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Abstract

Background: Growth is a major economic production trait in aquaculture. Improvements in growth performance
will reduce time and cost for fish to reach market size. However, genes underlying growth have not been fully
explored in rainbow trout.

Results: A previously developed 50 K gene-transcribed SNP chip, containing ~ 21 K SNPs showing allelic imbalances
potentially associated with important aquaculture production traits including body weight, muscle yield, was used
for genotyping a total of 789 fish with available phenotypic data for bodyweight gain. Genotyped fish were
obtained from two consecutive generations produced in the NCCCWA growth-selection breeding program.
Weighted single-step GBLUP (WssGBLUP) was used to perform a genome-wide association (GWA) analysis to
identify quantitative trait loci (QTL) associated with bodyweight gain. Using genomic sliding windows of 50
adjacent SNPs, 247 SNPs associated with bodyweight gain were identified. SNP-harboring genes were involved in
cell growth, cell proliferation, cell cycle, lipid metabolism, proteolytic activities, chromatin modification, and
developmental processes. Chromosome 14 harbored the highest number of SNPs (n = 50). An SNP window
explaining the highest additive genetic variance for bodyweight gain (~ 6.4%) included a nonsynonymous SNP in a
gene encoding inositol polyphosphate 5-phosphatase OCRL-1. Additionally, based on a single-marker GWA analysis,
33 SNPs were identified in association with bodyweight gain. The highest SNP explaining variation in bodyweight
gain was identified in a gene coding for thrombospondin-1 (THBST) (R* = 0.09).

Conclusion: The majority of SNP-harboring genes, including OCRL-1 and THBS1, were involved in developmental
processes. Our results suggest that development-related genes are important determinants for growth and could
be prioritized and used for genomic selection in breeding programs.
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Background

Aquaculture is a growing agribusiness that enhances food
security and increases economic opportunities worldwide
[1]. A key challenge for this industry is to sustain the in-
creasing consumer demand for seafood [2]. Salmonid spe-
cies have been extensively studied as cultured fish species
due to their economic and nutritional value [3]. Growth
performance, particularly the efficiency of converting feed
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to bodyweight gain, is one of the most economically im-
portant traits [3]. Growth is a complex trait controlled by
environmental and genetic factors. Despite the multi-
environmental factors that may affect growth, quantitative
genetics studies revealed moderate to high levels of
growth rate heritability [4, 5]. Thus, artificial selection for
growth is plausible, allowing potential improvement
through selective breeding programs [5].

Selective breeding improves heritable traits, taking ad-
vantage of existing genetic variation between individ-
uals/families. Previous studies showed that selective
breeding programs can improve animals’ bodyweights,
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thereby contributing to increased aquaculture produc-
tion [6, 7]. Selection on harvest weight can improve
growth rate [8] and flesh color, and reduce production
cost [9]. Successful genetic programs depend on the es-
tablishment of a base population with natural genetic
variation, which helps to achieve a long-term response
to selection. A family-based selection line for growth
was established in 2002 at the USDA National Center
for Cool and Cold Water Aquaculture (NCCCWA). Five
generations of selection yielded a 10% gain in body-
weight per generation [10] at harvest. More efforts are
required to understand the genetic basis of bodyweight
gain for genetically improved strains to achieve fast/effi-
cient production [2].

QTL mapping has been extensively applied in plants
and farmed animals to determine the genetic architec-
ture of the complex traits. Several QTL mapping
studies were performed to assess the genetic basis of
growth in Atlantic salmon, Coho salmon, and rainbow
trout [3]. For instance, a significant QTL for body
weight was co-localized with another moderate-effect
QTL for maturation timing in the linkage group RT-
27 in rainbow trout [11-13]. In addition, QTL for
body weight and condition factor were co-localized
on linkage group RT-9 and RT-27 [4]. However, clas-
sical QTL mapping has some limitations. Linkage
analysis is time-consuming and depends on the segre-
gation of alleles within a family, limiting the power to
detect associations between markers and phenotypes
of interest [5]. In addition, the identified QTL encom-
passes several megabases that contain hundreds, if
not thousands, of genes, making it challenging to
identify the causal gene in a QTL [14].

Genomic resources have been developed for rain-
bow trout, including the release of the first genome
assembly draft [15] and a newly assembled genome
(GenBank assembly, NCBI accession GCA_002163495,
RefSeq assembly accession GCF_002163495). New se-
quencing technologies have identified SNPs that are
widely distributed throughout the genome; this SNP
distribution enabled the construction of high-density
genetic maps [16, 17]. About 90% of the genetic vari-
ation comes from SNPs that are highly adaptable to
large-scale genotyping and, therefore, most suitable
for GWA studies [8]. The rainbow trout genome was
successfully used for calling variants [18], and these
variants have been used to build a 50K transcribed
gene SNP chip suitable for association mapping [19].
GWA studies have been employed to test the associ-
ation between SNP markers spread throughout the
genome and complex quantitative traits of interest
[20]. Owing to the drastic reduction in cost and time
required for genotyping a large number of markers,
GWA studies are replacing QTL linkage mapping

Page 2 of 16

[21]. SNP markers in linkage disequilibrium (LD) with
QTL associated with the trait of interest could be
identified from GWA analyses and prioritized in se-
lective breeding programs [20]. Many GWA studies
conducted on livestock species led to the identifica-
tion of genes and mutations associated with economic
traits [20]. Recently, a few GWA studies have been
implemented in aquaculture species [20], including
rainbow trout. These studies aimed to identify
markers associated with bodyweight [22], fillet quality
[19, 22], and disease resistance [23]. Growth traits are
controlled by small-effect variants in the farmed At-
lantic salmon [24]. In addition, a recent GWA study
using a 57 K SNP array identified QTL explaining a
small proportion of additive genetic variance for body
weight in rainbow trout. A single window on chromo-
some 5 was responsible for 1.4 and 1.0% of the addi-
tive genetic variance in body weight at 10 and 13
months post-hatching, respectively [22].

In this study, we used a 50 K transcribed gene SNP chip,
recently developed in our laboratory, to perform GWA
analyses [19]. The chip has 21 K SNPs of potential associa-
tions with muscle growth, fillet quality, and disease resist-
ance traits. In order to randomize SNP distribution in this
chip, 29 K additional SNPs were added to the chip follow-
ing a strategy of 2 SNPs per each SNP-harboring gene.
The SNP chip has been successfully used to identify QTL
associated with muscle yield [19], and fillet firmness and
protein content [25] in rainbow trout. The objective of
this study was to use the 50 K SNP array to identify large-
effect QTL associated with the growth rate that could be
applied in genomic selection.

Results and discussion

Growth performance defines fish production, and
therefore, it affects aquaculture industry profitability.
Progress in growth-related traits could lead to reduc-
tions in time and cost to market size [26]. Traditional
selection, based on the phenotype, has been applied
to select for growth traits resulting in approximately
10% gain in body weight per generation [10]. The
economic significance of growth to aquaculture en-
couraged several studies aimed at understanding the
genetic basis/mechanisms underlying the phenotype
[26]. Genomic approaches have the potential to ex-
pedite genetic gains compared to traditional selection.
SNPs account for 90% of sequence variants in
humans [27]; therefore, SNPs are most suitable for
genetic evaluation of breeding candidates in selection
programs. The fish population used for the current
GWA analysis had an average bodyweight gain per
day of 3.27£0.96 (g). Variations in bodyweight gain
among 789 fish used for the current GWA analysis
are shown in Fig. 1. The estimated heritability for
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Fig. 1 Variations in bodyweight gain among fish samples used in GWA analysis

bodyweight gain in rainbow trout was 0.30 + 0.05. In
this study, a 50 K SNP chip was used to identify gen-
omic regions associated with bodyweight gain, based
on 50 SNP sliding windows and single-marker associ-
ation analysis. It is worth mentioning that a total of
90 fish from YC2010 were used in our previous study
[18] to identify putative SNPs associated with muscle
growth and quality traits (WBW, muscle yield, fat
content, shear force, and whiteness index). The puta-
tive SNPs showing allelic imbalance (7.9 K SNPs) with
the five growth and quality traits were included in
the SNP chip [19]. To make sure those fish do not
interfere with the GWAS results, those 90 fish were
excluded from the analysis in this study.

