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INTRODUCTION:  

Coastal Delmarva region 

The study region for this project is a subsection of the coastal mid-Atlantic 

Ocean, offshore of the Delmarva Peninsula. This area is a climate boundary region 

that is undergoing ecological changes due to both anthropogenic climate change and 

eutrophication (Kaplan and Wolfe 2006). The coastal ocean is important both 

ecologically and economically to the region. Annually, the Maryland (MD) seafood 

industry contributes ~ $600 million to the State's economy, and more than 8 million 

people visit Ocean City. As a popular tourist destination and important farming 

region in MD, the ecosystems surrounding Ocean City, MD, including Assateague 

Island National Seashore (ASIS) and the Maryland Coastal Bays (MCB), are 

impacted by human use through recreation, sewage outflow, and agricultural runoff 

(Figure 1) (Ocean City Chamber of Commerce). There is a need to understand water 

quality conditions in the region, and to establish baseline data on various parameters 

to assess threats to water quality. These threats include nutrient inputs and their 

effects on other water quality issues, including the presence of emergent harmful 

algal bloom species (HABs), which are increasing globally due to anthropogenic 

eutrophication and climate change (Heisler et al. 2008). Additionally, it is important 

to assess the potential for future threats to arise, given the region’s importance both 

ecologically and economically of the region (Vilacoba 2017).  

There has been prolific research and monitoring of the both the Chesapeake 

Bay and the MCBs, but less attention has been paid to the coastal regions off the  
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Figure 1: Land use land cover map of study region with areas of agricultural land, 

developed land, and barren land (Integration and Application Network -
ian.umces.edu/media-library).   
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coast of MD and along the Delmarva Peninsula (DE, MD, VA) coastal region. 

Therefore, this study responded to the need for more information on seasonal and 

geographic data on water quality in the coastal Atlantic of this region. The sampling 

area for this study consists of 31 sampling stations along 10 transects from near the 

Delaware (DE) border in the north, south along the Maryland coast, and extending 

into the state of Virginia (VA) to the south. Sites ranged in proximity to shore at 

distances of ~0.8, 1.6 and 2.4 km offshore (Figure 2). These transects bracket the 

Delmarva regions of the Maryland coast from north to south covering different 

geographic, and nutrient sources described in more detail below. Specifically, this 

project sought to assess the state of water quality in the coastal Atlantic Ocean region 

of the Assateague Island National Seashore (ASIS) along the Delmarva Peninsula 

coast, in terms of nutrients (nitrogen and phosphorus), and emerging HABs of 

concern.  

 

Anthropogenic influences 

The Maryland coast has been influenced by humans since the indigenous 

Assateague people settled permanently on the Eastern Shore of Maryland in ~900 AD 

(Rountree and Davidson 1997). Starting in the 1600s, European settlers changed the 

landscape through farming and agriculture. Over time, the population grew and 

technology advanced, and the MCBs became a popular tourist destination. Currently 

the most densely populated area of the region is Fenwick Island, which is a barrier 

spit that is shared by the towns of Ocean City, MD, and South Bethany, DE (Figure 

1) (US Census Bureau 2018). Sampling locations along transects 1 and 2 border  
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Figure 2: Map of the study area with data collection sites, transects, sewage outflow 

locations, and MCB inlet locations (Integration and Application Network -
ian.umces.edu/media-library).  
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Ocean City, MD (Figure 2). The town of Ocean City is 7.1 km2 of land, and this 

beachfront community is mostly seasonal with a population of ~7,000 year-round that 

expands to ~330,000 during the summer months (American Community Survey 

2021) (Figure 1). The area has a boardwalk, hotels, restaurants, arcades, and other 

tourist attractions. Other than the beachfront, however, this area is covered almost 

entirely in impervious surfaces. (Figure 1).  

In 1933, a hurricane created the Ocean City Inlet, separating Assateague 

Island from Fenwick Island. Transect 3 is directly adjacent to the Ocean City Inlet, 

which is one of two connections between the Atlantic Ocean and the MCBs (Figure 

3). Increased development and population growth in the MCBs created the need for a 

municipal sewage treatment plant, and the newly formed Ocean City Inlet was an 

ideal place for wastewater release. Eventually the sewage treatment plant processing 

needs became too high for the Ocean City Inlet outfall, and an offshore outfall was 

created in 1969 (NewGen Strategies and Solutions 2020).  

