, T ];L4)→ C([0, T ];H),

is locally Lipschitz, uniformly on bounded sets. Therefore, thanks to the contraction

principle, Theorem 2.2.4, and Theorem 5.3.2 the family {(I+Fx)(zε)} = {uxε } satisfies

a Freidlin-Wentzell uniform large deviations principle with rate function

IxT (u) = inf
{
JT (z) : u = z + Fx(z), z ∈ W 1,2(0, T ;H) ∩ L2(0, T ;D(A))

}
.

If u ∈ D(H) and u(0) = x, then H(u) ∈ L2(0, T ;V −1) and u is a weak solution to
du(t) + [Au(t) +B(u(t))]dt = H(u)(t)dt,

u(0) = x.

(5.3.13)

Note that u ∈ D(H) implies that equation (5.3.3) with forcing φ = H(u) has a

unique weak solution zφ ∈ X. In particular this also implies that Fx(zφ) ∈ D(H) and

u = zφ + Fx(zφ). This decomposition is unique. Indeed, if u = z + Fx(z) for some
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other z ∈ D(H), then u − Fx(z) would again be a weak solution to equation (5.3.3)

with forcing φ = H(u) so that z = zφ. This implies that

JT (zφ) =
1

2

∫ T

0

‖H(u)(t)‖2
H dt,

whenever H(u) ∈ L2(0, T ;H).

Remark 5.3.1. Notice that both the proof of Theorem 5.3.2 and the proof of Theorem

5.3.3 do not require periodic boundary conditions.

�

Corollary 5.3.1. Assume that

lim
ε→0

δ(ε) = 0, lim
ε→0

ε log
1

δ(ε)
= 0.

Let K ⊂ H be a compact set. Then the family {L(uxε )}ε>0 of solutions to equation

(5.2.6) satisfies a Dembo-Zeitouni uniform large deviations principle in C([0, T ];H)

with rate functions {Ix}x∈K uniformly with respect to x ∈ K.

Proof. In view of Proposition 2.2.4 (Theorem 2.7 of [55]), to prove equivalence of the

two uniform large deviation principles over a compact subset of H, it suffices to show

that for every fixed s ≥ 0 the mapping

x ∈ H 7→ Φx(s) := {u ∈ C([0, T ];H) : Ix(u) ≤ s},

is continuous with respect to the Hausdorff metric. That is, we must show that for

any {xn}∞n=1 ⊂ H such that xn → x ∈ H,

lim
n→∞

max

(
sup

u∈Φxn (s)

distC([0,T ];H)(u,Φ
x(s)), sup

u∈Φx(s)

distC([0,T ];H)(u,Φ
xn(s))

)
= 0.
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This is immediately implied by the continuity of the Navier-Stokes equations with

respect to initial conditions. Indeed, suppose that uxφ is a solution to the equation,
du(t) + (Au(t) +B(u(t)))dt = φ(t)dt,

u(0) = x,

(5.3.14)

with driving force φ ∈ L2(0, T ;H). Then by standard energy estimates (see for

instance, [39]), we have

sup
0≤t≤T

∥∥uxφ(t)− uyφ(t)
∥∥2

H
+

∫ T

0

∥∥uxφ(t)− uyφ(t)
∥∥2

V
dt

≤ ‖x− y‖2
H exp

(
c

∫ T

0

∥∥uyφ(t)
∥∥2

V
dt
)

≤ ‖x− y‖2
H exp

(
c
[
‖y‖2

H + ‖φ‖2
L2(0,T ;H)

])
.

Now, if u ∈ Φx(s), then ϕ := H(u) ∈ L2(0, T ;H), 1
2
‖ϕ‖2

L2(0,T ;H) ≤ s and u solves

equation (5.3.13). But then, the weak solution v ∈ W 1,2(0, T ;V −1) ∩ L2(0, T ;V ) to
dv(t) + [Av(t) +B(v(t))]dt = ϕ(t)dt,

v(0) = y,

belongs to Φy(s). Therefore,

distC([0,T ];H)(u,Φ
y(s)) ≤ ‖u− v‖C([0,T ];H) ≤ cs(‖y‖H) ‖x− y‖H ,

for some continuous increasing function cs : [0,+∞)→ [0,+∞). Since this is true for

arbitrary u ∈ Φx(s), it follows that

sup
u∈Φx(s)

distC([0,T ];H)(u,Φ
y(s)) ≤ cs(‖y‖H) ‖x− y‖H ,
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which implies the result, since supn∈N ‖xn‖H <∞.

