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Generating future frames given a few context (or past) frames is a challenging

task. It requires modeling the temporal coherence of videos and multi-modality in

terms of diversity in the potential future states. Current variational approaches for

video generation tend to marginalize over multi-modal future outcomes. Instead, in

this thesis, we propose to explicitly model the multi-modality in the future outcomes

and leverage it to sample diverse futures. Our approach, Diverse Video Generator,

uses a Gaussian Process (GP) to learn priors on future states given the past and

maintains a probability distribution over possible futures given a particular sam-

ple. In addition, we leverage the changes in this distribution overtime to control

the sampling of diverse future states by estimating the end of on-going sequences.

That is, we use the variance of GP over the output function space to trigger a

change in an action sequence. We achieve state-of-the-art results on diverse future

frame generation in terms of reconstruction quality and diversity of the generated

sequences.



DIVERSE VIDEO GENERATION

by

Gaurav Shrivastava

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2021

Advisory Committee:
Professor Abhinav Shrivastava, Chair/Advisor
Professor Tom Goldstein
Professor Furong Huang



© Copyright by
Gaurav Shrivastava

2021



Acknowledgments

I owe my gratitude to all the people who have made this thesis possible and

because of whom my graduate experience has been one that I will cherish forever.

First and foremost I’d like to thank my advisor, Professor Abhinav Shrivas-

tava for giving me an invaluable opportunity to work on challenging and extremely

interesting projects over the past two years. He has always made himself available

for help and advice and there has never been an occasion when I’ve knocked on his

door and he hasn’t given me time. It has been a pleasure to work with and learn

from such an extraordinary individual.

Thanks are due to Professor Tom Goldstein and Professor Furong Huang for

agreeing to serve on my thesis committee and for sparing their invaluable time

reviewing the manuscript.

Lastly, I like to thank everyone who helped me through the journey!

ii



Table of Contents

Acknowledgements ii

Table of Contents iii

List of Tables v

List of Figures vi

Chapter 1: Introduction 1

Chapter 2: Related work 7

Chapter 3: Background 10
3.1 Gaussian Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Learning and Model Selection . . . . . . . . . . . . . . . . . . 11
3.1.2 Scalable GP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 4: Diverse Video Generation 14
4.1 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 Frame Auto-Encoder . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.2 LSTM Temporal Dynamics Encoder . . . . . . . . . . . . . . 15
4.1.3 GP Temporal Dynamics Encoder . . . . . . . . . . . . . . . . 17
4.1.4 Training Objective . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.5 Inference Model of Diverse Video Generator (DVG) . . . . . . 18
4.1.6 Trigger Switch Heuristics . . . . . . . . . . . . . . . . . . . . . 19

4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.4 Analysis: Changes in action after GP triggering . . . . . . . . 28

Chapter 7: Conclusion 30

Appendix A:Previous Experiments 31
A.1 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

A.1.1 Ablation Studies for Temporal Dynamics Encoder . . . . . . . 31
A.1.2 SSIM and PSNR Results . . . . . . . . . . . . . . . . . . . . . 34

iii



A.1.3 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . 34
A.1.4 Gaussian Layer Specifics . . . . . . . . . . . . . . . . . . . . . 37
A.1.5 I3D Network architecture for Action Classifier . . . . . . . . . 37

Bibliography 39

iv



List of Tables

4.1 Quantitative results on KTH, BAIR, Human3.6M datasets. For
the FVD Score, all methods use the best matching sample out of 100
random samples and lower numbers are better. For the Diversity
Score, we compute the score across 50 generated samples, for 500
starting sequences, and higher numbers are better. . . . . . . . . . . . 24

A.1 Quantitative results on KTH, BAIR, Human3.6M datasets. For
the FVD Score, all the ablation methods use the best matching
sample out of 100 random samples and lower numbers are better. . . 33

A.2 Quantitative results on KTH, BAIR, Human3.6M datasets. For
the Diversity Score, we compute the score across 50 generated sam-
ples, for 500 starting sequences, and higher numbers are better. . . . 33

v



List of Figures

1.1 Given “person holding cup,” humans can often predict multiple pos-
sible futures (e.g.,“drinking from the cup” or “keeping the cup on the
table.”). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 An illustration of using GP variance to control sampling on-going
actions vs. new actions. . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1 An overview of the proposed Diverse Video Generator (DVG). . . . . 16
4.2 LPIPS Quantitative Results on KTH, BAIR, and Human3.6M

datasets. All methods use the best matching sample out of 100 ran-
dom samples. We used fixed trigger heuristic to keep trigger point
for each sample the same for our approach. . . . . . . . . . . . . . . . 21

4.3 Qualitative Results on BAIR (top, left), KTH (top, right), Hu-
man3.6M (middle), and UCF (bottom) datasets. First row is the
ground-truth video in each figure (with the last frame of the pro-
vided 5 frames is shown as ‘GT’). Every 5th frame is shown. . . . . . 27

4.4 Changes in action from past frames to future frames on KTH
dataset. Total of 25,000 generated videos were used to calculate per-
centage change shown in the above figure. . . . . . . . . . . . . . . . 29

