
ABSTRACT

Title of dissertation: ROBOT PLANNING IN ADVERSARIAL
ENVIRONMENTS USING TREE SEARCH
TECHNIQUES

Zhongshun Zhang, Doctor of Philosophy, 2021

Dissertation directed by: Dr. Pratap Tokekar
Department of Computer Science

One of the main advantages of robots is that they can be used in environments that are

dangerous for humans. Robots can not only be used for tasks in known and safe areas

but also in environments that may have adversaries. When planning the robot’s actions in

such scenarios, we have to consider the outcomes of a robot’s actions based on the actions

taken by the adversary, as well as the information available to the robot and the adver-

sary. The goal of this dissertation is to design planning strategies that improve the robot’s

performance in adversarial environments. Specifically, we study how the availability of in-

formation affects the planning process and the outcome. We also study how to improve the

computational efficiency by exploiting the structural properties of the underlying setting.

We adopt a game-theoretic formulation and study two scenarios: adversarial active tar-

get tracking and reconnaissance in environments with adversaries. A conservative approach

is to plan the robot’s action assuming a worst-case adversary with complete knowledge of

the robot’s state and objective. We start with such a “symmetric” information game for

the adversarial target tracking scenario with noisy sensing. By using the properties of

the Kalman filter, we design a pruning strategy to improve the efficiency of a tree search

algorithm. We investigate the performance limits of the asymmetric version where the ad-

versary can inject false sensing data. We then study a reconnaissance scenario where the

robot and the adversary have symmetric information. We design an algorithm that allows

a robot to scan more area while avoiding being detected by the adversary. The symmetric

adversarial model may yield too conservative plans when the adversary may not have the

same information as the robot. Furthermore, the information available to the adversary

may change during execution. We then investigate the dynamic version of this asymmetric

information game and show how much the robot can exploit the asymmetry in informa-

tion using tree search techniques. Specifically, we study scenarios where the information

available to the adversary changes during execution. We devise a new algorithm for this

asymmetric information game with theoretical performance guarantees and evaluate those

approaches through experiments. We use qualitative examples to show how the new algo-

rithm can outperform symmetric minimax and use quantitative experiments to show how

much the improvement is.

ROBOT PLANNING IN ADVERSARIAL ENVIRONMENTS USING
TREE SEARCH TECHNIQUES

by

Zhongshun Zhang

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2021

Advisory Committee:
Dr. Pratap Tokekar, Chair/Advisor
Dr. Jeffrey W. Herrmann, Dean’s Representative
Dr. Dinesh Manocha
Dr. Edmund H. Durfee
Dr. Huaishu Peng

c© Copyright by
Zhongshun Zhang

2021

Dedication

To my dearest mother, Sufang Zhong.

ii

Acknowledgments

Six years ago, I was fortunate to get the opportunity to cross the pacific and start my

Ph.D. journey on the other side of the earth. During these six years, I have experienced

difficulties in academic research, cultural difference, and the frustration of being rejected.

Luckily, with enormous help and support from my advisor, family, and friends, I overcame

all the difficulties and achieved the goal I set six years ago.

First of all, I would like to thank my advisor, Dr. Pratap Tokekar. I still remember the

afternoon when I first talk with him at Virginia Tech, and I was lucky to become the first

Ph.D. student in our lab. During the next five years, I can not remember how many times

he instructed me to revise a paper to midnight, advised me to analyze a research problem

in detail, and help me to improve my presentation tirelessly for all my oral exams. Without

his support and instruction, I could not accomplish what I have presented today. I will keep

my gratitude and what I learned from him for the rest of my life.

I would also like to extend my thanks to my committee members: Prof. Edmund H.

Durfee, Prof. Dinesh Manocha, Prof. Jeffrey Herrmann, and Prof. Huaishu Peng for all the

comments and suggestions they shared with me. Without their insightful suggestions, this

dissertation would not be in its current shape.

Through my research projects, I was lucky to meet my corroborators in different projects.

It was my honor to work with Prof. Edmund H. Durfee, Dr. Jonathon Smereka, Dr. Joseph

Lee, and Rob Brady on the project supported by the Automotive Research Center (ARC).

They provide me valuable suggestions almost every week during our collaboration. I will

miss the morning during the past two years that we discuss the problem in detail. I am also

inspired and benefit from my corroboration with my lab mates from Dr. Lifeng Zhou, Dr.

Yoonchang Sung, Jingxi Chen, and Amrish Baskaran. I appreciate the time and opportunity

to work together with these young scientists.

iii

In addition, I got valuable feedback to improve my oral exam during my preliminary

exam and final defense. I would like to thank Guangyao Shi, Lifeng Zhou, and Jun Liu for

their time and help.

I had wonderful four years at Virginia Tech in a cheerful group with Ashish, Aravind,

Kevin, Lifeng, Yoonchang, Tianshu, Maymoonah, Deeksha, Varun, and Harnaik. Also,

another two unforgettable years in Maryland to meet Guangyao, Jingxi, Peihong, Amrish.

At the end of my Ph.D. episode, I would like to express my deepest appreciation to

my loved parents, Chongcai Zhang and Sufang Zhong. No matter where I am, I know you

will support me with your unconditional love. This dissertation is dedicated to my mother,

Sufang Zhong, and in memory of her.

iv

Table of Contents

Dedication ii

Acknowledgements iii

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 2

1.2.1 Availability of information . 3
1.2.2 Computational complexity . 5

1.3 Contributions . 5
1.3.1 Target Tracking . 5

1.3.1.1 Symmetric Adversarial Target Tracking 6
1.3.1.2 Asymmetric False Data Injection 7

1.3.2 Visibility-based Reconnaissance 8
1.3.2.1 Symmetric Adversarial Planning 8
1.3.2.2 Asymmetric Adversarial Planning 9

1.4 Organization . 10

2 Symmetric Adversarial Target Tracking with Distance-Dependent Measurement
Noise 11
2.1 Introduction . 11
2.2 Related Work . 13
2.3 Problem Formulation . 16
2.4 The minimax algorithm and pruning techniques 23

2.4.1 Alpha-Beta Pruning . 25
2.4.2 Algebraic Redundancy Pruning . 25
2.4.3 Sub-optimal Pruning algorithm . 34
2.4.4 Online Execution of the Search Tree 37
2.4.5 Trajectory Optimization . 40

2.5 Simulations . 41
2.5.1 Comparisons with Baseline Approaches 42

v

2.5.2 Comparing the Number of Nodes 46
2.5.3 Comparing the Sub-optimal Pruning algorithm 48
2.5.4 Trajectory Optimization . 51

2.6 Experiments . 52
2.7 Summary . 56

3 A False Data Injection Strategy to Mislead Kalman filter 58
3.1 Introduction . 58
3.2 Problem Formulation . 61

3.2.1 Offline Spoofing Signal Design with Known N (m0,Σ0) 63
3.2.2 Offline Spoofing Signal Design with Unknown N (m0,Σ0) 64

3.3 Signal Spoofing Strategies . 65
3.3.1 Linear Programming Formulation for L1 Vector Norm 69
3.3.2 Quadratically Constrained Quadratic Program Formulation for L2

Vector Norm . 71
3.3.3 Receding Horizon: Spoofing with online measurement 72

3.4 Simulations . 73
3.5 Signal spoofing with failure detector . 75

3.5.1 χ2 failure detector . 76
3.5.2 Simulation with χ2 detector . 80

3.6 Summary . 81

4 Planning a Reconnaissance Mission Against an Adversary with Symmetric In-
formation 83
4.1 Introduction . 83
4.2 Problem Formulation . 87
4.3 Tree Search Techniques . 89

4.3.1 Minimax Tree Search . 90
4.3.2 Monte-Carlo Tree Search . 93
4.3.3 Online Planning with Search Tree 97

4.4 Improved Computational Efficiency . 97
4.4.1 Pruning Techniques . 97
4.4.2 Bounding the Size of the Tree . 100
4.4.3 Expanding the Tree with Changing Resolution 101

4.5 Evaluation . 104
4.5.1 Varying Penalty . 104
4.5.2 Pruning Techniques . 106
4.5.3 Changing Resolution Approach 110
4.5.4 Gazebo Experiments . 112

4.6 Summary . 114

vi

5 Planning in Adversarial Environments with Asymmetric Information 116
5.1 Related Work . 118
5.2 Problem formulation . 119
5.3 Background: Asymmetric information game with a static model (M∗) . . . 121
5.4 DM1 Algorithm . 123

5.4.1 Expanding the Search Tree . 123
5.4.2 Backing Up Values . 127
5.4.3 Properties of DM1 . 129

5.5 Application: Planning in Reconnaissance Mission Against Adversary with
Asymmetric Information . 132
5.5.1 Online Planning with Search Tree 135

5.6 Evaluation . 137
5.6.1 Qualitative Results . 137
5.6.2 Effect of the heuristic . 143
5.6.3 Quantitative Results . 144

5.7 Summary . 147

6 Conclusions and Future work 150
6.1 Summary of Contributions . 150
6.2 Future Work . 154

Bibliography 157

vii

Chapter 1: Introduction

1.1 Motivation

Autonomous robots are being used in a wide range of applications. Many of these ap-

plications require the robot to operate in an adversarial environment. In these applications,

robots must consider not only their own actions but also the effects of the adversary. Exam-

ples include a reconnaissance mission in contested environments (Figure 1.1(a)), where the

robot balances the trade-off between exploring and avoiding detection, and an adversarial

target tracking or a pursuit-evasion setting (Figure 1.1(b)), where the problem is to devise

a strategy to control the position of a robot that is tracking a possibly escaping target.

Adversarial planning is closely related to game theory, where robots and adversaries

both try to maximize their self-perceived reward functions. The adversarial planning prob-

lem can be abstracted as a discrete, sequential, two-player game. Minimax tree search [38]

and Monte-Carlo Tree Search (MCTS) [86] are two well-known algorithms to solve dis-

(a) Reconnaissance mission [1]. (b) Pursuit-Evasion [106].

Figure 1.1: Robot planning in adversarial environments

1

crete, two-player, zero-sum games. Both techniques build a search tree that contains all

possible (or a subset of all possible) sequences of actions for both players over planning

horizons. Minimax and MCTS have been applied in various adversarial planning problems

such as non-cooperative control [22], active target tracking with a single robot [5], and

board games [96].

This dissertation aims to design planning strategies that improve the robot’s perfor-

mance in adversarial environments. In particular, we study scenarios when the information

available to the robot and adversary may not be the same and changes over time. We study

how the availability of information affects the planning process and the outcome of the

game. We also study how to improve computational efficiency by exploiting the structural

properties of the underlying setting.

(a) Symmetric game: Both robot and its adver-

sary have the same available information.

(b) Asymmetric game: The availability of infor-

mation is different for robot and adversary.

Figure 1.2: The availability of information could be different for the robot and adversary. For in-

stance, if the robot and the adversary have different sensors, they may not have the same information

leading to asymmetry.

1.2 Background

In a minimax or Monte-Carlo search tree, we refer to the robot and the adversary as

MAX and MIN players, respectively. At each time step1, the robot moves first to maxi-

mize the total reward, and then the adversary moves to minimize the total reward. Given

1Even though the robot and the adversary move simultaneously, we model this problem as a turn-based
game. We discuss this further in Chapter 6.

2

sufficient computational resources, we build the tree to search until the end of the game. In

practice, we may have to cut-off the search after a finite planning horizon T , based on the

computational time available for making each move. In the finite horizon case, we rebuild

the tree after every move.

For example, consider an adversarial reconnaissance mission. We assume the robot

can get a positive reward as it scans a new area but receives a negative penalty when the

opponent detects it. So the robot tries to maximize its scanned area while avoiding being

detected by the adversary. The minimax search tree starts with a root node that contains

the initial position of the robot and the adversary. The MAX (i.e., robot) level expands

the tree by creating a new branch for each control action for the robot. The MIN (i.e.,

adversary) level expands the tree by creating a new branch for each control action for the

adversary. When the minimax tree is fully generated (i.e., the robot reaches a finite planning

horizon), the reward value of the terminal node can be computed. The reward values are

backpropagated from the terminal node to the root node. The minimax policy chooses an

action that maximizes and minimizes the backpropagated reward at the MAX and the MIN

nodes, respectively. After executing one action, the robot will take a new measurement and

rebuild the tree to plan for the next action.

Minimax is widely used in adversarial planning when the MAX player and MIN player

both optimize the same objective function. In the following, we highlight scenarios where

the MAX player and the MIN player may have asymmetric objectives. We also highlight

the challenge of the computational complexity of tree search techniques.

1.2.1 Availability of information

A feature of the traditional search tree is that, by treating the adversary symmetrically, it

only needs to compute one reward value for each leaf node in the tree. However, this limits

3

MAX

MIN

MAX

Root
Robot
Adversary

Visibility range

Figure 1.3: A (partial) minimax search tree. The root node contains the initial states of the agent and
the opponent. Note that since we model what is actually a simultaneous move game as a turn-based
game, two successive levels of the tree correspond to one time step. The agent moves to maximize
the reward (MAX level) while the opponent moves to minimize the agent’s reward (MIN level).

it to work properly when robot and the adversary maximize and minimize, respectively,

the same objective function (Figure 1.2 (a)). The symmetric adversarial reward may yield

plans that are too conservative when the adversary may not have the same information as

the robot. For example, in an asymmetric setting, the robot may have better information

than the adversary (Figure 1.2 (b)). It will be conservative to assume the adversary is as

“smart” as the robot. Furthermore, the information available to the adversary may change

during execution.

Another form of asymmetry is if the robot and the adversary may have different capa-

bilities. For example, consider a target tracking problem where the adversary can inject

false sensor data (i.e., corrupt the signal) of the robot. In such a case, the robot may not be

able to detect the fact that the information it receives is being corrupted if the adversary is

sophisticated. We propose a strategy, from the adversary’s perspective, on how to design

false measurement data that is injected to corrupt and mislead the output of a Kalman filter.

In this dissertation, I study how the availability of information affects the robot’s plan-

ning process and the outcome of the game. I also study this from the adversary’s perspective

to see the limits of how the asymmetry can be exploited by the adversary.

4

1.2.2 Computational complexity

In a larger environment, the robot may need to build a search tree that reaches far

enough from its initial position to yield a good strategy. This is especially the case when

the starting positions of the robot and the adversary are far from each other. However, when

the size of the tree increases, the computational time required to generate the tree grows

exponentially in the worst case (despite pruning).

Monte-Carlo tree search, a randomized version of minimax search, can plan for a longer

horizon compared to minimax, but is still expensive computationally when planning for

longer horizons and when enough rollouts are required to build a good estimate of the

returns.

One of the contributions in this dissertation is to improve the computational efficiency

of the adversarial tree search algorithms. Depending on the problem, by exploiting the

structural properties of the search tree, we design pruning strategies to improve the effi-

ciency of the tree search algorithm.

1.3 Contributions

We adopt a game-theoretic formulation and study two scenarios: adversarial, active

target tracking, and reconnaissance in environments with adversaries.

1.3.1 Target Tracking

We start with the symmetric information game for the adversarial target tracking sce-

nario (Figure 1.1(b)), where the robot has a tracking sensor with distance-dependent noise,

and the adversarial target is actively escaping from the robot. The robot can use a Kalman

filter to estimate the position of the target by fusing the noisy measurements. By using the

5

properties of Kalman filters, we design a pruning strategy to improve the efficiency of a

tree search algorithm. We then investigate the performance limits of the asymmetric ver-

sion where the adversary can inject false data in the measurements obtained by the robot.

Here the asymmetry exists because the robot is not aware of the false data injected by the

adversary.

1.3.1.1 Symmetric Adversarial Target Tracking

In Chapter 2, we study the problem of devising a closed-loop strategy to control the

position of a robot that is tracking a possibly moving target. The measurement noise de-

pends on the relative states of the robot and the target. We consider scenarios where the

measurement values are chosen by an adversary so as to maximize the estimation error.

Furthermore, the target may be actively evading the robot. Our main contribution is to

devise a closed-loop control policy for distance-dependent target tracking that plans for

a sequence of control actions, instead of acting greedily. We consider a game-theoretic

formulation of the problem and seek to minimize the maximum uncertainty (trace of the

posterior covariance matrix) over all possible measurement values. We exploit the struc-

tural properties of a Kalman Filter to build a policy tree that is orders of magnitude smaller

than naive enumeration while still preserving optimality guarantees. We show how to ob-

tain even more computational savings by relaxing the optimality guarantees. The resulting

algorithms are evaluated through simulations and experiments with real robots.

The preliminary version of this chapter was first presented in IEEE Conference on De-

cision and Control 2016 [116]. The complete version is published in IEEE Transactions on

Control Systems Technology [117].

6

(a) A ground robot tracks a target

aerial robot.

(b) The robot obtains a measurement with noise.

Figure 1.4: The robot obtains noisy measurements of the adversary’s position to track the adversary,

the adversary is actively escaping from the robot.

1.3.1.2 Asymmetric False Data Injection

In Chapter 3, we consider the problem of designing false measurement data that is

injected to corrupt and mislead the output of a Kalman filter. Unlike prior work that focused

on detection and filtering algorithms for the adversary, we study the problem from the

adversary’s point-of-view. In our model, the adversary can corrupt the measurements by

injecting additive spoofing signals. The adversary seeks to create a separation between the

estimate of the Kalman filter with and without spoofed signals. We present a number of

results on how to inject spoofing signals while minimizing the magnitude of the injected

signals. The resulting strategies are evaluated through simulations along with theoretical

proofs. We also evaluate the spoofing strategy in the presence of a χ2 spoof detector. We

present a sufficient condition for this strategy to mislead the χ2 failure detector.

This chapter was presented at the American Control Conference in 2018 [118].

7

1.3.2 Visibility-based Reconnaissance

The second scenario we consider in this dissertation is that of a reconnaissance mission.

We introduce and study the problem of planning a trajectory for a robot to carry out a

reconnaissance mission while avoiding being detected by an adversary (Figure 1.1(a)). We

first consider the scenario that the robot and the adversary have symmetric information.

We show traditional methods offer guarantees on the success, defined, for example, by

exploring more area while avoiding being detected.

However, the symmetric adversarial model may yield plans that are too conservative

when the adversary may not have the same information as the robot. Furthermore, the

information available to the adversary may change during execution. We have investigated

the static version of this “asymmetric” information game, and show how much the robot

can exploit the asymmetry in information using tree search techniques.

1.3.2.1 Symmetric Adversarial Planning

In Chapter 4, we study the problem when the robot and the adversary have symmetric

information. In our formulation, the robot receives a positive reward for increasing its

visibility (by exploring new regions) and a negative penalty every time it is detected by

the adversary. The objective is to find a finite-horizon path for the robot that balances the

trade-off between maximizing visibility and minimizing detectability.

We model this problem as a discrete, sequential, two-player, zero-sum game. We use

two types of game tree search algorithms to solve this problem: minimax search tree and

Monte-Carlo search tree. Both search trees can yield the optimal policy but may require

possibly exponential computational time and space. We first propose three pruning tech-

niques to reduce the computational time while preserving optimality guarantees. When

the robot and the adversary are located far from each other initially, we present a variable

8

Figure 1.5: The robot is tasked with covering the environment while avoiding detection by the
adversary.

resolution technique with a longer planning horizon to further reduce computational time.

Simulation results show the effectiveness of the proposed strategies in terms of computa-

tional time.

A preliminary version of the chapter was presented at International Conference on

Robotics and Automation (ICRA) 2019 [114]. The complete version of this chapter was

published in Autonomous Robots [115].

1.3.2.2 Asymmetric Adversarial Planning

In Chapter 5, we study a more general problem where the robot has more information

than the adversary. In asymmetric reconnaissance, there exist assets, and we assume only

the robot knows the existence of the assets.

We consider the problem of planning a trajectory for a robot to carry out a reconnais-

sance mission while avoiding being observed by a mobile adversary, as well as avoiding the

stationary assets being detected and collected by the adversary. Preventing the adversary

from detecting the assets is more important since the penalty associated with collecting an

asset is higher than that associated with the robot being detected. To collect an asset, the

adversary must go close to it. We focus on scenarios where the adversary is not initially

9

aware of the presence of the assets. We study how, and how much, the robot can exploit this

asymmetry in information. Conventional game-theoretic planners such as minimax do not

exploit this asymmetry. Instead, we introduce a new algorithm, DM1, which is specifically

designed for such scenarios. The DM1 algorithm is built on the M1 algorithm in [25]. We

extend the M1 algorithm by allowing the adversary’s model to change dynamically. We

evaluate this algorithm through simulations and present qualitative and quantitative results

that show the DM1 search tree substantially improves the robot’s performance when its

asymmetric model of the adversary correctly characterizes the adversary’s true knowledge.

The work in this chapter is being prepared to submit to a journal and is a collaboration

with Rob Brady, Edmund H. Durfee, Jonathon M. Smereka, and Pratap Tokekar.

1.4 Organization

The rest of the dissertation is organized as follows. We introduce the symmetric version

of the target tracking problem in Chapter 2. In Chapter 3, we present the asymmetric

version of the target tracking problem by considering the adversary is able to inject false

data into the robot’s measurement. We then study another symmetric problem, this time

of a reconnaissance mission in Chapter 4. We then consider the asymmetric version of the

reconnaissance problem in Chapter 5. We conclude with a summary of our contributions

and future research directions in Chapter 6.

10

Chapter 2: Symmetric Adversarial Target Tracking with Distance-Dependent

Measurement Noise

In this chapter, we will start with the symmetric version of the target tracking problem.

Our focus here is to improve the computational efficiency of the planner by exploiting the

structural properties of the underlying problem.

2.1 Introduction

Tracking a moving, possibly adversarial target is a fundamental problem in robotics and

has been studied has long been a subject of study [5, 10, 30, 32, 75, 109, 112]. Target track-

ing finds applications in many areas such as surveillance [83], telepresence [49], assisted

living [72], and habitat monitoring [100]. Target tracking refers to broadly two classes of

problems: (i) estimating the position of the target using noisy sensor measurements; and

(ii) actively controlling the sensor position to improve the performance of the estimator.

The second problem is distinguished as active target tracking and is the subject of study of

this chapter.

One of the main challenges in tracking is that the target can be adversarial and actively

avoid tracking by moving away from the robot. Furthermore, the value of future measure-

ment locations can be a function of the unknown target state. Take as an example, a simple

instance of estimating the unknown position of a stationary target where the measurement

noise is a function of the distance between the robot and the target. If the true location of the

11

(a) Greedy. (b) Minimax.

Figure 2.1: A ground robot tracks a target aerial robot. The ground robot cannot move through the
obstacles, whereas the aerial robot can fly over them. In (a), the ground robot plans greedily and
gets stuck behind obstacles. In (b), the minimax plans non-myopically by predicting the target’s
adversarial moves and is able to plan around the obstacles.

target were known, the robot would always choose a control sequence that drives it closer

to the target. Since, in practice, the true target location is unknown, we cannot determine

such a control sequence exactly. A possible strategy, in this case, would be to plan with

respect to the probability distribution of the target. However, the probability distribution

itself will evolve as a function of the actual measurement values. This becomes even more

challenging if the target is mobile.

In this chapter, we use an Kalman Filter (KF) to estimate the state of a moving target

with a possibly distance-dependent measurement model where the standard deviation of the

measurement noise is a function of the distance between the robot and the target. Although

it is common to assume that the noise is independent of the state, many sensors such as

infrared [13] and radio-based ranging [44] exhibit distance-dependent noise. Distance-

dependent noise models have been used for planning, for example, for achieving distributed

consensus [78]. We focus on the problem of tracking a single target by planning the motion

of a mobile robot.

There has been recent work on resilient and robust game-theoretic algorithms in ad-

12

versarial settings [92, 110, 114, 115]. We formulate the active adversarial target tracking

problem as a minimax game. When planning non-myopically (for multiple steps in the

future), one can enumerate all possible future measurements in the form of a tree. In par-

ticular, a minimax tree can be used to find the optimal (in the minimax sense) control

policy for actively tracking a target [103]. The size of the minimax tree grows exponen-

tially with the time horizon. The tree can be pruned using alpha-beta pruning [86]. Our

main contribution is to show how the properties of an Kalman filter can be exploited to

prune a more significant number of nodes without losing optimality. In doing so, we ex-

tend the pruning techniques first proposed by Vitus et al. [107] for linear systems with

state independent noise. Using a minimax tree, we generalize these results to a system

with distance-dependent noise. Our pruning techniques allow us to trade-off the size of the

tree (equivalently, computation time) with the optimality guarantees of the algorithm. We

demonstrate this effect in simulations and proof-of-concept indoor and outdoor tracking

experiments. We also show how the tree can be updated online, when the measurements

received and/or the target motion is not adversarial.

The rest of the chapter is organized as follows. We start with the related work in Sec-

tion 2.2. The problem formulation is presented in Section 4.2. Our main algorithm is

presented in Section 2.4. The pruning condition in different cases is discussed in Sec-

tion 2.4. We validate the algorithm through simulations that are described in Section 2.5

and experiments on real robots reported in Section 2.6. Finally, we conclude with a brief

discussion of future work in Section 3.6.

2.2 Related Work

The target tracking problem has been studied in various settings. Bar-Shalom et al. [10]

have presented many of the commonly-used estimation techniques in target tracking. The

13

five-part survey by Li and Jilkov [64] covers commonly-used control and maneuvering

techniques for active target tracking.

Pursuit-evasion is a class of problems typically used to study adversarial target track-

ing [30]. Kolling and Carpin [57] study a pursuit-evasion problem on graphs that model

the detection of intruders in complex indoor environments by robot teams. A typical ap-

proach is to model the problem as a non-cooperative game and use Pontryagin’s minimum

principle and the Bellman equation to find the optimal paths for the pursuer [11, 63]. These

approaches typically assume noise-free sensing. Amongst pursuit-evasion works that ex-

plicitly address measurement noise are works by Vander Hook and Isler [105] using noisy

bearing sensors.

Willman [109] studied the differential pursuit-evasion problem with state-independent

Gaussian noise to the motion model as well as the measurement model. The author showed

that the problem can be reduced to a deterministic one. Yaesh and Shaked [111] have

shown the connection between the H∞ optimal estimation theory and adversarial target

tracking. Zengin and Dogan [112] have presented a real-time target tracking algorithm

for autonomous UAVs in adversarial environments. More recently, Gu [41] proposed a

minimax filter to estimate the state of an adversarial target using noisy measurements from

a sensor network. Specifically, they modeled the estimation problem as a differential zero-

sum game. Unlike these works, we use a minimax search tree to (non-myopically) plan for

the control actions of the robot. Karaman et al. [47] showed how to solve a similar pursuit-

evasion problem using RRT∗. However, unlike the problem we study, their problem setup

has no notion of measuring the target’s (or the other agent’s) position. As such, there is no

need to run a state estimator and no way to handle distance-dependent measurement noise

as we do in this chapter.

A search tree can provide optimal or near-optimal policies for target tracking. Li

et al. [79] solve a visibility-based pursuit-evasion problem using tree search techniques.

14

However, building a search tree can be computationally expensive especially for large-scale

instances. The key is to prune the tree to yield computational savings effectively. Vitus et

al. [107] presented an algorithm that computes the optimal scheduling of measurements for

a linear dynamical system. The goal is to track a linear dynamical system using a set of

sensors such that one sensor can be activated at any time instance. The posterior covariance

in estimating a linear system in a Kalman filter depends on the prior covariance and sensor

variance but not on the future measurement values (unlike the case in non-linear systems).

Thus, one can build a search tree enumerating all possible sensor selections and choosing

the one that minimizes the final covariance. The main contribution of Vitus et al. is to

present a pruning technique to reduce the size of the tree while still preserving optimality.

Monte-Carlo Tree Search (MCTS) [86], is an alternative algorithm to solve these dis-

crete, two-player, zero-sum games. MCTS has been shown to be more effective in solving

large two-player games, such as Go [37]. However, Li et al. [79] show that minimax has the

advantage in finding deterministic solutions compare to MCTS in a pursuit-evasion game.

Nevertheless, the pruning idea proposed in this chapter can also be applied in MCTS to

remove redundant nodes.

Atanasov et al. [5] extended the idea of pruning search trees [107] to active target track-

ing with a single robot. A major contribution was to show that robot trajectories that are

nearby in space can be pruned away (under certain conditions), leading to further computa-

tional savings. This was based on a linear system assumption. In this chapter, we build on

these works and make progress towards generalizing the solution for distance-dependent

observation systems.

A major bottleneck for planning for distance-dependent observation systems is that the

future covariance is no longer independent of the actual measurement values. In Kalman

filtering, the covariance update equation contains the noise variance, which in our case,

depends on the position of the target. Since we do not know the actual position of the target,

15

we use the estimated position which depends on the measurements. Thus, the search tree

will have to include possible measurement values. Furthermore, finding an optimal path is

no longer sufficient. Instead, one must find an optimal policy that prescribes the optimal

set of actions for all possible measurements. We show how to use a minimax tree to find

such an optimal policy while at the same time leveraging the computational savings that

hold for the linear case.

2.3 Problem Formulation

We assume that the position of the robot is known accurately using onboard sensors

(e.g., GPS, laser, IMU, and cameras), and the accuracy of sensors is affected by distance.

The motion model of the robot is given by:

Xr(t +1) = f (Xr(t),ur(t)) (2.1)

where, f (·) is the motion model of the robot, Xr = [xr(t),yr(t)]T ∈ R2 is the position of

robot and ur(t) ∈ Ur(t) is the control input at time t.1 Ur(t) is a finite space of control

inputs. We assume there are n actions available as control inputs2:

Ur(t) = {ur1(t),ur2(t), · · · ,urn(t)}.

The robot has a sensor that gets a measurement of the target’s position. We assume that

the target’s motion model is given by:

Xo(t +1) =CtXo(t)+uo(t)+ v(t) (2.2)

1This result can be extended to 3D and other state spaces
2Note that the subscript r denotes terms related to the robot and subscript o denotes the terms related to

the target (not to be confused with the time). The time is always denoted inside paranthesis (t).

16

where, Xo(t) = [xo(t),yo(t)]T is the position of the target and v(t) is the process noise drawn

from a Gaussian distribution of known covariance. Here, uo(t) ∈Uo(t) is the control input

for the target at time t with n′ actions available inputs:

Uo(t) = {uo1(t),uo2(t), · · · ,uon′(t)}.

The task of the robot is to track the target using its noisy measurements. The measure-

ments, z(t), can be a function of the states of the target and the robot:

z(t) = HXo(t)+w(Xr(t),Xo(t)) (2.3)

The measurement noise, w(t) ∼ N (0,Σw(t)), is drawn from a 2D zero-mean Gaussian

distribution. Specifically, we have

Σw(t) =

δ 2
1 +δ 2

2 d(Xr(t),Xo(t)) 0

0 δ 2
1 +δ 2

2 d(Xr(t),Xo(t))

 .
Note that the noise variance Σw(t) along each dimension is independent and given by

δ 2
1 +δ 2

2 d(Xr(t),Xo(t)), where δ1 and δ2 are positive constant values. In general, the noise

variance along the two dimensions can use different δ1,δ2 values; we use the same δ1 and δ2

values for both dimensions for ease of exposition. Here, d(Xr(t),Xo(t)) =


C , ||Xr(t)−Xo(t)||2> B

C ||Xr(t)−Xo(t)||2
B

, ||Xr(t)−Xo(t)||2≤B.

(2.4)

Here, ||·||2 is the 2-norm which corresponds to the Euclidean distance between the robot

and the target.

When the true distance between the robot and target is within B, we assume that mea-

17

surement noise variance is proportional to the true distance. When the true distance is

greater than B, the variance saturates at the maximum constant value of C . Here, we con-

sider a linear measurement model. A more general case is that the measurement model

can be a non-linear function of the robot and target’s state. For that case, we can use the

Extended Kalman Filter and compute the observation matrix H by using the Jacobian of

the measurement function [19].