Identifying QTL associated with bodyweight gain using
WssGBLUP

WssGBLUP-based GWA analysis identified a total of
247 SNPs associated with additive genetic variance in
bodyweight gain. These SNPs exist in 107 protein-
coding genes, 6 IncRNAs, and 36 intergenic regions.
SNPs were identified in windows explaining at least 2%
(arbitrary value) of the additive genetic variance for
bodyweight gain (Table S1). The genomic regions that
harbor SNPs were clustered on 7 chromosomes (2, 4, 8,
9, 13, 14, and 18) (Fig. 2). Chromosome 14 had the most
significant peaks associated with bodyweight gain (up to
6.37%) and the highest number of SNPs (# = 50) in win-
dows explaining additive genetic variance for the studied
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Fig. 2 Manhattan plot displaying the association between genomic sliding windows of 50 SNPs and bodyweight gain. Chromosome 14 showed
the highest peaks with genomic loci explaining up to 6.37% of the additive genetic variance. The blue line represents 2% of additive genetic
variance explained by SNPs
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trait (Table S1, Fig. 2). Many of the SNPs (n = 100) were
located within the 3’'UTR of their genes suggesting a role
of these SNPs in microRNA, post-transcriptional regula-
tion of gene expression. All QTLs associated with body-
weight gain are listed in Table (S1). To gain
understandings into the biological significance of the
identified QTL, we annotated SNP-harboring genes and
followed this annotation by gene enrichment analysis.
Functional annotation analysis showed that SNP-
harboring genes were involved in cell growth, cell cycle,
cell proliferation, lipid metabolism, proteolytic activities,
developmental processes, and chromatin modification.
Enriched terms included lysosomal proteins/enzymes
and fatty acid biosynthesis (Table S2).

SNPs in genes regulating cell growth, cell cycle and cell
proliferation

Coordinated hypertrophy and hyperplasia are essential for
growing organisms [28]. Five chromosomes (2, 4, 9, 13,
and 14) had SNPs regulating cell growth, cell cycle, and
cell proliferation (Table 1). Chromosome 2 had 14 SNPs
in 6 genes coding for caveolin-1 (CAV-1), testin (TES),
eukaryotic translation initiation factor 4 gamma 2
(EIF4G2), sodium-dependent neutral amino acid trans-
porter B (0) AT2 (SLC6A15), kinesin-like protein KIF21A
(KIF21A), and G1/S-specific cyclin-D1 (CCND1). Six
SNPs spanning ~ 1.8 Kb were identified in CAV-1. The
latter has a role in inhibiting the activity of TGEF-f,
probably by enfolding TGF-f receptors in membrane in-
vaginations [29]. Knockdown of CAV-1 had a tumor-
suppressing effect by inhibiting cell proliferation [30],
arresting cells in the GO/G1 phase, and inhibiting the ex-
pression of cell cycle-related proteins such as cyclin D1
[30]. Two SNPs were identified in each of TES and
EIF4G2. TES negatively regulates cell proliferation and in-
hibits tumor cell growth [31, 32], whereas eIF4G2 posi-
tively regulates cell growth and proliferation, prevents
autophagy, and releases cells from nutrient-sensing con-
trol by mTOR [33]. Each of SLC6A15 and KIF21A had a
single SNP. Depletion of SLC6A15 attenuates leucine’s ef-
fects in reducing weight gain associated with a high-fat
diet [34]. KIF21A has been identified in association with
growth in pigs [35]. We identified 2 SNPs in the CCND1
gene. This cyclin is expressed during the G1 phase to sig-
nal initiation of DNA synthesis; it is suppressed during the
S phase to allow DNA synthesis [36]. Cancer cell prolifera-
tion [37] and the growth of multifocal dysplastic lesions
[38] were regulated through CCNDI1.

A total of 21 SNPs were identified on chromosomes 4,
9, and 13. Chromosome 4 had 9 SNPs in 3 genes coding
for transcription factor AP-1 (AP-1), protein PRRC2C
(PRRC2C), and myocilin (MYOC). Transcription factor
AP-1 transduces growth signals to the nucleus, mediated
by upregulation of positive cell cycle regulators [39],
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which enhance the expression of genes involved in
growth [40]. Whereas PRRC2C regulates the cell cycle
and cell proliferation, and it controls the growth of lung
cancer cells in vitro [41]. MYOC had 4 nonsynonymous
SNPs. Transgenic mice, with 15-fold over-expressed
MYOC, exhibited skeletal muscle hypertrophy with an
approximate 40% increase in muscle weight [42]. We
identified 2 SNPs on chromosome 9 in the gene coding
for protein RCC2 homolog. RCC2 is a crucial regulator
of cell cycle progression during the interphase [43].
There were ten SNPs in 3 genes on chromosome 13.
Four SNPs, spanning 2.3 Kb, were localized in a gene
coding for prohibitin (PHB). This protein suppresses cell
growth by controlling E2F transcriptional activity [44].
Four SNPs spanned a gene coding for cyclin-dependent
kinase 12 (CDK12). Depletion of CDKI12 revealed in-
creased numbers of accumulated cells at the G2/M
phase and supported a role for CDK12 in maintaining
genomic stability [45]. STAT3 had two SNPs in the
3'UTR. Knockdown of STAT3 inhibits cell proliferation
and leads to irreversible growth arrest [46].
Chromosome 14 had 11 SNPs in seven genes coding
for prominin-1-A (PROM1A), fibroblast growth factor-
binding protein 1 (FGFBP1), cyclin A2 (CCNA2), re-
initiation and release factor (MCTS1), septin-6 (SEPT6),
tenomodulin (TNMD), and 60S ribosomal protein L36a
(RPL36A). PROMI1A has a role in cell proliferation and
differentiation [47]. FGFBP1 promotes fibroblast growth
factor2 (FGF2) signaling during angiogenesis, tissue re-
pair, and tumor growth [48]. A single SNP was identified
in the CCNA2 gene. This gene has a crucial role in cell
cycle by regulating the initiation and progression of
DNA synthesis [49]. The untranslated regions of a gene
coding for MCTS1 had two SNPs in windows explaining
up to ~6.4% of the additive genetic variance for body-
weight gain. Overexpression of MCTS1 promotes
lymphoid tumor development leading to increased
growth rates and protection against apoptosis [50]. In
addition, MCTS1 is involved in cell cycle progression by
decreasing the length of the G1 phase without a recipro-
cal increase in other phases [51]. Each of SEPT6 and
RPL36A had 2 SNPs in windows associated with the
additive genetic variance for bodyweight gain. Knock-
down of SEPT6 leads to loss of cell polarity as a result of
nuclear accumulation of the adaptor protein NCK,
which arrests the cell cycle [52]. Over-expression of
RPL36A leads to rapid cell cycling which enhances cell
proliferation [53]. Of note, TNMD had an SNP in a win-
dow explaining 5.5% of the additive genetic variance.
TNMD is essential for tenocyte proliferation and colla-
gen fibril maturation [54]. Thirty-one genes involved in
cell growth, cell cycling, and cell proliferation were dif-
ferentially expressed (DE) in fish families (year class
“YC” 2010), exhibiting divergent whole-body weight
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Table 1 Genomic sliding windows of 50 SNPs explaining at least 2% of the additive genetic variance for bodyweight gain by
affecting growth, cell cycle, and cell proliferation