5.4 Proof of Theorem 5.2.1

We start this section with the description of the quasi-potential associated with equa-

tion (5.2.6). To simplify notation, for any T > 0 we will denote

IT (u) :=
1

2

∫ T

0

‖H(u)(t)‖2
H dt,

whenever H(u) ∈ L2(0, T ;H). In addition, we set

IyT (u) :=


IT (u), if u(0) = y,

+∞, otherwise.

The quasi-potential, U : H → [0,+∞] is then defined as

U(x) := inf{IT (u) : T > 0, u ∈ C([0, T ];H), u(0) = 0, u(T ) = x}. (5.4.1)

For any x ∈ H, the quasipotential U(x) gives the minimum action of all paths that

start at 0 and end at x. Since 0 is an asymptotically attracting equilibria for the

Navier-Stokes equations, U(x) will govern the long-time dynamics and asymptotic

behavior of the invariant measures.

In the particular case of the Navier-Stokes equations on the torus, the orthog-

onality of B(u) and Au can be taken advantage of to provide an explicit formula for

the quasipotential. In fact, as proven in [9, Theorem 7.1] we have that for any x ∈ H
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U(x) =


‖x‖2

V , x ∈ V,

+∞, x ∈ H \ V.

(5.4.2)

Now, we proceed with the proof of Theorem 5.2.1. Some of the steps of the proof

are analogous to those used in [8, Theorem 4.5], where a large deviation principle for

the invariant measures of the 2D stochastic Navier-stokes equation is studied, under

the assumption that the covariance of the noise does not depend on ε. In those steps

our arguments will be less detailed and we refer the reader to [8]. On the other hand,

our arguments will be fully detailed in those steps of the proof that deviate from [8].

5.4.1 Lower bound

Proposition 5.4.1. Under the assumptions of Theorem 5.2.1, the family of invariant

measures {νε}ε>0 of equation (5.2.6) satisfies the large deviations principle lower bound

in H with rate function U(x). That is, for any x ∈ H, δ > 0 and γ > 0, there exists

ε0 > 0 such that

νε(BH(x, δ)) ≥ exp
(
− U(x) + γ

ε

)
, ε ≤ ε0.

Proof. Fix x ∈ H, and any δ > 0, γ > 0 and T > 0. We assume that U(x) < ∞

or else there is nothing to prove. Suppose that {vy}y∈H ⊂ C([0, T ];H) is a family of

paths satisfying

sup
y∈H
‖vy(T )− x‖H < δ/2.
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Thanks to the invariance of νε, we have

νε(BH(x, δ)) =

∫
H

P(‖uyε (T )− x‖H < δ) dνε(y)

≥
∫
H

P(‖uyε − vy‖C([0,T ];H) < δ/2) dνε(y)

≥
∫
BH(0,R)

P(‖uyε − vy‖C([0,T ];H) < δ/2) dνε(y)

≥ νε(BH(0, R)) inf
y∈BH(0,R)

P(‖uyε − vy‖C([0,T ];H) < δ/2).

Since the invariant measures are becoming concentrated around 0, as ε ↓ 0, we have

lim
ε→0

νε(BH(0, R)) = 1,

for any R > 0. Thus, we can pick ε1(R) > 0 small enough that

νε(BH(0, R)) ≥ 1

2
, ε ≤ ε1(R).

Thanks to Theorem 5.3.3, a Freidlin-Wentzell uniform large deviations principle holds.