A.1 Ablation results on KTH, Human3.6M and BAIR dataset using
variants of temporal dynamics model in our method. We report best
LPIPS metric. All methods use the best matching sample out of
100 random samples. We used fixed trigger to keep trigger point
for each sample the same. On KTH, all temporal dynamics models
have similar performance; and on BAIR, our LSTM model have best
performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A.2 Quantitative results on KTH, BAIR and Human3.6M dataset. We
report average SSIM and PSNR metrics. All methods use the best
matching sample out of 100 random samples. We used fixed trigger
to keep trigger point for each sample the same. . . . . . . . . . . . . . 35

A.3 KTH dataset: Qualitative comparison of the generated video se-
quences (every 5th frame shown). First row is the ground-truth video
(with last frame of the provided 5 frames is shown) . . . . . . . . . . 36

A.4 Qualitative results on BAIR dataset. We show the best LPIPS
samples out of 100 samples for all methods. . . . . . . . . . . . . . . 36

vi



A.5 Qualitative results on BAIR dataset. We show the best LPIPS
samples out of 100 samples for all methods. . . . . . . . . . . . . . . 36

A.6 Human3.6M dataset: Qualitative comparison of the generated
video sequences (every 5th frame shown). First row is the ground-
truth video (with last frame of the provided 5 frames is shown) . . . . 36

A.7 Human3.6M dataset: Qualitative comparison of the generated
video sequences (every 5th frame shown). First row is the ground-
truth video (with last frame of the provided 5 frames is shown) . . . . 36

A.8 KTH dataset: Qualitative comparison of the generated video se-
quences (every 5th frame shown). First row is the ground-truth video
(with last frame of the provided 5 frames is shown) . . . . . . . . . . 37

vii



Chapter 1: Introduction

Humans are often able to imagine multiple possible ways that the scene can

change over time. Modeling and generating diverse futures is an incredibly chal-

lenging problem. The challenge stems from the inherent multi-modality of the task,

i.e., given a sequence of past frames, there can be multiple possible outcomes of

the future frames. For example, given the image of a “person holding a cup” in

Figure. 1.1, most would predict that the next few frames correspond to either the

action “drinking from the cup” or “keeping the cup on the table.” This challenge is

exacerbated by the lack of real training data with diverse outputs – all real-world

training videos come with a single real future and no “other” potential futures. Sim-

ilar looking past frames can have completely different futures (e.g., Figure. 1.1). In

the absence of any priors or explicit supervision, the current methods struggle with

modeling this diversity. Given similar looking past frames, with different futures in

the training data, variational methods, which commonly utilize [1], tend to average

the results to better match to all different futures [2, 3, 4, 5, 6]. We hypothesize

that explicit modeling of future diversity is essential for high-quality, diverse future

frame generation.

In this thesis, we model the diversity of the future states, given past context,

1



Person Holding Cup

Future 1: Person Keeping Cup on the Table

Future 2: Person Drinking from the Cup

𝑥"#$ 𝑥"#% 𝑥"

ℎ"#$ ℎ"#% ℎ"

𝐺𝑃

)ℎ"*% )ℎ"*$

+𝑥"*% +𝑥"*$

𝐺𝑃

)ℎ"

+𝑥"

Training Inference

𝑥"#% 𝑥"

ℎ"#% ℎ"

𝐺𝑃

)ℎ"*% )ℎ"*$

+𝑥"*% +𝑥"*$

~
diverse
LSTM 
trajectories

)ℎ"*% )ℎ"*$

+𝑥"*% +𝑥"*$

)ℎ"*% )ℎ"*$

+𝑥"*% +𝑥"*$

Figure 1.1: Given “person holding cup,” humans can often predict multiple possible fu-
tures (e.g.,“drinking from the cup” or “keeping the cup on the table.”).

using Gaussian Processes (GP) [7], which have several desirable properties. They

learn a prior on potential future given past context, in a Bayesian formulation. This

allows us to update the distribution of possible futures as more context frames are

provided as evidence and maintain a list of potential futures (underlying functions

in GP). Finally, our formulation provides an interesting property that is crucial to

generating future frames – the ability to estimate when to generate a diverse output

vs. continue an on-going action, and a way to control the predicted futures.

In particular, we utilize the variance of the GP at any specific time step as

an indicator of whether an action sequence is on-going or finished. An illustration

of this mechanism is presented in Figure. 1.2. When we observe a frame (say at

time t) that can have several possible futures, the variance of the GP model is high

(Figure. 1.2 (left)). Different functions represent potential action sequences that can

be generated, starting from this particular frame. Once we select the next frame (at

t+2), the GP variance of the future states is relatively low (Figure. 1.2 (center)),
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indicating that an action sequence is on-going, and the model should continue it as

opposed to trying to sample a diverse sample. After the completion of the on-going

sequence, the GP variance over potential future states becomes high again. This

implies that we can continue this action (i.e., pick the mean function represented by

the black line in Figure. 1.2 (center)) or try and sample a potentially diverse sample

(i.e., one of the functions that contributes to high-variance). This illustrates how

we can use GP to decide when to trigger diverse actions. An example of using GP

trigger is shown in Figure. 1.2 (right), where after every few frames, we trigger a

different action.