Variance (%) | CHR| SNP position|Strand Gene ID Function Gene annotation Region/effect
217 2 74563933 - LOC110499492| Growth | proliferation|cell cycle caveolin-1 3'UTR
2.17 2 74563958 - LOC110499492| Growth | proliferation|cell cycle caveolin-1 3'UTR
2.17 2 74564091 - LOC110499492| Growth | proliferation|cell cycle caveolin-1 3'UTR
2.18 2 74564100 - LOC110499492| Growth | proliferation|cell cycle caveolin-1 3'UTR
2.22 2 74564246 - LOC110499492| Growth | proliferation|cell cycle caveolin-1 3'UTR
2.20 2 74565775 - LOC110499492| Growth | proliferation|cell cycle caveolin-1 CDS/nonsyn
2.20 2 74685800 - LOC110502335 Growth | proliferation testin 3'UTR
2.19 2 74685894 - LOC110502335 Growth | proliferation testin 3'UTR
2.17 2 75370941 + | LOC110499615 Growth eukaryotic translation initiation factor 4 gamma 2 3'UTR
2.05 2 75387737 LOC110499615 Growth eukaryotic translation initiation factor 4 gamma 2 5'UTR
2.09 2 75915086 + | LOC110499724 Growth sodium-dependent neutral amino acid transporter B(0)AT2 3'UTR
2.08 2 76020999 + | LOC110502363 Growth kinesin-like protein KIF21A CDS/syn
2.71 2 76926159 - LOC110499952 Growth | cell cycle G1/S-specific cyclin-D1 3'UTR
2.71 2 76935360 - LOC110499952| Growth | proliferation|cell cycle G1/S-specific cyclin-D1 CDS/syn
2.67 4 22804020 - LOC110521616| Growth | proliferation|cell cycle transcription factor AP-1 CDS/syn
5.08 4 23074540 + | LOC110521622| Growth|proliferation|cell cycle protein PRRC2C 3'UTR
5.09 4 23115313 + |LOC110521624 Cell growth myocilin CDS/syn
5.09 4 23115457 + | LOC110521624 Cell growth myocilin CDS/nonsyn
5.12 4 23115513 + | LOC110521624 Cell growth myocilin CDS/nonsyn
5.12 4 23126838 + | LOC110521624 Cell growth myocilin CDS/nonsyn
5.12 4 23126883 + | LOC110521624 Cell growth myocilin CDS/nonsyn
5.11 4 23127016 + |LOC110521624 Cell growth myocilin 3'UTR
5.08 4 23127090 + | LOC110521624 Cell growth myocilin 3'UTR
2.91 9 34968537 - LOC110532120 Cell cycle protein RCC2 homolog 3'UTR
2.94 9 34968872 - LOC110532120] Cell cycle protein RCC2 homolog 3'UTR
2.20 13 | 33264383 - LOC110486224 Growth | proliferation prohibitin 3'UTR
2.51 13 | 33264877 - LOC110486224 Growth | proliferation prohibitin CDS/syn
2.91 13 33266711 - LOC110486224 Growth | proliferation prohibitin CDS/syn
3.10 13| 33266714 - LOC110486224 Growth | proliferation prohibitin CDS/syn
3.57 13| 33709713 - LOC110486239 Cell cycle cyclin-dependent kinase 12 Intronic
3.60 13| 33710394 - LOC110486239 Cell cycle cyclin-dependent kinase 12 CDS/syn
3.46 13| 33710428 - LOC110486239 Cell cycle cyclin-dependent kinase 12 CDS/syn
3.40 13| 33723093 - LOC110486239 Cell cycle cyclin-dependent kinase 12 CDS/syn
2.49 13 | 34487347 - rbtstat3 Cell proliferation Stat3 3'UTR
2.47 13 | 34488012 - rbtstat3 Cell proliferation Stat3 3'UTR
4.05 14 | 61190135 + | LOC110488945 Cell proliferation prominin-1-A 3'UTR
4.05 14| 61190693 + | LOC110488945 Cell proliferation prominin-1-A 3'UTR
4.68 14| 61198245 + | L0C110488947 Growth fibroblast growth factor-binding protein 1 CDS/nonsyn
4.68 14 | 61274423 - | LOC110488948 Cell cycle cyclin-A2 3'UTR
6.35 14 | 62297716 - mctsl Growth | cell cycle MCTS1, re-initiation and release factor 3'UTR
6.03 14 | 62306737 mctsl Growth | cell cycle MCTS1, re-initiation and release factor 5'UTR
5.53 14 | 62441647 + | LOC110488975 Cell cycle septin-6 CDS/syn
5.54 14 62451734 + LOC110488975 Cell cycle septin-6 CDS/syn
5.51 14 | 62565647 - LOC110488980 Cell proliferation tenomodulin 3'UTR
4.90 14 | 64142816 - LOC110488986| Cell proliferation|cell cycle 60S ribosomal protein L36a CDS/syn
3.69 14 | 64145397 - LOC110488986| Cell proliferation|cell cycle 60S ribosomal protein L36a CDS/syn

A color gradient on the left indicates differences in additive genetic variance explained by windows containing the representative SNP marker (green is the

highest and red is the lowest). SNPs are sorted according to their chromosome positions

(WBW) phenotype. Of these genes, CAV was downregu-
lated in families of high WBW relative to those of low
WBW [55]. Our results indicate a role for increased bio-
mass and cell numbers in explaining variations in body
weight.

SNPs in genes regulating lipid metabolism

Fatty acid synthesis is essential to meet the demand for
phospholipids required for membrane expansion in
growing cells [56]. We have identified 29 SNPs in 16
genes involved in lipid metabolism, explaining at least

2% of the additive genetic variance in bodyweight gain
(Table 2). These SNPs spanned 5 chromosomes (4, 8,
13, 14, and 18). Chromosome 4 had 15 SNPs (56.6%) in
7 genes; peroxiredoxin 6 (PRDX6), phospholipid phos-
phatase 6 (PLPP6), vesicle-associated membrane protein
4 (VAMP4), phosphatidylinositol Glycan, Class C
(PIGC), disabled homolog 1 (DAB1), AMPK subunit
alpha-2 (PRKAA2), and phospholipid phosphatase 3
(PLPP3). Three SNPs were identified in the gene coding
for PRDX6. The bifunctional enzyme, PRDX6, regulates
phospholipid turnover as well as protects against
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Table 2 Genomic sliding windows of 50 SNPs explaining at least 2% of the additive genetic variance for bodyweight gain and
involved in lipid metabolism.