Currently, there are three major sewage outfall areas in the region. There is a 

sewage outfall release north of the sampling region in DE (38.72972 N, 75.05861 W). 

This sewage outfall releases 1829 m (~6000 ft) from shore through a pipe that 

connects to the Rehoboth Beach Wastewater Treatment Plant on Roosevelt St. 

(Figure 1) (City of Rehoboth Beach Ocean Outfall Project Town Hall Q&A Workshop 

2017). The Rehoboth Beach Wastewater Treatment Plant treats approximately 7.6 

million liters per day (2 million gallons a day) (MGD) but can reach up 26.5 million 

liters per day (7 MGD) during a peak tourist weekend. Additionally, the South 

Central Regional Waste-Water Treatment Facility (WWTF) in Bethany Beach, DE  
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releases treated water into the Atlantic Ocean just north of Fenwick Island (38.5240 

N, 74. 9567 W) (Figure 1) (Delaware Department of Natural Resources and 

Environmental Control 2020). The South Central WWTF releases between 9.5-11.3 

million liters per day (2.5-3.0 MGD) through the ocean outfall location. Lastly, there 

is a sewage outflow that releases 1219 m (~4000 ft) offshore Fenwick Island (Figure 

1). The sewage outflow releases directly north of the transect 2 sampling stations 

(38.38395 N, 75.05333W) and connects to the Ocean City, MD Wastewater 

Treatment Plant on 64th Street, Ocean City (Figure 2). Average daily flow from the 

sewage outfall ranges from 13.3 million liters per day (3.5 MGD) in the winter, to 

39.7 million liters per day (10.5 MGD) in the summer. With more people visiting and 

developing Fenwick Island, more environmental stress has become evident (Dennison 

et al. 2009).  

Sampling locations along transects 4-10 begin at the northern point of 

Assateague Island and stretch to the south at the Chincoteague Inlet (Figure 2). 

Assateague Island is 37-miles long and was originally connected to Fenwick Island. 

However, after the 1933 hurricane that separated the two barrier islands by an inlet, 

permanent jetties were installed to maintain the channel (Hayward 2007). The town 

of Chincoteague located near the Chincoteague Inlet, just south of the VA border, is 

another populated area. The town of Chincoteague has year-round residents with a 

population of ~3,000 – 15,000 (Town of Chincoteague 2015; Chincoteague: About 

Our Island). The major source of income for the town is tourism, but there is a highly 

developed seafood industry as well. Although much of the town is densely developed, 

there are many parks and undeveloped lands in the area. The Chincoteague Island 
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community takes pride in its rich history and preserves areas of historical and 

ecological importance. There is currently no WWTF on Chincoteague Island, but the 

Chincoteague Wastewater Advisory Committee continues to revisit wastewater 

treatment and management plans for the community (Papadopoulos et al. 2013; 

Chincoteague: About Our Island).  

Between the Ocean City Inlet at the north and the Chincoteague Inlet at the 

south, Assateague Island consists of 37 miles of nearly undeveloped land (mostly 

sandy shoreline and herbaceous/wetland areas with scattered deciduous forest). 

Assateague Island is managed by three agencies: The National Parks Service (NPS) 

controls ASIS, the Maryland Department of Natural Resources (MD DNR) controls 

the Assateague State Park, and the U.S. Fish and Wildlife Service (USFWS) controls 

the Chincoteague National Wildlife Refuge. ASIS receives over 1 million visitors 

each year and is the largest section of the park. The national seashore allows daily 

visits, camping, and other recreational activities (National Parks Service 2018). The 

Assateague State park is a 3.2 km section of beachfront park that offers a similar 

experience managed by the state of MD (Maryland Parks Service 2020). The 

Chincoteague National Wildlife Refuge connects to ASIS via a bridge at the VA 

border and welcomes recreational visitors and tourists as well (US Fish and Wildlife 

Service 2015). ASIS is a popular tourist destination, and prior research regarding the 

National Park’s coastal waters shows early indications of elevated nutrients and the 

presence of HABs, but there is no systematic coastal water quality monitoring. 