Now that we have a good way to model diversity, the next step is to generate

future frames. Even after tremendous advances in the field of generative models for

image synthesis [2, 3, 5, 8, 9, 10, 11, 12, 13], the task of generating future frames

(not necessarily diverse) conditioned on past frames is still hard. As opposed to

independent images, the future frames need to obey potential video dynamics that

might be on-going in the past frames, follow world knowledge (e.g., how humans

and objects interact), etc.. We utilize a fairly straightforward process to generate

future frames, which utilizes two modules: a frame auto-encoder and a dynamics

encoder. The frame auto-encoder learns to encode a frame in a latent representation

and utilizes it to generate the original frame back. The dynamics encoder learns

to model dynamics between past and future frames. We learn two independent

dynamics encoders: an LSTM encoder, utilized to model on-going actions and the

GP encoder (similar to [14]), and a GP encoder, utilized to model transitions to

new actions. The variance of this GP encoder can be used as a trigger to decide

3



when to sample new actions. We train this framework end-to-end. We first provide

an overview of GP formulation and scalable training techniques in §??, and then

describe our approach in §4.1.

Comprehensively evaluating diverse future frames generation is still an open

research problem. Following recent state-of-the-art, we will evaluate different as-

pects of the approach independently. The quality of generated frames is quantified

using image synthesis/reconstruction per-frame metrics: SSIM [15, 16], PSNR, and

LPIPS [17, 18, 19]. The temporal coherence and quality of a short video clip (16

neighboring frames) are jointly evaluated using the FVD [20] metric. However, high-

quality, temporarily coherent frame synthesis does not evaluate diversity in predicted

frames. Therefore, to evaluate diversity, since there are no multiple ground-truth

futures, we propose an alternative evaluation strategy, inspired by [21]: utilizing ac-

tion classifiers to evaluate whether an action switch has occurred or not. A change

in action indicates that the method was able to sample a diverse future. Together,

these metrics can evaluate if an approach can generate multiple high-quality frames

that temporally coherent and diverse. Details of these metrics and baselines, and

extensive quantitative and qualitative results are provided in §4.2.

To summarize, our contributions are: (a) modeling the diversity of future

states using a GP , which maintains priors on future states given the past frames

using a Bayesian formulation (b) leveraging the changing GP distribution over time

(given new observed evidence) to estimate when an on-going action sequence com-

pletes and using GP variance to control the triggering of a diverse future state. This

results in state-of-the-art results on future frame generation. We also quantify the
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diversity of the generated sequences using action classifiers as a proxy metric.
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Chapter 2: Related work

Understanding and predicting the future, given the observed past, is a fun-

damental problem in video understanding. The future states are inherently multi-

modal and capturing their diversity finds direct applications in many safety-critical

applications (e.g., autonomous vehicles), where it is critical to model different fu-

ture modes. Earlier techniques for future prediction [22, 23] relied on searching for

matches of past frames in a given dataset and transferring the future states from

these matches. However, the predictions were limited to symbolic trajectories or

retrieved future frames. Given the modeling capabilities of deep representations,

the field of future frame prediction tremendous progress in recent years. One of

the first works on video generation [14] used a multi-layer LSTM network to learn

representations of video sequences in a deterministic way. Since then, a wide range

of papers [6, 15, 24, 25, 26, 27, 28] have built models that try to incorporate stochas-

ticity of future states. Generally, this stochasticity lacks diverse high-level semantic

actions.

Recently, several video generation models have utilized generative models, like

variational auto-encoders (VAEs) [1] and generative adversarial networks (GANs) [29],

for this task. One of the first works by Xue et al. [30] utilized a conditional VAE
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(cVAE) formulation to learn video dynamics. Similar to our approach, their goal

was to model the frame prediction problem in a probabilistic way and synthesizing

many possible future frames from a single image. Since then, several works have

utilized the cVAE for future generation [2, 3]. The major drawback of using the

cVAE approach is that its objective function marginalizes over the multi-modal fu-

ture, limiting the diversity in the generated samples [31]. GAN-based models are

another important class of synthesis models used for future frame prediction or video

generation [8, 9, 10, 11, 12, 13]. However, these models are very susceptible to mode

collapse [32], i.e., the model outputs only one or a few modes instead of generating

a wide range of diverse output. The problem of mode collapse is quite severe for

conditional settings, as demonstrated by [33, 34, 35]. This problem is worse in the

case of diverse future frame generation due to the inherent multi-modality of the

output space and lack of training data.

Another class of popular video generation models is hierarchical prediction [21,

36, 37, 38]. These models decompose the problems into two steps. They first predict

a high-level structure of a video, like a human pose, and then leverage that structure

to make predictions at the pixel level. These models generally require additional

annotation for the high-level structure for training.

Unlike these approaches, Our approach explicitly focuses on learning the dis-

tribution of diverse futures using a GP prior on the future states using a Bayesian

formulation. Moreover, such GP approaches have been used in the past for modeling

the human dynamics as demonstrated by [39, 40, 41]. However, due to the scalabil-

ity issues in GP , these models were limited to handling low dimensional data, like

8



human pose, lane switching, path planning, etc. To the best of our knowledge, ours

is the first approach that can process video sequences to predict when an on-going

action sequence completes and control the generation of a diverse state.
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Chapter 3: Background

3.1 Gaussian Process

A Gaussian process (GP) [7] is a Bayesian non-parametric approach that learns

a joint distribution over functions that are sampled from a multi-variate normal

distribution. Consider a data set consisting of n data-points {inputs, targets}n1 ,

abbreviated as {X, Y }n1 , where the inputs are denoted by X = {x1, . . . ,xn}, and

targets by Y = {y1, . . . ,yn}. The goal of GP is to learn an unknown function f

that maps elements from input space to a target space. A GP regression formulates

the functional form of f by drawing random variables from a multi-variate normal

distribution given by [f(x1), f(x2), . . . , f(xn)] ∼ N (µ,KX,X), with mean µ, such

that µi = µ(xi), and KX,X is a covariance matrix. (KX,X)ij = k(xi,xj), where k(·)

is a kernel function of the GP . Assuming the GP prior on f(X) with some additive

