
ABSTRACT

Title of Dissertation: HOMOTOPY CONTINUATION METHODS
FOR PHASE RETRIEVAL
David J Bekkerman
Doctor of Philosophy, 2021

Dissertation Directed by: Professor Radu Balan
Department of Mathematics

In this dissertation, we discuss the problem of recovering a signal from a set of

phaseless measurements. This type of problem shows up in numerous applications

and is known for its numerical difficulty. It finds use in X-ray Crystallography,

Microscopy, Quantum Information, and many others. We formulate the problem

using a non-convex quadratic loss function whose global minimum recovers the phase

of the measurement.

Our approach to this problem is via a Homotopy Continuation Method. These

methods have found great use in solving systems of nonlinear equations in numer-

ical algebraic geometry. The idea is to initialize the solution of a related system

at a known global optimal, then continuously deform the criterion and follow the

solution path until we find the minimum of the desired loss function. We analyze

convergence properties and asymptotic results for these algorithms, as well as gather

some numerical statistics. The main contribution of this thesis is deriving conditions

for convergence of the algorithm and an asymptotic rate for when these conditions

are satisfied. We also show that the algorithm achieves good numerical accuracy.



The dissertation is split into several chapters, and further divided by the real

and complex case. Chapter 1 gives some background to Abstract Phase Retrieval

and Homotopy Continuation Methods. Chapter 2 covers the nature of the algorithm

(named the Golden Retriever), gives a summary and description of the theoretical

results, and shows some numerical results. Chapter 3 covers the details of the

derivation and results in the real case, and Chapter 4 covers the same for the complex

case.
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Chapter 1: Introduction

Phase retrieval is the problem of recovering the phase of a signal from the

magnitudes (or the magnitudes squared) of its linear measurements. The applica-

tions range from X-ray Crystallography, where we want to discover the molecular

structure of a crystal by using X-rays [1], to Quantum Tomography, where we want

to recover a quantum state from a series of independent measurements on identical

states [2]. It also finds applications in Speech Recognition [3]. In all these cases,

the phase of the measurement is lost, and we want to recover the signal as best

as possible up to this phase. To this end, several algorithms have been proposed.

We propose and analyze the use of a Homotopy Continuation Algorithm to recover

the signal. We named this method the Golden Retriever. Homotopy Continuation

Methods have proven to be a useful tool in Numerical Algebraic Geometry, and

we aim to use it to solve the system of polynomial equations that arise in Phase

Retrieval. We study some of the convergence and analytical properties of such an

algorithm. For a background on Homotopy Continuation, please see the section 1.3.
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1.1 Overview

Phase retrieval began from trying to reconstruct a function from the magni-

tudes of its Fourier coefficients. It has now expanded to a branch called abstract

Phase Retrieval, which states the problem more generally.

Let H be a Hilbert Space over either R or C. Let I be a finite or countable

index set. Define a set of vectors to be a frame set, F = {f1, f2, ...}, indexed by I,

if there exist positive constants A and B such that for every v ∈ H

A||v||2 ≤
∑
k∈I

|〈v, fk〉|2 ≤ B||v||2 (1.1)

We call A the lower frame bound of F , and B the upper frame bound of F . In the

finite case, this turns out to be equivalent to F being a spanning set of vectors (see

[4] for more information about frames).

For a frame set, F = {fi, i ∈ I} we define two operators

αF(x) = (|〈x, fi〉|)i∈I (1.2)

βF(x) = (|〈x, fi〉|2)i∈I (1.3)

By linearity, it is clear that if |c| = 1, then α(cx) = α(x) and β(cx) = β(x).

Therefore we define an equivalence relation where we say x ∼ y if there exists a

constant c of magnitude 1 such that x = cy. If we quotient out by this relation,

we say that the frame set F is phase retrievable if the corresponding map on the
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quotient space is injective.

α : H/ ∼→ RI
+ (1.4)

1.2 Injectivity

We now focus on the case when I is a finite index set. The infinite case can

be found in many places, such as [5] or [6].

As with many of the results we present, we separate the real and complex

cases.

Let H = Rn and |I| = m and define

R(x) =
1

m

m∑
i=k

|〈x, fk〉|2fkfTk (1.5)

This matrix plays an important role not just in the injectivity, but throughout

many results presented later on as well.

The following theorem and proofs are taken from [7].

Theorem 1.2.1 (Complement Property [7]). The following are equivalent

1. αF is an injective map on Rn/ ∼

2. For any disjoint partition of the frame set, F = F1 ∪ F2, either F1 spans H

or F2 spans H

Proof.

• (1)⇒ (2) Assume that there exists a subset F1 ⊂ {f1, ..., fm} such that neither

F1 or FC1 spans H. Hence there exist vectors x, y such that x ⊥ span(F1) and

3



y ⊥ span(FC1 ). Then a direct check shows αF(x + y) = αF(x − y). We are

left with showing that x+ y is not a multiple of x− y. If x+ y = x− y, then

y = 0 which we know is not possible, and if x+y = y−x, then x = 0, which is

not possible. Therefore, we found two vectors which map to the same output,

which are not in the same equivalence class, so α is not an injective map.

• (2) ⇒ (1) Suppose that αF(x) = αF(y), for x, y ∈ H/ ∼. This means for all

0 ≤ k ≤ m, |〈x, fk〉| = |〈y, fk〉|. We partition the set F into two subsets

F1 = {fk : 〈x, fk〉 = −〈y, fk〉}

F2 = {fk : 〈x, fk〉 = 〈y, fk〉}

Note that x + y ⊥ F1 and x − y ⊥ F2. Assume that span(F1) = H, then

x + y = 0 so x = −y, so they are in the same equivalence class. Similarly, if

span(F2) = H, then x − y = 0 so x = y. Therefore, either way, the map αF

is injective.

The following is an important injectivity result from [7].

Theorem 1.2.2 ([7]). Let F = {f1, ..., fm} ⊂ H be m vectors and let H be a subset

of Rn. The following are equivalent

1. For any disjoint set of the frame vectors, F = F1 ∪ F2, either F1 spans H or

F2 spans H.
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2. For any 2 vectors x, y ∈ H, if x 6= 0 and y 6= 0 we have

m∑
k=1

|〈x, fk〉|2|〈y, fk〉|2 > 0

3. There exists a positive real constant a0 > 0 such that for all x, y ∈ H

m∑
k=1

|〈x, fk〉|2|〈y, fk〉|2 > a0||x||2||y||2

4. There exists a positive real constant a0 > 0 such that for all x ∈ H

R(x) ≥ a0

m
||x||2I

Proof.

• (1) ⇒ (2) We prove this by contradiction. Assume we have two vectors

x, y ∈ H with x, y 6= 0, but
∑m

k=1 |〈x, fk〉|2|〈y, fk〉|2 = 0. Then we have

〈x, fk〉〈y, fk〉 = 0 for all 1 ≤ k ≤ m. Form the set F1 = {fk|〈x, fk〉 = 0}. Since

x is orthogonal to all of F1, it is clear that F1 cannot span all of H. Similarly,

we know that y is orthogonal to {F} \ F1 = FC1 , so FC1 cannot span all of H,

therefore, the complement property is not satisfied.

• (2) ⇒ (3) Since H is finite, the unit sphere S1(H) is compact, and so is

S1(H)× S1(H). Since the map

(x, y)→
m∑
k=1

|〈x, fk〉|2|〈y, fk〉|2

5



is continuous, by compactness we have that there exists a constant

a0 = min(x,y)∈S1(H)×S1(H)

m∑
k=1

|〈x, fk〉|2|〈y, fk〉|2 > 0

By homogeneity, we have that for x, y ∈ H, x, y 6= 0

m∑
k=1

|〈x, fk〉|2|〈y, fk〉|2 = ||x||2||y||2
m∑
k=1

|〈 x

||x||2
, fk〉|2|〈

y

||y||2
, fk〉|2 ≥ a0||x||2||y||2

If x = 0 or y = 0, then statement (2) is still satisfied.

• (3)⇒ (4) This follows from the property of quadratic forms

||R(x)|| = max||e||=1〈R(x)e, e〉 =
1

m

m∑
k=1

|〈x, fk〉|2|〈e, fk〉|2

≥ 1

m
a0max||e||=1||x||2||e||2 =

a0

m
||x||2

Therefore, we have that R(x) ≥ a0

m
||x||2I

• (4) ⇒ (1) We show the contrapositive. Assume (1) is not true, we aim to

show (4) is not true either. Therefore there exists a partition F = F1 ∪ F2

such that F1 doesn’t span H and F2 doesn’t span H. Therefore there exists an

x ⊥ span(F1) and also a y ⊥ span(F2), therefore for each fk, either 〈x, fk〉 = 0

or 〈y, fk〉 = 0, Therefore 〈x, fk〉〈y, fk〉 = 0⇒ 〈R(x)y, y〉 = 0

There are several things to note here. First is the following corollary, which
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follows from the Complement Property.

Corollary 1.2.3. If H = Rn, then αF being injective on the quotient space is

equivalent to any of the conditions of Theorem 1.2.2.

Next, we note that αF being injective is equivalent to βF being injective.

For us, it is of particular interest to use the map βF instead of αF , because βF is

differentiable everywhere.

Now we state the theorem in the complex case. To do so, we need to begin

with some definitions that follow from the process of realification (introduced in [8]).

Define J =

0 −I

I 0

, and ϕk =

Re(fk)
Im(fk)

 ∈ R2n. Further, define

Φk = ϕϕT + JϕϕTJT

again define the important 2n× 2n matrix

Γ̃(ξ) =
1

m

m∑
k=1

φkξξ
TφTk (1.6)

Now we state the following theorem, the proof of which can be found in [7].

Theorem 1.2.4. ([7]) The following statements are equivalent

1. βF is injective on Cn/ ∼

2. For any ξ ∈ R2n, ξ 6= 0, rank(Γ̃(ξ)) = 2n− 1
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3. For any ξ ∈ R2n, ξ 6= 0, there exists a constant α0 > 0 such that

Γ̃(ξ) ≥ α0||ξ||2P⊥Jξ

where P⊥Jξ = I − JξξTJT is the orthogonal complement of the span of Jξ

1.3 Homotopy Continuation Methods

The technique we use for phase retrieval is known as a Homotopy Continua-

tion Method. Homotopy Continuation Methods are a tool in Numerical Algebraic

Geometry that can be used to solve a system of polynomial equations [9]. These

methods can vary, sometimes being set up to give one solution, and sometimes all

solutions. The advantage to these methods is that no approximations are needed to

get solutions, so almost nothing needs to be known beforehand. These methods have

been applied extensively to applications in Economics [10, 11], Mathematics[12], En-

gineering [13], and many other fields. See [14] for many more applications.

The overarching philosophy behind these algorithms is to find a solution to a

simple problem, and then deform the simple problem into the desired complicated

problem, and in the process deform the solution of the simple problem into the

solution to the complicated problem. For the Phase Retrieval problem we will study,

the simple problem will be an eigenvalue equation, and the complicated problem

is minimizing the mean square error of a criterion, a non-convex quadratic loss

function, associated with Phase Retrieval.

To formalize the notion of deformation, we review the concept of a homotopy.

8



Definition 1.3.0.1 (Homotopy [14]). Let X, Y be two spaces and let I be a unit

interval (0 < t < 1). Two maps f : X → Y and g : X → Y are called homotopic

if there exists a continuous map

H : X × I → Y

such that

H(x, 0) = f(x)

H(x, 1) = g(x)

for all x ∈ X.

To use this to solve a system of nonlinear polynomial equations (say over Rn),

we take two copies of Rn, one for t = 0, denoted Rn × {0}, and the other for t = 1,

denoted by Rn × {1}. Now we solve the problem in Rn × {0}, which is assumed

to be easy by construction, and then trace the solution through the homotopy in

Rn× I to Rn×{1} and with luck, find the solution to the system of equations there

as well. [14]

Equivalent images to the following figures were originally drawn in [14].

9



Figure 1.1: These are examples of homotopy paths the algorithm may make, with
A yielding a traceable path to a solution in R× {1}

Figure 1.2: These are examples of homotopy paths which all lead to the same
solution in R× {1}

In the first figure, we see three labeled paths, A,B,C. In path A, we have a

solution to simple system in R×{0} which converges to a solution to the complicated

10



system in R× {1}. Some paths, like path B, will never make it to R× {1}, and in

this case, the path turns around and goes back to another solution at R×{0}. The

third type of path C, goes off to infinity, and never converges to either R × {1} or

back to R × {0}. In the phase retrieval case, these types of paths are not possible

by the boundedness properties we will show.

In the second figure, we see that all homotopy paths starting at {0} converge

to the same point in R × {1}. With the assumptions we will make, these type of

paths will be impossible as well.

We now follow [9] to show how to apply these techniques to solve nonlinear

systems. To apply these to solving systems of polynomial equations, say we want

to solve F (x) = 0 with x ∈ Rn. We do so by defining a smooth homotopy H :

Rn×R→ Rn such that H(x, 0) = G(x) and H(x, 1) = F (x), where G : Rn → Rn is

a trivial smooth map having known zero points. One can choose a convex homotopy

such as

H(x, λ) = λF (x) + (1− λ)G(x)

One can ask several immediate questions

1. When is it assured that a curve c(s) ∈ H−1(0) exists and is smooth?

2. If such a curve exists, when is it assured that it will intersect the target ho-

motopy level λ = 0 in a finite length?

3. How can we numerically trace such a curve?

The first is answered by the implicit function theorem, if the Jacobian H ′ has

11



full rank rank(H ′) = n, then such a smooth curve will exist (at least locally).

Generally, for polynomial systems, the second requires the use of some bound-

ing conditions to make sure the curve doesn’t run to infinity before intersecting at

λ = 0.

The third is usually used by a combination of a predicator and corrector step,

such as an Euler Step, followed by a fixed point correction.

1.4 Overview of some Algorithms for Phase Retrieval

In this section, we take a look at existing algorithms for Phase Retrieval. In

all of the cases, we assume that the frame set is Phase Retrievable.

1.4.1 PhaseLift

In the PhaseLift algorithm, it is assumed we have quadratic measurements of

the form yk = {|〈x, fk〉|2}, and it recognizes this can be lifted up and interpreted as

linear measurements on xx∗, so the quadratic constraints turn to linear constraints.

Then one can note

|〈x, fk〉|2 = Tr(x∗fkf
∗
kx) = Tr(fkf

∗
kxx

∗) := Tr(FkX)

Then the problem turns into one of matrix completion, given by solving the

following

12



find X

subject to F(X) = y

X ≥ 0

rank(X) = 1

⇐⇒

minimize rank(X)

subject to F(X) = y

X ≥ 0

In general the problem of Rank Minimization is known to be NP-hard, so

the authors suggest instead to relax the constraints and solve a trace minimization

problem, which can be done with a semidefinite program.

The problem would then be to solve

minimize Tr(X)

subject to F(X) = y

X ≥ 0

After solving this SDP, if the solution has rank 1 (which would guarantee mini-

mization to the Rank Minimization) one would then factorize it (through orthogonal

diagonalization, for instance), and get the solution to the phase retrieval problem

as well.

Detailed analysis of this algorithm can be found in [15].

1.4.2 Wirtinger Flow

Let x ∈ Cn. The problem is to recover z from m phaseless linear measure-

ments. Let F = {fk}mk=1 be a finite frame which spans our vector space Cn.

13



yk = |〈x, fk〉|2 + wk for k = 1, ...,m (1.7)

where wk ∼ CN (0, σ2
w).

The algorithm for Wirtinger Flow is a gradient descent algorithm which min-

imizes the loss function `(x, y) = |(x− y)|2.

Hence, we want to minimize the loss function I(x) = 1
2m

∑
k `(yk, |〈x, fk〉|2),

so we want to find

arg min
x

I(x) = arg min
x

1

2m

n∑
k=1

(yk − |〈x, fk〉|)2)2 (1.8)

After initialization, the update rules are given by a gradient descent procedure

xt+1 = xt −
µt+1

||x0||2
(

1

m

m∑
r=1

(|〈xt, fk〉|2 − yk)fkf ∗kxk) = xt −
µt+1

||x0||2
∇xI(x)

For initialization, we note that we define

Y0 =
1

m

m∑
k=1

ykfkf
∗
k

and let x0 be the principal eigenvector of Y0. Furthermore , set

λ2 = n

∑m
k=1 yk∑m

k=1 ||fk||2

and set ||x0|| = λ

It is worth noting, if the frame set is real then Y0 is exactly R0 given in the
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real golden retriever algorithm, and in the complex case Y0 is related to the Γ0 in

the complex golden retriever through the realification process.

Although the algorithm and the analysis are quite different, there are a lot of

similarities between the Golden Retriever Algorithm and Wirtinger Flow.

Now there are many variants of Wirtinger Flow (see for instance [16], [17])

that deal with different loss functions. The original Wirtinger Flow converged with

high probability when the number of frame vectors is of the order m = O(nlogn).

We are looking at the same loss function as Wirtinger Flow, but the proof strategy

we employ is very different, as it will be a proof based on a perturbation analysis.

1.4.3 Approximate Message Passing

Let x ∈ Cn. The problem studied in Approximate Message Passing (AMP) is

to recover x from m phaseless linear measurements of the form

yk = |
n∑
i=1

Akixi|+ wk for k = 1, ...,m (1.9)

where wk ∼ CN (0, σ2
w).

Hence, the goal is to minimize:

min
x

n∑
k=1

(yk − |(Ax)k|)2) +
µk
2
‖x‖2

2 (1.10)

Notice that a regularization term is included, µk
2
‖x‖2

2. This is known to reduce

the variance of an estimator and because without the regularization term, the loss
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function would be non-convex, this is expected to be useful even in the noiseless

setting [18].

As with many problems in estimating probabilities , one approach is to attempt

to make a probabilistic graphical model out of this (in the same way one can model

speech recognition as a Hidden Markov Model).

To begin to do this, one needs to first have a PDF defined on a graphical

model.

One can examine the minimization criterion min
x

n∑
k=1

(yk− |(Ax)k|)2) + µk
2
‖x‖2

2

and construct a corresponding joint PDF

p(x) =
1

Z

m∏
a=1

exp[−β(ya − |(Ax)a|)2]
n∏
i=1

exp(−β · µ
2
x2
i ) (1.11)

Then the next step is to approximate this joint PDF. AMP accomplishes this

in several steps [19]:

1. Derive the Belief-Propogation update rules for p(x)

2. Approximate the BP update rules

3. Find the Message update rules in the limit β →∞

The BP message update rules [20] act on the graphical model which in this

case, a fully connected bi-partite graph with n vertices being for the xi, and m

others for the yj. Given such a graphical model, the message update rules can be

written (after some rearranging) in the following form
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mt
a→i(xi) =

∫
x\i

f(ya, (Ax)a)
∏
j 6=i

dmt
j→a(xj)

mt+1
i→a(xi) =

∏
b 6=a

mt
b→i(xi) · exp(−β

µ

2
x2
i )

where f(y, z) := exp(−β(y − |z|)2)

After applying this to the AMP case and simplifying with asymptotic approx-

imations, one gets the following algorithm which is called AMP.A

pt = Axt − 2

δ
g(pt−1,y)

xt+1 = 2[−divp(gt) · xt + AHg(pt,y)]

Here the functions are defined

• divp(gt) = 1
m

m∑
a=1

ya
2|pta|
− 1

• g(p, y) = y · p|p| − p

Now the analysis of the convergence for this system is governed by a dynamical

system, which in the noiseless case under sufficient conditions on the asymptotic

redundancy, converges. Details on this can be found [18].
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Chapter 2: Overview of the Golden Retriever

In this chapter, we state the golden retriever algorithm as a PC (Predictor-

Corrector) algorithm and we outline the main results of the thesis. The derivations

and proofs for these results can be found in subsequent chapters. We also show

some numerical results.

Let x ∈ Cn. The problem of phase retrieval for us is to recover x from m

phaseless linear measurements. Let F = {fk}mk=1 be a finite frame which spans the

vector space Cn.

yk = |〈x, fk〉|2 + wk for k = 1, ...,m (2.1)

where wk ∼ CN (0, σ2
w).

Our objective function to minimize is a regularized quadratic loss function

given by

Ω(x, λ) =
1

4m

m∑
k=1

(yk − |〈x, fk〉|2)2 +
λ

2
〈Qx, x〉 (2.2)

where Q is a hermitian positive definite matrix and λ is a real parameter (λ ≥ 0),

which we will use to homotope our solution to the desired λ = 0. Note that at

λ = 0, the quadratic objective function we are minimizing is equivalent to the one

in the Wirtinger Flow algorithm.
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We also specialize the problem to the real case as and write it out explicitly

as follows

Let x ∈ Rn. We wish to to recover x from m phaseless linear measurements.

Let F = {fk}mk=1 be a finite frame which spans our vector space Rn.

yk = |〈x, fk〉|2 + σk for k = 1, ...,m (2.3)

where σk ∼ N (0, σ2).

Hence, we want to minimize the same

J(x, λ) =
1

4m

m∑
k=1

(yk − |〈x, fk〉|2)2 +
λ

2
〈Qx, x〉 (2.4)

where Q is now a symmetric positive definite matrix.

The minimization objective is not convex, so it may have many stationary

points and local minima. Minimizing non-convex objectives such as this is in general

known to be NP-hard. See [21] for an example of when convergence to a local

minimum is known to be NP-hard.

It is worth noting that in many of the theoretical results, we specialize further

to the noiseless case and we take Q = I.
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2.1 The Real Golden Retriever Algorithm

To define the algorithm, we need to know the initialization, and we need to

specify the update rules.

Algorithm 1: Real Golden Retriever Initialization

Input : Observations {yk}, the frame set {fk}, a positive symmetric

semidefinite matrix Q, and an initial step size µ0

Define e1 to be the eigenvector corresponding to the largest eigenvalue

(denoted λ1) of

R0 =
1

m

m∑
k=1

ykfkf
T
k

Set

c =

√
µ0〈Qe1, e1〉

1
m

∑m
k=1(〈e1, fk〉)4

Set

x0 = ce1

Output: Initial parameters (x0, λ1 − µ0)

The update rules are split into two steps, the predictor and the corrector. The

predictor is given by a linear step, and the corrector is a fixed point correction to

get back to the path.
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Algorithm 2: Real Golden Retriever Predictor Step

Input : Previous step (xi, λi), the frame set {fk}, a positive symmetric

semidefinite matrix Q, and a step size µi and an n+ 1 vector of

signs of the previous step sgn

Define the matrix

R(x) =
1

m

m∑
k=1

〈x, fk〉2fkfTk

Then form the n× (n+ 1) extended Hessian matrix

Hext(xi, λi) =

[
3R(xi) + λiQ−R0 Qxi

]

Find a unit vector v is in Null(Hext). Choose the index c to be the index

1, .., n+ 1 largest in magnitude of v.

Now

(ξ̃t+1,0, λ̃t+1,0) = (ξt, λt) + µiv

Choose the sign of v to be the one that matches the sign of the previous

step at index c.

Output: Predictor parameters (x̃t+1,0, λ̃t+1,0)

Now, since we took a step in a linear direction, we want to do a corrector step

to get back onto the right path.
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Algorithm 3: Real Golden Retriever (Newton) Corrector Step

Input : Predictor parameters (x̃t+1,0, λ̃t+1,0), the frame set {fk}, the

positive symmetric semidefinite matrix Q, and an error threshold

Err

Define the matrix

R(x) =
1

m

m∑
k=1

〈x, fk〉2fkfTk

For j = 0, 1, 2, ..., until a threshold of error

Form the n× (n+ 1) extended Hessian matrix

Hext(x̃t+1,j, λ̃t+1,j) =

[
3R(x̃t+1,j) + λ̃t+1,jQ−R0 Qx̃t+1,j

]

Set H†ext to be the pseudoinverse of Hext and then set

(x̃t+1,s+1, λ̃t+1,s+1) = (x̃t+1,s, λ̃t+1,s)−H†ext[R(x̃t+1,s) + λ̃t+1,sQ−R0]x̃t+1,s

Terminate when the

||(x̃t+1,N+1, λ̃t+1,N+1)− (x̃t+1,N , λ̃t+1,N)|| ≤ Err

After convergence, we finally define

Output: Next step (xt+1, λt+1) = (x̃t+1,N , λ̃t+1,N)

After initialization, we continue doing the Predictor and Corrector steps until

λ = 0 or x = 0, at which point the algorithm terminates.
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There are a number of questions this algorithm brings up, including how to

choose the step size, how to derive it, convergence analysis and asymptotics, etc.

2.2 Overview of Real Results

We outline the results here for the real case and some observations about these

results. We start with the convergence results.

2.2.1 Real Convergence

We outline a convergence result for the Golden Retriever. Here we work in

the noiseless case with Q = I. The analysis is based on a reference path. We can

take the reference path to be anything, but we want it to start at (0, λ1) (the same

point the Golden Retriever starts at), and end at (z, 0), the global minimizer. With

this reference path in mind, we want to see how far the Golden Retriever Homotopy

Path can deviate from the reference path, and ensure that no other critical point

can get close.

We define two conditions that the reference path ϕ(λ) can satisfy.

Let sn(λ) = λn(Hess(ϕ(λ), λ)), b0 = max||e||=1〈R(e)e, e〉 and r(λ) = sn(λ)
6b0||ϕ(λ)||

Condition 2.2.1 (Initialization Condition). Given a frame set, R0, a suitable ref-

erence path ϕ(λ), and the golden retriever path x(λ), we say that ϕ satisfies the

Initialization Condition if

||x(λ)− ϕ(λ)|| < r(λ) (2.5)

for some 0 < λ < λ1.
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Condition 2.2.2 (Gradient Condition). Given a frame set, R0 and a suitable ref-

erence path ϕ(λ), we say that ϕ satisfies the Gradient Condition if

||(R(ϕ) + λI −R0)ϕ|| < sn(λ)2

12b0||ϕ(λ)||
(2.6)

for all 0 < λ < λ1

The remarkable theorem is the following.

Theorem 3.4.7. If there exists a suitable reference path which satisfies the Initial-

ization Condition and the Gradient Condition, then the Golden Retriever Homotopy

Algorithm converges.

Notice that the Initialization Condition involves the homotopy path, but the

Gradient Condition is a condition which does not use the homotopy path directly,

and thus can be checked without tracing the homotopy path.

The intuition behind this is the following: r(λ) defines a radius for each λ,

from which the homotopy path cannot cross, and no other critical point can enter.

The Initialization Condition ensures that the homtopy path is inside this radius,

and the Gradient Condition ensures that it never leaves this radius. Then it is

possible to show that the only critical point it can converge to at λ = 0 is the global

minimizer.
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Figure 2.1: This is an example of the golden retriever satisfying both the Initial-
ization Condition and the Gradient Condition. It was generated with n = 2, and
m = 5.

In Figure 2.1, the red line is the Golden Retriever Homotopy path, the green

line (barely visible), is a reference path, and the blue circles are the radius r(λ).

Because the Initialization Condition was satisfied, the red curve starts out inside

the tube (called the leash), and because the Gradient Condition was satisfied, it

never leaves the leash (and no other path enters), so it converges to the global

minimizer.

It is important to note that this is not a requirement for convergence. Figure

2.2 shows that the red homotopy path leaves the leash (so it doesn’t satisfy the

Gradient Condition), yet it still converges to the global minimizer. Thus it is a

sufficient, but not necessary condition for convergence.
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Figure 2.2: This is an example of the golden retriever satisfying the Initialization
Condition but not the Gradient Condition. It still converges to the global minimizer,
however. It was generated with n = 2, and m = 5.

Any reference path can be used (assuming it satisfies a few properties to make

it suitable), but we study a specific reference path.

To define it, let g be the top eigenvector of R0, normalized such that g =√
λ1

〈R(e1)e1,e1〉e1. Define τ = 1− λ
λ1

. The reference path is now given by

ϕ1(λ) =
√
τ(τz + (1− τ)g) (2.7)

Notice that this is a convex combination of z and g, which is scaled by
√
τ .

We first state that this path satisfies the Initialization Condition.

Theorem 3.4.12. For all τ > 0 sufficiently small, ||x(λ) − ϕ1(λ)|| < r(λ), i.e.

ϕ1(λ) satisfies the Initialization Condition.

Thus, ϕ1(λ) satisfies the Initialization Condition, so if it satisfies the Gradient

Condition, we will have shown that it converges to the global minimizer.
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We will investigate with what probability it satisfies the Gradient Condition

based on the concentration of the matrix R(x) about its mean. Assume that the

frame set fk is drawn from a standard normal distribution. Then we can say

Theorem 3.4.19 (Probabilistic Convergence Result). In the noiseless case with

Q = I, let z be fixed and let fk be drawn from a standard normal. Let m be

sufficiently large, by which we mean m ≥ C · n3, where the constant may be large,

but independent of n. Then with probability greater than or equal to 1 − 5e−γn −

4
n2 −

(
n3 + 1

)
e−

3n
10 , ϕ1(λ) satisfies the Gradient Condition, and thus the algorithm

converges to the global minimizer. Here γ > log(9) is a universal constant.

2.2.2 Path Verification

In this section, we state the derivation of a numerical certificate that can verify

that one is staying on the same critical path. This can be used to get a numerical

step size, µi, but it is not used in practice because it would slow down the algorithm

considerably. However, the result is still interesting, and can be useful in debugging

strange cases.

To state the result, we will need to first state some terminology and notation.

Let (xold, λold) be on the path of the algorithm. To get the next point on the path

(xnew, λnew), we want to make sure we didn’t cross to a different path, so there

is no other critical point (xother, λother) in some hyperplane is the true point on

the continuous path. Let Hext,0 be the extended Hessian matrix at (xold, λold) and

Hext,new be the extended Hessian matrix at (xnew, λnew). Let v be a normalized
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vector in the null space of Hext,new, and let c be the index of the largest entry in

absolute value of v. LetHred:c,0 denote Hext,0 after deleting column c.

Define

b1 =
1

m
Uf 2

where U is the frame bound, and f = maxmk=1 ||fk|| (we can use the smaller con-

stant b0, as defined in the previous section, but computing that numerically can be

difficult)

Now define

ρ(a, λa) = min(
1

2
,

sn(Hext(a, λa)))√
n+ 1(b1 + 3b1||a||+ ||Q||)

)

and

tmin = min(
ρ(xnew, λnew)

2A
,−6b1||x0||+ ||Q||

6Ab1

+

√
(
6b1||x0||+ ||Q||

6Ab1

)2 +
sn(Hred:c,0)

6A2b1

)

where A = (2 + 2 ||Hext,0||
sn(Hred:c,0)

)

Now we state the Main Theorem from section 3.5.

Theorem 3.5.5. Assume the Golden Retriever algorithm starts at a point (xold, λold)

which is a critical point. Let (xnew, λnew) be a new critical point the algorithm decides

and (xother, λother) be any other critical point in the same coordinate at the index c,

as defined above. Let D1 denote the distance from (xold, λold) to (xnew, λnew).

Assume the following two conditions are satisfied:

28



1. D1 <
ρ(xnew,λnew)

2

2. t < tmin

Then (xnew, λnew) is the point connected on the continuous homotopy path

which goes through (xold, λold).

Theorem 3.5.5 gives us a numerical certificate we can check. In the implemen-

tation, it is now possible to choose a step size µi based on the previous one µi−1,

take a step and see if the certificate certifies. If not, one can reduce the step size

(update µi to µi/2 for instance) and repeat the check.

Note that in practice this is still rarely used, and when used, it is a debugging

parameter, as it can be significantly slower this way. It is more efficient in practice to

pick a numerically feasible small step size. Also, to improve performance we usually

bias the coordinate we move along to be λ for speed purposes, and the certificate is

not compatible with the bias.

2.2.3 Oracle Convergence

The next theorem has a very interesting meaning to it. We no longer take

Q = I. In general Homotopy Methods are not guaranteed to lead to the correct

solution, they can turn around and go to a different eigenvalue at x = 0, or a

different critical point at λ = 0. However, this theorem says it is always possible to

initialize the system with a specific matrix Q that would guarantee convergence.

Theorem 3.6.3. Let z be the minimizer to the optimization problem in (2.2). There
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exists a positive definite matrix Qz such that the Golden Retriever Algorithm, ini-

tialized with Qz, converges to z. Moreover, the trajectory of the homotopy path with

Qz projected onto λ = 0 follows a straight line.

This theorem means that with enough computing power, we could initialize the

algorithm with several different choices of Q and run them in parallel. In principle,

if one had more information about the location of the global minimizer, one could

bias the Q matrix to give a higher probability of convergence.

Figure 2.3: This figure was generated by running the Golden Retriever algorithm
with the matrix Qz instead of the identity. The red path is a parabola, while the
projection onto the λ = 0 plane, the green path, shows that the x estimates follow
a straight line to the solution. It was generated with n = 2, and m = 5.
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2.3 The Complex Golden Retriever Algorithm

We again give the initialization. The complex case is done through the reali-

fication procedure so all vectors and matrices live in or act on R2n.

Algorithm 4: Complex Golden Retriever Initialization

Input : Observations {yk}, the frame set {fk}, a positive definite

hermitian matrix Q, and a step size µ0

Define the following quantities

J =

 0 −In

In 0

 ∈ R2n×2n S =

Real(Q) −Imag(Q)

Imag(Q) Real(Q)

 ∈ R2n×2n

ϕk = κ(fk) =

Real(fk)
Imag(fk)

 ∈ R2n Φk = ϕkϕ
T
k + Jϕkϕ

T
k J

T ∈ R2n×2n

Define η1 to be an eigenvector corresponding to the largest eigenvalue

(denoted λ1, which will have multiplicity 2) of

Γ0 =
1

m

m∑
k=1

ykΦk

Set

c =

√
µ0〈Sη1, η1〉

1
m

∑m
k=1(ηT1 Φkη1)2

Output: Initial parameters (ξ0, λ1 − µ0) = (cη1, λ1 − µ0)

As with the real case, the update rules are split into two steps, the predictor

and the corrector. The predictor is given by a linear step, and the corrector is a
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fixed point correction to get back to the path.

Algorithm 5: Complex Golden Retriever Predictor Step

Input : Previous step (xi, λi), the frame set {fk}, a positive symmetric

semidefinite matrix Q, and a step size µi and an n+ 1 vector of

signs of the previous step sgn

Define the matrices

Γ(ξ) =
1

m

m∑
k=1

ξTΦkξΦk, Γ̃(ξ) =
1

m

m∑
k=1

Φkξξ
TΦk

Then form the 2n× (2n+ 1) extended Hessian matrix

Hext(ξi, λi) =

[
Γ(ξi) + 2Γ̃(ξi) + λiS − Γ0 Sξi

]

Find a unit vector v is in Null(Hext), and v ⊥ Jξi. Choose the index c to be

the index 1, .., n+ 1 largest in magnitude of v.

Now

(ξ̃t+1,0, λ̃t+1,0) = (ξt, λt) + µiv

Choose the sign of v to be the one that matches the sign of the previous

step at index c.