The estimated position and the covariance matrix of the target at time t, X̂o(t) and Σ̂o(t),

are given by the Kalman filter. The uncertainty in the estimate of the target’s position is

measured by the trace of the covariance matrix. The goal of the robot is to reduce the

uncertainty in the target’s estimate. The goal of the adversary is to increase the uncertainty.

There are two types of adversaries:

1. Game against an escaping target: Here, the target actively chooses uo(t) to increase

the estimation error. In our model, since the measurement noise is a function of the

distance between the robot and the target, an adversarial target will choose to move

away from the robot. When there are obstacles present in the environment, a myopic

strategy that follows the estimated target position may get stuck (see Figure 2.1).

Instead, we use minimax strategy that is able to track an escaping target better using

a non-myopic approach.

2. Game against nature: Here, “nature” acts as an adversary and generates the worst-

case measurements, z(t), for the robot. In general, the measurements will not be

the worst-case ones. However, planning against this adversary will lead to a policy

that is robust to possible outlier measurements. Consider Figure 2.2 where the actual

target is located in the corridor between the rooms. If at time t, the robot obtains

an outlier measurement (say zi(t)), the estimated target position will shift closer to

the left room. A myopic planner will choose to move left and may get stuck in the

18

Figure 2.2: If the robot obtains a noisier measurement (say zi(t)) at time t, a greedy strategy
may follow the mean of the estimated target’s position and get stuck in a room (left in the case of
zi(t) even if the actual target is outside the room. A minimax strategy that plans against worst-case
measurements for a finite horizon will instead hedge the bets, and stay in the middle until the target’s
estimate shrinks enough.

room. On the other hand, a minimax planner that considers adversarial measurements

will choose to stay in the middle until such time that the estimated target covariance

shrinks sufficiently. This way, even though the actual measurements are drawn from

a random distribution, we can be robust to the noise by considering a game against

nature.

The minimax tree strategy can be applied to either or both types of adversaries. For-

mally, the problem considered in this chapter can be formally stated as follows.

Problem 1. Given an initial deterministic robot position, Xr(0), and an initial target esti-

mate, [X̂o(0), Σ̂o(0)], find a sequence of control laws for the robot, σ = ur(0),ur(1), · · · ,ur(T)

from time t = 0 to t = T (ur(i) ∈Ur(i)) to minimize trace of the covariance in the target’s

19

estimate at time t = T . That is,

min
ur(0),...,ur(T)

max
uo(0), . . . ,uo(T);

z(0) . . . ,z(T)

tr(ΣT). (2.5)

such that,

Σt+1 = ρt(Σt), t = 0,1, · · · ,T −1

where ρt(·) is the Kalman Riccati equation [58].

The Kalman Riccati equation [58], ρt(·), maps the current covariance matrix Σ̂t to the

covariance matrix at t +1 using the measurement z(t):

ρt(Σ̂t) =Ct Σ̂tCT
t −Ct Σ̂tHT (HΣ̂tHT +Σw)

−1HΣ̂tCT
t +Σv. (2.6)

Note that we solve Problem 1 at each time instance looking ahead T timesteps. Even

though the solution for Problem 1 is a sequence of control inputs, ur(0), . . . ,ur(T), we

only apply the first one ur(0). Then, we use the actual measurement z(0) to update the

covariance matrix and then solve Problem 1 again for T timesteps. This is further explain

in Section 2.4.4.

The true position of the target is unknown making it impossible to determine Σw exactly.

Consequently, we use an estimate of Σw, denoted by Σ̂w, using the estimated target’s posi-

tion, X̂o(k). Specifically, Σ̂w is obtained by replacing Xo(t) with X̂o(k) in Equations (2.3)–

(2.4). Since X̂o(t) is computed using the values of uo(t) and z(t), the Kalman Riccati map

20

using the estimated noise covariance, Σ̂w, becomes a function of uo(t) and z(t),

ρt(Σ̂t) =Ct Σ̂tCT
t −

Ct Σ̂tHT (HΣ̂tHT + Σ̂w(uo(t),z(t)))−1HΣ̂tCT
t +Σv. (2.7)

Remark 1. The intuition behind the objective function is that it seeks to minimize the

estimation uncertainty in the worst case. Also, note that the covariance will decrease as

the robot and the target get closer since we assume the variance in the measurement noise

is dependent on the distance between the robot and the target.

Remark 2. We can choose other measures for the objective function, such as the determi-

nant [5]. We use trace since it is more robust in the following sense. For a 2D covariance

matrix, the eigenvalues are the lengths of the major and minor axis of the uncertainty el-

lipse. If one of the two eigenvalues of the covariance matrix is close to 0, the determinant

will also be close to 0, even if the other eigenvalue (i.e., the uncertainty along that direc-

tion) is very large. On the other hand, the trace will be large, if one of the two eigenvalues

is large.

Earlier works [5, 107] solve a similar problem but with a linear Gaussian system. The

linearity assumption makes the Riccati equation independent of the position of the target

(known as the separation principle). Consequently, they show an open loop policy can

determine the optimal control sequence for the robot. In our case, the optimal control

policy will be a closed-loop one since the measurement noise is a function of the position

of the target. However, this generalization comes at the expense of discretization of the set

of possible target measurements.

Equation (2.7) shows that trace at time T will be a function of uo(t) and z(t). When

we plan for a finite horizon, we do not know the exact sequence of actions the target takes,

21

uo(t), and true measurements, z(t), that we obtain. Instead, we enumerate all possible

actions the target can take and all possible measurements that we may obtain. Since the

domain of the measurements is infinite, we discretize and assume that the measurement at

any time step is chosen from one of m tuples of candidate measurements.3 That is,

Ẑ(t) ∈ {z1(t),z2(t), · · · ,zm(t)}. (2.8)

For example, we can choose m candidate measurements from the data within 3 stan-

dard deviations of the mean value, which contain 99.7% of the possible measurements.

Figure 2.3 shows a discretized Gaussian distribution.

-3 -2 -1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

Z
m-2

.

.

.

Z
m-1 Z

m

Z
2Z

1

Z
3

.

.

.

Figure 2.3: We discretize the set of candidate measurements using m samples drawn from a Gaussian

distribution.

Note that the enumerated possible measurements are estimated while we build the

search tree. To clarify the difference, we use the following notation:

• Ẑ(t) = {z1(t), . . . ,zi(t), . . . ,zm(t)}: set of possible measurement that is obtained at

time t.

• zi(t): possible measurement at time t.
3These m candidate measurements can be obtained by, for example, sampling from the continuous distri-

bution of zero mean sensor noise around the current estimate of the target.

22

• z(t): actual measurement obtained at time t. Here, z(t) may or may not be the worst-

case measurement.

In section 2.4, we present the minimax tree strategy and various pruning techniques that

allow us to efficiently find the optimal closed-loop policy for this problem.

2.4 The minimax algorithm and pruning techniques

Table 2.1: Search Tree and Pruning Techniques for Various Models
Measurement Noise Target Motion Strategy Pruning Algorithm

State-independent Known/Stationary Search tree
Algebraic redundancy

(Theorem 1)

State-independent Adversarial Minimax tree
Alpha-beta pruning,

Algebraic redundancy
(Theorem 1)

Distance-dependent Known/Stationary Minimax tree Alpha pruning

Distance-dependent Adversarial Minimax tree
Alpha-beta pruning,

Algebraic redundancy
(Theorem 2)

If the trajectory of the target is known, then we can find the optimal path for the robot

using techniques such as dynamic programming. However, when tracking an adversarial

target, we need to use game-theoretic planning to find the policy for the robot. We model

Problem 1 as a sequential game4 played between the robot and an adversary. The robot

executes a control action, takes a measurement of the target, the target moves to the new

position, and the sequence repeats. Based on this, we generate a search tree to find the

optimal policy. The adversary (i,e. nature) chooses measurement noise and the target

chooses actions at every step, whereas the robot chooses its own actions. By optimizing

the minimax trace, the robot determines the best conservative policy.

4Note that, in practice, the robot and the target can move simultaneously.

23

robot node

 target node
ur(1)

z 1 z1 zmzmz 2 z1 zm z1 zm z1 zm

ur(n)

uo(1) uo(2) uo(n) uo(1) uo(n)

Figure 2.4: One step minimax tree enumerates all the possible actions the robot and target as well
as all candidate measurements. Each node in the tree stores the robot position and estimated target
position.

We find this optimal strategy by building a minimax tree. Figure 2.4 shows an example.

This tree enumerates all possible control laws for the robot and the target and all possible

measurements that the robot can obtain. A node on the kth level of the tree stores the

position of the robot, Xr(k), the estimated position of the target, X̂o(k), and the covariance

matrix Σ̂k. Each node at an odd level has one branch per control action of the robot. We

term these nodes as “robot nodes.” Each node at an even level has one branch per tuple of

candidate measurement and candidate actions for the target. These nodes are termed as the

“target nodes.”

The robot’s state and the target’s estimate are updated appropriately along the con-

trol and measurement branches using the state transition equation (Equation 2.1) and the

Kalman filter update equation, respectively. The minimax value is computed at the leaf

nodes and is equal to the trace of the covariance matrix at that node. These values are

propagated upwards to compute the optimal strategy.

The full enumeration tree has a size exponential in the number of control actions, can-

didate measurements, and the planning horizon. We present three pruning strategies to

reduce the size of the tree. The first two are based on existing alpha-beta pruning while the

third one is a new contribution of this chapter. Table 2.1 gives the summary of all pruning

techniques.

24

7 9 2 4 7 5 8

7 4 5

7

minimax tree

(before alpha pruning)

max

min

max

root node

max

min

minimax tree

max

u1 u2 un

z1 zm

root node

7 9 2 4 5

7 4 5

7

minimax tree

(after alpha pruning)

Figure 2.5: A minimax tree with alpha pruning.
`

and
a

are nodes in which we compute the
minimum or maximum value of its children. The value at the leaf nodes equals the tr(Σk).

`
and

a

nodes represent robot and target nodes, respectively. The filled
`

are pruned by alpha pruning.

2.4.1 Alpha-Beta Pruning

As a first step in reducing the size of the tree, we use alpha-beta pruning [86]. The

main idea in alpha-beta pruning is that if we have explored a part of the tree, we have an

upper or lower bound on the optimal minimax value. For example, in alpha pruning where

we consider the upper bound, when exploring a new node, ni, if we find that the minimax

value of the subtree rooted at ni is greater than the upper bound found, that subtree does not

need to be explored further. This is because an optimal strategy will never prefer a strategy

that passes through ni since there exists a better control policy in another part of the tree.

Note that ni must be a robot node. Figure 2.5 shows an example of alpha-beta pruning.

Target nodes cannot be pruned since the robot has no control over the actual measurement

values. That is, we only apply alpha-pruning. When the measurements and target’s motion

is known to be adversarial, then full alpha-beta pruning can be applied. In such a case, the

target nodes can be pruned away as well.

2.4.2 Algebraic Redundancy Pruning

Vitus et al. [107] presented algebraic redundancy pruning of search trees (not minimax

trees) for linear systems with state-independent noise. The key idea is that if a node, ni, has

25

higher uncertainty than another node, n j at the same level, then any descendant of ni will

always have higher uncertainty than some descendant of n j. Therefore, ni is redundant and

can be pruned away. They use the monotonicity and concavity of the Riccati mapping in

linear systems with state-independent noise to prove the following result.

Theorem 1 (Algebraic Redundancy [107]). Let H = {(X i
r(t),Σ

i
t)} be a set of n nodes at

the same level of the tree. If there exist non-negative constants α1,α2, . . . ,αk such that,

Σ
p
t �

k

∑
i=1

α jΣ
j
t and

k

∑
i=1

αi = 1

then the node
(
X p

r (t),Σ
p
t
)

is regarded as algebraically redundant5 with respect to H \

{(X p
r (t),Σ

p
t)} and (X p

r (t),Σ
p
t) and all of its descendants can be pruned without eliminating

the optimal solution from the tree.

They prove that the trace of any successor of (X p
r (t),Σp(t)) cannot be lower than one

of the successors of H \ {(X p
r (t),Σp(t))}. Our main insight is that, a similar redundancy

constrained can be defined for the non-linear case with suitable additional constraints as

described below.

We extend these ideas for minimax trees with possibly distance-dependent noise. We

first prove the monotonicity of distance-dependent Riccati equation.

Lemma 1. Let A and B be two nodes in the same level of the minimax tree and ΣA
t ,S

A

and ΣB
t ,S

B be the corresponding covariance matrices and measurement noise covariance

matrices. If ΣA
t � ΣB

t and SA � SB, then after applying one step of the Riccati equation, we

have ρ(ΣA
t)� ρ(ΣB

t).

Note that from the definition of the covariance matrix, the matrices SA,SB are positive

definite, SA � 0, SB � 0.
5M � N represents that M−N is positive semi-definite.

26

We will show conditions under which a node A is redundant with respect to a set of

nodes, termed as candidate set, that is already present in the tree. Figure 2.6 shows an

example.

Definition 2.1. Let H be a set of nodes. The set H is called as a candidate set with

respect to some node A if (i) the nodes in H are at the same level as that of A; and (ii)

every node B ∈H is on the optimal minimax path (the highlighted path in Figure 2.6) for

the subtree rooted at the least common ancestor of A and B.

 Node A

Common ancestor

Optimal minimax path

Nodes to compare

Figure 2.6: Nodes in the candidate set, H = {(X i
r(t), X̂

i
o(t), Σ̂

i
t)}, of node A are marked as red. Their

least common ancestor is highlighted.

Before we present the full details, we list the conditions that will be used in Theorem 2.

We have more conditions since pruning with distance-dependent noise is a general version

of Theorem 1.

Let H = {(X i
r(t), X̂

i
o(t), Σ̂

i
t)} be the candidate set of N nodes with respect to some node

A = (XA
r (t), X̂

A
o (t), Σ̂

A
t). The conditions are as follows:

(C1) the robot and estimated target states are identical, i,e. XA
r (t) = X i

r(t) and X̂A
o (t) =

X̂ i
o(t) for all i in H ;6

6For time-invariant linear systems with constant H and C, condition (C1) is not required since all the
covariance matrices are updated through the same Kalman filter Riccati equations.

27

(C2) the least common ancestor of A with any other node in H is a MIN (robot) node;

(C3) the least common ancestor of A with any other node in H is a MAX (target) node;

(C4) HHT is invertible and there exist non-negative constants α1,α2, . . . ,αN such that,

Σ
A
t �

N

∑
i=1

αiΣ
i
t (2.9)

SA
t �

N

∑
i=1

α jSi
t +(T − t)

(
δ

2
1 +δ

2
2 C
)

I2×2 (2.10)

where ∑
N
i=1 αi = 1.

(C5) HHT is invertible and there exist non-negative constants α1,α2, . . . ,αN such that,

Σ
A
t �

N

∑
i=1

αiΣ
i
t (2.11)

SA
t �

N

∑
i=1

α jSi
t +(T − t)

(
δ

2
1 +δ

2
2 C
)

I2×2 (2.12)

Our main result is stated as follows.

Theorem 2. [Distance-dependent Algebraic Redundancy] Let H = {(X i
r(t), X̂

i
o(t), Σ̂

i
t)} be

the candidate set of N nodes with respect to some node A = (XA
r (t), X̂

A
o (t), Σ̂

A
t). If the node

A satisfies (C1), (C2) and (C4), then there exists a node in H , say B, such that:

tr(ΣA
T)≥ tr(ΣB

T).

Similarly, if node A = (XA
r (t), X̂

A
o (t), Σ̂

A
t) satisfies (C1), (C3) and (C5), then there exists

28

a node in H , say B, such that:

tr(ΣA
T)≤ tr(ΣB

T).

In both cases, the node A can be pruned from the minimax tree without affecting the optimal

policy.

Proof. For nodes A and B at the same level k with SA � SB, and ΣA
t � ΣB

t . our goal is to

prove that ρt(Σ
A
t)� ρt(Σ

B
t).

Applying the Riccati equation we have:

ρt(Σ
A
t)−ρt(Σ

B
t)

=CtΣ
A
t CT

t −CtΣ
A
t HT

(
HΣ

A
t HT +SA

)−1
HΣ

A
t CT

t −CtΣ
B
t CT

t

+CtΣ
B
t HT (HΣ

B
t HT +SB)−1

HΣ
B
t CT

t .

(2.13)

Define,

K(Σt),−CtΣtHT (HΣtHT +S)−1,

F(Σt),Ct− (CtΣtHT)(HΣtHT +S)−1H.

Note that, F(Σt) =Ct +K(Σt)H, and K(Σt)(CtΣtHT)T =−K(Σt)(HΣtHT +S)KT (Σt).

Thus, ρt(Σ
A
t)−ρt(Σ

B
t) =CtΣ

A
t CT

t +K(ΣA
t)HΣA

t CT
t −CtΣ

B
t CT

t −K(ΣB
t)HΣB

t CT
t .

29

Then, we have,

ρt(Σ
A
t)−ρt(Σ

B
t)−F(ΣA

t)(Σ
A
t −Σ

B
t)F(ΣA

t)
T

=CtΣ
A
t CT

t +K(ΣA
t)HΣ

A
t CT

t − [CtΣ
B
t CT

t +K(ΣB
t)HΣ

B
t CT

t]

− [Ct +K(ΣA
t)H](ΣA

t −Σ
B
t)[Ct +K(ΣA

t)H]T

=K(ΣA
t)(CtΣ

A
t H)T −K(ΣB

t)CtΣ
B
t HT −K(ΣA

t)H(ΣA
t −Σ

B
t)C

T
t −Ct(Σ

A
t −Σ

B
t)H

T KT (ΣA
t)

−K(ΣA
t)H(ΣA

t −Σ
B
t)H

T KT (ΣA
t)

=K(ΣA
t)(CtΣ

A
t H)T −K(ΣB

t)CtΣ
B
t HT −K(ΣA

t)[HΣ
A
t CT

t −HΣ
B
t CT

t]

− [CtΣ
A
t HT −CtΣ

B
t HT]KT (ΣA

t)−K(ΣA
t)H(ΣA

t −Σ
B
t)H

T KT (ΣA
t)

=K(ΣA
t)(CtΣ

A
t H)T −K(ΣB

t)CtΣ
B
t HT −K(ΣA

t)HΣ
A
t CT

t +K(ΣA
t)HΣ

B
t CT

t

−CtΣ
A
t HT KT (ΣA

t)+CtΣ
B
t HT KT (ΣA

t)−K(ΣA
t)H(ΣA

t −Σ
B
t)H

T KT (ΣA
t),

(2.14)

30

note the following matrix is symmetric,

K(Σt)(CtΣtHT)T =−K(Σt)(HΣtHT +S)KT (Σt),

we have,

K(ΣA
t)(CtΣ

A
t H)T =CtΣ

A
t HT KT (ΣA

t).

The first and the fifth term in (2.14) can be canceled,

=−K(ΣB
t)CtΣ

B
t HT −K(ΣA

t)HΣ
A
t CT

t +K(ΣA
t)HΣ

B
t CT

t +CtΣ
B
t HT KT (ΣA

t)

−K(ΣA
t)H(ΣA

t −Σ
B
t)H

T KT (ΣA
t)

=−K(ΣB
t)CtΣ

B
t HT +K(ΣA

t)(HΣ
A
t HT +SA)KT (Σt)

+K(ΣA
t)HΣ

B
t CT

t +CtΣ
B
t HT KT (ΣA

t)−K(ΣA
t)H(ΣA

t −Σ
B
t)H

T KT (ΣA
t),

combine the second and the last term,

=−K(ΣB
t)(CtΣ

B
t HT)+K(ΣA

t)(CtΣ
B
t HT)T +(CtΣ

B
t HT)KT (ΣA

t)

+K(ΣA
t)(HΣ

B
t HT +SA)KT (ΣA

t),

note that,

(CtΣtHT)T = (HΣtHT +S)KT (Σt)

= K(ΣB
t)(HΣ

B
t HT +SB)KT (ΣB

t)−K(ΣA
t)(HΣ

B
t HT +SB)KT (ΣB

t)

−K(ΣB
t)(HΣ

B
t HT +SB)KT (ΣA

t)+K(ΣA
t)(HΣ

B
t HT +SA)KT (ΣA

t)

=(K(ΣB
t)−K(ΣA

t))(HΣ
B
t HT +SB)(K(ΣB

t)−KT (ΣA
t))

T

+K(ΣA
t)(S

A−SB)KT (ΣA
t).

(2.15)

31

We have,

ρt(Σ
A
t)−ρt(Σ

B
t)

=F(ΣA
t)(Σ

A
t −Σ

B
t)F

T (ΣA
t)+K(ΣA

t)(S
A−SB)KT (ΣA

t)

+(K(ΣB
t)−K(ΣA

t))(HΣ
B
t HT +SB) (K(ΣB

t)−K(ΣA
t))

T

=CtH(ΣA
t −Σ

B
t)H

TCT
t +K(ΣA

t)
(
(HΣ

A
t HT +SA)− (HΣ

B
t HT +SB)

)
KT (ΣA

t)

+(K(ΣB
t)−K(ΣA

t))(HΣ
B
t HT +SB) · (K(ΣB

t)−K(ΣA
t))

T

(2.16)

since SA � SB, we have HΣA
t HT +SA � HΣB

t HT +SB, and ΣA
t � ΣB

t . Thus,

ρ(ΣA
t)−ρ(ΣB

t)� 0 (2.17)

These conditions are based on the algebraic redundancy conditions given in [107] (The-

orem 1) for the sensor scheduling problem. The search tree in [107] is a non-adversarial

search tree whereas we generalize these conditions to the adversarial case using a minimax

search tree with two types of nodes (MIN and MAX).

The conditions in Theorem 2 state when a node A can be made redundant by another

node B. The two nodes must have the same robot and estimated target states as given

in (C1). In informal terms, Theorem 2 states that if node B is better than node A, some

descendant of node B will be better than that of node A. As a result, node A can be pruned

from the tree. The notion of “better” depends on whether their common ancestor is a MIN

(robot controlled) or a MAX (target controlled) node, given in (C2) and (C3). If their

common ancestor is a MIN node, then we say B is better if it has lower uncertainty than

A. In this case, the robot will never choose the path that leads to A as opposed to B. If the

common ancestor is a max node, then we say B is better if it has higher uncertainty than A.

32

As a result, the target will always prefer the path that leads to B than A. In both cases, the

optimal path will not include A which can, therefore, be pruned away.

We use the above result to prune away nodes while building the tree. Note that the

algebraic redundancy pruning is more effective when the tree is being built in a breadth-

first fashion (since we compare nodes at the same level). On the other hand, the alpha-beta

pruning is useful only when the tree is built in a depth-first fashion. In order to apply

both pruning strategies, the tree must be built depth-first. While adding a new node to the

tree, we check whether the conditions in Theorem 2 are satisfied with respect to all other

existing nodes at the same level. In order to check for the optimal path, we require at least

one path to a leaf node from the current node. Therefore, the conditions can be checked for

all predecessors of the current node under consideration. If the conditions are met for any

predecessor, then the predecessor node (and all its descendants) are pruned from the tree.

Since H can be of any size, checking for conditions (C4) and (C5) can be compu-

tationally expensive and requires solving a Linear Matrix Inequality (LMI). If we restrict

H to contain only one node, then conditions (C4) and (C5) amount to checking positive

semidefiniteness of a matrix which can be done much faster. However, this would mean

fewer nodes get pruned away. As the level of the tree grows, the number of nodes in-

creases exponentially. We can trade-off the two factors, by solving LMI at lower depths

in the tree (when there are fewer nodes), and then only making pairwise comparisons for

higher depths. We provide a more detailed discussion of the steps we implement to check

(C1)–(C5) in the simulation section (Section 2.5). In the next subsection (Section 2.4.3),

we describe more ways of saving computational time at the expense of optimality.

In an environment with K gridpoints, there are K 2 possible combinations of the

robot’s and the target’s position. Thus, at most K 2 nodes are listed at each MIN level

of the search tree in the best case. And by considering the m measurements in the MAX

level for each grid, at most m ·K 2 nodes are listed at MAX level. The size of the full tree

33

will therefore be Ω(mK 2T +K 2T). The Ω(·) indicates a lower bound. Therefore, in the

best-case with our pruning conditions the size of the tree is Θ((m+ 1)K 2 · 2T). In the

worst case, the less informative nodes are always selected first while building the search

tree in a depth-first fashion. Both alpha-beta pruning and our punning techniques cannot

prune any nodes, so the size of the tree is the same as the brute-force. In practice the actual

size will be between the best and worst-case.

2.4.3 Sub-optimal Pruning algorithm

We can further reduce the number of branches at the expense of losing optimality by

relaxing the alpha-pruning and algebraic redundancy constraints. We use two parameters

ε1 > 0 and ε2 > 0 as relaxation parameters for alpha pruning and algebraic redundancy

pruning, respectively. In each case, we bound the loss in optimality as a function of the

parameters.

Specifically, while building the tree, we prune away a node if it satisfies either of the

following two conditions. When checking for alpha pruning, we prune a node if its alpha

value is greater than or equal to the best minimax value found so far minus ε1. Similarly,

we replace the first constraint of (C4) (Equation (2.9)) in Theorem 2 with the following:

Σ
A
t + ε2 �

N

∑
i=1

αiΣ
i
t . (2.18)

Similar condition can be applied to the first constraint of (C5) given in Equation (2.10) of

Theorem 2.

By varying ε1 and ε2, we can vary the number of nodes in the search tree. Next we

bound the resulting loss in the optimality of the algorithm.

Theorem 3 (ε1-alpha pruning). Let J∗2k = tr(Σ̂∗2k) be the optimal minimax value returned

by the full enumeration tree. If Jε1
2k = tr(Σ̂ε1

2k) is the value returned by the ε1–alpha pruning

34

algorithm, then 0≤ Jε1
2k− J∗2k ≤ ε1.

The proof follows directly from the fact that if a node on the optimal policy, say ni

is pruned away, then the alpha value at ni is at most the alpha value of some other node,

say n j, that is present in the tree minus ε1. The alpha value of n j cannot be less than the

value returned by the ε1 algorithm. The bound for ε2-algebraic redundancy pruning is more

complicated.

Theorem 4 (ε2-Distance dependent algebraic redundancy pruning). Let J∗2k = tr(Σ̂∗2k) be

the optimal minimax value returned by the full enumeration tree of 2k levels. If Jε2
2k =

tr(Σ̂ε2
2k) is the value returned by the ε2–algebraic redundancy pruning algorithm, then

0≤ Jε2
2k− J∗2k ≤ Bε2

where,

Bε2 =

tr

{
k

∑
j=1

[
0

∏
i= j−1

(Fi(Σ)Φ2i(Σ))
j−1

∏
i=0

(Fi(Σ)Φ2i(Σ))
T

]
ε2

}

where, Fi(Σ)=C−CKi(Σ)H and Ki(Σ) is the Kalman gain given by Ki(Σ)=ΣHT (HΣHT +

Σw)
−1, and Φ2k(·) is the application of the Riccati equation ρ(·), over k measurement steps:

Φ2k(·) = ρ2(k−1)(ρ2(k−2)(. . .ρ0(·)))︸ ︷︷ ︸
k steps ρ(·)

. (2.19)

Note that in Theorem 4, the conditions (C1)–(C3) are still required. (C1) and (C2)

are always required for the MAX level, (C1) and (C3) are required for the MIN level.

Theorem 4 relaxes the condition for (C4) for the MAX level, and (C5) for the MIN level.

35

Proof. For some level i, suppose that we prune a node on the optimal policy. We have,

tr(H
(
Σ

ε2
2i

)
HT)≤ tr(H (Σ∗2i + ε2I)HT),

we apply the following two proprieties from [107] Second(Lemma 1 and Theorem 3 in

[107]), ∀Σ,Q ∈ Rn×n and ε ≥ 0:

ρ2i(Σ+ εQ)� ρ2i(Σ)+Fi(Σ)QFT
i (Σ)ε (2.20)

Φ2k(Σ+ ε2Q)�Φ2k(Σ)+

[
0

∏
i=k−1

(Fi(Σ)Φ2i(Σ))Q
k−1

∏
i=0

(Fi(Σ)Φ2i(Σ))
T

]
ε2 (2.21)

Let
{

Σ̂∗i
}k

i=1 be the series of covariance matrices along the optimal minimax trajectory.

Suppose that the sequence of covariace matrices along the optimal trajectory returned by

ε2–algebraic redundancy pruning algorithm is
{

Σ̂
ε2
i
}k

i=1. We get,

Σ̂
ε2
i � Σ̂

∗
i + ε2I, ∀i = 1,2, . . . ,k

Consider the worst case, the ε2 pruning condition was used at all the remaining 2k levels

of the minimax tree. It will be at most be pruned by k times. Thus, added all the bounded

value from 1 to k. we obtain the desired bound:

0≤ Jε2
2k− J∗2k = (Σ̂ε2

k)− (Σ̂∗k)

≤

{
k

∑
j=1

[
0

∏
i= j−1

(Fi(Σ)Φ2i(Σ))
j−1

∏
i=0

(Fi(Σ)Φ2i(Σ))
T

]
ε2

}

= Bε2

36

By combining the two results, let Jε1,ε2
2k be the upper bound when we apply ε1-alpha

pruning and ε2-Distance dependent algebraic redundancy pruning together, we get

0≤ Jε1,ε2
2k − J∗2k ≤max{ε1,Bε2} .

The parameter ε1 has a direct relationship with the suboptimality. On the other hand, ε2

has a more indirect relationship with the suboptimality. In Section 2.5, we plot the upper

bound of Jε1
2k and Jε2

2k, given by Theorems 3 and 4, in order to visualize this relationship. The

selection of ε1 and ε2 can balance the trade-off between the size of the tree (equivalently,

computation time) with the optimality guarantees of the algorithm. The bounds help us

determine the extent of the trade-off.

2.4.4 Online Execution of the Search Tree

The techniques presented in the previous subsection allow us to find the optimal policy

when looking ahead for T steps. While the pruning strategies reduce the size of the search

tree, it may still be impractical to look ahead all the way till the end of longer episodes.

In such cases, we can build a tree up to a shorter horizon T depending on the amount of

computational time available for making each move.

Once the tree is built, the robot can execute the optimal policy. Note that this will,

in general, not be the optimal policy since we are looking ahead only T steps and not

until the end of the episode. At the root node, the robot executes the first control action

along the optimal minimax path found. Then, the robot obtains a measurement. This

measurement may not correspond to the worst-case measurement. Furthermore, the actual

37

Algorithm 1: The Minimax Search With Pruning.
1 function Minimax(node,depth,α,β ,state)
2 if node i is a leaf node then
3 return tr(Σi

T)
4 else if state is at the MAX level then
5 bestvalue←−∞

6 for each control input ur1(t), · · · ,urn(t) do
7 v← New robot states
8 V ←Minimax(v,depth−1,α,β ,MIN)
9 bestvalue←max(bestvalue,V)

10 α ←max(bestvalue,α)
// Alpha-beta pruning

11 if β ≤ α then
12 break
13 end

// Check the condition in Theorem 2

14 if (C1)&(C2)&(C4) are true then
15 break
16 end
17 return bestvalue
18 end
19 else
20 bestvalue←+∞

21 for each candidate measurements z1(t), · · · ,zm(t) do
22 v← Update estimated target states
23 V ←Minimax(v,depth−1,α,β ,MAX)
24 bestvalue←min(bestvalue,V)
25 β ←min(bestvalue,β)
26 if β ≤ α then
27 break
28 end
29 if (C1)&(C3)&(C5) are true then
30 break
31 end
32 return bestvalue
33 end
34 end
35 end
36 {S0}← Initial
37 Minimax(S0,1,−∞,∞,MAX)

38

ur(1) ur(i)

z1 uo(1)

ur(n)

zj uo(i) zm u o(i)

Initial Information:

Robot position: xr(t)

Estimated target position: xo(t)

Estimated covariance: (t)

^

^

[ur(i)]=minimax_tree[xr(t),xo(t), (t)]

return the optimal control input

^ ^

Take real measurement

Z(t+1),

use kalman filter to update

the state information

Apply

ur(i)

[xr(t+1),xo(t+1), (t+1)]=

Kalman_filter[xr(t+1),xo(t), (t)]^
^

^

^

 t+1 t

^

Figure 2.7: Online execution of the minimax tree. At each time step, the robot executes the first
control action given by the tree and obtains a measurement of the target. If the measurement z(t+1)
is close to one of the existing nodes, then that node is termed as the new root node. The tree can
then extended to have a depth of (k+1). If the new measurement z(t +1) is not close to any nodes,
then the tree can be rebuilt with the current estimate as the root node.

value of the measurement may not even be in the k candidate measurements in the tree.