Then, for every s0 > 0 there exists ε2(R) > 0 such that for any vy ∈ C([0, T ];H)

with IyT (vy) ≤ s0,

inf
y∈BH(0,R)

P
(
‖uyε − vy‖C([0,T ];H) < δ/2

)
≥ inf

y∈BH(0,R)
exp

(
−1

ε
[IyT (ϕy) + γ/2]

)
,

for every ε ≤ ε2(R). Therefore, to complete the proof, it remains to find a T large

enough that for each y ∈ BH(0, R), there exists a path vy ∈ C([0, T ];H) with vy(0) =

y that satisfies

(a) IT (vy) ≤ U(x) + γ/2,
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(b) ‖vy(T )− x‖H < δ/2.

The paths we choose are the solutions uyϕ to the controlled Navier Stokes equations,

equation (5.3.14), with initial condition y ∈ H and control ϕ ∈ L2(0, T ;H), defined

by

ϕ(t) =


0 if 0 ≤ t ≤ T1,

ϕ̄(t− T1) if T1 ≤ t ≤ T1 + T2,

with T1 and T2 to be chosen. Here, ϕ̄ ∈ C([0, T2];H) is a path such that u0
ϕ̄(0) = 0

and u0
ϕ̄(T2) = x with IT2(u0

ϕ̄) ≤ U(x)+γ/2. Such a T2 and ϕ̄ exist by the definition of

the quasipotential U . Meanwhile, T1 = T1(λ) is taken large enough that the solutions

{uy0}y∈BH(0,R) to the unforced Navier-Stokes equations satisfy

sup
y∈BH(0,R)

‖uy0(T1)‖H < λ,

for some small λ. Clearly point (a) is satisfied since the path contributes nothing

to the action integral on the interval [0, T1]. Point (b) follows by noting that the

controlled Navier Stokes equations are continuous with respect to initial conditions.

Indeed, since uy0(T1) ∈ BH(0, λ), we have by a standard estimate (for example see

Proposition 2.1.25 of [39]) that

∥∥uyϕ(T1 + T2)− x
∥∥
H
≤ sup

z∈BH(0,λ)

∥∥uzϕ̄(T2)− u0
ϕ̄(T2)

∥∥
H

≤ sup
z∈BH(0,λ)

‖z‖H exp
(
c ‖z‖2

H + c ‖ϕ̄‖2
L2(0,T2;H)

)
.
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This implies point (b) if λ is taken small enough. We conclude the proof upon taking

ε0 := min(ε1, ε2).

5.4.2 Upper bound

Proposition 5.4.2. Under the assumptions of Theorem 5.2.1, the family of invari-

ant measures {νε}ε>0 of equation (5.2.6) satisfies the large deviations principle upper

bound in H with rate function U(x). That is, for any s ≥ 0, δ > 0 and γ > 0, there

exists ε0 > 0 such that

νε ({h ∈ H : distH(h,Φ(s)) > δ}) ≤ exp

(
−s− γ

ε

)
, ε ≤ ε0.

where

Φ(s) := {y ∈ H : U(y) ≤ s}.

The proof requires the following three lemmas.

Lemma 5.4.1 (Exponential Estimate). Assume that Q has the form given in (5.2.4)

for some β > 2. Moreover, suppose that

lim
ε→0

δ(ε) = 0, lim
ε→0

εδ(ε)−2/β = 0.

Then for any s > 0 there exist εs > 0 and Rs > 0 such that

νε(BV (0, Rs)) ≥ 1− exp
(
−s
ε

)
, ε ≤ εs.
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Proof. Fix R > 0, ε > 0 and γ > 0 and let u0
ε be the solution of equation (5.2.6).

Thanks to the ergodicity of νε, we have

νε(B
c
V (0, R)) = lim

T→∞

1

T

∫ T

0

P(u0
ε(s) ∈ Bc

V (0, R)) ds

≤ exp
(
− R2

2ε

) 1

T
lim sup
T→∞

∫ T

0

E exp

(
‖u0

ε(s)‖
2
V

2ε

)
ds. (5.4.3)

To estimate the expectation of the exponential, we apply the Ito formula to the

functional F : R× V → R defined by

F (t, v) = exp

(
t+
‖v‖2

V

2ε

)
,

whose derivatives are given by

DtF (t, u) = F (t, u),

and

DuF (t, u) =
1

ε
F (t, u)u, D2

uF (t, u) =
1

ε2
F (t, u)u⊗ u+

1

ε
F (t, u)I.