Variance (%) | CHR| SNP position| Strand Gene ID Function Gene annotation Region/effect
3.33 4 22956257 - prdx6 Lipid metabolism peroxiredoxin 6 3'UTR
4.47 4 22956370 - prdx6 Lipid metabolism peroxiredoxin 6 3'UTR
4.87 4 22957625 - prdx6 Lipid metabolism peroxiredoxin 6 CDS/syn
4.87 4 22973619 + plpp6 Lipid metabolism phospholipid phosphatase 6 5'UTR
5.08 4 23103208 + vamp4 Lipid metabolism vesicle associated membrane protein 4 3'UTR
5.11 4 23191213 - pigc Lipid metabolism| phosphatidylinositol glycan anchor biosynthesis class C CDS/syn
5.12 4 23583365 + | LOC110521633] Lipid metabolism disabled homolog 1-like 3'UTR
5.53 4 23612742 - prkaa2 Lipid metabolism| protein kinase AMP-activated catalytic subunit alpha 2 3'UTR
5.14 4 23614046 - prkaa2 Lipid metabolism| protein kinase AMP-activated catalytic subunit alpha 2 CDS/syn
5.15 4 23621492 - prkaa2 Lipid metabolism| protein kinase AMP-activated catalytic subunit alpha 2 CDS/syn
5.12 4 23673384 + | LOC110521634| Lipid metabolism phospholipid phosphatase 3 CDS/syn
5.14 4 23673839 + | LOC110521634| Lipid metabolism phospholipid phosphatase 3 3'UTR
5.15 4 23674164 + | LOC110521634] Lipid metabolism phospholipid phosphatase 3 3'UTR
5.04 4 23674244 + | LOC110521634] Lipid metabolism phospholipid phosphatase 3 3'UTR
4.93 4 23674341 + | LOC110521634] Lipid metabolism phospholipid phosphatase 3 3'UTR
2.28 8 81708446 - LOC110530856| Lipid metabolism acetyl-coenzyme A synthetase, cytoplasmic 3'UTR
2.30 8 81731169 - LOC110530856| Lipid metabolism acetyl-coenzyme A synthetase, cytoplasmic CDS/syn
3.68 8 82494156 - pecr Lipid metabolism peroxisomal trans-2-enoyl-CoA reductase 3'UTR
3.89 13 | 33596203 - LOC110486236| Lipid metabolism stAR-related lipid transfer protein 3 3'UTR
3.88 13 | 33596584 - | LOC110486236] Lipid metabolism stAR-related lipid transfer protein 3 3'UTR
2.83 13| 33884980 - LOC110486250| Lipid metabolism ATP-citrate synthase CDS/syn
2.20 14| 60291342 + etfdh Lipid metabolism electron transfer flavoprotein dehydrogenase CDS/nonsyn
2.99 14 | 60307455 + etfdh Lipid metabolism electron transfer flavoprotein dehydrogenase CDS/syn
3.98 14| 60307821 + etfdh Lipid metabolism electron transfer flavoprotein dehydrogenase 3'UTR
4.05 14 | 60307829 + etfdh Lipid metabolism electron transfer flavoprotein dehydrogenase 3'UTR
4.05 14 | 60310085 - ppid Lipid metabolism peptidylprolyl isomerase D CDS/nonsyn
5.52 14 | 64135868 + gla Lipid metabolism galactosidase alpha CDS/nonsyn
2.17 18 | 21016416 - LOC110495960] Lipid metabolism 5'-AMP-activated protein kinase subunit gamma-1 CDS/syn
2.18 18 | 28251973 + olah Lipid metabolism oleoyl-ACP hydrolase 3'UTR

A color gradient on the left indicates differences in additive genetic variance explained by windows containing the representative SNP marker (green is the
highest and red is the lowest). SNPs are sorted according to their chromosome positions

oxidative injury [57]. A single 3'UTR SNP was identified
in the VAMP4 gene. This gene encodes a protein impli-
cated in the growth of lipid droplets in rainbow trout
[58]. Also, the DAB1 had a 3'UTR SNP. DABI is associ-
ated with intramuscular fatty acid content in pigs [59].
PRKAA?2 harbored 3 SNPs located within windows that
were among those explaining the highest genetic vari-
ation in bodyweight gain. AMPK regulates lipid metabol-
ism by inhibiting the activity of critical enzymes
necessary for de novo biosynthesis of fatty acids and
cholesterol [60]. PLPP3 had 5 SNPs in windows explain-
ing ~5% of the additive genetic variance. This enzyme
catalyzes the conversion of phosphatidic acid to diacyl-
glycerol, which is vital to improving meat quality and
lower body fat accumulation [61].

In total, 14 SNPs were identified on chromosomes 8,
13, 14, and 18. Chromosome 8 had three SNPs in 2
genes encoding acetyl-coenzyme A synthetase (ACSS2)
and peroxisomal trans-2-enoyl-CoA reductase (PECR).
ACSS2 activates acetate that can be used for lipid syn-
thesis [62]. In addition, the PECR contributes to chain
elongation of fatty acids [63]. Chromosome 13 had 3

SNPs in genes coding for stAR-related lipid transfer pro-
tein 3 (STARD3) and ATP-citrate synthase (ACLY).
STARD3 acts as a mediator of lipid metabolism and is
required for the growth and survival of cancer cells [64].
A single coding SNP was identified in a gene coding for
ACLY. This enzyme has a crucial role in de novo biosyn-
thesis of lipids and promoting tumor growth [56]. Six
SNPs were identified on chromosome 14 in genes cod-
ing for electron transfer flavoprotein dehydrogenase
(ETFDH), peptidylprolyl isomerase D (PPID), and galac-
tosidase alpha (GLA). Four polymorphic sites were iden-
tified in ETFDH. Mutations in ETFDH gene lead to a
disorder of fatty acid, amino acid, and choline metabol-
ism [65]. An SNP was identified in PPID gene that has
gene ontology (GO) terms belonging to lipid particle
organization. In addition, we identified two SNPs on
chromosome 18 in genes encoding AMPK subunit
gamma-1 (PRKAG1) and oleoyl-ACP hydrolase. The lat-
ter enzyme contributes to the release of free fatty acids
from fatty acid synthase [66]. Moderate to high heritabil-
ity for growth-related traits and fat content has been re-
ported, implying the existence of additive genetic
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variance in the fish population [22, 67]. In fish from the
YC 2010, one of the two generations of fish used in the
study, fat content exhibited a moderate regression coeffi-
cient (R?) value of 0.50 with WBW [55]. Many genes
(n =31) involved in lipid metabolic processes, including
AMPK, were DE in fish families (YC 2010), showing
contrasting WBW [55]. These results suggest a substan-
tial role for fat content in explaining variations in body
weight.

SNPs in genes regulating proteolytic activities

A total of 19 SNPs involved in proteolytic activities were
identified in 12 genes (Table 3). Out of them, 9 SNPs
were located on 4 genes involved in the KEGG lysosome
pathway; lysosomal associated membrane protein 2
(LAMP2), V-type proton ATPase subunit H
(ATP6V1H), galactosidase alpha (GLA), and neuramin-
idase 1 (NEU1). Five SNPs in LAMP2 have been identi-
fied in windows explaining the highest genetic variation
(~6%) in this category. LAMP2 is essential during au-
tophagy for the fusion of autophagosomes with lyso-
somes [68]. ATP6V1H is a vacuolar (H+)-ATPase, which
is required to acidify the phagosome/lysosome for
proper processing [69]. GLA and NEU1 are lysosomal
acid hydrolases (glycosidases) required to breakdown
glycoproteins [70]. NEU1 was associated with suppres-
sion of ovarian carcinoma [71]. In addition, 9 SNPs were
identified in 4 genes engaged in the phagosome pathway.
These genes are encoding ras-related protein Rab-5C
(RAB5C), ATP6V1H, LAMP2, and integrin beta-3
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(ITGB3). An SNP on chromosome 4 was located in a
gene coding for OMAL1 zinc metallopeptidase (OMIM).
The OMIM is a protease essential for mitochondrial
inner membrane proteostasis maintenance [72], and its
deficiency leads to increased body weight and obesity
[73]. Plectin had two SNPs. Mutation in plectin results
in muscular dystrophy [74]. In addition, we identified 5
SNPs located on 4 genes exhibiting peptidase activity;
trypsin-3, carboxypeptidase Al, carboxypeptidase B2
(CPB2), and high choriolytic enzyme 2. Forty-three
genes have functions related to protein metabolic pro-
cesses and were DE in fish families (YC 2010) showing
substantial variation in WBW [55]. These results sup-
port a role for protein turnover in determining body
weight.