Therefore, the updated target estimate may not correspond to a node in the tree. Instead,

we compute the node in the tree whose target estimate is closest to the actual one. We

can use Bhattacharyya distance [16] to find the closest target estimate in the tree. The

corresponding node then becomes the new root node of the tree. The optimal policy starting

at that node is executed, iteratively. If the Bhattacharyya distance of the closest node is too

large, we still can rebuild the whole minimax tree with the current target estimate as the

root node. Figure 2.7 illustrates the process of building the search tree online.

When rebuilding the tree, solving the LMI given in Conditions (C4) and (C5) may be

prohibitively slow. Instead, we can restrict the comparison to just a pair of nodes which

takes significantly less time.

39

2.4.5 Trajectory Optimization

One of the assumptions we make is that the robot and the target have a set of finite,

discrete control inputs. The size of the tree (without pruning) is exponential in the number

of control actions. Therefore, the minimax tree approach is reasonable when the number

of control inputs is limited. However, in practice, the set of control inputs available to the

robot could be large, potentially infinite. In such cases, the proposed tree search algorithm

will not scale.

In such cases, we can use the minimax search approach presented along with a trajec-

tory optimization algorithm (e.g., [104]). Trajectory optimization methods take as input an

initial trajectory and then refine it so as to improve the quality of the trajectory. We can use

the path produced by the minimax search as an initial path that is further refined by trajec-

tory optimization. For scalability, we can choose a small set of control inputs for the robot

and the target to build the minimax search tree. Then, we can use a trajectory optimization

method, e.g., Iterative Linear Quadratic Gaussian (iLQG) [104], that is not restricted to the

smaller set of control inputs to refine the trajectory. In an online setting, we will execute

only the first control input in the refined trajectory obtained. The process is then repeated

after every time step as described in the previous subsection.

Different initial trajectories given to trajectory optimization lead to different output

trajectories especially in environments with obstacles. The minimax search generates a

better initial trajectory. Figure 2.8 provides an example that different initial trajectories

will lead to different results. In Figure 2.8, two different initial collision-free trajectories

are computed considering limited control inputs (up, down, left, right). In this example,

to simplify the comparison, we consider the target’s path is fixed. We see the effect of the

initial trajectory given to the optimization routine.

The trajectory optimization algorithm is allowed to pick control inputs for the robot

40

and the target within a unit ball at every time step. That is, ||ur(t)||2≤ 1 and ||uo(t)||2≤ 1.

However, any other suitable control input space can be used. Given the initial trajectory,

we iteratively sample control inputs within a unit ball of the position of the robot and the

target given in the initial trajectory, for each time step. The objective function for trajectory

optimization is still Equation 2.5 (trace of the covariance in the final step). We alternate

between trajectory optimization for the robot and the target. That is, we first optimize

the trajectory for the robot assuming that the target’s trajectory is fixed. We then fix the

optimized robot’s trajectory, and find the trajectory for the target. This process is then

repeated for a fixed number of iterations or until a time deadline is met.

We follow similar steps in the previous subsection when we run the minimax with

trajectory optimization algorithms online. The robot executes the first control action along

the optimal trajectory. Then, the robot obtains a measurement and repeats the process if the

measurement does not correspond to the worst-case measurement.

With an initial path generated by minimax, the trajectory optimization approach can

improve the overall performance and compensate for the disadvantage of minimax that

we only consider limited control inputs. We can use coarser discretization to get a faster

trajectory first and then refine it with trajectory optimization. In this way, we can balance

the trade-off between the accuracy and speed of the algorithm. We present more results in

the simulation section.

2.5 Simulations

We carry out four types of evaluations via simulations. First, to show the efficacy of

the minimax tree search in adversarial target tracking, we present qualitative and quanti-

tative results. These results show the advantage of applying minimax over three baseline

approaches. Second, we investigate the computational savings due to our algorithm by

comparing the number of nodes in the pruned minimax tree and the full enumeration tree.

41

(a) Initial trajectory
A.

(b) Optimized trajec-
tory A.

(c) Initial trajectory
B.

(d) Optimized trajec-
tory B.

Figure 2.8: A robot moves in a 2-D environment with obstacles. (a) and (c) are the initial collision-
free trajectory computed by considering limited control input (up, down, left, right). (b) and (d)
are the output of the trajectory optimization for ten times of iteration steps. The initial positions are
marked in the hexagram. We set the initial trace of the covariance tr(Σ0)= 20. With initial trajectory
A, the trace of the covariance is 2.09 at the final step after applying trajectory optimization. With
initial trajectory B, the trace of the covariance is 1.59 at the final step.

Then, we study the effect of varying the ε1 and ε2 parameters on the number of nodes.

Finally, we use the control policy given by our algorithm and execute it by drawing actual

measurements from a random distribution. This represents a realistic scenario where the

measurements are not necessarily adversarial. We demonstrate how our strategy can be

used in such a case, and compare the average-case with the worst-case performance.

2.5.1 Comparisons with Baseline Approaches

We compare the performance of the minimax tree search with three baseline approaches,

as shown in Figure 2.9 and Figure 2.10, based on two environments in Figure 2.11. We as-

sume that the robot can move faster than the target. The robot has the following control

inputs, Ur, to choose from,

1

0

 ,
0

1

 ,
−1

0

 ,
 0

−1

 ,
 1√

2
1√
2

 ,
 1√

2

− 1√
2

 ,
− 1√

2
1√
2

 ,
− 1√

2

− 1√
2

 .

42

The target moves slower and only has the following four control inputs,

Uo =


0.5

0

 ,
 0

0.5

 ,
−0.5

0

 ,
 0

−0.5




Even though the target moves slower than the robot, it can fly across the obstacles since

we model it as an aerial robot. The robot, on the other hand, moves on the ground plane

and therefore cannot pass through obstacles. Note that we assume the robot (ground robot)

moves faster than the target (aerial robot) in the following experiments to demonstrate

interesting behaviors. The tree search techniques also apply in other cases where the targets

and the robots have the same mobility or when the target is faster than the robot.

We use three baselines: a greedy strategy [9], Dynamic Programming (DP) [4, 80],

and tree search without adversarial nodes [5, 103]. Note that prior work on active target

tracking has not considered the distance-dependent noise case. As such, there is no existing

algorithm that we can compare against directly. We compare against three types of plan-

ners used for target tracking that are qualitatively different from the adversarial tree search

planner that we employ.

The greedy strategy is to choose a control input that takes the robot closest to the mean

of the target’s estimate. The DP strategy maximizes J(T) which is given by the following

recurrence:

J(t) = min
ur(t)

(
tr(Σ̂t)+ J(t−1)

)
. (2.22)

This objective function is the cumulative sum of the traces whereas in minimax we only

optimize the final trace at the end of the planning horizon. The third baseline strategy is

the same as minimax but without the MAX levels. That is, we will no longer consider

the adversarial motion of the target (instead plan considering that the target is stationary).

43

(a) Greedy (b) DP (c) Tree
search without
adversarial
planning

(d) Minimax

0 5 10 15 20 25 30

Step

0.8

1

1.2

1.4

1.6

1.8

2

2.2

T
ra

c
e
 o

f
th

e
 c

o
v
a
ri
a
n
c
e

Minimax

Greedy

DP

Tree search without adversarial planning

(e) Trace of covariance matrix at
each step.

Figure 2.9: Qualitative example 1: (a)–(d) provide the path for the robot (red) and the target (blue),
given by greedy, DP, tree search without adversarial planning, and minimax. (e) is the comparison of
the updated trace of covariance matrix tr(Σt) at each step. The size of the environment is a 25×25.
For DP and minimax, the planning horizon for each step is 5 (The height of the minimax tree is 11).

Atanasov et al. [5] used a similar tree search approach for tracking a non-adversarial target,

assuming that the motion of the target is known. Here, since we do not know the motion

of the target, we assume it is stationary, as a baseline comparison. The baseline strategies

consider expected measurements when planning over the horizon. The evaluation is always

done online for each of the four strategies: at each time step, we execute the action given

by the planner, take an actual measurement, update the target’s estimate, and replan.

In general, minimax is a non-myopic planning algorithm and can plan on a longer hori-

zon. If the target is actively escaping from the robot, minimax can predict the adversarial

moves of the target. Thus minimax can better track the target than DP and tree search

without adversarial planning. This is reflected in the two qualitative examples shown in

Figures 2.9 and 2.10.

We also show how the trace of the covariance matrix tr(Σt) evolves over time. The ini-

tial covariance matrices are Σ0 = I. From Figure 2.9 and Figure 2.10, the greedy algorithm

performs poorly since it is myopic and can be easily blocked by the obstacles. The DP

has better tracking results than the greedy. However, in these two qualitative examples, the

44

(a) Greedy (b) DP (c) Tree
search without
adversarial
planning

(d) Minimax
tree search

0 5 10 15 20 25

Step

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

T
ra

c
e
 o

f
th

e
 c

o
v
a
ri
a
n
c
e

Minimax

Greedy

DP

Tree search without adversarial planning

(e) Trace of covariance matrix at
each step in these four cases.

Figure 2.10: Qualitative example 2: (a)-(d) provide the path for the robot (red) and the target (blue),
given by greedy, DP, tree search without adversarial planning, and minimax. (e) is the comparison of
the updated trace of covariance matrix tr(Σt) at each step. The size of the environment is a 21×15.

3

5

1 2

6

4

7

8

(a) Environment A (25×25).

1 2 3

4

567

8

Initial target position

Different initial robot positions

(b) Environment B (21×15).

Figure 2.11: Environments used for the online simulations. Blue dots are the different initial posi-
tions for the robot.

target chooses the optimal path to escape. The minimax algorithm can better predict the tar-

get’s movement than a tree search without adversarial planning and DP. In Figure 2.10(b),

even using the non-myopic DP, the robot was stuck, with a planning horizon of five steps.

We also performed quantitative comparisons for the scenarios. We compare the tracking

performance of the four approaches. For both environments, we vary the starting position

of the robot (the target always start in the center). Table 2.2 shows the average of the trace

of the covariance matrix after 50 time steps. Not surprisingly, all strategies perform better

in environment A since it is more open than B. The greedy strategy performs the worst.

45

The minimax tree search outperforms the other baselines.

Table 2.2: Quantitative examples in different environments, each trial starts with different initial

positions.

Average final trace of the

covariance matrix after 50 steps

Environment Greedy DP
Tree search

without adversarial

Minimax

tree search

A 1.473 0.931 0.986 0.684

B 1.856 1.571 1.615 1.346

2.5.2 Comparing the Number of Nodes

In this section, the models used in the simulation are as follows. The robot follows

a linear motion model and can choose from four actions at each time step, Xr(t + 1) =

Xr(t)+ur(t),

Ur =


1.0

0

 ,
 0

1.0

 ,
−1.0

0

 ,
 0

−1.0


 (2.23)

We build the tree using five candidate measurements at each step: z(t)= {z1(t),z2(t), · · · ,z5(t)}.

The five values are randomly generated by drawing from a Gaussian distribution. The rest

of the parameters are Ct = I,H = I,Σv = I,δ1 = 0.5,δ2 = 0.1,B = 1. We assume the target

is stationary in this section.

Just like Algebraic Redundancy in [107], (C4) and (C5) can be checked using an LMI

solver. However, solving for an LMI is computationally expensive. A simpler method is to

only check pairs of nodes. That is, when a new node A is generated, check node A and only

one of the candidate nodes one by one. This results in lesser pruning but faster checks.

In our experiment, we check the candidate nodes one by one as follows. To check

46

(C1)–(C5) in Theorem 2 or Theorem 4, for each node in the search tree, we store its current

level (depth in the search tree), current position Xr, the estimated target position X̂o, the

covariance matrix, and a vector that stores the ancestors. We also need a list to store the

nodes that are along the optimal minimax path (green path in Figure 2.6). For a newly

generated node A, we do the following steps:

• For the nodes at the same level, find the nodes where the robot and target’s estimated

position are the same as node A (condition (C1)).

• For all the nodes we found, only keep the nodes along the optimal minimax path and

then find their common ancestors with node A (conditions (C2) and (C3)).

• Check condition (C4) or (C5) based on the type of the common ancestor (MIN or

MAX).

• If (C4) or (C5) is true, mark node A as being pruned and not explore its children

nodes.

Pruned

Optimal

root (starting point)

robot node

target node

robot node

target node

Figure 2.12: A five-level minimax tree with pruning (189 nodes). Full enumeration has 505 nodes.

Figure 2.12 shows an example of a five-level minimax tree with pruning. Figure 2.13

shows the number of nodes in the minimax tree after pruning and the number of nodes in a

full enumeration tree, respectively. We prune a node by comparing it to the nodes already

47

explored. More nodes will be pruned if initial nodes encountered are “close” to the optimal

policy. For instance, if the first set of nodes explored happen to be the optimal control law

that drives the robot close to the target, then we expect the nodes encountered later will be

pruned earlier in the process. To provide a fair assessment, we generate the search trees for

various true positions of the target. Figure 2.13 shows the average and standard deviation

of the number of nodes.

Figure 2.13 shows that our algorithm prunes orders of magnitudes of nodes from the

full enumeration tree. For a tree with depth 13, there are 8.08× 107 nodes in the full tree

but the same optimal solution can be computed using 4.36× 105 nodes with our pruning

strategy.

3 4 5 6 7 8 9 10 11 12 13

Time-step

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

lo
g
(T

o
ta

l
n
o

d
e
s
 n

u
m

b
e
r)

Number of nodes vs. Time-step

With Pruning Algorithm

Brute Force

Figure 2.13: Comparison of the number of total nodes generated for minimax tree. Note that the y
axis is log scale.

2.5.3 Comparing the Sub-optimal Pruning algorithm

By sacrificing optimality, we can prune even more nodes. We evaluate this by varying

ε1 and ε2 individually first, and then jointly. As shown in Figure 2.14, ε1-alpha prun-

ing is relatively better at reducing the size of the minimax tree. This is intuitive because

ε1-alpha pruning condition compares nearly every pair of nodes at the same depth. ε2-

algebraic redundancy pruning, on the other hand, requires more conditions to be satisfied.

48

Nevertheless, Figure 2.14 shows that by sacrificing optimality, the number of nodes can be

substantially reduced.

We also study the effect that varying ε1 and ε2 has on the optimality. Figure 2.15

plots the upper and lower bounds for the trace of the covariance in the optimal case (J∗2k =

tr(Σ̂∗2k)) as well as in the suboptimal cases (Jε1
2k and Jε2

2k). The lower bound of the optimal

value J∗2k is obtained by applying the Kalman Riccati equation k times to the initial covari-

ance matrix Σ0 assuming that the distance d(Xr(t),Xo(t)) = 0 for all t. This corresponds

to the case when the variance of the noise is minimum. The upper bound is obtained by

considering the worst case noise which occurs when ||Xr(t)−Xo(t)||2= B. The solution

of a minimax search tree, J∗2k, lies between the upper and lower bounds (i.e., between the

two blue curves).

From the upper bound of J∗2k, we can plot the upper bounds for Jε1
2k and Jε2

2k. The upper

bound for Jε1
2k is given by Theorem 3 whereas that for Jε2

2k is given by Theorem 4. For the

latter, we use the worst-case measurements to compute the recursive term. We use ε1 = 0.1,

ε2 = 0.2 and B = 1 to plot the figure. When we have ε1 = 0.1 and ε2 = 0.2 together, the

bound will be the maximum of the upper bounds for Jε1
2k and Jε2

2k.

Table 2.3 shows the error in tracking the target target caused by sacrificing optimality

(i.e., non-zero ε1 and ε2). In this experiment, the robot starts at (0,0) and the target’s initial

position is (1,0). We run the policy for k = 7 time steps. We assume the robot and target

can move with the same speed, Ur = Uo = 1. The initial distance between the robot and

the target is 1. Table 2.3 shows the average distance (of 50 trials) after k time steps using

a suboptimal policy with various values of ε1 and ε2. The table shows that the average

separation increases as ε1 and ε2 increase, as expected. We also observe that ε1 has a larger

effect on the tracking error as compared to ε2.

49

1 2 3 4 5

Depth of the tree

0

1

2

3

4

5

T
o
ta

l
n
u
m

b
e
r

o
f
s
e
a
rc

h
 t
re

e
 n

o
d
e
s ×10

5

Figure 2.14: Effect of the ε1 and ε2 relaxation parameters on the number of nodes in the search tree.
The baseline case is the optimal solution with alpha pruning and algebraic redundancy with both
parameters set to zero.

1 2 3 4 5 6 7 8 9 10

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Figure 2.15: Applying Thereom 3 and Thereom 4. The range of J∗2k = tr(Σ̂∗2k), Jε1
2k,J

ε2
2k with planning

horizon k = 1,2, · · · ,10. Initial value Σ0 = I, δ1 = 0.5, δ2 = 0.1, B = 1.

Table 2.3: Effect of the ε1 and ε2 relaxation parameters on the tracking error.

ε1 = 0,

ε2 = 0

ε1 = 0,

ε2 = 0.2

ε1 = 0.2,

ε2 = 0

ε1 = 0.2,

ε2 = 0.2

ε1 = 0.3,

ε2 = 0.3

Average

distance

in 50 times

1.00 1.36 1.54 1.70 2.26

50

2.5.4 Trajectory Optimization

In this subsection, we compare the performance of executing the controls found by

minimax only and minimax with trajectory optimization. We use the environment in Fig-

ure 2.11. We use minimax to generate the initial trajectory by using only four control inputs

for both the robot and the target (given in Equation 16). Then we use the same objective

function in Equation 2.5 (trace of the covariance in the final step). The trajectory optimiza-

tion is allowed to refine the trajectory subject to ||ur(t)||2≤ 1 and ||uo(t)||2≤ 1. Unlike the

previous simulations, we assume the target cannot go over the obstacles to show the effect

of trajectory refinement.

We use this in an online setting as described in Section 2.4.5. We compare two cases:

minimax without trajectory optimization and minimax with trajectory optimization.. In

both cases, the target uses minimax with trajectory optimization (even if the robot is not).

This is because in practice the target is not restricted to use a minimax tree or subject to

only follow the four control inputs we use to build the tree. The goal of this experiment

is to show how much improvement we can get with trajectory optimization in terms of the

tracking performance.

A qualitative example is shown in Figure 2.16. In Figure 2.16-(a), we see the two

trajectories followed by the robot using minimax only (left) and minimax with trajectory

optimization (right). We observe that the robot is able to get closer to the target, follow a

smoother trajectory, as well as improve the performance in tracking. This can be seen in

Figure 2.16-(b) which shows the improvement of the trace of the covariance.

We also performed quantitative comparisons. For the two environments in Figure 2.11,

we vary the starting position of the robot (the target always start in the center). Table 2.4

shows the mean and the standard deviation of the trace of the covariance matrix after 25

time steps. The trajectory optimization approach can always improve the path found by the

51

minimax tree. We observe that the improvement is larger in environment B. We suspect

that this is because environment B has longer, narrower corridors where if a robot goes

down an incorrect path it does not get easy opportunities to correct it. On the other hand,

environment A has smaller obstacles that the robot can go around. Therefore, the trajectory

optimization results in larger improvement in the more challenging environment (B).

Table 2.4: Quantitative examples for minimax only vs minimax with trajectory optimization.

Final trace of the covariance matrix after 25 steps

mean (standard deviation)

Environment Minimax only Minimax with optimization

A 0.97 (0.16) 0.73 (0.13)

B 1.87 (0.29) 1.12 (0.25)

2.6 Experiments

We implemented the worst-case minimax tracking algorithm using indoor and outdoor

robots. We use a five-level minimax tree with a look-ahead of two steps. Our experiments

show that the algorithm can be successfully implemented and executed on real hardware.7

For the indoor experiment, we used two Pioneer 3DX robots (Figure 2.17) equipped

with a 2.6GHz i7-6700HQ processor and 16 GB RAM to find the optimal minimax strat-

egy. We use MATLAB 2015b to execute the proposed algorithm and send the control

inputs to the Pioneer 3DX robot through MATLAB ROS toolbox. One Pioneer acts as

the target and the other acts as the tracking robot. The motion and measurement models

and parameters are similar to the Gazebo simulation reported in the previous section. The

measurement noise is generated using parameters δ1 = 0.5 and δ2 = 0.1 from the true po-

sition of the target robot. The robot’s speed is 0.4m/s and the target’s speed is 0.25m/s.

7The video can be found at https://youtu.be/ATh_Vv3pgS4.

52

https://youtu.be/ATh_Vv3pgS4

(a) Online adversarial planing: Minimax only vs minimax with trajectory
optimization.

0 5 10 15 20 25

1

1.5

2

2.5

Minimax with trajectory optimization

Minimax only

(b) The trace of the covariance at each step.

Figure 2.16: Qualitative online path planning examples for minimax with trajectory optimization:
(a) provides the path for the robot (red) and the target (blue), given with/without trajectory opti-
mization. The initial positions are marked by a hexagram. (b) show the comparison of the trace of
covariance matrix tr(Σt) at each step. Note that this is an online execution where the robot replans
at every timestep. This is why the optimized trajectory deviates from the minimax only trajectory
in terms of going around the obstacle.

53

We use minimax with optimal pruning conditions in real-world experiments. The results

presented in this section are found by minimax only, without trajectory optimization since

the environment does not contain any obstacles and our focus was on studying the online

performance of minimax.

The robot only takes a new measurement and computes the next control input after it

finishes the previous movement. In this experiment, we use a 5 level minimax tree (look

ahead for two steps) to compute the strategy. It takes on an average (of 10 trials) 1.36s to

compute the policy with a 5 level minimax tree. The computation time may vary based on

the specific instance and the parameters.

We carried out three sets of experiments: (1) tracking a stationary target; (2) tracking a

target that moves in a straight line; and (3) tracking a target that actively chooses adversarial

control inputs to evade the tracker. Figure 2.17 shows the robot and the target’s trajectories

for the three experiments. In all cases, we see that the minimax algorithm with pruning

drives the robot towards the target. Furthermore, the hardware experiments demonstrate

that minimax algorithm can be applied in real-time on actual hardware8.

The outdoor experiment consisted of an Unmanned Aerial Vehicle (UAV) tracking a

stationary target using the minimax tree. The UAV uses a DJI Flame Wheel F450 frame

and ArduPilot Mega (APM) firmware running on a Pixhawk autopilot. The on-board com-

puter interfaces with the autopilot using the mavros package of the Robotic Operating Sys-

tem (ROS). The same computer used for the indoor experiment runs the minimax search

algorithm and sends the waypoints to the autopilot. The experiments were conducted in a

farmland near Blacksburg, VA, USA. The measurement is obtained by a noisy GPS sensor

placed on the target. In order to generate the tree, the GPS noise is modeled as a zero mean

Gaussian noise with constant variance (δ1 = 0.5 and δ2 = 0.1). The starting position of the

UAV was about 160 meters from the target.

8The video can be found at https://youtu.be/ATh_Vv3pgS4

54

https://youtu.be/ATh_Vv3pgS4

(a) Experimental environment

-1 0 1 2 3 4 5 6 7 8
-8

-7

-6

-5

-4

-3

-2

-1

0

1

Robot Path

Target Position

(b) Tracking a stationary target

0 2 4 6 8 10 12 14 16 18 20

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

Robot Path

Target Path

(c) Tracking a moving target

0 2 4 6 8 10 12 14 16 18 20
-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

Robot Path

Target Path

(d) Tracking an adversarial target

Figure 2.17: Real-world indoor tracking experiments.

(a) Experimental environment

5.3728 5.373 5.3732 5.3734 5.3736 5.3738 5.374

×10
5

4.11686

4.11687

4.11688

4.11689

4.1169

4.11691

4.11692

4.11693
×10

6

Path

UAV initial position

Target position

(b) UAV online tracking

Figure 2.18: Real-world outdoor tracking experiment.

55

The UAV took off manually and then switched to the autonomous mode, where it fol-

lows the control commands given by the minimax tree. Figure 2.18 shows the resultant

trajectory of the UAV produced by the algorithm. Similar to the indoor experiment, the

UAV has four motion control input (forward, backward, left, right). The unit step of the

UAV is set as 10 meters.

The indoor and the outdoor experiments demonstrate that the online minimax tracking

algorithm along with the pruning strategy can be applied in real-time on actual hardware9.

2.7 Summary

We investigated the problem of devising closed-loop control policies for target tracking

with distance-dependent measurement noise. Unlike the state-independent noise case, the

value of a candidate control law in our version is a function of the history of measurements

obtained. Consequently, planning over a horizon requires taking into account all possible

measurement values. We focused on minimizing worst-case uncertainty. Our solution

consists of building a minimax search tree to obtain the control policy. A full enumeration

tree has a size that is exponential in the number of measurements, control actions, and the

planning horizon. Instead, we exploited the structural properties of Kalman filter to yield

a tree with significantly less number of possible nodes without sacrificing the optimality

guarantees. We also showed how two parameters, ε1 and ε2, can be used to yield even

more computational savings at the expense of optimality. The resulting algorithm was

evaluated in simulations and through real-world experiments.

One disadvantage of the generalization is that we have to discretize the set of possible

future measurements. Our immediate future work is to bound the suboptimality as a func-

tion of the number of discrete samples chosen to represent the continuous set of measure-

9The video can be found at https://youtu.be/ATh_Vv3pgS4.

56

https://youtu.be/ATh_Vv3pgS4

ments. The algebraic redundancy conditions require the states to be identical which is rea-

sonable when operating in a discrete setting. A useful extension would be to group together

nearby states, and quantify the effect of such grouping, so that we can allow for even more

pruning and/or extend to the continuous regime. Another avenue of future work focuses

on extending these results to multi-robot, multi-target scenarios. Our prior work [94, 101]

has shown a greedy assignment of robot trajectories to targets yield provably approximate

solutions for one-step planning. We will extend this to plan over a finite horizon using the

results presented in this chapter.

57

Chapter 3: A False Data Injection Strategy to Mislead Kalman filter

In this chapter, we will continue investigating the target tracking problem. However,

we will now consider an asymmetric setting. The asymmetry will be due to the fact that the

adversary has the additional capability of injecting malicious signals into the measurements

obtained by the robot. This chapter will focus on how much this asymmetry will affect the

robot’s estimation results.

3.1 Introduction

As autonomous systems proliferate, there are growing concerns about their security and

safety [76, 97]. Of particular concern is their vulnerability to signal spoofing attacks [99].

As a result, many researchers are designing algorithms that enable an observer to detect

and mitigate signal spoofing attacks (e.g., [3, 29, 34, 39, 113]). We study the problem from

the opposite (i.e., the attacker’s) point-of-view. Our goal is to characterize the capabilities

of the attacker that is generating the spoofing signals while assuming that the observer is

using a Kalman filter for state estimation.

The problem of generating spoofing attacks has been studied specifically for GPS sig-

nals. Tippenhauer et al. [99] describe the requirements as well as present a methodology

for generating spoofed GPS signals. Larcom and Liu [60] presented a taxonomy of GPS

spoofing attacks.

The typical approach to mitigate sensor spoofing attacks is by designing robust state

58

estimators [14]. Fawzi et al. [35] presented the design of a state estimator for a linear dy-

namical system when some of the sensor measurements are corrupted by an adversarial

attacker. We focus on the scenario where the observer uses a Kalman Filter (KF) for es-

timating the state using measurements that are corrupted by additive spoofing signals by

the attackers. We study the problem of generating spoofing signals of minimum energy

that can achieve any desired separation between the KF estimate with spoofing and without

spoofing. We show that for many practical cases, the spoofing signals can be generated

using linear programming in polynomial time.

Many recent works have undertaken research on how to spoof estimators such as LQG

control system [70], GPS system [91], wireless sensor networks [69] and electric power

grids [67]. In [67], the authors present false data injection attack against state estimation in

electric power grids. They show how an attacker can exploit the configuration of a power

system to launch such attacks to successfully introduce arbitrary errors into certain state

variables while bypassing existing techniques for bad measurement detection.

Another work by Su et al. [91] is closely related to ours. The authors show how to

spoof the GPS signal without triggering a detector that uses the residual in the Kalman

filter. They present a 1-step (greedy) online spoofing strategy that solves a linear relaxation

of a Quadratically Constrained Quadratic Program (QCQP) at each timestep. We present

a strategy that plans for T future timesteps, instead of just the next timestep, while mini-

mizing the spoofing signal energy. Furthermore, we characterize the scenarios under which

our strategy finds the optimal solution in polynomial time.

The work that is most closely related to ours is by Mo et al. [69, 70]. Their goal is to

design false measurement data to mislead a system with a Kalman filter [69] or an LQG

control system [70]. Both our work and the aforementioned work assume that the system

is linear with Gaussian noise and that a discrete Kalman filter is used to estimate the state.

Mo et al. [70] define (ε,α)–attacks (see Definitions 2 and 3 in the original paper). Based

59

on their definition, an attack sequence is successful if: (1) the difference in the estimated

state of the system under attack and the true state is greater than a given value; and (2) the

probability of alarm for the χ2 failure detector is always smaller than a given threshold.

They proved that a linear control system is perfectly attackable if and only if its transition

matrix has an unstable eigenvalue and the corresponding eigenvector satisfies additional

conditions (c.f. Theorem 2 in [70]). These conditions may be too strict. We relax the

requirements of an attackable system with the goal of being applicable to more classes of

systems. Specifically, we remove the second condition in the (ε,α)–attacks and instead we

only consider minimizing the total injected signal by ∑
T
t=1 γt · ‖εt‖p

p. Nevertheless, we also

show the conditions under which an attack is successful against the χ2 detector.

Bai et al. presented a different notion of a successful attack in two relevant papers [6, 7].

They define a successful attack as ε–stealthy.1 The goal is to maximize the mean squared

error between the attacker’s estimated state and the true state subject to limt→∞
1
t D(r̃t

1||rt
1)<

ε . Here, D(r̃t
1||rt

1) is the Kullback-Leibler divergence (KLD) between the the Kalman filter

innovation without attack, rt
1, and with attack, r̃t

1. Their notion of a successful attack only

applies when t → ∞. Thus, their attack strategy can only be applied when a Kalman filter

runs for a long time. Instead, we focus on a finite, possibly small, number of time steps and

do not require t→∞. Furthermore, our notion of a successful attack differs from theirs and

does not focus on a specific type of detector.

Various failure detectors have been proposed in the literature. Jones [46] presented one

of the first work on failure detection in linear systems. Specifically, Jones [46] presented a

linear filter that increases the sensitivity of the residual of the filter, which helps to improve

the detection of a particular failure. Brumback et al. [21] presented a χ2 test for fault

detection in Kalman filters. Mo et al. [69] studied the effect of false data injection attacks

on state estimation with a χ2 failure detectors.