Formal application of the Ito formula to the solution uxε to equation (5.2.6) implies
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that

EF (t, uxε (t)) = F (0, x) + E
∫ t

0

[
DtF (s, uxε (s)) + 〈DuF (s, uxε (s)),−Auxε (s)−B(uxε (s))〉V

+
ε

2

∞∑
k∈Z2

0

〈D2
uF (s, uxε (s))Qεek, ek〉V

]
ds

= F (0, x) + E
∫ t

0

F (s, uxε (s))
[
1− 1

ε
‖uxε (s)‖

2
2

+
ε

2

∑
k∈Z2

0

1

ε2

(
|〈uxε (s), Qεek〉V |2 +

1

ε
〈Qεek, ek〉V

)]
ds

= F (0, x) + E
∫ t

0

F (s, uxε (s))
[
1− 1

ε
‖uxε (s)‖

2
2

+
1

2

∑
k∈Z2

0

(1

ε
σ2
ε,k|〈uxε (s), Aek〉H |2 + |k|2σ2

ε,k

)]
ds

≤ F (0, x) + E
∫ T

0

F (s, uxε (s))
[
1− 1

2ε
‖uxε (s)‖

2
2 +

1

2

∑
k∈Z2

0

|k|2σ2
ε,k

]
ds,

where in the second line we used identity (5.2.3) to dispose of the nonlinearity and

in the fourth line we used that |σε,k| ≤ 1 for any k ∈ Z2
0 and ε > 0.

Now, since β > 2, we have

Pε :=
∑
k∈Z2

0

|k|2σ2
ε,k =

∑
k∈Z2

0

|k|2

1 + δ(ε)|k|2β
≤ c

∫ ∞
1

r

1 + δ(ε)rβ
dr ≤ c δ(ε)−2/β.

Therefore, thanks to the Poincaré inequality and the fact that ex(a−x) ≤ exp(a−1),
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for every a > 1 and x ≥ 0, it follows that

EF (t, uxε (t)) ≤ exp
(‖x‖2

V

2ε

)
+ E

∫ t

0

exp(s) exp
(‖uxε (s)‖2

V

2ε

)(
1 +

1

2
Pε −

‖uxε (s)‖
2
V

2ε

)
ds

≤ exp

(
‖x‖2

V

2ε

)
+

∫ t

0

exp(s) exp

(
1

2
Pε

)
ds.

Hence,

E exp
(‖uxε (t)‖2

V

2ε

)
≤ exp

(
− t+

‖x‖2
V

2ε

)
+ exp

(1

2
Pε

)
.

Finally, using equation (5.4.3), we see that

νε(B
c
V (0, R)) ≤ exp

(
− R2

ε

)
lim sup
T→∞

1

T

∫ T

0

[
e−t + exp

(1

2
Pε

)]
dt

= exp
(
− R2

ε
+
Pε
2

)
≤ exp

(
− R2 − Cε δ−2/β

ε

ε

)
,

which completes the proof of the lemma, since ε δ(ε)−2/β → 0, as ε ↓ 0.

Lemma 5.4.2. For any δ > 0 and s > 0, there exist λ > 0 and T > 0 such that for

any t ≥ T and z ∈ C([0, t];H),

‖z(0)‖H < λ, IT (z) ≤ s =⇒ distH(z(t),Φ(s)) < δ,

where Φ(s) := {x ∈ H : U(x) ≤ s}.

Lemma 5.4.3. For any s > 0, δ > 0 and r > 0, let λ be as in Lemma 5.4.2. Then

there exists N ∈ N large enough that

u ∈ Hr,s,δ(N) =⇒ IT (u) ≥ s,

217



where the set Hr,s,δ(n) is defined for N ∈ N by

Hr,s,δ(N) := {u ∈ C([0, N ];H), ‖u(0)‖H ≤ r, ‖u(j)‖H ≥ λ, j = 1, ..., N} .