SNPs in genes regulating developmental process and
chromatin modification

Forty-five SNPs were identified in 21 genes involved in devel-
opment and chromatin remodeling (Table 4 & Table S1).
Chromosome 4 had 12 SNPs in five genes coding for phos-
phatidylinositol glycan anchor biosynthesis class C (PIGC),
SUN domain-containing ossification factor (SUCO),
transmembrane emp24 domain-containing protein 5
(TMED5), histone H2A deubiquitinase MYSM1
(MYSM1), and biogenesis of lysosome-related organ-
elles complex-1 subunit 2 (BLOS2). PIGC encodes an
endoplasmic reticulum membrane protein that has
been linked to embryonic lethality [75]. Mutagenesis
of SUCO leads to failure of osteoblast maturation, a

Table 3 Genomic sliding windows of 50 SNPs explaining at least 2% of the additive genetic variance for bodyweight gain and

involved in proteolytic activities

Variance (%) | CHR| SNP position| Strand Gene ID Function Gene annotation Region/effect
2.10 2 74081579 + | LOC110499430 Proteolysis high choriolytic enzyme 2 CDS/nonsyn
2.17 2 74723434 + | LOC110499523 Proteolysis carboxypeptidase Al CDS/syn
5.21 4 23313642 + omal Proteolysis OMA1 zinc metallopeptidase 3'UTR
3.74 8 82356552 + | LOC110531054| Lysosome |phagosome V-type proton ATPase subunit H CDS/syn
3.82 8 82378763 + | LOC110531054| Lysosome | phagosome V-type proton ATPase subunit H 3'UTR
3.89 13 | 33511088 - LOC110486231 Phagosome integrin beta-3 3'UTR
2.58 13| 34233553 - LOC110486260 Phagosome ras-related protein Rab-5C 5'UTR
5.99 14 | 62343545 + lamp2 Lysosome | phagosome | lysosomal associated membrane protein 2 | CDS/nonsyn
5.98 14| 62344131 + lamp2 Lysosome | phagosome | lysosomal associated membrane protein 2 | CDS/nonsyn
5.73 14 | 62346342 + lamp2 Lysosome | phagosome | lysosomal associated membrane protein 2 Intronic
5.73 14| 62346648 + lamp2 Lysosome | phagosome | lysosomal associated membrane protein 2 Intronic
5.71 14 | 62347227 + lamp2 Lysosome | phagosome | lysosomal associated membrane protein 2 Intronic
5.52 14 | 64135868 + gla Lysosome galactosidase alpha CDS/nonsyn
2.22 18 | 20850725 - LOC110495951 Proteolysis carboxypeptidase B2 CDS/syn
2.20 18 | 20850779 LOC110495951 Proteolysis carboxypeptidase B2 CDS/syn
2.02 18 | 27653954 LOC110496062 Proteolysis plectin 3'UTR
2.12 18 | 27654825 LOC110496062 Proteolysis plectin 3'UTR
2.07 18 | 28883011 - LOC110496097 Proteolysis trypsin-3 CDS/syn
2.10 18 | 29044410 - neul Lysosome neuraminidase 1 CDS/syn

A color gradient on the left indicates differences in additive genetic variance explained by windows containing the representative SNP marker (green is the
highest and red is the lowest). SNPs are sorted according to their chromosome positions
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Table 4 Genomic sliding windows of 50 SNPs explaining at least 2% of the additive genetic variance in bodyweight gain and
involved in the development and chromatin modification

Variance (%) | CHR| SNP position | Strand Gene ID Function Gene annotation Region/effect
5.11 4 23191213 - pigc Development phosphatidylinositol glycan anchor biosynthesis class C CDS/syn
5.11 4 23200735 - LOC110521628 Development SUN domain-containing ossification factor CDS/nonsyn
5.13 4 23209006 - LOC110521628| Development SUN domain-containing ossification factor CDS/nonsyn
5.23 4 23279962 + | LOC110521629 Chromatin modification transmembrane emp24 domain-containing protein 5 3'UTR
5.21 4 23280369 + | LOC110521629 Chromatin modification transmembrane emp24 domain-containing protein 5 3'UTR
5.21 4 23292496 + | LOC110521630 Chromatin modification histone H2A deubiquitinase MYSM1-like 3'UTR
4.86 4 23788993 - LOC110521636 Development biogenesis of lysosome-related organelles complex-1 subunit 2 3'UTR
4.32 4 23789059 - LOC110521636 Development biogenesis of lysosome-related organelles complex-1 subunit 2 3'UTR
3.70 4 23789076 - LOC110521636 Development biogenesis of lysosome-related organelles complex-1 subunit 2 3'UTR
3.18 4 23789224 - LOC110521636 Development biogenesis of lysosome-related organelles complex-1 subunit 2 3'UTR
2.78 4 23789293 - LOC110521636 Development biogenesis of lysosome-related organelles complex-1 subunit 2 3'UTR
2.25 4 23789299 - LOC110521636 Development biogenesis of lysosome-related organelles complex-1 subunit 2 3'UTR
2.31 8 81744839 + | LOC110530857 Development NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial | CDS/nonsyn
2.31 8 81758124 + | LOC110530857 Development NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial 3'UTR
3.34 8 82154725 + ralbpl Development ralA binding protein 1 5'UTR
3.33 8 82162987 + ralbpl Development ralA binding protein 1 CDS/syn
2.93 9 35051335 + |LOC110532123 Development short-chain dehydrogenase/reductase 3 5'UTR
2.93 9 35058654 + | LOC110532123 Development short-chain dehydrogenase/reductase 3 CDS/syn
3.78 13| 33503527 - LOC110486230 Chromatin modification methyltransferase-like protein 2-A CDS/nonsyn
3.90 13 | 33571191 - LOC110486234 Development telethonin 3'UTR
3.89 13 33572642 - LOC110486234 Development telethonin 3'UTR
3.87 13| 33572680 - LOC110486234 Development telethonin 3'UTR
3.89 13 | 33573086 - LOC110486234 Development telethonin CDS/nonsyn
3.29 13 | 33854555 - LOC110486245 Development synaptonemal complex protein SC65 3'UTR
3.16 13| 33860250 - LOC110486245 Development synaptonemal complex protein SC65 CDS/syn
3.16 13 | 33861791 + | LOC110486247 Development peptidyl-prolyl cis-trans isomerase FKBP10 CDS/syn
3.21 13 | 33863127 + | LOC110486247 Development peptidyl-prolyl cis-trans isomerase FKBP10 CDS/syn
2.93 13| 33864468 + | LOC110486247 Development peptidyl-prolyl cis-trans isomerase FKBP10 CDS/syn
2.93 13 | 33866204 + | LOC110486247| Development peptidyl-prolyl cis-trans isomerase FKBP10 CDS/syn
2.87 13 | 33914921 - LOC110486251 Development 2',3"-cyclic-nucleotide 3'-phosphodiesterase 3'UTR
2.86 13| 33914958 - LOC110486251 Development 2',3"-cyclic-nucleotide 3'-phosphodiesterase 3'UTR
2.86 13 | 33915493 - | LOC110486251 Development 2',3'-cyclic-nucleotide 3'-phosphodiesterase 3'UTR
2.86 13 | 33916293 - LOC110486251 Development 2',3"-cyclic-nucleotide 3'-phosphodiesterase CDS/syn
2.86 13| 33918316 - LOC110486251 Development 2',3"-cyclic-nucleotide 3'-phosphodiesterase CDS/nonsyn
2.87 13| 33918333 - LOC110486251 Development 2',3"-cyclic-nucleotide 3'-phosphodiesterase CDS/syn
2.87 13 | 33918394 - LOC110486251 Development 2',3"-cyclic-nucleotide 3'-phosphodiesterase CDS/nonsyn
2.58 13 | 34218617 - LOC110486259| Development|chromatin modification histone acetyltransferase KAT2A CDS/syn
4.06 14| 60473623 + rapgef2 Development Rap guanine nucleotide exchange factor 2 3'UTR
4.86 14 | 61835067 - LOC110488957| Development glutathione S-transferase P 3'UTR
4.86 14 | 61841933 - LOC110488957| Development glutathione S-transferase P CDS/syn
6.37 14 | 62242007 - LOC110488962 Development inositol polyphosphate 5-phosphatase OCRL-1 CDS/nonsyn
5.49 14 | 62558595 + | LOC110488979 Development ETS-related transcription factor Elf-1 3'UTR
2.53 14 | 64208910 - LOC110488993 Development mediator of RNA polymerase Il transcription subunit 12 CDS/syn
2.10 18 | 29258476 - LOC110496110 Chromatin modification double-strand-break repair protein rad21 homolog CDS/nonsyn
2.04 18 | 29258567 - | LOC110496110 Chromatin modification double-strand-break repair protein rad21 homolog CDS/syn