1This ε is not related to the ε used by Mo et al. [69, 70].

60

In this chapter, we study how to design spoofing signals that are agnostic to the failure

detector. Instead, we minimize the magnitude of the injected signals while still ensuring

the desired separation in the filter output. We provide numerical simulations to show our

strategy successfully misleads the χ2 detector.

Based on the motion model of the target and the evolution of the KF, three problems for

spoofing design are formulated in Section 3.2. Section 3.3 shows the approaches to solve

these optimization problems. The simulations for verifying spoofing strategies are given

in Section 3.4. Section 3.5 provides a numerical example to illustrate how the proposed

spoofing strategy can be applied to a system equipped with a failure detector. Finally,

Section 3.6 summarizes the conclusion and future work.

3.2 Problem Formulation

Notation: We denote the set of positive real number by R+, the set of positive integers

by Z+. The set of real vectors with dimension n is denoted by Rn, n ∈ Z+, and the set of

real matrices with m rows and n columns by Rm×n, m,n ∈ Z+. We write ‖·‖p
p, p ∈ Z+ as

the pth power of Lp vector norm, E(·) as the expectation of a random variable, In as the

identity matrix with size n, n ∈ Z+, and N (µ,σ2) as the normal distribution with mean µ

and variance σ2.

We consider a scenario where an observer estimates the location of a target using a KF

in an n–dimensional space. The target misleads the observer by adding spoofing signals to

the observer’s measurement. We define the target’s model as:

xt+1 = F xt +G ut +ωt , (3.1)

where F ,G ∈Rn×n, xt ∈Rn is the state of target, ut ∈Rn is the control input, wt ∼N (0,R)

61

Figure 3.1: The evolution of KF estimate by applying zt and z̃t , respectively. Note that mt and m̃t

may also be different initially, i.e., (m̃0 6= m0).

is the Gaussian process noise with R ∈ Rn×n.

The observer estimates the target’s measurement using a linear measurement model:

zt = H xt + vt , (3.2)

where H ∈ Rn×n and vt ∼N (0,Q) gives the measurement noise with Q ∈ Rn×n.

In order to mislead the observer, the target corrupts the observer’s measurement by

adding spoofing signal to mislead the observer’s estimate. We assume the measurement

received by the observer is z̃t ∈ Rn with spoofing signal (Equation (3.3)) instead of the

true measurement zt ∈ Rn without spoofing signal (Equation (3.2)). The spoofing signal

εt := [εt1, · · ·εtn]
T ∈ Rn adds additional measurement error:

z̃t = zt + εt . (3.3)

The observer uses a KF to estimate the target’s state with initial distribution N (m0,Σ0).

Since it receives the spoofing measurement z̃t for updating, we denote distributions gener-

ated by the evolution of its KF as N (m̃t , Σ̃t) when step t ≥ 1, t ∈ Z+. We also denote the

distributions generated by the evolution of a KF using true measurement zt as N (mt ,Σt).

62

Kalman

filter

with

spoofing:

spoof

designer

Kalman

filter

without

spoofing:

Target:

Observer:

Figure 3.2: Signal spoofing process and its effect on the observer’s KF estimation.

The goal for the target is to set the separation between the mean estimate mt and m̃t . The

target’s goal is to achieve some desired separation, dt ≥ 0, for each step t within the plan-

ning horizon (Figure 3.1). Figure 3.2 shows the target’s spoofing process where it uses

the initial guess of N (m0,Σ0) denoted as N (m̃0, Σ̃0) and desired separation dt to design

spoofing signal εt . In order to avoid detection, the targets seeks to minimize the magnitude

of the spoofing signal.

Note that, although we use the example of tracking a moving target, the state xt can be

more general. For example, it can represent the state of a power system [67], the state of a

networked system[69], or the state of a GPS device [60].

We first propose two problems for offline scenarios as follows.

3.2.1 Offline Spoofing Signal Design with Known N (m0,Σ0)

If the target knows N (m0,Σ0) of the KF, then the target can set N (m̃0, Σ̃0) equal to

N (m0,Σ0).

63

Problem 2 (Offline with Known N (m0,Σ0)). Consider a target with motion model (Equa-

tion (3.1)), measurement model (Equation (3.2)), and spoofing measurement model (Equa-

tion (3.3)). Assume the target knows N (m0,Σ0). Find a sequence of spoofing signal inputs,

{ε1,ε2, · · · ,εT} to achieve desired separation dt between m̃t and mt at step t to

minimize
T

∑
t=1

γt · ‖εt‖p
p

subject to

‖mt−m̃t‖p
p≥ dp

t , ∀t (3.4)

where γt ∈ R+ is a weighting parameter and T ∈ Z+ is the optimization horizon.

3.2.2 Offline Spoofing Signal Design with Unknown N (m0,Σ0)

Next, we consider the case where the target does not know the initial condition in the

KF. Instead, we assume that the initial estimate m̃0 is not too far away from m0 (in excep-

tion).

Problem 3 (Offline with Unknown N (m0,Σ0)). Consider a target with motion model

(Equation (3.1)), measurement model (Equation (3.2)), and spoofing measurement model

(Equation (3.3)). Assume the target starts spoofing with m̃0, where E(m0− m̃0) = M0 and

Σ̃0 6= Σ0. Find a sequence of spoofing signal inputs, {ε1,ε2, · · · ,εT}, so that the expected

value of the separation (‖E(mt− m̃t)‖) can achieve a desired value dt at each step t,

minimize
T

∑
t=1

γt · ‖εt‖p
p

64

subject to

‖E(mt−m̃t)‖p
p≥ dp

t , ∀t (3.5)

where γt ∈ R+ is a weighing parameter and T ∈ Z+ is the optimization horizon.

3.3 Signal Spoofing Strategies

In this section, we show how to solve Problems 2 and 3 when p = 1 and p = 2. We first

present the relationship between the separation mt− m̃t and the initial bias m0− m̃0.

Theorem 5. Consider a target with motion model (Equation (3.1)), measurement model

(Equation (3.2)), and spoofing measurement model (Equation (3.3)). The evolutions of the

KFs by applying zt and z̃t give the distributions N (mt ,Σt) and N (m̃t , Σ̃t), respectively.

The difference, mt− m̃t is,

mt− m̃t =
t−1

∏
i=0

At−i · (m0− m̃0)+

t−2

∑
i=0

(
i

∏
j=0

At− j(Bt−1−i +Ct−1−i)

)
+Bt +Ct ,

(3.6)

where At = F − K̃tH F , Bt = (Kt− K̃t) [zt−H (Fmt−1 +G ut−1)] , Ct =−K̃tεt .

Before we prove Theorem 5, we can review the Kalman Filter update equations from

equation (3.21), (3.18), (3.19), (3.20).

According to the Kalman gain update Equation (3.20), the evolution covariance matrix

at step t, Σt , only depends on the state model parameters and the initial condition of the

covariance matrix Σ0. The Kalman gain at step t, Kt depends on the covariance matrix

Σt . Both Σt and Kt do not depend on the control input series {ut}t=1,···,k, measurement

65

{zt}t=1,···,k. Thus, the covariance matrix and the Kalman gain can be predicted from the KF

covariance update steps.

Σt+1|t = FΣt|tF
′+Rt ,

Σt+1|t+1 = (I−KtH)Σt+1|t .
(3.7)

From Equation (3.7), the Kalman gain can be predicted from the initial condition Σ0.

We now prove our main result.

Proof. From the update of KF, we have

mt = mt|t−1 +Kt(zt−H mt|t−1)

= (I−KtH)mt|t−1 +Ktzt

= (I−KtH)(Fmt−1 +G ut−1)+Ktzt .

(3.8)

and

m̃t = (I− K̃tH)(F m̃t−1 +G ut−1)+ K̃t(zt + εt).

Recursively,

mt− m̃t

=(I−KtH)(Fmt−1 +G ut−1)+Ktzt− [(I− K̃tH)(F m̃t−1 +G ut−1)+ K̃t(zt + εt)]

=(F −KtH F)mt−1− (F − K̃tH F)m̃t−1− (Kt− K̃t)H G ut−1 +[Ktzt− K̃t(zt + εt)],

(3.9)

66

subtract a term K̃tH Fmt−1 then add the same term,

mt− m̃t

=(F − K̃tH F)mt−1− (F − K̃tH F)m̃t−1

− (Kt− K̃t)H G ut−1 +(Kt− K̃t)zt− K̃tεt− (Kt− K̃t)H Fmt−1

=(F − K̃tH F)(mt−1− m̃t−1)+(Kt− K̃t)[zt−H (Fmt−1 +G ut−1)]− K̃tεt .

(3.10)

Define, At = F − K̃tH F , Bt = (Kt − K̃t)[zt −H (Fmt−1 +G ut−1)] and Ct =−K̃tεt .

Then,

mt−m̃t

=At(mt−1− m̃t−1)+Bt +Ct

=At [At−1(mt−2− m̃t−2)+Bt−1 +Ct−1]+Bt +Ct

. . .

=
t−1

∏
i=0

At−i · (m0− m̃0)+(Bt +Ct)+At(Bt−1 +Ct−1)+ · · ·+At · · ·A3A2(B1 +C1)

=
t−1

∏
i=0

At−i · (m0− m̃0)+Bt +Ct +
t−2

∑
i=0

(
i

∏
j=0

At− j(Bt−1−i +Ct−1−i)

)
.

Corollary 1. The expected value of the separation is,

E(mt− m̃t)

=
t−1

∏
i=0

At−iM0 +
t−2

∑
i=0

(
i

∏
j=0

At− jCt−1−i

)
+Ct .

(3.11)

67

Proof. From Equation 3.6, E(mt− m̃t) follows,

E(mt− m̃t)

= E

(
t−2

∑
i=0

i

∏
j=0

At− j ·Bt−1−i +Bt

)
+

t−1

∏
i=0

At−iE(m0− m̃0)+
t−2

∑
i=0

(
i

∏
j=0

At− jCt−1−i

)
+ K̃tεt .

The actual measurement is: zi = H (Fmi−1 +G ui−1 +wi)+vi, where wi and vi are Gaus-

sian noises with zero mean. The expected measurement value is: E(zi) = H (Fmi−1 +

G ui−1) for all i, thus E[zi−H (Fmi−1 +G ui−1)] = 0. Since E[Bi] = 0, we have,

E(mt− m̃t)

=
t−1

∏
i=0

At−iE(m0− m̃0)+
t−2

∑
i=0

(
i

∏
j=0

At− jK̃t−1−iεt−1−i

)

+ K̃tεt .

(3.12)

Since we assume E(m0− m̃0) = M0 in Problem 3, the claim is guaranteed.

Theorem 5 shows the difference between the two estimated means at step t depends

on the initial means, m0 and m̃0, and the initial covariance matrices Σ0 and Σ̃0. This is

because the Kalman gain Kt depends on the covariance matrix Σt . If target sets m0 = m̃0

and Σ0 = Σ̃0, we have Σt = Σ̃t for all t since the covariance matrix is updated through the

same Kalman prediction and update equation. Thus, Bt = 02×2 and then Equation (3.6) can

be simplified as:

mt− m̃t =
t−2

∑
i=0

(
i

∏
j=0

At− jCt−1−i

)
+Ct .

As a result, mt− m̃t is independent of the measurements {z1,z2, · · · ,zt} when m0 = m̃0 and

Σ0 = Σ̃0. Thus, the target can generate spoofing signal inputs by solving Problem 2 offline.

68

Similarly, following Corollary 1, Problem 3 can be saved offline as well.

Problems 2 and 3 are two nonlinear programming problems for arbitrary vector norms

Lp. However, when p = 1, they can be formulated as linear programming problems. Linear

programming can be solved in polynomial time [48]. When p = 2, they become QCQP

(Quadratically Constrained Quadratic Program). The following shows the LP and QCQP

formulations.

Theorem 6. If p = 1 and the elements in F and I−KtH are all positive, then Problems 2

and 3 can be solved optimally with linear programming. If p = 1 and the elements in F

and I−KtH are not all positive, then Problems 2 and 3 can be solved optimally with 4k

linear programming instances. If p = 2 and {H ,F ,Q,R} are diagonal matrices, then

Problems 2 and 3 can be solved optimally with linear programming.

3.3.1 Linear Programming Formulation for L1 Vector Norm

Here, we show how to formulate Problem 2 using linear programming. A similar pro-

cedure can be applied to formulate Problem 3 as linear programming.

The constraint in Problem 2 (Equation 3.4) follows:

‖mt− m̃t‖1=

∥∥∥∥∥t−2

∑
i=0

(
i

∏
j=0

At− jCt−1−i

)
+Ct

∥∥∥∥∥
1

=

∥∥∥∥∥t−2

∑
i=0

(
i

∏
j=0

A j+1 · K̃t−1−i · εt−1−i

)
+ K̃tεt

∥∥∥∥∥
1

≥ dt , (3.13)

where t = 1,2, · · · ,T . ∏
i
j=0 At− j · K̃i ∈ R2×2 is a constant matrix for each i ∈ {1, · · · , t−1}

and is calculated from the KF iteration with initial covariance Σ0 and Σ̃0. Since L1 vector

norm is the sum of the absolute values of the elements for a given vector, Problem 2 can be

69

directly formulated as a linear programming problem when p = 1.

Then we show how to transform this constraint to a standard linear constraint form

Gtxt ≥ dt . To simplify the equation, we use a 2-D case as an example, with xt := [ε1x, · · · ,εtx,

ε1y, · · · ,εty]
T . The problem can be extended to n dimensions follow the same idea. The left

side of Equation (3.13) can be formulated as

‖mt− m̃t‖1=

∥∥∥∥ a0 +a1ε1x + · · ·atεtx + · · ·+a2tεty

b0 +b1ε1x + · · ·btεtx + · · ·+b2tεty

∥∥∥∥
1

(3.14)

where a0,a1, · · · ,a2t ,b0,b1, · · · ,b2t are corresponding coefficients from Equation 3.6.

Lemma 2. If the elements in matrices F and I−KtH are positive, then ‖mt − m̃t‖1 is a

linear combination of |εix| and |εiy|, and Problem 2 can be solved as a single LP instance.

Proof. According to the proof of Theorem 5, all the coefficients {a1, · · · ,a2t , b1, · · · ,b2t}

are positive if the elements in matrices F and I−KtH are positive. Therefore, the objec-

tive function and the constraints are linear in |εix| and |εiy|. There always exists an optimal

solution where all εix ≥ 0 and εiy ≥ 0 or where all εix ≤ 0 and εiy ≤ 0. The objective func-

tion in both cases will be the same. Without loss of generality, we can assume εix ≥ 0 and

εiy ≥ 0, which can be solved using a single LP instance.

The linear programming strategy containing k constraints is presented in Algorithm 2.

G denotes matrix in the linear constraint Gx ≥ Dk where x := [ε1x, · · · ,εT x,ε1y, · · · ,εTy]
T

and Dk is the collection of k nonzero separations dt , t ∈ {1, · · · ,T}.

If Lemma 2 does not hold, it is possible that some elements in a0,a1, · · · ,a2t ,b0, · · · ,b2t

can be positive and some are negative. In general, there are four different cases de-

pending on the sign of the first row and the second row for considering each constraint

‖mt − m̃t‖1≥ dt (Equation 3.14). Then we can obtain four linear optimization problems

along four different sub-constraints of each constraint ‖mt − m̃t‖1≥ dt . Thus, in the worst

70

Algorithm 2: Linear Programming Formulation
1 Initial←{(xo,Σ0,F ,H ,G ,Q,R,u}
2 G← 0k×n·T
3 Calculate Kalman gain K̃1, · · · , K̃T
4 for i = 1 to the qth value in Dk do
5 g = ∏

T−1
j=i A j+1K̃i;

6 Gq,i = sum of all rows in g
7 end
8 Return G

case, the optimal solution can be obtained by solving 4k linear optimization problems. We

run Algorithm 2 4k times by changing the sign of rows in g (Line 5) appropriately.

3.3.2 Quadratically Constrained Quadratic Program Formulation for L2

Vector Norm

When p = 2, Problems 2 and 3 can be formulated as QCQPs[20]:

minimize
1
2

xT
ε P0xε

s.t. − 1
2

xT
ε DT

t Dtxε +d2
t ≤ 0, ∀t ∈ {1, . . . ,T} (3.15)

To simplify the equation, we use a 2-D case as an example, where xε = [ε2
1x,ε

2
1y, · · · ,ε2

T x,ε
2
Ty]

T ,

P0 = I2T , and

71

Dt ∈ R2T×2T :=



∏
t−1
j=1 A j+1K̃0 · · · 0 0 0

...
...

...
...

0 · · · ∏
t−1
j=t−1 A j+1K̃t−1 0 0 0

0 · · · 0 K̃t 0 0

0 · · · 0 0 0 0

0 · · · 0 0 0 . . .


Unfortunately, the QCQP formulations for these three problems are NP-hard since the

constraint in each problem is concave. If F ,G ,H , Σ̃0 are diagonal matrices, it can be

shown that Dt is also a diagonal matrix. We can transform the QCQP formulation to a

linear programming problem by changing variables {ε2
tx,ε

2
ty}, t = {1,2, ...,T}, and using a

procedure similar to p = 1.

If Dt is not a diagonal matrix, one solution is to apply the inequality
√

2‖x‖2≥ ‖x‖1

between L1 vector norm and L2 vector norm. The constraint can be changed to L1 vector

norm, which is a stricter constraint. A sub-optimal solution can be obtained by using the

L1 vector norm.

3.3.3 Receding Horizon: Spoofing with online measurement

Problems 2 and 3 describe the offline versions for spoofing. We also extend the offline

problems to an online version. The following formulates an online spoofing scenario.

Consider a target with motion model (Equation (3.1)), measurement model (Equa-

tion (3.2)), and spoofing measurement model (Equation (3.3)). Assume the target does

not know N (x0,Σ0). It collects a series of measurements {zreal
1 ,zreal

2 , · · · ,zreal
to } from step

1 to current step to. Find a sequence of spoofing signal inputs, {εto ,εto+1, · · · ,εto+H} to

72

achieve desired separation dt between m̃t and mt (in expectation) within future H steps.

Such that

minimize
to+H

∑
t=t0

γt · ‖εt‖p
p

s.t. ‖E(mt−m̃t)‖p
p≥ dp

t , ∀t ∈ {to, · · · , to +H} (3.16)

where γt ∈R+ is a weighting parameter, to is the current time, and H is the predictive time

horizon. The target applies εt = εto as spoofing signal input at each step t.

3.4 Simulations

In this section, we simulate the effectiveness of spoofing strategies for Problems 2 and

problem 3 and for the online case (Section 3.3.3) where a target designs spoofing signals

εt to mislead an observer by achieving the desired separations dt between mt and m̃t . Our

code is available online.2

We consider the L1 vector norm and the following models,

F = I2×2,G = I2×2,u =

1

1

 ,R = 0.5I2×2,Q = 0.5I2×2.

Set the weight γt = 1 for all t.

For Problem 2, set the initial condition for the KF as,

Σ0 = I2×2, m0 =

[
0 0

]T

.

2https://github.com/raaslab/signal_spoofing.git

73

https://github.com/raaslab/signal_spoofing.git

-5 0 5 10 15 20

x

0

2

4

6

8

10

12

14

16

18

20

y

actual position

estimation without spoofing

estimation with spoofing

0 10 20

Step t

0

1

2

3

4

5

6

7

8

S
e
p
a
ra

ti
o
n

desired

separation dt

actual separation

||mt − m̃t||1

(a) Desired separations, d5 = 1.77 and d10 =
3.54, with T = 20.

0 5 10 15 20

x

0

5

10

15

20

25

30

y

actual position

estimation without spoofing

estimation with spoofing

0 10 20

Step t

0

1

2

3

4

5

6

7

8

9

10

S
e
p
a
ra

ti
o
n

desired

separation dt

actual separation

||mt − m̃t||1

(b) Desired separations, dt = 0.25
√

2t, with t = 3
to T = 15.

Figure 3.3: Offline signal spoofing with known (m0,Σ0).

0

5

30

10

20

10 3020100 0

True Position

Estimation without spoofing

Estimation with spoofing

Figure 3.4: Signal spoofing with known (m0,Σ0) in 3D environment. Desired separations, d3 =
3,d3 = 4, · · · ,d10 = 10.

Since the target knows N (x0,Σ0), it sets m̃0 =m0 and Σ̃0 = Σ0. We first consider a scenario

where the target wants to achieve the desired separation at steps, t = 5,10,15, denoted as

d5 = 1.77, d10 = 3.54 and d15 = 5.30 with the optimization horizon T = 20. The target gen-

erates a sequence of spoofing signals {ε1, · · · ,ε20} offline by using a linear programming

solver. The spoofing performance is shown in Figure 3.3-(a) where the true separations are

the same as the desired separations. The same successful spoofing is achieved when the

desired separations are chosen as dt = 0.25
√

2t, t = {3, ...,15}, as shown in Figure 3.3-(b).

The problem formulation applies in higher dimensional systems as well, not just 2D.

Figure 3.4 shows an example of misleading a KF in a 3D environment.

74

0 2 4 6

Step t

0

0.5

1

1.5

2

2.5

3

S
e
p
a
ra

ti
o
n

Desired separation d2 = 2, ||E(mt − m̃t)||1 = 1

desired
separation dt

actual separation
||mt − m̃t||1

-1 0 1 2 3 4 5 6

x

-1

0

1

2

3

4

5

6
y

actual position
estimation without spoofing
estimation with spoofing

(a) Desired separation, d1 = 2.

1 2 3 4 5

Desired separation d1

0

1

2

3

4

5

6

7

T
u
re

S
e
p
a
ra
ti
o
n
||
m

1
−

m̃
1
||
1

(b) Results with d1 = {1,2,3,4,5} for 100
trials.

Figure 3.5: Offline signal spoofing with unknown (m0,Σ0).

In Problem 3, the target knows E(m0− m̃0) = M0 but does not know Σ0. The spoofing

result is no longer deterministic but holds in expectation ‖E(mt − m̃t)‖1≥ dt . Figure 3.5-

(a) shows spoofing signals for desired separations as d1 = 2 with T = 6 and M0 = 1. Set

N (m̃0, Σ̃0) as N (0,1.5I2), m0 as a random variable (m0 ∼N (1,1)) and Σ0 = I2. In order

to see the effectiveness of the spoofing signals {ε1, · · · ,ε5}, we conduct 100 trials for each

desired separation d2 ∈ {1,2,3,4,5}. Figure 3.5-(b) shows that the ‖m1−m̃1‖1 is no longer

deterministic, but ‖E(m1− m̃1)‖1 is close to the desired value d1 = 2.

For the online case, spoofing signals are continuously generated by using receding hori-

zon optimization with new noisy measurements. We set the receding horizon as H = 15.

Even though the offline strategy performs comparably to the online strategy (Figure 3.6),

the online spoofing strategy achieves almost the same separation as desired, while the of-

fline strategy has certain divergence. This is because the online strategy can update the

measurement at each step.

3.5 Signal spoofing with failure detector

In this section, we evaluate the performance of the false data injection strategy in the

75

-2 0 2 4 6 8 10 12 14 16

S tep t

0

5

10

15

20

25

S
e

p
a

ra
ti

o
n

actual position

without spoo ing

online spoo ing

of line spoo ing

Figure 3.6: Online spoofing and offline spoofing with unknown (m0,Σ0).

presence of a failure detector. We show the conditions (Theorem 7) under which the gen-

erated false data can mislead a χ2 detector. This result can be also extended to other

residual-based detectors.

3.5.1 χ2 failure detector

A χ2 detector computes the following measure,

gt = rT
t Σ
−1
rt

rt , (3.17)

where rt = zt −H mt is the innovation or measurement residual of the KF. Here, Σrt is

the covariance matrix of the residual [98]. The residual is Gaussian since it is the linear

combination of two Gaussian random variables. It is known that gt is χ2 distributed with

n degrees of freedom. If gt > threshold, the detector raises an alarm that the filter is under

attack [21].

76

First, we review the Kalman Filter update equations,

mt|t−1 = Fmt−1|t−1 +G ut , (3.18)

mt|t = Fmt|t−1 +Kt(zt−H mt|t−1), (3.19)

where Kt is the Kalman gain and is given by,

Kt = (FΣt|t−1F
′+Rt)H

′(H Σt|t−1H
′+Qt)

−1. (3.20)

We use the notation, ·̃, to indicate the system under attack.

Intuitively, the lower the amount of injected attack signal, the less likely it will be

detected. This is the motivation behind reducing the energy of the injected system. Never-

theless, when designing an attack sequence over a time horizon, we may have to carefully

design the separation sequence d1,d2, · · · , so that they are not too large. In the following,

we modify the notion of a successful attack from [70] and show how to use that to generate

a successful attack sequence. The differences between two systems are defined as,

∆mt , m̃t−mt , ∆zt , z̃t− zt , ∆rt , r̃t− rt . (3.21)

Definition 3.1. Given δ > 0, the χ2 detector is successfully attacked if there exists an attack

sequence ε1,ε2, · · · ,εT such that the following holds:

||∆rt ||< δ , ∀t,

where ∆rt is defined above.

Remark 3. If ∆rt is bounded, then the difference of its quadratic form g̃t − gt is also

bounded. Also, as pointed out by [70], by linearity, we can find a δ ′ > 0, such that

77

|P(g̃t > threshold)−P(gt > threshold)|≤ δ ′, ∀t.

This definition of successful attack follows the (ε,α)–attack definition by Mo et al. [70].

When the probability of the alarm P(g̃t > threshold)−P(gt > threshold) is bounded and

a small enough δ , the alarm rate δ ′ will converge to the false alarm rate of the healthy

system. Mo et al. [71] presented the relationship between δ and δ ′.

Given the threshold for the χ2 detector and δ , the question is how to set desired separa-

tions d1,d2, · · · such that we can avoid being detected. In the following, we give a sufficient

condition for designing d1,d2, · · ·.

Theorem 7. If the separations ∆mt+1 and ∆mt satisfy ||K−1
t+1||·‖∆mt+1−F∆mt‖ ≤ δ , then

the proposed algorithm can successfully attack the χ2 detector at step t +1.

Proof. Manipulating Equations (3.18), (3.19), (3.20), and (3.21), we can prove that,

∆mt+1 = Kt+1∆rt+1 +F∆mt . (3.22)

Taking the norm of Equation (3.22), we have

||∆rt+1||=
∥∥−K−1

t+1∆mt+1 +K−1
t+1F∆mt

∥∥
≤ ||K−1

t+1||·‖∆mt+1−F∆mt‖ .
(3.23)

Therefore,

||∆rt+1||≤ ||K−1
t+1||·‖∆mt+1−F∆mt‖ . (3.24)

We apply the condition of successful attack. If we have,

||K−1
t+1||·‖∆mt+1−F∆mt‖ ≤ δ (3.25)

78

then,

||∆rk||< δ .

Note that F is a known matrix, and the Kalman gain Kt can be computed from the initial

covariance matrix Σ0. Hence, we can design the attack sequence ε1,ε2, · · · for a χ2 detector

given the threshold δ .

Theorem 7 shows that if we want to attack a system with χ2 detector, the strategy is

to make the difference between two consecutive desired separations, dt+1 and ||F ||dt , as

small as possible. In general, when we design the attack sequence, we want to increase

the separation to mislead the system. Without loss of generality, we can consider the case

that all the elements in mt −F∆mt−1 are non-negative. Given a known separation from

previous step t − 1, we have the following condition for dt when we design the desired

separation:

dt−||F∆mt−1||≤ δ , t > 1. (3.26)

Remark 4. Applying Theorem 7 and Equation (3.26) and given δ , we can design a se-

quence of separations d1,d2, · · · ,dT a priori since dt = ||∆mt ||. For example, if we know

the Kalman filter’s initial condition, assuming d1 = 0, we have,

d2 = δ ||K1||. (3.27)

With a known ∆m2 from the proposed LP algorithm, d3 can be designed with the following

equation,

d3 = (||F∆m2||+δ) · ||K1||. (3.28)

Iteratively, we can get the desired separation for all times and guarantee a successful attack

79

(||∆rt ||< δ , t = 1,2, · · · ,T.)3.

In the following section, we will provide an example that by increasing the separation

with given condition. The simulation shows the χ2 will not alarm when the separation is

designed as Theorem 7.

3.5.2 Simulation with χ2 detector

We consider the L1 vector norm and the same model from the simulation section. We

use the following parameters:

F = I2×2,G = I2×2,R = 0.1I2×2,Q = 0.1I2×2,δ = 0.1.

Given δ = 0.1, we can design the separation dt . The attack result and the χ2 detector value

are shown in Figure 3.7.

0 5 10 15 20 25 30 35

x

0

5

10

15

20

25

30

35

y

0 10 20 30

t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 3.7: Estimated positions and the χ2 detector’s output (gk), when the spoofing signals are

injected by setting dt based on Theorem 7.

3Since the inequality is conservative, if the equation converges to dt+1 = dt , we can add a small term O(t),
and let dt = (||F∆mt−1||+δ) · ||Kt ||+O(t).

80

0 5 10 15 20 25 30 35

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 3.8: The differences of the two residual ||rt − r̃t ||. The threshold δ = 0.1.

The differences (∆rt) between the residual and the threshold are shown in Figure 3.8.

We ran 1000 trials using this strategy as shown in Figure 3.7. The χ2 detector detected

the attack in 112 trials (The false alarm rate is equal to 11.054%; this rate indicates the

χ2 detector cannot tell whether the alarm is a false alarm or not). This is close to the

actual false alarm rate without any attack. In this scenario, the system will not be able to

distinguish between false and true alarms. Thus, the attack strategy is able to successfully

mislead the χ2 detector.

3.6 Summary

We study the problem of injecting spoofing signals to achieve a desired separation in the

output of a Kalman filter without and with attack. We study many variants of the problem.

Our main approach was to formulate the problems as nonlinear, constrained optimization

problems in order to minimize the energy of the spoofing signal. We show that under

some technical assumptions, the problems can be solved by linear programming optimally.

We present a more computationally expensive approach to solve the problem, without the

aforementioned assumptions. We also present a sufficient condition for this strategy to

mislead the χ2 failure detector.

81

Our immediate future work is to study the game-theoretic aspects of the problem. In

this work, we did not consider any active strategy being employed by the observer to mit-

igate the attack. In future works, we will consider the case of designing spoofing signals

that explicitly take the attack mitigation strategies into account. In all the problems consid-

ered in this chapter, the desired separations are taken as inputs provided by the user. The

simulation results suggest that carefully choosing a specific profile of the desired separa-

tion can make it harder to detect by the observer. A possible extension is to automatically

generate the optimal profile that not only minimizes the signal energy but also ensures that

it is not detected by the observer. Another future work is to extend the strategy to more gen-

eral non-linear state estimation approaches, such as the extended Kalman filter, unscented

Kalman filter, and particle filters.

82

Chapter 4: Planning a Reconnaissance Mission Against an Adversary with

Symmetric Information

In this chapter, we introduce and study the problem of planning a trajectory for an

agent to carry out a reconnaissance mission while avoiding being detected by an adversarial

opponent. We start with the symmetric case and present techniques to reduce existing

algorithms’ computational cost.

4.1 Introduction

Planning for visually covering an environment is a widely-studied problem in robots

with many real-world applications, such as environmental monitoring [102], precision

farming [77], ship hull inspection [52], and adversarial multi-agent tracking [42, 119]. The

goal is typically to find a path for an agent to maximize the area covered within a certain

time budget or to minimize the time required to visually cover the entire environment. The

latter is known as the Watchman Route Problem (WRP) [23] and is closely related to the

Art Gallery Problem (AGP) [74]. The goal in AGP is to find the minimum number of cam-

eras required to see all points in a polygonal environment. In this chapter, we extend this

class of visibility-based coverage problems to adversarial settings.