Output: Predictor parameters (ξ̃t+1,0, λ̃t+1,0)
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Algorithm 6: Complex Golden Retriever (Newton) Corrector Step

Input : Predictor parameters (ξ̃t+1,0, λ̃t+1,0), the frame set {fk}, the

positive symmetric semidefinite matrix Q, and an error threshold

Err

Define the matrices

Γ(ξ) =
1

m

m∑
k=1

ξTΦkξΦk, Γ̃(ξ) =
1

m

m∑
k=1

Φkξξ
TΦk

For j = 0, 1, 2, ..., until a threshold of error

Form the 2n× (2n+ 1) extended Hessian matrix

Hext(ξ̃t+1,j, λ̃t+1,j) =

[
Γ(ξ̃t+1,j) + 2Γ̃(ξ̃t+1,j) + λ̃t+1,jS − Γ0 Sξ̃t+1,j

]

Set H†ext to be the pseudoinverse of Hext and set

(ξ̃t+1,s+1, λ̃t+1,s+1) = (ξ̃t+1,s, λ̃t+1,s)−H†ext[Γ(ξ̃t+1,s) + λ̃t+1,sS − Γ0]ξ̃t+1,S

Terminate when the

||(ξ̃t+1,N+1, λ̃t+1,N+1)− (ξ̃t+1,N , λ̃t+1,N)|| ≤ Err

After convergence, we finally define

Output: Next step (ξt+1, λt+1) = (ξ̃t+1,N , λ̃t+1,N)

After initialization, we continue doing the Predictor and Corrector steps, and
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the algorithm terminates when either λ = 0 or ξ = 0.

Again we need to know how to choose the step size, how to derive it, conver-

gence analysis and asymptotics, etc.

2.4 Overview of Complex Results

2.4.1 Complex Convergence

As with the real case, we can analyze the convergence of the Golden Retriever

algorithm. We work in the noiseless case, with S = I2n. This analysis is also based

on a reference path which starts at (0, λ1) and ends at (z, 0).

We define, like in the real case, two conditions that the reference path ϕ(λ)

can satisfy.

Let s2n−1(λ) = λ2n−1(Hess(ϕ(λ), λ)), β = max||e||=1〈Γ(e)e, e〉 and

r(λ) =
−12β||ϕ(λ)||+

√
144β2||ϕ(λ)||2 + 72βs2n−1(λ)

36β
(2.8)

Finally define

ρ2(λ) =
−B +

√
B2 + 4AC

2A
, ρ1(λ) =

ρ2(λ)

s2n−1(λ)
(2.9)

where

A = 972β2

B = 864β3||ϕ(λ)||3 + 648β2||ϕ(λ)||s2n−1(λ)
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C = 36β2s2n−1(λ)2||ϕ(λ)||2 + 24βs2n−1(λ)3

Condition 2.4.1 (Initialization Condition). Given a frame set, Γ0, a suitable ref-

erence path ϕ(λ), and the golden retriever path ξ(λ), we say that ϕ satisfies the

Initialization Condition if

||ξ(λ)− ϕ(λ)|| < ρ1(λ) (2.10)

for some 0 < λ < λ1.

Condition 2.4.2 (Gradient Condition). Given a frame set, Γ0 and a suitable ref-

erence path ϕ(λ), we say that ϕ satisfies the Gradient Condition if

||(Γ(ϕ) + λI − Γ0)ϕ|| < ρ2(λ) (2.11)

for all 0 < λ < λ1

Notice the difference in the expressions in the complex conditions from the

real conditions. This comes from difficulties arising with the phase ambiguity in the

complex case.

The conditions give rise to an equivalent theorem as in the real case.

Theorem 4.5.9. If there exists a suitable reference path which satisfies the Initial-

ization Condition and the Gradient Condition, then the Complex Golden Retriever

Homotopy Algorithm converges to a global minimizer.

Notice that the Initialization Condition involves the homotopy path, but the
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Gradient Condition is a condition on the reference path alone.

The intuition behind this is similar to the real case. Assuming the Initializia-

tion Condition and the Gradient Condition are satisfied, then r(λ) defines a radius

for each λ, from which the homotopy path cannot cross. The Initialization Condi-

tion ensures that the homtopy path is inside this radius, and the Gradient Condition

ensures that it never leaves this radius. Using this, it is still possible to show that

the only critical point it can converge to at λ = 0 is a global minimizer.

Then, we define a suitable reference path

ϕ1(λ) = U(λ)
√
τ(τζ + (1− τ)η) (2.12)

where τ = 1− λ
λ1

and U(λ) is an certain alignment matrix.

It is possible to show that ϕ1(λ) always satisfies the Initialization Condition.

Thus we are left checking whether it satisfies the Gradient Condition.

Again, after using concentration of Γ(ξ) about its mean, we can conclude the

following theorem, by showing when ϕ1(λ) satisfies the Gradient Condition.

Theorem 2.4.3. In the noiseless case with Q = I, fix a nonzero ζ ∈ R2n to be

the realification of the generating signal. Assume fk are distributed i.i.d. complex

normal, with a sufficiently high number of samples. That means that m ≥ Cn3,

where the constant may be large but independent of n. Then with probability at least

1− 13
n2 −10e−γn−

(
n3 + 1

)
e−

3n
10 , ϕ1(λ) satisfies the Gradient Condition, and thus the

algorithm converges to a global minimizer. Here γ > log(9) is a universal constant.
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2.4.2 Path Verification

As with the real case, we derived a certifier that issues a numerical certificate

which, if verified, guarantees that one are on the correct homotopy path.

To state the theorem, we will need to state some terminology and notation.

Let (ξold, λold) be a critical point on the the homotopy path. To get the next point on

the path (ξnew, λnew), we want to make sure we didn’t step to another critical point

which came close (in some hyperplane) to the homotopy path, so we want to make

sure there is no other critical point (ξother, λother) close enough to be the true critical

point smoothly connected to (ξold, λold). Let Hext,0 be the extended Hessian matrix

at (ξold, λold) and Hext,new be the extended Hessian matrix at (ξnew, λnew). Let v be a

normalized vector in the null space of Hext,new, and let c be the index of the largest

entry in absolute value of v. Hred:c,0 =

Γ(ξold) + 2Γ̃(ξold) + λS − Γ0 Sξold

(Jξold)
T 0

 after

deleting column c.

Define β1 = 1
m
Uf 2 where U is the upper frame bound, and f = maxmk=1 ||fk||

(one can use β instead of β1 everywhere, but that makes it difficult to compute).

Now define

ρ(a, λa) = min(
1

2
,

s2n(Hext(a, λa)))√
2n+ 1(β1 + 3β1||a||+ ||S||)

)
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and

tmin = min(
ρ(ξnew, λnew)

2A
,−6β1||ξ0||+ ||S||+ 1

6Aβ1

+

√
(
6β1||ξ0||+ ||S||+ 1

6Aβ1

)2 +
s2n(Hred:c,0)

6A2β1

)

where A = (2 + 2 ||Hext,0||
s2n(Hred:c,0)

)

Theorem 4.6.5. Assume our algorithm starts at a point (ξold, λold) which is a

critical point. Let (ξnew, λnew) be a new critical point the algorithm decides and

(ξother, λother) be any other critical point in the same coordinate at the index c, as

defined above. Let D1 denote the distance from (ξold, λold) to (ξnew, λnew).

Assume the following two conditions are satisfied:

1. D1 <
ρ(ξnew,λnew)

2

2. t < tmin

Then (ξnew, λnew) is the point connected on the continuous homotopy path

which goes through (ξold, λold).

Theorem 4.6.5 gives us a numerical certificate we can check. In the implemen-

tation, it is now possible to choose a step size µi based on the previous one µi−1,

take a step and see if the certificate certifies. If not, one can reduce the step size

(update µi to µi/2 for instance) and repeat the check.

Note that this is usually used as a debugging parameter, as it can be signifi-

cantly slower this way. Also, we usually bias the coordinate we move along to be λ

for speed purposes, so it won’t work together with this bias.
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2.4.3 Oracle Convergence

The next theorem says it is always possible to initialize the system with a

specific matrix positive definite symmetric matrix S in R2n×2n (or equivalently a

positive definite hermitian matrix Q in Cn×n) that would guarantee convergence.

Theorem 4.7.3. Let ζ be the minimizer to the optimization problem in (2.2). There

exists a positive definite matrix Sz such that the Golden Retriever Algorithm, ini-

tialized with Sz, converges to S. Moreover, the trajectory of the homotopy path with

Sz, projected onto λ = 0, follows a straight line.

This theorem means that with enough computing power, we could initialize the

algorithm with several different choices of S and run them in parallel. In principle,

if one had more information about the location of a global minimizer, one could bias

the S matrix to give a higher probability of convergence.

2.5 Numerical Results

2.5.1 Numerical Experiments

We ran the golden retriever and gathered statistics on the convergence of the

algorithm. We present results for the noiseless case, a trial is declared a success if

the relative error was less than 10−5 from the global minimizer. The noisy case is

more difficult since we don’t have access to the global minimizer. For trials here,

we recommend declaring success based on a success criterion which is a sum of the

error tolerance 10−5 and a term involving the Cramer-Rao Lower Bound (see [22]

39



for details about the Cramer-Rao Lower bound in Phase Retrieval). This can then

compared to the distance from the generating signal. The Cramer-Rao Lower Bound

for the real case is given by

σ2

4m
Tr(R(z)−1) (2.13)

In the complex case, one can use the lower bound

σ2

4m
Tr(Γ̃(ζ)+) (2.14)

This expression is be derived in [22], where we use that Jζ is in the null space of

Γ̃(ζ)+.

For the noiseless real case, we looked at the Gaussian Case when n = 128 with

m = 1.1n, 1.2n, ...4.1n and gathered statistics about how often it converged to the

global minimizer in 100 trials.

Figure 2.3 shows the empirical success probabilities in the real noiseless case

SNR = ∞. We plot the redundancy to the number of success. Here success is

defined by having an error less than 10−5.
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Figure 2.4: Real noiseless case, n = 128, SNR =∞

We see from this that with a small number of samples (m ≈ 3.4) already yields

very high probability of success.

In the complex case, we looked at the Gaussian Case when n = 128 and m =

2.6n, 1.9n, 2n, , ..., 4.5n and gathered statistics about how often it converged to a

global minimizer, a non-global local minimum, a saddle point, or another eigenvalue

at x = 0.

For the noiseless case, the criteria for convergence was whether the error was

less than 10−5. We plot the redundancy to the number of success.
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Figure 2.5: Complex noiseless case, n = 128, SNR =∞

To compare with Wirtinger Flow, we note that for high enough redundancy,

it seems that if either Wirtinger Flow or the Golden Retriever converges, then the

other converges with high probability.

For lower redundancies, it seems as if Golden Retriever succeeds more often

than Wirtinger Flow does.

To illustrate this, the following graphs compares Wirtinger Flow directly to

the Golden Retriever.

The first graph is for the real Golden Retriever, and we compare it at redun-

dancies from 1 to 4 against Wirtinger Flow. In these, the default parameters were
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chosen, except the the number of iterations for Wirtinger Flow was increased to

100, 000.
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Figure 2.6: The following figure illustrates, in the real case, the Golden Retriever
empirical success and Wirtinger Flows empirical success on the same graph. This
was generated with n = 30, and 500 trials for each redundancy.

The next graph is for the complex Golden Retriever, and we compare it at re-

dundancies from 1.5 to 4.5 against Wirtinger Flow. In these, the default parameters

were chosen, except the the number of iterations for Wirtinger Flow was increased

to 100, 000.
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Figure 2.7: The following figure illustrates, in the complex case, the Golden Retriever
empirical success and Wirtinger Flows empirical success on the same graph. This
was generated with n = 30, and 500 trials for each redundancy.

We can see that the Golden Retriever outperforms Wirtinger Flow at low

redundancies.

2.5.2 Computational Complexity

We estimate the computational complexity of the Golden Retriever algorithm.

We will examine this with Q = I. We start with the space complexity. Storage is a

known issue for many phase retrieval algorithms (see [23]). For reducing the required

storage, we will not store any matrices, and instead sacrifice time complexity in
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computing these on the fly. We also will assume that we don’t store the frame

vectors, and we can either compute them as needed (in constant time) or retrieve

them from an oracle if needed. Thus the space complexity is going to be O(n).

The time complexity is a little more complex. The predictor step requires

computing the null space of a n × (n + 1) extended Hessian matrix, He. This

is equivalent to computing the null space of a symmetric positive definite HT
e He.

To do this, we deform the matrix by adding δI to look at the matrix HT
e He + δI

and are looking at eigenvalue corresponding to the smallest eigenvector. This can be

done with only matrix-vector multiplications and vector additions using a conjugate

gradient algorithm outlined in [24]. Each matrix vector computation can be done

in O(mn) steps, and if we assume we do the conjugate gradient for κ1 steps, that

brings each predictor step to a complexity of O(κ2mn).

For the corrector step, we need to solve a linear system consisting of Hev =

F (x, λ), where F (x, λ) = ∇xJ(x, λ). Again we look at the equation HT
e Hev =

HT
e F (x, λ). Computing F (x, λ) can be done in O(mn) steps, and so can computing

HT
e F (x, λ). The conjugate gradient would also only involve matrix-vector multipli-

cations, so if κ2 denotes the number of fixed point corrections done, the complexity

of the corrector step is O(κ2mn).

Therefore, if we set a bound on the number of fixed points iterations and

conjugate gradient steps, and if N is the total number of iterations in the golden

retriever, the complexity of the golden retriever comes out to O(Nmn). The same

computations and complexities hold in the complex case as well.
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2.6 Future Work

Here we identify some directions for future research. We have shown that in the

noiseless case, the Golden Retriever converges with some probability if the number of

samples is of the order m = O(n3). This is based on finding upperbounds and getting

control on some constants which can be done in O(n3). If these upperbounds were

tightened, or the assumptions removed, then the Golden Retriever would converge

with a lower sampling requirement of O(nlogn). In addition, many variants of

Wirtinger Flow have been created which have sampling size of order m = O(n), so

the number of measurements is of the same order as the signal. In many of these,

the loss function has been altered from the mean square error, to a less smooth

absolute error. That is, the criterion to minimize may look like

K(x, λ) =
1

2m

m∑
k=1

∣∣yk − |〈x, fk〉|2∣∣+
λ

2
〈Qx, x〉

We postulate that a similar homotopic algorithm with this absolute error loss func-

tion would bring the convergence rate of the retriever to m = O(n).

At the same time, one could also play with the regularization term, change it

from a quadratic regularization term to a different order term, such as a linear term.

Another area of future work is to optimize the analysis of the leash developed

in the convergence result. In the derivation it is a sufficient result, where one side

of an inequality is minimized and the other maximized which provides a sufficient

bound necessary for convergence. However, a more careful analysis may lead to finer
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results. This may prove particularly effective in removing the assumptions on b0, as

this is what drives the rate up to O(n3)

Another possibility is the investigation into different reference paths. Perhaps

a different suitable reference path may enjoy nicer convergence results.
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Chapter 3: Real Case

In this chapter, we analyze details about the Golden Retriever algorithm in

the real case. We begin with the derivation of the algorithm.

3.1 Derivation of the Golden Retriever in the Real Case

First we start off by rewriting the minimization criterion, then we show some

properties satisfied by solutions to the system, and finally we derive the Golden

Retriever Algorithm.

3.1.1 Preliminaries

First we look at the minimization criterion

J(x, λ;F , Q, y) =
1

4m

m∑
k=1

(yk − |〈x, fk〉|2)2 +
λ

2
〈Qx, x〉 (3.1)

Usually we will suppress the dependence on the frame set, the measurements, as well

as the symmetric positive definite matrix Q by denoting the criterion as J(x, λ).

We would like to rewrite the criterion into a form more manageable to work
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with. To his end, we expand the form to get:

J(x, λ) =
1

4m

m∑
k=1

(y2
k − 2yk|〈x, fk〉|2 + |〈x, fk〉|4) +

λ

2
〈Qx, x〉

=
1

4m

m∑
k=1

y2
k +

1

4m

m∑
k=1

|〈x, fk〉|4 +
λ

2
〈Qx, x〉 − 1

2m

m∑
k=1

yk|〈x, fk〉|2

Now we write some terminology:

R0 =
1

m

m∑
k=1

ykfkf
T
k , R(x) =

1

m

m∑
k=1

|〈x, fk〉|2fkfTk (3.2)

With these, we can simplify the criterion using the following proposition.

Proposition 3.1.1. With the above notation, we can simplify the criterion into the

following form

J(x, λ) =
1

4
〈R(x)x, x〉+

1

2
〈(λQ−R0)x, x〉+

1

4m

m∑
k=1

y2
k (3.3)

Proof. First look at R(x)x = 1
m

m∑
k=1

|〈x, fk〉|2fkfTk x = 1
m

m∑
k=1

|〈x, fk〉|2〈x, fk〉fk =

1
m

m∑
k=1

(〈x, fk〉)3fk

Therefore 〈R(x)x, x〉 = 〈 1
m

m∑
k=1

|〈x, fk〉|3fk, x〉 = 1
m

m∑
k=1

|〈x, fk〉|2〈x, fk〉〈fk, x〉 =

1
m

m∑
k=1

|〈x, fk〉|4.

Similarly R0x = 1
m

m∑
k=1

ykfkf
T
k x = 1

m

m∑
k=1

yk〈x, fk〉fk. Therefore, 〈R0x, x〉 =

1
m

m∑
k=1

yk|〈x, fk〉|2
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Proposition 3.1.2. For a fixed λ, we have

F (x, λ) := ∇xJ(x, λ) = R(x)x+ (λQ−R0)x (3.4)

Proof. Let us first examine ∇x
1
4
〈R(x)x, x〉. We have that

1

4
∇x(〈R(x)x, x〉) =

1

4
∇x(

1

m

m∑
k=1

|〈x, fk〉|4) =
1

4m

m∑
k=1

∇x[(〈x, fk〉)4]

=
4

4m

m∑
k=1

(〈x, fk〉)3∇x(〈x, fk〉) =
1

m

m∑
k=1

(〈x, fk〉)3fk = R(x)x

In addition, we know for a constant symmetric matrix A, ∇x(〈Ax, x〉) = 2Ax.

Therefore, since λQ−R0 is a constant symmetric matrix, we have that ∇x(
1
2
〈(λQ−

R0)x, x〉) = (λQ−R0)x

Since the last term is constant with respect to x, we have our result.

Proposition 3.1.3.

Hess(J(x, λ)) = 3R(x) + λQ−R0 (3.5)

Proof. First of all, we have that ∇x[(λQ−R0)x] = (λQ−R0), so what we want to

find is ∇x(R(x)x)

To do this, as we established before, R(x)x = 1
m

m∑
k=1

(〈x, fk〉)3fk, and if we use
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the vector calculus identity that ∇x(cA) = A⊗∇x(c)+c∇x(A), we get the following

∇x(
1

m

m∑
k=1

(〈x, fk〉)3fk) =
3

m

m∑
k=1

(〈x, fk〉)2fk ⊗ fk

=
3

m

m∑
k=1

(〈x, fk〉)2fkf
T
k = 3R(x)

To summarize the results we got so far, we showed that for the criterion

J(x, λ) =
1

4m

m∑
k=1

(yk − |〈x, fk〉|2)2 +
λ

2
〈Qx, x〉 (3.6)

=
1

4
〈R(x)x, x〉+

1

2
〈(λQ−R0)x, x〉+

1

4m

m∑
k=1

y2
k (3.7)

We have the following gradient:

∇xJ(x, λ) = (R(x) + λQ−R0)x (3.8)

And we have the following hessian matrix:

Hess(J(x, λ)) = 3R(x) + λQ−R0 (3.9)

Now we look at the the case where x, λ are parameterized by another parameter t,

and look at the extended Gradient and the extended hessian.

Proposition 3.1.4. If x = x(t), λ = λ(t), then the extended hessian of both x and
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λ can be written

Hessext =

[
(3R(x) + λQ−R0) Qx

]
(3.10)

Proof. The proof follows from the taking the derivative of the gradient with respect

to t

d

dt
(∇xJ(x(t), λ(t))) =

d

dt
(R(x(t))x(t) + λ(t)Qx(t)−R0x(t))

= ∇x(∇xJ)
dx

dt
+

∂

∂λ
(∇xJ)

= HessJ(x, λ) · dx
dt

+Qx
dλ

dt

=

[
(3R(x) + λQ−R0) Qx

]
·

dxdt
dλ
dt



= Hessext ·

dxdt
dλ
dt



Now to handle expansions in R(x), we define associated bilinear matrices.

Definition 3.1.4.1. Let x, y ∈ Rn. Define R(x, y) = 1
m

∑m
k=1〈x, fk〉〈y, fk〉fkfTk .

We can summarize some of the properties of these matrices in the following

proposition.

Proposition 3.1.5. Let x, y, z ∈ Rn. Then we have the following properties:

1. R(x, x) = R(x)

2. R(x+ y) = R(x) +R(y) + 2R(x, y)
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3. R(x, y) = R(y, x)

4. R(x, y)z = R(y, z)x = R(z, x)y

5. R(x, y)y = R(y)x

Proof. These are easy computations

1. R(x, x) = 1
m

∑m
k=1〈x, fk〉〈x, fk〉fkfTk = 1

m

∑m
k=1〈x, fk〉2fkfTk = R(x)

2. R(x+y) = 1
m

∑m
k=1〈(x+y), fk〉2fkfTk = 1

m

∑m
k=1〈x, fk〉2fkfTk + 1

m

∑m
k=1〈y, fk〉2fkfTk +

2
m

∑m
k=1〈x, fk〉〈y, fk〉fkfTk = R(x) +R(y) + 2R(x, y)

3. R(x, y) = 1
m

∑m
k=1〈x, fk〉〈y, fk〉fkfTk = 1

m

∑m
k=1〈y, fk〉〈x, fk〉fkfTk = R(y, x)

4. R(x, y)z = 1
m

∑m
k=1〈x, fk〉〈y, fk〉〈z, fk〉fk, now we can permute them in any

order.

5. By (4), we have R(x, y)y = R(y, y)x, which by (1) gives us R(y, y)x = R(y)x.

Theorem 3.1.6. Let x, y ∈ Rn. Define b0 = max||e||=1〈R(e)e, e〉 Then the following

properties hold.

1. ||R(x)−R(y)|| ≤ b0||x− y|| · ||x+ y||

2. ||R(x)|| ≤ b0||x||2

3. ||R(x, y)|| ≤ b0||x|| · ||y||
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Proof. 1.

||R(x)−R(y)|| = max
||e||=1

|〈(R(x)−R(y))e, e〉|

=
1

m
| max
||e||=1

m∑
k=1

〈x, fk〉2〈e, fk〉2 − 〈y, fk〉2〈e, fk〉2|

≤ 1

m
max
||e||=1

m∑
k=1

(〈e, fk〉2)|〈x, fk〉2 − 〈y, fk〉2|

Now we use the Cauchy Schwarz Inequality twice to split the summation into

three parts. To do this, let x− y = ||x− y|| · u and x+ y = ||x+ y|| · v, where

u, v are unit vectors. Then we have

||R(x)−R(y)|| ≤ 1

m
max
||e||=1

m∑
k=1

〈x− y, fk〉〈x+ y, fk〉〈e, fk〉2

= ||x− y|| · ||x+ y|| · 1

m
max
||e||=1

m∑
k=1

〈u, fk〉〈v, fk〉〈e, fk〉2

≤ ||x− y|| · ||x+ y|| · 1

m
max
||e||=1

m∑
k=1

(〈u, fk〉2〈v, fk〉2)
1
2 (
∑
k

〈e, fk〉4)
1
2

≤ ||x− y|| · ||x+ y|| · 1

m
max
||e||=1

m∑
k=1

(〈u, fk〉4)
1
4 (〈v, fk〉4)

1
4 (
∑
k

〈e, fk〉4)
1
2

= ||x− y|| · ||x+ y|| · max
||e||=1

m∑
k=1

(
1

m
〈u, fk〉4)

1
4 (

1

m
〈v, fk〉4)

1
4 (

1

m

∑
k

〈e, fk〉4)
1
2

≤ ||x− y|| · ||x+ y|| · b
1
4
0 · b

1
4
0 · b

1
2
0

= b0||x− y|| · ||x+ y||

2. Set y = 0 in (1) and we get the result
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3. To show this one, we note for v ∈ Rn, we have

〈R(x, y)v, v〉 =
1

m

n∑
k=1

〈x, fk〉〈y, fk〉〈v, fk〉2

We can rearrange and we get 〈R(x, y)v, v〉 = 〈R(v)x, y〉 Therefore, we have

||R(x, y)|| = max
||v||=1

|〈R(x, y)v, v〉| = max
||v||=1

|〈R(v)x, y〉|

≤ max
||v||=1

||R(v)x|| · ||y|| ≤ max
||v||=1

||R(v)|| · ||x|| · ||y||

≤ b0||x|| · ||y||

If we look at the proof, we see that the constant b0 is optimal, because if all

the vectors, x + y, x − y, e were equal, all the inequalities would be equalities, and

such an equality is possible.

What is further interesting is that this is a natural distance on the quotient

space Rn/ ∼, (it is well defined on representatives) and we’ll see such distance also

plays a role in the complex case.

Corollary 3.1.7. Let x, y ∈ Rn. Then

||Hess(x, λ)−Hess(y, λ)|| ≤ 3b0||x− y||(||x− y||+ 2||y||)

Proof. It is easy to verify that ||Hess(x, λ)−Hess(y, λ)|| = 3||R(x)−R(y)||, so by

Theorem 3.1.6, we get that ||Hess(x, λ)−Hess(y, λ)|| ≤ 3b0||x− y|| · ||x+ y||
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Therefore, using the triangle inequality we have that ||Hess(x, λ)−Hess(y, λ)|| ≤

3b0||x− y||(||x− y||+ 2||y||) as desired.

3.1.2 Boundedness

We aim to show that if x 6= 0 is a critical point of the J criterion, then it is

bounded within a parabolic region. Such a critical point x with x 6= 0 satisfies

(R(x) + λQ−R0)x = 0

Therefore, taking the inner product of that expression with x, we get

〈R(x)x, x〉+ 〈(λQ−R0)x, x〉 = 0

〈R(x)x, x〉 = 〈(R0 − λQ)x, x〉

On the one hand we have

〈(R0 − λQ)x, x〉 ≤ λmax(R0 − λQ)||x||2 (3.11)

On the other hand we have

〈R(x)x, x〉 ≥ a0

m
||x||4 (3.12)
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Putting these together, we get

||x||2 ≤ m
λmax(R0 − λQ)

a0

(3.13)

so there is a specifically parabolic form to the bound and the trajectories are

bounded.

Figure 3.1: Boundedness Restriction on the Golden Retriever

In the case that Q = I, we get λmax(R0 − λI) = λ1 − λ, so

||x||2 ≤ m
λ1 − λ
a0

(3.14)

(where λ1 = λmax(R0)).
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For general Q, instead of equation 3.11, we can say

〈(R0 − λQ)x, x〉 ≤ λmax(Q
− 1

2R0Q
− 1

2 − λI)||Q
1
2x||2 (3.15)

from which we now see that

||x||2 ≤
m
(
λmax(Q

−1R0)− λ
)
||Q||

a0

(3.16)

3.1.3 Sufficiency

Let z ∈ Rn be fixed. Define {yk = |〈z, fk〉|2 + νk}k=1...m where νk ∼ N(0, σ2)

are i.i.d. measurements.

Proposition 3.1.8. R0 is a sufficient statistic for z, if the noise is drawn from a

normal.

Proof. We aim to use the Fisher–Neyman factorization theorem. To do this, we

take the PDF

p(y; z) =
1

(
√

2πσ)m
exp{ −1

2σ2

m∑
k=1

(yk − 〈z, fk〉2)2} (3.17)

Therefore, by taking the logarithm, we get

log(p(y; z)) =
−1

2σ2

m∑
k=1

y2
k −mlog(

√
2πσ) +

1

σ2

m∑
k=1

yk〈z, fk〉2 −
1

2σ2
〈z, fk〉4

=
−1

2σ2

m∑
k=1

y2
k −mlog(

√
2πσ) +

m

σ2
〈R0z, z〉 −

m

2σ2
〈R(z)z, z〉

58



Now we can factor

p(y; z) = f0(y)g(R0, z)

where both f0 and g are nonnegative functions defined by

f0 =
1

(
√

2πσ)m
exp(− 1

2σ2

m∑
k=1

y2
k)

g(R0, z) = exp(− m

2σ2
〈(R(z)− 2R0)z, z〉)

Therefore, the factorization theorem applies and R0 is a sufficient statistic for z.

3.1.4 Assumptions

There are several assumptions we make for this algorithm, which usually will

happen in the generic case, or at least with high probability.

1. The frame set F is phase-retrievable.

2. For a fixed λ, the set of critical points of J(x, λ) is isolated.

3. The top eigenvalue of Q−1R0 has a one dimensional eigenspace.

4. Assume x 6= 0 and (x, λ) is a critical point of the J-criterion, so F (x, λ) = 0.

Then we assume the extended hessian, Hessext has full rank (rank(Hessext) =

n) at (x, λ).

Conditions 1 and 2 ensure that it is reasonable to try to recover the signal.

In fact, these conditions are not independent of eachother. If Condition 1 is not
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true, then Condition 2 need not hold either, in the noiseless case. To see this, recall

that if F is not phase-retrievable it is possible (by Theorem 1.2.2) for the matrix

R(z) not being strictly positive definite. Assume it is not. Then we can look at

the ∇xJ(x, λ)|λ=0 = R(x)x − R(z)x = 0. Clearly at x = z, the gradient is zero.

However, the hessian is given by Hess(x, λ)|x=z,λ=0 = 2R(z), which has rank strictly

less than n, thus the critical point at (z, 0) is degerate and is not isolated.

Condition 3 will ensure that the initialization of the algorithm is well defined.

Condition 4 ensures that there is no really degenerate cases, such as bifurca-

tions of the path, or exploding to a hypersurface, etc.

Condition 4 implies condition 2 as well. To see this, if condition 2 is not true,

it is possible to find a continuous path in the fixed λ hyperplane which gives rise

to a null vector of the hessian. This lifts up to another null vector of the Hessext,

so condition 4 would not be true either. We leave condition 2, as it is important to

emphasize it.

3.1.5 Initialization

Now, in the spirit of Homotopy Continuation, we would like to find solutions

to (2.2) when λ is reasonably large, and get a sense on how large λ should be to

get simple solutions. After this the algorithm will be to homotope the solutions to

λ = 0. Therefore, from the largest eigenvalue, under our assumptions there a well

defined path we can follow. By the theory developed by (among others) Rabonowitz

([25, 26]), the path can only end at x = 0, at an eigenvalue different from the one it
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started at, or at infinity. By boundedness, the case where the path goes to infinity

must cross the λ = 0 hypersurface. Thus we continue following the path until we

reach either x = 0 or until we reach λ = 0.

Both cases are possible and do show up in numerical simulations. If one were

to do these numerically, and the path ends at x = 0, one would then have to choose

a different matrix Q in an attempt to reach λ = 0.

Figure 3.3: This is an example of the golden retriever turning back and ending up
at the second largest eigenvalue. At the same time, the critical path from the global
minimizer is shown. It was generated with n = 5, and m = 20.

Figures 3.2 and 3.3 are examples of the algorithm turning around and going

to the second largest eigenvalue. In the second case, also displayed is the homotopy

61



Figure 3.2: This is an example of the golden retriever turning back and ending up
at the second largest eigenvalue. It was generated with n = 5, and m = 20.
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path going from the true solution (in red) to another critical point at λ = 0 (in

blue).

Recall that R(x) is a positive semidefinite matrix, and since we assume that

the frame set is phase retrievable, we can assume it is positive definite so long as

x 6= 0.

Proposition 3.1.9. Assume λ ≥ eigmax(Q
−1R0) = eigmax(Q

− 1
2R0Q

− 1
2 ), then x = 0

is the solution to the optimization problem in (2.2).

Proof. Since R(x) ≥ 0, it is clear from (3.7) that if (λQ−R0) is positive semidefinite,

then J(x, λ) ≥ 0 so a solution to the optimization problem in (2.2) is given by x = 0.

To solve for (λQ − R0) ≥ 0, we want λQ ≥ R0. This happens if and

only if λI ≥ Q−
1
2R0Q

− 1
2 . By rearranging, this implies that (λI − Q−

1
2R0Q

− 1
2 )

should be positive definite. Since Q−
1
2R0Q

− 1
2 is symmetric, and by assumption,

λ > eigmax(Q
− 1

2R0Q
− 1

2 ), then (λI −Q− 1
2R0Q

− 1
2 ) is positive definite, which implies

that (λQ−R0) ≥ 0.

To show that this is the same as λ > eigmax(Q
−1R0), note that if e is the

eigenvector corresponding to the largest eigenvalue of (Q−1R0), then e satisfies the

equation

0 = det(eI −Q−1R0)

= det(Q
1
2 )det(eI −Q−1R0)det(Q−

1
2 )

= det(eI −Q−
1
2R0Q

− 1
2 )
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and since the process is reversible, these have the same eigenvalues.

Denote λ1 as the largest eigenvalue of (Q−1R0). From our philosophy, we know

how to solve our system at λ = λ1, and it is achieved when x = 0, so this will be

the reference point for λ in our algorithm.

Now we know we can initialize λ = λ1, and x = 0, we want to know which

direction to step into. This is equivalent to initializing the algorithm at λ = λ1 − ε

for small ε and determining how to initialize x.

To initialize such a vector x, we look at the ball centered at (x, λ) = (0, λ1− ε)

with a sufficiently small radius. Since R(x) ≈ 0 if x ≈ 0, and it is a quadratic term,

we neglect this term and instead solve the dominant linear terms in F (x, λ) = 0.

This implies that (R(x) + λQ−R0)x = 0⇒ (λQ−R0)x = 0.

Thus we have

(λQ−R0)x = 0⇒ λQx = R0x⇒ λx = Q−1R0x

So we have that to satisfy this equation, it suffices to be an eigenvector for

Q−1R0. Denote this eigenvector emax.

In other words, we initialize our algorithm such that

x = c · emax , λ = λ1 − ε

Now we need to find the constant c we initialize with.
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To answer this, we want a constant c which minimizes the J criterion at λ1− ε

arg min
c

J(c · emax, λ1 − ε)

Expanding what this means, we get that

arg min
c

(c4 1

4m

m∑
k=1

(〈emax, fk〉)4 + c2 1

2
〈(λ1Q−R0)emax, emax〉 − c2 ε

2
〈Qemax, emax〉+

1

4m

m∑
k=1

y2
k)

= arg min
c

(c4 1

4m

m∑
k=1

(〈emax, fk〉)4 + c2 1

2
〈(λ1Q−R0)emax, emax〉 − c2 ε

2
〈Qemax, emax〉)

= arg min
c

(c4 1

4m

m∑
k=1

(〈emax, fk〉)4 − c2 ε

2
〈Qemax, emax〉)

This is a quadratic in c2, thus after solving for c we we get

c =

√
ε · 〈Qemax, emax〉

1
m

∑m
k=1(〈emax, fk〉)4

3.1.6 Update rules

The next thing we have to do is check how we update the algorithm. This is

divided into two steps. This is done by a predictor-corrector method, which are a

class of well studied methods and are commonly used for Homotopy Continuation

Methods. Another way to think of these is as doing an Euler Step followed by a

Fixed Point Iteration.