Gaussian white noise yi = f(xi) + ε, the conditional distribution at any unseen

10



points X∗ is given by:

f∗|X∗, X, Y ∼ N (E[f∗],Cov[f∗]), where (3.1)

E[f∗] = µX∗ +KX∗,X [KX,X + σ2I]−1Y

Cov[f∗] = KX∗,X∗ −KX∗,X [KX,X + σ2I]−1KX,X∗

3.1.1 Learning and Model Selection

We can derive the marginal likelihood for the GP by integrating out the f(x)

as a function of kernel parameters alone. Its logarithm can be defined analytically

as:

log (p (Y |X)) = −1

2

(
Y T
(
Kθ + σ2I

)−1
Y + log

∣∣Kθ + σ2I
∣∣)+ const, (3.2)

where θ denotes the parameters of the covariance function of kernel KX,X . Notice

that the marginal likelihood involves a matrix inversion and evaluating a deter-

minant for n × n matrix. A näıve implementation would require cubic order of

computations O(n3) and O(n2) of storage, which hinders the use of GP for a large

dataset. However, recent researches have tried to ease these constraints under some

assumptions.
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3.1.2 Scalable GP

The model selection and inference of GP requires a cubic order of computa-

tions O(n3) and O(n2) of storage which hinders the use of GP for a large dataset.

Titsias [42] proposed a new variational approach for sparse approximation of the

standard GP which jointly infers the inducing inputs and kernel hyperparameters

by optimizing a lower bound of the true log marginal likelihood, resulting in O(nm2)

computation, where m < n. Hensman et al. [43] proposed a new variational for-

mulation of true log marginal likelihood that resulted in a tighter bound. Another

advantage of this formulation is that it can be optimized in a stochastic [43] or dis-

tributed [44, 45] manner, which is well suited for our frameworks which use stochastic

gradient descent. Further, recent works [46, 47, 48] have improved the scalability by

reducing the learning to O(n) and test prediction to O(1) under some assumptions.

In this work, for scalability, we leverage the SVGP approach proposed by Hens-

man et al. [43]. It proposes a tighter bound for the sparse GP introduced by Titsias

[42], which uses pseudo inputs u to lower bound the log joint probability over targets

and pseudo inputs. SVGP introduces a multivariate normal variational distribution

q(u) = N (m,S), where the parameters m and S are optimized using the evidence

lower bound or ELBO (eq. 3.3) of true marginal likelihood (eq. 3.2). The pseudo

inputs, u, depend on variational parameters {zm}Mm=1, where M = dim(u) � N .

Therefore, the ELBO for SVGP is

Lsvgp (Y,X) = Eq(u) [log p (Y,u|X,Z)] +H[q(u)], (3.3)

12



where the first term was proposed by Titsias [42], and the modification by Hensman

et al. [43] introduces the second term. For details about the pseudo inputs u and

variational parameters zi, we refer the readers to [42, 43].

In this work, we build on the sparse GP approach from GPytorch [49], which

implements [43].

13



Chapter 4: Diverse Video Generation

4.1 Our Approach

Given a set of observed frames, our goal is to generate a diverse set of fu-

ture frames. Our model has three modules: (a) a frame auto-encoder (or encoder-

generator), (b) an LSTM temporal dynamics encoder, and (c) a GP temporal dy-

namics encoder to model priors and probabilities over diverse potential future states.

The frame encoder maps the frames onto a latent space, that is later utilized

by temporal dynamics encoders and frame generator to synthesize the future frames.

For inference, we use all three modules together to generate future frames, and use

the GP as a trigger to switch to diverse future states. Below we describe each

module in detail.

4.1.1 Frame Auto-Encoder

The frame encoder network is a convolution encoder which takes frame xt ∈

RH×W and maps them to the latent space zt ∈ Rd, where H×W is the input frame

size and d is the dimension of latent space respectively. Therefore, fenc : RH×W →

Rd, i.e., zt = fenc(xt). Similarly, the decoder or generator network, utilizes the latent

14



feature to generate the image. Therefore, fgen : Rd → RH×W , i.e., x̂t = fgen(zt).

We borrow the architectures for both encoder and generator networks from [2],

where the frame encoder is convolutional layers from VGG16 network [50] and the

generator is a mirrored version of the encoder with pooling layers replaced with

spatial up-sampling, a sigmoid output layer, and skip connections from the encoder

network to reconstruct image. Lgen(xt, x̂t) = ‖xt − x̂t‖2 is the reconstruction loss

for frame auto-encoder. This auto-encoder is illustrated in Figure. 4.1 (stage 1).