We consider scenarios where the environment also contains an opponent that is actively

(and adversarially) searching for the agent (Figure 4.1). The agent, on the other hand,

is tasked with covering the environment while avoiding detection by the opponent. This

83

Figure 4.1: The agent (the red star) aims to maximize the total area covered within the given time
horizon while at the same time minimize the number of times the opponent (the blue dot) detects it.

loosely models stealth reconnaissance missions where the agent is required to exercise

caution while collecting information in the environment. We consider the version where

there is a finite time horizon within which the agent’s objective is to maximize the total

area covered within the given time horizon while at the same time minimizing the number

of times the opponent detects it. In an exploration mission, the positive reward can be a

function of the number of previously unseen cells visible from the current agent position

(Figure 4.1). For ease of illustration, we assume that the agent’s and the opponent’s sensing

ranges are unlimited and obstacles in the environment can block lines-of-sight. The case

of limited sensing range can be easily incorporated since it does not require any change to

the algorithm but only to the way the reward and penalty are computed. The agent receives

a negative reward when it is detected by the opponent (e.g., when it moves to a cell that

lies within the opponent’s visibility region or the opponent moves to a cell that can see the

agent).

We adopt a game-theoretic approach for this problem where the agent maximizes the

total reward collected and the opponent minimizes that total reward. The total reward is

a weighted sum of positive and negative rewards. The positive reward depends on the

specific task at hand. For example, when the task is to scout an environment (Figure 4.1),

the positive reward can be the total area that is scanned by the agent along its path. In this

84

chapter, we consider the case where the agent receives a fixed negative reward every time

it is detected by the opponent. The total reward is a linear combination of the two reward

functions.

The proposed problem builds on classic pursuit evasion games [81, 82, 116] and visibility-

based reconnaissance problems [68, 90]. In classic pursuit-evasion, the evader (i,e., the

agent in our setting) always tries to avoid the capture of the pursuer (i,e., the opponent).

In our setting, in addition to avoiding being detected by the opponent, the agent is tasked

to explore the environment to maximize the total area covered. Thus, the definition of

winning a game in our scenario is different. In classic pursuit-evasion games, the pur-

suer wins the game if the distance between the pursuer and the evader becomes less than

a threshold [17] or if the evader is surrounded by pursuers, when there are more than two

pursuers present [45]. However, in our setting, winning the game depends on the infor-

mation collected, such as the area explored, something that has not been considered in the

conventional pursuit-evasion work. Also, by considering the opponent, this problem differs

from the traditional exploration problems such as reconnaissance and surveillance where

the goal is to maximize the information collected only.

There has been recent work on designing strategies for the visibility-based adversarial

planning problem. Raboin et al. [81] introduced a heuristic search technique for solving

pursuit-evasion games in partially-observable Euclidean space. Another visibility-based

pursuit-evasion problem formulated by Li et al. [79] is closely related to ours. Instead of

relying on a regular discrete environment, the authors represented the game’s state using

visibility-based decomposition of the environment paired with a more classical grid-based

decomposition. They also utilized minimax and MCTS to compute one player’s optimal

strategies. The main difference is that we consider an objective which is a combination

of coverage and evasion, something that prior works have not addressed. Since the ob-

jective function is different, the heuristic used to speed up the search in [81] will not be

85

directly applicable. However, ideas from [81] can be extended to our setting. Likewise,

the visibility-based decomposition from [79] cannot be directly applied since the proof of

correctness specifically requires a pursuit-evasion setting where the pursuer wins when it is

co-located with the evader. Nevertheless, the abstraction with suitable modifications could

be useful to speed up the search in our setting.

We abstract the underlying geometry and model the problem as a discrete, sequen-

tial, two-player, zero-sum game. Minimax tree search [38] and Monte-Carlo tree search

(MCTS) [86] are well-known algorithms to solve discrete, two-player, zero-sum games.

Both techniques build a search tree that contains all possible (or a subset of all possible)

actions for both players over the planning horizon. The MCTS algorithm has been shown

to converge to the optimal solution for turn-based [54] and simultaneous-move games [66].

To reduce the computation time of minimax tree search and MCTS, we apply branch-

and-bound [62] and the principle of optimality [12] to prune the trees. Our contributions

are in applying these techniques to the adversarial reconnaissance problem and empirically

evaluating the computational time with pruning. We show the resulting pruned tree still

preserves optimality. To further reduce the computational time, we then employ a multi-

resolution planner (similar to [65]) that allows the agent to change the spatial horizon to

build a search tree with fewer levels. Our empirical evaluation shows that the resulting

strategy outperforms the fixed resolution one, especially in larger environments.

The rest of the chapter is organized as follows. We begin by describing the problem

setup in Section 4.2. We then describe two tree search techniques in Section 4.3 and present

two approaches for improving the computational efficiency of these tree search techniques

in Section 4.4. Next, we evaluate the effectiveness of the proposed approaches through

extensive simulations in Section 4.5. In the end, we summarize the chapter and outline

some future work in Section 4.6.

86

(a) The case when the agent is
detected by the opponent.

(b) The agent and the opponent
move in a grid-based environ-
ment.

Figure 4.2: A negative penalty will be added if the agent is inside the opponent’s visibility polygon
(i,e., the blue region). In a reconnaissance mission, the area of the agent’s visibility polygon (i,e.,
the red region) is considered as a positive reward. Both the agent and the opponent move in the
grid-based environment, as in (b).

4.2 Problem Formulation

We consider a grid-based environment where each cell in the environment is associated

with a positive reward. Our problem is formulated by appropriately designing the reward

function — the agent obtains positive rewards for maximizing visibility (depending on the

type of mission) and receives negative rewards when detected by the opponent. The reward

is used to measure both the visibility of an agent and the detectability by an opponent.

We make the following assumptions: (1) The agent and the opponent move in the same

grid-based map and can move one grid cell in one time step. (2) Both the agent and the

opponent know the full grid-based map a priori. (3) We assume that the agent and the

opponent have known sensing ranges (not necessarily the same). In this chapter, we assume

that both sensing ranges are unlimited for ease of illustration.1 (4) The opponent has a

sensor that can detect the agent when the agent is within its visibility region. (5) There

1The case of limited sensing range can be incorporated since the sensing range is used only when com-
puting the positive and negative rewards. To incorporate a limited sensing range, we will only need to change
the evaluation function of the terminal nodes. The visibility library [73] we use in our empirical evaluation
can handle this case.

87

is no motion uncertainty associated with the agent and opponent. (6) The agent and the

opponent are aware of each other’s positions. These assumptions are applicable in scenarios

where we expect the agent’s actions to be conservative, taking into account an “intelligent”

opponent that always chooses the best move.

Even though the last assumption may seem restrictive, there are some practical scenar-

ios where it is justified. For example, Bhadauria and Isler [15] describe a visibility-based

pursuit-evasion game where police helicopters can always provide the global positions of

the evader to the pursuer that is moving on the ground and may not be able to directly see

the pursuer. Thus, even if the opponent is not in the field-of-view of the agent, the agent

may still know the position of the opponent by communicating with other (aerial) agents.

Note that the agent still does not know where the opponent will move next, thereby, making

the problem challenging.

In general, the environment could be any discrete environment, not just a grid-based

environment, as long as it satisfies the above requirements. Continuous environments can

be appropriately discretized such that they satisfy the above assumptions. Commonly used

techniques for environment discretization include graph representation [95], occupancy

maps [43], and randomized methods such as probabilistic roadmaps [51], and Rapidly-

exploring Random Trees [47, 61].

The complexity of the tree search algorithm will depend on the number of vertices (or

grid cells) in a given discretization. In Section 4.4, we present two ways to improve effi-

ciency. First, we show how to prune away nodes and branches in the tree while preserving

optimality. Second, we show how to change the spatial resolution of the tree (Section 4.4.3)

at different levels for improving the search, especially in large environments. By losing

some precision, the tree can predict further ahead, leading to better plans without incurring

additional computation cost. However, this method will inevitably lose some accuracy. We

show that reducing the resolution is beneficial in net, through experiments over a larger

88

map.

We next describe the main problem to be solved in the chapter. Consider that the agent

receives the positive reward when exploring new area and penalties when detected by the

opponent. The agent’s objective can be written as:

max
πa(t)

min
πg(t)

{
R(πa(t))−η(πa(t),πg(t))P

}
. (4.1)

While the objective of the opponent is as follows:

min
πg(t)

max
πa(t)

{
R(πa(t))−η(πa(t),πg(t))P

}
, (4.2)

where πa(t) denotes an agent’s path from time step 0 to t. πg(t) denotes an opponent’s path

from time step 0 to t. R(πa(t)) denotes the positive reward collected by the agent along

the path from time step 0 to t. P is a constant which gives the negative reward for the

agent whenever it is detected by the opponent. η(πa(t),πg(t)) indicates the total number of

times that the agent is detected from time step 0 to t. For the rest of the chapter, we model

R(πa(t)) to be the total area that is visible from the agent’s path πa(t).

We model this problem as a discrete, sequential, two-player zero-sum game between

the opponent and the agent. In the next section, we demonstrate how to find the optimal

strategy for this game and explain our proposed pruning methods.

4.3 Tree Search Techniques

We abstract the underlying geometry and model the problem as a discrete, sequential,

two-player, zero-sum game. Minimax tree search [38] and MCTS [86] are two well-known

algorithms to solve discrete, two-player, zero-sum games. Both techniques build a search

tree that contains all possible (or a subset of all possible) actions for both players over

89

planning horizons. In general, the size of search trees is exponential in planning hori-

zon. Pruning techniques, such as alpha-beta pruning [87], can be employed to prune away

branches that are guaranteed not to be part of the optimal policy.

We refer to the agent and the opponent as MAX and MIN players, respectively. Even

though the agent and the opponent move simultaneously, we model this problem as a turn-

based game2. At each time step, the agent moves first to maximize the total reward, and

then the opponent moves to minimize the total reward. This repeats for a total of T planning

steps. In this section, we first show how to build a minimax search tree to find the optimal

policy. Then, we show how to construct a Monte-Carlo search tree to solve the same

problem. The advantage of MCTS is that it finds the optimal policy in less computational

time than minimax tree — a finding we corroborate in Section 4.5.

4.3.1 Minimax Tree Search

A minimax tree search is a commonly used technique for solving two-player zero-sum

games [87]. Each node stores the position of the agent, the position of the opponent, the

polygon that is visible to the agent along the path from the root node till the current node,

and the number of times the opponent detects the agent along the path from the root node

to the current node. The tree consists of the following types of nodes:

• Root node: The root node contains the initial positions of the agent and the opponent.

• MAX level: The MAX (i.e., agent) level expands the tree by creating a new branch

for each neighbor of the agent’s position in its parent node from the previous level

(which can be either the root node or a MIN level node). The agent’s position and its

visibility region are updated at each level. The opponent’s position and the number

of times the agent is detected are not updated at this level.

2Note that this may introduce errors in boundary cases. We will discuss this in Chapter 6.

90

MAX

MIN

MAX

Root
Robot
Adversary

Visibility range

Figure 4.3: A (partial) minimax search tree. The root node contains the initial states of the agent
and the opponent. Two successive levels of the tree correspond to one time step. The agent moves
first to an available position in order to maximize the reward (MAX level). The opponent moves
subsequently to a neighboring cell to minimize the agent’s reward (MIN level).

• MIN level: The MIN (i.e., opponent) level expands the tree by creating a new branch

for each neighbor of the opponent’s position in its parent node (which is always a

MAX level node). The opponent’s position is updated at each level. The total reward

is recalculated at this level based on the agent’s and opponent’s current visibility

polygons and the total number of times the agent is detected up to the current level.

• Terminal node: The terminal node is always a MIN level node. When the minimax

tree is fully generated (i,e., the agent reaches a finite planning horizon), the reward

value of the terminal node can be computed.

The reward values are backpropagated from the terminal node to the root node. For each

node, the minimax policy chooses an action that maximizes (MAX level) or minimizes

(MIN level) the backpropagated reward.

Figure 4.3 illustrates the steps to build a minimax tree that yields an optimal strategy by

enumerating all possible actions for both the agent and the opponent. Algorithm 1 presents

the algorithm of minimax tree search.

91

Algorithm 3: The Minimax search with Pruning.
1 function Minimax(node,depth,α,β ,state)
2 if node is a terminal node then
3 return value
4 else if state is at the agent level then
5 for each child v of node do
6 V ←Minimax(v,depth−1,α,β ,MIN)
7 bestvalue←max(bestvalue,V)
8 α ←max(bestvalue,α)

// Alpha-beta pruning

9 if β ≤ α then
10 break
11 end

// Proposed condition

12 if pruning condition is true then
13 break
14 end
15 return value
16 end
17 else
18 for each child v of node do
19 V ←Minimax(v,depth−1,α,β ,MAX)
20 bestvalue←min(bestvalue,V)
21 β ←min(bestvalue,β)
22 if β ≤ α then
23 break
24 end
25 if pruning condition is true then
26 break
27 end
28 return value
29 end
30 end
31 Initial←{S0},Map
32 Ar(s),At(s)←Minimax(S0,1,−∞,∞,MAX)

33 end

92

4.3.2 Monte-Carlo Tree Search

In the naive minimax tree search, the tree is expanded by considering all the neighbors

of a leaf node, one-by-one. In MCTS, the tree is expanded by carefully selecting one of the

nodes to expand. The node to select for expansion depends on the current estimate of the

value of the node. The value is found by simulating many rollouts. In each rollout, we sim-

ulate one instance of the game, starting from the selected node, by applying some arbitrary

policy for the agent and the opponent until the end of the planning horizon, T . The total

reward collected is stored at the corresponding node. This reward is then used to determine

how likely is the node to be chosen for expansion in future iterations. Algorithm 2 presents

the algorithm of MCTS.

Agent Policy

Guard Policy Backpropagation

 Selection Expansion Simulation

Rollout reward

Backpropagation

Figure 4.4: Four iteration steps in Monte-Carlo search tree.

Each node in the Monte-Carlo search tree stores the total reward value, and the num-

ber of times the node is visited. Each iteration of MCTS consists of the following four

steps [27] (Figure 4.4). Note that we present the pseudo-code of MCTS for completeness;

however, this is not a novel contribution of our work. Our contribution is the application

and empirical evaluation of minimax and MCTS with pruning to the adversarial reconnais-

sance problem.

93

• Selection (Line 4 in Algorithm 2, pseudocode presented in Algorithm 3): Starting

from the root node (in every iteration), the node selection algorithm uses the current

reward value to recursively descend through the tree until we reach a node that is

not at the terminal level (i,e., corresponding to time T) and has children that have

never been visited before. We use the Upper Confidence Bound for Trees (UCT)

[54] to determine which node should be selected. The UCT value takes into account

not only the average of the rollout reward obtained but also the number of times the

node has been visited. If a node is not visited often, then the second term in the UCT

value will be high, improving its likelihood of getting selected. At the agent level,

we choose the node with the highest UCT value while at the opponent level with the

lowest UCT value. Note that n(v) stands for the number of simulations for the node

v, and N stands for the total number of MCTS simulations.

• Expansion (Lines 6-9 in Algorithm 2): Child nodes (one or more) are added to the

selected nodes to expand the tree. If the child node is at the agent level, the node

denotes one of the available actions for the agent. If the child node is at the opponent

level, the node denotes one of the available actions for the opponent. Expansion

details are given in Algorithm 2.

• Rollout (Line 11 in Algorithm 2, pseudocode presented in Algorithm 4): A Monte-

Carlo simulation is carried out from the expanded node for the remaining planning

horizon. The agent and the opponent follow a random policy uniformly. Based on

this, the total reward for this simulation is calculated. Rollout details are given in

Algorithm 4.

• Backpropagation (Lines 13-17, Algorithm 2): The total reward found is then used

to update the reward value stored at each of the predecessor nodes.

94

Algorithm 4: Monte-Carlo Tree Search
1 function MCTS(Tree, Initial agent and opponent state)
2 Create root node v0 with initial opponent and agent state s0;
3 while maximum number of iterations not reached do

// Selection

4 vi←Monte Carlo Selection(Tree,v0)
// Expand or rollout

5 if level(vi) = T and n(vi) = 0 then
// Expand

6 Tree← Expand(Tree,v˙i)
7 if Newly added node can be pruned then
8 break
9 end

10 else
// Rollout

11 R← Rollout(vi);
12 end

// Backpropagation

13 while vi 6= NULL do
// Update total reward value

14 Q(vi)← Q(vi)+R
15 n(vi)← n(vi)+1
16 vi← parent of vi

17 end
18 N← N +1
19 end
20 return Tree
21 end

95

Algorithm 5: MCTS selection
1 function Monte Carlo Selection(Tree,vi)
2 while level(vi) 6= TERMINAL do
3 if level(vi) = AGENT then
4 vi← argmax

v′∈children(vi)

Q(v′)
n(v′) + c

√
2lnN
n(v′)

5 else
6 vi← argmin

v′∈children(vi)

Q(v′)
n(v′) − c

√
2lnN
n(v′)

7 end
8 end
9 end

Algorithm 6: MCTS rollout
1 function Rollout(v)
2 R← 0
3 while level(v) 6= 2T +1 do
4 if level(v) = AGENT then
5 v← choose an agent action at random
6 else
7 v← choose an opponent action at random
8 R← update reward
9 end

10 return R
11 end
12 end

Given a sufficient number of iterations, the MCTS with UCT is guaranteed to converge

to the optimal policy [8, 66]. However, if the agent has n available actions, in the worst

case, we need nk−1 in k-th level of the search tree to enumerate all the possible nodes. This

may still require building an exponentially sized tree. In the next section, we present a

number of pruning conditions to reduce the size of the tree, and strategies to expand the

search tree with changing resolution to save computation time.

96

4.3.3 Online Planning with Search Tree

After searching up to a finite horizon, the agent can execute the action returned. If we

are using minimax tree search, at the root node, the agent executes the first action along

the optimal path (for the planning horizon) found. In MCTS, the agent executes the first

action along the path with the best average reward in the rollout simulations. After the

agent executes one step and observes the new position, the agent will update the position of

the opponent (based on new measurement or estimation) in the new root node and rebuild

the search tree.

4.4 Improved Computational Efficiency

In a larger environment, the agent may need to build a search tree that reaches far

enough from its initial position to yield a good strategy. This is especially the case when

the starting positions of the agent and the opponent are far from each other. However, when

the size of the tree increases, the computational time required to generate the tree grows

exponentially in the worst case (despite pruning). In this section, we present the following

two strategies to reduce the computational cost: (1) Pruning strategies to reduce the size of

the tree; and (2) Expanding the spatial reach of the search tree with changing resolution at

different levels.

4.4.1 Pruning Techniques

In this section, we present several pruning techniques to reduce the size of the tree and

the computational time required to build the minimax tree and the MCTS. Pruning a node

implies that the node will never be expanded (in both types of trees). In MCTS, if a node

is pruned we simply will break to the next iteration of the search. Pruning the tree results

97

in considerable computational savings which we quantify in Section 4.5.

In the case of the minimax search tree, we can apply a classical pruning strategy called

alpha-beta pruning [86]. Alpha-beta pruning maintains the minimax values at each node

by exploring the tree in a depth-first fashion. It then prunes nodes if a node is clearly

dominated by another, see [86] for more details. Alpha-beta pruning is preferable when the

tree is built in a depth first fashion. However, we can exploit structural properties of this

problem to further prune away nodes without needing to explore a subtree fully.

The pruning techniques we will discuss next apply for both types of trees. Therefore,

in the following we refer to a “search tree” instead of specifying whether it is minimax or

MCTS.

We first apply branch-and-bound [62], to our application scenario to prune nodes that

are guaranteed to not be part of the optimal solution. Walsh et al. [108] presented the For-

ward Search Sparse Sampling algorithm which combines MCTS with a branch-and-bound

style pruning algorithm. We apply a similar strategy for the adversarial reconnaissance

problem. Consider the MIN level and the MAX level separately. The main idea of these

pruning strategies is to compare two nodes A and B at the same level of the tree, say the

MAX level. In the worst case, the node A would obtain no future positive reward while

always being detected at each time step of the rest of the horizon (e.g., when the agent

moves from behind an obstruction into an open area into the view of the opponent, and

thus it is no longer able to collect a reward from proceeding on that path). Likewise, in the

best case, the node B would collect all the remaining positive reward and never be detected

in the future. If the worst-case outcome for node A is still better than the best-case outcome

for node B, then node B will never be a part of the optimal path. It can thus be pruned

away from the search tree. Consequently, we can save time that would be otherwise spent

on computing all of its successors. Note that these conditions can be checked even before

reaching the terminal node of the subtrees at A or B.

98

Given a node in the search tree, we denote the remaining positive reward (unscanned

region) for this node by F(·). Note that we do not need to know F(·) exactly. Instead, we

just need an upper bound on F(·). This can be easily computed since we know the entire

map information a priori. The total reward collected by node A and by node B from time

step 0 to t are denoted by RA(t) and RB(t), respectively.

Remark 5. Given a time horizon T , let A and B be two nodes in the same level of the

search tree at time step t.

In the MAX level, if RA(t)− (T − t)η ≥ RB(t)+F(B), then the node B can be pruned

without loss of optimality.

Similarily, in the MIN level, if RA(t)+F(A) ≤ RB(t)− (T − t)η , then the node B can

be pruned without loss of optimality.

In addition to branch-and-bound, we can also apply the principle of optimality that is

employed in dynamic programming and other graph-search techniques [108] to reduce the

search space. The main idea in this pruning strategy (i,e., Corollary 2) comes from the past

path (or history). If two different nodes have the same agent and opponent position but one

node has a better history than the other, then the other node can be pruned away.

Here, we denote by SA(π(t)) and SB(π(t)) the total scanned region in the node A and

the node B from time step 0 to t, respectively. The following is a direct corollary of the

principle of optimality [12].

Corollary 2. Given a time horizon T and 0 < t1 ≤ t2 ≤ T , let the node A be at the level t1

and the node B be at the level t2, such that both nodes are at a MAX level. If (1) the agent

and the opponent’s position stored in the nodes A and B are the same, (2) SA(π(t1)) ⊃

SB(π(t2)), and (3) RA(t)> RB(t)+(t2− t1)η , then the node B can be pruned without loss

of optimality.

99

Proof. With 0 < t1 ≤ t2 ≤ T , we have the node B appear further down the tree as compared

to the node A. SA(π(t1))⊆ SB(π(t2)) indicates that the node A’s scanned area is a subset of

the node B’s scanned area.

Since the nodes A and B contain the same opponent and agent positions, one of the

successors of node A contains the same opponent and agent positions as node B. Since

RA(T) ≥ RB(T) + (t2− t1)η and SA(π(t1)) ⊃ SB(π(t2)), the value backpropagated from

the successor of node A will always be greater than the value backpropagated from the

path of node B. Furthermore, more reward can possibly be collected by node A since

SA(π(t1)) ⊆ SB(π(t2)). Thus, the node B will never be a part of the optimal path and can

then be pruned away.

4.4.2 Bounding the Size of the Tree

We analyze the computational cost by bounding the number of nodes generated by the

minimax search tree to find the optimal path. For the minimax search tree, we present the

approximate computational cost by giving the size of the tree. Clearly, the tree’s size is

not the only factor determining the complexity. In most cases, the bottleneck is the tree’s

size, and therefore, the complexity will mainly come from the size of the tree. For MCTS,

there is not clear way to determine the effect of pruning analytically. Instead, we present

numerical results by comparing the time required to find the optimal solution with/without

pruning, in the evaluation section. We present bounds on the size of the minimax search

tree in the following.

Consider that the planning horizon is T steps, the height of the minimax search tree is

2T , the agent has a available actions at each step, the opponent has b actions at each step,

and there are K grid points/cells in the given environment. When a minimax search tree

is generated using brute-force, the number of nodes in the full tree is O((ab)T). In the best

100

case with alpha-beta pruning (which means the best moves are always searched first while

we build the tree), the number of nodes in the tree is Θ((ab)T/2) [53].

With pruning techniques proposed in Remark 5 and Corollary 2, we consider the best-

case scenario similar to the alpha-beta pruning result above. The best-case indicates that

for all nodes in the same level of the search tree, the more informative3 nodes are always

searched first. In Corollary 2, one requirement is that the agent and the opponent’s positions

stored in two nodes to compare are identical. If the best nodes in each position are all

generated first, then other nodes at the same level containing the same agent and opponent’s

positions can all be pruned away. In an environment with K grid points/cells, there are

K 2 possible combinations of the agent and the opponent’s positions. Thus, at most K 2

nodes are listed at each level of the search tree in the best case. The size of the tree is lower

bounded by Ω(K 2 ·2T). In the trivial case where a,b = O(K), we see that the best case

is realized. Therefore, in the best case the size of the tree with pruning will be Θ(K 2 ·2T).

In the worst case, the less informative nodes are always selected first while building the

search tree in a depth-first fashion. Both alpha-beta pruning and our punning techniques

cannot prune any nodes, so the size of the tree is the same as the brute-force.

In practice, the size of the tree will be in between the best and worse-case. We show

the empirical results in Section 4.5.

4.4.3 Expanding the Tree with Changing Resolution

Consider a scenario where the agent and opponent are located far from each other in a

large environment. In such a case, even if the agent builds a search tree with many levels,

the leaf nodes in the tree may still not go far enough to see the opponent (Figure 4.5). In-

3Here, more informative indicates that the value backpropagated from the current node’s successor will
be greater than the value backpropagated from the path of another node that contains the same agent and
opponent’s position.

101

stead, we apply a multi-resolution planning strategy [65] that changes the spatial resolution

at different levels of the tree. The key idea of multi-resolution planning in this context is

that we plan with a higher resolution closer to the agent and the opponent and with lower

resolution in the space that is further away from the agent and the opponent. We define the

resolution as follows: Consider a search tree T and a node A at level k. The resolution

C(k) of node A is defined as the distance that will be traveled by the agent and opponent

atomically when executing any action corresponding to A’s child nodes.

Traditionally, we fix the resolution for all levels as one, e.g., C(k) = 1, as shown in

Figure 4.5 (a). All the nodes expand with the same resolution. The agent (red square) looks

ahead for only three steps in this 8× 7 environment. The agent at least needs to plan for

seven steps to discover the opponent (blue square) located in the top right corner.

In contrast, we apply the multi-resolution approach, as shown in Figure 4.5 (b). In the

k-th level of the search tree, the newly generate node in (k + 1)-th level will expand by

combining C(k) grids into one “larger grid”. C(k) is defined as C(k) = 2k−1. Thus, in the

root node, C(1) = 1 will not reduce the accuracy and will return one of the nodes as the

control action. As k grows, we sacrifice some accuracy by changing the resolution of the

gird map but the agent can look ahead further.

Reducing the resolution of the map will inevitably leading to losing some accuracy in

the plans (as well as in the representation of the map). However, the tree can look ahead

a longer spatial horizon without additional computational cost. In Figure 4.5 (c), we show

an example that increasing the resolution makes the agent miss the small corridor, which

could have led the agent to a larger, unscanned environment. However, our empirical results

suggest that this does not happen often in the space of problems we ran, and the benefits of

looking ahead outweigh this potential disadvantage.

In general, at the beginning of building the search tree, we do not need to reduce the

resolution since the agent will execute one of the actions in the first level of the tree. After

102

(a) Expand the
search tree with fixed
resolution.

(b) Expand the
search tree with
changing resolution.

(c) Disadvantage: Expand the search tree
with changing resolution will lose some ac-
curacy. The agent could miss the corridor
and turn left by mistakenly thinking the en-
vironment is larger on the left.

Figure 4.5: Two different ways to expand the search tree. The three different colors stand for the
resolution of each step in different levels of the search tree.

the search tree expands for a few generations, the accuracy of the map is not as important as

the initial steps. The intuition behind the changing resolution strategy is when the precision

becomes less critical, combining several grids into one can help the agent to plan in a longer

horizon and decide which direction leads to better results in the distant future. Also, the

computational cost does not increase since the depth of the search tree will remain the

same. Finally, we also investigate the question of which C(k) function to use to change the

resolution.

Without changing the resolution, the agent can predict the effect of positions that are T

steps away, which is the same as the search tree’s depth if all control actions are unit length.

With changing resolution, the search tree can reach farther away positions, with the same

computational cost. For example, if the path is planned by a linearly changing resolution

C(k) = k in the search tree, we can reach agent positions that are 1
2T (T −1) away.

In the simulation, we show that although we cannot guarantee optimality, the empirical

performance of the agent in most cases is better with this approach. This turns out to be

the case especially when the environment is large, or when the agent and the opponent are

located far from each other. By looking further ahead, the agent can make a better decision

either to collect more rewards or to move away from the opponent.

103

4.5 Evaluation

In this section, we evaluate the proposed techniques in the context of a reconnaissance

mission. We assume the visibility range of the agent and the opponent are both unlim-

ited (only restricted by the obstacles in the environment). We assume that the opponent is

reasoning independently using the same minimax/MCTS strategy to plan for its own ac-

tions. In the first set of experiments, the motion model of the agent and the opponent obeys

the modeling assumptions we make. As such, it is only the fact that the planning horizon

does not extend until the end of the episode requires online replanning. In the second set

of experiments in Gazebo, we do not restrict the agent and the opponent to follow all the

assumptions and study how well the techniques extend to a more realistic setting.

The experiments were conducted on a 2.90GHz i9-8950HK processor with 32 GB

RAM. The software was written in MATLAB R2017a and used the VisiLibity library [73]

to compute the visibility polygons.

First, we present two qualitative examples that show the path found by the minimax

algorithm. Second, we compare the computational cost of the two search tree algorithms

with and without pruning. Third, we study the trade-off between solution quality and com-

putational time by changing the resolution in the search process.

4.5.1 Varying Penalty

Both the minimax tree search and MCTS can find the same optimal solution for these

instances. Figures 4.6 and 4.7 show two examples of the policy found by MCTS method,

using high and low negative penalty values (P in Equation 4.1), respectively. We use a

25× 25 grid environment. With higher negative reward P = 30, the agent tends to prefer

avoiding detection by the opponent (Figure 4.6). With a lower negative reward P = 3, the

agent prefers to explore more area (Figure 4.7).

104

(a) t = 5 (b) t = 10 (c) t = 15 (d) t = 20

Figure 4.6: Qualitative example (higher penalty P = 30): Path for the agent (red) and the opponent
(blue) is given by MCTS for T = 10. The environment is a 25×25 grid. With a higher penalty, the
agent prefers paths where it can hide from the opponent at the expense of the area explored (from
(a) to (d), t = 5,10,15,20.). Figure 4.7 shows the case with a lower penalty.

(a) t = 5 (b) t = 10 (c) t = 15 (d) t = 20

Figure 4.7: Qualitative example (lower penalty P = 3): With a lower penalty, path for the agent
(red) and the opponent (blue) is given by MCTS. The agent prefers paths where it increases the area
explored at the expense of being detected often. From (a) to (d), t = 5,10,15,20.

Both tree search methods give the same optimal solution in both cases. (In general,

there can be multiple optimal solutions. There could be multiple paths to collect the same

reward in the same initial position, and the solution is not unique in most cases.) We can

see the algorithm can help the agent to decide whether to detect more area or to avoid the

detection of the opponent based on the penalty.

The MCTS finds the optimal solution (for T = 10) in 40,000 iterations taking a total of

approximately 50 minutes. On the other hand, the minimax tree search required approx-

imately 10 hours to find the optimal solution. More thorough comparison is in the next

subsection.