Step 1: The Predictor
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The goal of the predictor step is to make an Euler Step in the direction of

the homotopy path. Therefore, we want a new point (x, λ) that roughly follows the

path ∇x(J)−1(0) which is smoothly connected to the (0, λ1). If we parameterize the

path by t, so x = x(t) and λ = λ(t), we want to step in the direction based on the

slope of the curve at the current point (x(t), λ(t)).

Therefore, we want to step into the direction of the tangent of this curve,

which is given by

dxdt
dλ
dt

.

By differentiating the equation

F (x(t), λ(t)) = 0

we can find the tangent by computing the derivative

d

dt
F (x(t), λ(t)) = 0 (3.18)

From the work we did earlier we know

d

dt
F (x(t), λ(t)) = Hessext(x(t), λ(t))

dxdt
dλ
dt

 = 0 (3.19)

Therefore the direction we want to step in the same direction as the vector in the

null space of Hessext(x(t), λ(t)).

To summarize this, in the predictor step, we compute the extended hessian

matrix Hessext, find the vector in the null space which matches sign in the largest
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coordinate with the sign of the coordinate in the previous step (to make sure the

path is moving in the correct direction), and then make a choice in step size. Unfor-

tunately, it likely going to step away from the path, so we need a corrector algorithm

to get us back on the path.

Step 2: The Corrector

In this, we want to find a point (x, λ) which is a solution to the gradient being

zero but is as close as possible to the point in the Predictor Step. We can use the

Newton Step. If

xold
λold

 was our old estimate, we can update it with a correction of

the form xnew
λnew

 =

xold
λold

−Hess+
extF (xold, λold) (3.20)

Where Hess+
ext is the pseudo-inverse of the extended hessian.

The Newton corrector step is well studied, and under suitable conditions on

the extended hessian, is guaranteed to converge to a critical point after a number

of corrector steps. See Chapter 3 of [9], specifically Theorem 3.4.1 in for a full

treatment on the subject.

One can also modify the extended hessian Hessext to ensure that the new

critical point stays in a specific hyperplane by adding appropriate rows to the matrix.

3.2 Expected System

In this section we analyze the expected system if a single frame vector, f ∼

N (0, In).
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Lemma 3.2.1. For fi, fj, fk, fl elements of a vector from any frame vector f , then

we have the following:

Ef∼N (0,In)(fifjfkfl) ==



1 if the indices match in distinct pairs

3 if i = j = k = l

0 otherwise

Proof. In case one, without loss of generality, say i = j, k = l, i 6= k, then E(fifjfkfl) =

E(fifj)E(fkfl) = E(f 2
i )E(f 2

k ) = 1

Let x = fi. In case two, it reduces to finding

E(x4) =

∫ ∞
−∞

x4 exp−x
2

2
dx = 3 ·

∫ ∞
−∞

x2 exp−x
2

2
dx = 3E(x2) = 3

The second equality is by integration by parts.

Case three is obvious, as there is a distinct index, independent from the others

whose expectation is 0.

Proposition 3.2.2. E(R(x)) = ||x||2I + 2xxT

Proof. Let us examine E(R(x)). By definition, this is: E( 1
m

∑m
k=1 |〈x, fk〉|fkfTk )

E(
1

m

m∑
k=1

|〈x, fk〉|2fkfTk )

=
1

m

m∑
k=1

E(|〈x, fk〉|2fkfTk )
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So we reduced it to finding the expected value of M = |〈x, fk〉|fkfTk .

To do this, we look at the (i, j) component, we have that

M(i,j) = |〈x, fk〉|2(fkf
T
k )(i,j)

= (
n∑
l=1

xl(fl))
2fifj)

= (
n∑
p=1

n∑
q=1

xpxqfpfqfifj)

Therefore E(M)(i,j) reduces to finding E(fpfqfifj).

When i 6= j (off diagonal terms of M) we have

E(M)(i,j) =
n∑
p=1

n∑
q=1

xpxqE(fpfqfifj)

= 2xixjE(f 2
i )2 = 2xixj

When i = j (diagonal terms of M) we have

E(M)(i,i) =
n∑
p=1

n∑
q=1

xpxqE(fpfqfifi)

=
n∑

p=1,p 6=i

x2
pE(f 2

i )2 + x2
iE(f 4

i )

= ||x||2 − x2
i + 3x2

i

= ||x||2 + 2x2
i
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Therefore we have found that

E(M) = ||x||2In + 2xxT (3.21)

Therefore, since this doesn’t depend on the dimension m, we see that

E(R(x)) =
1

m

m∑
k=1

E(M) =
1

m
·mE(M) = E(M)

Therefore we have that

E(R(x)) = ||x||2In + 2xxT (3.22)

Corollary 3.2.3. Let z denote the true signal. Then in the noiseless case, we have:

E(R0) = ||z||2I + 2zzT (3.23)

Corollary 3.2.4. E(F (x, λ)) = ((||x||2)− ||z||2 + λ)I) + 2xxT − 2zzT )x

We can solve the system of equations given above, what we call the expected

system. To do so, note that the spectrum of E(R0) is given by {3||z||2, ||z||2, ..., ||z||2},

so λ1(E(R0)) = 3||z||2. Now if we guess that x = kz, for some scaling function k,
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we can derive

0 = ((k2||z||2)− ||z||2 + λ)I) + 2k2zzT − 2zzT )z

= ((k2 − 1)||z||2 + λ+ 2(k2 − 1)||z||2)z

Setting the coefficient of z equal to 0 gives us

0 = 3k2 +
λ

3||z||2
− 3

k2 = 1− λ

3||z||2

So we get that k =
√

1− λ
λ1(E(R0))

. Therefore, a solution to our expected system is

given by

x(λ) =

(√
1− λ

λ1(E(R0))

)
z (3.24)

Corollary 3.2.5. E(Hess(x, λ)) = (3||x||2 − ||z||2)I + 6xxT − 2zzT + λQ

The next theorem establishes the concentration of R(x) about its mean, which

will prove invaluable in proving the convergence of the algorithm. We first need to

state some Lemmas involving the normal distribution.

Lemma 3.2.6. [23] Let v ∼ N (0, Im). Then for any ε0 > 0 there exists an upper

bound C(ε0) such that for m ≥ C(ε0), each of the following hold with probability at
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least 1− 1
m2

1

m

m∑
k=1

v2
k − 1 < ε0

1

m

m∑
k=1

v4
k − 3 < ε0

1

m

m∑
k=1

v6
k − 15 < ε0

max
1≤k≤m

|vk| ≤
√

10log(m)

Furthermore, such probabilities are achieved with

C(ε0) = Cc = max{4.76× 1013,
9

4

103952

ε20
,
712

ε20
log(

1

ε0
)2}

Proof. We will start by showing the second inequality. The first and third can be

done similarly. We want to find P(
∑m

k=1 v
4
k > (3 + ε0)m). Denote this probability

as P . Define a constant L, which we will specify later, but is allowed to depend on

m and ε0.

We know that

P = P(
m∑
k=1

v4
k > (3 + ε0)m) = P(

m∑
k=1

v4
k > (3 + ε0)m

∣∣∣ |v1|, ..., |vm| ≤ L)P(|v1|, ..., |vm| ≤ L)

+P(
m∑
k=1

v4
k > (3 + ε0)m)

∣∣∣ |v1| ≥ L ∨ ... ∨ |vm| ≤ L) · P(|v1| ≥ L ∨ ... ∨ |vm| ≤ L)

≤ P(
m∑
k=1

v4
k > (3 + ε0)m

∣∣∣ |v1|, ..., |vm| ≤ L) · 1 + 1 · P(|v1| ≥ L ∨ ... ∨ |vm| ≤ L)

≤ P(
m∑
k=1

v4
k > (3 + ε0)m

∣∣∣ |v1|, ..., |vm| ≤ L) · 1 +m · P(|v1| ≥ L)
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Now to bound these terms, we start with the second and recall that since erfc(z) ≤

e−z
2

([27]), we get that P(|v1| ≥ L) ≤ e
−L2

2 (see Proposition A.3.1). Now for the

first inequality, we can bound it by Bernstein’s inequality so after centering we see

that

P(
m∑
k=1

(v4
k − 3) > ε0m

∣∣∣ |v1|, ..., |vm| ≤ L) ≤ exp(
−1

2
ε20m

105 + 1
3
L4ε0

) (3.25)

Therefore P ≤ exp(
− 1

2
ε20m

105+ 1
3
L4ε0

) + mexp(−L2

2
), and choosing L = m

1
8 shows that

P ≤ 1
m2 for sufficiently high C(ε0).

The expressions for the other two cases are very similar. For v6
k we get P6 ≤

exp(
− 1

2
ε20m

10395+ 1
3
L6ε0

) +mexp(−L2

2
)

Similarly, for v2
k we get P2 ≤ exp(

− 1
2
ε20m

3+ 1
3
L2ε0

) +mexp(−L2

2
)

To estimate the C(ε0) needed, we will look at the v6
k case and we examine the

sufficient bounds mexp(−m
1/6

2
) ≤ 1

2m2 , and exp(
− 1

2
ε20m

10395+ 1
3
L6ε0

) ≤ 1
2m2 .

The first one is true for any m ≥ 4.76× 1013 by a direct check. For the second

term, is is sufficient for

exp(
−1

2
ε20m√
mε0

) ≤ 1

2m2

so long as 10395 ≤ 2
3

√
mε0. or m ≥ 9

4
103952

ε20
. This simplifies to exp(−1

2
ε0
√
m) ≤ 1

2m2 .

Define x =
√
mε0, so this is equivalent to exp(−1

2
x) ≤ ε40

2x4 , so we rewrite

2x4exp(−1

2
x) ≤ ε40
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It is sufficient to let 2x4exp(−1
4
x) ≤ 1 and exp(−1

4
x) ≤ ε40. By a direct check, the

first one is satisfied for x ≥ 71 or equivalently m ≥ 712

ε20
, and the second is satisfied

for x ≥ 16log( 1
ε0

), or equivalently m ≥ 256
ε20
log( 1

ε0
)2. Therefore both of these are

satisfied if m ≥ 712

ε20
log( 1

ε0
)2 for C(ε0) = Cc = max{4.76× 1013, 9

4
103952

ε20
, 712

ε20
log( 1

ε0
)2},

we get the probabilities needed, and we can see that the constants for the v4
k and v2

k

cases would be smaller.

For the last inequality, we want to know what is the probability that P(|vk|2 ≥

10ε0m) = P(|vk| ≥
√

10ε0m). By the erfc(z) inequality given above, we know that

P(|vk| ≥
√

10ε0m) ≤ exp(−10log(m)
2

) = m−5. Now we apply the union bound and see

that P(maxk |vk| ≥
√

10ε0m) ≤ m ·m−5 = m−4 ≤ 1
m2

Theorem 3.2.7. [23] Assume fk ∼ N (0, I) and ||x|| = 1. Choose ε > 0 and

γ > log(9). There exists a function C(ε, γ) > 0, independent of n, such that for

every m ≥ C(ε, γ)n log(n), ||R(x)−E[R(x)]|| ≤ ε with probability 1−5e−γn− 4
n2 . Let

ε0 = ε
8

and δ0 = ε
12

. Furthermore, let Cc = max{4.76× 1013, 9
4

103952

ε20
, 712

ε20
log( 1

ε0
)2} as

in the preceding lemma, C0 = max{
√

40/30
√
γ

δ0
, 16 γ

δ0
}, C1 = 2

√
γ
δ0

, then a sufficient

upperbound for C would be C(ε, γ) = max{Cc, 16C2
1 , 80C0, 1600C2

0}

Proof. We follow the proof of Lemma 7.4 in [23]. By unitary invariance, we let

x = e1, the first canonical basis vector. Let ||y|| = 1 and we write y = (y(1), ỹ) and

fk = (vk, f̃k). We examine the quantity

I0(y) = |yT (R(e1)− (I + 2e1e
T
1 ))y|

= | 1
m

m∑
k=1

v2
k〈y, fk〉2 − (1 + 2y(1)2)|
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Now notice that 〈y, fk〉 = y(1)vk+〈ỹ, f̃k〉, so 〈y, fk〉2 = y(1)2v2
k+2y(1)vk〈ỹ, f̃k〉〈ỹ, f̃k〉2

This together with the fact that y(1)2 + ||ỹ|| = 1 gives

I0(y) = | 1
m

m∑
k=1

v4
ky(1)2 + 2v3

ky(1)〈ỹ, f̃k〉+ v2
k〈ỹ, f̃k〉2 − 1− 2y(1)2|

= | 1
m

m∑
k=1

(v4
k − 3)y(1)2 +

2

m

m∑
k=1

v3
ky(1)〈ỹ, f̃k〉+

1

m

m∑
k=1

v2
k〈ỹ, f̃k〉2 − ||ỹ||2|

Splitting the last term using the triangle inequality gives

I0(y) ≤ | 1
m

m∑
k=1

(v4
k − 3)|y(1)2 + | 1

m

m∑
k=1

(v2
k − 1)| · ||ỹ||2

+2| 1
m

m∑
k=1

v3
ky(1)〈ỹ, f̃k〉|+ |

1

m

m∑
k=1

v2
k(〈ỹ, f̃k〉2 − ||ỹ||2)|

≤ 2ε+ 2| 1
m

m∑
k=1

v3
ky(1)〈ỹ, f̃k〉|+ |

1

m

m∑
k=1

v2
k(〈ỹ, f̃k〉2 − ||ỹ||2)|

Now for the last term, we can apply Hoeffding’s inequality (Proposition 5.10 in [28])

gives us that for any constants δ0 and γ, m ≥ C1(δ0, γ)
√
n(
∑m

k=1 v
6
k) we have

| 1
m

∑
k

v3
ky(1)〈ỹ, f̃k〉| ≤ δ0|y(1)| · ||ỹ|| ≤ δ0

holds with probability at least 1 − 3e−2γn. Here one can choose C1 = 2
√

γ
δ0

(see

Proposition A.3.2).

For the final term, we apply the Bernstein-type inequality (Proposition 5.16

in [28]) which asserts: for any positive δ0, γ, there exist constants
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m ≥ C0(δ0, γ)
(√

n
∑m

k=1 v
4
k + n ·maxk=1,..,m|vk|2

)
, such that

| 1
m

m∑
k=1

v2
k(〈ỹ, f̃k〉2 − ||ỹ||2)| ≤ δ0||ỹ||2 ≤ δ0

holds with probability at least 1−2e−2γn. Here one can choose C0 = max{
√

40/3
√
γ

δ0
, 16 γ

δ0
}

(see Proposition A.3.3).

Therefore, for any unit norm vector y, I0(y) ≤ 2ε0 +3δ0 holds with probability

at least 1− 5e−2γn. By Lemma 5.4 in [28], we can bound the operator norm via an

ε-net argument, so

||R(x)− E[R(x)]|| = max
y∈Sn−1

1

I0(y) ≤ 2 max
y∈N

I0(y) ≤ 4ε0 + 6δ0 = ε

where N is a 1/4 - net of Sn−1
1 .

Therefore, using that the cardinality of a 1
4

- net can be achieved by 9n points,

and by applying the union bound it follows that the theorem holds with prob-

ability 1 − 5e−γn so long as m ≥ max{C1

√
n
∑m

k=1 fk(1)6, C0(
√
n
∑m

k=1 fk(1)4 +

nmaxk fk(1)2)}

Write Cc = max{4.76× 1013, 9·64
4

103952

ε2
, 712·64

ε2
log( 8

ε0
)2} as in the lemma.

The theorem holds with the probability 1− 5e−γn − 4
n2 when m ≥ Cnlog(n),

for C sufficiently large.

To find a C sufficiently large, we examine each of those terms. First we look

at m ≥ C1

√
n ·
∑

k fk(1)6. By lemma 3.2.6, we get that for m ≥ Cc
∑

k fk(1)6 <

m(15 + ε0) < 16m so m ≥ C1

√
n · 16m. This implies that m ≥ 16C2

1n.
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Examining the other term, we want m ≥ C0

√
n
∑

k fk(1)4 + C0 maxk fk(1)2.

Again, using the lemma, we see that it is sufficient if m
2
≥ C0

√
n
∑

k fk(1)4 and

m
2
≥ C0nmaxk fk(1)2. We examine the first of these terms.

m

2
≥ C0

√
n
∑
k

fk(1)4 ≥ C0

√
4nm

m ≥ 16C2
0n

Using the lemma, the other term gives us

m

2
≥ C0 max

k
fk(1)2 ≥ C010log(m)

m ≥ 20C0nlog(m)

now we take m = C2nlogn and we get

m ≥ 20C0nlog(C2nlogn) = 20C0nlog(n) + 20C0nlog(C2) + 20C0nlog(log(n))

Bounding log(log(n)) by log(n), we get

m ≥ 40C0nlog(n) + 20C0nlog(C2)

Again bounding each by m
2

gives us C2nlog(n)
2

≥ 20C0nlog(C2) which is satisfied if

C2 ≥ 40C0log(C2). Bounding log(C2) by
√
C2, this is satisfied if C2 ≥ 1600C2

0 . On
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the other hand, we need m ≥ 40C0nlog(n) so we want

C2nlogn ≥ 80C0nlogn

so we need C2 ≥ 80C0. Putting everything together, it suffices to take m ≥

Cnlog(n), with C = max{1600 · C2
0 , 80C0, 16C2

1 , Cc}

3.3 Analysis of the minimum distance between critical points

It will be important that the zero of the gradient of J(x, λ) is isolated within

some radius around it. To this end, we want to find an estimate for the minimum

distance to the next zero.

Theorem 3.3.1. Let z denote the global minimizer of J(x, λ) at λ = 0. Let z′

denote any other critical point at λ = 0. Then ||z − z′|| ≥ 2
3

√
λn(R(z))

b0

Proof. Since z denotes the global minimizer at λ = 0 of the J-Criterion, z satisfies

F (z, 0) = R(z)z −R0z = 0

R(z)z = R0z

Now consider the another point z′ = z + te, with ||e|| = 1. Therefore, we can write
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a polynomial for t by the evaluating the gradient at the point z′

F (z′, 0) = R(z′)z′ −R0z
′

= R(z + te)(z + te)−R0(z + te)

= (R(z) +R(te) + 2R(z, te))z + (R(z) +R(te) + 2R(z, te))(te)−R0z −R0(te)

= (R(z)−R0)z + t2R(e)z + 2tR(z, e)z + t(R(z)−R0)e+ t3R(e)e+ 2t2R(z, e)e)

Now we know R(z, e)z = 1
m

∑m
k=1〈z, fk〉2〈e, fk〉fk=

1
m

∑m
k=1〈z, fk〉2fkfTk e = R(z)e.

Similarly, we have: R(z, e)e = R(e)z.

Therefore, the above simplifies to the following

= (R(z)−R0)e+ t(3R(z)−R0)e+ 3t2R(e)z + t3R(e)e

= t(3R(z)−R0)e+ 3t2R(e)z + t3R(e)e

Where the second equality follows from the fact that z is a critical point of the

gradient.

Now note that 3R(z) − R0 = Hess(z, 0), and that this is necessarily positive

definite by the global minimality of z. Therefore, we will write Hz = 3R(z) − R0.

In the noiseless case, we note that R(z) = R0, so Hz = 2R(z).

We can now look at the following polynomial expression

P (t) = 〈F (z + te, λ), e〉 = t[〈Hze, e〉+ 3t〈R(e)z, e〉+ t2〈R(e)e, e〉] (3.26)
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We write P (t) = tQ(t). Now we want to locate zeros of the gradient. It is clear

that that can only happen if P (t) = 0. t = 0 is a solution which corresponds to the

critical point at z, so we want to look at roots of the polynomial Q(t).

Q(t) is a convex polynomial which is positive at t = 0 (since Hz is positive

semidefinite), so we can approximate the root by: (setting z = z0||z||)

|t0| ≥
Q(0)

|Q′(0)|
=

〈Hze, e〉
3|〈R(e)z, e〉|

=
1

3

〈Hze, e〉
|〈R(e)z, e〉|

In the noiseless case we have:

|t0| ≥
2

3
||z|| 〈R(z0)e, e〉
|〈R(e)z0, e〉|

So what remains is to bound this quantity over all possible directions e using prop-

erties of the frame and the magnitude of z.

We want to find a lower bound for this. We do this for the noiseless case and

do so by rewriting the denominator as something larger which has the numerator

as a factor. So we start with the denominator:

|〈R(e)z0, e〉| = |〈R(e)
1
2 e, R(e)

1
2 z0〉| ≤ ||R(e)

1
2 e|| · ||R(e)

1
2 z0||

=
√
〈R(e)e, e〉

√
〈R(e)z0, z0〉 =

√
〈R(e)e, e〉

√
〈R(z0)e, e〉 ≤

√
b0

√
〈R(z0)e, e〉
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Now we can rewrite the whole expression using the following

|t0| ≥
2

3
√
b0

||z||
√
〈R(z0)e, e〉 ≥ 2

3
√
b0

√
λn(R(z0))||z||

=
2

3
√
b0

√
λn(R(z))

This gives us the inequality we want. We also note that this is ≥ 2
3

√
a0

b0
||z||, but

this proves to be less useful.

3.4 Real Convergence Analysis

We look to the expected system to provide a means of analyzing the conver-

gence properties of the system. If we assume we can parameterize the homotopy

path by λ, we want a curve (ϕ(λ), λ), known as the reference path, from which we

will measure how much our golden retriever path (x(λ), λ) deviates from. An inter-

esting choice to try is the curve gotten from solving the expected system, denoted

by ϕ0, but it turns out this doesn’t have the right theoretical properties near λ = λ1.

Instead, we will analyze the curve gotten from taking the convex combination of ϕ0

and the eigenvector of R0 corresponding to λ1. We show that if the homotopy path

doesn’t deviate too far from this reference curve, then it converges to the global

optimal. Then we say, for sufficiently large m, that the conditions needed for this

deviation will be satisfied.

The main idea is to define the reference path that goes from λ = λ1 to λ = 0,

then for each λ to define the radius of a sphere in Rn such that no other critical point
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is on the sphere. Over all λ, this changing radius forms a tube with no critical points

on the boundary. If this condition is satisfied for all λ, then the critical path defined

by the golden retriever stays inside this tube and no other critical point enters the

tube. If the radius is smaller than the distance to the nearest critical point at λ = 0,

then the homtopy path is forced to converge to the global minimizer.

Definition 3.4.0.1. We call a reference path ϕ(λ) suitable if it satisfies the fol-

lowing conditions.

• It is a smooth path parameterized by λ for 0 ≤ λ ≤ λ1

• ϕ(λ1) = 0, and ϕ(λ) is nonzero for λ < λ1.

• ϕ(0) = z, the global minimizer

First we assume we are given a suitable reference path ϕ(λ).

The following lemma shows how the gradient varies when it is perturbed.

Lemma 3.4.1. Assume x1 = x2 + δ. Then we have

F (x1, λ) = F (x2, λ) +Hess(x2, λ)δ + 3R(δ)x2 +R(δ)δ (3.27)

Proof. This is a direct computation, it is also true in the noisy case and for general

Q.

F (x1, λ) = R(x1)x1 + λQx1 − R0x1, and since R(x1) = R(x2 + δ) = R(x2) +

R(δ) + 2R(x2, δ), we get
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F (x1, λ) =
(
R(x2) +R(δ) + 2R(x2, δ)

)
(x2 + δ) + λQ(x2 + δ)−R0(x2 + δ)

=
(
R(x2)x2 + λQx2 −R0x2

)
+
(
3R(x2)δ + λQδ −R0δ

)
+ 3R(δ)x2 +R(δ)δ

= F (x2, λ) +Hess(x2, λ)δ + 3R(δ)x2 +R(δ)δ

Now we define a boundary region, which for each 0 ≤ λ ≤ λ1 is given by a

sphere of radius r(λ). The following theorem will give us a criterion to check there

are no critical points on the this region, which we name the leash of the retriever.

Theorem 3.4.2. Define the radius r(λ) = sn(λ)
6b0||ϕ(λ)|| . If the following condition is

satisfied ||F (ϕ, λ)|| ≤ sn(λ)2

12b0||ϕ(λ)|| , then no other critical points are on the sphere of

radius r(λ), centered at ϕ(λ).

Proof. A sufficient condition to ensure that there are no critical points on the bound-

ary of the sphere is to require

〈F (s, λ), s− ϕ(λ)〉 > 0 ∀s ∈ Snr(λ)(ϕ(λ)) (3.28)

If we let δ = s− ϕ, and we use lemma 3.4.1, we see that this is equivalent to

〈
F (ϕ, λ) + (Hess(ϕ, λ) +R(δ))δ + 3R(δ)ϕ, δ

〉
> 0 (3.29)

Now if we make the substitution δ = ru, where r is a positive radius, and u ∈
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Sn1 (ϕ(λ)) then an sufficient condition becomes

〈
F (ϕ, λ) + r(Hess(ϕ, λ) + r2R(u))u+ 3r2R(u)ϕ, u

〉
> 0 (3.30)

Therefore, expanding this out we see that

r3〈R(u)u, u〉+ r〈Hess(ϕ)u, u〉 > −〈F (ϕ, λ), u〉 − 3r2〈R(u)ϕ, u〉 (3.31)

A lower bound for the left hand side is given by r3a4
4+rsn(Hess(ϕ)) > rsn(Hess(ϕ))

and an upper bound for the right hand side is given by ||F (ϕ, λ)||+3r2||R(u)||·||ϕ|| ≤

||F (ϕ, λ)||+ 3r2b0 · ||ϕ||.

Therefore, a sufficient condition for this is

rsn(Hess(ϕ)) > ||F (ϕ, λ)||+ 3r2b0 · ||ϕ|| (3.32)

Define the polynomial P2(r) = 3r2b0 · ||ϕ|| − rsn(Hess(ϕ)) + ||F (ϕ, λ)||, this suf-

ficient condition is satisfied in the region of this polynomial where it is negative.

This is satisfied with two roots if the discriminant is positive, or equivalently if

s2
n(Hess(ϕ))− 12b0||ϕ|| · ||F (ϕ, λ)|| > 0, or rewritten if

s2
n(Hess(ϕ))

12b0||ϕ|| · ||F (ϕ, λ)||
> 1 (3.33)

so if

s2
n(Hess(ϕ))

12b0||ϕ||
> ||F (ϕ, λ)|| (3.34)
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To ensure that P2(r(λ)) is negative, we can take r(λ) to be the vertex of the quadratic

P2(r), which is given by

r(λ) =
sn(Hess(ϕ))

6b0||ϕ||
(3.35)

This theorem inspires us to have a condition on the gradient to ensure that

there are no other critical points which cross the boundary of the leash.

Condition 3.4.3 (Gradient Condition). Given a frame set, R0 and a suitable ref-

erence path ϕ(λ), we say that ϕ satisfies the Gradient Condition if ||F (ϕ, λ)|| <

sn(λ)2

12b0||ϕ(λ)|| for all 0 < λ < λ1.

Definition 3.4.3.1. We define the fundamental constant ρ2 = sn(λ)2

12b0||ϕ(λ)|| , which

shows up in the Gradient Condition.

The other condition that needs to be satisfied is the Initialization Condition,

that the golden retriever path x(λ) is initialized within the tube.

Condition 3.4.4 (Initialization Condition). Given a frame set, R0, a suitable ref-

erence path ϕ(λ), and the golden retriever path x(λ), we say that ϕ satisfies the

Initialization Condition if ||x(λ)− ϕ(λ)|| < r(λ) for some 0 < λ < λ1.

We now show that leash doesn’t contain the origin for any λ < λ1.

Lemma 3.4.5. Given a suitable reference path ϕ(λ), then ||ϕ(λ)|| > r(λ) if λ < λ1.

Therefore for such a reference path ϕ(λ), the radius r(λ) is disjoint from the origin

for all λ < λ1.

85



Proof. We want to show that ||ϕ(λ)|| > r(λ) = sn(λ)
6b0||ϕ(λ)|| . This is equivalent to

showing that

6b0||ϕ(λ)||2 > sn(λ) (3.36)

Now we examine sn(λ) = λn(Hess(ϕ, λ)) = λn(3R(ϕ) + λI − R0). Since λ < λ1,

= λI − R0 is of mixed signature, so λn(λI − R0) < 0. Using Weyl’s perturbation

theorem ([29]), we see that an upper bound on λn(3R(ϕ) + λI − R0) is given by

3||R(ϕ)||, by thinking of 3R(ϕ) as the perturbation. Thus, sn(λ) ≤ 3||R(ϕ)|| ≤

3b0||ϕ(λ)||2. Therefore, we have shown that

sn(λ) ≤ 3b0||ϕ(λ)||2 < 6b0||ϕ(λ)||2 (3.37)

and so we are done.

The consequence of these conditions is that if we find a path ϕ(λ) which satis-

fies the Initialization Condition (for sufficiently small λ) and satisfies the Gradient

Condition for all 0 < λ < λ1, then the homotopy path x(λ) must stay inside the

tube, which is disjoint from the origin, and so must end up at λ = 0. The next

lemma says that the distance between critical points at the λ = 0 is strictly larger

than the radius r(0). This ensures that the homotopy path cannot end up at any

point other than the global minimizer, thus forcing x(0) = z.

Recall that the distance to the nearest critical point is lower bounded by

ρc = 2
3

√
λn(R(z))

b0
.

Lemma 3.4.6. ρc ≥ r(0), in other words, 2
3

√
λn(R(z))

b0
≥ sn(0)

6b0||ϕ(0)||
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Proof. Recall that ϕ(0) = z an sn(0) = λn(2R(z)) in the noiseless case. Thus we

want to show

2

3

√
λn(R(z))

b0

≥ r(0) =
2λn(R(z))

6b0||z||
(3.38)

Rewriting this, it is equivalent to requiring

√
λn(R(z)) ≤ 2

√
b0||z|| (3.39)

which then gives

λn(R(z)) ≤ 4b0||z||2 (3.40)

Since λn(R(z)) = ||z||2λn(R( z
||z||)) ≤ b0||z||2, thus we get ρc ≥ r(0).

What we have shown is that

Theorem 3.4.7. If there exists a suitable reference path which satisfies the Initial-

ization Condition and the Gradient Condition, then the Golden Retriever Homotopy

Algorithm converges.

Now we choose a suitable reference path which will satisfy the Initialization

Condition. After this, we will work towards finding the probability that it satisfies

the Gradient Condition.

Definition 3.4.7.1. We define a specific suitable reference path, but in terms of a

parameter τ = 1− λ
λ1

. Define ϕ1(λ) =
√
τ(τz+(1−τ)g), where z is the global mini-

mizer and g =
√

λ1

〈R(e1)e1,e1〉e1, and e1 is the normalized eigenvector of R0 associated

to λ1.

87



For the path ϕ1(λ), we aim to show that it satisfies the Initialization Condition.

We do so by showing that the asymptotic rate as τ → 0 (λ→ λ1) of r(λ) is bounded

below by τ
1
2 . We then argue that the asymptotic rate of ||x(λ)−ϕ1(λ)|| as τ → 0 is

bounded above in the order of τ
3
2 . Therefore, for τ sufficiently small, we get ϕ1(λ)

satisfies the Initialization Condition.

To establish this, we first establish asymptotics of two quantities that show up

often: ||ϕ1(λ)|| and sn(λ).

Lemma 3.4.8. There exists a τ0 > 0 such that 0.9τ
1
2

√
λ1

〈R(e1)e1,e1〉 ≤ ||ϕ1(λ)|| ≤

1.1τ
1
2

√
λ1

〈R(e1)e1,e1〉 for all 0 < τ < τ0

Proof. Recall that ϕ1(λ) = ||ϕ1(λ1(1− τ))||. This is then, in turn,

||
√
ττz+

√
τ(1−τ)

√
λ1

〈R(e1)e1, e1〉
e1|| = ||τ

1
2

√
λ1

〈R(e1)e1, e1〉
e1+τ

3
2 (z−

√
λ1

〈R(e1)e1, e1〉
e1)||

On one hand this is less than τ
1
2

√
λ1

〈R(e1)e1,e1〉+τ
3
2 ||z−

√
λ1

〈R(e1)e1,e1〉e1|| ≤ 1.1τ
1
2

√
λ1

〈R(e1)e1,e1〉 ,

so long as 0.1τ
1
2

√
λ1

〈R(e1)e1,e1〉 ≥ τ
3
2 ||z−

√
λ1

〈R(e1)e1,e1〉e1||. If z is aligned with e1, this is

always true, otherwise, we see that this is true so long as τ ≤
0.1

√
λ1

〈R(e1)e1,e1〉

||z−
√

λ1
〈R(e1)e1,e1〉

e1||
On the

other hand, ||ϕ1(τ)|| ≥ τ
1
2

√
λ1

〈R(e1)e1,e1〉− τ
3
2 ||z−

√
λ1

〈R(e1)e1,e1〉e1|| ≥ 0.9τ
1
2

√
λ1

〈R(e1)e1,e1〉

so long as 0.1τ
√

λ1

〈R(e1)e1,e1〉 ≥ τ
3
2 ||z −

√
λ1

〈R(e1)e1,e1〉e1||, which is the same condition

as before.

Therefore, for all 0 < τ < τ0 :=
0.1

√
λ1

〈R(e1)e1,e1〉

||z−
√

λ1
〈R(e1)e1,e1〉

e1||
, we have the desired inequal-

ities.