A color gradient on the left indicates differences in additive genetic variance explained by windows containing the representative SNP marker (green is the
highest and red is the lowest). SNPs are sorted according to their chromosome positions

decrease in the synthesis of type I collagen, and even-
tually catastrophic defects in skeletal development
[76]. The gene encoding TMED5 has GO terms be-
longing to chromatin binding [77]. Knockdown of
MYSM1, a histone H2A deubiquitinase, led to embry-
onic lethality and growth retardation [78]. BLOS2
harbored 6 SNPs in windows explaining up to 4.9%
of the additive genetic variance. BLOS2 is a negative
regulator of the Notch system, and lack of BLOS2 in
mice was embryonic lethal and led to developmental
defects [79]. We identified 6 SNPs on chromosomes 8
and 9. SNPs spanned three genes (2 SNPs/gene) en-
coding NADH dehydrogenase [ubiquinone] flavopro-
tein 2 (NDUFV2), ralA binding protein 1 (RALBP1),
and short-chain dehydrogenase/reductase 3 (DHRS3).

NDUFV2 is involved in nervous system development
[77], whereas RALBP1 was involved in the regulation
of actin dynamics during embryogenesis [80]. Knock-
down of DHRS3 led to a phenotype with underdevel-
oped head structure and perturbed somitogenesis
[81]. Chromosome 13 harbored the highest number
of SNPs (n=19) in this category. These SNPs were
located in genes coding for methyltransferase-like
protein 2-A (METTL2A), telethonin (TCAP), synapto-
nemal complex protein SC65 (SC65), peptidyl-prolyl
cis-trans isomerase FKBP10 (FKBP10), 2',3"-cyclic-nu-
cleotide 3’-phosphodiesterase (CNP), and histone ace-
tyltransferase KAT2A (KAT2A). METTL2A has GO
terms belonging to methyltransferase activity [77].
Four SNPs were identified in TCAP. TCAP-null mice
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exhibit abnormal myofiber size variation and in-
creased levels of TCAP binding protein, myostatin
[82]. SC65 had two SNPs; whereas, FKBP10 had 4
SNPs. SC65 is expressed during skeletal development
and acts as a regulator of bone mass homeostasis.
Lack of SC65 leads to a progressive osteopenia [83].
Loss of function mutations in FKBP10 resulted in
mice that were not able to survive birth, and embryos
exhibited a growth delay and tissue fragility [84].
CNP had the highest number of SNPs on chromo-
some 13. This protein regulates blood supply to the
developing embryo [85]. KAT2A encodes a protein
that acts as a histone H3 succinyltransferase and ex-
hibits a role in tumor cell proliferation and develop-
ment [86]. KAT2A is involved in the regulation of
developmental processes by mediating acetylation of
TBX5 [87]. Six SNPs were identified on chromosome
14 in genes coding for Rap guanine nucleotide ex-
change factor 2 (RAPGEF2), glutathione S-transferase
P (GSTP1), inositol polyphosphate 5-phosphatase
OCRL-1 (OCRL), ETS-related transcription factor Elf-
1 (ELF1), and mediator of RNA polymerase II tran-
scription subunit 12 (MED12). OCRL was located in
a window explaining the highest genetic variation in
bodyweight gain (~ 6.4%), followed by ELF1 (~5.5%).
Lacking both OCRL and its paralog (Inpp5b) led to
the early lethality of mice embryos [88]. ELF1 has a
role in maintaining cell polarity during development
[89]. In addition, chromosome 18 had 2 SNPs in a
gene encoding double-strand-break repair protein
rad21 homolog (RAD21) (Table S1), which is involved
in chromatin binding [77]. Sixty-three genes involved
in development were DE in fish families (YC 2010)
exhibiting divergent WBW phenotypes [55]. In agree-
ment with a recent GWA study in rainbow trout [90],
our results suggest a major role for genes involved in
development in regulating genetic variation in body-
weight gain.

Single marker association analysis

Genotyped SNPs were filtered out at a minor allele fre-
quency (MAF) < 0.05 and Hardy—Weinberg equilibrium
(HWE) (p < 0.001) yielding 29,451 filtered SNPs. In order
to identify single SNP markers associated with body-
weight gain, filtered SNPs were subjected to a general
linear regression analysis which allows accounting for
multiple fixed effects but does not account for familial
correlation. Next, residuals of the regression model were
regressed on the genetic factors using QFAM, available
in PLINK [91], which corrects for the family structure
through a special permutation procedure. A total of 738
SNPs were significantly associated with the bodyweight
gain (empirical p-value < 0.001) following 20,000 permu-
tations. However, a two-stage analysis that calculates
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residual-outcome from the regression of the outcome on
multiple covariates then uses the adjusted-outcome for
downstream analysis, showed bias and loss of power in
genetic association studies [92, 93]. Therefore, we per-
formed a family-based association analysis using a gener-
alized score test which allows for multiple covariates. A
total of 42 SNPs were identified associated with the
bodyweight gain after accounting for multiple compari-
sons (Bonferroni-corrected p “BONF” < 1.70E-06). In
order to avoid false positives, the common SNPs be-
tween the two-stage and generalized score tests were
considered significantly associated with the variation in
bodyweight gain (Table S3). In this study, we have iden-
tified 33 common SNPs spread over 13 chromosomes
with a potential impact on the bodyweight gain (Bonfer-
roni-corrected p “BONF” < 1.70E-06; Table S3 & Fig. 3).
One-third of the identified SNPs (33.33%) spanned
chromosome 15. SNP-harboring genes were involved in
development, cell growth, cell proliferation, and prote-
olysis. Genes explaining the highest variation in body-
weight gain are coding for thrombospondin-1 (THBS1),
microtubule-associated protein 4 (MAP 4), D-3-
phosphoglycerate dehydrogenase (PHGDH), calsyntenin-
1, nucleolar protein 16 (NOP16), and butyrophilin sub-
family 1 member Al (BTN1A1l) (Table 5). THBSI and
MAP 4, ranked at the top of the list, explaining ~ 9 and
6% of the variation in bodyweight gain, respectively.
THBS1 is involved in complex biological processes,
including angiogenesis and tissue development [94].
Mutation in THBS1 was associated with vascular perme-
ability, accounting for embryonic lethality [75]. Interest-
ingly, seven SNPs spanning ~ 21Kb on chromosome 15,
were identified in the gene coding for MAP 4. In mice,
blocking the expression of muscle-specific MAP 4 tran-
script didn’t affect the myoblast growth, but rather se-
verely perturbed the myotube formation indicating a
critical role in myogenesis [95]. PHGDH was upregu-
lated in fully differentiated myotubes relative to myo-
blasts [96]. In addition, three synonymous SNPs were
identified in calsyntenin-1, NOP16, and BTN1A1. Each
SNP explained ~ 3% of the variation in bodyweight gain.
Two intronic SNPs were previously identified in the
calsyntenin-1 gene affecting the genetic variance for fillet
yield and weight in rainbow trout [22]. NOP16 regulates
rRNA production and ribosomal biogenesis. Knockdown
of NOP16 dramatically reduced tumor cell growth [97].
BTN1A1 has a function in cell proliferation and devel-
opment [98].