Therefore, continued coastal dissolved nutrient and HAB research is essential to 

understanding and managing the Assateague Island ecosystem. 
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The MCBs and waterways which surround the ASIS, are influenced by inputs 

from both land sources as well as from tides and currents from the Atlantic Ocean 

(Figure 1). There is a need to better understand the linkages between the coastal 

ocean and the MCBs, ecosystem changes and impacts of human activity. In the MCB 

watershed, urban development is increasing and taking over more natural lands and 

agricultural lands (Aighewi et al. 2013). Highly developed areas diminish ecosystem 

diversity by eliminating suitable habitat and resources for wildlife. Fenwick Island is 

experiencing high population growth, with projections for continued growth through 

2030 (Nosakhare et al. 2012). High population density results in less natural land, 

hardening shorelines (i.e. riprap), and more impervious surfaces; all of which 

contribute to eutrophication of the MCB and coastal waters (Dillow and Greene 1999; 

Aighewi et al. 2013).  

 Land use in the MCB region is dominated by urban, forest, and agriculture 

(Figure 1) (Beckert et al. 2011). Agriculture is the primary source of the 

anthropogenic nutrient loading in the MCBs (Beaulac and Reckhow 1982; Dennison 

et al. 2009; Beckert et al. 2011). Agriculture contributes nutrients (specifically 

nitrogen and phosphorus) from land into the MCB waterways through fertilizer, 

crops, and animal waste (Boynton et al. 1993; Dennison et al. 2009). Most of the 

agricultural land is located on the western side of the coastal bays, but the impact 

from nutrient loading is still present in the coastal waters due to the MCB inlet 

connections. Physical movement of the water leaving the Ocean City Inlet does not 

necessarily get transported offshore (Kang et al. 2017; Mao and Xia 2018). Drifter 
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studies shows evidence of a small eddy formation to the south of the Ocean City Inlet 

that keeps the water and nutrients circulating close to shore (Mao and Xia 2018). 

Impervious surfaces and runoff 

In addition to sewage outfalls and agricultural nutrient loading, highly 

developed areas with impervious surfaces create environmental hazards in MD’s 

coastal waters. The National Oceanic and Atmospheric Administration (NOAA) uses 

impervious surface land cover as a water quality indicator because impervious 

surfaces (in conjunction with excess nutrient pollution highly developed areas) limits 

water filtration capabilities. Runoff from impervious surfaces enter coastal waters, 

creating increased water pollutants and decreased water quality.  

Continued monitoring of the MCB has provided thresholds to use for 

comparison of nutrient, chl a and HAB species concentrations (Table 1) (Dennison et 

al. 2009). Additionally, MD DNR has thresholds for emergent HAB species of 

concern for bloom levels of concern for the state of MD (Harmful algal bloom 

management in the Chesapeake and Coastal Bays 2014). However, the MCB and MD 

DNR thresholds are based on estuarine systems and are not necessarily suitable for 

coastal waters offshore. In this coastal setting, nitrogen and phosphorus are the 

primary limiting nutrients (Dennison et al. 2009). Unlike the MCB where there are 

numerous point sources for nutrient rich freshwater sources, the ocean system has 

only a few point sources for nutrients. Although there are multiple non-point sources 

of nutrients into these waterways, sewage outflows and inlets connecting the ocean to 

the MCB provide direct nutrient input into the coastal waters. Another potential  
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Table 1: MCB thresholds values for chl a, TN, TP, Dinophysis spp., Karenia spp., 
Pseudo-nitzschia spp. 
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source of nutrient input into the coastal system is late-summer upwelling (Glenn et al. 

2004b).  

 Management Initiatives 

The Clean Water Act (1972) forced the MCBs to take a closer look at water 

quality and municipal wastewater pollution. As a result of water quality data from 

point-source and non-point source discharge, efforts were made to decrease nutrient 

input into the coastal waterways, including banning phosphate (PO4
3-) use in 1985 

(US Department of the Environment 2020). Numerous HAB incidents led to the 

MCBs being included on MD’s impaired waters list in 1996 (Tango et al. 2004). As 

part of the Comprehensive Conservation and Management Plan released in 1999, the 

MD DNR conducts routine monitoring of the MCB water quality (Maryland Coastal 

Bays 1999). While nutrient thresholds have been established for the different salinity 

regions of the Chesapeake Bay (EPA 2001), as well as the MCB, and routine 

monitoring of the MCBs started in 2001, there are no monitoring or nutrient threshold 

regulations for offshore coastal waters. This knowledge gap is particularly 

problematic because of the sewage outfall locations which release offshore, nutrient 

loading from the dominant agriculture industry, and pollution runoff from impervious 

surfaces of highly developed areas. Several regulatory agencies are currently working 

on updating nutrient criteria (EPA 2001) and developing more specific offshore 

nutrient and chl a threshold concentrations (C. Wazniak pers com).  