4.1.2 LSTM Temporal Dynamics Encoder

The first dynamics we want to encode is of an on-going action sequence, i.e.,

if an action sequence is not completed yet, we want to continue generating future

frames of the same sequence till it finishes. This module fLSTM : Rd → Rd, has

a fully-connected layer, followed by two LSTM layers with 256 cells each, and a

final output fully-connected layer. The output fully-connected layer takes the last

hidden state from LSTM (ht+1) and outputs ẑt+1 after tanh(·) activation. Therefore,

ẑt+1 = fLSTM(zt). The training loss is given by LLSTM =
∑T

t=1 ‖zt+1− ẑt+1‖2, where

T are the total number of frames (both past and future) used for training. This

simple dynamics encoder, inspired by [14] and illustrated in Figure. 4.1 (stage 2), is

effective and performs well on standard metrics.

15
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4.1.3 GP Temporal Dynamics Encoder

Next, we want to learn the priors for potential future states by modeling the

correlation between past and future states using a GP layer. Given a past state,

this temporal dynamics encoder captures the distribution over future states. This

enables us to use the predictive variance to decide when to sample diverse outputs,

and provides us with a mechanism to sample diverse future states. The input to

the GP layer is zt and the output is a mean and variance, which can be used to

sample z̃t+1. The loss function for the GP dynamics encoder follows from eq. 3.3,

LGP = −Lsvgp(zt+1, zt).

Unlike LSTM, the GP layer does not have hidden or transition states; it only

models pair-wise correlations between past and future frames (illustrated in Fig-

ure. 4.1 (stage 2)). In this work, we use the automatic relevance determination

(ARD) kernel, denoted by k(z, z′) = σ2
ARD exp

(
−0.5

∑d
j=1 ωj(zj − z′j)2

)
, parameter-

ized by learnable parameters σARD and {ω1, . . . , ωd}. This GP layer is implemented

using GPyTorch [49] (refer to §??).
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4.1.4 Training Objective

All three modules, frame auto-encoder and the LSTM and GP temporal en-

coders, are jointly trained using the following objective function:

LDVG =
T∑
t=1

( Frame Auto-Encoder︷ ︸︸ ︷
λ1Lgen(xt, x̂t) +

LSTM Frame Generation︷ ︸︸ ︷
λ2Lgen (xt, fgen(ẑt)) +

GP Frame Generation︷ ︸︸ ︷
λ3Lgen (xt, fgen(z̃t)) +

λ4LLSTM(zt+1, ẑt+1)︸ ︷︷ ︸
LSTM Dynamics Encoder

+ λ5LGP(zt+1, zt)︸ ︷︷ ︸
GP Dynamics Encoder

) (4.1)

where [λ1, . . . , λ5] are hyperparameters. There are three frame generation losses,

each utilizing different latent code: zt from frame encoder, ẑt from LSTM encoder,

and z̃t from GP encoder. In additional, there are two dynamics encoder losses, one

each for LSTM and GP modules.

Empirically, we observed that the model trains better with higher values for

λ1, λ2, λ4, possibly because GP is only used to sample a diverse state and all other

states are sampled from the LSTM encoder.

4.1.5 Inference Model of Diverse Video Generator (DVG)

During inference, we put together the three modules described above as follows.

The output of the frame encoder zt is given as input to both LSTM and GP encoders.

The LSTM outputs ẑt+1 and the GP outputs a mean and a variance. The variance

of GP can be used to decide if we want to continue an on-going action or generate

new diverse output, a process we call trigger switch. If we decide to stay with
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the on-going action, LSTM’s output ẑt+1 is provided to the decoder to generate the

next frame. If we decide to switch, we sample z̃t+1 from the GP and provide that

as input to the decoder. This process is illustrated in Figure. 4.1 (stage 3). The

generated future frame is used as input to the encoder to output the next zt+1; this

process is repeated till we want to generate frames.

4.1.6 Trigger Switch Heuristics

An important decision for a diverse future generation is when to continue the

current action and when to switch to a new action. We use the GP to switch to

new states. We use two heuristics to decide when to generate diverse actions: a

deterministic switch and a GP trigger switch. For the deterministic switch, we do

not use the variance of the GP as a trigger, and switch every 15 frames. Each

switch uses the sample from GP as the next future state. This enables us to have a

consistent sampling strategy across generated samples. For the GP trigger switch,

we compare the current GP variance with the mean of the variance of the last 10

states. If the current variance is larger than two standard deviations, we trigger a

switch. This variable threshold allows the diverse video generator to trigger switches

based on evidence, which can vary widely across samples.

4.2 Experiments

Next, we describe the experimental setup, datasets we use, qualitative and

quantitative results.
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We evaluate our models on four datasets and compare it with the state-of-the-

art baselines. All models use 5 frames as context (past) during training and learn

to predict the next 10 frames. However, our model is not limited to generating just

10 frames. All our models are trained using Adam optimizer.

KTH Action Recognition Dataset. The KTH action dataset [51] consists of

video sequences of 25 people performing six different actions: walking, jogging,

running, boxing, hand-waving, and hand-clapping. The background is uniform, and

a single person is performing actions in the foreground. Foreground motion of the

person in the frame is fairly regular.

BAIR pushing Dataset. The BAIR robot pushing dataset [52] contains the videos

of table mounted sawyer robotic arm pushing various objects around. The BAIR

dataset consists of different actions given to the robotic arm to perform.

Human3.6M Dataset. Human3.6M [53] dataset consists of 10 subjects performing

15 different actions. We did not use the pose information from the dataset.