Now we examine the asymptotics of sn(λ) = Hess(ϕ1(λ), λ)
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Lemma 3.4.9. There exists a τ1 > 0 such that sn(λ) = sn(λ1(1− τ)) ≥ λ1τ for all

0 < τ < τ1

Proof. First note that, if we assume the top eigenvalue of R0 is distinct (which

happens with high probability and the spectrum(E(R0)) = {3||z||2, ||z||2, ..., ||z||2}),

we can bound

R0 =
n∑
k=1

λkeke
T
k ≤ λ2I + (λ1 − λ2)e1e

T
1

If we examine Hess(ϕ) = 3R(ϕ) + λI − R0, and substitute ϕ in terms of z and g,

we get

Hess(ϕ1) = 3τR(τz + (1− τ)g) + λ1(1− τ)I −R0

= 3τR(g) + λ1(1− τ)I −R0 +O(τ 2)

≥ (λ1 − λ2)I − (λ1 − λ2)e1e
T
1 + τ(3R(g)− λ1I)−O(τ 2)

Define M = (λ1 − λ2)I − (λ1 − λ2)e1e
T
1 + τ(3R(g) − λ1I), we will show M is

positive definite for τ sufficiently small. First we check 〈Me1, e1〉, and substituting

g =
√

λ1

〈R(e1)e1,e1〉e1 we get

〈Me1, e1〉 = (λ1 − λ2) + (3
〈R(e1)e1, e1〉
〈R(e1)e1, e1〉

− 1)τλ1 − (λ1 − λ2)

= 2τλ1 > 0
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Next, we take a direction x ⊥ e1, ||x|| = 1

〈Mx, x〉 = (λ1 − λ2) + (3
〈R(e1)x, x〉
〈R(e1)e1, e1〉

− 1)τλ1

Which for τ sufficiently small is greater than 0, since there is a gap between λ1 and

λ2. Finally we look at a linear combination of x and e1, so define x̃ = cos(θ)e1 +

sin(θ)x, and look at 〈Mx̃, x̃〉

〈Mx̃, x̃〉 = (λ1 − λ2) + (3
〈R(e1)x̃, x̃〉
〈R(e1)e1, e1〉

− 1)τλ1 − (λ1 − λ2)cos2(θ)

= (λ1 − λ2)sin2(θ) + (3cos2(θ)− 1 + 6cos(θ)sin(θ)
〈R(e1)e1, x〉
〈R(e1)e1, e1〉

+ 3sin2(θ)
〈R(e1)x, x〉
〈R(e1)e1, e1〉

)τλ1

Define α = 〈R(e1)e1,x〉
〈R(e1)e1,e1〉 and β = 〈R(e1)x,x〉

〈R(e1)e1,e1〉 > 0. Additionally, note that |α| ≤ β, since

α = 〈R(e1)e1,x〉
〈R(e1)e1,e1〉 = 〈R(e1)

1
2 e1,R(e1)

1
2 x〉

〈R(e1)e1,e1〉 and |α| = |〈R(e1)
1
2 e1,R(e1)

1
2 x〉|

〈R(e1)e1,e1〉 ≤ 〈R(e1)e1,e1〉〈R(e1)x,x〉
〈R(e1)e1,e1〉

Therefore, substituting these bounds in, we see that

〈Mx̃, x̃〉 = (λ1 − λ2 + 3βτλ1 − 3τλ1)sin2(θ) + 3sin(2θ)ατλ1 + 2τλ1

=
1

2
(λ1 − λ2 + 3(1− β)τλ1) + 3ατλ1sin(2θ)− λ1 − λ2 + 3βτλ1

2
cos(θ) + 2τλ1

≥ 1

2
(λ1 − λ2 + 3(1− β)τλ1) + 2τλ1 −

√
1

4
(λ1 − λ2 − 3(1− β)τλ1)2 + (3ατλ1)2

≥ 1

2
(λ1 − λ2 + 3(1− β)τλ1) + 2τλ1 −

1

2
(λ1 − λ2 + 3(1− β)τλ1)− (3ατλ1)2

(λ1 − λ2 + 3(1− β)τλ1)

= 2τλ1 −
(3ατλ1)2

(λ1 − λ2 + 3(1− β)τλ1)

Now we see that this implies that λn(M) ≥ 1.5λ1τ for all small τ . From here,

we use Weyl’s inequalities ([29]), by taking the hessian to be a perturbation of
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M . Thus, if we take Hess(ϕ1) = M + R, we get that since λn(R) ≤ dτ 2, then

λn(Hess(ϕ1)) ≥ λn(M) − dτ 2 ≥ 1.5λ1τ − dτ 2 ≥ λ1τ for all sufficiently small τ .

Thus we get there exists a τ1 such that λn(Hess(ϕ1, λ)) = sn(λ) ≥ λ1τ for all

0 < τ < τ1.

Now we can put these lemmas together and find the asymptotic rate of the

radius of the leash r(λ).

Lemma 3.4.10. For all λ sufficiently close to λ1, r(λ) ≥
√
λ1〈R(e1)e1,e1〉

6.6b0
τ

1
2

Proof. Since r(λ) = sn(λ)
6b0||ϕ1(λ)|| . Lower bounding sn(λ) by λ1τ and upper bounding

||ϕ1(λ)|| by 1.1
√

λ1

〈R(e1)e1,e1〉τ
1
2 gives us the result.

Now that we established an asymptotic lower bound on the radius r(λ), we

look at the other term in the Intitialization Condition.

Lemma 3.4.11. There exists a τ2 > 0 and a positive constant C such that for all

0 < τ < τ2, ||x(λ)− ϕ1(λ)|| ≤ Cτ
3
2

Proof. Let’s decompose x(λ) = cϕ1(λ) + τ
1
2ϕ⊥1 (λ), such that 〈ϕ1, ϕ

⊥
1 〉 = 0.

If we write ϕ1(λ) =
√
τ(τz+ (1− τ)g), we get the following expression for the
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gradient

0 =
1

τ
1
2

F (x(λ), λ) =
1

τ
1
2

F (cϕ1 + ϕ⊥1 , λ) =

= c3τ(1− τ)3R(g)g + (c3τ 4 − cτ)R(z)z + τR(ϕ⊥1 )ϕ⊥1 +

3c3τ 2(1− τ)2R(g)z + 3c2τ(1− τ)2R(g)ϕ⊥1 +

(3c3τ 3(1− τ)− cτ(1− τ))λ1g + (3c2τ 3 − 1)R(z)ϕ⊥1 + 3cτ(1− τ)R(ϕ⊥1 )g+

3cτ 2R(ϕ⊥1 )z + 6c2τ 2(1− τ)R(g, z)ϕ⊥1 +

cτ(1− τ)λ1z + (1− τ)λ1ϕ
⊥
1

Now let {gk} be a basis of eigenvectors of R0, we normalize them to be {ek}, and

note that g = constant · e1. Also define v = ϕ⊥1 /||ϕ⊥1 ||.

Note that taking the inner product of the expression above with ek, and definin-

ing −τTk to be the coefficient of every term that has a coefficient of at least degree

τ gives us n− 1 equations of the form

λ1〈v, ek〉||ϕ⊥1 || − λk||ϕ⊥1 ||〈v, ek〉 = τ(M)

(λ1 − λk)〈v, ek〉||ϕ⊥1 || = τ(Tk)

Now summing the squares over k = 2, .., n, we get

n∑
k=2

(λ1 − λk)2〈v, ek〉2||ϕ⊥1 ||2 ≤ τ 2T
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where T =
∑

k T
2
k . We can get a lower bound by using the smallest gap λ1 − λ1 to

get

(λ1 − λ2)2||ϕ⊥1 ||2
n∑
k=2

〈v, ek〉2 ≤ τ 2T

Summing over the whole range gives us

(λ1 − λ2)2(1− 〈v, e1〉2)||ϕ⊥1 ||2 ≤ τ 2T

√
(1− 〈v, e1〉)2||ϕ⊥1 || ≤ τ(

√
T

(λ1 − λ2)
)

We will briefly examine 〈v, e1〉. Note that

0 = 〈v, ϕ1〉 =
√
ττ〈v, z〉+

√
τ(1− τ)〈v, g〉

=
√
ττ〈v, z〉+

√
τ(1− τ)||g||〈v, e1〉

So simplifying, we get

〈v, e1〉2 =
τ 2〈z, v〉2

(1− τ)2||g||2
≤ τ 2||z||2

(1− τ)2||g||2

Substituting this back in, we get

||ϕ⊥1 ||

√
1− τ 2||z||2

(1− τ 2)||g||2
≤ τ(

√
T

(λ1 − λ2)
)

||ϕ⊥1 || ≤ C1τ for all τ sufficiently small
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Now going back to the equation, if we take the inner product with g itself (and use

the fact that ||ϕ⊥1 || ≤ C1τ), if we look at all terms with a coefficient of τ or less, and

collect all terms with a coefficient of τ 2 or more and label it −τ 2N , we get

c3τ〈R(g)g, g〉 − cτλ1〈g, g〉 = τ 2N

c3〈R(g)g, g〉 − cλ1〈g, g〉 = τN

If we substitute in g =
√

λ1

〈R(e1)e1,e1〉)e1, we get

c3 λ2
1

〈R(e1)e1, e1〉
− c λ2

1

〈R(e1)e1, e1〉
= τN

(c3 − c) = τ(N
〈R(e1)e1, e1〉

λ1

)

(c− 1)(c+ 1)c = τ(N
〈R(e1)e1, e1〉

λ1

)

These three paths, c = 0, 1,−1 each correspond to a different path of the solution.

For c = 0, this corresponds to staying at x = 0, and the c = ±1 correspond to the

inability to distinguish phase between the paths. By analyticity of the roots, we get

that on the path corresponding to c = 1, |c− 1| = O(τ).

Putting these results together, we get that x(λ) = cϕ1 + τ
1
2ϕ⊥1 , therefore

||x(λ)− ϕ1(λ)|| = ||(c− 1)ϕ1 + τ
1
2ϕ⊥1 ||

≤ |(c− 1)| · ||ϕ1||+ τ
1
2 ||ϕ⊥1 || ≤ Cτ

3
2 ( for all τ sufficiently small)
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The consequences of the above lemma are immediate.

Theorem 3.4.12. For all τ > 0 sufficiently small, ||x(λ) − ϕ1(λ)|| < r(λ), i.e.

ϕ1(λ) satisfies the Initialization Condition.

Proof. This is just looking at the order, r(λ) stays above something of order τ
1
2

as τ → 0 while ||x(λ) − ϕ1(λ)|| ≤ Cτ
3
2 . Thus for all sufficiently small τ , we get

||x(λ)− ϕ1(λ)|| < r(λ)

Now we have shown that ϕ1(λ) satisfies the Initialization Condition, we know

that if it satisfies the Gradient Condition, i.e. if ||F (ϕ1, λ)|| < sn(λ)2

12b0||ϕ1(λ)|| for all

0 < λ < λ1, then the algorithm converges to the global minimizer.

Our next goal is to understand when ϕ1(λ) satisfies the Gradient Condition.

We study this probabilistically. The main idea is to realize that in the expected

system, g aligns with z exactly, so if we treat g as a perturbation of z, then we can

rewrite the Gradient Condition as a condition on the perturbation. Then we show

that for sufficiently high m, the size of the perturbation decreases, and the Gradient

Condition is true with high probability.

Thus we define the perturbation p = g − z. We first rewrite the gradient

F (ϕ1, λ) in terms of p (and τ = λ1(1− λ
λ1

)).

In this part, we will make the following assumptions:

• b0 > 2

• λn(R(z)) ≥ 1
2
||z||2

Later we will see that these hold with high probability.
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Lemma 3.4.13. The gradient for ϕ1(λ) can be written as follows

F (ϕ1(λ), λ) = τ
3
2

(
τ 3
(
−R(p)p

)
+ τ 2

(
3R(p)z + 3R(p)p

)
+τ
(
λ1p− 3R(z)p− 6R(p)z − 3R(p)p

)
+
(
− λ1p+ 3R(z)p+ 3R(p)z +R(p)p

))

Proof. First note that ϕ1 =
√
τ(τz + (1 − τ)g). For g = z + p, we get ϕ1 =

√
τ(τz + (1− τ)z + (1− τ)p) =

√
τ(z + (1− τ)p).

Now if we look at

F (ϕ1, λ) =
√
τ(R(

√
τ(z + (1− τ)p)) + λI −R0)(z + (1− τ)p)

We can simplify this expression (with a bit of careful bookkeeping) to get

F (ϕ1, λ) =
√
τ

(
τ 4
(
−R(p)p

)
+ τ 3

(
3R(p)z + 3R(p)p

)
+τ 2

(
λ1p− 3R(z)p− 6R(p)z − 3R(p)p

)
+τ
(
− λ1p+ 3R(z)p+ 3R(p)z +R(p)p

))

Factoring out the extra term of τ , we get our result.

Now we can find an upper bound on the norm of this gradient.

Lemma 3.4.14. ||F (ϕ1, λ)|| < τ
3
2 (4b0||z||2||p||+ 3b0||p||2||z||+ b0||p||3)

Proof. Examining the terms in ||p|| of the gradient, we see that F (ϕ1, λ) = τ
3
2

(
(τ −
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1)λ1p + 3(1 − τ)R(z)p + +3(1 − 2τ + τ 2)R(p)z + (1 − 3τ + 3τ 2 − τ 3)R(p)p, so we

get that

||F (ϕ1, λ)|| ≤ τ
3
2

(
λ1||p||+ 3b0||z||2||p||+ 3b0||p||2||z||+ b0||p||3

)

Now we use the fact that λ1 = λ1(R(z)) = ||R(z)|| = b0||z||2 to say that

||F (ϕ1, λ)|| ≤ τ
3
2

(
4b0||z||2||p||+ 3b0||p||2||z||+ b0||p||3

))
(3.41)

Now that we have bounded ||F (ϕ1, λ)|| from above, we bound ρ2(λ) = sn(λ)2

12b0||ϕ1(λ)||

from below, to get a sufficient condition for satisfying the Gradient Condition.

Lemma 3.4.15. If ||p|| < 1
5b0
||z||, we have ρ2(λ) ≥ τ

3
2
λ2
n(R(z))

14b0||z||

Proof. We start with a lower bound on the hessian.

Hess(ϕ1) = 3τR(z + (1− τ)p) + λ1(1− τ)I −R(z)

≥ (τ − 1)R(z) + 2τR(z) + λ1(1− τ)I − τO(||p||)

≥ (τ − 1)λ1I + 2τR(z) + λ1(1− τ)I − τO(||p||)

= 2τR(z)− τO(||p||)

Therefore, we know that sn(λ) ≥ 2τλn − τO(||p||). Thus for ||p|| sufficiently small

(one can check that it is satisfied if ||p|| ≤ 1
6b0
||z||), we get sn(λ) ≥ τλn. Also

||ϕ1|| ≤
√
τ ||z + (1 − τ)p|| ≤

√
τ(||z|| + (1 − τ)||p||). Since 0 < τ < 1, we get
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||ϕ1|| ≤
√
τ ||z||+ ||p|| < 7

6
||z||, so long as ||p|| < 1

6
||z||

So ρ2(λ) = sn(λ)2

12b0||ϕ|| gives us

ρ2(λ) =
s2
n

12b0||ϕ||
>

τ 2λ2
n√

τ14b0||z||

= τ
3
2

λ2
n

14b0||z||

For ||p|| < 1
5b0
||z||.

From the previous two lemmas, we see that a sufficient condition for satisfy-

ing the Gradient Condition (λn > 0.5||z||2) is for τ
3
2

(
4b0||z||2||p|| + 3b0||p||2||z|| +

b0||p||3
))
< τ

3
2
||z||4

56b0||z|| , which is satisfied if

4b2
0

||p||
||z||

+ 3b2
0

||p||2

||z||2
+ b2

0

||p||3

||z||3
≤ 1

56

This is satisfied if

||p|| ≤ min(
1

6
,

1

448b2
0

)||z|| (3.42)

Since 1
448b20

< 1
6

and 1
448b20

< 1
5b0

, under our assumptions, thus it is satisfied if

||p|| ≤ 1

448b2
0

||z|| (3.43)

We define rcrit = 1
448b20
||z||, we get that if our assumptions are true and ||p|| < rcrit,

then the Gradient Condition is satisfied and the algorithm converges.

Now we want to use the difference in ||R(z)−E(R(z))|| to get an upper bound
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for ||p||. We work on this in two steps. Since p = g − z, we first do an estimate

on ||e1 − z0||, where e1 = g
||g|| and z0 = z

||z|| . Then we work with the normalization

terms.

Theorem 3.4.16. ||e1 − z0|| ≤ 2
3
2 ||R0−E(R0)||op

2||z||2

This is a consequence of the famous Davis–Kahan sin(Θ) theorem. A proof

of it can be found in [30].

Theorem 3.4.17. ||p|| ≤ ||z|| · ||e1 − z0||( b0
〈R(e1)e1,e1〉 + 1)

Proof. Define g′ = ||z||e1. Then

||p|| = ||g − z|| = ||g − g′ + g′ − z||

≤ ||g − g′||+ ||g′ − z||

Now we want to estimate each of these terms. The term ||g′− z|| = ||z|| · ||e1− z0||.

For the term ||g−g′|| =
∣∣ √ λ1

〈R(e1)e1,e1〉 −||z||
∣∣. We write λ1 = 〈R(z)e1, e1〉 and

examine the fraction

〈R(z)e1, e1〉
〈R(e1)e1, e1〉

= ||z||2 〈(R(z0)−R(e1))e1, e1〉+ 〈R(e1)e1, e1〉
〈R(e1)e1, e1〉

= ||z||2
(〈(R(z0)−R(e1))e1, e1〉

〈R(e1)e1, e1〉
+ 1
)

≤ ||z||2
( ||R(z0)−R(e1)||
〈R(e1)e1, e1〉

+ 1
)

Substituting this back into the expression, and using the fact that
√

1 + ε < 1 + ε
2
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we see that

||g − g′|| ≤ ||z|| ·
(√
||R(z0)−R(e1)||
〈R(e1)e1, e1〉

+ 1− 1

)
≤ ||z|| ||R(z0)−R(e1)||

2〈R(e1)e1, e1〉

≤ ||z|| ||R(z0)−R(e1)||
2〈R(e1)e1, e1〉

We know that ||R(z0)−R(e1)|| ≤ 2b0|||e1 − z0||, so we see that

||g − g′|| ≤ ||z|| · b0 · ||e1 − z0||
〈R(e1)e1, e1〉

Putting it together, we see that

||p|| ≤ ||g − g′||+ ||g′ − z||

≤ ||z||b0||e1 − z0||
〈R(e1)e1, e1〉

+ ||z|| · ||e1 − z0||

= ||z|| · ||e1 − z0||(
b0

〈R(e1)e1, e1〉
+ 1)

Assume that λn(R(e1)) > 0.5. We can now simplify the argument in the

previous theorem by saying it is sufficient if |z|| · ||e1−z0||( b0
〈R(e1)e1,e1〉+1) ≤ 1

448b20
||z||,

which is equivalent to

||e1 − z0||(
b0

〈R(e1)e1, e1〉
+ 1) ≤ 1

448b2
0
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If we assume λn(R(z0)) ≥ 0.5, then we know that since

||R(z0)−R(e1)|| ≤ 2b0||e1 − z0||

if ||e1− z0|| ≤ 0.1
2b0

, then ||R(z0)−R(e1)|| ≤ 0.1, so λn(R(e1)) ≥ 0.4. Thus under this

assumption, we get a sufficient condition for the Gradient Condition is

||e1 − z0|| ≤ min{ 1

20b0

,
1

448b2
0

0.4

b0 + 0.4
} (3.44)

Since under our assumptions, b0 > λ1(R(z0) > 2.9, we get that being less than the

second term always implies being less than the first, so the sufficient condition can

be written as

||e1 − z0|| ≤
1

448b2
0

0.4

b0 + 0.4
(3.45)

To get some control on the smallest eigenvalue, we use the concentration of

the R(e) about its mean to estimate λn(R(z)).

Lemma 3.4.18. Let C(δ) be an upper bound and γ be a universal bound as defined

in the Concentration Lemma. Then for m ≥ C(0.1)nlog(n), λn(R(z)) ≥ 0.9||z||2

with probability 1− 4
n2 − 5e−γn

Proof. By the concentration of expectation (Theorem 3.2.7), there exists a C >

0 such for m ≥ Cnlog(n), ||R(e) − E[R(e)]|| ≤ 0.1. Since λ1(E[R(e)]) = 3, we

get that λ1(R(e)) ≤ 3 + 0.1 = 3.1. Similarly, λn(E[R(e)]) = 1, so λn(R(z)) =

||z||2λn(R( z
||z||)) ≥ ||z||

2(1− 0.1) = 0.9||z||2
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Putting this together with what we had before, we get the following theorem

Theorem 3.4.19. Assume that we are in the noiseless case with the frame vectors

drawn from a standard normal. Fix a nonzero z ∈ Rn to be the generating signal. Let

γ > log(9) be a universal constant. Then there exists an upper bound C sufficiently

large (but independent of n) such that if m ≥ max{Cnlog(n), 64n3}, then the golden

retriever algorithm converges with probability 1− 4
n2 − 5e−γn −

(
n3 + 1

)
e−

3n
10 .

Proof. Define δ = min{0.1, 1
2240b30

}, as specified above. We will take C = C(δ, γ)

from the concentration theorem (Theorem 3.2.7)

Now we note that that the assumptions are true if ||R(z0) − ER(z0)|| ≤ 0.1,

and thus under this assumption, a sufficient condition for the Gradient Condition is

if

2||R(z0)− E[R(z0)]|| ≤ 1

448b2
0

(
0.4

b0 + 0.4
) ≤ 2

4480b3
0

(3.46)

It is possible to give bounds on b0, specifically we can show that if m ≥ 64n3,

then b0 < 64 with probability 1−
(
n3 + 1

)
e−

3n
10 (see lemma A.4.1).

3.5 Following the Retriever: Real Certifier

In this section, we want to provide theoretical guarantees that we are staying

on the same path after an Euler step and correction. This analysis will provide a

certificate which can be numerically verified to ensure one is following the correct

path. This can be used in numerical applications to determine a step size, but the
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size of the requirement does not make it practical to do this. However, it can still

prove useful in certain debugging scenarios.

The idea behind the proof is to look at a cross section with one of the coordinate

directions and find an upper bound for how far the distance the path can go in a

single step, and then make sure there is no other critical point that is within the

upper bound’s distance.

As in Corollary 3.1.7, let b0 = max||e||=1〈R(e)e, e〉 ≤ b1 = B(maxk ||fk||2),

where B is the frame bound.

Here we recall that b0 is a || · ||2→4 matrix norm, (norm of the frame analysis

operator acting from (Rn, || · ||2) → (Rm, || · ||4)) which is NP-hard to compute in

general (see [31]), so we may use the upper bound b1 in place of b0 in all numerical

computations and the results still apply.

Now let Hessext(x, λ) denote the n × (n + 1) extended hessian, and let c to

be the index of the maximum absolute value component of its null vector computed

at the next point of the Golden Retriever algorithm (usually, this will mean we are

marching along the c′th column). Let q denote the c′th column of the extended

hessian. Furthermore, let Hessred:c denote the n × n reduced hessian, the hessian

without column c. We start at a coordinate X0 =

x0

λ0

 and we parameterize by the

distance moved along the c’th entry. Notationally, whenever a quantity is computed

at the original point, it will use the notation (·),0. So the algorithm moves to a

new point X(t) =

x(t)

λ(t)

, and it satisfies in the difference of the c’th coordinates

Xc(t)−Xc,0 = t.
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Let D(t) = ||X(t) − X0|| and q denote column c of the hessian (the column

being removed). Note that

D
dD

dt
=

1

2

d

dt
D2 = 〈dX

dt
,X(t)−X0〉 (3.47)

By examining the components of dX
dt

, we know that (dX
dt

)c = 1, thus breaking off

that component we see from the equation Hessext
dX
dt

= 0 we get

Hessred:c
dXred:c

dt
+ 1 · q = 0 (3.48)

Therefore we have dXred:c
dt

= −Hessred:cq, since we chose c in a way that allows us

to assume Hessred:c is invertible. (Our general assumption is the Hessext is always

full rank).

Then we have the following lemmas.

Lemma 3.5.1. |dD
dt
| ≤ ||q||

sn(Hessred:c)
+ 1

Proof.

1

2

d

dt
D2 = 〈dX

dt
,X −X0〉 = 〈dXred:c

dt
,Xred:c −Xred:c,0〉+ t

= −〈Hess−1
red:cq,Xred:c −Xred:c,0〉+ t

D|dD
dt
| = |〈Hess−1

redq,Xred −Xred,0〉+ t| ≤ ||Hess−1
red:cq|| · ||Xred:c −Xred:c,0||+ |t|

≤ ||Hess−1
red:cq||D +D ≤ 1

sn(Hessred:c)
||q||D +D

Dividing by D gives us the desired result.
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Lemma 3.5.2. Assume ||Hessext − Hessext,0|| ≤ sn(Hessred:c,0)

2
. Then D(t) ≤ (2 +

2 ||Hessext,0||
sn(Hessred,0)

)t

Proof. First, we note that

||q|| ≤ ||Hessext||op ≤ ||Hessext −Hessext,0||+ ||Hessext,0|| (3.49)

Since by assumption, ||Hessext −Hessext,0|| ≤ sn(Hessred:c,0)

2
, we get

||q|| ≤ sn(Hessred:c,0)

2
+ ||Hessext,0|| (3.50)

Also, by Weyl’s inequalities ([29]), we know that

sn(Hessred:c) ≥ sn(Hessred:c,0)− ||Hessext −Hessext,0|| ≥
1

2
sn(Hessred:c,0) (3.51)

(because adding a row can only increase the norm, and by using the assumption) so

it follows that

|dD
dt
| ≤ ||q||

smin(Hessred:c)

+ 1 ≤ ||q||
sn(Hessred:c,0)− ||Hessext −Hessext,0||

+ 1

≤
2(

sn(Hessred:c,0)

2
+ ||Hessext,0||)

sn(Hessred:c,0)
+ 1

= 2 + 2
||Hessext,0||
sn(Hessred:c,0)
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Now if we examine the integral:

|
∫ T

0

dD

dt
dt| ≤

∫ T

0

(2 + 2
||Hessext,0||
sn(Hessred:c,0)

)dt = (2 + 2
||Hessext,0||
sn(Hessred:c,0)

)T (3.52)

On the other hand, we can evaluate it directly and we get

|
∫ T

0

dD

dt
dt| = |

∫ D(T )

0

1dD| = D(T ) (3.53)

Therefore, as desired, we get that

D(t) ≤ (2 + 2
||Hessext,0||
sn(Hessred:c,0)

)t (3.54)

Now we want to see for which condition on t will guarantee that ||Hessext −

Hessext,0|| ≤ sn(Hessred:c,0)

2
.

Define the constants

A = (2 + 2
||Hessext,0||
sn(Hessred:c,0)

) (3.55)

and

t+ = −6b0||x0||+ ||Q||
6Ab0

+

√
(
6b0||x0||+ ||Q||

6Ab0

)2 +
sn(Hessred:c,0)

6A2b0

(3.56)

Lemma 3.5.3. For t < t+, ||Hessext − Hessext,0|| ≤ sn(Hessred:c,0)

2
and D(t) ≤
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(2 + 2 ||Hessext,0||
sn(Hessred:c,0)

)t.

Proof. We want to check the condition that

||Hessext −Hessext,0|| ≤
sn(Hessred:c,0)

2
(3.57)

Let us begin by finding an upper bound on the left hand side.

||Hessext −Hessext,0|| ≤ ||Hess−Hess0||+ ||Q|| · ||x− x0||

≤ 3b0(2||x0||+D)D + 2D||Q||

The last inequality is given by the estimate on the difference of the hessians found

in Corollary 3.1.7.

Now, for a sufficient condition, we would want

3b0(2||x0||+D)D +D||Q|| ≤ sn(Hessred:c,0)

2
(3.58)

This is a quadratic in terms of D, and solving for D, we get

D2 + (
6b0||x0||+ ||Q||

3b0

)D − sn(Hessred:c,0)

6b0

≤ 0 (3.59)

Now if we substitute the bound we want to derive on D, we can find the zeros and

will get

((2+2
||Hessext,0||
sn(Hessred:c,0)

)t)2+(
6b0||x0||+ ||Q||

3b0

)(2+2
||Hessext,0||
sn(Hessred:c,0)

)t−sn(Hessred:c,0)

6b0

= 0

107



Since A = (2 + 2 ||Hessext,0||
sn(Hessred:c,0)

), we have the equation

A2t2 + (
6b0||x0||+ ||Q||

3b0

)At− sn(Hessred:c,0)

6b0

= 0 (3.60)

After solving, we get t < t+, where t+ is defined as above is the positive root of this

quadratic.

Now, we still need to justify why it is a sufficient to substitute the upperbound

for D(t).

We define the following parameter

t2 = sup{s : ∀t ∈ [0, s], D(t) ≤ (2 + 2
||Hessext,0||
sn(Hessred:c,0)

)t, s ≤ t+}

We claim that t2 = t+.

First note that the set above is nonempty because s = 0 satisfies the conditions.

Therefore, by construction, if t2 < t+, then for all t ∈ [0, t2], D(t) ≤ (2 +

2 ||Hessext,0||
sn(Hessred:c,0)

)t, and for every t′ > t2, there exists a t′′ ∈ (t2, t
′) such that D(t′′) >

(2 + 2 ||Hessext,0||
sn(Hessred:c,0)

)t′′.

We claim that from this we can derive a contradiction, so that t2 ≥ t+. In

fact, we claim that there exists a ε > 0 such that for all t ∈ [t2, t2 + ε] satisfies

D(t) ≤ (2 + 2 ||Hessext,0||
sn(Hessred:c,0)

)t.

By the existence and uniqueness of the differential equation, we can define the
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solution on [t2, t2 + η] for some η > 0. Also note that

D(t2) ≤ (2 + 2
||Hessext,0||
sn(Hessred:c,0)

)t2 < (1 + 2
||Hessext,0||
sn(Hessred:c,0)

)t2

Therefore we know since

|dD
dt
| ≤ 2||q||

sn(Hessred,0)
+ 1 ≤ (2 + 2

||Hessext,0||
sn(Hessred:c,0)

) (3.61)

is still satisfied at t2.

Examining this, take a ε < η, so the solution to the differential equation is

defined on [t2, t2 + ε].

Therefore, if we take t ∈ [t2, t2 + ε]

|
∫ t

t2

dD

dt
dt| ≤

∫ t2+ε

t2

(2 + 2
||Hessext,0||
sn(Hessred:c,0)

)dt = (2 + 2
||Hessext,0||
sn(Hessred:c,0)

)(t− t2)

On the other hand, we can evaluate it directly and we get

|
∫ t

t2

dD

dt
dt| = |

∫ D(t)

D(t2)

1dϕ| = D(t)−D(t2)
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Therefore, since the upper bound is satisfied at t2, we find

D(t)−D(t2) ≤ (2 + 2
||Hessext,0||
sn(Hessred:c,0)

)(t− t2)

D(t) ≤ (2 + 2
||Hessext,0||
sn(Hessred:c,0)

)(t− t2) +D(t2)

D(t) ≤ (2 + 2
||Hessext,0||
sn(Hessred:c,0)

)t

Therefore, for all t < ε, the upper bound condition is satisfied, which provides the

contradiction that t2 < t+ can be the maximum (or supremum) of the set, so the

maximum must be t+ itself.

Therefore to summarize, so long as the chain of equalities (3.61) is satisfied,

which it is for all ||Hessext−Hessext,0|| or t < t+, we get the upper bound. As soon

as t > t+, the chain of inequalities is broken and the upperbound no longer needs

to hold true.

Now that we have found an upper bound on the distance, we need to make

sure there is no other critical point within this distance. The following theorem will

be useful in showing this.

Theorem 3.5.4. Let X = (a, λa) be a critical point of J(x, λ) and let

ρ = min(1
2
, sn(Hessext(a,λa)))√

n+1(b0+3b0||a||+||Q||)
).

Then there is no other critical point X1 such that X1(c) = X(c) and ||X1(c)−

X(c)|| ≤ ρ. In other words, ρ serves as a lower bound for a distance to the nearest

critical point on the same X1(c) = X(c) hyperplane.
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Proof. Let e = (b, λb) be a unit vector with ec = 0.

Standard computations show that

F ((a, λa) + t(b, λb)) = t3R(b)b+ t2(3R(b)a+ λbQb) + t(Hessext(a, λa)

 b
λb

)

Define v1 = R(b)b, v2 = 3R(b)a+ λbQb, and v3 = (Hessext(a, λa)

 b
λb

)

Now define the function

G(t) = ||F ((a, λa) + t(b, λb))|| (3.62)

We want to obtain some estimates on the roots from this function.

G(t) = ||F ((a, λa) + t(b, λb))||

= |t| · ||(t2v1 + tv2 + v3)||

≥ |t| · (||v3|| − |t|||v2|| − |t|2||v1||)

So what we want to do is find the nearest root of

(||v3|| − |t|||v2|| − |t|2||v1||)

If the root is farther than 1
2

(so t > 1
2
), then 1

2
is a lower bound on the root.

Otherwise, the root is closer than 1
2
, so the slope of the function is dominated by
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the slope at 1
2
. The slope at 1

2
is given by M = −||v1|| − ||v2||.

Now if we go back and estimate the zero of the line passing through (0, a) with

slope M = −||v1|| − ||v2||, we get that the root is at xroot = ||v3||
||v1||+||v2|| .

Therefore ||v3||
||v1||+||v2|| is a bound on the closest root.

So now we want to minimize this bound over all directions e not in the null

direction.

First we will minimize ||v3||.

||v3||2 = ||(Hessext(a, λa)

 b
λb

)||2

= 〈(Hessext(a, λa)

 b
λb

), (Hessext(a, λa)

 b
λb

)〉

Now let v =

dx
dλ

 be the null vector of the extended hessian, and decompose

 b
λb

 = c1v+w, where w ∈ span(v)⊥. We examine this norm in a little more detail.
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||v3||2 = 〈(Hessext(a, λa)

 b
λb

), (Hessext(a, λa)

 b
λb

)〉

= 〈(Hessext(a, λa)w), (Hessext(a, λa)w〉

= 〈(Hessext(a, λa)T )(Hessext(a, λa)w,w〉

= λn(Hessext(a, λa)
THessext(a, λa))||w||2

≥ s2
n(Hessext(a, λa)) min

||e||=1,ec=0
||projspan(v⊥)(b, λb)||2

Note that the null vector v here is normalized so that vc = 1, as c is chosen so that

vc it is the largest component.

To estimate this, define ẽ to be e without the c’th component, and ṽ as v

without the c’th component. Now note we are trying to minimize the projection

onto the complement of v, so we get
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min
||e||=1,ec=0

||e− 〈e, v〉
||v||2

v||2 = ||ẽ− 〈ẽ, ṽ〉
1 + ||ṽ||2

ṽ||2 + (
〈ẽ, ṽ〉

1 + ||ṽ||2
vc)

2

= 〈ẽ− 〈ẽ, ṽ〉
1 + ||ṽ||2

ṽ, ẽ− 〈ẽ, ṽ〉
1 + ||ṽ||2

ṽ〉+ (
〈ẽ, ṽ〉

1 + ||ṽ||2
)2

= 1− 2
〈ẽ, ṽ〉2

1 + ||ṽ||2
+

〈ẽ, ṽ〉2

(1 + ||ṽ||2)2
||ṽ||2 + (

〈ẽ, ṽ〉
1 + ||ṽ||2

)2

= 1 +
〈ẽ, ṽ〉2

1 + ||ṽ||2
− 2

〈ẽ, ṽ〉2

1 + ||ṽ||2

= 1− 〈ẽ, ṽ〉2

1 + ||ṽ||2

≥ 1− ||ṽ||2

1 + ||ṽ||2
by Cauchy Schwarz

=
1

||ṽ||2 + 1
≥ 1

n+ 1
since 1 is the largest component in a size n vector

Therefore, we see that

||v3|| ≥ sn(Hessext(a, λa)) ·
1√
n+ 1

(3.63)

Now we want to maximize the denominator, so we want to maximize both ||v1|| and

||v2||

||v1|| = ||R(b)b|| ≤ ||b||3||R(
b

||b||
)|| ≤ ||R(

b

||b||
)|| ≤ b0 (3.64)

And for ||v2||, we can find a bound similarly, again using that ||b|| ≤ 1

||v2|| = ||3R(b)a+ λbQb|| ≤ 3||R(b)a||+ ||Q|| (3.65)

≤ 3||R(b)|| · ||a||+ ||Q|| ≤ 3b0||a||+ ||Q|| (3.66)
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Therefore, the root

troot ≥ min{1

2
,

||v1||
||v2||+ ||v3||

} ≥ min(
1

2
,

sn(Hessext(a, λa)))√
n+ 1(b0 + 3b0||a||+ ||Q||)

) (3.67)

Theorem 3.5.5. Assume our algorithm starts at a point (xold, λold) which is a

critical point. Let (xnew, λnew) be a new critical point the algorithm decides and

(xother, λother) be any other critical point in the same coordinate at the index c, as

defined above. Let D1 denote the distance from (xold, λold) to (xnew, λnew). Define

t1 = ρ(xnew,λnew)
2A

and tmin = min(t1, t+)

Assume the following two conditions are satisfied:

1. D1 <
ρ(xnew,λnew)

2

2. t < tmin

Then (xnew, λnew) is the point connected on the continuous homotopy path

which goes through (xold, λold).