Three missense mutations were identified in genes
coding for collagenase-3 (MMP13), elongation factor 2
(eEF2), and basic leucine zipper and W2 domain-
containing protein 1-A (Table 5). Each SNP explained ~
2% of the variation in bodyweight gain. MMP13 plays a
critical role in skeletal system development [99]. eEF2 is
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Fig. 3 Manhattan plot displaying single SNP markers associated with variations in bodyweight gain using a family-based association analysis
(generalized score test). Suggestive and significance threshold p-values of 1e-05 and 1.70e-06 are represented by blue and red horizontal lines
represent, respectively

a key component in the translation machinery. Inacti-
vation of eEF2 terminates protein synthesis and
causes cellular death during mouse embryonic devel-
opment [100]. An SNP was identified in a gene en-
coding death-associated protein kinase 3 (Table 5).
This protein is involved in the regulation of autoph-
agy [101]. Notably, five 3’UTR mutations were identi-
fied in a gene coding for polymerase I and transcript
release factor (PTRF/cavin-1) (Table 5). Lack of
cavin-1 in mice and humans caused muscular dys-
trophy [102]. Cavin-1 supports cell proliferation and
migration in humans and shows downregulated ex-
pression during myogenic differentiation [103]. The

remaining SNPs associated with the variation in body-
weight gain are listed in Additional Table (S3).

Single SNP GWA analysis provided an additional set
of SNPs, potentially regulating variation in bodyweight
gain. In the current study, dividing the genome into
chromosomal segments/windows, defined by 50 adjacent
markers, outperformed the single-marker analysis in
identifying a larger number of SNPs (247 vs. 33 SNPs,
respectively) describing the genetic architecture of the
studied trait. On chromosome 13, there was a single
common significant SNP detected by the two GWA ap-
proaches in a gene coding for synaptic vesicle membrane
protein VAT-1 homolog (VAT-1). This protein interacts

Table 5 A subset of SNP markers significantly associated with bodyweight gain using two family-based association analyses

R CHR SNP EMP1 | P_RAO | position Region Strand Gene ID Gene annotation
0.04 3 | AX-171639447] 0.0011 |2.94E-07|52195881 CDS|syn + | LOC110520091|D-3-phosphoglycerate dehydrogenase-like
0.09 4 | AX-171630496| 0.00005 | 8.13E-07| 79714730]  CDS|nonsyn + LOC110522588|thrombospondin-1-like
0.01 8 | AX-171630631| 0.00005 | 6.60E-09| 77245636 CDS|syn - LOC110530779|death-associated protein kinase 3-like
0.03 9 | AX-171616254| 0.00015| 2.66E-08| 7679223 CDS|syn - LOC110531523|butyrophilin subfamily 1 member Al-like
0.03 9 | AX-171599860| 0.0005 |7.57E-08|44719009 CDS|syn - clstnl calsyntenin 1
0.02 12 | AX-89917012 | 0.00005| 8.36E-09]27438119] CDS|nonsyn - LOC110537437|collagenase 3-like
0.03 12 | AX-171621474| 0.0001 |3.62E-07]32632594 CDS|syn - LOC110537518|nucleolar protein 16-like
0.01 13 | AX-171609128] 0.00145 | 1.56E-07| 34514689 3'UTR - LOC110486263|polymerase | and transcript release factor-like
0.01 13 | AX-171609127] 0.0012 |3.28E-07|34514726 3'UTR - LOC110486263|polymerase | and transcript release factor-like
0.01 13 | AX-171609121] 0.00115 | 2.64E-07| 34515780 3'UTR - LOC110486263|polymerase | and transcript release factor-like
0.01 13 | AX-171609117] 0.00105 | 2.35E-07| 34516041 3'UTR - LOC110486263|polymerase | and transcript release factor-like
0.01 13 | AX-171609115] 0.0014 |3.37E-07| 34516555 3'UTR - LOC110486263|polymerase | and transcript release factor-like
0.06 15 | AX-171609715] 0.0001 | 1.30E-07|17706212 3'UTR - LOC110489787| microtubule-associated protein 4-like
0.06 15 | AX-171609716] 0.0001 |3.67E-07|17706284 3'UTR - LOC110489787| microtubule-associated protein 4-like
0.06 15 | AX-171609717] 0.0001 |8.75E-08| 17706417 3'UTR - LOC110489787| microtubule-associated protein 4-like
0.05 15 | AX-171609719] 0.00005 | 1.70E-07| 17706541 3'UTR - LOC110489787| microtubule-associated protein 4-like
0.05 15 | AX-171609720] 0.00005 | 1.84E-07| 17706838 3'UTR - LOC110489787| microtubule-associated protein 4-like
0.06 15 | AX-171609722| 0.00005|9.37E-07{ 17717951 CDS|nonsyn - LOC110489787| microtubule-associated protein 4-like
0.06 15 | AX-171606782] 0.00005 | 7.29E-08| 17728093 5'UTR N/A | LOC110489788| microtubule-associated protein 4-like
0.02 18 | AX-171611008| 0.00035| 1.66E-06{18981359| CDS|nonsyn + | LOC110495923|basic leucine zipper and W2 domain-containing protein 1-A-like
0.06 20 | AX-171644862| 0.00005 | 2.46E-07] 19516087 Inc_RNA + | LOC110499159]uncharacterized LOC110499159
0.06 20 | AX-171612012| 0.0013 | 6.40E-07| 20747206 Intergenic N/A N/A N/A
0.02 28 | AX-171616325| 0.00145| 1.22E-06| 7285183 | CDS|nonsyn - | LOC110508425|elongation factor 2-like

A color gradient on the left indicates phenotypic variability explained by each single SNP marker (green is the highest and red is the lowest). SNPs were sorted

according to their chromosome positionsNote: EMP1 is pointwise empirical p-value estimated using QFAM, whereas P_RAO is the estimated p-value using a
generalized score test
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with Talin-1; the key driver of cell migration [104]. Simi-
lar results have been previously reported in rainbow
trout [25]. Compared to p-value based peaks, the highest
peaks based on the variance explained depends on allele
frequency which means a high-effect SNP of low fre-
quency reduces the variance explained [105]. The
WssGBLUB method has been proven to be optimal in
livestock populations with a large number of phenotyped
animals with a long history of pedigree recording, but
lacking genotype data [105]. The two GWA ap-
proaches adopted in the current study revealed sig-
nificant roles of genes related to developmental
process in regulating bodyweight gain. Routine use of
single-SNP and multi-marker for GWA analysis has
been recommended to take advantage of the complete
genotype information [106].

Consistent with our data, a previous GWA study in
rainbow trout identified small-effect QTL on chromo-
some 9 that affected additive genetic variance for body-
weight [90]. However, QTL associated with growth rate
varied between the studies, and this discrepancy may be
due to testing of different populations and gene-by-
environment interactions. A 57 K genomic SNP panel
has been exploited for GWA analysis, using the same
fish population as the current study; the study identified
one window on chromosome 5 with small effects on the
additive genetic variance for body weight. The window
explained 1.38 and 0.95% of the additive genetic variance
for body weight at 10 and 13 months, respectively [22].
However, this window was not identified in our study,
perhaps, because we considered only windows explaining
2% of the additive genetic variance or more. Several
markers, each explaining less than 0.1% of the variance,
were identified to be associated with body weight in a
GWA study for Atlantic salmon [20]. Fish population,
marker density, LD, and size of adjacent SNP windows
may, partially, explain the discrepancies in the results
obtained from the different studies. In addition, SNPs
used in the current study were identified from fish fam-
ilies of extreme phenotypes and thus, perhaps, are more
informative for the current GWA analysis [19]. In agree-
ment with previous GWA studies, growth is multifactor-
jal in nature, and growth-related genes regulate
development, cell proliferation, energy metabolism, and
growth [90, 107]. Overall, the current study further de-
scribes the genetic architecture of the studied trait and
provides putative markers for breeding candidates that
can be used for selection purposes.