UCF Dataset. This dataset [54] consists of 13,320 videos belonging to 101 different

action classes. We sub-sample a small dataset for qualitative evaluation on complex

videos. Our subset consists of 7 classes: Bench press, Bodyweight squats, Clean

and Jerk, Pull-ups, Push-ups, Shotput, Tennis-Swing, Lunges and Fencing. The

background of this dataset can bias our diversity evaluation metric. Therefore, we

only include this dataset only for qualitative evaluation.
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Figure 4.2: LPIPS Quantitative Results on KTH, BAIR, and Human3.6M datasets.
All methods use the best matching sample out of 100 random samples. We
used fixed trigger heuristic to keep trigger point for each sample the same for
our approach.

21



4.2.1 Baselines

We compared our method with the following prior works. Further, wherever

available, we used either the official implementation or the pre-trained models for

the baselines uploaded by their respective authors.

SVG-LP [2]: Stochastic Video Generation with a Learned Prior (SVG-LP) is a

VAE-based method that uses a latent space prior for generating video sequences. It

outperforms other VAE-based approaches (e.g., SV2P [3]). It also uses an LSTM-

based dynamics model. This model similar to ours except that we use a GP to

model the prior on future states to aid with multi-modal outputs.

SAVP [5]:Stochastic Adversarial Video Prediction (SAVP) is a VAE-GAN based

approach that combines the best of both families of approaches. It also uses the

LSTM dynamics model.

Conditional VRNN [28]: Condition variational RNN leverages the flexibility of

hierarchical latent variable models to increase the expressiveness of the latent space.

VidFlow [55]: VideoFlow model uses a normalizing flow approach that enables

direct optimization of the data likelihood.

GP-LSTM: We train a model inspired by [56], where the dynamics model is a GP ,

which uses recurrent kernels modeled by an LSTM. This method is closest to ours

since it utilizes the constructs of both GP and LSTM. However, they train a single

dynamics model and have no way to control the generation of future states.

We refer to our model as Diverse Video Generator (DVG), which uses

a GP trigger switch. We also study heuristic switching at 15 and 35 frames for
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ablation analysis. We provide additional ablation analysis in the appendix, for

models with RNNs and GRUs instead of LSTM.

4.2.2 Metrics

Evaluation of generated videos in itself is an open research problem with new

emerging metrics. In this work, we tried our best to cover all published metrics

which have been used for evaluating future frame generation models.

Accuracy of Reconstruction. One way to evaluate a video generation model is to

check how close the generated frames are to the ground-truth. Since the models

are intended to be stochastic or diverse for variety in prediction, this is achieved

by sampling a finite number of future sequences from a model and evaluating the

similarity between the best matching sequence to the ground-truth and the ground

truth sequence. Previous works [2, 3, 5] used traditional image reconstruction met-

rics, SSIM and PSNR, to measure the similarity between the generated samples

and ground-truth. As shown by [17, 18, 19, 20], these metrics are not suited for

video evaluation because of their susceptibility towards perturbation like blurring,

structural distortion, etc.. We include these metrics in our appendix for the sake

of completeness. We also evaluate the similarity of our generated sequences using

recently proposed perceptual metrics, VGG cosine similarity (LPIPS), and Frechet

Video Distance (FVD) score. LPIPS or Learned Perceptual Image Patch Similarity

is a metric developed to quantify the perceptual distance between two images using

deep features. Several works [17, 18, 19] show that this metric is much more robust
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Model Trigger FVD Score (↓)
Diversity Score (↑)

(frames: [10,25])

Diversity Score (↑)
(frames: [25,40])

KTH BAIR Human3.6M KTH Human3.6M KTH Human3.6M

SVG-LP - 156.35 270.04 718.04 20.10 4.8 21.20 4.6

SAVP - 65.98 126.75 - 26.60 - 24.50 -

GP-LSTM - 92.34 197.49 604.75 31.40 5.4 30.90 6.0

VidFlow - - 124.81 - . - - - -

VRNN - 67.26 134.81 523.45 32.50 5.6 31.80 5.9

DVG [ours] @15,35 65.69 123.08 479.43 48.30 9.3 46.20 9.0

DVG [ours] GP 69.63 120.03 496.89 47.71 10.8 48.10 10.1

Table 4.1: Quantitative results on KTH, BAIR, Human3.6M datasets. For the FVD
Score, all methods use the best matching sample out of 100 random samples
and lower numbers are better. For the Diversity Score, we compute the score
across 50 generated samples, for 500 starting sequences, and higher numbers
are better.

to perturbation like distortion, blurriness, warping, color shift, lightness shift, etc.

Frechet Video Distance (FVD score) [20] is a deep metric designed to evaluate

the generated video sequences. As is standard practice, all methods use the best

matching sample out of 100 randomly generated samples.

Diversity of Sequences. Reconstruction accuracy of generated samples only implies

that there is at least one generated sequence close to the ground-truth. However,

these metrics do not capture the inherent multi-modal nature of the task. Aside

from being able to generate samples close to ground truth, a video generation model

should be able to represent diversity in its generated video sequences. Therefore,

we propose a metric inspired by [21] that utilizes a video classifier to quantify the

diversity of generated sequences. The action classifier is trained on the respective

datasets (KTH and Humans3.6M). Note that we cannot utilize this metric for the

BAIR dataset since we do not have corresponding action labels. For the diversity

metric, we use 500 starting sequences of 5 frames, sample 50 future sequences of
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40 frames. We ignore the first 5 generated frames since they are likely correlated

with the ground-truth and correspond to the on-going sequences. Then, we evaluate

the next two clips, made of frames [10, 25] and [25, 40]. Ideally, a method that can

generate diverse sequences will generate more diverse clips as time progresses. For

the Diversity Score, we compute the mean number of generated clips that changed

from the on-going action as classified by the classifier. More concretely, if N is the

total number of generated clips (N = 25000 for us ), ci is the ground-truth class,

ĉi is the predicted class, and 1(·) is the indicator function if the the parameter is

correct, then Diversity Score = 1
N

∑
N 1(ci 6= ĉi).