105

1 2 3 4 5

Horizon T

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

C
o
m
p
u
ta
ti
o
n
a
l
ti
m
e
to

fi
n
d
th
e
o
p
ti
m
a
l
p
a
th

(S
)

Minimax search tree without pruning
Minimax search tree with pruning
Monte-Carlo search tree without pruning
Monte-Carlo search tree with pruning

Figure 4.8: Comparison of the time required to find the optimal solution with the minimax tree and
the MCTS, with and without pruning. Note that the y axis is in log scale.

4.5.2 Pruning Techniques

MCTS: We evaluate the computational time required to find the optimal solution by vary-

ing the time horizon T . Figure 4.8 shows the computational time for the two search algo-

rithms. The time horizon T ranges from 1 to 5; the tree consists of 3 to 11 levels. When

the time horizon T is less than 3, the minimax search tree performs better than MCTS. This

can be attributed to the fact that Monte-Carlo search requires a certain minimum number

of iterations for the estimated total reward value to converge to the actual one. When the

horizon T is increased, the MCTS finds the solution faster since it does not typically re-

quire generating a full search tree. We only compare up to T = 5 since beyond this value,

we expect MCTS to be much faster than minimax. Furthermore, the computational time

required for finding the optimal solution for the minimax tree beyond T = 5 is prohibitively

large.

Figure 4.8, as expected, shows that the computational time with pruning is lower than

that without pruning for both techniques. Next, we study this effect in more detail.

Minimax Tree Search: We show the effectiveness of the pruning algorithm by com-

paring the number of nodes generated by the brute force technique (no pruning) with the

minimax tree with pruning. We generate the initial position of the agent and the opponent

106

randomly. We find the optimal path for various horizons ranging from T = 2 to T = 7.

Therefore, the minimax tree depth ranges from 5 to 15 (if the planning horizon is T , then

we need a game search tree with 2T +1 level).

The efficiency of the proposed pruning algorithm is presented in Table 4.1, which shows

the individual effect of alpha-beta pruning and the combined effect of all pruning tech-

niques.

Since the efficiency of pruning is highly dependent on the order in which the neigh-

boring nodes are added to the tree first, different results can be achieved by changing the

order in which the children nodes are added to the minimax tree. Table 4.1 compares the

number of nodes generated. The table shows the effect of individual pruning techniques.

By applying the pruning algorithm, the best case only generates 2.94× 104 nodes to find

the optimal solution, while brute force takes 9.76×106 nodes to find the same solution.

107

0 500 1000 1500
Monte-Carlo number of iterations

0

0.2

0.4

0.6

0.8

1

F
ra
c
ti
o
n
o
f
n
u
m
b
e
r
o
f
ti
m
e
s
th
e
M
C
T
S
so
lu
ti
o
n

e
q
u
a
ls

th
e
o
p
ti
m
a
l
fr
o
m

m
in
-m

a
x
tr
e
e

Monte-Carlo without pruning

Monte-Carlo with pruning

Figure 4.9: Effect of increasing the number of iterations in MCTS, with and without pruning, on the
the likelihood of finding the optimal solution. The y–axis shows the fraction of the number of trials
(out of 50 trials) MCTS was able to find the optimal solution given by the minimax tree for T = 3.

Table 4.1: Comparision of the number of nodes generated by different pruning techniques, from

T = 3 to T = 6.

Number of nodes generated

Planning horizon T = 3 T = 4 T = 5 T = 6

Brute force 625 1.56×104 3.90×105 9.76×106

With only

alpha-beta
Maximum 403 3844 7.08×104 1.70×106

Median 206 2822 1.80×104 2.46×105

Minimum 104 1444 7860 1.86×105

With all

pruning

techniques

Maximum 388 1389 3.3×104 4.81×105

Median 105 639 4064 3.74×104

Minimum 78 563 3016 2.94×104

Figure 4.9 shows the fraction of the times we find the optimal solution as a function

108

2 3 4 5 6 7 8 9 10 11

Planning horizon

0

1

2

3

4

5

6

7

8

N
u
m
b
er

o
f
it
er
a
ti
o
n
s
re
q
u
ir
ed

to
fi
n
d
th
e
o
p
ti
m
a
l

×10
4

Figure 4.10: Effect of the planning horizon on the number of iterations required to find the optimal
solution for MCTS with pruning.

of the number of iterations when T = 3 in a 10× 10 grid map. We first find the optimal

solution using a minimax tree. Then, we run the MCTS for a fixed number of iterations

and verify if the best solution found has the same value as the optimal. The x-axis in this

figure is the number of iterations in MCTS. Note that since there is more than one optimal

solution, we check the accumulated collected reward instead of how the agent moves in

each step.

We make the following observations from Figure 4.9: (1) The proposed pruning strat-

egy increases the (empirical) likelihood of finding the optimal solution in the same number

of iterations; and (2) The probability of finding the optimal solution grows as the number

of iterations grows.

The number of iterations required to find the optimal solution also depends on the plan-

ning horizon. Figure 4.10 shows the effect of the planning horizon over the number of

iterations required to find the optimal solution. Note that even though the likelihood of

finding an optimal solution increases with more iteration times in general, it is always pos-

sible that only a suboptimal is found due to “overfitting” caused by the UCT selection rule.

Therefore, we run the MCTS multiple times and find out how often we find the same total

reward within a given number of iterations. If we find the optimal solution 80% or more

109

times, we consider it as success, Here, we use 80% as the criterion for success, chosen

arbitrarily. A different threshold can be chosen depending on the application requirements.

For example, if optimality is the goal, then a higher threshold can be used for analysis.

We expect the trend shown here to hold — prior work [26, 50] have shown that the per-

formance of MCTS improves non-linearly as the number of iterations increases. From our

preliminary results, we find that the number of iterations required to find success 80% or

more times increases exponentially as we vary the planning horizon.

4.5.3 Changing Resolution Approach

In this section, we evaluate the effectiveness of the changing resolution strategy in the

minimax search and MCTS. First, we present a qualitative example to show some limita-

tions of the baseline fixed resolution approach and how they are overcome with the chang-

ing resolution strategy (using C(k) = k).

In Figure 4.11, we present a qualitative example of using the Monte-Carlo search tree

with/without changing the resolution (planning horizon is five steps) for the agent and the

opponent. It would be more direct if we look at the results from the opponent’s perspective,

as shown in Figure 4.11. Figure 4.11(a) shows the limitation of the traditional approach:

without changing resolution, within five steps, the opponent (blue square) is not able to

discover the agent. From the results of the search tree, the opponent’s move cannot affect

the agent since the agent cannot be detected in the Monte-Carlo simulations within five

steps. As a result, the opponent ends up moving back-and-forth locally (because the op-

ponent cannot discover the agent during the roll-out, it cannot find an optimal solution).

In Figure 4.11(b), we linearly decrease the resolution in the search tree (C(k) = k). As a

result, the new search tree with changing resolution can look ahead a length of 15 units

away without any additional computation cost.

110

(a) Search tree with fixed resolution. The search
depth in the tree is not enough for the opponent
to locate the agent. The Monte-Carlo search tree
returns a result that the opponent only moves lo-
cally, and the agent explores the environment by
ignoring some potential “danger”.

(b) Search tree with increasing resolution. The
search depth in the tree remains the same. The
Monte-Carlo search tree returns a simulation re-
sult that the opponent can move closer to the
agent, and the agent avoids the opponent, even
when they are far away initially.

Figure 4.11: Qualitative examples. The effect of using changing resolution in the Monte-Carlo
search tree. The left figure shows the structure in the search tree in the initial position, lists all the
locations included in the five depth of the search tree. The right figure shows the online planning
path for 20 steps. Opponent will move back and forth if it cannot detect the agent in planning
horizon.

The right figure shows the online path for 20 steps. With a changing resolution in the

search process, Figure 4.11(b) gives a more reliable predicted path for the opponent. Also,

the agent first explores part of the environment then goes back to hide the opponent.

In Figure 4.13, we compare the collected reward between fixed resolution with chang-

ing resolution. We test the results in different simulation environments that are shown in

Figure 4.12. We compute the difference between the average reward collected various ini-

tial positions for the agent (marked as red dots in Figure 4.12). The path of the opponent is

planned by a linearly changing resolution C(k)= k in the search tree. In all the experiments,

the opponent is planning with the changing resolution approach to ensure the opponent can

locate the agent even if they are far apart.

From Figure 4.13, we can see on average, applying the changing resolution approach

will produce a better path for the agent. This is especially the case when the environment is

large, or when the agent and opponent are located far from each other, such as in the 50×30

environment E. Also, as expected, there are cases where fixed resolution collects more or

111

(a) Environment
A (25×25).

(b) Envi-
ronment B
(10×10).

(c) Environment
C (13×16).

(d) Environment D
(25×10).

(e) Environment E (50×
30).

Figure 4.12: Environments used for the online simulations. Red dots are the different initial posi-
tions for the agent. The starting position for the opponent is fixed at the blue dot.

Environment A

Average Min Max
0

200

400
Environment B

Average Min Max
0

5

10

Environment C

Average Min Max

-20

0

20

Environment D

Average Min Max
-20

0

20

40

60

80

Environment E

Average Min Max
0

200

400 Fixed resolution

Changing resolution

Figure 4.13: Fix resolution vs. changing resolution. From environment A to E, the planning horizon
for each steps are 20, 5, 15, 20, 30.

the same reward, such as position 3 in environment C, positions 1, 2, and 3 in environment

B. This is due to the fact that the initial positions are too close to the opponent and the

environment is not large enough. Intuitively, the observation shows we should increase the

resolution when the agent and the opponent are not able to locate each other in the given

planning horizon.

4.5.4 Gazebo Experiments

The previous simulation results show the proposed algorithm can be applied in the

112

visibility-based reconnaissance problem. However, some of the assumptions made for the

previous simulations may not hold in the real world. In this section, we discuss how to

extend our algorithm to incorporate more realistic settings. We demonstrate this through

ROS Gazebo simulations [55].

One of the assumptions is that the agent and the opponent operate in a grid-based envi-

ronment. This is easily addressed in our algorithm. We do not actually need a grid-based

environment since we can rebuild the tree after every step. Here, the tree is rooted at the

current position of the agent and the opponent. Subsequent states in the tree are relative to

the respective starting positions of the agent and the opponent.

The agent and the opponent move simultaneously and do not move in turns as the

model assumes. While we assume the agent and the opponent move at the same speed in

each turn, in practice, the two robots will not move with the exact pace for the same speed

at all times. It is possible that one of the robots reaches its goal position before the other.

This is where the anytime nature of MCTS comes in handy. We let MCTS run until one of

the two robots reaches the goal positions. As soon as one robot reaches the goal positions,

we use the solution that is returned by MCTS and use that to plan the actions for the next

step. Here, the assumption we make is that once the two robots commit to an action at the

start of the timestep, they do not change the action until one of them completes it. That

is, the agent and the opponent use their respective current positions to choose their actions.

They continue to execute this action until one of them completes the action.

Figure 4.14 shows the setup where the agent and the opponent are simulated by using

the model of a differential-drive robot and the two robots are equipped with a 360-degree

lidar scanner (scan range marked with blue). We use the MCTS with changing resolution

techniques (C(k) = k) to generate the paths for the agent path and the opponent (planning

horizon T = 5). In these Gazebo experiments, we set the speeds of both the agent and the

opponent as 0.2 and set the unit length between each grid cell as 3. When the agent moves,

113

Figure 4.14: Gazebo simulation environment. The agent and the opponent are simulated as differ-
ential drive robots equipped with a 360-degree lidar scanner to generate the visibility polygon (we
only plot one robot’s lidar scanner in blue).

we take the agent and the opponent’s goal positions as the input. After the agent reaches

its current goal position, MCTS is terminated, and the agent will execute the best action

generated by the MCTS.

Similar to the previous qualitative results, we show two examples of the policy found

by the MCTS, using high and low negative penalty values in Figure 4.15 and the attached

video.4 In the video, we show an example that with a higher penalty P= 50, the agent tends

to avoid all possible detection by the opponent, e.g., the agent only collects 449.88 positive

reward but only being detected for only once. In contrast, with a lower negative reward,

the agent prefers to explore more areas. With a lower penalty P = 3, the agent explores a

much larger area and collects 1027.72 positive reward despite the opponent detecting it 22

time in 30 time steps.

4.6 Summary

We introduce a new problem of maximizing visibility and minimizing detectability in

an environment with an adversarial opponent. The problem can be solved using minimax

and the MCTS to obtain an optimal strategy for the agent. Our main contribution is eval-

uating the performance of pruning techniques using branch-and-bound and the principle

4https://youtu.be/_UuawB8CZ-E

114

https://youtu.be/_UuawB8CZ-E

(a) With a higher penalty P =
50.

(b) With a lower penalty P = 3.

Figure 4.15: Gazebo qualitative experiments. Actual paths of the agent (red) and the opponent
(blue) given by MCTS for 30 time steps. By varying the negative penalty values of being detected
by the opponent.

of optimality to reduce the size of the search tree while still guaranteeing optimality. We

also investigate how changing the resolution of the tree can lead to better performance in

large environments. An immediate avenue for future work is to incorporate additional con-

straints, such as kinematic/dynamic constraints, as part of the planning process. Further,

one may want to relax the assumption that the opponent’s position is known at all times.

This can be handled in MCTS by maintaining a belief over the opponents position. During

the rollouts, one can randomly draw a sample from this belief. The resulting strategy can

then take into account uncertain positions of the opponent. There has been recent progress

in Monte Carlo Tree Search methods for planning with partial observability [93]. Never-

theless, partial observability remains a computationally challenging problem.

115

Chapter 5: Planning in Adversarial Environments with Asymmetric Infor-

mation

In the previous chapter, we studied the problem of adversarial planning in the sym-

metric setting, i.e., when the robot and the adversary have the same evaluation functions.

In this chapter, we will continue focusing on the reconnaissance mission. However, we

will investigate an asymmetric scenario where we study what happens when one player has

more information than the other.

In this chapter1, we extend the adversarial reconnaissance mission to a setting where

our agent of interest can have more information than its opponent about features of the

environment that affect their rewards, and the adversary can become aware of (some of)

these features depending on which states the environment passes through over the course

of the agent’s interactions. Specifically, there are stationary, high-value assets in the envi-

ronment. Thus, while our agent knows of the existence of the assets and where they are in

the environment, the adversary only becomes aware of their existence when/if it sees them

in its line-of-sight. The adversary can collect an asset by visiting the location of that asset

once it becomes aware of the asset’s location. Because of the high value of the asset, the

agent would prefer that the assets do not get collected. This is in addition to the objectives

that we already considered in Chapter 4, i.e., scanning the environment and avoiding de-

tection by the adversary. This makes the problem asymmetric: while both the agent’s and

1This chapter is a collaboration with Rob Brady, Edmund H. Durfee, Jonathon M. Smereka, and Pratap
Tokekar.

116

the adversary’s objective account for the area scanned and detection penalty for the agent,

only the agent’s objective function accounts for the assets being collected, at least initially.

Furthermore, the objective for the adversary is also dynamic: once an asset gets revealed,

the objective for the adversary will be updated to include a term for collecting that asset.

The agent can anticipate which moves of the adversary can lead to the revealation of the

assets leading to an extra level of optimization in its planner.

In Chapter 4, we applied minimax search [87], a commonly-used technique to plan in

a turn-based game. As a symmetric game, the agent and the opponent are respectively

maximizing and minimizing the same reward function. In this chapter, we apply our new

algorithm, DM1, for the above adversarial asymmetric information planning problem. We

investigate the effect of the DM1 algorithm and present qualitative and quantitative re-

sults where DM1 with an accurate opponent model outperforms minimax by exploiting the

asymmetry. In application, we show that the DM1 paths successfully manage to mislead

the opponent into following the agent and thereby prevent the opponent from discovering

important information (assets) in the environment.

The rest of the chapter is organized as follows. We first introduce the related work in

Section 5.1. Then, we formulate the asymmetric information with non-stationary opponent

evaluation function problem in Section 5.2. We then present the background on an existing

algorithm, M* [25], that we build on, in Section 5.3. In Section 5.4, we present the DM1

algorithm for the problem presented in Section 5.2. In Section 5.6 we investigate the effect

of the DM1 algorithm and present qualitative and quantitative results where DM1 with an

accurate opponent model outperforms minimax by exploiting the asymmetry. In the end,

we summarize this chapter in Section 5.7.

117

5.1 Related Work

The application follows the adversarial games in Chapter 4 and builds on the visibility-

based routing problems [2, 68, 75, 85, 90, 110].

Our new algorithm is an extension of the M* algorithm, which was first proposed by

Carmel and Markovitch [24] in 1993 for solving asymmetric games. The M* algorithm

starts with the M1 algorithm, which operates with two reward functions, one for the agent

and one for the agent’s model of the opponent’s reward function. M2 operates with three

reward functions, where the agent uses its own objective and models the opponent as using

the M1 algorithms (M1 is with two reward functions), and so on. M∗ is defined as the

algorithm that includes every Mn algorithm as a special case. They prove that the strategy

returned by M* cannot be worse than the minimax strategy when the opponent model is

accurate in a turn-based game. This belongs to the general class of recursive modeling of

opponents [40].

M∗ (also called as opponent model search in some papers) was further investigated by

various game researchers. Carmel et al. [25] further proved a sufficient condition for a

pruning strategy and presented the αβ ∗ algorithm, which returns the M∗ value of a tree

while searching only necessary branches. Gao et al. [36] studied a generalization of op-

ponent model search by considering that two players may plan using trees with different

depths, called (D,d)−OM search, where D stands for the depth of search by player 1

and d for player 2’s depth of search. Donkers et al. [33] studied an extended model that

includes the uncertainty of the opponent’s state, called the probabilistic opponent model

search (PrOM).

Our algorithm is a generalization of M1, which is a special case of M∗. The key dif-

ference between our work and the previously mentioned work is that we account for the

dynamically evolving of the opponent model. We will discuss more details about the dif-

118

ference in Section 5.4.

5.2 Problem formulation

We study the problem of planning in a two-player, alternating-turns game, where two

players sequentially act on their joint state to generate a sequence of actions through the

state space. One player is trying to maximize the final reward while the other player acts

as a minimizer. Each player may have different evaluation functions. Each player acts

rationally based on its own evaluation function and the evaluation function it ascribes to

the other player.

In the symmetric stationary version of this problem, player 1 believes both players use

the same evaluation function. Player 1 uses this function to compute values of actions

to identify its move to maximize value, where (lacking any other information about its

opponent) it predicts its opponent’s moves will be to minimize value. The widely-known

minimax search algorithm solves this problem.

In our problem of interest, however, player 1 believes player 2 has a different evaluation

function. Without loss of generality, we assume player 1 has more information about its

opponent, player 2. It knows (or at least believes it knows) the evaluation function that

player 2 is using at the outset. Player 1 considers player 2’s initial evaluation function

inferior to its own (otherwise, it would replace its own function with the one it ascribes to

player 2). Furthermore, player 1 (believes it) knows how and when player 2 can improve

its evaluation function over the course of states reached during this game.

We define this problem in a generalized framework that incorporates changing oppo-

nent models into an asymmetric information game. We assume that the cumulative effects

of gaining information relevant to player 1’s reward model are summarized in player 1’s

evaluation function.

119

Definition 5.1. The state of the game is represented by a pair 〈s,e〉 where s is the joint state

of the shared environment that players 1 and 2 are in, and e is the evaluation function that

player 1 ascribes to player 2.

We define the initial state as 〈s0,e0〉. Player 1 models the effects of actions that it and

its opponent (player 2) take a transition function

〈st ,et〉
a1

t ,a
2
t−−−→ 〈st+1,et+1〉,

where, a1
t ∈ A1,a2

t ∈ A2 are the actions of player 1 and player 2 at time t. Here, st+1 is

the resulting joint state of the environment arising from taking action a1
t ,a

2
t in state st , and

et+1 is the (possibly different) evaluation function that player 1 believes the opponent will

adopt after the action a1
t ,a

2
t is taken.

Intuitively, when an action leads to a new state, that state might reveal new information

to player with less knowledge (player 2), leading player 2 to update its evaluation function.

For example, the action leads to a state where a previously unknown (to player 2) asset

becomes visible. We make no claim in this case that et+1 is superior to et , although we ex-

pect a rational player 2 to improve its evaluation function upon acquiring new information

generally.

We define the evaluation functions as a partially-ordered set (poset), with a single maxi-

mum element, which is player 1’s own evaluation function (which must be the best function

player 1 knows about), and a single minimum element which is the least-informed function

that it believes possible.

Formally, the evaluation-function poset has k+1 elements e0 (minimum element) through

ek (maximum element), where, when a pair of functions (ei,e j) is ordered, i < j means the

information exploited by e j contains the same information exploited by ei or subsumes

that of ei . For example, in our reconnaissance application, an evaluation function with

120

knowledge of subset P of the assets is ordered (possibly transitively) above the evaluation

functions with knowledge of strict subsets of P. The poset defines a directed graph over the

evaluation functions, rooted at e0 and converging to ek, where the sequence of evaluation

functions in any state trajectory traverses some path in that directed graph.

To summarize, the problem we solve is that of computing an optimal next move for

player 1 (the player with more knowledge) in an asymmetric game, from state 〈st ,et〉 given

a transition model for how actions affect the physical state st and the opponent’s evaluation

function et , where the transition model for the evaluation function adheres to the directed

graph (monotonicity) defined by the poset.

5.3 Background: Asymmetric information game with a static model (M∗)

Before we describe our new algorithm, DM1, we go into more details about the M*

algorithm [25] that DM1 is based on. We will highlight how M* (or, more specifically,

a particular version of M* called M1) cannot handle the non-stationary case described in

Section 5.2.

Carmel and Markovitch [24] introduced a way to give players different models in turn-

based sequence game playing called M* search. M* is a generalization of the minimax

algorithm that can handle an opponent’s model, which differs from player 1’s model. The

M* algorithm uses different evaluation functions at a different level of a search tree, for

both player 1 and one for player 2. The M* algorithm is a generalization of the Mn al-

gorithm and starts with the M1 algorithm, which operates with multiple reward functions,

M1 means player 1 acts rationally based on evaluation function f1, and assumes player 2

plans with minimax using evaluation function f0 (minimax can be considered as M0). M2

assumes player 1 acts rationally based on evaluation function f2, and assumes player 2

121

plans with M1 using evaluation functions f1, f0. Mn is about player 1 acts rationally based

on evaluation function fn, and assume player 2 plans with Mn−1 using evaluation functions

fn−1, fn−2, · · · , f0.

Note that in the M∗, { f1, f2, · · ·} are different from the evaluation functions {e1,e2, · · ·}

referred to in Section 5.2. In our case, e1,e2, · · · change over time as new information is

revealed. In M∗, f1 is the evaluation function about “how player 1 thinks player 2 thinks”,

and f2 is the evaluation function to model “how player 1 thinks player 2 thinks player 1

thinks”, and so on.

The M* algorithm expands the search tree similarly to the minimax tree. However, the

minimax search can be considered as M0, which will only use the reward value computed

by one evaluation function. In a general M* search tree, each node will store the reward

values computed in the current node according to player 1’s evaluation function and the

evaluation functions it ascribed to player 2.

However, M* cannot directly be applied to the problem we introduced in the previous

section. In our case, player 2’s evaluation function for a given joint state is a function of

the current joint state and the past joint states leading to the current one. Even if two nodes

are at the same level of the search tree, player 2’s evaluation function could be different in

these nodes because of the different history of joint states. In our problem, player 2 always

uses minimax and will not use Mn,Mn−1, · · · ,M1 to play against the behavior of player 1

throughout the planning horizon. Our presented algorithm is a generalization of M1 where

player 2’s evaluation function changes dynamically throughout the planning horizon. We

thus call our algorithm dynamic M1 (DM1).

122

5.4 DM1 Algorithm

Prior work on minimax and M* suggest a solution to our stated problem. Certainly,

player 1 with superior knowledge could ignore its adversary’s weaker (and possibly evolv-

ing) evaluation function and run standard minimax using its own (ek) evaluation function.

This maximizes its minimum reward, assuming that the opponent is fully informed, but

does not take advantage of it knowing of the opponent’s weakness and thus is not optimal

with respect to the player’s knowledge. Similarly, player 1 could directly use M1 given

that it knows the adversarial player’s weaker initial evaluation function e0, thereby tak-

ing advantage of its superior knowledge, but this overlooks its additional knowledge that

the adversary’s evaluation function can change depending on what states the environment

passes through, and thus this solution method will, in general, underestimate the adver-

sary’s future decisions. In the rest of the section, we introduce the new algorithm to handle

the scenario where the opponent’s model could change dynamically.

5.4.1 Expanding the Search Tree

Similar to the minimax search tree, we build a search tree to list all possible actions of

player 1 and its opponent, player 2. Each node stores the joint states of the players and a

set of evaluation functions used in the trajectory of states from the root to the current node.

In our application example, we also store the history of the joint state since they are also

needed to compute the reward value.

Root node: The root node contains the current joint state of player 1 and player 2, and

the evaluation function of these two players. Without loss of generality, we assume that the

root node is a MAX node.

MAX level: The MAX (i.e., player 1) level expands the tree by creating a new branch

for each action that can be taken in player 1’s state in its parent node from the previous

123

level (which is a node at MIN level). We will update player 1’s state based on the available

actions a1
t at step t.

MIN level: The MIN (i.e., player 2) level expands the tree by creating a new branch

for each action that can be taken in player 2’s state in its parent node (always a MAX level

node). Player 2’s state is updated at each level based on the various actions a2
t at step t. We

also record all the evaluation functions that each MIN node will use based on each node’s

current and past joint state as we expand the search tree. Recall that the evaluation functions

form a poset which correspond directly to a Directed Acyclic Graph (DAG). Therefore, a

trajectory of joint states from the root node to any node in the tree will correspond to a path

(of evaluation functions) in the DAG. We add this evaluation function to the set, which

stores the history of the evaluation functions from its parent if it is not in the set.

Terminal nodes: A terminal node is always the child of a MIN node, without loss of

generality. When the tree is fully generated (i.e., both player 1 and player 2 reach the

finite planning horizon H), we compute the reward values of the terminal node using all the

evaluation functions stored at the node (i.e., all evaluation functions used by the opponent

along the path from the root, as shown in Figure 5.1). For example, if player 2’s evaluation

function was e0 initially, then changed to e1 at a terminal node, we will compute and store

the reward value computed by e0 and e1, respectively. While for another terminal node,

player 2’s evaluation function remains the same as the root node, then we only need to

compute and store the reward value computed by e0. Note that with a planning horizon H,

player 2 can use at most H + 1 different evaluation functions at each terminal node. Note

that ek, as the evaluation function of player 1, always needs to be applied to compute the

reward value.

Figure 5.1 shows an example of the expanded search tree for a planning horizon of 2.

124

Algorithm 7: The DM1 search.
1 function

DM1(node,depth,Node state,Joint state history,Evaluation state history)
2 if Node state is terminal then

// Compute the reward value using evaluation function ek
3 rk ←Compute reward(ek,node)
4 for j from 0 to k-1 do
5 if e j in Evaluation state history then

// Compute the reward value using e j
6 r j ←Compute reward(e j,node,Joint state history)
7 else
8 r j← null
9 end

10 end
11 return {r0,r1, · · · ,rk},null
12 else if Node state is MAX then
13 return

DM1 MAX(node,depth,Joint state history,Evaluation state history)
14 else
15 return

DM1 MIN(node,depth,Joint state history,Evaluation state history)
16 end
17 end

Algorithm 8: The MAX level policy in DM1 search.
1 function DM1 MAX(node,depth,Joint state history,Evaluation state history)
2 {r0,r1, · · · ,rk}← {−∞,−∞, · · · ,−∞}
3 Expand the search tree with player 1’s actions
4 for each child node v do
5 Joint state history.push back(joint state of v)
6 {r′0,r′1, · · · ,r′k},action o f v←

DM1(v,depth−1,MIN,Joint state history,Evaluation state history))
7 if r′k > rk then
8 action← move to v
9 end

10 {r0,r1, · · · ,rk}← {max{r0,r′0},max{r1,r′1}, · · · ,max{rk,r′k}}
11 end
12 return {r0,r1, · · · ,rk},action
13 end

125

Algorithm 9: The MIN level policy in DM1 search.
1 function DM1 MIN(node,depth,Joint state history,Evaluation state history)

// Check the evaluation function player 2 uses.

2 el ← Check Eva(node)
3 Evaluation state history.push back(el)
4 {r0,r1, · · · ,rk}← {+∞,+∞, · · · ,+∞}
5 Expand the search tree with player 2’s actions
6 for each child node v do
7 Joint state history.append(joint state of v)
8 {r′0,r′1, · · · ,r′k},action o f v←

DM1(v,depth−1,MAX,Joint state history,Evaluation state history))
9 {r0,r1, · · · ,rk−1}← {min{r0,r′0},min{r1,r′1}, · · · ,min{rk−1,r′k−1}}

10 if rl > r′l then
11 rk← r′k
12 action← move to v
13 end
14 end
15 return {r0,r1, · · · ,rk}, action
16 end

Figure 5.1: Compute that all the reward values of the terminal node based on the number of all
possible evaluation functions. In this figure, we present an example with three evaluation functions
(e0,e1,e2).

126

5.4.2 Backing Up Values

The reward values are backed up from the terminal node to the root node. In the sym-

metric minimax algorithm, the minimax policy chooses an action that maximizes (MAX

level) or minimizes (MIN level) the backed up reward. In asymmetric DM1, the reward

values are backed up in a different fashion as given in Algorithm 7, Algorithm 8 (MAX

level), and Algorithm 9 (MIN level). We use a simplified way of keeping track of the

backed up values for ease of exposition. Specifically, in the following, we just keep track

of a fixed length of k+1 evaluations instead of a variable sized set of at most H +1 values.

The entries corresponding to the evaluation functions that are not used are simply marked

as null. However, in practice, one could use a set of variable lengths (depending on the

relative sizes of k and H) for efficiency purposes.

MAX level: For the nodes at the MAX level, the DM1 policy chooses an action that

maximizes based on the reward computed by the evaluation function of player 1. Since

player 1 assumes it has superior knowledge, the action returned in the MAX level is based

on reward computed by player 1’s evaluation function value ek. Then, in this node, we store

the rest of the k reward values computed by e0, e1 to ek−1 by taking the maximum reward

value computed by each evaluation function in all of its child nodes. Specifically, let ri

be the reward value computed by evaluation function ei. The node at the MAX level will

compare all the reward values computed by the evaluation function ei in all its child nodes

and store the maximum value as ri in the MAX level. Note that if the evaluation function

ei is not applied in one of its child nodes, ri in that child node will not be used.

MIN level: We have already determined which evaluation function player 2 is using

when we expand the search tree for all nodes at the MIN level. Suppose the node at the

MIN level uses evaluation function e j. In that case, the node at the MIN level will select an

action to go to the child node which contains the minimum reward value computed by the

127

Figure 5.2: Reward value backed up by asymmetric cases with the dynamic model (DM1). See
Figure 5.3 for the minimax version.

evaluation function e j. We also back up the reward for player 1 (i.e., rk) stored in that child

node. For all other reward values, we will back up the minimum of the rewards of the child

nodes (i.e., for all ri, i 6= k, we will back up the minimum value of the reward corresponding

to ei stored in the children). Also, if one of the evaluation functions ei is not applied in that

child node, ri can be backed up as a empty element.

Figure 5.2 presents an example of the two-step DM1 search tree finding an optimal

solution assuming the opponent is doing its best with its evaluation function. We consider

the case where the opponent could have three evaluation functions.