Proof. Assume (xother, λother) is a critical point on the path instead of (xnew, λnew).

Define UB(t) = (2 + 2 ||Hessext,0||
sn(Hessred:c,0)

)t. Then, since t < tmin < t+, we have that

||(xother, λother)− (xold, λold)|| ≤ UB(t) (3.68)
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Since t < t1, we get that UB(t) < ρ(xnew,λnew)
2

, so

||(xother, λother)− (xold, λold)|| ≤
ρ(xnew, λnew)

2
(3.69)

Also, since D1 <
ρ(xnew,λnew)

2
we get that

||(xnew, λnew)− (xother, λother)|| ≤ ||(xnew, λnew)− (xold, λold)||+ ||(xold, λold)− (xother, λother)||

<
ρ(xnew, λnew)

2
+
ρ(xnew, λnew)

2
= ρ(xnew, λnew)

but this is a contradiction, because any other critical point must be a distance

further that ρ away from (xnew, λnew).

Therefore, the only possible point on this level set that is the point passing

through the continuous path is (xnew, λnew).

3.6 Oracle Convergence

Given an Oracle, we can ask the following question: Does there exist a positive

semidefinite matrix Q such that the Golden Retriever algorithm converges to the

exact solution?

The answer is yes. In fact, we can make the algorithm converge to any critical

point we want.

Lemma 3.6.1. Let v be a critical point of J(x, λ) and let R0 be the matrix in the

condition, there exists a positive definite symmetric matrix Q 6= R0 satisfying the

following properties:
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• Qv = R0v

• The determinant of the pencil, det(λQ−R0) has generalized eigenvalues which

satisfy: λ ≤ 1

• The generalized eigenvalue around λ = 1 has corresponding eigenvector v, and

is distinct

Proof. The proof is by construction.

Define the following rank one matrix.

Q1 =
R0vv

TR0

〈R0v, v〉
(3.70)

Note that Q1v = R0v. Since Q1 is a rank one matrix, so we want to make it full

rank.

Set

Q = Q1 + µ(I − vvt

||v||2
) (3.71)

Note that we still have Qv = R0v.

At this point, we constructed a family of symmetric matrices Q such that

Qv = R0v. The only thing left to do is to make 1 be the largest generalized

eigenvalue here.

To do so, let µ1 = λmax(R0 − Q). The claim is that for any µ > µ1, that Q

would satisfy the pencil criterion.

To justify this, Q = Q1 + µQ0, what we need is Q ≥ R0 (because λQ − R0
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would be positive definite for λ ≥ 1)

Q = Q1 + µQ0 ≥ R0

µQ0 ≥ R0 −Q1

µI ≥ R0 −Q1

1 ≥ 1

µ
(R0 −Q1)

The reason the identity appears is because Q0 = (I − vvt

||v||2 ). We already know that

for v, the generalized eigenvalue is λ = 1. We now get Q0 acts as the identity on

the orthogonal complement.

Therefore, for µ > λmax(R0 −Q1), we have that λ ≤ 1.

Therefore a Q with the listed properties exists and is constructible.

Theorem 3.6.2. There exists a matrix Q such that if the Golden Retriever is ini-

tialized with the given Q, then the algorithm converges to the critical point v.

Proof. Let Q be as in the previous lemma. we examine the path ∇xJ(x, λ) =

(R(x) + λQ−R0)x where x = cv.

0 = (R(cv) + λQ−R0)cv

0 = c3R(v)v + cλQv − cR0v

0 = c2R(v)v + λQv −R0v
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Now since R(v)v = R0v (v is a critical point at λ = 0), and Qv = R0v, and R0v 6= 0

(since R0 is positive definite) then we have the following:

0 = c2R(v)v + λQv −R0v

0 = (c2 + λ− 1)R0v

c2 = (1− λ)

c =
√

1− λ

The last line is effectively choosing one of the two equivalent paths. Therefore, if we

initialize the algorithm with the given Q matrix, and initialize the direction along

the principal eigenvector, v, we have that the algorithm will follow the critical path:

(x(λ), λ) =
(
(
√

1− λ)v, λ
)

The theorem above, when applied to v = z, the global minimizer, shows that

there exists a Q which guarantees that the algorithm converges. This gives us the

following theorem as a corollary.

Theorem 3.6.3. Let z be the minimizer to the optimization problem in (2.2). There

exists a positive definite matrix Qz such that the Golden Retriever Algorithm, ini-

tialized with Qz, converges to z. Moreover, the trajectory of the homotopy path with

Qz, when projected onto λ = 0, follows a straight line.

However, it is worth noting that to construct such a Q, we will need to know

z, so Q can only be given by an oracle.
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Chapter 4: Complex Case

4.1 Background

We define the following equivalence classes:

Ĉn = {x̂, x ∈ Cn} (4.1)

x̂ = {xeiθ, θ ∈ R} (4.2)

Now say we are given a frame, F = {f1, ..., fm} ⊂ Cn Then we can also define the

following function:

β(x̂) = (|〈x, fk〉|2)mk=1 (4.3)

We want to adjust our results in the real case, and one way to quotient out the phase

ambiguity is to do so through realification. Therefore, We want to understand what

happens with the beta map once we apply the realification procedure to it.
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Definition 4.1.0.1 (Realification and Complexification). j : Cn → R2n defined by

x ∈ Cn → ξ =

 real(x)

imag(x)

 = j(x) ∈ R2n

is called the realification map.

The map k : R2n → Cn with k = j−1 is called the complexification map.

The following are basic properties of realification which are straight forward

to check.

Lemma 4.1.1 (Basic Properties of Realification). Let x ∈ Cn

1. j is a R-linear map

2. ||x|| = ||j(x)||

In the context of phase retrieval we have

x ∈ Cn → ξ =

 real(x)

imag(x)

 = j(x) ∈ R2n

Similarly we have

fk ∈ Cn → ϕk =

 real(fk)

imag(fk)

 = j(fk) ∈ R2n

We also define the (2n × 2n) symplectic matrix J =

 0 −In

In 0

. This is an im-
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portant matrix and plays the role of a higher dimensional complex unit and has

many similarities with the number i and the complex plane’s identification with R2.

Specifically, j(ix) = Jj(x) and more generally let U(θ) = cos(θ)I2n + isin(θ)J , and

let u = eiθ, then j(ux) = U(θ)j(x)

If we now examine what is the inner product and expand, we see that

〈x, fk〉 = 〈real(x) + i · imag(x), real(fk) + i · imag(fk)〉

= 〈real(x), real(fk)〉+ i · 〈imag(x), real(fk)〉 − i · 〈real(x), imag(fk)〉+ 〈imag(x), imag(fk)〉

= 〈ξ, ϕk〉+ i · 〈ξ, Jϕk〉

Therefore, we have that

|〈x, fk〉|2 = |〈ξ, ϕk〉|2 + |〈ξ, Jϕk〉|2

= ξTϕkϕ
T
k ξ + ξTJϕk(Jϕk)

T ξT

= ξT (ϕkϕ
T
k + Jϕkϕ

T
k J

T )ξ

Now if we define the matrix Φk = (ϕkϕ
T
k + Jϕkϕ

T
k J

T ), we get

|〈x, fk〉|2 = ξTΦkξ (4.4)

Proposition 4.1.2. With Φk defined as above, we have that rank(Φk) ≤ 2
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Proof. First note that JT = −J . Then we can see that

〈ϕk, Jϕk〉 = 〈JTϕk, ϕk〉 = −〈Jϕk, ϕk〉 = −〈ϕk, Jϕk〉

Therefore we get orthogonality

〈ϕk, Jϕk〉 = 0 (4.5)

Since ϕk and Jϕk are orthogonal and thus linearly independent, we know Φk is the

sum of two rank-1 matrices with linearly independent components.

Therefore rank(Φk) = 0 iff ϕk = 0(↔ fk = 0), and rank(Φk) = 2 otherwise.

Proposition 4.1.3. Φk commutes with J , so ΦkJ = JΦk.

Proof.

ΦkJ = (ϕkϕ
T
k + Jϕkϕ

T
k J

T )J = −ϕkϕTk JT + Jϕkϕ
T
k

= J(Jϕkϕ
T
k J

T + ϕkϕ
T
k )

= JΦk
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4.2 Derivation of the golden retriever in the Complex Case

We follow a similar idea as how we started in the real case. We will start by

adjusting the criterion through realification to map everything into R2n.

4.2.1 Preliminaries

We want to minimize the criterion

Ω(x, λ;F , Q, y) =
1

4m

m∑
k=1

(yk − |〈x, fk〉|2)2 +
λ

2
〈Qx, x〉 (4.6)

Here, x ∈ Cn, λ ∈ R, F ⊂ Cn, y ∈ Rn, and Q is a positive semidefinite hermitian

matrix.

Once again, we expand to get

Ω(x, λ) =
1

4m

m∑
k=1

(y2
k − 2yk|〈x, fk〉|2 + |〈x, fk〉|4) +

λ

2
〈Qx, x〉 (4.7)

=
1

4m

m∑
k=1

y2
k +

1

4m

m∑
k=1

|〈x, fk〉|4 +
λ

2
〈Qx, x〉 − 1

2m

m∑
k=1

yk|〈x, fk〉|2 (4.8)

Let ξ be the realification of x, and let ϕk be the realification of fk. Also let Φk =

(ϕkϕ
T
k + Jϕkϕ

T
k J

T ), with J =

0 −I

I 0


We introduce the following definitions

Γ0 =
1

m

m∑
k=1

ykΦk, Γ̃(ξ) =
1

m

m∑
k=1

Φkξξ
TΦk, Γ(ξ) =

1

m

m∑
k=1

ξTΦkξΦk (4.9)
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Then we can rewrite the criterion with the following

Proposition 4.2.1. With the above notation, we can simplify the criterion into the

following form

Ω(x, λ) = Ω(ξ, λ) =
1

4
〈Γ̃(ξ)ξ, ξ〉+

1

2
〈(λS − Γ0)ξ, ξ〉+

1

4m

m∑
k=1

y2
k

=
1

4
〈Γ(ξ)ξ, ξ〉+

1

2
〈(λS − Γ0)ξ, ξ〉+

1

4m

m∑
k=1

y2
k (4.10)

For the symmetric matrix S =

QR −QI

QI QR

 Where QR = real(Q) and QI =

imag(Q)

Proof. First note that Γ(ξ)ξ = Γ̃(ξ)ξ, so the two expressions above are equivalent.

Therefore, it suffices to prove the first one.
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Let us examine the term 1
4m

m∑
k=1

|〈x, fk〉|4. By (4.4), we know that

1

4m

m∑
k=1

|〈x, fk〉|4 =
1

4m

m∑
k=1

(ξTΦkξ)
2

=
1

4m

m∑
k=1

ξTΦkξξ
TΦkξ

=
1

4m

m∑
k=1

ξT (Φkξξ
TΦk)ξ

=
1

4m

m∑
k=1

〈(Φkξξ
TΦk)ξ, ξ〉

=
1

4
〈( 1

m

m∑
k=1

Φkξξ
TΦk)ξ, ξ〉

=
1

4
〈Γ̃(ξ)ξ, ξ〉

Similarly, it also follows from (4.4) that

− 1

2m

m∑
k=1

yk|〈x, fk〉|2 = − 1

2,

m∑
k=1

ykξ
TΦkξ

= − 1

2m

m∑
k=1

ξTykΦkξ

= −1

2
ξT (

1

m

m∑
k=1

ykΦk)ξ

= −1

2
ξTΓ0ξ

= −1

2
〈Γ0ξ, ξ〉

Now we just need to examine what happens to 〈Qx, x〉 in terms of ξ.

To do this, note that since Q is hermitian, 〈Qx, x〉 is real (and positive, since

Q is positive definite).
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Now let x = a+ ib, Q = QR + iQI .

Then we can compute

〈Qx, x〉 = x∗Qx

= (aT − ibT )(QR + iQI)(a+ ib)

= aTQRa− aTQIb+ bTQRb+ bTQIa

The last line is because we know the inner product must be real, so we only need to

keep track of the real terms.

Now if we examine the following

[
aT bT

]QR 0

0 QR


a
b

 =

[
aT bT

]QRa 0

0 QRb


= aTQRa+ bTQRb

Similarly, it is easy to see that

[
aT bT

] 0 −QI

QI 0


a
b

 = −aTQIb+ bTQRa
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So therefore, if we define the matrix

S =

QR 0

0 QR

+

 0 −QI

QI 0

 =

QR 0

0 QR

+

QI 0

0 QI

 J

=

QR −QI

QI QR



If we write ξ =

a
b

 =

 real(x)

imag(x)

, then by construction, we get 〈Qx, x〉 = 〈Sξ, ξ〉

It is also the true Q being Hermitian implies S is symmetric since for a Her-

mitian matrix Q, QT
I = −QI and QT

R = QR (since QR + iQI = Q = Q∗ = QT
R− iQT

I ,

and then equating real and imaginary parts).

Proposition 4.2.2. ∇ξΩ(x, λ) = (Γ(ξ) + λS − Γ0)ξ

Proof. Note that ∇ξ[
1
2
〈(λS − Γ0)ξ, ξ〉] = (λS − Γ0)ξ, so all we have to compute is

∇ξ[
1
4
〈Γ̃(ξ)ξ, ξ〉].
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Note that

1

4
∇ξ〈Γ̃(ξ)ξ, ξ〉 =

1

4
〈 1

m

m∑
k=1

Φkξξ
TΦkξ, ξ〉

=
1

4
∇ξ

1

m

m∑
k=1

ξTΦkξξ
TΦkξ

=
1

4m

m∑
k=1

∇ξ(ξ
TΦkξ)

2

=
1

4m

m∑
k=1

2ξTΦkξ · ∇ξ〈Φkξ, ξ〉

=
1

4m

m∑
k=1

2ξTΦkξ · 2Φkξ

=
1

m

m∑
k=1

ξTΦkξΦkξ

=
1

m

m∑
k=1

Φkξξ
TΦkξ

= Γ̃(ξ)ξ

Now since Γ̃(ξ)ξ = Γ(ξ)ξ, we get our result.

Proposition 4.2.3. Hessξ(Ω(ξ, λ)) = 2Γ̃(ξ) + Γ(ξ) + λS − Γ0

Proof. We are looking at the following computation (and simplify things by using

Lemma A.1.5 from the Appendix)

∇ξ[ξ
TΦkξΦkξ]

= Φkξ ⊗∇ξξ
TΦkξ + ξTΦkξ∇ξΦkξ

= Φkξ · (2Φkξ)
T + ξTΦkξΦk

= 2Φkξξ
TΦk + ξTΦkξΦk
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Therefore we have

Hessξ(Ω(ξ, λ)) =
1

m

m∑
k=1

(2Φkξξ
TΦk + ξTΦkξΦk) + λS − Γ0

= 2Γ̃(ξ) + Γ(ξ) + λS − Γ0

4.2.2 Boundedness

We show that if ξ 6= 0 is a critical point of the Ω criterion, then it is bounded

by a parabola. Such a critical point ξ with ξ 6= 0 satisfies

(Γ(ξ) + λQ− Γ0)ξ = 0

Therefore, taking the inner product of that expression with ξ, we get

〈Γ(ξ)ξ, ξ〉+ 〈(λS − Γ0)ξ, ξ〉 = 0

〈Γ(ξ)ξ, ξ〉 = 〈(Γ0 − λS)ξ, ξ〉

We know that

〈(Γ0 − λS)ξ, ξ〉 ≤ λmax(Γ0 − λS)||ξ||2 (4.11)

〈Γ(ξ)ξ, ξ〉 ≥ α0||ξ||4 (4.12)
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Putting these together, we get

||ξ||2 ≤ λmax(Γ0 − λS)

α0

so there is a specifically parabolic form to the bound and the trajectories are

bounded.

In the case that S = I, then λmax(Γ0 − λI) = λ1 − λ, so

||ξ||2 ≤ λ1 − λ
α0

(4.13)

where λ1 = λmax(Γ0).

For general S, we can look, instead of at equation 4.11, at

〈(Γ0 − λS)ξ, ξ〉 ≤ λmax(S
− 1

2 Γ0S
− 1

2 − λI)||S
1
2 ξ||2 (4.14)

From which we see that

||ξ||2 ≤ (λmax(S
−1Γ0)− λ)||S||
α0

(4.15)

4.2.3 Sufficiency

We show that Γ0 is a sufficient statistic, an analogue for R0 being a sufficient

statistic in the real case. The proof closely follows that for the real case as well.

Theorem 4.2.4. Γ0 = 1
m
ykΦk is a sufficient statistic for y, if the noise is drawn
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from a normal.

Proof. This proof is essentially the same proof as was used in the real case, but

modified with the notation of realification.

As before, we will use the Fisher–Neyman factorization theorem. Let z ∈

Cn be fixed. Define {yk = |〈z, fk〉|2 + νk}k=1...m where νk ∼ CN (0, σ2) are i.i.d.

measurements. We examine the PDF

p(y; z) =
1

(
√

2πσ)m
exp{ −1

2σ2

m∑
k=1

(yk − |〈z, fk〉|2)2}

Therefore, by taking the logarithm, we get

log(p(y; z)) =
−1

2σ2

m∑
k=1

y2
k −mlog(

√
2πσ) +

1

σ2

m∑
k=1

yk〈z, fk〉2 −
1

2σ2
|〈z, fk〉|4

Now we use the face that 〈Γ0ζ, ζ〉 = ζT 1
m

∑m
k=1 ykΦkζ = 1

m

∑m
k=1 ykζ

TΦkζ = 1
m

∑m
k=1 yk|〈z, fk〉|2.

Similarly, 〈Γ(ζ)ζ, ζ〉 = |〈z, fk〉|4 (we can equivalently use Γ̃(ζ) here)

Therefore, using these, we get

log(p(y; z)) =
−1

2σ2

m∑
k=1

y2
k −mlog(

√
2πσ) +

m

σ2
〈Γ0z, z〉 −

m

2σ2
〈Γ(ζ)z, z〉

Now we can factor

p(y; z) = f0(y)g(Γ0, z)
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where both f0 and g are nonnegative functions defined by

f0 =
1

(
√

2πσ)m
exp(− 1

2σ2

m∑
k=1

y2
k)

g(R0, z) = exp(− m

2σ2
〈(Γ(ζ)− 2Γ0)z, z〉)

Therefore, the factorization theorem applies and Γ0 is a sufficient statistic for z.

4.2.4 Properties of the Hessian and Gradient

We list some properties of the Hessian and Gradient in this section, as these

properties differ from the real case.

Let H = Hessξ(Ω(ξ, λ)), Hessext = [H,Sξ], d(ξ, λ) = ∇ξΩ(ξ, λ)

Proposition 4.2.5. Assume all of the notations above:

Then the following are true:

1. Γ(ξ)J = JΓ(ξ)

2. Γ(Jξ) = Γ(ξ)

3. Γ̃(Jξ) = JT Γ̃(ξ)J

4. Jd(ξ, λ) = d(Jξ, λ)

5. Γ(ξ) = Γ̃(ξ) + Γ̃(Jξ)

Note that HJ 6= JH, since Γ̃(ξ) and J do not commute as operators.
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Proof. 1.

Γ(ξ)J =
1

m

m∑
k=1

ξTΦkξΦkJ

=
1

m

m∑
k=1

(ξTΦkξ)JΦk

=
1

m

m∑
k=1

J(ξTΦkξ)Φk

= J
1

m

m∑
k=1

ξTΦkξΦk

= JΓ(ξ)

2. Γ(Jξ) = 1
m

m∑
k=1

ξTJTΦkJξΦk = 1
m

m∑
k=1

ξTΦk(J
TJ)ξΦk = 1

m

m∑
k=1

ξTΦkξΦk = Γ(ξ)

3. Γ̃(Jξ) = 1
m

m∑
k=1

ΦkJξ(Jξ)
TΦk = J 1

m

m∑
k=1

Φkξξ
TJTΦk = −J 1

m

m∑
k=1

Φkξξ
TJΦk =

JT 1
m

m∑
k=1

Φkξξ
TΦkJ = JT Γ̃(ξ)J

4. First we know that JS = SJ , since S =

QR QI

QI QR



Jd(ξ, λ) = J(Γ(ξ) + λS − Γ0)ξ

= (Γ(ξ) + λS − Γ0)Jξ

= (Γ(Jξ) + λS − Γ0)Jξ

= d(Jξ, λ)

5. It is sufficient to show that ξTΦkξΦk = Φkξξ
TΦk + ΦkJξ(Jξ)

TΦk for all k.
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Therefore, label Φk as Φ.

We will equate these by taking quadratic forms on both sides against a vector e.

First note that eT ξTΦξΦe = (ξTΦξ)(eTΦe). On the right hand side, we see that

eTΦ[ξξT + Jξ(Jξ)T ]e = 〈Φ[ξξT + Jξ(Jξ)T ]Φe, e〉 = 〈[ξξT + Jξ(Jξ)T ]Φe,Φe〉.

Now splitting the sum, we get 〈ξξTΦe,Φe〉+〈Jξ(Jξ)TΦe,Φe〉 = 〈ξTΦe, ξTΦe〉+

〈(Jξ)TΦe, (Jξ)TΦe〉 = (ξTΦe)2 + (ξTJTΦe)2

Now we use that Φ = ϕϕT + Jϕ(Jϕ)T and JTΦ = ϕ(Jϕ)T − (Jϕ)ϕT .

Substituting these in on the left hand side, we see that (〈ϕ, ξ〉2+〈Jϕ, ξ〉2)(〈ϕ, e〉2+

〈Jϕ, e〉2).

On the right hand side, the substitution gets us [(〈ϕ, ξ〉〈ϕ, e〉)+〈Jϕ, ξ〉〈Jϕ, e〉]2+

[〈ϕ, ξ〉〈Jϕ, e〉 − 〈Jϕ, ξ〉〈ϕ, e〉]2.

Setting a = 〈ϕ, ξ〉, b = 〈Jϕ, ξ〉, c = 〈ϕ, e〉, d = 〈Jϕ, e〉, equating the left hand

side with the right hand side, we want to show that (a2 + b2)(c2 + d2) =

(ac+ bd)2 + (ad− bc)2, but this is the Brahmagupta–Fibonacci identity, so the

statement is true.

We now define and examine the properties of the complex bilinear cross ma-

trices. These play the analogues to the real bilinear cross term R(·, ·).
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Let a, b ∈ R2n. We write

Γ(a, b) =
1

m

m∑
k=1

aTΦkbΦk

Γ̃(a, b) =
1

m

m∑
k=1

Φkab
TΦk

Note that Γ(a, b) = Γ(b, a) but in general Γ̃(a, b) 6= Γ̃(b, a). Also note that Γ(a, a) =

Γ(a) and Γ̃(a, a) = Γ̃(a).

We can summarize some of the properties of the complex bilinear cross matrices

in the following proposition.

Proposition 4.2.6. Let a, b, u ∈ R2n. Then we have the following properties

1. Γ(a+ b) = Γ(a) + Γ(b) + 2Γ(a, b)

2. Γ̃(a+ b) = Γ̃(a) + Γ̃(b) + Γ̃(a, b) + Γ̃(b, a)

3. Γ̃(a, b)u = Γ̃(a, u)b = Γ(b, u)a = Γ(u, b)a (Trilinear relations)

4. Γ(a, b)a = Γ̃(a)b

Proof. 1. Each term in the summation of mΓ(a + b) is (a + b)TΦk(a + b)Φk.

Expanding this, we get aTΦkaΦk + bTΦkbΦk + 2aTΦkbΦk, so putting this back

together with the summation and the scaling by 1
m

, we get Γ(a)+Γ(b)+2Γ(a, b).

2. This proof is identical to (1).

3. Each term in the summation of mΓ̃(a, b)u = Φkab
TΦku = Φka(bTΦku) =

(bTΦku)Φka which when putting it together with the summation is Γ(b, u)a.
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Therefore Γ̃(a, b)u = Γ(b, u)a which by symmetry is the same as Γ(u, b)a. Now

if we exchange all the positions of b and u, we get this is the same as Γ̃(a, u)b

and the result is shown.

4. By the trilinear relations in (3), if we let u = a, then we get Γ(a, b)a =

Γ̃(a, a)b = Γ̃(a)b

Proposition 4.2.7. For ξ, λ such that d(ξ, λ) = 0, we have dim(Null(Hessext)) ≥ 2

Proof. We first show that for such a pair (ξ, λ), Jξ is in the null space of H.

First we begin by noting

H(Jξ) = (2Γ̃(ξ) + Γ(ξ) + λS − Γ0)Jξ

= 2Γ̃(ξ)Jξ + (Γ(ξ) + λS − Γ0)Jξ

Now by proposition 4.2.5, we have that Γ(ξ)J = JΓ(ξ). We also know that SJ = JS,

and Γ0J = JΓ0.

Therefore we have

2Γ̃(ξ)Jξ + (Γ(ξ) + λS − Γ0)Jξ = 2Γ̃(ξ)Jξ + J(Γ(ξ) + λS − Γ0)ξ

= 2Γ̃(ξ)Jξ

Since the gradient is assumed to be 0.

Now, we are left with showing that: Γ̃(ξ)Jξ = 0.
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To show this, we have that

Γ̃(ξ)Jξ =
1

m

m∑
k=1

Φkξξ
TΦkJξ

=
1

m

m∑
k=1

Φkξ〈ξ,ΦkJξ〉

=
1

m

m∑
k=1

Φkξ〈ξ, JΦkξ〉

= − 1

m

m∑
k=1

Φkξ〈Jξ,Φkξ〉

= − 1

m

m∑
k=1

Φkξ〈ΦkJξ, ξ〉

= − 1

m

m∑
k=1

Φkξ〈ξ,ΦkJξ〉

= −Γ̃(ξ)Jξ

Therefore we have that Γ̃(ξ)Jξ = 0.

Therefore we have 1 vector in the null space of H, which is Jξ. To extend this

to a vector in the null space of the extended hessian, we can just extend by 0, so

our first vector in the null space would be:

Jξ
0

.

Now there are 2 cases. First is if nullity(H) > 1, in which case, we have

another vector in the null space, so we can extend this by 0 as well, and have

another null equation to our extended hessian.

Otherwise, the nullity(H) = 1, and we want to find another vector which is a

solution to the null equation of the extended Hessian.
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To find another vector, note we want:

Hessext

η
y

 = 0⇒
[
H Sξ

]η
y

 = 0

Therefore we have that Hη + ySξ = 0⇒ Hη = −ySξ.

Therefore, we want Sξ ∈ Range(H). To ensure such a inclusion exists, recall

that since H is a symmetric matrix, we have that Range(H) =null(HT )⊥ =null(H)⊥.

Now note that we can show it is orthogonal to our 1 dimensional null space

by the following:

〈Jξ, Sξ〉 = −〈ξ, JSξ〉

= −〈ξ, SJξ〉

= −〈Sξ, Jξ〉

Therefore 〈Jξ, Sξ〉 = 0. Now this implies that Sξ ∈Range(H).

Now take η to be the vector such that Hη = −Sξ. Then then by the above

construction

η
1

 is another vector in the null space of Hessext.

Now we have several very important bounds that will prove very useful in the

analysis of the system.

Theorem 4.2.8. Let U(θ) = cos(θ)I + sin(θ)J . Let β = max||e||=1〈Γ(e)e, e〉 Then

the following properties hold:

1. ||Γ(ξ1)− Γ(ξ2)|| ≤ βminθ ||ξ1 − U(θ)ξ2|| · ||ξ1 + U(θ)ξ2|| for all ξ1, ξ2 ∈ R2n
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2. ||Γ̃(ξ)|| ≤ ||Γ(ξ)|| for all ξ ∈ R2n

3. ||Γ(ξ)|| ≤ β||ξ||2 for all ξ ∈ R2n

4. ||Γ̃(ξ)|| ≤ β||ξ||2 for all ξ ∈ R2n

5. ||Γ̃(ξ1)− Γ̃(ξ2)|| ≤ β||ξ1 − ξ2|| · ||ξ1 + ξ2|| for all ξ1, ξ2 ∈ R2n

6. ||Γ(ξ1, ξ2)|| ≤ β||ξ1|| · ||ξ2|| for all ξ1, ξ2 ∈ R2n

7. ||Γ̃(ξ1, ξ2)|| ≤ β||ξ1|| · ||ξ2|| for all ξ1, ξ2 ∈ R2n

In the following proofs, let x1 be the complexification of ξ1 and x2 be the

complexification of ξ2. Also let ν be a unit vector in R2n, let e be the complexification

of the vector ν. Also let u = eiθ so that ux2 is the realification of the vector Uξ2.

Proof. 1. First recall that Γ(ξ) = Γ(Uξ) for all ξ ∈ R2n.Now we see that ||Γ(ξ1)−

Γ(ξ2)|| = ||Γ(ξ1)−Γ(Uξ2)||. Now let ν be a unit vector in R2n, so let us examine

νT (Γ(ξ1)− Γ(Uξ2))ν.

νT (Γ(ξ1)− Γ(Uξ2))ν =
1

m

∑
k

(ξT1 Φkξ1 − ξt2UTΦkUξ2)νTΦkν

≤ 1

m

∑
k

|(ξT1 Φkξ1 − ξt2UTΦkUξ2)|νTΦkν

=
1

m

∑
k

(|〈x1, fk〉|2 − |〈ux2, fk〉|2) · |〈e, fk〉|2

=
1

m

∑
k

|〈x1 − ux2, fk〉||〈x1 + ux2, fk〉| · |〈e, fk〉|2
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Now this reduces to the proof in the real case, from which we know that

max
||ν||=1

(νT (Γ(ξ1)−Γ(Uξ2))ν) ≤ β||x1−ux2||·||x1+ux2|| = β||ξ1−U(θ)ξ2||·||ξ1+U(θ)ξ2||

This is true for all θ, so we get

||Γ(ξ1)− Γ(ξ2)|| ≤ βmin
θ
||ξ1 − U(θ)ξ2|| · ||ξ1 + U(θ)ξ2||

2. First note this follows from the fact that Γ(ξ) = Γ̃(ξ) + Γ̃(Jξ), but we can

also show this directly. We recall that if A is a real positive semidefinite

symmetric matrix, the Cauchy Schwarz inequality for positive semidefinite

hermitian forms implies that 〈Ax, y〉2 ≤ 〈Ax, x〉〈Ay, y〉 for all x, y.

Also note that Φk is a symmetric positive semidefinite matrix.

Let us start by examining

||Γ̃(ξ)|| = max
||e||=1

eT Γ̃(ξ)e

To use this, after expanding, we examine the k’th term of the summation

eTΦkxx
TΦke = 〈Φke, x〉2

≤ 〈Φkx, x〉〈Φke, e〉

Now we note that the k’th term in eTΓ(ξ)e = 〈Φkx, x〉〈Φke, e〉, thus we have
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||Γ̃(ξ)|| ≤ ||Γ(ξ)|| for all ξ

3. This follows from (1) by substituting y = 0 into the inequality.

4. This follows from (1) and (3).

5. To start we notice that Γ̃(ξ1)− Γ̃(ξ2) = 1
m

∑m
k=1 Φk(ξ1ξ

T
1 − ξ2ξ

T
2 )Φk

Define u = ξ1 − ξ2 and v = ξ1 + ξ2. Then Γ̃(ξ1)− Γ̃(ξ2) = 1
m

∑m
k=1 Φk

1
2
(uvT +

uvt)Φk

Thus Γ̃(ξ1)− Γ̃(ξ2) = 1
2m

∑m
k=1 Φkuv

TΦk + 1
2m

∑m
k=1 Φkvu

TΦk

Now we know that

||Γ̃(ξ1)− Γ̃(ξ2)|| = 1

2
max
||a||=1

| 1
m

m∑
k=1

〈Φkuv
TΦka, a〉+

1

m

m∑
k=1

〈Φkvu
TΦka, a〉|

= max
||a||=1

| 1
m

m∑
k=1

〈Φku, a〉〈Φkv, a〉|

≤ max
||a||=1

[(
1

m

m∑
k=1

〈Φku, a〉)2]
1
2 · max
||a||=1

[(
1

m

m∑
k=1

〈Φkv, a〉)2]
1
2

= || 1
m

m∑
k=1

Φkuu
TΦk||

1
2 · || 1

m

m∑
k=1

Φkvv
TΦk||

1
2

||Γ̃(u)||
1
2 ||Γ̃(v)||

1
2

≤ β||u|| · ||v||

= β||ξ1 − ξ2|| · ||ξ1 + ξ2||

6. Since for v ∈ R2n we have 〈Γ(ξ1, ξ2)v, v〉 = 1
m

∑m
k=1 ξ

T
1 Φkξ2v

TΦkv = 〈Γ(v)ξ1, ξ2〉,
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thus

||Γ(ξ1, ξ2)|| = max
||v||=1

|〈Γ(ξ1, ξ2)v, v〉| = max
||v||=1

|〈Γ(v)ξ1, ξ2〉|

≤ max
||v||=1

||Γ(v)ξ1|| · ||ξ2|| ≤ max||v||=1||Γ(v)|| · ||ξ1|| · ||ξ2|| ≤ β||ξ1|| · ||ξ2||

7. For v ∈ R2n, 〈Γ̃(ξ1, ξ2)v, v〉 = 1
m

∑m
k=1(vTΦkξ1)(ξT2 Φkv) = 1

m

∑m
k=1 ξ

T
2 Φkvv

TΦkξ1 =

〈Γ̃(v)ξ1, ξ2〉 Therefore we have

||Γ̃(ξ1, ξ2)|| = max
||v||=1

|〈Γ̃(ξ1, ξ2)v, v〉| = max
||v||=1

|〈Γ̃(v)ξ1, ξ2〉|

≤ max
||v||=1

||Γ̃(v)ξ1|| · ||ξ2|| ≤ max||v||=1||Γ̃(v)|| · ||ξ1|| · ||ξ2|| ≤ β||ξ1|| · ||ξ2||

Define β = max||e||=1〈Γ(e)e, e〉, we will write many of the results that require

bounds in terms of β.

Corollary 4.2.9. Let ξ1 and ξ2 be in R2n such that they are aligned. That is, let

δ = ξ1 − ξ2 = ξ1 − U(θ)ξ2 for θ that best aligns them (so minθ ||ξ1 − U(θ)ξ2|| =

||ξ1 − ξ2||). Then

||Hess(ξ1, λ)−Hess(ξ2, λ)|| ≤ 3β||δ|| · (||δ||+ 2||ξ2||)
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Proof.