4.2.3 Results

4.2.3.1 Quantitative Results (Reconstruction)

We report the quantitative results on KTH, BAIR, and Human3.6M datasets

using the LPIPS metric in Figure. 4.2, and FVD metric in Table 4.1. For compar-

isons with baselines in Figure. 4.2, we see that on the KTH and Human3.6M dataset,

our approach generally performs on-par or better than the baselines. In fact, except

for SAVP, all methods are very close to each other. For the Human3.6M dataset,

the GP-LSTM baseline performs poorly, and all other methods are similar, with

ours being better than others. On the BAIR dataset, we notice that our GP-LSTM

baseline performs better, closely followed by our approach. Again, SAVP performs

worse on all metrics. For the FVD metric (Table 4.1), variants of our approach

achieve state-of-the-art results on all datasets. Note that using a fixed trigger at
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frames 15 and 35 leads to better FVD scores for KTH and Human3.6M dataset,

while GP trigger performs better for the BAIR dataset. All settings, except one, of

our approach perform better than the baselines.

4.2.3.2 Quantitative Results (Diversity)

We report the quantitative results using the proposed diversity score in Ta-

ble 4.1. We notice for the KTH dataset that SVG-LP/SAVP baseline change actions

20.1%/26.6% of the time in the first clip and 21.2%/24.5% of the time in the second

clip. In comparison, our approach gives the diversity score of 48.53% and 48.10% for

the first and second clips, respectively. As can be observed, the GP trigger results

in considerably higher diversity as the sequence progresses. On the Human3.6M

dataset, the difference between the scores of baselines and our methods is ∼6%.

The overall score drop between the KTH and the Human3.6M datasets on diver-

sity metric can be accounted to actions performed in the videos are very distinct.

Besides, cameras are placed far off from the person performing actions making it

harder for the models to generate diverse samples.

We further analyze common action triggers for the GP trigger and notice that

it separates the moving (walk, jog, run) and still (clap, wave, box) actions, and

common action switches are within each cluster; e.g., walk ↔ jog, wave ↔ clap.

More analysis is provided in the appendix.
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Figure 4.3: Qualitative Results on BAIR (top, left), KTH (top, right), Human3.6M
(middle), and UCF (bottom) datasets. First row is the ground-truth video in
each figure (with the last frame of the provided 5 frames is shown as ‘GT’).
Every 5th frame is shown.
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4.2.3.3 Qualitative Results

Qualitative Results are shown in Figure. 4.3. For KTH results in Figure. 4.3,

we plot a randomly selected sample for all methods. As we can see, SAVP and SVG-

LP output average or blurry images after 20-30 frames, and our method is able to

switch between action classes (for diverse sample using GP trigger). In appendix,

we show results on KTH with more than 100 sampled frames and best matching

samples for baselines and ours. For the BAIR dataset, we show the best LPIPS

results for all approaches; where we can see that our method generates samples much

closer to the ground-truth. We also included a random sample with a fixed trigger

at 15th frame, where we can see a change in the action. For the Human3.6M dataset

(after digital zoom), we can see that our best LPIPS sample matches the ground-

truth person’s pose closely as opposed to SVG-LP, demonstrating the effectiveness

of our approach. Similar results are observed for the UCF example. Note that due

to manuscript length constraints, we have provided more qualitative results in the

appendix.

4.2.4 Analysis: Changes in action after GP triggering

KTH action dataset comprises of 6 action classes namely walking, running,

jogging, waving, clapping, and boxing. On an abstract level we can cluster these

actions into two categories moving actions and still actions. From the Figure 4.4 it is

interesting to observe that our GP triggering model captures the future trajectories

of the videos and clusters them into these two categories moving actions and still
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Figure 4.4: Changes in action from past frames to future frames on KTH dataset.
Total of 25,000 generated videos were used to calculate percentage change
shown in the above figure.

actions. Common action switches that are to be expected can be observed from

the Fig 4.4; for example, walk and jog, wave and clap interchange frequently after

triggering. Still actions seldomly change to moving actions.
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Chapter 7: Conclusion

We propose a method for diverse future video generation. We model the

diversity in the potential future states using a GP , which maintains priors on future

states given the past and a probability distribution over possible futures given a

particular sample. Since this distribution changes with more evidence, we leverage

its variance to estimate when to generate from an on-going action and when to

switch to a new and diverse future state. We achieve state-of-the-art results for

both reconstruction quality and diversity of generated sequences.
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Appendix A: Previous Experiments

A.1 Appendix

A.1.1 Ablation Studies for Temporal Dynamics Encoder

We perform ablation studies on our model by trying different variants of re-

current modules for our temporal dynamics encoder networks. These models are:

DVG-RNN, our model with an RNN dynamics encoder; DVG-GRU, with an

RNN dynamics encoder with GRU units.