In symmetric minimax, only one reward value in the terminal nodes will be backed up

to the root node as the optimal move. After considering the opponent’s model, the DM1

algorithm will compute the reward by player 1’s model (e2, Figure 5.2), and the opponent

has two possible models (e1 marked with red and e0 marked with blue). At the MIN level

(player 2) nodes, the node chooses the action that minimizes the reward based on the value

computed by its current evaluation function (e0 or e1). At the MAX level (player 1) nodes,

player 1 takes the action that maximizes the reward computed by e2.

Figure 5.3 shows an example if we ignore the asymmetric information of e0,e1 and

128

Figure 5.3: Reward values backing up using a minimax tree, assuming player 2 uses the same
evaluation function as player 1 (e2). The minimax value returned (3) is less than that with DM1 (9)
as shown in Figure 5.2.

directly apply e2 to player 2 in the minimax tree. Player 1 will overestimate the reward

backed up in the MIN level, eventually, choose a different action at the root node, and get

lower reward values compared to DM1.

5.4.3 Properties of DM1

The agent’s policy in DM1 comes from a best-response reasoning. The agent does not

know the actual policy that the adversary is going to use. However, the agent can infer a

policy a rational adversary will use from any state 〈st ,et〉. As described in Section 5.2, et is

the evaluation function that the agent believes the adversary will use to plan its own actions

from state st . Therefore, a rational adversary will choose an action that minimizes the

rewards as evaluated by et assuming that the agent will choose its own action to maximize

the rewards evaluated by et . That is, a rational adversary will choose an action that is

returned by employing minimax using et with st as the root node planning up to the rest of

the horizon H. Thus, the best-response policy for the agent is to choose an action that will

maximize the rewards given by ek assuming that the adversary will choose an action that is

129

returned by minimax (for the rest of the horizon) using et as the evaluation function.

Note that the policy rooted at a node 〈st ,et〉 and at a node 〈st ,e′t〉 would generally be

different: even though the physical state of the agents is the same at both roots, the different

evaluation functions can lead to different policies. As a result, the minimax policy used by

a rational agent from a node that stores the state 〈st ,et〉 may not be the same as that used in

another node 〈st ′,et ′〉. Consider our adversarial reconnaissance application. The minimax

policy the agent thinks a rational adversary will use at the root node when the adversary

is not aware of any assets may be different from the policy the agent thinks a rational

adversary will use from a successor node after one or more assets have been revealed. This

is in addition to the fact that the depth of the minimax search employed by the rational

adversary will be different for nodes at different levels.

In DM1, the agent always chooses an action corresponding to a child node with the

largest rk value. Thus, to show that DM1 is a best-response to a rational adversary, we need

to show that the rk values at each MIN node are correct.

Lemma 3. Consider any node, A, with state 〈st ,et〉 in the DM1 search tree. Let T be the

subtree rooted at A. If ei is one of the evaluation functions that is used by a node lying on

the path from the root to A, then the ri value returned in A equals the value returned by

running minimax in T using the evaluation function ei.

Proof. First consider the case that i 6= k. Note that since A or some predecessor of A uses

the evaluation function ei, all the terminal nodes in T will compute ri using evaluation

function ei. Therefore, the ri values will not be null for any node in T . When i 6= k, DM1

always returns the minimum and maximum of the ri values of the children for a MIN and

MAX node, respectively (Algorithm 9 and Algorithm 8). Thus, the ri value returned at A

will be the same as that returned by running minimax using ei.

130

Now consider that i = k. For a MAX node, DM1 will always return the maximum rk

value amongst the children of that node. For a MIN node, DM1 will return the rk value of

the child node with the minimum rt . However, since i = k and because of our assumption

that ek is the singular maximal element of the poset, we will have et = ek. Therefore, even in

this case the ri=k value returned at A will be the same as that returned by running minimax

using ei=k.

Theorem 8. DM1 correctly finds the best-response strategy for the agent against a rational

adversary that chooses actions using the evaluation function et from any state of the game

〈st ,et〉.

Proof. Consider a MIN node with state 〈st ,et〉. From Lemma 3, we know that the rt value

returned at this node corresponds to the optimal minimax value using et rooted at this node.

Therefore, the rt value comes from a child node that has the minimum rt value. Now, the rk

value that will be returned by this node also comes from a child node that has the minimum

rt value. Therefore, at MIN nodes the value of rk returned corresponds to the actions that

will be chosen by a rational adversary.

Note that it is possible that there are multiple nodes that have the same minimum rt

value. In the absence of any other information, any of these children nodes are equally

likely to be chosen by the adversary. Irrespective of how the ties are broken, there exists a

rational adversary that will choose the same child node as that chosen by DM1 to back up

the rk value.

For MAX nodes with state 〈st ,et〉, we always return the rk value as the maximum of the

rk values of the children nodes. The action chosen by DM1 for the agent corresponds to the

child node that has the maximum rk value. As a result, DM1 always chooses an action for

131

the agent that is the best-response strategy to maximize the rewards obtained by ek against

a rational adversary.

In the following section, we show how DM1 can be used in the asymmetric reconnais-

sance mission that motivates our work.

5.5 Application: Planning in Reconnaissance Mission Against Adversary

with Asymmetric Information

This section evaluates the online DM1 tree search algorithm in the context of a recon-

naissance task. There may be multiple stationary assets in the environment. We focus on

scenarios where the adversary is not initially aware of the presence of the assets.

Consider an agent (represented by player 1) and an opponent (player 2) moving on a

graph that represents the environment. The graph could be a grid or a roadmap constructed

from the environmental map. Each node in the graph has associated with it a reward value.

The positive reward is dependent on the application scenario. For example, for a reconnais-

sance mission, the positive reward can be a function of the new area visible from that node.

For a patrolling mission, the positive reward could depend on when the area visible from

the node was last covered. We also have negative rewards (or penalties) when the agent

is visible to the opponent in a position not seen before and when the assets are collected

by the opponent (see Figure 5.4). We do not penalize if the opponent detects the agent

at a previously seen position. This is to model the cases where new information is only

revealed when observing the agent for the first time at a location. In our problem setting,

we abstract the low-level details of how the agent gathers information and other physical,

low-level actions the agent may take at a given location. By observing the agent at a new

location, the opponent may be able to gain additional tactical information about the agent

specific to that location. While we abstract the details of this, we model this in the form of

132

Figure 5.4: Visibility-based reconnaissance: A negative penalty will be added if the agent is inside
the opponent’s visibility polygon (i.e., the blue) and in a position that was not being detected before.
In a reconnaissance mission, the area of the agent’s visibility polygon (i.e., the red) is considered
as a positive reward. An asset (red star) is in the environment, and only the agent knows of the
asset’s existence (at least initially). Once the opponent sees the asset, it will wise up and consider
the asset’s effect in this game. And the agent will be penalized once the opponent collects the asset.

a one-shot penalty for observing the agent at a new location. Other forms of penalty could

also be used, such as penalty only for observing the agent at specific locations or penalty

every time the agent is observed irrespective of the history. However, the latter makes the

results more sensitive to the choice of time horizon since the total and unrestricted penalty

could far outweigh the positive reward.

We make the following assumptions: (1) The map is graph-based, and the agent and

the opponent move by taking turns on the graph at discrete time steps. (Note that in reality,

they move simultaneously, but we model this as a turn-based game divided into discrete

time steps.) (2) Both the agent and the opponent know the environment and the position

of all obstacles. (3) There is no uncertainty in the agent’s and opponent’s actions. (4)

Both the agent and the opponent know each other’s position. (5) There exist n assets in the

environment, and only the agent knows of the existence and position of the assets initially.

(6) The opponent will update its evaluation function immediately upon obtaining a line of

sight of one or more assets.

Assumption (4) is the same as assumption (7) that we make in Chapter 4. Like before,

133

we envision scenarios where external sources (such as aerial vehicles or other sensors) may

be able to give positional information about the agents. However, the agents need to detect

each other from closer ranges to actually reveal information, which is what results in the

penalty. An important line of future work is to relax this assumption using for example,

information states [81, 82].

The evaluation function for the agent for time step t is:

ek(π
t
a,π

t
o) =R(πt

a)−ηagent(π
t
a,π

t
o)Pagent−

n

∑
i=1

η
i
asset(π

t
o)P

i
asset , (5.1)

where R(·) denotes the new positive reward collected by the agent at time step t. Pagent is

the negative penalty for the agent whenever it is visible to the opponent in a place that it

was not being detected before. ηagent(·) is an indicator function to count the total number

of times that the agent is observed in a position that was not being detected before, given

the agent’s path πt
a and the opponent’s path πt

o at step t. Similarly, η i
asset(·) is a indicator

function to check whether the i-th asset is collected given the opponent’s path πt
o.

For the opponent, since we assume it does not (at least initially) know of the existence

of the asset, its decision model will not consider the effect of the assets,

e0(π
t
a,π

t
o) = R(πt

a)−ηa(π
t
a,π

t
o)Pagent . (5.2)

However, as the opponent moves, if it detects some of the assets, it will update its

evaluation function by considering the effect of the assets. For example, at state st , if a

collection of assets J have been observed by the opponent during the trajectory from s0,

134

the agent models the opponent’s evaluation function as,

et(π
t
a,π

t
o) = R(πt

a)−ηagent(π
t
a,π

t
o)Pagent− ∑

j∈J
η

j
asset(π

t
o)P

j
asset (5.3)

where η
j

asset(π
t
a,π

t
o) is the opponent’s indicator function to check whether asset j is col-

lected given the opponent’s path πt
o.

The agent’s problem is to find its best solution, assuming the opponent will execute

what the agent thinks that the opponent thinks are the worst possible actions for the agent.

We consider planning for an episode of duration D. Normally, we would use the episode

duration D as the planning horizon for DM1 (H = D). But when D is large, that may be

infeasible. So we solve the next action for the agent using a finite horizon of H (H < D)

and replan after every step.

5.5.1 Online Planning with Search Tree

When the planning horizon H < D, we use the following strategy. Once the tree is

built, the agent can execute the first step of the policy. After the agent executes that step

and observes the new position of the opponent, the agent will update the position of the

opponent (based on new measurement) in the new root node and rebuild the search tree.

When the planning horizon H < D, we can use a heuristic to measure the potential of

different terminal nodes to collect the future reward beyond H time steps. The intuition

behind the heuristic is: 1) The agent prefers to choose a terminal node that is closer to the

unexplored area. 2) The agent prefers a terminal node that is far away from the opponent.

3) The agent prefers a terminal node that is less likely to expose one or more unrevealed

assets.

First, we compute and store the shortest path between all pairs of points in the environ-

ment. For each unexplored grid location, center a (positive reward) Gaussian pdf at that

135

location. For each uncollected asset i, center a (negative reward) Gaussian probability den-

sity function (pdf) at that asset’s location. Also, center a (negative reward) Gaussian pdf at

the position of the opponent.

Then, given the precomputed distances, we compute the heuristic as a mixture Gaus-

sian by taking the sum of all the Gaussian pdfs at the agent’s position. The first term in

Equation 5.4 gives the potential positive reward, so for each terminal node, we compute

the mixed Gaussian pdf value based on the distance between the agent’s position at the

terminal node and each unexplored grid point. In other words, if the agent’s position in one

terminal node is closer to more unexplored regions, the heuristic gives more weight to go

in that direction. The second part is a negative Gaussian pdf based on the distance between

the agent and the opponent, which drives the agent to move away from the opponent. To

measure the potential of revealing the assets, the last part of the heuristic is a set of negative

Gaussian pdf based on the distance between the agent and each asset.

For instance, given a Gaussian pdf function pd f (·), and a terminal node with the

position of the agent pa, the position of the opponent po, the position of the j assets

p1
asset , · · · , p j

asset , and the position of q unexplored grid points p1, p2, · · · , pq, the heuristic

computed is this terminal node is,

heuristic =
q

∑
i=1

pd f (d(pa, pi))−α · pd f (d(pa, po))−β ·
j

∑
i=1

pd f (d(pa, pi
asset)), (5.4)

where d(pi, p j) returns the minimum distance between points pi and p j in a graph-based

environment. α,β are the weight parameters.

136

5.6 Evaluation

In this section, we evaluate DM1 in this asymmetric reconnaissance problem. We as-

sume the visibility range of the agent and the opponent are both unlimited (only restricted

by the obstacles in the environment). The software was written in MATLAB R2019a and

used the VisiLibity library [73] to compute the visibility polygons.

In following section, we first present qualitative examples for DM1 and minimax, as

well as the effect of the heuristic. Then, we compare the performance of online DM1 and

minimax with different settings.

5.6.1 Qualitative Results

We first show qualitative examples of the policy found by the online DM1 and minimax.

We evaluate the performance using accumulated rewards over time. In this qualitative

example, the positive reward R is the area scanned by the agent along its path. Once the

opponent observes the agent in a position that was not detected before, the agent’s penalty

will be Pagent = 0.3. If one of the assets is collected by the opponent, the agent receives a

high penalty of 30.

For all the experiments in this section, we will use the heuristic unless explicitly stated.

When the heuristic is not applied and if two or more nodes have the same reward value,

we apply the sequence of “staying still, moving east, moving north, moving west, moving

south” to break ties.

Figure 5.5 and Figure 5.6 are small examples to illustrate the choices being made by the

agent using the symmetric minimax and asymmetric DM1 when H = D = 10. Figure 5.5

illustrates the result if the agent is planning using minimax. In both cases, the opponent

uses a minimax tree to plan its own actions. The evaluation function in the minimax tree is

based on the number of assets the opponent is aware of at that time instance. Since this is

137

(a) T = 1. (b) T = 3. (c) T = 5.

(d) T = 7. (e) T = 9. (f) T = 11.

Figure 5.5: Minimax: Using minimax, the agent cannot choose actions to prevent the opponent
from detecting the assets. The opponent collects both assets at the end of the episode. From left to
right, the figures show the episode when T = 1,3,5,7,9,11. The accumulated positive rewards at
each step are 26.7, 27.2, 40.6, 41.6, 47.8, 58.7. The accumulated negative penalties at each step are
0, -0.9, -1.5, -1.8, -31.8, -61.8. At the end of the episode, the total reward collected by the agent is
-3.1.

138

(a) T = 1. (b) T = 3. (c) T = 5.

(d) T = 7. (e) T = 9. (f) T = 11.

Figure 5.6: DM1: The agent leads the opponent away from the asset, and the agent stands to benefit
more by collecting a higher total reward. The accumulated positive rewards at each step are 14.6,
23.3, 26.7, 41.9, 44.8, 52.9. The accumulated negative penalties at each step are 0, -0.9, -1.5, -2.1,
-2.7, -3.3. At the end of the episode, the total reward collected by the agent is 49.6.

139

minimax, the agent treats the opponent being as informed as itself. The symmetric planning

algorithm ends with all the assets being detected (the agent overestimates the opponent and

thinks it could not stop the detection and so only cares to explore more areas). The agent

focuses on maximizing its other rewards by directly moving east, and it unwittingly leads

the opponent to discover the assets.

Figure 5.6 illustrates how the DM1 can help the agent to exploit the correct knowledge

of asymmetry and the non-stationary opponent’s model. When the agent correctly knows

the opponent’s weaker model, DM1 plans actions by moving towards the opponent, pre-

venting the opponent from discovering the assets. At the end of the episode, the agent using

DM1 collects more total reward (49.6 to -3.1) by sacrificing some exploration in order to

avoid revealing any of the assets.

This qualitative example shows how DM1 can take advantage of the asymmetric knowl-

edge. By moving unexpectedly towards the opponent initially, the agent is able to lead the

opponent away from the assets that may cause more negative rewards. In contrast, minimax

overestimates the opponent and moves away from the opponent. Despite the fact that the

agent is detected fewer times by the opponent, it eventually exposed all the assets. The

final summed reward collected by minimax is less than the reward collected by DM1.

Another qualitative result in Figure 5.7 and Figure 5.8 illustrates how DM1 can help the

agent to exploit the correct knowledge of asymmetry by deliberately exposing one asset in

the corner to create separation from the opponent, and eventually collect more reward by

taking advantage of that separation. In this example we set H = 13 and D = 30.

Figure 5.7 illustrates the result when the agent is planning using minimax. The agent

directly moves towards the larger area, which exposes four of the assets. The symmetric

planning algorithm ends with four assets being detected because the agent overestimates

the opponent and thinks it could not stop the detection. Then the rational moves are to

explore the larger area first.

140

(a) T = 5. (b) T = 10.

(c) T = 15. (d) T = 20.

(e) T = 25.

Figure 5.7: Minimax: planning with symmetric minimax, the agent chooses actions directly to
explore more areas. The opponent collects four assets at the end of the episode. From left to right.
The accumulated positive rewards at each step are 20.3, 68.9, 72.4, 72.4, 72.4. The accumulated
negative penalties at each step are -5.0, -68.0, -128.0, -129.0, -131.0. At the end of the episode, the
total reward collected by the agent is -58.6.

141

(a) T = 5. (b) T = 10.

(c) T = 15. (d) T = 20.

(e) T = 25.

Figure 5.8: DM1: by considering the opponent’s dynamic model. The agent deliberately exposes
one asset in the corner to create separation from the opponent. The agent can explore a larger area
and also avoid exposing four assets by creating this separation. The accumulated positive rewards at
each step are 10.9, 36.4, 71.8, 75.2, 75.2. The accumulated negative penalties at each step are -5.0,
-35.0, -35.0, -35.0, -35.0, -35.0. At the end of the episode, the total reward collected by the agent is
40.2.

142

Figure 5.8 illustrates how DM1 can help the agent to exploit asymmetric knowledge.

DM1 moves to the narrow corridor first and exposes one asset in the remote corner. Despite

the fact that one of the assets gets collected (along with its negative penalty), the agent cre-

ates separation between the opponent and can explore the rest of the area without exposing

any more assets. This is because, after the opponent using minimax goes to collect the first

asset, it finds itself having no chance to catch up with the agent, and thus (unless influenced

by heuristics) will choose to stay in place. DM1 can take advantage of that and finds the

path to collect the most rewards.

5.6.2 Effect of the heuristic

In this subsection, we use a qualitative result to show the effect of the heuristic. When

the planning horizon H < D, we can use a heuristic to measure the potential of different

nodes to collect the future reward. A heuristic helps break ties for the agent and the op-

ponent and can help bias the agent and the opponent to better intermediate nodes when

planning to only a limited horizon.

Figure 5.9 shows a result of the agent planning using DM1, with and without the heuris-

tic when looking ahead only H = 5. Figure 5.9-(a) shows the initial position of the assets.

By only looking ahead for five steps, the agent cannot detect the new area in the search

tree and stays in the initial position because the tie-breaker prefers staying in place (e.g., to

conserve energy). In contrast, as shown in Figure 5.9-(b), although the agent cannot detect

the new area at an intermediate node when looking ahead only H = 5, the heuristic gives

more weight on moving north first because it is closer to the largest unexplored area. As

we can see, with the help of the heuristic, the agent is able to move to the largest room first

then explore the second largest room.

143

(a) Without heuristic.
When H = 5, the agent
cannot detect any new
area in the search tree
given the initial position
of the agent. Thus, the
agent ends up staying

(b) With heuristic. When H = 5, despite the agent not detecting any new area
within the limited look-ahead search tree. The heuristic value enables the agent
to explore the largest room first and then continue to explore the search largest
room. The figures show the portions of the agent when T = 15,30,45.

Figure 5.9: Without heuristic vs with heuristic.

5.6.3 Quantitative Results

In this subsection, we compare the performance of DM1 and minimax in an online

reconnaissance problem with different settings. We use the environments shown in Fig-

ure 5.10 to generate the following results.

For the first quantitative experiment, we initially set the episode duration equal to the

planning horizon (D = H = 9), the penalty for the agent being detected as Pagent = 0.3, and

penalty for an asset being collected as Passet = 30. We randomly chose the possible starting

locations for the agent, opponent, and asset(s). Also, we make sure the distance between

the agent, opponent, and the assets is less than the episode duration (distance between any

two of them is less than 9). Table 5.1 shows the comparison of the final reward collected

in different environments when H = D. We did not need to apply the heuristic for the

experiment in this table.

From the experimental results in Table 5.1, when H = D = 9, the DM1 algorithm al-

ways performs better or finds the same reward value compared to the minimax algorithm.

144

(a) Envi-
ronment A
(7×5)

(b) Envi-
ronment B
(10×10)

(c) Environment C (23×12)

(d) Environment D (50×20)

Figure 5.10: Environments for the quantitative simulations. Red dots are the different initial posi-
tions for the assets in the second and third parts of the quantitative experiments.

The results confirm our hypothesis that DM1 improves the agent’s performance by taking

advantage of the opponent’s model’s asymmetric and non-stationary knowledge.

In the second quantitative experiment, we set H < D, and D is set to be twice the x

and y spans of the environment. We remove the condition that the distances between the

agent, opponent, and the assets are less than the planning horizon. Instead, we uniformly

at random generate the agent and the opponent’s positions. The assets’ positions are ran-

domly picked from the set shown as the red dots in Figure 5.10. Note that when H < D, it

is possible that the optimal local solution in H steps is not the globally optimal one. Thus,

minimax may collect more rewards compared to DM1. For example, in one of these exper-

iments, DM1 tried to protect one of the assets and stop exploring while minimax continues

to explore although the opponent detects the asset. However, the unexplored area that is H

steps away can provide a more positive reward compared to the penalty. It is possible that

this problem will be alleviated with a better heuristic and longer planning horizons. As we

145

Table 5.1: Comparison final reward collected in different environments when H = D = 9 (30 trials
for each environment).

Envir
-onment

Num.
of

Assets

DM1
Strictly

Performs
Better
(%)

Minimax
Strictly

Performs
Better
(%)

DM1 vs minimax
average reward

when DM1
performs better

DM1 vs minimax
average reward
when minimax
performs better

A 1 37% 0 4.5 vs -15.4 –
B 2 53% 0 47.6 vs -2.6 –
C 2 63% 0 51.7 vs 11.3 –
D 2 27% 0 177.4 vs 137.7 –

Table 5.2: Comparison final reward collected in different environments when H < D (50 trials for
each environment).

Envir-
onment H, D

Num.
of

assets

Num. of
times,
DM1

performs
better

Num. of
times,

minimax
performs

better

Average reward
when DM1

performs better
(DM1 vs
minimax)

Average reward
when minimax
performs better

(DM1 vs
minimax)

B
H=8,
D=40 2 42% 6% 37.4 vs 4.3 2.7 vs 5.1

C
H=8,
D=70 2 72% 18% 77.4 vs 33.7 9.3 vs 28.4

D
H=8,

D=140 8 54% 14% 411.7 vs 203.4 167.5 vs 211.2

can see in Table 5.2, there are some cases where minimax outperforms DM1 when H�D.

Nevertheless, DM1 still improves the agent’s performance on average, and it is more likely

to see that DM1 strictly performs better than minimax. The results in environment C also

suggest that when minimax collects more reward, the gap between the two reward values

is less compared to the difference when DM1 performs better. However, we see that as

the environment size increases (environment D) without an increase in H, the differences

between minimax and DM1 shrink. This is expected as DM1 is unable to take advantage

of the asymmetry without looking sufficiently far ahead in that environment.

In the third quantitative experiment, we investigate how different levels of “asymmet-

146

ric information” affect the performance of DM1. In this experiment, we use the different

numbers of assets to represent a different level of “asymmetric information”. We use en-

vironment C in Figure 5.10, and generate the position of the assets randomly from the

highlighted red dots. We consider two scenarios. First where the assets are generated

uniformly at random throughout the environment. Second where the assets are generated

clustered by adding a constraint that a newly generated asset must be within the visibility

region of all the existing assets. We set H, D, and the penalty parameters in the same way

that we did for environment C in the previous experiments. The results are included in Ta-

ble 5.3. We see that DM1 is more likely to outperform minimax when the assets are spread.

The gap between the average reward collected by DM1 and minimax increases as the num-

ber of assets increases. However, the agent is also more likely to have a worse final reward

when applying minimax. When the assets are spread throughout the environment, DM1 has

more opportunities to selectively reveal some of them for gaining a greater advantage in the

longer run. DM1 can either protect all the assets or cannot protect any of them when assets

are clustered. The results suggest that as the level of “asymmetric information” increases,

DM1 can better take advantage of the asymmetric knowledge.

Table 5.4 shows the number of nodes generated for the four environments for various

values of H. Note that size of the tree will vary depending on the initial position of the

agents. DM1 does not use any pruning. Improving the computational time with pruning,

for example, is an important avenue for future work.

5.7 Summary

We introduce a new game-theoretic problem of planning in an adversarial environment

with asymmetric nonstationary information. The main contribution of this chapter is a tree-

search algorithm called DM1 that provably solves this problem. We test this algorithm in

147

Table 5.3: Comparison final reward collected in environments C with a different number of assets.
(50 trials for each case). H = 8, D = 70.

Num.
of

assets

DM1
performs

better
(times)

DM1
performs

worse
(times)

Average
reward when

DM1
performs

better
(DM1

vs minimax)

Average
reward when

minimax
performs

better
(DM1

vs minimax)
2

(no constraint) 42% 6% 37.4 vs 4.3 2.7 vs 5.1

6
(clustered) 44% 4% 21.4 vs -156.7 -127.4 vs -133.2

6
(spread) 74% 12% -26.7 vs -116.1 -47.8 vs -32.7

10
(clustered) 52% 8% 13.7 vs -206.4 -177.3 vs -162.4

10
(spread) 78% 10% -38.4 vs -164.2 -117.3 vs -102.5

Table 5.4: The number of nodes needed to find the action in DM1 with different H.
Envir-

onment H = 5 H = 6 H = 7 H = 8

Num. of
nodes generated

A 3.50×105 9.17×105 6.02×106 5.19×107

B 1.87×106 3.35×107 7.04×108 1.47×1010

C 5.32×106 1.38×108 2.97×109 7.90×1010

D 7.32×106 1.81×108 3.95×109 9.87×1010

148

a reconnaissance problem and demonstrate the online planner’s feasibility through simula-

tions.

Our experiments show the DM1 algorithm is a promising solution for asymmetric non-

stationary agent games. We first use qualitative examples to show how the asymmetric

DM1 can outperform symmetric minimax. We then provide quantitative results and show

the DM1 algorithm always performs better or finds the same reward value compared to the

minimax when the episode duration equals the planning horizon (H = D). We also show

it is possible that minimax may collect more reward compared to DM1 when (H < D), but

DM1 still can improve the agent’s performance on average.

The immediate future work is to improve the efficiency of the algorithm. Currently,

the algorithm is limited to smaller H because of the exponential increase in the tree size.

Domain specific characteristics could be used (similar to the problems studied in Chapter 4)

to improve efficiency. The algorithm also needs to be evaluated more substantially in larger,

more varied environments.

149

Chapter 6: Conclusions and Future work

6.1 Summary of Contributions

One of the advantages of robots is that they can be used not only for tasks in known

and safe areas but also in environments that may have adversaries. The research reported in

this dissertation was motivated by scenarios where robots are operating in the presence of

adversaries. Our focus was on designing planning algorithms with an overarching goal of

understanding how asymmetric conditions between the robot and the adversary affect the

outcome of this game.

In general, an adversarial problem can be modeled as a minimax game adversarial plan-

ning problem, where we can refer to the robot and the adversary as MAX and MIN players,

respectively. At each step, the robot takes actions to maximize the total reward while the

adversary moves to minimize the total reward.

Our focus in this dissertation was on settings where it may not be suitable to model the

problem as minimax directly. Specifically, we focused on scenarios where the robot and

the adversary have different capabilities or information available to them. For example,

suppose the robot is an aerial vehicle, and the adversary is ground-based. In that case,

it is possible that the robot may have more information about the environment using its

onboard sensors than the adversary. The robot may be able to exploit this information

in this asymmetric setting. Also, robots and adversaries may have different capabilities,

and the player with superior capabilities may be able to exploit them. If the adversary

150

is capable of corrupting the robot’s information (while the robot may not be able to do

the same to the adversary’s information), then this asymmetry can be exploited by the

adversary to its advantage. In this dissertation, we make progress towards the understanding

of the asymmetry of information and capabilities for robot planning in adversarial settings.

Since robots are usually required to plan online, computation efficiency is critical in the

planning process. In this dissertation, we also investigated whether we can improve the

computational cost by using structure properties of the underlying game.

In this dissertation, we showed how asymmetry in information and capabilities can be

exploited by the respective agents. We also showed how the underlying structural proper-

ties can be exploited by us to improve computational performance. We used adversarial

target tracking and reconnaissance as our underlying application scenarios. In both prob-

lems, the robot and the adversary need to plan their actions so as to track or get away from

the other agent. In addition, in the reconnaissance mission, the robot also has the additional

objective of gathering information about the environment. These problems are representa-

tive of many practical scenarios and allowed us to study the effect of asymmetry in terms

of information and capabilities, which was the goal of this work.

We first studied the symmetric information game of active target tracking with distance-

dependent noise using minimax search in Chapter 2. Our solution consists of building a

minimax search tree to obtain the control policy for the robot. To overcome the difficulty

of high computational cost, we studied how the structural properties of the Kalman Filter

affect the robot’s planning process and the outcome of the game.

Our main contribution here was to prove a set of conditions based on algebraic re-

dundancy that allows us to reduce the size of the search tree while preserving optimal-

ity. We also presented sub-optimal pruning strategies that can be used to yield even more

computational savings at the expense of optimality. Our empirical results show that these

pruning strategies lead to search trees with only 1% of the nodes of a full tree without los-

151

ing optimality. Our main technical result assumes distance-dependent measurement noise

(Equation 2.3). We expect that this result (Theorems 2) can be extended to more gen-

eral state-dependent measurement noise models. The main property that we proved was

that the monotonicity of the Kalman Ricatti equation holds even in the distance-dependent

case. We expect this property to also hold for a more general state-dependent case. This

will allow our result to generalize to more practical sensor noise models, such as when the

measurement noise is a non-linear function of the relative positions of the robot and target

or depends on the viewing angle.

We then considered an asymmetric case where the adversary can inject false sensing

data in the robot’s measurement in Chapter 3. Clearly, the adversary can exploit this asym-

metric capability and mislead the robot’s estimation. However, the challenge here is that if

the adversary injects a large magnitude of false sensing data, then the robot would be able

to detect it and could possibly reduce the effect of this asymmetric advantage. We showed

how the adversary can take advantage of this capability without triggering the robot’s false

measurement alarm. Our results show that the adversary can achieve any desired deviation

in the output of a Kalman filter given sufficient time without triggering the robot’s false

data detection alarm.

This result suggests the need for better false data detection algorithms for the robot to

mitigate such attacks. We focused only on the estimation aspect of the problem. However,

it is quite likely that the estimated adversary state is actually used for some higher-level

objective, such as planning the motion of the robot to better track the adversary. The

effect of such attacks on these higher-level objectives needs to be better studied. However,

using a strategy like the one reported in Chapter 2 will lead to the robot being mislead and

going away from the true position of the adversary. In such cases, additional sources of

information or measurements may be needed to mitigate such attacks.

Chapters 4 and 5 focused on how the availability of information affects a reconnaissance

152

mission. We started with the symmetric information game, where the information available

to the robot and adversary is the same. We presented and compared the performance of

minimax as well as MCTS for this problem. Our main contributions here are we applying

branch-and-bound to this adversarial reconnaissance setting to improve the computational

efficiency of minimax and MCTS. We also empirically evaluated the performance of a

multi-resolution planning strategy in this setting.

We extended the symmetric case to an asymmetric information game by considering the

case where the information available to the robot and the adversary may not be the same.

We extended the M1 algorithm, which was designed for a static case, to a dynamic scenario

where the information available to the adversary may change over time. We evaluated

this algorithm using the reconnaissance problem and demonstrated the online planner’s

feasibility through experiments. The results indicate that our algorithm, called DM1, is

able to correctly exploit the asymmetric information. In reconnaissance missions, the paths

planned with DM1 can protect assets that are unknown to the adversary or selectively reveal

them when it is advantageous.