Hess(ξ1, λ)−Hess(ξ2, λ) = Γ(ξ1) + 2Γ̃(ξ1) + λS − Γ0 − Γ(ξ2)− 2Γ̃(ξ2)− λS + Γ0

= Γ(ξ1)− Γ(ξ2) + 2Γ̃(ξ1)− 2Γ̃(ξ2)

Therefore, taking norms, we see that

||Hess(ξ1, λ)−Hess(ξ2, λ)|| = ||Γ(ξ1)− Γ(ξ2) + 2Γ̃(ξ1)− 2Γ̃(ξ2)||

≤ ||Γ(ξ1)− Γ(ξ2)||+ 2||Γ̃(ξ1)− Γ̃(ξ2)||

≤ 3β||ξ1 − ξ2|| · ||ξ1 + ξ2||

≤ 3β||ξ1 − ξ2|| · ||ξ1 + ξ2||

≤ 3β||ξ1 − ξ2|| · (||ξ1 − ξ2||+ ||2ξ2||)

≤ 3β||δ|| · (||δ||+ 2||ξ2||)

4.2.5 Assumptions

There are several assumptions we make for this algorithm, which usually will

happen in the generic case.

1. The frame set F is phase-retrievable.

2. For a fixed λ, the set of critical points of Ω(ξ, λ) is isolated in the quotient
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space R2n/ ∼, where ξ1 ∼ ξ2 if for some 0 < θ < 2π, ξ1 = U(θ)ξ2, for

U(θ) = cos(θ)I2n + sin(θ)J

3. The top eigenvalue of S−1Γ0 has a two dimensional eigenspace.

4. For any critical point of the Ω-criterion, (ξ, λ), we assume that the extended

Hessian Hessext is of rank 2n− 1.

Conditions 1 and 2 ensure that it is reasonable to try to recover the signal.

Condition 3 will ensure that the initialization algorithm is well defined. Condition

4 ensures that the homotopy path is well defined and smooth.

As with the real case, the conditions are not independent of eachother, but it

is important to emphasize each of them.

4.2.6 Initialization

In the next sections, we explore how to initialize the Complex Golden Re-

triever, which is very similar to the real case.

First we notice that from the Ω-criterion (4.10), we get that for λ ≥ λ1(S−1Γ0),

the minimization occurs when ξ = 0, since Γ(ξ) is positive definite, and (λS − Γ0)

is as well. So, like the real case, we can initialize the algorithm at (λ1− ε). Next we

need to determine how to initialize ξ.

To initialize ξ, we turn to the gradient equation 4.2.2, and since ξ ≈ 0, we

ignore the cubic term in ξ, Γ(ξ)ξ (as a higher order error term), so we see

0 = ∇ξΩ(ξ, λ) = (Γ(ξ) + λS − Γ0)ξ ≈ (λS − Γ0)ξ
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We look at 0 = λSξ − Γ0ξ, and note that it satisfies λξ = S−1Γ0ξ, for ε, small

therefore, this approaches the eigenvector of S−1Γ0 corresponding to the eigenvalue

at λ1. Therefore, we will initialize the algorithm at (ξ = ce1, λ1 − ε).

To finish the initialization, we need to determine the scaling parameter c. We

choose the one which minimizes the Ω-criterion.

Therefore we want to find

arg min
ξ∈R2n

Ω(ce1, λ1 − ε) =
1

4
c4〈Γ(e1)e1, e1〉 −

ε

2
c2〈Se1, e1〉+

1

4m

∑
k

y2
k

This is a quadratic equation in c2 which is minimized at c2 =
ε
2
〈Se1,e1〉

1
2
〈Γ(e1)e1,e1〉

= ε 〈Se1,e1〉
〈Γ(e1)e1,e1〉

Therefore, we choose c =
√

ε〈Se1,e1〉
〈Γ(e1)e1,e1〉 . This determines the initialization of

the algorithm.

4.2.7 Update Rules

As with the real case, the update rules are split into two steps, the predictor

step and the corrector step.

Step 1: The Predictor

The goal of the predictor step is to make an Euler Step in the direction of

the homotopy path. Therefore, we want a new point (ξ, λ) that roughly follows the

path ∇x(Ω)−1(0) which is smoothly connected to the (0, λ1). If we parameterize the

path by t, so ξ = ξ(t) and λ = λ(t), we want to step in the direction based on the

slope of the curve at the current point (ξ(t), λ(t)).

Therefore, we want to step into the direction of the tangent of this curve,
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which is given by

 dξ
dt

dλ
dt

.

By differentiating the equation

F (ξ(t), λ(t)) = 0

we can find the tangent by computing the derivative

d

dt
F (ξ(t), λ(t)) = 0 (4.16)

From the work we did earlier we know

d

dt
F (ξ(t), λ(t)) = Hessext(ξ(t), λ(t))

 dξ
dt

dλ
dt

 = 0 (4.17)

Therefore the direction we want to step in the same direction as a vector in the null

space ofHessext(ξ(t), λ(t)). Note that unlike the real case, the dim(Null(Hessext)) ≥

2, but with equality under our assumptions. One of the null vectors is given by the

phase ambiguity

Jξ
0

. This we pick the vector in the Null(Hessext) perpendicular

to

Jξ
0

.

To summarize this, in the predictor step, we compute the extended Hessian

matrix Hessext, find the vector in the null space, perpendicular to

Jξ
0

, that
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matches sign in the largest coordinate with the sign of the coordinate in the previous

step (to make sure the path is moving in the correct direction), and then make a

choice in step size. Unfortunately, it likely going to step away from the path, so we

need a corrector algorithm to get us back on the path.

Step 2: The Corrector

In this, we want to find a point (ξ, λ) which is a solution to the gradient being

zero but is as close as possible to the output in the Predictor Step. We can use the

Newton Step. If

ξold
λold

 was our old estimate, we can update it with a correction of

the form ξnew
λnew

 =

ξold
λold

−H+
extF (ξold, λold) (4.18)

Where H+
ext is the pseudo-inverse of the extended Hessian, with an extra row added

to ensure that it is orthogonal to the vector

Jξold
0

. Therefore, it is the pseudo-

inverse of the following matrix:

Hext(ξ, λ) =

Hess(ξ, λ) Sξ

(Jξ)T 0

 (4.19)

The Newton corrector step is well studied, and under suitable conditions on

the extended Hessian, is guaranteed to converge to a critical point after a number

of corrector steps. See Chapter 3 of [9], specifically Theorem 3.4.1 in for a full

treatment on the subject.
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4.3 Expected System

Assume that ϕ is a random variable distributed as a standard normal distri-

bution, i.e. ϕ ∼ N (0, I2n). Also let ζ be the realification of the generating signal

z.

Lemma 4.3.1. Eϕ[
∑N

k=1

∑N
l=1(ξkηlϕkϕlϕiϕj)] = 〈ξ, η〉IN + ηξT + ξηT

Proof. We first look at the case where i = j. We have two subcases, one where k =

l = i = j, in which case we get 3ξiηi (where 3 comes from E(ϕ4
i )). If k = l 6= i = j,

then we have
∑

k 6=i ξkηk = 〈ξ, η〉 − ξiηi.

Therefore the expected value along the diagonal i = j, gives us 〈ξ, η〉+ 2ξiηi.

For the case where i 6= j, we have either that i = k, j = l or that i = l, j = k,

so we get two terms: ξkηl + ξlηk.

Therefore, we see we can put both terms together with ηξT + ξηT + 〈ξ, η〉IN

Corollary 4.3.2. Eϕ[
∑N

k=1

∑N
l=1(ξkξlϕkϕlϕiϕj)] = ||ξ||2IN + 2ξξT

Proposition 4.3.3.

Eϕ(Γ(ξ)) = 4||ξ||2I2n + 4ξξT + 4(Jξ)(Jξ)T (4.20)

Proof. Recall that:

Γ(ξ) =
1

m

m∑
k=1

ξTΦkξΦk
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Since each of the summands are independently and identically distributed, it

is sufficient to consider E(ξTΦξΦ) for a randomly chosen Φ.

Note that Φ = ϕϕT + (Jϕ)(Jϕ)T , so this is a sum of four terms

E(ξTΦξΦ)

= E(ξTϕϕT ξϕϕT + ξTϕϕT ξJϕ(Jϕ)T

+ξT (Jϕ)(Jϕ)T ξϕϕT + ξT (Jϕ)(Jϕ)T ξ(Jϕ)(Jϕ)T )

Call these M1,M2,M3,M4 respectively. Now we check each of these

(M1)i,j = (ξTϕϕT ξϕϕT )i,j

= (ξTϕϕT ξϕϕT )ϕiϕj

= 〈ϕT ξ, ϕT ξ〉ϕiϕj

=
2n∑
s=1

(ϕsξs)
2ϕiϕj

=
2n∑
k=1

(ϕkξk)
2n∑
l=1

(ϕlξl)ϕiϕj

=
2n∑
k=1

2n∑
l=1

(ξkξlϕkϕlϕiϕj)

By lemma 4.3.1 above, we get: ||ξ||2I2n + 2ξξT .

Therefore we have

Eϕ(M1) = ||ξ||2I2n + 2ξξT

150



Now we consider M2 = ξTϕϕT ξJϕ(Jϕ)T . The key observation to simplify things

is to note that JTM2J = ξTϕϕT ξϕϕT = M1, so we get Eϕ[M2] = Eϕ[JM1J
T ] =

JEϕ[M1]JT

Substituting in we see that Eϕ[M2] = ||ξ||2I + 2(Jξ)(Jξ)T

For M3, we define η = Jϕ, and then we rewrite M3 = ξT (Jϕ)(Jϕ)T ξϕϕT =

ξTηηT ξ(Jη)(Jη)T

Since the distribution of η is the same as the distribution of ϕ we get

Eϕ(M3) = Eη(M3) = ||ξ||2I + 2(Jξ)(Jξ)T

Finally for M4, again since the distribution is the same, we can rewrite

M4 = ξTηηT ξηηT ⇒ Eη[M4] = Eϕ[M1] = ||ξ||2I + 2ξξT

So putting it all together, we see that

Eϕ(Γ(ξ)) = Eϕ(M1) + Eϕ(M2) + Eϕ(M3) + Eϕ(M4)

= 4||ξ||2I2n + 4ξξT + 4(Jξ)(Jξ)T

Corollary 4.3.4. In the noiseless case, we have: Eϕ(Γ0) = 4||ζ||2I2n + 4ζζT +

4(Jζ)(Jζ)T

Proof. Note that in the noiseless case Γ0 = Γ(ζ), therefore we can apply the above
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proposition.

Proposition 4.3.5.

Eϕ(Γ̃(ξ)) = 2||ξ||2I2n + 6ξξT − 2(Jξ)(Jξ)T (4.21)

Proof. Note that, similar to the case for Γ(ξ), we can split it up into four cases

Eϕ(Γ̃(ξ)) = Eϕ(M1 +M2 +M3 +M4)

Where

M1 = ϕϕT ξξTϕϕT

M2 = ϕϕT ξξT (Jϕ)(Jϕ)T = ϕϕT ξξTJϕϕTJT

M2J = ϕϕT ξηTϕϕT

Where η = JT ξ

M3 = (Jϕ)(Jϕ)T ξξTϕϕT

M4 = (Jϕ)(Jϕ)T ξξT (Jϕ)(Jϕ)T
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For M1, we have the following

(M1)i,j =
2n∑
k=1

(ϕϕT ξξT )i,k(ϕϕ
T )k,j

=
2n∑
k=1

2n∑
l=1

(ϕϕT )i,l(ξξ
T )l,k(ϕϕ

T )k,j

=
2n∑
k=1

2n∑
l=1

ξkξlϕkϕlϕiϕj

Which is the same form as M1 from Γ(ξ) (or from the real case), therefore we know

Eϕ(M1) = ||ξ||2I2n + 2ξξT

For M2, it can be reduced to a similar expression with the same kind of trick, we

can reduce it further.

Define η = JT ξ, then we can write

M2 = ϕϕT ξξT (Jϕ)(Jϕ)T = ϕϕT ξξTJϕϕTJT

M2J = ϕϕT ξηTϕϕT

As with M1, this reduces to the following

(M2J)i,j =
2n∑
k=1

2n∑
l=1

ξkηlϕkϕlϕiϕj

By lemma 4.3.1, we have that this is exactly ηξT + ξηT + 〈ξ, η〉I2n. Since η = JT ξ,

which is orthogonal to ξ, this is just JT ξξT + ξ(JT ξ)T

153



Therefore putting things together, we have

Eϕ(M2) = Eϕ(M2J)JT

= (ηξT + ξηT + 〈ξ, η〉I2n)JT

= (JT ξξT + ξ(JT ξ)T + 〈ξ, JT ξ〉I2n)JT

= JT ξξTJT + ξξTJJT

= −JξξTJT + ξξTJJT

= ξξT − (Jξ)(Jξ)T

Note that M3 = MT
2

Eϕ(M3) = Eϕ(MT
2 ) = Eϕ(M2)T

= (ξξT − (Jξ)(Jξ)T )T

= ξξT − (Jξ)(Jξ)T

So M3 has the same expectation as M2.

For M4, we notice that Jϕ has the same distribution as ϕ, so it would have

the same expectation. Therefore: E(M1) = E(M4).

Putting the four matrices together, we get

Eϕ(Γ̃(ξ)) = Eϕ(M1 +M2 +M3 +M4) = 2||ξ||2I2n + 6ξξT − 2(Jξ)(Jξ)T
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Corollary 4.3.6. In the noiseless case: Eϕ(∇ξΩ(ξ, λ)) = 8||ξ||2ξ+λSξ− 4||ζ||2ξ−

4〈ξ, ζ〉ζ − 4〈ξ, Jζ〉Jζ

As in the real case, let us now examine the expected system with S = I, which

we define to be Eϕ(∇ξΩ(ξ, λ)) = 0. To do this, we presuppose that the solution is

of the form ξ = kζ and we simplify to the equation to

0 = 8||ξ||2ξ + λξ − 4||ζ||2ξ − 4〈ξ, ζ〉ζ − 4〈ξ, Jζ〉Jζ

= k(8k2||ζ||2ζ + λζ − 4||ζ||2ζ − 4||ζ||2ζ)

Therefore, dividing through by k gives us

0 = (8k2||ζ||2ζ + λζ − 4||ζ||2ξ − 4||ζ||2ζ)

= (8k2||ζ||2 + λ− 8||ζ||2)ζ

Setting the scaling to be zero, we see

0 = 8k2||ζ||2 + λ− 8||ζ||2

k2 = 1− λ

8||ζ||2

Since E(Γ0) = 4||ζ||2 + 4ζζT + 4Jζ(Jζ)T we see that the spectrum of E(Γ0) =

{8||ζ||2, 8||ζ||2, 4||ζ||2, ..., 4||ζ||2}. Therefore, we get that k =
√

1− λ
λ1(E(Γ0))
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So the solution to the gradient system is given by

ξ(λ) =

(√
1− λ

λ1(E(Γ0))

)
ζ (4.22)

Corollary 4.3.7. In the noiseless case, we have:

Eϕ(Hess(ξ, λ)) = (8||ξ||2 − 4||ζ||2)I2n + 16ξξT − 4ζζT − 4(Jζ)(Jζ)T + λS (4.23)

Proof.

Eϕ(Hess(ξ, λ)) = Eϕ(2Γ̃(ξ) + Γ(ξ) + λS − Γ0)

= (4||ξ||2I2n + 12ξξT − 4(Jξ)(Jξ)T ) + (4||ξ||2I2n + 4ξξT + 4(Jξ)(Jξ)T ) + λS

−(4||ζ||2I2n + 4ζζT + 4(Jζ)(Jζ)T )

= (8||ξ||2 − 4||ζ||2)I2n + 16ξξT − 4ζζT − 4(Jζ)(Jζ)T + λS

Lemma 4.3.8. Let v, w ∼ N (0, Im). Then for any ε > 0 there exists a C which

depends on ε such that for m ≥ C(ε), each of the following hold with probability at
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least 1− 1
m2

| 1
m

m∑
k=1

v2
k − 1| < ε | 1

m

m∑
k=1

w2
k − 1| < ε

| 1
m

m∑
k=1

v4
k − 3| < ε | 1

m

m∑
k=1

w4
k − 3| < ε

| 1
m

m∑
k=1

v6
k − 15| < ε | 1

m

m∑
k=1

w6
k − 15| < ε

max
1≤k≤m

|vk| ≤
√

10log(m) max
1≤k≤m

|wk| ≤
√

10log(m)

| 1
m

m∑
k=1

v2
kw

2
k − 1| ≤ ε

| 1
m

m∑
k=1

v3
kwk| < ε | 1

m

m∑
k=1

w3
kvk| < ε

Furthermore, conditional on the above probabilities, for m ≥ C(ε), the above also

hold with probability at least 1− 1
n

| 1
m

m∑
k=1

(w3
k + v2

kwk)
2| < 500 | 1

m

m∑
k=1

(v3
k + w2

kvk)
2| < 500

Proof. The first 8 inequalities are identical to the real case, and so they is handled in

Lemma 3.2.6. The next 3 can be handled in much the same way, after conditioning

on one of the variables.

For the term | 1
m

∑m
k=1(w3

k + v2
kwk)

2| < 500 We first expand and see we want

an upper bound on 1
m

∑m
k=1(w6

k + 2v2
kw

4
k + v4

kw
2
k) ≤ 3

m

∑m
k=1w

8
k + 3

2m

∑m
k=1 v

8
k +

3
2m

∑m
k=1 w

2
k + 1

m

∑m
k=1 v

2
k. The last inequality hold because 2w4

kv
2
k ≤ w8

k + v4
k and

v4
kw

2
k ≤ 1

2
(v8
k + w4

k) and w6
k ≤ w8

k + w2
k.

Thus since 1
m

∑m
k=1 v

2
k ≤ 1+ε and 1

m

∑m
k=1 v

8
k ≤ 105+ε, 1

m

∑m
k=1(w3

k+v2
kwk)

2 ≤
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475 + 7ε. Therefore, we can bound it by 500 and for m ≥ C(ε), it holds true with

probability 1− 1
m2 , given that the other bounds are true.

Theorem 4.3.9. Assume ϕk ∼ N (0, I2m) and ||ξ|| = 1. Let ε > 0 be a constant

and C(ε) be a sufficiently large constant that is allowed to depend on ε. Let m >

C(ε)nlog(n). Then ||Γ(ξ)− E[Γ(ξ)]|| ≤ ε with probability 1− 13
n2 − 10e−γn

Proof. The proof is very similar to the proof of Theorem 3.2.7. By unitary invari-

ance, let ξ = e1, the standard unit vector in R2n. Let y be a unit norm vector and

let us examine I0(y) = yTΓ(e1)y − yTE[Γ(e1)]y.

Let vk = ϕk(1) and wk = ϕk(n+ 1), then standard computations show that

yTΓ(e1)y =
2

m

m∑
k=1

(v2
k + w2

k)(y(1)2v2
k + y(n+ 1)2w2

k + 2y(1)y(n+ 1)vkwk

+2y(1)vk〈ỹ, ϕ̃k〉+ 2y(n+ 1)wk〈ỹ, ϕ̃k〉+ 〈ỹ, ϕ̃k〉2)

Since E[Γ(e1)] = 4I + 4e1e
T
1 + 4(Je1)(Je1)T , we get that

yTE[Γ(e1)]y = 8y(1)2 + 8y(n+ 1)2 + 4||ỹ||2
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Putting these together, we see that

I0(y) =
2

m

m∑
k=1

(v4
k − 3)y(1)2 +

2

m

m∑
k=1

(w4
k − 3)y(1)2 +

2

m

m∑
k=1

(v2
kw

2
k − 1)(y(1)2 + y(n+ 1)2)

+
4

m

m∑
k=1

y(1)y(n+ 1)v3
kwk +

4

m

m∑
k=1

y(1)y(n+ 1)vkw
3
k +

4

m

m∑
k=1

〈ỹ, ϕ̃k〉y(1)(v3
k + vkw

2
k)

+
4

m

m∑
k=1

〈ỹ, ϕ̃k〉y(n+ 1)(w3
k + v2

kwk) +
2

m

m∑
k=1

〈ỹ, ϕ̃k〉2v2
k − ||ỹ||2 +

2

m

m∑
k=1

〈ỹ, ϕ̃k〉2w2
k − ||ỹ||2

Now we estimate each of these terms. Let delta0 = ε
16

and ε0 = ε
28

. We start

with the last 2 terms, each of which is of the form 2
m

∑m
k=1〈ỹ, ϕ̃k〉2v2

k − ||ỹ||2 =

2
m

∑m
k=1 v

2
k(〈ỹ, ϕ̃k〉2−||ỹ||2)+ 2

m

∑m
k=1(v2

k−1)||ỹ||2. The second part we estimate from

the inequalities in Lemma 3.2.6, and the other part is identical to the Bernstein Type

Inequality used in the proof of Theorem 3.2.7. Therefore for m ≥ C0(
√
n
∑

k ϕ
6
k +

nmaxk |vk|2)

| 1
m

m∑
k=1

〈ỹ, ϕ̃k〉2v2
k − ||ỹ||2| ≤ δ0||ỹ||2 ≤ δ0

holds with probability 1−2e−2γn. A similar thing holds with the wk term, thus with

probability 1− 4e−2γn both of these hold.

To estimate the remaining term 4
m

∑m
k=1〈ỹ, ϕ̃k〉y(n+1)(w3

k+v2
kwk), we want to

use the Hoeffding inequality, as we did in the real case, but we need an upper bound

on the l2 norm of the coefficients, so we need an upper bound on 1
m

∑m
k=1(w3

k+v
2
kwk)

2.

We fortunately get that from the lemma, so we can apply Hoeffding’s inequality

with a bound of 500.
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Thus for m ≥ C1

√
nV , where V =

∑m
k=1(w3

k + v2
kwk)

2, we have

1

m

m∑
k=1

〈ỹ, ϕ̃k〉y(1)(v3
k + vkw

2
k) ≤ δ0|y(1)| · ||ỹ|| ≤ δ0

Conditioning on the bounds in the lemma (with an upper bound of ε0) , we

get for m ≥ max{C0(
√
n
∑

k ϕ
6
k+nmaxk=1,...,n |vk|2 +nmaxk=1,...,n |wk|2), C1(

√
nV +

√
nW )}, (where W =

∑m
k=1(v3

k + w2
kvk)

2) with probability at least 1 − 10e−2γn,

I0(y) ≤ 14ε0 + 8δ0 = ε

A similar argument to the real case (involving the N − net which forces γ >

log(9)) now shows that with probability at least 1− 13
n2 − 10e−γn, the theorem holds

true.

4.4 Analysis of the minimum distance between critical points

Here we show an analogous result to the real case. However, as with many

results in the complex case, special care must be given to the distance because

unlike the real case, the critical points are not isolated, but they come with the

the continuous path that corresponds to the invariance of the Ω-criterion to the

continuous change in phase.

Let ζ be a zero of the gradient of Ω, so F (ζ, λ) = 0. Further, let η be a unit

vector in the orthogonal complement of the subspace spanned by Jζ.

We start with some computations.

Proposition 4.4.1. 〈F (ζ + tη), η〉 = t[〈Hess(ζ, λ)η, η〉 + t〈(Γ(η) + 2Γ̃(η))ζ, η〉 +
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t2〈Γ(η)η, η〉]

Proof. We begin by examining the Gamma term.

Γ(ζ + tη) = Γ(ζ) + t2Γ(η) + 2tΓ(ζ, η)

Therefore, we see that

Γ(ζ + tη)(ζ + tη) = (Γ(ζ) + t2Γ(η) + 2tΓ(ζ, η))(ζ + tη)

= Γ(ζ)ζ + t(2Γ(ζ, η)ζ + Γ(ζ)η) + t2(Γ(η)ζ + 2Γ(ζ, η)η) + t3(Γ(η)η)

= Γ(ζ)ζ + t(2Γ̃(ζ)η + Γ(ζ)η) + t2(Γ(η)ζ + 2Γ̃(η)ζ) + t3(Γ(η)η)

Now putting this together in the full gradient, we get

F (ζ + tη, λ) = Γ(ζ + tη)(ζ + tη) + λ(ζ + tη)− Γ0(ζ + tη)

= (Γ(ζ)ζ + λζ − Γ0ζ) + t(2Γ̃(ζ)η + Γ(ζ)η + λη − Γ0η) + t2(Γ(η)ζ + 2Γ̃(η)ζ) + t3(Γ(η)η)

= F (ζ, λ) + t((2Γ̃(ζ)η + Γ(ζ)η + λη − Γ0η) + t(Γ(η)ζ + 2Γ̃(η)ζ) + t2(Γ(η)η))

= F (ζ, λ) + t(Hess(ζ, λ)η) + t(Γ(η)ζ + 2Γ̃(η)ζ) + t2(Γ(η)η))

Now taking inner product with η, and noting that F (ζ, λ) = 0, since it is a critical

point gives us our result.

Theorem 4.4.2. Let ρcrit denote the minimum distance from ζ, a global minimizer

at λ = 0 to the nearest critical point in the orthogonal complement of Jξ. Then
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ρcrit ≥ 2
3

√
s2n−1(Γ̃(ζ))

β

Proof. Define the polynomial Q(t) = [〈Hess(ζ, λ)η, η〉 + t〈(Γ(η) + 2Γ̃(η))ζ, η〉 +

t2〈Γ(η)η, η〉]. Therefore we have by Proposition 4.4.1 that

〈F (ζ + tη), η〉 = tQ(t)

Q(t) is convex, and positive at t = 0 (since ζ is a global minimizer), therefore

a lower bound for the distance to the root can be given through the tangent line

t0 ≥
Q(0)

Q′(0)

Therefore, expanding this out, we get that

t0 ≥
Q(0)

|Q′(0)|
=
〈Hess(ζ, 0)η, η〉
|〈Γ(η) + 2Γ̃(η)ζ, η〉|

At a global minumum ζ, Hess(ζ, 0) = 2Γ̃(ζ)

Also note that since (Γ(η) + 2Γ̃(η)) is symmetric

〈(Γ(η) + 2Γ̃(η))ζ, η〉 = 〈(Γ(η) + 2Γ̃(η))η, ζ〉

= 3〈Γ̃(η)ζ, η〉
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Therefore, the expression can be simplified to

t0 ≥
〈Hess(ζ, 0)η, η〉
|〈Γ(η) + 2Γ̃(η)ζ, η〉|

=
2〈Γ̃(ζ)η, η〉

3|〈Γ̃(η)ζ, η〉|

Now let us once more examine the denominator. We will upper bound it in terms

of the numerator.

|〈Γ̃(η)ζ, η〉| = |〈Γ̃
1
2 (η)ζ, Γ̃

1
2 (η)η〉| ≤ ||Γ̃

1
2 (η)ζ|| · ||Γ̃

1
2 (η)η||

=

√
〈Γ̃(η)η, η〉

√
〈Γ̃(η)ζ, ζ〉 =

√
〈Γ̃(η)η, η〉

√
〈Γ̃(ζ)η, η〉

Recall from Theorem 4.2.8 that 〈Γ̃(η)η, η〉 ≤ β||η||2 = β. Therefore we get

t0 ≥
2〈Γ̃(ζ)η, η〉

3|〈Γ̃(η)ζ, η〉|

≥ 2〈Γ̃(ζ)η, η〉

3
√
β

√
〈Γ̃(ζ)η, η〉

=
2

√
〈Γ̃(ζ)η, η〉
3
√
β

Now if we minimize over all possible η, we get

ρcrit ≥ min
|η||=1
η⊥Jζ

2

√
〈Γ̃(ζ)η, η〉
3
√
β

=
2

√
s2n−1(Γ̃(ζ))

3
√
β
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4.5 Complex Convergence Analysis

In this section, we show an analogous result to the convergence result to the

real case. Because of the ambiguities present in the complex case, many of the real

results don’t carry over exactly to the complex case, so other methods need to be

employed.

Similar to the real case, we compare the golden retriever’s homotopy path to

a fixed reference path.

Definition 4.5.0.1. We call a reference path ϕ(λ) suitable if it satisfies the fol-

lowing conditions.

• It is a smooth path parameterized by λ for 0 ≤ λ ≤ λ1.

• ϕ(λ1) = 0, and ϕ(λ) is nonzero for λ < λ1.

• ϕ(0) = z, a global minimizer.

• It is aligned with the Golden Retriever Homotopy Path, in the sense that for

each 0 ≤ λ ≤ λ1, ||ξ(λ) − ϕ(λ)|| = minθ ||ξ(λ) − U(θ)ϕ(λ)|| , where U(θ) =

cos(θ)I + sin(θ)J .

First we assume we are given a suitable reference path ϕ(λ).

We work towards defining a similar region as the leash in the real case. We

begin with a proposition.

Proposition 4.5.1. F (ξ, λ)− F (ϕ, λ) = (Hess(ϕ)δ + Γ(δ)δ) + (Γ(δ) + 2Γ̃(δ))ϕ
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Proof. This is by direct computation. We compute

F (ξ, λ)− F (ϕ, λ) = (Γ(ξ) + λI − Γ0)ξ − (Γ(ϕ) + λI − Γ0)ϕ

= Γ(ϕ+ δ)(ϕ+ δ) + λ(ϕ+ δ)− Γ0(ϕ+ δ)− Γ(ϕ)− λϕ+ Γ0ϕ

By the identities on Γ and Γ̃, we have

= Γ(ϕ)ϕ+ Γ(δ)ϕ+ 2Γ̃(ϕ)δ + Γ(ϕ)δ + Γ(δ)δ + 2Γ̃(δ)ϕ+ λϕ+ λδ − Γ0ϕ− Γ0δ

−Γ(ϕ)− λϕ+ Γ0ϕ

= (Γ(ϕ)δ + 2Γ̃(ϕ)δ + λδ − Γ0δ) + Γ(δ)δ + (Γ(δ) + 2Γ̃(δ))ϕ

= Hess(ϕ)δ + Γ(δ)δ + (Γ(δ) + 2Γ̃(δ))ϕ

In the same way, by exchanging roles of ξ and ϕ, we get F (ϕ, λ) − F (ξ, λ) =

−((Hess(ξ)δ + Γ(δ)δ) + (Γ(δ) + 2Γ̃(δ))ξ)

Now we are can rearrange to get a bound on the difference.

Therefore, we get

||F (ϕ, λ)− F (ξ, λ)|| = ||((Hess(ξ)δ + Γ(δ)δ) + (Γ(δ) + 2Γ̃(δ))ξ)||

Call s2n−1(λ) = λ2n−1(Hess(ϕ(λ), λ)).

Definition 4.5.1.1. Given a suitable path ϕ(λ), define the following auxiliary con-
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stants

A = 27 · 36β2

B = 4 · 63β3||ϕ(λ)||3 + 18 · 36β2||ϕ(λ)||s2n−1(λ)

C = 36β2s2n−1(λ)2||ϕ(λ)||2 + 24βs2n−1(λ)3

Define the following important constants.

ρ2(λ) =
−B +

√
B2 + 4AC

2A
(4.24)

ρ1(λ) =
ρ2(λ)

s2n−1(λ)
(4.25)

r(λ) =
−12β||ϕ(λ)||+

√
144β2||ϕ(λ)||2 + 72βs2n−1(λ)

36β
(4.26)

Now we state two conditions, which are the complex case analogues to the

Initialization Condition and the Gradient Condition in the real case.

The first condition is the Initialization Condition, that the golden retriever

path ξ(λ) is sufficiently close to ϕ(λ).

Condition 4.5.2 (Initialization Condition). Given a frame set, Γ0, a suitable ref-

erence path ϕ(λ), and the golden retriever path ξ(λ), we say that ϕ satisfies the

Initialization Condition at a point λ′ if ||ξ(λ′)− ϕ(λ′)|| < ρ1(λ′) for 0 < λ′ < λ1.

Condition 4.5.3 (Gradient Condition). Given a frame set, Γ0 and a suitable refer-

ence path ϕ(λ), we say that ϕ satisfies the Gradient Condition if ||F (ϕ, λ)|| < ρ2(λ)

for all 0 < λ < λ1

166



Theorem 4.5.4. If the Initialization Condition is true for some 0 < λ′ < λ1 and

the Gradient Condition is also true, then ||ξ(λ)− ϕ(λ)|| < r(λ) for all 0 ≤ λ < λ′.

The proof of this theorem revolves around the analysis about a cubic polyno-

mial. Let δ(λ) = ξ(λ)− ϕ(λ). Define the cubic polynomial

Q3(t) = λ2n−1(Hess(ϕ))t− 6βt3 − 6β||ϕ||t2 − ρ2

with t = ||δ||.

Lemma 4.5.5. If the Gradient Condition is satisfied, then Q3(t) < 0

Proof. By assumption on the hessian, the smallest eigenvalue of the Hess(ξ) is 0

with an associated eigenspace spanned by Jξ. We know that ξ ⊥ Jξ, and by ϕ(λ)

being suitable, ϕ ⊥ Jξ. Therefore, δ = ξ − Uϕ also satisfies δ ⊥ Jξ.

Since δ is in the complement of the eigenspace corresponding to λ2n(Hess(ξ)),

we get

||F (ϕ, λ)− F (ξ, λ)|| ≥ λ2n−1(Hess(ξ))||δ|| − ||Γ(δ) + 2Γ̃(δ)|| · ||ξ||

If we use Weyl’s inequalities ([29]), and bound ||ξ|| by ||ξ−ϕ+ϕ|| ≤ ||δ||+||ϕ||,

we get

||F (ξ, λ)− F (ϕ, λ)|| ≥ λ2n−1(Hess(ϕ))||δ|| − ||Hess(ξ)−Hess(ϕ)|| · ||δ||

−||Γ(δ) + 2Γ̃(δ)|| · (||δ||+ ||ϕ||)
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By Corollary 4.2.9, we know ||Hess(ξ) − Hess(ϕ)|| ≤ 3β||δ||(||δ|| + 2||ϕ||), we

therefore get the cubic equation in ||δ||.

Since we know t = ||δ|| and by the Gradient Condition ρ2 > ||F (ξ, λ) −

F (ϕ, λ)||, we get

ρ2 > λ2n−1Hess(ϕ)t− 6βt3 − 6β||ϕ||t2

We write down the cubic polynomial and we see

Q3(t) = λ2n−1Hess(ϕ)t− 6βt3 − 6β||ϕ||t2 − ρ2 < 0

Lemma 4.5.6. Assume ρ2(λ) < −B+
√
B2+4AC
2A

, where A = 27 · 36β2, B = 4 ·

63β3||ϕ||3 + 18 · 36β2||ϕ||s2n−1, C = 36β2s2
2n−1||ϕ||2 + 24βs3

2n−1. Then Q3(t) has

3 positive roots.

Proof. The proof is in the discriminant. Recall that a cubic polynomial has 3 real

roots if and only if the discriminant is positive. If we write Q3(t) = at3 +bt3 +ct+d,

then the discriminant inequality is given by b2c2−4ac3−4b3d−27a2d2 +18abcd > 0

[32]

Gathering the terms for d = ρ2, we see that this would be equivalent to having

−Aρ2
2−Bρ2 +C > 0, with A,B,C as defined above. Solving for the quadratic gives

us the desired result.

Now we use the properties of Q3(t) to show that if the Initialization Condition
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and the Gradient Condition were both true, then the the difference between ϕ1(λ)

and ξ(λ), which we denoted t, will always be less than r(λ). This is similar to the

bound the leash provided in the real case, but in this case is a root of a polynomial

bounding it away from r(t).