Figure. A.1 shows ablation analysis for different variants of our approach. On

the KTH dataset, different dynamics models (RNN, GRU, LSTM) all perform the

same. On the BAIR dataset, RNN perform poorly and LSTM performs the best

among the three. On Human3.6M dataset RNN performs higher than our LSTM

and GRU models. On the FVD metric in Table A.2, all variants of our approach

perform better than all baselines. In approaches, GRU dynamics model performs

better on KTH and LSTM performs better on Human3.6M and BAIR dataset.
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Figure A.1: Ablation results on KTH, Human3.6M and BAIR dataset using variants
of temporal dynamics model in our method. We report best LPIPS metric.
All methods use the best matching sample out of 100 random samples. We
used fixed trigger to keep trigger point for each sample the same. On KTH,
all temporal dynamics models have similar performance; and on BAIR, our
LSTM model have best performance.
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Model Dynamics Trigger FVD Score (↓)
KTH BAIR Human3.6M

DVG [ours] LSTM @15,35 65.69 123.08 479.43
DVG [ours] GRU @15,35 64.89 124.38 485.96
DVG [ours] RNN @15,35 66.84 126.07 503.64
46.60 7.6 41.50 8.2

Table A.1: Quantitative results on KTH, BAIR, Human3.6M datasets. For the FVD
Score, all the ablation methods use the best matching sample out of 100
random samples and lower numbers are better.

Model Dynamics Trigger
Diversity Score (↑)

(frames: [10,25])

Diversity Score (↑)
(frames: [25,40])

KTH Human3.6M KTH Human3.6M

DVG [ours] LSTM @15,35 48.30 9.3 46.20 9.0
DVG [ours] GRU @15,35 48.53 8.5 44.23 9.1
DVG [ours] RNN @15,35 46.60 7.6 41.50 8.2

Table A.2: Quantitative results on KTH, BAIR, Human3.6M datasets. For the Di-
versity Score, we compute the score across 50 generated samples, for 500
starting sequences, and higher numbers are better.
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A.1.2 SSIM and PSNR Results

We evaluated our generated video sequences using the tradition metrics like

structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR) for com-

parison with previous baselines which reported these metrics. We trained all models

on 64 × 64-size frames from the KTH, Human3.6M, and BAIR datasets. We used

the standard training practice of using 5 frames as context (or past) and the model

have to predict the next 10 frames. For all methods, SSIM and PSNR is computed

by drawing 100 samples from the model for each test sequence and picking the

best score with respect to the ground truth. We emphasize that these results are

only for completeness and we hope that the community will stop relying on such

reconstruction metrics for video prediction.

Results are reported in Figure. A.2 represent the evaluation plots for tradi-

tional metrics on KTH, BAIR, and Human3.6M dataset. We follow the experimental

setups from the baseline papers.

A.1.3 Qualitative Results

It can be observed from Figure. A.3 that after 15th frame SVG-LP is stuck in

the same pose while after 35th frame SAVP starts distorting the human. However,

our method (DVG) consistently generates frames that are diverse and distortion

free for longer period of time. Similarly, in Figure. A.8 it can be observed that after

30th frame SVG-LP and SAVP start generating subpar frames while our method

is able to generate visually acceptable sequences for longer term. Few additional
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Figure A.2: Quantitative results on KTH, BAIR and Human3.6M dataset. We report
average SSIM and PSNR metrics. All methods use the best matching sample
out of 100 random samples. We used fixed trigger to keep trigger point for
each sample the same.
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Figure A.3: KTH dataset: Qualitative comparison of the generated video sequences
(every 5th frame shown). First row is the ground-truth video (with last frame
of the provided 5 frames is shown)
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Figure A.5: Qualitative results on BAIR dataset. We show the best LPIPS samples
out of 100 samples for all methods.
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Figure A.7: Human3.6M dataset: Qualitative comparison of the generated video se-
quences (every 5th frame shown). First row is the ground-truth video (with
last frame of the provided 5 frames is shown)

qualitative results on the BAIR dataset are provided in Figures. A.4-A.5, and on

the Human3.6M dataset in Figures. A.6-A.7.

36



Ours

Diverse Sample2

SAVP

Ours

Diverse Sample1

SVG-LP

Ours

Best Matching

GT

T = 5 10 15 655545352520 30 40 50 60

Figure A.8: KTH dataset: Qualitative comparison of the generated video sequences
(every 5th frame shown). First row is the ground-truth video (with last frame
of the provided 5 frames is shown)

A.1.4 Gaussian Layer Specifics

As mentioned in the paper, GPytorch was used for our GP layer implementa-

tion. We utilized a large-scale variational GP implementation of GPytorch for our

multi-dimensional GP regression problem of learning to predict the variance over the

future frames in the latent space. For variational GP implementation, 40 inducing

points were randomly initialized and learned during the training of GP. We used a

RBF kernel along with gaussian likelihood for our GP layer. For optimization of

our GPLayer, we employed stochastic optimization technique (Adam optimizer) to

minimize the variational ELBO for a GP.

A.1.5 I3D Network architecture for Action Classifier

For our diversity metric mentioned in §4.2, we utilized the standard kinetics-

pretrained I3D action recognition classifier. The input to the action classifier is a
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15 frames clip and each frame has a size of 64 × 64. The action classifier attains

accuracy close to 100% for KTH dataset and is above 90% accuracy for human3.6m

dataset.
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