Conclusions

The current GWA study identified growth-related QTL
and novel genes associated with the growth rate in rain-
bow trout. Compared to previous GWA studies in At-
lantic salmon and rainbow trout, this work revealed
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relatively large-effect QTL associated with growth, which
appears to be a polygenic trait in nature controlled by
many genes on multiple chromosomes. Chromosomes 4
and 14 had the most significant peaks that explained a
reasonable proportion of the additive genetic variance
for bodyweight gain. The majority of SNP were within
genes involved in developmental processes. Intriguingly,
the gene harboring the most significant nonsynonymous
SNP was previously reported to encode a protein vital to
embryonic development. These findings provide a gen-
etic basis that will enhance our understanding of the
molecular mechanisms regulating growth in teleost fish
as well as provide putative markers that could be priori-
tized when estimating genomic breeding values for
growth rate.

Methods

Fish population, tissue sampling, and phenotype

Fish population was previously described [19, 25].
Briefly, fish bodywight data were collected from two
consecutive generations (YC 2010 & 2012) produced
from the NCCCWA growth-selection breeding program.
The NCCCWA breeding program was established in
2002 and has continued for 5 generations of selection
producing full-sib families as previously described [10].
Fish used in the current study were harvested from their
respective families to allow for measuring other lethal
phenotypes, as we previously described [19, 25]. Fish
were euthanized with an overdose of MS-222 at a con-
centration of 300 mg/L. Breeding, hatching, and feeding
schedules were previously reported in detail [18].

A total of 789 fish representing 98 families from YC
2010 and 99 families from YC 2012 were phenotyped.
For fish sampling of each generation, a single fish from
each family was randomly assigned to one of five collec-
tion groups (~ 100 fish each) over five consecutive weeks
(one group/week). The YC 2010 fish were collected be-
tween 410- and 437-days post-hatch with a mean body-
weight of 985g (SD=239g). Fish from the YC 2012
were collected between 446- and 481-days post-hatch
with a mean bodyweight of 1803 g (SD=305g). The
bodyweight gain was calculated as the fish body weight
in grams divided by the fish age in days. The pedigree-
based heritability /#° (h’ped) for growth was estimated
according to Zaitlen et al., [108].

SNP genotyping and quality control
The 50K transcribed gene SNP-chip used in this study
was recently developed and used to identify QTL associ-
ated with muscle yield [19], fillet firmness and protein
content [25]. Sources of all SNPs used to build the
current SNP chip were previously described [18].

As described before, a total of 1728 fish from the
NCCCWA growth- and Bacterial Cold Water Disease
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(BCWD)-selection lines [19] were used to assess the
quality of this Affymetrix SNP chip. The SNP chip and
sample metrics were reported in our previous publica-
tion [19]. Assessment of quality control (QC) and filtra-
tion of samples/genotypes have been performed using
the Affymetrix SNPolisher software at the default pa-
rameters [109]. A total of 789 genotyped fish had avail-
able phenotypic data for bodyweight gain and passed the
QGC; those were used for the current GWA analyses.

Fifty-SNP window GWA analysis

The Weighted single-step GBLUP (WssGBLUP) has
been used to perform GWA analysis, as we previously
described [19, 25]. WssGBLUP allows genotyped and
ungenotyped animals to be used at the same time, and
integrates phenotype, genotype and pedigree information
using a mixed model for single-trait analysis as previ-
ously described [19, 25]:

y=Xb+Zija+Zw+e

where y is the vector of the phenotypes, b is the vector
of fixed effects including fish data-collection group and
hatch-year, a, w, and e are the vectors of direct additive
genetic (i.e., animal effect), random family, and residual
effects, respectively. The matrices X, Z;, and Z, are inci-
dence matrices for the effects contained in b, a, and w,
respectively.

This model combines all the relationship information
based on pedigree and genotypes into a single matrix (H™*):

G a0 o
H =4 *{0 Gl-A;)

where H™' is the inverse of the realized relationship
matrix (H), A™" is the inverse of the relationship matrix
based on pedigree information, A, is the inverse of the
pedigree relationship matrix for genotyped animals only,
and G™' is the inverse of the genomic relationship
matrix.

A modified REMLF90 (AIREMLF90) [110] was used to
estimate variances using the Average-Information algo-
rithm. The inbreeding value, accounted for the construc-
tion of the inverse of the pedigree relationship matrix, was
previously calculated using INBUPGF90 [19, 111]. Pedi-
gree data of 63,808 fish produced from the NCCCWA
growth-selection line over five consecutive generations,
were fed to INBUPGF90 to calculate the inbreeding value.
Using PREGSF90 [111], 35,322 SNPs (70.6%) passed the
QC at the following settings; MAF > 0.05, call rate for SNP
and samples > 0.90, and HWE < 0.15.

Similar to our previous WssGBLUP analyses [19, 25],
two iterations were used in the current analysis where
all SNPs were equally weighted (i.e., weight = 1.0) during
the first iteration. POSTGSF90 [111] was used to
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compute SNP effects and weights using sliding windows
of 50 adjacent SNPs. The qgman package in R was used
to plot the proportion of additive genetic variance ex-
plained by every 50 SNPs-genomic window [112].

Single marker GWA analysis

Two different algorithms were used to perform family-
based association analysis of the SNP genotypes with
bodyweight gain, and detect signals robust for popula-
tion stratification. First, QFAM in PLINK version 1.07
[91] was used to perform the family-based association
analysis using permutations. QFAM does not allow ac-
counting for the significant contribution of the variables
(such as fish data-collection groups and YC) to the pre-
dictive power of bodyweight gain model. Therefore, the
outcome was adjusted in a linear model in an R package
to account for fixed effects (data-collection group and
YC) and population stratification using the first two
principal components. In the linear model of association
using QFAM, the adjusted-outcome was regressed on al-
lele count and the family structure was corrected using
20,000 permutations. Second, a family-based association
analysis was performed using a generalized score test
[113]. This test accounts for familial correlation using a
kinship matrix and allows for multiple covariates. P-
values were adjusted by Bonferroni correction to ac-
count for multiple testing. The qgman package was used
to generate a Manhattan plot showing -log;o (observed
p-value) obtained from the GWA analysis.

Gene annotation and enrichment analysis

SNPs bed file and the rainbow trout genome gff file were
provided to Bedtools to annotate the SNPs as previously
described [19, 114]. To perform gene enrichment ana-
lysis, SNP-harboring genes were uploaded to the Data-
base for Annotation, Visualization, and Integrated
Discovery (DAVID) v6.8 [115, 116]. In order to avoid
counting duplicated genes, Fisher Exact statistics were
calculated based on DAVID gene IDs, which remove re-
dundancies in the original IDs. The list of annotation
terms and their associated genes were filtered out based
on Fisher Exact < 0.05.

Supplementary information
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1186/512864-020-6617-x.

Additional file 1: Table S1. All QTLs associated with bodyweight gain.

Table S2. Enriched terms included lysosomal proteins/enzymes and fatty
acid biosynthesis (highlighted). Table S3. The remaining SNPs associated
with the variation in bodyweight gain.
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