Proof of Theorem 4.5.4. Assume the Gradient Condition holds, which by the previ-

ous lemma means that Q3(t) has 3 roots (and by the shape of it, 2 positive roots).

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-25

-20

-15

-10

-5

0

5

10

Figure 4.1: Q3(t) with 3 roots marked in red. The y coordinate of the green point
is −ρ2(λ) and the x coordinate of the blue point is r(λ)

Since the Gradient Condition holds for all 0 ≤ λ < λ1, this means that the

polynomial will always have 3 roots, for all λ. If the δ(λ) = t is initialized in the

region to the left of the first root, since the roots change continuously when the
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coefficients of Q3(t) change continuously, then δ can never go past the first root.

This implies that it can never go past the local maximum of the cubic, so we define

the coordinate of the local maximum to be r(λ). This provides the leash from which

the algorithm cannot escape.

First we show that if the Initialization Condition is satisfied for some 0 < λ′ <

λ1, then δ(λ′) is between 0 and the first positive root of Q3(t). The first positive

root of the cubic can be estimated by a tangent line approximation, which is given

by ρ1(λ) = ρ2(λ)
s2n−1(λ)

. By convexity, this is an underestimate for the root, so if ||δ||

was initialized before ρ1, then it is initialized before the first positive root of Q3(t).

Next it is an easy calculation that the vertex between the positive roots of the

cubic is given by r(λ).

Now first show that the origin is disjoint from the leash for all λ < λ1

Theorem 4.5.7. Let ϕ(λ) be any suitable reference path. Then r(λ) < ||ϕ(λ)||, for

all λ < λ1 thus the origin is not contained in the leash for any λ < λ1.

Proof. We start with an estimate

s2n−1(λ) < 3β||ϕ(λ)||2

To show this, we note that for s2n−1(λ) = λ2n−1(Γ(ϕ) + 2Γ̃(ϕ) + λI − Γ0), and for

λ < λ1, λI−Γ0 is of mixed signature, with repeated eigenvalues, thus λ2n−1(λI0Γ0)

is negative. Thus, treating this as a perturbation, we get that

s2n−1(λ) ≤ ||Γ(ϕ) + 2Γ̃(ϕ)|| ≤ 3β||ϕ||2
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Thus, we have that

r(λ) =
−12β||ϕ(λ)||+

√
144β2||ϕ(λ)||2 + 72βs2n−1(λ)

36β
≤
√

72βs2n−1(λ)

36β

≤
√

72 · 3β2||ϕ||2
36β

=

√
216

36
||ϕ|| < ||ϕ||

Theorem 4.5.8. With the notation used above, r(0) < ρcrit = 2
3

√
s2n−1√
β

, the critical

distance to the nearest critical point.

Proof. Q′3(t) = −18βt2 − 12β||ϕ||t+ s2n−1(t) = 0

The positive root is given by r(λ) =
−12β||ϕ||+

√
144β2||ϕ||2+4·18βs2n−1(λ)

2·18·β

Using the identity
√
A2 +B < A+ B

2A
for A,B > 0, we get

r(λ) <
s2n−1(λ)

12β||ϕ||

So putting this together with ρcrit, and knowing that ||ϕ(0)|| = ||ζ|| since

r(λ) ≤ s2n−1(0)

12β||ζ||
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We can now compare

s2n−1(0)

12β||ζ||
≤ 2

3

√
s2n−1(0)

β

s2n−1(0) ≤ 82β||ζ||2

Since we know s2n−1(λ) < 3β||ϕ(λ)||2, we get that s2n−1(0) ≤ 3β||ζ||2, so since

64 > 3, this inequality is true.

What we have shown is the following theorem.

Theorem 4.5.9. If there exists a suitable path which satisfies the Initialization

Condition and the Gradient Condition, then the homotopy path converges to a global

minimizer ζ.

So now we define a reference path ϕ1(λ). In the complex case, this is done in

two steps.

First we define the parameter τ = 1− λ
λ1

. Let η1 be an normalized eigenvector

corresponding to the eigenvalue λ1 of Γ0. Then we define η =

(√
λ1

〈Γ(η1)η1,η1〉

)
η1.

Then our first choice for a reference path is the equivalent to the real case, ϕ0 =

√
τ(τζ + (1− τ)η).

The issue is that ϕ0 is not a suitable reference path because it is not aligned

with ξ(λ). To fix this, we define the following.

Definition 4.5.9.1. Let U(t) be a unitary matrix which aligns the vectors such that

ϕ1(λ) = U(λ)ϕ0(λ) and ϕ1 ⊥ Jξ(λ)
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Now ϕ1(λ) is a suitable reference path.

We want to show that for ϕ1(λ) the Initialization Condition is satisfied. We

begin with an asymptotic analysis of ||ϕ1(λ)||

Lemma 4.5.10. For ϕ1(λ) = U(λ)
√
τ(τζ + (1 − τ)η), there exists a positive con-

stant τ1 such that for all 0 < τ < τ1, we have 0.9τ
1
2

√
λ1

〈Γ(η1)η1,η1〉 < ||ϕ1(λ)|| <

1.1τ
1
2

√
λ1

〈Γ(η1)η1,η1〉

Proof. Note that ||ϕ1|| = ||ϕ0|| since U(λ) is unitary. It follows that we can argue,

in the same way as the real case

||
√
ττζ+

√
τ(1−τ)

√
λ1

〈Γ(η1)η1, η1〉
η1|| = ||τ

1
2

√
λ1

〈Γ(η1)η1, η1〉
η1+τ

3
2 (ζ−

√
λ1

〈Γ(η1)η1, η1〉
η1)||

On one hand this is less than τ
1
2

√
λ1

〈Γ(η1)η1,η1〉+τ
3
2 ||ζ−

√
λ1

〈Γ(η1)η1,η1〉η1|| ≤ 1.1τ
1
2

√
λ1

〈Γ(η1)η1,η1〉 ,

so long as 0.1τ
1
2

√
λ1

〈Γ(η1)η1,η1〉 ≥ τ
3
2 ||ζ−

√
λ1

〈Γ(η1)η1,η1〉η1||. If ζ is aligned with η1, this is

always true, otherwise, we see that this is true so long as τ ≤
0.1

√
λ1

〈Γ(η1)η1,η1〉

||ζ−
√

λ1
〈Γ(η1)η1,η1〉

η1||
On the

other hand, ||ϕ1(τ)|| ≥ τ
1
2

√
λ1

〈Γ(η1)η1,η1〉− τ
3
2 ||ζ−

√
λ1

〈Γ(η1)η1,η1〉η1|| ≥ 0.9τ
1
2

√
λ1

〈Γ(η1)η1,η1〉

so long as 0.1τ
√

λ1

〈Γ(η1)η1,η1〉 ≥ τ
3
2 ||ζ −

√
λ1

〈Γ(η1)η1,η1〉η1||, which is the same condition

as before.

Therefore, for all 0 < τ < τ0 :=
0.1

√
λ1

〈Γ(η1)η1,η1〉

||ζ−
√

λ1
〈Γ(η1)η1,η1〉

η1||
, we have the desired inequal-

ities.

Now we show the asymptotic rate of s2n−1(λ) as τ approaches 0.

Lemma 4.5.11. There exists a τ2 > 0 such that, s2n−1(λ) > λ1τ for all 0 < τ < τ2
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Proof. Now we compute the Hessian at the point ϕ1, but note that

Hess(ϕ1) = Hess(Uϕ0) = UHess(ϕ0)UT

and this has the same eigenvalues as the Hess(ϕ0), so we will just examine the

eigenvalues of Hess(ϕ0).

Note that since Γ0 has repeated eigenvalues, it’s spectrum looks like {λ1, λ1, λ2, λ2, ...λn, λn}.

Also, the eigenvectors are related by multiplication by J . Therefore,

Γ0 ≤ λ2I2n + (λ1 − λ2)η1η
T
1 + (λ1 − λ2)(Jη1)(Jη1)T

Using this identity, we can now look at the Hessian

Hess(ϕ0) = τΓ(τζ + (1− τ)η) + 2τ Γ̃(τζ + (1− τ)η) + λ1(1− τ)I − Γ0

= τΓ(η) + 2τ Γ̃(η) + λ1(1− τ)I − Γ0 +O(τ 2)

≥ (λ1 − λ2)I − (λ1 − λ2)(η1η
T
1 + (Jη1)(Jη1)T ) + τ(Γ(η) + 2Γ̃(η)− λ1I)−O(τ 2)

Now define the matrix M = (λ1 − λ2)I − (λ1 − λ2)(η1η
T
1 + (Jη1)(Jη1)T ) + τ(Γ(η) +

2Γ̃(η)− λ1I)

First note that 〈Mη1, η1〉 = 2τλ1 ≥ 0. Second, note that since Γ̃(η)Jη1 = 0, we

get 〈MJη1, Jη1〉 = 0 but this is a direction that we don’t need to worry about since

we want to find the second smallest eigenvalue and thus will only look at critical

points that will be perpendicular to the eigenvector corresponding to the smallest
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eigenvalue, which at λ = λ1 is Jη1.

Therefore, take a direction x such that ||x|| = 1 and 〈x, η1〉 = 0 and 〈x, Jη1〉 =

0. Then

〈Mx, x〉 = (λ1 − λ2) + τ(〈Γ(η)x, x〉+ 2〈Γ̃(η)x, x〉 − λ1)

So for τ sufficiently small, this is positive definite.

Now take x̃ = cos(θ)η1 + sin(θ)x. Then

〈Mx̃, x̃〉 = (λ1 − λ2)− (λ1 − λ2)cos2(θ) + τ [〈Γ(η)x̃, x̃〉+ 2〈Γ̃(η)x̃, x̃〉 − λ1]

Now after rearranging terms, and knowing that η =
√

λ1

〈Γ(η1)η1,η1〉η1, and setting

α = 〈Γ(η1)x,x〉+2〈Γ̃(η1)x,x〉
〈Γ(η1)η1,η1〉 and γ = 〈Γ(η1)η1,x〉

〈Γ(η1)η1,η1〉 we get

〈Mx̃, x̃〉 = (λ1 − λ2)sin2(θ) + τλ1[3cos2(θ) + 6γcos(θ)sin(θ) + αsin2(θ)− 1]

= (λ1 − λ2 − 3τλ1 + τλ1α)sin2(θ) + 3γλ1τsin(2θ) + 2τλ1

= −(λ1 − λ2 − 3τλ1 + τλ1α)

2
cos(2θ) + 3γλ1τsin(2θ) + 2τλ1 +

(λ1 + λ2 − 3τλ1 + τλ1α)

2

≥ (λ1 − λ2 − 3τλ1 + τλ1α)

2
+ 2τλ1 −

√
(
λ1 − λ2 − 3τλ1 + τλ1α

2
)2 + (3γλ1τ)2

≥ (λ1 − λ2 − 3τλ1 + τλ1α)

2
+ 2τλ1 − (

λ1 − λ2 − 3τλ1 + τλ1α

2
)− (3γλ1τ)2

(λ1 − λ2 − 3τλ1 + τλ1α)

= 2τλ1 −
(3γλ1τ)2

(λ1 − λ2 − 3τλ1 + τλ1α)

Therefore, we get that for sufficiently small τ , λ2n−1(M) ≥ 1.5λ1τ for all small τ .

From here, we use Weyl’s inequalities ([29]), by taking the Hessian to be a perturba-

tion of M . Thus, if we take Hess(ϕ1) = M +R, we get that since λ2n−1(R) ≤ dτ 2,
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then λ2n−1(Hess(ϕ1)) ≥ λ2n−1(M) − dτ 2 ≥ 1.5λ1τ − dτ 2 ≥ λ1τ for all sufficiently

small τ . Thus we get there exists a τ1 such that λ2n−1(Hess(ϕ1, λ)) = s2n−1(λ) ≥

λ1τ for all 0 < τ < τ1.

Now we can put these lemmas together and find the asymptotic rate of the

radius of the leash r(λ).

Lemma 4.5.12. For all λ sufficiently close to λ1 (i.e. τ sufficiently small) we get

r(λ) > λ1

24β
τ

1
2

Proof. Examining the expression for r(λ), we use that
√
x2 + y ≥ x+ y

2x
− y2

8x2 , for

y > 0, to get that

r(λ) ≥ 1

36β
(3
s2n−1(λ)

||ϕ1||
− 36

8

s2
2n−1(λ)

||ϕ1||
)

Now using the bounds that s2n−1(λ) > λ1τ and ||ϕ1(λ)|| < 1.1
√

λ1

〈Γ(η1)η1,η1〉τ
1
2 , we

get

r(λ) >
1

β
(
λ1

13.2
τ

1
2 )− 1

9.68
〈Γ(η1)η1, η1〉τ

Now for sufficiently small τ (where the τ
1
2 term dominates the τ term), we get

r(λ) >
λ1

24β
τ

1
2

Now that we established an asymptotic lower bound on the radius r(λ), we

look at the other term in the Intitialization Condition.

176



Lemma 4.5.13. There exists a τ2 > 0 and a positive constant C such that for all

0 < τ < τ2, ||ξ(λ)− ϕ1(λ)|| ≤ Cτ
3
2

Proof. The proof is by decomposing ξ into a component along ϕ1 and an orthogonal

component. Denote ϕ⊥0 to be an orthogonal component to ϕ0 such that 〈ϕ0, ϕ
⊥
0 〉 = 0.

Then define ϕ⊥1 = U(λ)ϕ⊥0 and note that this is orthogonal to ϕ1. Now we can

decompose ξ(λ) = cϕ1 + τ
1
2ϕ⊥1 . Then we look at the map

0 = F (ξ(λ), λ) = F (cϕ1(λ) + ϕ⊥1 )

By factoring out, we get

0 = F (cϕ1(λ) + ϕ⊥1 ) = UF (cϕ0(λ) + ϕ⊥0 )UT

. Therefore, we get

0 = F (cϕ0(λ) + ϕ⊥0 )

Expanding out we get the equation

F (cϕ0(λ) + ϕ⊥0 ) = Γ(cϕ0(λ) + ϕ⊥0 )(cϕ0(λ) + ϕ⊥0 ) + λ(cϕ0(λ) + ϕ⊥0 )− Γ0(cϕ0(λ) + ϕ⊥0 )
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We can expand this out and after a little bit of work, we get

1

τ
1
2

F (cϕ0(λ) + ϕ⊥0 ) = c3τ 4Γ(ζ)ζ + 2c3τ 3(1− τ)Γ̃(ζ)η + c3τ 2(1− τ)2Γ(η)ζ + c3τ 3(1− τ)Γ(ζ)η

+2c3τ 2(1− τ)2Γ̃(η)ζ + c3τ(1− τ)3Γ(η)η + 2c2τ 3Γ̃(ζ)ϕ⊥0

+2c2τ(1− τ)2Γ̃(η)ϕ⊥0 + 2c2τ 2(1− τ)Γ̃(ζ, η)ϕ⊥0 + 2c2τ 2(1− τ)Γ̃(η, ζ)ϕ⊥0

+cτ 2Γ(ϕ⊥1 )ζ + cτ(1− τ)Γ(ϕ⊥0 )η + c2τ 3Γ(ζ)ϕ⊥0

+c2τ(1− τ)2Γ(η)ϕ⊥0 + 2c2τ 2(1− τ)Γ(ζ, η)ϕ⊥0 + cτ 2Γ̃(ϕ⊥0 )ζ + cτ(1− τ)Γ̃(ϕ⊥0 )η + τΓ(ϕ⊥0 )ϕ⊥0

+λ1(1− τ)cτζ + λ1(1− τ)2cη + λ1(1− τ)ϕ⊥0 − cτΓ0ζ − c(1− τ)Γ0η − Γ0ϕ
⊥
0

Now let us look at all the τ 0 terms in the expression and simplify them using the

fact that Γ0 = Γ(ζ) and η is an eigevector for Γ0 of eigenvalue λ1.

λ1cη + λ1ϕ
⊥
0 − cΓ0η − Γ0ϕ

⊥
0

= λ1cη + λ1ϕ
⊥
0 − λ1cη − Γ0ϕ

⊥
0

= λ1ϕ
⊥
0 − Γ0ϕ

⊥
0

Now let {η1, η2, ..., η2n−1, η2n} be an eigenbasis for Γ0, where η1 is in the direction of

η and η2 is in the direction of Jη. Since

1

τ
1
2

F (cϕ0(λ) + ϕ⊥0 ) = 0
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if we label all the terms with a coefficient of τ by −τM , then we can solve

λ1ϕ
⊥
0 − Γ0ϕ

⊥
0 = τM

Now projecting onto an eigenspace {ηk} for ηk corresponding to eigenvalues λ2, ..., λn,

we get 2n− 2 equations of the form

(λ1 − λk)〈ϕ⊥0 , ηk〉 = τ〈M, ηk〉 := τMk

so we can bound below by the difference with λ2, and letting ϕ⊥0 = ||ϕ⊥0 ||v, we get

(λ1 − λ2)〈v, ηk〉||ϕ⊥0 || ≤ τMk

So summing the square of both sides, we get

(λ1 − λ2)2||ϕ⊥0 ||2
2n∑
k=3

〈v, ηk〉2 ≤ τ 2MS

, where MS =
∑

kMk. Therefore , we get

||ϕ⊥0 ||
√

1− 〈v, η1〉 − 〈v, Jη1〉 ≤ τ

√
MS

(λ1 − λ2)2

This shows that ||ϕ⊥0 || = O(τ)

Now we want to find the order of |c− 1|. To do so, let us look at all the terms

in the expression with orders less than or equal to τ 1. Denote −τ 2N the all terms
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with a coefficient of at least τ 2 and note that here we use the fact that ||ϕ0|| = O(τ)

to get

c3τΓ(η)η + λ1cτζ + λ1cη − 2cτλ1η + λ1ϕ
⊥
0 − cτΓ0ζ − cΓ0η + cτΓ0η − Γ0ϕ

⊥
0 = τ 2N

Simplifying a little bit, we get that

c3τΓ(η)η + λ1cτζ − cτλ1η + λ1ϕ
⊥
0 − cτΓ0ζ − Γ0ϕ

⊥
0 = τ 2N

Now we take the inner product of the expression with η itself, and we get

c3τ〈Γ(η)η, η〉+λ1cτ〈ζ, η〉−cτλ1〈η, η〉+λ1〈ϕ⊥0 , η〉−cτ〈Γ0ζ, η〉−〈Γ0ϕ
⊥
0 , η〉 = τ 2〈N, η〉 := τ 2Nη

Simplifying one using the fact that Γ0 is symmetric, we get

c3τ〈Γ(η)η, η〉+ λ1cτ〈ζ, η〉 − cτλ1〈η, η〉+ λ1〈ϕ⊥0 , η〉 − cτ〈Γ0ζ, η〉 − 〈Γ0ϕ
⊥
0 , η〉 = τ 2Nη

c3τ〈Γ(η)η, η〉+ λ1cτ〈ζ, η〉 − cτλ1〈η, η〉+ λ1〈ϕ⊥0 , η〉 − cτλ1〈ζ, η〉 − λ1〈ϕ⊥0 , η〉 = τ 2Nη

c3τ〈Γ(η)η, η〉 − cτλ1〈η, η〉 = τ 2Nη

Therefore, dividing by τ , we get that

c3〈Γ(η)η, η〉 − cλ1〈η, η〉 = τNη
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Now substituting η =
√

λ1

〈Γ(η1)η1,η1〉η1, we get

c3 λ2
1

〈Γ(η1)η1, η1〉
− c λ2

1

〈Γ(η1)η1, η1〉
= τNη

Therefore, we get

c3 − c = τ
Nη〈Γ(η1)η1, η1〉

λ2
1

So c3 − c = O(τ). Therefore, there are three paths, c = 1, c = −1 and c = 0, which

are the three homotopy paths perpendicular to Jη1. If we, without loss of generality,

choose one of the nonzero homotopy paths, say c = 1, we get |c− 1| = O(τ).

Now note that since U is chosen such that ξ is orthogonal to Jϕ1 we can

decompose ξ into its components and examine the expression

||ξ(λ)− ϕ1(λ)|| = ||cϕ1 + τ
1
2ϕ⊥1 − ϕ1|| = ||(c− 1)ϕ1 + τ

1
2ϕ⊥1 ||

Now using the triangle inequality, we get see that

≤ |c− 1| · ||ϕ1(λ)||+ τ
1
2 ||ϕ⊥1 || ≤ C(τ

3
2 )

τ sufficiently small

The consequences of the above lemma are immediate.

Theorem 4.5.14. For all τ > 0 sufficiently small, ||ξ(λ) − ϕ1(λ)|| < r(λ), i.e.

ϕ1(λ) satisfies the Initialization Condition.
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Proof. This is just looking at the order, r(λ) is bounded below by the order of τ
1
2

as τ → 0 while ||ξ(λ) − ϕ1(λ)|| ≤ Cτ
3
2 . Thus for all sufficiently small τ , we get

||ξ(λ)− ϕ1(λ)|| < r(λ)

Now we have shown that ϕ1(λ) satisfies the Initialization Condition, we know

that if it satisfies the Gradient Condition, i.e. if ||F (ϕ1, λ)|| < ρ2(λ) for all 0 < λ <

λ1, then the algorithm converges to a global minimizer.

Our next goal is to understand when ϕ1(λ) satisfies the Gradient Condition.

As in the real case, we study this probabilistically. The main idea is to realize that

in the expected system, η aligns with ζ, so if we treat η as a perturbation of ζ, then

we can rewrite the Gradient Condition as a condition on the perturbation. Then

we show that for sufficiently high m, the size of the perturbation decreases, and the

Gradient Condition is true with high probability.

Thus we define the perturbation p = η − ζ. We first rewrite the gradient

F (ϕ1, λ) in terms of p (and τ = λ1(1− λ
λ1

)).

In this part, we will make the following assumptions:

• β > 7

• λ2n(Γ(ζ)) ≥ 3||ζ||2

• λ2n−1(Γ̃(ζ)) ≥ ||ζ||2

Later we will see that these hold with high probability.

182



Lemma 4.5.15. The gradient for ϕ0(λ) can be written as follows

F (ϕ0, λ) = τ
3
2

(
τ 3
(
− Γ(p)p

)
+ τ 2

(
Γ(p)ζ + 2Γ̃(p)ζ + 3Γ(p)p

)
+τ
(
λ1p− Γ(ζ)p− 2Γ̃(ζ)p− 2Γ(p)ζ − 4Γ̃(p)ζ)− 3Γ(p)p

)
+
(
− λ1p+ Γ(ζ)p+ 2Γ̃(ζ)p+ Γ(p)ζ + 2Γ̃(p)ζ + Γ(p)p

))

Proof. First note that ϕ0 =
√
τ(τζ + (1 − τ)η). For η = ζ + p, we get ϕ0 =

√
τ(τζ + (1− τ)ζ + (1− τ)p) =

√
τ(ζ + (1− τ)p).

Now if we look at

F (ϕ0, λ) =
√
τ(Γ(
√
τ(ζ + (1− τ)p)) + λI − Γ0)(ζ + (1− τ)p)

We can simplify this expression to get

F (ϕ0, λ) =
√
τ

(
τ 4
(
− Γ(p)p

)
+ τ 3

(
Γ(p)ζ + 2Γ̃(p)ζ + 3Γ(p)p

)
+τ 2

(
λ1p− Γ(ζ)p− 2Γ̃(ζ)p− 2Γ(p)ζ − 4Γ̃(p)ζ)− 3Γ(p)p

)
+τ
(
− λ1p+ Γ(ζ)p+ 2Γ̃(ζ)p+ Γ(p)ζ + 2Γ̃(p)ζ + Γ(p)p

))

We can use this to get estimates on ||F (ϕ1, λ)|| because

||F (ϕ1, λ)|| = ||U(λ)F (ϕ0, λ)|| = ||F (ϕ0, λ)|| (4.27)
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Lemma 4.5.16. ||F (ϕ1, λ)|| ≤ τ
3
2 (4β||ζ||2||p||+ 3β||p||2||ζ||+ β||p||3)

Proof. To show this, we note that from the previous lemma, we get

F (ϕ0, λ) = τ
3
2

(
(τ − 1)λ1p+ (1− τ)Γ(ζ)p+ 2(1− τ)Γ̃(ζ)p

+(1− 2τ + τ 2)Γ(p)ζ + 2(1− 2τ + τ 2)Γ̃(p)ζ

+(1− 3τ + 3τ 2 − τ 3)Γ(p)p

)

Thus, we get

||F (ϕ1, λ)|| ≤ τ
3
2

(
λ1||p||+ 3β||ζ||2||p||+ 3β||p||2||ζ||+ β||p||3

)
(4.28)

Since λ1 = λ1(R(z)) ≤ β||z||2, we get

||F (ϕ1, λ)|| ≤ τ
3
2

(
4β||ζ||2||p||+ 3β||p||2||ζ||+ β||p||3

)
(4.29)

Now that we have bounded ||F (ϕ1, λ)|| from above, we bound ρ2(λ) from

below, to get a sufficient condition for satisfying the Gradient Condition.

We begin with a lemma on ρ2(λ). Recall the definition of ρ2 with ρ2(λ) =

−B+
√
B2+4AC
2A

, where A = 27 · 36β2, B = 4 · 63β3||ϕ||3 + 18 · 36β2||ϕ||s2n−1, C =

36β2s2
2n−1(λ)||ϕ||2 + 24βs3

2n−1.

Lemma 4.5.17. With A,B,C as above, ρ2(λ) ≥ min{(
√

2−1
2

)B
A
, 3C

4B
}
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Proof. Let us look at a general expression
√
x2 + y2. We will restrict it so x, and y

are also positive. We know that
√
x2 + y2 ≥

√
2 min{x, y}. So therefore, we know

that ρ2 = −B+
√
B2+4AC
2A

> (
√

2−1)
2

B
A

if B < 2
√
AC, or in other words if B2 < 4AC. If

B2 > 4AC, we need a different bound.

We recall the bound
√
x2 + y ≥ x+ y

2x
− y2

8x2 . This bound can either be derived

from the taylor expansion, or simply checked directly. If we look at what this means

for our bound, we get ρ2 >
C
B
− AC2

B3 . This bound always holds, but we want to know

when this gives us a meaningful bound, so we want C
B
− AC2

B3 > 0 which happens if

and only if B2 > AC. Therefore for the case B2 < 4AC, we use the first bound, for

the case B2 > 4AC, we will use the second, and note that if B2 > 4AC, the second

bound can be bounded further C
B
− AC2

B3 > C
B
− C

4B
= 3C

4B
.

Therefore, we have that ρ2 ≥ min{(
√

2−1
2

)B
A
, 3C

4B
}

Lemma 4.5.18. Under the assumptions above, also assume ||p|| < ||ζ||
6β

, then we

have ρ2(λ) ≥ τ
3
2 ||ζ||3

√
2−1
2
· 1

1215β

Proof. We begin using a bound on ||ϕ1(λ)|| =
√
τ ||ζ + (1 − τ)p||. By using the

triangle inequality and the reverse triangle inequality, we get upper and lower bounds

(assuming ||p|| < ||ζ||
2

)

1

2

√
τ ||ζ|| < ||ϕ1(λ)|| < 3

2

√
τ ||ζ|| (4.30)
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Now we want upper and lower bounds on s2n−1(λ). We look at the Hessian.

Hess(ϕ0) = τΓ(ζ + (1− τ)p) + 2τ Γ̃(ζ + (1− τ)p) + λ1(1− τ)I − Γ(ζ)

≥ (τ − 1)Γ(ζ) + 2τ Γ̃(ζ) + λ1(1− τ)I − τO(||p||)

Since Γ(ζ) is positive definite, we can bound (τ − 1)Γ(ζ) below by (τ − 1)λ1I and

we get

Hess(ϕ1, λ) ≥ 2τ Γ̃(ζ)− τO(||p||)

Now we note s2n(λ) ≥ −τ(||p||), because Γ̃(ζ) is positive definite. We can therefore

bound the sum

s2n(λ) + s2n−1(λ) ≥ λ2n−1(2τ Γ̃(ζ)− τO(||p||))− τO(||p||)

Which means that

s2n−1(λ) ≥ 2τλ2n−1(Γ̃(ζ))− 2τO(||p||)

Thus, since s2n−1(λ) ≥ s2n(λ), we get 2s2n−1(λ) ≥ s2n−1(λ)+s2n(λ) ≥ 2τλ2n−1(Γ̃(ζ))−

2τO(||p||) so we get

s2n−1(λ) ≥ τλ2n−1(Γ̃)− τO(||p||) (4.31)

186



So for ||p|| sufficiently small (and it turns out ||p|| ≤ ||ζ||
6β

suffices), we have

s2n−1(λ) ≥ τ

2
λ2n−1(Γ̃) (4.32)

On the other hand, we can bound s2n−1(λ) above since we know ||Hess(ϕ1(λ), λ)|| ≤

3β||ϕ1(λ)||2, we get

s2n−1(λ) ≤ 81

4
τ ||ζ||2 (4.33)

Now we can turn our attention to bounding the quantities in ρ2(λ) using lemma

4.5.17, We see that since
√

2−1
2

< 3
4
, we get

ρ2(λ) ≥
√

2− 1

2
min{B

A
,
C

B
} (4.34)

We analyze each of these cases separately.

We note that we can ignore one of the terms in B and bound using the esti-

mates we found above to get

B

A
≥ 4 · 63 · β3||ϕ1||3

27 · 36β2
≥ τ

3
2

1

9
||ζ||3β (4.35)

Similarly we can bound

C

B
≥

36β2s2
2n−1||ϕ1||2

4 · 63β3||ϕ1||3 + 18 · 36β2||ϕ1||s2n−1

Upperbounding and lowerbounding s2n−1(λ) and ||ϕ1(λ)|| using our estimates as
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appropriate gives us

C

B
≥ τ

3
2 ||ζ||3λ2n−1(Γ̃(ζ0))

729β + 486
(4.36)

Now note that min{β
9
, λ2n−1(Γ̃(ζ0))

729β+486
} = λ2n−1(Γ̃(ζ0))

729β+486
and since we are assuming

that λ2n−1(Γ̃(ζ0)) > 1 and β > 7⇒ 729β + 486 ≤ 1215β, we get the result.

From the previous two lemmas, we see that (under our assumptions and as-

suming ||p|| ≤ 1
6β
||ζ||, so ||p|| ≤ ||ζ||)a sufficient condition for satisfying the Gradient

Condition under our assumptions is

4β
||p||
||ζ||

+ 3β(
||p||
||ζ||

)2 + β(
||p||
||ζ||

)3 ≤
√

2− 1

2
· 1

1215β
(4.37)

Thus a sufficient condition for the Gradient Condition, is

||p|| ≤
√

2− 1

16

1

1215β2
||ζ|| (4.38)

Since
√

2− 1 ≥ 4
10

, we get

||p|| ≤ 1

48600β2
||ζ|| (4.39)

Now we note that since β > 7, then this automatically implies that ||p|| ≤ ||ζ|| and

||p|| ≤ 1
6β
||ζ||. Thus we define rcrit = 1

48600β2 ||ζ||. Thus we see that if λ2n−1(Γ̃(ζ0)) >

1 is satisfied, β > 7, and ||p|| < rcrit, then the Gradient Condition is satisfied and

the algorithm converges to a global minimizer.

Now we want to use the difference in ||Γ(ζ)−E(Γ(ζ))|| to get an upper bound

for ||p||. We work on this in two steps. Since p = η − ζ, we first do an estimate
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on ||η1 − ζ0||, where η1 = η
||η|| and ζ0 = ζ

||ζ|| . Then we work with the normalization

terms.

Theorem 4.5.19. ||η1 − ζ0|| ≤ 2
5
2 ||Γ0−E(Γ0)||op

2||ζ||2

η1 is a normalized eigenvector of Γ0. Similarly, ζ0 is an eigenvector of E(Γ0).

The result is now a consequence of the famous Davis–Kahan sin(Θ) theorem. A

proof of it can be found in [30].

Theorem 4.5.20. ||p|| ≤ ||ζ|| · ||η1 − ζ0||( β
〈Γ(η1)η1,η1〉 + 1)

Proof. Define η′ = ||ζ||η1. Then

||p|| = ||η − ζ|| · ||η − η′ + η′ − ζ||

≤ ||η − η′||+ ||η′ − ζ||

Now we want to estimate each of these terms. The term ||η′− ζ|| = ||ζ|| · ||η1− ζ0||.

For the term ||η− η′|| =
∣∣ √ λ1

〈Γ(η1)η1,η1〉 −||ζ||
∣∣. We write λ1 = 〈Γ(ζ)η1, η1〉 and

examine the fraction

〈Γ(ζ)η1, η1〉
〈Γ(η1)η1, η1〉

= ||ζ||2 〈(Γ(ζ0)− Γ(η1))η1, η1〉+ 〈Γ(η1)η1, η1〉
〈Γ(η1)η1, η1〉

= ||ζ||2
(〈(Γ(ζ0)−R(η1))η1, η1〉

〈Γ(η1)η1, η1〉
+ 1
)

≤ ||ζ||2
( ||Γ(η0)− Γ(η1)||
〈Γ(η1)η1, η1〉

+ 1
)

Substituting this back into the expression, and using the fact that
√

1 + ε < 1 + ε
2
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we see that

||η − η′|| ≤ ||ζ|| ·
(√
||Γ(ζ0)− Γ(η1)||
〈Γ(η1)η1, η1〉

+ 1− 1

)
≤ ||ζ|| ||Γ(ζ0)− Γ(η1)||

2〈Γ(η1)η1, η1〉

≤ ||ζ|| ||Γ(ζ0)− Γ(η1)||
2〈Γ(η1)η1, η1〉

We know that ||Γ(ζ0) − Γ(η1)|| ≤ β|||η1 − ζ0|| · ||η1 + ζ0|| ≤ 2β||η1 − ζ0||, so we see

that we get ||Γ(ζ0)− Γ(η1)|| ≤ 2β||η1 − ζ0||. Therefore

||η − η′|| ≤ ||ζ|| · β · ||η1 − ζ0||
〈Γ(η1)η1, η1〉

Putting it together, we see that

||p|| ≤ ||η − η′||+ ||η′ − ζ||

≤ ||ζ||β||η1 − ζ0||
〈Γ(η1)η1, η1〉

+ ||ζ|| · ||η1 − ζ0||

= ||ζ|| · ||η1 − ζ0||(
β

〈Γ(η1)η1, η1〉
+ 1)

What this shows is is that a sufficient condition for the Gradient Condition to

be true is

||η1 − ζ0|| ≤
1

48600β2

( 1
β

〈Γ(η1)η1,η1〉 + 1

)
(4.40)

Now we can estimate ||Γ(η1) − Γ(ζ0)|| ≤ 2β||η1 − ζ0||, so if ||η1 − ζ0|| ≤ 0.1
2β

then
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||Γ(η1)− Γ(ζ0)|| ≤ 0.1, so λn(Γ(η1)) ≥ 0.4. Therefore, we get

||η1 − ζ0|| ≤
1

48600β2

(0.4

2β

)
(4.41)

Therefore, assuming β > 7, λ2n(Γ(ζ0)) > 3, λ2n−1(Γ̃(ζ0)) > 0.5 we get a sufficient

condition for convergence is

||η1 − ζ0|| ≤
1

243000β3
(4.42)

Combining this with Theorem 4.5.19 gives the sufficient condition for convergence

||Γ(ζ0)− EΓ(ζ0)|| ≤ 1

2
3
2 · 243000β3

(4.43)

which gives us a sufficient condition of

||Γ(ζ0)− EΓ(ζ0)|| ≤ 1

687308β3
(4.44)

Now we want to know when the assumptions are satisfied. This is given to us

by the following lemma.