The proofs of Lemma 5.4.2 and 5.4.3 depend only on the properties of the determin-

istic Navier-Stokes equation and can be found in [8] (see Lemmas 7.2 and 7.3).

Proof of Proposition 5.4.2. Fix any s > 0, δ > 0 and γ > 0 and let Rs be as in

Lemma 5.4.1. Due to the invariance of νε, for any t ≥ 0 we have

νε ({h ∈ H : distH(h,Φ(s)) ≥ δ}) =

∫
H

P (distH(uyε (t),Φ(s)) ≥ δ) dνε(y)

=

∫
BcV (0,Rs)

P (distH(uyε (t),Φ(s)) ≥ δ) dνε(y)

+

∫
BV (0,Rs)

P (distH(uyε (t),Φ(s)) ≥ δ, uyε ∈ HRs,s,δ(N)) dνε(y)

+

∫
BV (0,Rs)

P (distH(uyε (t),Φ(s)) ≥ δ, uyε /∈ HRs,s,δ(N)) dνε(y)

=: K1 +K2 +K3.

Now, thanks to Lemma 5.4.1 we know that

K1 ≤ νε(B
c
V (0, Rs)) ≤ exp

(
− s

ε

)
.

Next, let N be as in Lemma 5.4.3. Since HRs,s,δ(N) is a closed set in C([0, N ];H)

and BV (0, Rs) is a compact subset of H, the Dembo-Zeitouni uniform large deviation
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principle over compact sets, Corollary 5.3.1, implies that there exists ε0 > 0 such that

K2 ≤ sup
y∈BV (0,Rs)

P(uyε ∈ HRs,s,δ(N))

≤ exp
(
− 1

ε

[
inf

z∈BV (0,Rs)
inf

h∈HRs,s,δ(N)
IzT (h)− γ

])
,

for any ε ≤ ε0. Hence, by Lemma 5.4.3,

K2 ≤ exp(−1

ε
[s− γ]).

To address K3, we use the Markov property of uε to stop the process at integer times.

We then have

K3 =

∫
BV (0,Rs)

P

(
N⋃
j=1

{‖uyε (j)‖H < λ}
⋂
{distH(uyε (t),Φ(s)) ≥ δ}

)
dνε(y)

≤
N∑
j=1

∫
BV (0,Rs)

P
(
{‖uyε (j)‖H < λ}

⋂
{distH(uyε (t),Φ(s)) ≥ δ}

)
dνε(y)

≤
N∑
j=1

sup
y∈BH(0,λ)

P(distH(uyε (t− j),Φ(s)) ≥ δ).

In order to use the uniform LDP of Theorem 5.3.3, we must convert this event at

time t−j to an event in C([0, t−j];H). To do so, we pick t large enough that Lemma

5.4.2 applies for δ/2. Then, if y ∈ BH(λ)

distH(uyε (t− j),Φ(s)) ≥ δ

=⇒ inf
{
‖uyε − v‖C([0,t−j];H) : ‖v(0)‖H < λ, IT (v) ≤ s

}
≥ δ

2

=⇒ distC([0,t−j];H)

(
uyε ,Ψ

y(s)
)
≥ δ/2,
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where

Ψy(s) := {v ∈ C([0, t− j];H) : v(0) = y, IT (v) ≤ s}.

Then, by Theorem 5.3.3, there exists ε0,j such that for any ε ≤ ε0,j,

sup
y∈BH(0,λ)

P(distH(uyε (t− j),Φ(s)) ≥ δ)

≤ sup
y∈BH(0,λ)

P(distC([0,t−j];H)

(
uyε ,Ψ

y(s)
)
≥ δ/2)

≤ exp
(
− s− γ

ε

)
.

Hence, for any ε < min(ε0, ε0,1, ..., ε0,N) it follows that

K3 ≤ N exp
(
− s− γ

ε

)
,

which implies the result.
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