The DM1 algorithm can be used in any setting where the adversary gains more infor-

mation during the game play and thus will update their model. The key requirement here

is that the robot is able to predict (correctly) what model the adversary will be using at any

given point. Note that this is different from repeated games where the same set of players

are playing multiple games and can improve/change their strategies after each game. In-

stead, DM1 is applicable for the single-shot game played for a finite horizon, where one

player can improve its strategy because it gains information that changes its evaluation

function. Applications where information that is hidden to one player gets revealed over

time (or due to the players’ actions) can be solved via DM1.

153

6.2 Future Work

Planning for autonomous systems in adversarial environments is still a topic that needs

to be studied further. While this dissertation is more focused on the application of tree

search techniques, there are other techniques to solve related adversarial problems. For

example, resilient target tacking [119], which is to optimize the robots’ tracking perfor-

mance with potential failures, robust control [111], which also plans for the worst-case

scenario, and randomized strategies [47], which offers anytime properties, allow real-time

implementations for adversarial pursuit-evasion problems in online settings, etc.

The main bottleneck of the tree search techniques is still the trade-off between the com-

putational cost and accuracy. For example, when it comes to scenes with thousands of grid

points and the requirement of online planning, it is still difficult to find a feasible solution in

real-time, even if we use pruning and heuristics to improve computation efficiency. Thus,

one direction is, continue to improve the computational efficiency of the algorithm.

In addition, we assume that the robot and its adversary play a two-player turn-based

game. However, the agent and the opponent are moving simultaneously in the real world.

This is not an inherent limitation of the tree search algorithms used in this dissertation

but rather in their application to the specific problem settings (such as target tracking and

adversarial reconnaissance). Figure 6.1 shows an example of a potential pitfall of solving

a simultaneous move game as a turn-taking game. Even though literature [31][66][18]

suggests tree search algorithms such as MCTS can be applied in simultaneous move games,

they can eventually limit the deployment of such systems for high-stake applications. Thus,

analyzing the connection between the turn-based game and simultaneously moving game

could also improve the system’s robustness.

Also, note that we model the robot’s motion as a discrete system when applying the

tree search techniques, but the action of the robot and the adversary are both continuous

154

Figure 6.1: An example of one potential pitfall of solving a simultaneous move game as a turn-base
game. Given the current position, in a turn-taking game, if the agent (red dot) assumes it moves first,
then it may reason that if it moves right, then the opponent (blue square) may choose to stay in place
since it has no other incentive to move. Thus, the agent may believe that it may be able to prevent the
asset (red star) from being revealed. In reality, if the agent and the opponent move simultaneously,
it is possible that the opponent may start moving left as the agent moves right making it difficult to
predict whether the agent can protect the asset or not.

in the real world. Likewise, the measurements (as seen in Chapter 2) are also continuous.

Discretization of the state/action spaces always us to solve these problems using tree search

techniques. There are existing algorithms to solve versions of these problems in continu-

ous spaces (although not the exact version we consider). Kokolakis et al. [56] develop a

coordinated target tracking framework in the continuous space through a non-equilibrium

game-theoretic approach. Zengin et al. [112] present a gradient search algorithm for real-

time target tracking in continuous adversarial environments. Ideas from these papers could

be leveraged here. Furthermore, we could also employ sampling-based algorithms to solve

a continuous problem with a tree search algorithm. State of the art solvers [59] for Partially

Observable Markov Decision Processes in continuous state/action/measurement spaces em-

ploy sampling-based routines and then use Monte Carlo Tree Search algorithms.

Another direction that is promising is the continuous refinement of the discrete trajec-

tories found by the tree search algorithms. In fact, our results reported in Chapter 2 show

that trajectory optimization results in improved performance. Instead of naively choos-

ing initial trajectories that are needed by the continuous optimization algorithms (such as

CHOMP [84] and trajopt [88]), we can use the solutions given by the discretized discrete

155

tree search algorithms as the starting point.

The robustness of the algorithm needs to be considered more thoroughly. For example,

suppose the adversary does not follow the robot’s model. In that case, DM1 may perform

even worse than minimax in asymmetric games. It is possible that the agent may try to

exploit an asymmetry that does not exist, thereby, performing even worse than what a

conservative policy would do. Currently, it is also possible to come up with imperceivable

adversarial noise to fool the prediction system of the robot, as we have shown in Chapter 3.

In addition, the real behavior of an adversary is usually hard to predict. More thorough

analysis of the robustness of the algorithms proposed in this dissertation is required.

Learning techniques have shown progress in solving adversarial problems as well as

improving the robustness recently. Our recent work [28] also shows reinforcement learn-

ing (RL) is promising in a relevant persistent monitoring problem, and our experimental

results show that given sufficient training time, the RL approach may be better than non-

RL baselines. RL could handle the scenario where we need to look ahead for a longer

planning horizon. Also, the efficiency and robustness of the tree search techniques can be

improved with learning. For example, AlphaGo [89] used MCTS with deep learning to

solve the game of Go by combining the structure of MCTS with the learned knowledge

from past human played games and self-play

156

Bibliography

[1] How to accelerate artificial intelligence in the defense de-
partment. https://acquisitiontalk.com/2020/07/

how-to-accelerate-artificial-intelligence-in-the-defense-department/.
Accessed: June 30, 2021.

[2] Robotics: Science and systems workshop in adversarial robotics. http://hcr.

mines.edu/2018-rss-workshop/. Accessed: June 30, 2018.

[3] Mohammad Al Faruque, Francesco Regazzoni, and Miroslav Pajic. Design method-
ologies for securing cyber-physical systems. In Proceedings of the 10th Interna-
tional Conference on Hardware/Software Codesign and System Synthesis, pages 30–
36. IEEE Press, 2015.

[4] James Arnold, SW Shaw, and HENRI Pasternack. Efficient target tracking using
dynamic programming. IEEE transactions on Aerospace and Electronic Systems,
29(1):44–56, 1993.

[5] Nikolay Atanasov, Jerome Le Ny, Kostas Daniilidis, and George J Pappas. Infor-
mation acquisition with sensing robots: Algorithms and error bounds. In Robotics
and Automation (ICRA), 2014 IEEE International Conference on, pages 6447–6454.
IEEE, 2014.

[6] Cheng-Zong Bai, Vijay Gupta, and Fabio Pasqualetti. On kalman filtering with com-
promised sensors: Attack stealthiness and performance bounds. IEEE Transactions
on Automatic Control, 62(12):6641–6648, 2017.

[7] Cheng-Zong Bai, Fabio Pasqualetti, and Vijay Gupta. Data-injection attacks in
stochastic control systems: Detectability and performance tradeoffs. Automatica,
82:251–260, 2017.

[8] Hendrik Baier and Mark HM Winands. Monte-carlo tree search and minimax hy-
brids. In Computational Intelligence in Games (CIG), 2013 IEEE Conference on,
pages 1–8, 2013.

157

https://acquisitiontalk.com/2020/07/how-to-accelerate-artificial-intelligence-in-the-defense-department/
https://acquisitiontalk.com/2020/07/how-to-accelerate-artificial-intelligence-in-the-defense-department/
http://hcr.mines.edu/2018-rss-workshop/
http://hcr.mines.edu/2018-rss-workshop/

[9] Tirthankar Bandyopadhyay, Yuanping Li, MH Ang, and David Hsu. A greedy strat-
egy for tracking a locally predictable target among obstacles. In Proceedings 2006
IEEE International Conference on Robotics and Automation, 2006. ICRA 2006.,
pages 2342–2347. IEEE, 2006.

[10] Yaakov Bar-Shalom, X Rong Li, and Thiagalingam Kirubarajan. Estimation with
applications to tracking and navigation: theory algorithms and software. John Wi-
ley & Sons, 2004.

[11] Tamer Başar and Geert Jan Olsder. Dynamic noncooperative game theory. SIAM,
1998.

[12] Richard E Bellman and Stuart E Dreyfus. Applied dynamic programming. Princeton
university press, 2015.

[13] Gines Benet, Francisco Blanes, José E Simó, and Pascual Pérez. Using infrared sen-
sors for distance measurement in mobile robots. Robotics and autonomous systems,
40(4):255–266, 2002.

[14] Nicola Bezzo, James Weimer, Miroslav Pajic, Oleg Sokolsky, George J Pappas, and
Insup Lee. Attack resilient state estimation for autonomous robotic systems. In In-
telligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference
on, pages 3692–3698. IEEE, 2014.

[15] Deepak Bhadauria and Volkan Isler. Capturing an evader in a polygonal environment
with obstacles. In IJCAI, pages 2054–2059, 2011.

[16] Anil Bhattacharyya. On a measure of divergence between two statistical populations
defined by their probability distribution. Bull. Calcutta Math. Soc, 1943.

[17] Shaunak D Bopardikar, Francesco Bullo, and Joao P Hespanha. Sensing limitations
in the lion and man problem. In American Control Conference, 2007. ACC’07, pages
5958–5963. IEEE, 2007.

[18] Branislav Bošanskỳ, Viliam Lisỳ, Marc Lanctot, Jiřı́ Čermák, and Mark HM
Winands. Algorithms for computing strategies in two-player simultaneous move
games. Artificial Intelligence, 237:1–40, 2016.

[19] M Boutayeb, H Rafaralahy, and M Darouach. Convergence analysis of the extended
kalman filter used as an observer for nonlinear deterministic discrete-time systems.
IEEE transactions on automatic control, 42(4):581–586, 1997.

[20] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge univer-
sity press, 2004.

[21] B Brumback and M Srinath. A chi-square test for fault-detection in kalman filters.
IEEE Transactions on Automatic Control, 32(6):552–554, 1987.

158

[22] Lucian Buşoniu, Jihene Ben Rejeb, Ioana Lal, Irinel-Constantin Morărescu, and Ja-
mal Daafouz. Optimistic minimax search for noncooperative switched control with
or without dwell time. Automatica, 112:108632, 2020.

[23] Svante Carlsson and Bengt J Nilsson. Computing vision points in polygons. Algo-
rithmica, 24(1):50–75, 1999.

[24] David Carmel and Shaul Markovitch. Learning models of opponent’s strategy game
playing. 1993.

[25] David Carmel and Shaul Markovitch. Incorporating opponent models into adversary
search. In AAAI/IAAI, Vol. 1, pages 120–125, 1996.

[26] Hung-Jui Chang, Chih-Wen Hsueh, and Tsan-sheng Hsu. Convergence and correct-
ness analysis of monte-carlo tree search algorithms: A case study of 2 by 4 chinese
dark chess. In 2015 IEEE Conference on Computational Intelligence and Games
(CIG), pages 260–266. IEEE, 2015.

[27] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. Monte-carlo
tree search: A new framework for game ai. In AIIDE, 2008.

[28] Jingxi Chen, Amrish Baskaran, Zhongshun Zhang, and Pratap Tokekar. Multi-agent
reinforcement learning for persistent monitoring. arXiv preprint arXiv:2011.01129,
2020.

[29] Yingying Chen, Wade Trappe, and Richard P Martin. Detecting and localizing wire-
less spoofing attacks. In Sensor, Mesh and Ad Hoc Communications and Networks,
2007. SECON’07. 4th Annual IEEE Communications Society Conference on, pages
193–202. IEEE, 2007.

[30] Timothy H Chung, Geoffrey A Hollinger, and Volkan Isler. Search and pursuit-
evasion in mobile robotics. Autonomous robots, 31(4):299, 2011.

[31] Niek GP Den Teuling and Mark HM Winands. Monte-carlo tree search for the
simultaneous move game tron. Univ. Maastricht, Netherlands, Tech. Rep, 2011.

[32] Wenjie Dong. Tracking control of multiple-wheeled mobile robots with limited in-
formation of a desired trajectory. IEEE transactions on robotics, 28(1):262–268,
2012.

[33] HHLM Donkers, JWHM Uiterwijk, and HJ van den Herik. Investigating proba-
bilistic opponent-model search. In BNAIC’00: Proceedings of the Twelfth Belgium-
Netherlands Artificial Intelligence Conference, De Efteling, Kaatsheuvel, November
1-2, 2000, pages 337–338. Tilburg University, 2000.

159

[34] Xiaoyuan Fan, Liang Du, and Dongliang Duan. Synchrophasor data correction under
gps spoofing attack: A state estimation based approach. IEEE Transactions on Smart
Grid, 2017.

[35] Hamza Fawzi, Paulo Tabuada, and Suhas Diggavi. Secure state-estimation for dy-
namical systems under active adversaries. In Communication, Control, and Com-
puting (Allerton), 2011 49th Annual Allerton Conference on, pages 337–344. IEEE,
2011.

[36] Xinbo Gao, Hiroyuki Iida, Jos WHM Uiterwijk, and H Jaap van den Herik. A
speculative strategy. In International Conference on Computers and Games, pages
74–92. Springer, 1998.

[37] Sylvain Gelly and David Silver. Monte-carlo tree search and rapid action value
estimation in computer go. Artificial Intelligence, 175(11):1856–1875, 2011.

[38] Sylvain Gelly and Yizao Wang. Exploration exploitation in go: Uct for monte-carlo
go. In NIPS: Neural Information Processing Systems Conference On-line trading of
Exploration and Exploitation Workshop, 2006.

[39] Stephanie Gil, Swarun Kumar, Mark Mazumder, Dina Katabi, and Daniela
Rus. Guaranteeing spoof-resilient multi-robot networks. Autonomous Robots,
41(6):1383–1400, 2017.

[40] Piotr J Gmytrasiewicz, Edmund H Durfee, and David K Wehe. A decision-theoretic
approach to coordinating multi-agent interactions. In IJCAI, volume 91, pages 63–
68, 1991.

[41] Dongbing Gu. A game theory approach to target tracking in sensor networks. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 41(1):2–13,
2011.

[42] Geoffrey Hollinger, Sanjiv Singh, Joseph Djugash, and Athanasios Kehagias. Effi-
cient multi-robot search for a moving target. The International Journal of Robotics
Research, 28(2):201–219, 2009.

[43] Stefan Hrabar. 3d path planning and stereo-based obstacle avoidance for rotorcraft
uavs. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 807–814. IEEE, 2008.

[44] Baoqi Huang, Lihua Xie, and Zai Yang. Tdoa-based source localization with
distance-dependent noises. IEEE Transactions on Wireless Communications,
14(1):468–480, 2015.

[45] Shiyuan Jin and Zhihua Qu. A heuristic task scheduling for multi-pursuer multi-
evader games. In Information and Automation (ICIA), 2011 IEEE International
Conference on, pages 528–533. IEEE, 2011.

160

[46] Harold Lee Jones. Failure detection in linear systems. PhD thesis, Massachusetts
Institute of Technology, 1973.

[47] Sertac Karaman and Emilio Frazzoli. Incremental sampling-based algorithms for
a class of pursuit-evasion games. In Algorithmic foundations of robotics IX, pages
71–87. Springer, 2010.

[48] Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In
Proceedings of the sixteenth annual ACM symposium on Theory of computing, pages
302–311. ACM, 1984.

[49] Nikhil Karnad and Volkan Isler. Modeling human motion patterns for multi-robot
planning. In Robotics and Automation (ICRA), 2012 IEEE International Conference
on, pages 3161–3166. IEEE, 2012.

[50] Bilal Kartal, Pablo Hernandez-Leal, and Matthew E Taylor. Action guidance with
mcts for deep reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, volume 15, pages 153–
159, 2019.

[51] Lydia E Kavraki, Mihail N Kolountzakis, and J-C Latombe. Analysis of probabilistic
roadmaps for path planning. In Robotics and Automation, 1996. Proceedings., 1996
IEEE International Conference on, volume 4, pages 3020–3025. IEEE, 1996.

[52] Ayoung Kim and Ryan M Eustice. Active visual slam for robotic area coverage: The-
ory and experiment. The International Journal of Robotics Research, 34(4-5):457–
475, 2015.

[53] Donald E Knuth and Ronald W Moore. An analysis of alpha-beta pruning. Artificial
intelligence, 6(4):293–326, 1975.

[54] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Eu-
ropean conference on machine learning, pages 282–293. Springer, 2006.

[55] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an
open-source multi-robot simulator. In Intelligent Robots and Systems, 2004.(IROS
2004). Proceedings. 2004 IEEE/RSJ International Conference on, volume 3, pages
2149–2154. IEEE, 2004.

[56] Nick-Marios T Kokolakis, Aris Kanellopoulos, and Kyriakos G Vamvoudakis.
Bounded rational unmanned aerial vehicle coordination for adversarial target track-
ing. In 2020 American Control Conference (ACC), pages 2508–2513. IEEE, 2020.

[57] Andreas Kolling and Stefano Carpin. Pursuit-evasion on trees by robot teams. IEEE
Transactions on Robotics, 26(1):32–47, 2010.

161

[58] Panqanamala Ramana Kumar and Pravin Varaiya. Stochastic systems: Estimation,
identification, and adaptive control, volume 986. Prentice Hall Englewood Cliffs,
NJ, 1986.

[59] Hanna Kurniawati. Partially observable markov decision processes (pomdps) and
robotics. arXiv preprint arXiv:2107.07599, 2021.

[60] Jonathan A Larcom and Hong Liu. Modeling and characterization of gps spoofing.
In Technologies for Homeland Security (HST), 2013 IEEE International Conference
on, pages 729–734. IEEE, 2013.

[61] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[62] Eugene L Lawler and David E Wood. Branch-and-bound methods: A survey. Oper-
ations research, 14(4):699–719, 1966.

[63] Frank L Lewis and Vassilis L Syrmos. Optimal control. John Wiley & Sons, 1995.

[64] X Rong Li and Vesselin P Jilkov. Survey of maneuvering target tracking. part
i. dynamic models. Aerospace and Electronic Systems, IEEE Transactions on,
39(4):1333–1364, 2003.

[65] Maxim Likhachev and Dave Ferguson. Planning long dynamically feasible ma-
neuvers for autonomous vehicles. The International Journal of Robotics Research,
28(8):933–945, 2009.

[66] Viliam Lisy, Vojta Kovarik, Marc Lanctot, and Branislav Bosansky. Convergence
of monte carlo tree search in simultaneous move games. In Advances in Neural
Information Processing Systems, pages 2112–2120, 2013.

[67] Yao Liu, Peng Ning, and Michael K Reiter. False data injection attacks against state
estimation in electric power grids. ACM Transactions on Information and System
Security (TISSEC), 14(1):13, 2011.

[68] V. Macias, I. Becerra, R. Murrieta-Cid, H.M. Becerra, and S. Hutchinson. Image
feedback based optimal control and the value of information in a differential game.
Automatica, 90:271–285, April 2018.

[69] Yilin Mo, Emanuele Garone, Alessandro Casavola, and Bruno Sinopoli. False data
injection attacks against state estimation in wireless sensor networks. In Decision
and Control (CDC), 2010 49th IEEE Conference on, pages 5967–5972. IEEE, 2010.

[70] Yilin Mo and Bruno Sinopoli. False data injection attacks in control systems. In
First Workshop on Secure Control Systems, CPS Week, Stockholm, Sweden, 2010.

162

[71] Yilin Mo and Bruno Sinopoli. On the performance degradation of cyber-physical
systems under stealthy integrity attacks. IEEE Transactions on Automatic Control,
61(9):2618–2624, 2015.

[72] Michael Montemerlo, Joelle Pineau, Nicholas Roy, Sebastian Thrun, and Vandi
Verma. Experiences with a mobile robotic guide for the elderly. In AAAI/IAAI,
pages 587–592, 2002.

[73] K. J. Obermeyer and Contributors. The visilibity library. https://

karlobermeyer.github.io/VisiLibity1/.

[74] Joseph O’rourke. Art gallery theorems and algorithms. Oxford University Press
Oxford, 1987.

[75] Darren Pais and Naomi E Leonard. Pursuit and evasion: evolutionary dynamics and
collective motion. In AIAA Guidance, Navigation and Control Conference, pages
1–14, 2010.

[76] Simon Parkinson, Paul Ward, Kyle Wilson, and Jonathan Miller. Cyber threats fac-
ing autonomous and connected vehicles: Future challenges. IEEE Transactions on
Intelligent Transportation Systems, 2017.

[77] Cheng Peng and Volkan Isler. View selection with geometric uncertainty modeling.
arXiv preprint arXiv:1704.00085, 2017.

[78] Zhirong Qiu, Shuai Liu, and Lihua Xie. Distributed constrained consensus with
distance-dependent measurement noises. IFAC-PapersOnLine, 49(22):234–239,
2016.

[79] Alberto Quattrini Li, Raffaele Fioratto, Francesco Amigoni, and Volkan Isler. A
search-based approach to solve pursuit-evasion games with limited visibility in
polygonal environments. In Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, pages 1693–1701, 2018.

[80] Steven AP Quintero, Francesco Papi, Daniel J Klein, Luigi Chisci, and Joao P Hes-
panha. Optimal uav coordination for target tracking using dynamic programming.
In 49th IEEE Conference on Decision and Control (CDC), pages 4541–4546. IEEE,
2010.

[81] Eric Raboin, Ugur Kuter, and Dana Nau. Generating strategies for multi-agent
pursuit-evasion games in partially observable euclidean space. In Proceedings of
the 11th International Conference on Autonomous Agents and Multiagent Systems-
Volume 3, pages 1201–1202, 2012.

[82] Eric Raboin, Dana S Nau, Ugur Kuter, Satyandra K Gupta, and Petr Svec. Strategy
generation in multi-agent imperfect-information pursuit games. In AAMAS, pages
947–954, 2010.

163

https://karlobermeyer.github.io/VisiLibity1/
https://karlobermeyer.github.io/VisiLibity1/

[83] BSY Rao, Hugh F Durrant-Whyte, and JA Sheen. A fully decentralized multi-sensor
system for tracking and surveillance. The International Journal of Robotics Re-
search, 12(1):20–44, 1993.

[84] Nathan Ratliff, Matt Zucker, J Andrew Bagnell, and Siddhartha Srinivasa. Chomp:
Gradient optimization techniques for efficient motion planning. In 2009 IEEE Inter-
national Conference on Robotics and Automation, pages 489–494. IEEE, 2009.

[85] Günter Rote. Pursuit-evasion with imprecise target location. In Proceedings of the
fourteenth annual ACM-SIAM symposium on Discrete algorithms, pages 747–753.
Society for Industrial and Applied Mathematics, 2003.

[86] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall Press, 2009.

[87] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited,, 2016.

[88] John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Brad-
low, Jia Pan, Sachin Patil, Ken Goldberg, and Pieter Abbeel. Motion planning with
sequential convex optimization and convex collision checking. The International
Journal of Robotics Research, 33(9):1251–1270, 2014.

[89] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and
tree search. nature, 529(7587):484, 2016.

[90] Nicholas M Stiffler and Jason M O’Kane. Complete and optimal visibility-based
pursuit-evasion. The International Journal of Robotics Research, 36(8):923–946,
2017.

[91] Jie Su, Jianping He, Peng Cheng, and Jiming Chen. A stealthy gps spoofing strategy
for manipulating the trajectory of an unmanned aerial vehicle. IFAC-PapersOnLine,
49(22):291–296, 2016.

[92] Wei Sun, Yunpeng Pan, Jaein Lim, Evangelos A Theodorou, and Panagiotis Tsiotras.
Min-max differential dynamic programming: Continuous and discrete time formu-
lations. Journal of Guidance, Control, and Dynamics, 41(12):2568–2580, 2018.

[93] Zachary N Sunberg and Mykel J Kochenderfer. Online algorithms for pomdps with
continuous state, action, and observation spaces. In Twenty-Eighth International
Conference on Automated Planning and Scheduling, 2018.

164

[94] Yoonchang Sung, Ashish Kumar Budhiraja, Ryan Williams, and Pratap Tokekar.
Distributed simultaneous action and target assignment for multi-robot multi-target
tracking. In Proceedings of the IEEE Conference on Robotics and Automation
(ICRA), 2018.

[95] Pavel Surynek. A novel approach to path planning for multiple robots in bi-
connected graphs. In 2009 IEEE International Conference on Robotics and Au-
tomation, pages 3613–3619. IEEE, 2009.

[96] Kei Takada, Hiroyuki Iizuka, and Masahito Yamamoto. Reinforcement learning to
create value and policy functions using minimax tree search in hex. IEEE Transac-
tions on Games, 12(1):63–73, 2019.

[97] Vrizlynn LL Thing and Jiaxi Wu. Autonomous vehicle security: A taxonomy of
attacks and defences. In Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), 2016 IEEE International Conference
on, pages 164–170. IEEE, 2016.

[98] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT
press, 2005.

[99] Nils Ole Tippenhauer, Christina Pöpper, Kasper Bonne Rasmussen, and Srdjan Cap-
kun. On the requirements for successful gps spoofing attacks. In Proceedings of
the 18th ACM conference on Computer and communications security, pages 75–86.
ACM, 2011.

[100] Pratap Tokekar, Elliot Branson, Joshua Vander Hook, and Volkan Isler. Tracking
aquatic invaders: Autonomous robots for invasive fish. IEEE Robotics and Automa-
tion Magazine, 2013.

[101] Pratap Tokekar, Volkan Isler, and Antonio Franchi. Multi-target visual tracking with
aerial robots. In Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2014.

[102] Pratap Tokekar and Vijay Kumar. Visibility-based persistent monitoring with robot
teams. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Con-
ference on, pages 3387–3394. IEEE, 2015.

[103] Pratap Tokekar, Joshua Vander Hook, and Volkan Isler. Active target localization for
bearing based robotic telemetry. In Proceedings of IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2011.

[104] Jur Van Den Berg, Sachin Patil, and Ron Alterovitz. Motion planning under uncer-
tainty using iterative local optimization in belief space. The International Journal of
Robotics Research, 31(11):1263–1278, 2012.

165

[105] Joshua Vander Hook and Volkan Isler. Pursuit and evasion with uncertain bearing
measurements. In CCCG, 2014.

[106] Rene Vidal, Omid Shakernia, H Jin Kim, David Hyunchul Shim, and Shankar Sas-
try. Probabilistic pursuit-evasion games: theory, implementation, and experimental
evaluation. IEEE transactions on robotics and automation, 18(5):662–669, 2002.

[107] Michael P. Vitus, Wei Zhang, Alessandro Abate, Jianghai Hu, and Claire J. Tom-
lin. On efficient sensor scheduling for linear dynamical systems. Automatica,
48(10):2482–2493, October 2012.

[108] Thomas Walsh, Sergiu Goschin, and Michael Littman. Integrating sample-based
planning and model-based reinforcement learning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 24, 2010.

[109] W Willman. Formal solutions for a class of stochastic pursuit-evasion games. IEEE
Transactions on Automatic Control, 14(5):504–509, 1969.

[110] Shuang Wu, Xiaoqiang Ren, Yiguang Hong, and Ling Shi. Max-min fair sensor
scheduling: Game-theoretic perspective and algorithmic solution. arXiv preprint
arXiv:1902.03594, 2019.

[111] I Yaesh and U Shaked. Game theory approach to state estimation of linear discrete-
time processes and its relation to h-optimal estimation. International Journal of
Control, 55(6):1443–1452, 1992.

[112] Ugur Zengin and Atilla Dogan. Real-time target tracking for autonomous uavs
in adversarial environments: A gradient search algorithm. IEEE Transactions on
Robotics, 23(2):294–307, 2007.

[113] Jiangfan Zhang, Rick S Blum, Lance M Kaplan, and Xuanxuan Lu. Functional
forms of optimum spoofing attacks for vector parameter estimation in quantized
sensor networks. IEEE Transactions on Signal Processing, 65(3):705–720, 2017.

[114] Zhongshun Zhang, Joseph Lee, Jonathon M Smereka, Yoonchang Sung, Lifeng
Zhou, and Pratap Tokekar. Tree search techniques for minimizing detectability and
maximizing visibility. In 2019 International Conference on Robotics and Automa-
tion (ICRA), pages 8791–8797. IEEE, 2019.

[115] Zhongshun Zhang, Jonathon M Smereka, Joseph Lee, Lifeng Zhou, Yoonchang
Sung, and Pratap Tokekar. Game tree search for minimizing detectability and maxi-
mizing visibility. Autonomous Robots, 45(2):283–297, 2021.

[116] Zhongshun Zhang and Pratap Tokekar. Non-myopic target tracking strategies for
non-linear systems. In Decision and Control (CDC), 2016 IEEE 55th Conference
on, pages 5591–5596. IEEE, 2016.

166

[117] Zhongshun Zhang and Pratap Tokekar. Tree search techniques for adversarial target
tracking with distance-dependent measurement noise. IEEE Transactions on Control
Systems Technology, 2021.

[118] Zhongshun Zhang, Lifeng Zhou, and Pratap Tokekar. Strategies to design signals
to spoof kalman filter. In 2018 Annual American Control Conference (ACC), pages
5837–5842. IEEE, 2018.

[119] Lifeng Zhou, Vasileios Tzoumas, George J Pappas, and Pratap Tokekar. Resilient
active target tracking with multiple robots. IEEE Robotics and Automation Letters,
4(1):129–136, 2018.

167

	Dedication
	Acknowledgements
	Introduction
	Motivation
	Background
	Availability of information
	Computational complexity

	Contributions
	Target Tracking
	1.3.1.1 Symmetric Adversarial Target Tracking
	1.3.1.2 Asymmetric False Data Injection

	Visibility-based Reconnaissance
	1.3.2.1 Symmetric Adversarial Planning
	1.3.2.2 Asymmetric Adversarial Planning

	Organization

	Symmetric Adversarial Target Tracking with Distance-Dependent Measurement Noise
	Introduction
	Related Work
	Problem Formulation
	The minimax algorithm and pruning techniques
	Alpha-Beta Pruning
	Algebraic Redundancy Pruning
	Sub-optimal Pruning algorithm
	Online Execution of the Search Tree
	Trajectory Optimization

	Simulations
	Comparisons with Baseline Approaches
	Comparing the Number of Nodes
	Comparing the Sub-optimal Pruning algorithm
	Trajectory Optimization

	Experiments
	Summary

	A False Data Injection Strategy to Mislead Kalman filter
	Introduction
	Problem Formulation
	Offline Spoofing Signal Design with Known N(m_0, _0)
	Offline Spoofing Signal Design with Unknown N(m_0, _0)

	Signal Spoofing Strategies
	Linear Programming Formulation for L_1 Vector Norm
	Quadratically Constrained Quadratic Program Formulation for L_2 Vector Norm
	Receding Horizon: Spoofing with online measurement

	Simulations
	Signal spoofing with failure detector
	^2 failure detector
	Simulation with ^2 detector

	Summary

	Planning a Reconnaissance Mission Against an Adversary with Symmetric Information
	Introduction
	Problem Formulation
	 Tree Search Techniques
	Minimax Tree Search
	Monte-Carlo Tree Search
	Online Planning with Search Tree

	 Improved Computational Efficiency
	Pruning Techniques
	Bounding the Size of the Tree
	Expanding the Tree with Changing Resolution

	Evaluation
	Varying Penalty
	Pruning Techniques
	Changing Resolution Approach
	Gazebo Experiments

	Summary

	Planning in Adversarial Environments with Asymmetric Information
	Related Work
	Problem formulation
	Background: Asymmetric information game with a static model (M^*)
	DM1 Algorithm
	Expanding the Search Tree
	Backing Up Values
	Properties of DM1

	Application: Planning in Reconnaissance Mission Against Adversary with Asymmetric Information
	Online Planning with Search Tree

	Evaluation
	Qualitative Results
	Effect of the heuristic
	Quantitative Results

	Summary

	Conclusions and Future work
	Summary of Contributions
	Future Work

	Bibliography