Lemma 4.5.21. Let C(0.1) be an upper bound and γ be a universal bound as defined

in the Concentration Theorem. Then for m ≥ C(0.1)nlog(n), we have β > 7.9 and

λ2n(Γ(ζ)) ≥ 3.9||ζ||2 with probability 1− 13
n2 − 10e−γn.

Proof. By the concentration of expectation, there exists a C > 0 such for m ≥

Cnlog(n), ||Γ(e) − E[Γ(e)]|| ≤ 0.1. Since λ1(E[Γ(e)]) = 8, we get that β ≥
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λ1(Γ(ζ0)) ≥ 7.9. Similarly, λ2n(E[Γ(e)]) = 4, so λ2n(Γ(ζ)) = ||ζ||2λ2n(Γ( ζ
||ζ||)) ≥

||ζ||2(4− 0.1) = 3.9||ζ||2.

We will often use the bounds β > 7 and λ2n(Γ(ζ)) > 3||ζ||2, and λ2n−1(Γ̃(ζ)) >

||ζ||2

Theorem 4.5.22 (Sufficient Convergence Result). Let δT = min{0.1, 1
687308β3} Then

if ||Γ(ζ0)− E[Γ(ζ0)]|| ≤ δT and λ2n−1(Γ̃(ζ)) > ||ζ||2 then the algorithm converges to

a global minimizer.

Proof. Since the algorithm converges to a global minimizer if ||p|| ≤ rcrit, or equiv-

alently equation 4.44, we see ||Γ(ζ0)−E[Γ(ζ0)]|| ≤ δT implies both the assumptions

and equation 4.44. Thus this is a sufficient condition for the Gradient Condition to

hold.

Theorem 4.5.23. Assume we are in the noiseless case, where fk are drawn from

a complex standard normal. Fix a nonzero ζ ∈ R2n to be the realification of the

generating signal. Choose a universal constant γ > log(9). Assume there are a

sufficiently high number of samples. That means that m ≥ max{Cnlogn, 64n3}.

Then the algorithm converges to a global minimizer with probability at least 1− 13
n2 −

10e−γn −
(
2n3 + 1

)
e−

3n
5

Proof. Let δ = δT
||ζ||2 be as above. Take C = C(δ, γ) from the concentration theorem,

Theorem 4.3.9. Now we apply this to Theorem 4.5.22. We also need λ2n−1(Γ̃(ζ)) >

||ζ||2, but this follows from a equivalent Concentration Theorem on Γ̃(ζ) as Theorem

4.3.9 for Γ(ζ). A proof of it can be seen as a concentration of the Hessian in
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[23]. Note that the Γ̃(ζ) concentration implies the concentration of Γ(ζ) (since

Γ(ζ) = Γ̃(ζ) + Γ̃(Jζ)). Now the last step is give bounds on β, specifically we can

show that if m = O(n3), then β < M with high probability. Now it follows that

β < M with the same probability argument that b0 < M in the real case, but n

becomes 2n from the N − net argument, and m becomes 2m from considering the

real and imaginary parts.

4.6 Following the Retriever: Complex Certifier

In this section, we give a numerical certificate that can be checked at each step

to certify that the next point in the algorithm is on the same path as the previous

point. This gives as adaptive step size which guarantees one is following the correct

path.

The idea behind the proof is to look at a cross section with one of the coordinate

directions and find an upper bound for how far the distance the path can go in a

single step, and then make sure there is no other critical point that is within the

upper bound’s distance.

To start, say we begin at the point X0 =

ξ0

λ1

 and we move to a new point

along column c, parameterized by t, such that Xc(t)−Xc,0 = t.

Let D = ||X(t)−X0||. Note that

D
dD

dt
=

1

2

d

dt
D2 = 〈dX

dt
,X(t)−X0〉
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Since we assume the new point is on the gradient path, it follows that since

∇ξΩ(ξ, λ) = Γ(ξ)ξ + λSξ − Γ0ξ = 0

then taking the derivative with respect to t, we get

Hess(ξ, λ)
dξ

dt
+ Sξ

dλ

dt
= 0 (4.45)

We also impose two more condition on the derivative, which is that dξ
dt
⊥ Jξ and

dXc(t)
dt

= 1.

If we define the (2n+ 1)× (2n+ 1) orthogonal extended hessian matrix by

Hext(ξ, λ) =

Hess(ξ, λ) Sξ

(Jξ)T 0

 (4.46)

Now we note that the conditions given above are imply

Hext(ξ, λ)

 dξ
dt

dλ
dt

 = Hext(ξ, λ)
dX

dt
= 0

Furthermore, define Hred:c to be the (2n+ 1)× 2n matrix gotten by removing

column c from Hext, call that column q. Furthermore, define Xred:c(t) to be X(t)

after removing row c.

Lemma 4.6.1. With the definitions above, we can bound |dD
dt
| ≤ ||q||

s2n(Hred:c)
+ 1

Proof. From the way that c is chosen, it follows that rank(Hred:c) = 2n.
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From the equation above, and the condition on the derivative, we get that

Hred:c
dXred:c

dt
+ 1 · q = 0 (4.47)

Since q is in the column space of Hred:c, we can project everything onto the columns

of Hred:c and get

HT
red:cHred:c

dXred:c

dt
= −HT

red:cq (4.48)

Therefore, we get that

dXred:c

dt
= −(HT

red:cHred:c)
−1HT

red:cq = −H†red:cq (4.49)

Where H†red:c is the pseudoinverse of Hred:c;

The pseudoinverse satisfies the following equality for v

Hred:cv + q = 0 (4.50)

and we know that the equation has a solution because q is in the column space of

Hred:c

Therefore, since the rank is 2n, we get that

s2n(Hred:c)||v|| ≤ ||q|| (4.51)
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from which we get that

||H†red:cq|| ≤
||q||

s2n(Hred:c)
(4.52)

Therefore, we get that

D|dD(t)

dt
| = |1

2

d

dt
D2| = |〈dX

dt
,X(t)−X0〉|

= |〈dXred:c

dt
,Xred:c(t)−Xred:c,0〉+ t|

≤ |〈−H†red:cq,Xred:c(t)−Xred:c,0〉|+ |t|

≤ ||H†red:cq|| · ||Xred:c(t)−Xred:c,0||+ |t|

≤ ||q||
s2n(Hred:c)

D +D

Dividing by D gives us the desired result.

Now we follow the steps for the real certifier.

Lemma 4.6.2. Assume ||Hext−Hext,0|| ≤ smin(Hred:c,0)

2
. Then D(t) ≤ (2+2 ||Hext,0||

s2n(Hred:c,0)
)t

Proof. First we note find some upper bounds on ||q||.

By Weyl’s inequalities ([29]), we know

||q|| ≤ ||Hext||op ≤ ||Hext −Hext,0||+ ||Hext,0|| (4.53)

Therefore, by our assumptions, we have that

||q|| ≤ smin(Hred:c,0)

2
+ ||Hext,0|| (4.54)
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Also by Weyl’s inequalities, we have that

s2n(Hred:c) ≥ s2n(Hred:c,0)− ||Hred:c −Hred:c,0|| (4.55)

Since

||Hred:c −Hred:c,0|| ≤ ||Hext −Hext,0|| (4.56)

We get

s2n(Hred:c) ≥ s2n(Hred:c,0)−||Hext−Hext,0|| ≥ s2n(Hred:c,0)−s2n(Hred:c,0)

2
=
s2n(Hred:c,0)

2

Putting these together, we get that

|dD
dt
| ≤ ||q||

s2n(Hred:c)
+ 1 ≤

2(
smin(Hred:c,0)

2
+ ||Hext,0||) + 1

smin(Hred:c,0)
+ 1

= (2 + 2
||Hext,0||
s2n(Hred:c)

)

Now if we examine the integral

|
∫ T

0

dD

dt
dt| ≤

∫ T

0

(2 + 2
||Hext,0||

s2n(Hred:c,0)
)dt = (2 + 2

||Hext,0||
s2n(Hred:c,0)

)T

On the other hand, we can evaluate it directly and we get

|
∫ T

0

dD

dt
dt| = |

∫ D(T )

0

1dD| = D(T )
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Therefore, as desired, we get that

D(t) ≤ (2 + 2
||Hext,0||

s2n(Hred:c,0)
)t (4.57)

Now we want to provide a condition on t for when the assumption ||Hext −

Hext,0|| ≤ s2n(Hred:c,0)

2
is true. Define A = (2 + 2 ||Hext,0||

s2n(Hred:c,0)
), and

t+ = −(
6β||ξ0||+ ||S||+ 1

6βA
) +

√
(
6β||ξ0||+ ||S||+ 1

6βA
)2 +

s2n(Hred:c,0)

6βA2
(4.58)

Lemma 4.6.3. For t < t+, ||Hext −Hext,0|| ≤ s2n(Hred:c,0)

2

Proof. Let us first examine ||Hext −Hext,0||. We know that

||Hext −Hext,0|| = ||

Hess(ξ(t), λ(t))−Hess(ξ0, λ0) S(ξ(t)− ξ0)

(J(ξ(t)− ξ0))T 0

 ||

≤ ||Hess(ξ(t), λ(t))−Hess(ξ0, λ0)||+ ||S|| · ||ξ(t)− ξ0||+ ||ξ(t)− ξ0||

Now we can use the bound on the difference of the Hessians (derived in Corol-

lary 4.2.9) to bound

||Hess(ξ(t), λ(t))−Hess(ξ0, λ0)|| ≤ 3β(2||ξ0||+D)D (4.59)
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This gives us a upperbound on the difference of the extended Hessians

||Hext −Hext,0|| ≤ 3β(2||ξ0||+D)D + (||S||+ 1)D (4.60)

So we want a value of t for which

3β(2||ξ0||+D)D + (||S||+ 1)D ≤ s2n(Hred:c)

2
(4.61)

Substituting the bound for D(t) = At, for A = (2 + 2 ||Hext,0||
s2n(Hred:c,0)

) we get that

D2 + (
6β||ξ0||+ ||S||+ 1

3β
)D − s2n(Hred:c,0)

6β
≤ 0

A2t2 + (
6β||ξ0||+ ||S||+ 1

3β
)At− s2n(Hred:c,0)

6β
≤ 0

= t2 + (
6β||ξ0||+ ||S||+ 1

3βA
)t− s2n(Hred:c,0)

6βA2
≤ 0

Therefore, for t less than the positive root of this quadratic gives us the bound we

would like. Therefore, define t+ to be the first root, so

t+ = −(
6β||ξ0||+ ||S||+ 1

6βA
) +

√
(
6β||ξ0||+ ||S||+ 1

6βA
)2 +

s2n(Hred:c,0)

6βA2
(4.62)

and for t < t+, the condition is satisfied. To justify the substitution, we note that

the same proof used in the real case also works here.

What we have shown so far is that for t < t+, D(t) ≤ (2 + 2 ||Hext,0||
s2n(Hred:c,0)

)t. Now

that we have found an upper bound on the distance, we need to make sure there is
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no other critical point within this distance. The following theorem will be useful in

showing this.

Theorem 4.6.4. Let X = (a, λa) be a critical point of Ω(x, λ), set Hessext(a, λa) =[
Hess(a, λa) Sa

]
and define

ρ(a, λa) = min(
1

2
,

s2n−1(Hessext(a, λa))√
2n+ 1(β||a||3 + 3β||b||2||a||+ ||S||)

) (4.63)

Then there is no other critical point X1 such that X1(c) = X(c) and ||X1(c) −

X(c)|| ≤ ρ. In other words, ρ serves as a lower bound for a distance to the nearest

critical point on the same X1(c) = X(c) hyperplane.

Proof. Let (a, λa) be a critical point, and let (b, λb) be a unit vector such that

(b, λb)c = 0, and that (b, λb) ⊥ (Ja, 0). Assume that (a, λa) + r(b, λb) is another

critical point, for some scalar r

We first expand out

F (a+ tb, λa + tλb)

Standard computations show that

F (a+ tb, λa + rλb) = F (a, λa) + r(

[
Hess(a, λa) Sa

] b
λb

)

+r2(Γ(b)a+ 2Γ̃(b)a) + λbSb+ r3(Γ(a)a)
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Since (a, λa) is a critical point, F (a, λa) = 0, so

0 = F (a+rb, λa+rλb) = r(

[
Hess(a, λa) Sa

] b
λb

)+r2(Γ(b)a+2Γ̃(b)a)+λbSb+r
3(Γ(a)a)

Let rG(r) = ||F (a + rb, λa + rλb)|| = 0, and we want to find the smallest

nonzero value for r.

Define v1 = Γ(a)a, v2 = (Γ(b)+2Γ̃(b))a+λbSb and v3 =

[
Hess(a, λa) Sa

] b
λb


Now let’s get estimates on each. We have

||v1|| = ||Γ(a)a|| ≤ ||a||3||Γ(
a

||a||
)|| ≤ β||a||3 (4.64)

Similarly we get

||v2|| = (Γ(b) + 2Γ̃(b))a+ λbSb|| ≤ ||(Γ(b) + 2Γ̃(b))a||+ ||S|| ≤ 3β||a|| · ||b||2 + ||S||

(4.65)

Lastly, we want to show that

||v3|| ≥
s2n−1(Hessext)√

2n+ 1
(4.66)
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To do so, note that

||v3||2 = ||(Hessext(a, λa)

 b
λb

)||2

= 〈(Hessext(a, λa)

 b
λb

), (Hessext(a, λa)

 b
λb

)〉

Now let v =

 dξ
dt

dλ
dt

 be the null vector of the extended Hessian, and decompose

 b
λb

 = c1v + w, where w ∈ span(v)⊥.

||v3||2 = 〈(Hessext(a, λa)

 b
λb

), (Hessext(a, λa)

 b
λb

)〉

= 〈(Hessext(a, λa)w), (Hessext(a, λa)w〉

= 〈(Hessext(a, λa)T )(Hessext(a, λa)w,w〉

= λ2n−1(Hessext(a, λa)
THessext(a, λa))||w||2

≥ s2
2n−1(Hessext(a, λa)) min

||e||=1,ec=0
||projspan(v⊥)(b, λb)||2

Note that the null vector v here is normalized so that vc = 1, as c is chosen so that

vc it is the largest component.

To estimate this, define ẽ to be e without the c’th component, and ṽ as v

without the c’th component. Now note we are trying to minimize the projection
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onto the complement of v, so we get

min
||e||=1,ec=0

||e− 〈e, v〉
||v||2

v||2 = ||ẽ− 〈ẽ, ṽ〉
1 + ||ṽ||2

ṽ||2 + (
〈ẽ, ṽ〉

1 + ||ṽ||2
vc)

2

≤ 〈ẽ− 〈ẽ, ṽ〉
1 + ||ṽ||2

ṽ, ẽ− 〈ẽ, ṽ〉
1 + ||ṽ||2

ṽ〉+ (
〈ẽ, ṽ〉

1 + ||ṽ||2
)2

= 1− 2
〈ẽ, ṽ〉2

1 + ||ṽ||2
+

〈ẽ, ṽ〉2

(1 + ||ṽ||2)2
||ṽ||2 + (

〈ẽ, ṽ〉
1 + ||ṽ||2

)2

= 1 +
〈ẽ, ṽ〉2

1 + ||ṽ||2
− 2

〈ẽ, ṽ〉2

1 + ||ṽ||2

= 1− 〈ẽ, ṽ〉2

1 + ||ṽ||2

≥ 1− ||ṽ||2

1 + ||ṽ||2
by Cauchy Schwarz

=
1

||ṽ||2 + 1
≥ 1

2n+ 1
since 1 is the largest component in a size 2n vector

Therefore, we see that

||v3|| ≥ s2n−1(Hessext(a, λa)) ·
1√

2n+ 1
(4.67)

Using these three bounds, we want to estimate the nearest root of

||v3|| − |r|||v2|| − |r|2||v1|| (4.68)

If the root is farther than 1
2

(so r > 1
2
), then 1

2
is a lower bound on the root.

Otherwise, the root is closer than 1
2
, so the slope of the function is dominated by

the slope at 1
2

(since it is a quadratic with negative slope at 0). The slope at 1
2

is

given by M = −||v1|| − ||v2||.
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Now if we go back and estimate the zero of the line passing through (0, a) with

slope M = −||v1|| − ||v2||, we get that the root is at rroot = ||v3||
||v1||+||v2|| .

Therefore ||v3||
||v1||+||v2|| is a bound on the closest root.

Now since 0 = G(r) ≥ ||v1|| − |r| · ||v2|| − |r|2||v3||, so we know that r ≥

min(1
2
, ||v3||
||v1||+||v2||), so from our bounds we get

||v3||
||v1||+ ||v2||

≥ s2n−1(Hessext)√
2n+ 1(β||a||3 + 3β||b||2||a||+ ||S||)

(4.69)

So we got the desired bounds.

Theorem 4.6.5. Assume our algorithm starts at a point (ξold, λold) which is a crit-

ical point. Let (ξnew, λnew) be a new point the algorithm decides and (ξother, λother)

be any other critical point. Let D1 denote the distance from (ξold, λold) to (ξnew, λnew)

and D2 denote the distance from (ξold, λold) to (ξother, λother). Let t1 = ρ(ξnew,λnew)

2(2+2
||Hext,0||

s2n(Hred:c,0)
)

and tmax = min(t1, t+), and UB(t) = (2 + 2 ||Hessext,0||
s2n(Hred:c,0)

)t, and ρ(·) be the expression

defined in the previous theorem.

Assume the following two conditions are satisfied:

1. D1 <
ρ(ξnew,λnew)

2

2. t < tmax

Then (ξnew, λnew) is the point connected on the continuous path defined by the

zero of the gradient passing through (ξold, λold).
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Proof. Assume (ξother, λother) is a critical point on the path instead of (ξnew, λnew).

Then, since t < tmax < t+, we have that

||(ξother, λother)− (ξold, λold)|| ≤ UB(t) (4.70)

Since t < t1, we get that UB(t) < ρ(ξnew,λnew)
2

, so

||(ξother, λother)− (ξold, λold)|| ≤
ρ(ξnew, λnew)

2
(4.71)

Also, since D1 <
ρ(ξnew,λnew)

2
we get that

||(ξnew, λnew)− (ξother, λother)|| ≤ ||(ξnew, λnew)− (ξold, λold)||+ ||(ξold, λold)− (ξother, λother)||

<
ρ(ξnew, λnew)

2
+
ρ(ξnew, λnew)

2
= ρ(ξnew, λnew)

but this is a contradiction, because any other critical point must be a distance

further that ρ(ξnew, λnew) away from (ξnew, λnew).

Therefore, the only possible point on this level set that is the point passing

through the continuous path is (ξnew, λnew).

4.7 Oracle Convergence

Given an Oracle, we can ask the following question, equivalent to the question

in the real case: Does there exist a positive hermitian semidefinite matrix Q such

that the Golden Retriever algorithm converges to the exact solution?

205



The answer, again, is yes. As before, we can make the algorithm converge to

any critical point we want.

Lemma 4.7.1. Let v be a critical point of Ω(ξ, λ) and let Γ0 be the matrix in

the condition, there exists a positive definite hermitian matrix Q with realification

S 6= Γ0 satisfying the following properties:

• Sv = Γ0v

• The determinant of the pencil, det(λS−Γ0) has generalized eigenvalues which

satisfy: λ ≤ 1

• The generalized eigenvalue around λ = 1 has a corresponding eigenvector v,

and has dimension 2

Proof. The proof is by construction.

Define:

S1 =
Γ0

(
vvT + (Jv)(Jv)T

)
Γ0

〈Γ0v, v〉
(4.72)

Note that S1v = Γ0v (since 〈JΓ0v, v〉 = 0). S1 is a rank two matrix, so we want

to make it full rank. Note that S1 is symmetric, and is the realification of some

hermitian matrix Q1 since S1J = JS1.

Set

S = S1 + µ(I − vvt

||v||2
− (Jv)(Jv)t

||v||2
) (4.73)

Note that Sv = Γ0v still.

At this point, we constructed a family of symmetric matrices S such that
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Sv = Γ0v. The only thing left to do is to make 1 be the largest generalized eigenvalue

here.

To do so, let µ1 = λmax(Γ0 − S). The claim is that for any µ > µ1, that S

would satisfy the pencil criterion.

To justify this, S = S1 +µS0, what we need is S ≥ Γ0 (because λS−Γ0 would

be positive definite for λ ≥ 1)

S = S1 + µS0 ≥ Γ0

µS0 ≥ Γ0 − S1

µI ≥ Γ0 − S1

1 ≥ 1

µ
(Γ0 − S1)

The reason the identity appears is because S0 = (I − vvt

||v||2 −
(Jv)(Jv)t

||v||2 ). We already

know that for v, the generalized eigenvalue is λ = 1. We now get S0 acts as the

identity on the orthogonal complement.

Therefore, for µ > λmax(Γ0 − S1), we have that λ ≤ 1.

Therefore a S with the listed properties exists and is constructible.

Theorem 4.7.2. There exists a matrix Sv such that if the Golden Retriever is

initialized with the given Sv, then the algorithm converges to the critical point v.

Proof. Let S be as in the previous lemma. we examine the path ∇xΩ(ξ, λ) =
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(Γ(ξ) + λS − Γ0)ξ where ξ = cv.

0 = (Γ(cv) + λS − Γ0)cv

0 = c3Γ(v)v + cλSv − cΓ0v

0 = c2Γ(v)v + λSv − Γ0v

Now since Γ(v)v = Γ0v (v is a critical point at λ = 0), and Sv = Γ0v, and Γ0v 6= 0

(since Γ0v = Γ(v)v and Γ(v) is positive definite) then we have the following

0 = c2Γ(v)v + λSv − Γ0v

0 = (c2 + λ− 1)Γ0v

c2 = (1− λ)

c =
√

1− λ

The last line is effectively choosing one of the two equivalent paths. Therefore, if we

initialize the algorithm with the given S matrix, and initialize the direction along

the principal eigenvector, v, we have that the algorithm will follow the critical path:

(ξ(λ), λ) =
(
(
√

1− λ)v, λ
)

The theorem above, when applied to v = z, a global minimizer, shows that

there exists a S which guarantees that the algorithm converges. This gives us the

following theorem as a corollary.

Theorem 4.7.3. Let ζ be the minimizer to the optimization problem in (2.2). There
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exists a positive definite matrix Sz such that the Golden Retriever Algorithm, ini-

tialized with Sz, converges to S. Moreover, the trajectory of the homotopy path with

Sz, when projected onto λ = 0, follows a straight line.

However, it is worth noting that to construct such a Q, we will need to know

z, so Q can only be given by an oracle.
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Appendix A: Useful Identities and Derivations

A.1 Useful Identities

To derive the equations we used, there are several vector calculus identities we

needed. Here we give a brief derivation of those identities. These identities can be

found in many places (such as [33]).

Lemma A.1.1. ∇x〈x, f〉 = f

Proof. ∇x(〈x, f〉) = ∇x(x1f1 + ...+ xmfn).

Therefore: ∇x(〈x, f〉)i = fi ⇒ ∇x(〈x, f〉) = f

Corollary A.1.2. ∇x〈Ax, f〉 = ATf

Proof. ∇x〈Ax, f〉 = ∇x〈x,ATf〉. Now we can apply the above lemma.

Lemma A.1.3. ∇x〈Ax, x〉 = (AT + A)x

Proof. Note that (Ax)i =
∑

k Aikxk, then we have that 〈Ax, x〉 =
∑

i

∑
k Aikxkxi

Therefore, we have that:
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∇x〈Ax, x〉m =
∂

∂xm

∑
i

∑
k

Aikxkxi

=
∑
i

∑
k

Aik
∂

∂xm
(xkxi)

=
∑
i

∑
k

Aik
∂

∂xm
(xk)xi +

∑
i

∑
k

Aikxk
∂

∂xm
(xi)

=
∑
i

Aimxi +
∑
k

Amkxk =

=
∑
i

ATmixi +
∑
k

Amkxk

= (ATx)m + (Ax)m = [(AT + A)x]m

Since this is true for each fixed m, it follows that ∇x〈Ax, x〉 = (AT + A)x

We immediately get the following corollary.

Corollary A.1.4. If A is symmetric, then ∇x〈Ax, x〉 = 2Ax

Lemma A.1.5. ∇x(c(x)v) = v ⊗∇x(c(x)) + c(x)∇xv

Proof. First we need to define what it means to take a gradient of a vector field. In

rectangular coordinates, the gradient of a vector field ∇xf = ∂f i

∂xj
ei ⊗ ek (see [33]).

Note that in general, one can put in a metric tensor component, but for us gjk is

the metric tensor components for usual Euclidean space, so gjk = δjk.

Therefore, we have the following:
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∇x(c(x)v) =
∑
i

∑
j

∂c(x)vi
∂xj

ei ⊗ ej

=
∑
i

∑
j

vi
∂(c(x))

∂xj
ei ⊗ ej + c(x)

∑
i

∑
j

∂(vi)

∂xj
ei ⊗ ej

=
∑
i

viei ⊗
∑
j

∂(c(x))

∂xj
ej + c(x)

∑
i

∑
j

∂(vi)

∂xj
ei ⊗ ej

= v ⊗∇x(c(x)) + c(x)∇xv

Lemma A.1.6. ∇x(Ax) = A

Proof. Note we have that (Ax)i =
∑

k Aikxk.

Now again, we have that, by the definition of the gradient of a vector above:

∇x(Ax) =
∑
i

∑
j

∂(Ax)i
∂xj

ei ⊗ ej

=
∑
i

∑
j

∂
∑

k Aikxk
∂xj

ei ⊗ ej

=
∑
i

∑
j

Aijei ⊗ ej

= A
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A.2 Simple Properties of Matrices

Lemma A.2.1. If λI − A is positive definite, then λ > eigmax(A)

Proof. Since λI −A is positive definite, then xT (λI −A)x > 0 for all x 6= 0, so take

x = vmax(A), the eigenvector corresponding to the largest eigenvalue, e.

Then 0 < vT (λI − A)v = λvTv − vTAv = λvTv − vT ev = (λ − e)vTv =

(λ− e)||v||2.

Therefore 0 < λ− e, and we get λ > e.

Lemma A.2.2. If A is symmetric and λ > eigmax(A), then λI − A is positive

definite.

Proof. Since A is a symmetric matrix, then being positive definite is equivalent to

every eigenvalue being positive.

A vector v is an eigenvector of (λI − A) if and only if it is an eigenvector for

A since if (λI−A)v = λv−Av = cv, we can rearrange to have Av = (λ− c)v. Let e

be the corresponding eigenvalue for A (e = λ− c). Then the eigenvalue for (λI−A)

is given by λ − e, which is minimized when e is the largest eigenvalue of A. Since

λ > eigmax(A), we have that (λI − A) is positive definite.
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A.3 Constants in Concentration Lemma

In this section, we sketch some of the probabilistic results used in the Concen-

tration Theorems in the Thesis.

Proposition A.3.1. If erfc(z) ≤ e−z
2
, we get that P(|v1| ≥ L) ≤ e

−L2

2

Proof. Recall that erfc(z) = 1− 2√
π

∫ z
0
e−t

2
dt, so if we now examine

P(|v1| ≥ L) = 1− P(|v1| ≤ L) = 1− 1√
2π

∫ L

−L
e−

x2

2 dx (A.1)

= 1−
√

2√
π

∫ L

0

e−
x2

2 dx (A.2)

Now making the substitution x =
√

2t, we get

1− 2√
π

∫ L√
2

0

e−t
2

dt = erfc(
L√
2

) ≤ e
−L2

2 (A.3)

In the next propositions, we will show the upperbounds which were claimed

in Theorem 3.2.7

Proposition A.3.2. A sufficient upper bound for Hoeffding’s inequality in Theorem

3.2.7 is given by C1 = 2
√

γ
δ0

Proof. Let Xk = 〈f̃k, ỹ〉, and ak = v3
k. Then E[Xk] = 0 and V ar(Xk) = ||ỹ||2.

Therefore, Xk ∼ N (0, ||ỹ||). Therefore, V ar(
∑m

k=1 akXk) =
∑m

k=1 v
6
k||ỹ||2. There-
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fore,

P = P(|
m∑
k=1

akXk| ≥ mδ0||ỹ||) = P
(
|
∑m

k=1 akXk|√∑m
k=1 v

6
k||ỹ||2

≥ mδ0√∑m
k=1 v

6
k

)

Applying the tail bound for the cdf of a normal distribution gives us

P ≤ 2exp(
−1

2

m2δ2
0∑m

k=1 v
6
k

)

. Now choosing m = C1

√
n
∑m

k=1 v
6
k, we get

P ≤ 2exp(
−1

2
C2

1nδ02) ≤ 3exp(
−1

2
C2

1nδ02)

To ensure this is less than 3exp(−2γn), it is sufficient to take γ = 1
4
C2

1δ
2
0, so C1 =

2
√
γ

δ0

Proposition A.3.3. A sufficient upper bound for Bernsteins’s inequality in Theo-

rem 3.2.7 is given by C0 = max{
√

40/3
√

γ
δ0
, 16 γ

δ0
}

Proof. We do a direct computation of the probability. Let Xk = (〈ỹ, fk〉2 − ||ỹ||2).

Then we want to compute

P = P(
m∑
k=1

v2
kXk ≥ mδ0||ỹ||2) = P(exp(λ

∑
k

vkXk) ≥ exp(mλδ0||ỹ||2))
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Now, by Markov’s inequality, this is less than

infλ>0e
−mδ0||ỹ||2E[eλ

∑m
k=1 v

2
kXk ] = infλ>0e

−mδ0||ỹ||2
m∏
k=1

E[eλv
2
kXk ]

Let µ = λv2
k, then a computation shows Computing

E[eλv
2
kXk ] =

e−µ||ỹ||
2√

1− 2µ||ỹ||2

Therefore we get that

P ≤ E(λ) := infλ>0
exp(−mλδ0||ỹ||2 − λ

∑
k v

2
k||ỹ||2)∏m

k=1(1− 2λv2
k||ỹ||2)

1
2

Choose a 0 < c0 < 1, then define β = 1
2

+ 1
3

c0
1−c0 . Now

1

1− x
≤ ex+βx2

for 0 ≤ x ≤ c0 < 1

Therefore

1√
1− x

≤ e
x
2

+ 5x2

12 for 0 ≤ x ≤ 1

2

Therefore

E(λ) ≤ exp{−λ||ỹ||2(mδ0 +
m∑
k=1

v2
k) + λ||ỹ||2

∑
k

v2
k +

5

12

∑
k

4λ2v4
k||ỹ||4}

= exp{−mδ0||ỹ||2λ+
5||ỹ||4

3

∑
k

v4
kλ

2}
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Define Q(λ) to be the exponent

Q(λ) = −mδ0||ỹ||2λ+
5||ỹ||4

3

∑
k

v4
kλ

2

The root of the quadratic in λ is given by λ1 = 3
10

mδ0∑
k v

4
k||ỹ||2

. We also need 2λv2
k||ỹ||2 ≤

1
2
, so we get that we must have λ ≤ 1

4||ỹ||2v2
k
≤ 1

4||ỹ||2 maxk v
2
k

:= λ2

Thus we can take

λ = min{ 1

4||ỹ||2 maxk v2
k

,
3

10

mδ0

||ỹ||2
∑

k v
4
k

}

Now we examine the upper bound for E(λ) with these parameters.

We have Q(λ1) = − 3
20

m2δ2
0∑

k v
4
k

and if λ2 < λ1 then
∑
k v

4
k

maxk v
2
k
≤ 12

10
mδ0, thus Q(λ2) =

mδ0
4 maxk v

2
k
− 5

48

∑
k v

4
k

maxk v
2
k
≥ mδ0

8 maxk v
2
k

Therefore, we have

P ≤ E(λ) ≤ max

(
exp{−3

20

m2δ2
0∑

k v
4
k

}, exp{ −mδ0

8 maxk v2
k

}
)

Now if we match the exponents to−2γn, we get that C0 = max{
√

40/3
√
γ

δ0
, 16 γ

δ0
}

A.4 Probabilistic Bounds on b0

In this section, we show a lemma which gives an upper bound on b0.

Lemma A.4.1. For m ≥ 64n3, the probability that b0 > 64 is less than (m +

1)exp(−(2− log(5))m
1
3 )
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Proof. By definition,

b0 = max
||x||=1

m∑
k=1

〈x, fk〉4

Define a positive constant t. We are looking for an upper bound on the probability

P{b0 > t} (A.4)

We are looking for

(b0m)
1
4 = ||T ||2→4 = sup

||x||=1

||Tx||4 (A.5)

Let N be an r-net in Rn. Thus for some x0 ∈ Sn−1

||T ||2→4 = max
||x||=1

||Tx||4 = ||Tx0|| (A.6)

This in turn is equal to

||T (x0 − x̃) + T x̃||4 ≤ ||T x̃||4 + ||T (x0 − x̃)||4 (A.7)

≤ max
x∈N
||Tx||4 + ||T ||2→4 · r (A.8)

Thus implies, after rearranging

||T ||2→4 ≤
1

1− r
(max
x∈N
||Tx||4) (A.9)

Thus we get

b0 ≤ (
1

1− r
)4 max

x∈N
(

1

m

m∑
k=1

〈x, fk〉4) (A.10)
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Thus P{b0 > t} ≤ P{∃x ∈ N : 1
m

∑m
k=1〈x, fk〉4 > (1− r)4t} This in turn is less than

≤ |N |P{ 1

m

m∑
k=1

v4
k > (1− r)4t} ≤ (1 +

2

r
)nP{

∑
k

v4
k > m(1− r)4t} (A.11)

Now we do a similar bound to what we did in the Concentration Lemma, where we

limit the quantity by some upper bound L, then use the upper bound on erfc(z)

and Bernstein’s Inequality to get

P{b0 > t} ≤
(
me

−L2

2 + exp{−1

2

m
(
(1− r)4t− 3

)2

105 + 1
3
L4
(
(1− r)4t− 3

)})(1 +
2

r
)n (A.12)

Now choose r = 1
2

and assume 2
3
L4( t

16
− 3) ≥ 105. Then we get

P{b0 > t} ≤
(
me

−L2

2 + exp{−1

2

m
(
t

16
− 3
)

L4

)
5n (A.13)

Choosing L =
(
m( t

16
− 3)

) 1
6 gives us

P{b0 > t} ≤ (m+ 1)exp{−1

2

(
m[(

t

16
)− 3]

) 1
3}5n (A.14)

When t = 64, and t
16
− 3 = 1, we get

P{b0 > 64} ≤ (m+ 1)exp{−m
1
3

2
}5n (A.15)

If m ≥ 64n3, this gives us the bound in the statement of the lemma. Note that we

made an assumption that L4 ≥ 3
2
· 105⇒ m

2
3 ≥ 3

2
· 105, so m ≥ 1977 (if m = 64n3,
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this would mean n ≥ 4).
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