Eutrophication and Harmful Algal Blooms 

HABs occur when algal growth is stimulated to such a degree that cell 

numbers accumulate and have some level of negative impact in the environment 
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ranging from nuisance, to toxic, depending on the species, but causing some level of 

detrimental impact to the ecosystem (Smayda 1997). HABs can change the color of 

the water, cause fish kills (physically or chemically), and potentially release toxins 

into the water and air that are damaging to the ecosystem and its inhabitants 

(Timmons et al. 2018). It has been observed that HABs have been increasing globally 

in spatial distribution and frequency as a result of climate change and eutrophication 

(Heisler et al. 2008). The MD DNR has identified three emergent HABs of concern in 

the region offshore Assateague Island and the MCB in recent years: Karenia spp., 

Dinophysis spp., and Pseudo-nitzschia spp. but little is known of their abundance 

over time nor their concentrations in the water column (Allen et al. 2014). Similarly, 

little is known about the potential production of toxin from these species. Therefore, 

these three genera were targeted for specific attention in this study. 

  Karenia spp. 

Karenia spp. consist of unarmored dinoflagellate species, some of which can 

release a variety of toxins (Figure 4) (Basti et al. 2018). Karenia brevis (also known 

as the Red Tide in the Gulf of Mexico), Karenia mikimotoi, and Karenia 

papilionacea are among the species found in the region—however, this group of 

harmful algae is found more commonly at lower latitudes (Heil et al. 2014a). Toxin 

production is specific to each species, however all species within the genus Karenia 

have been identified as potentially toxic. K. brevis and K. papilionacea release 

brevetoxin which can cause respiratory illness and Neurotoxic Shellfish Poisoning 

(NSP) (Baden and Mende 1982; Fowler et al. 2020). K. mikimotoi releases multiple 

types of toxins—Gymnodimines which are associated with NSP, and Gymnocin-A,  
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Gymnocin-B which have unknown human effects, but can be fatal for fish and 

invertebrates (Seki et al. 1995; Satake et al. 2002; Brand et al. 2012). K. selliformis 

releases Brevetoxin and Gymnodimines (Miles et al. 2003; Brand et al. 2012).  

These Karenia species can become abundant under various combinations of 

nutrient sources and do not necessarily require high nutrient conditions, and are 

known to have mixotrophic capabilities (Heil et al. 2014b). They are also adaptable to 

a high range of temperature and salinity conditions, which allow them to persist for 

multiple months in some regions of the Gulf of Mexico, in particular (Maier Brown et 

al. 2006; Vargo 2009; Errera and Campbell 2011). 

  Dinophysis spp. 

 

Dinophysis spp. is a group of armored flagellate species which can release 

okadaic acid and dinophysistoxin (DTX) (Figure 5) (Basti et al. 2018). The lipophilic 

toxins released by Dinophysis spp. can cause Diarrhetic Shellfish Poisoning (DSP). In 

bloom conditions, DTX and okadaic acid result in dehydration, diarrhea and vomiting 

in humans after consuming contaminated shellfish. Dinophysis spp. have complex 

toxin profiles and can also release pectenotoxins along with other lipophilic toxins 

(yessotoxin, azaspiracids) (Reguera and Blanco 2019). However, the primary cause of 

poisoning associated with Dinophysis spp. is DSP from okadaic acid and DTX. 

Dinophysis spp. are distributed globally across temperate latitudes in shallow waters 

(Morton et al. 2018). Dinophysis acuta, Dinophysis acuminata, Dinophysis norvegica 

and Dinophysis caudata are just some of the many species found in the study region, 

specifically during the summer months.  

  Pseudo-nitzschia spp.  
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Pseudo-nitzschia spp. are chain forming pennate diatoms and are known to 

form abundant blooms from multiple nutrient sources (specifically nitrogen and urea) 

(Figure 6) (Morton et al. 2018). Not all species of Pseudo-nitzschia are toxic, but 

toxigenic species of this harmful algae release domoic acid (DA) and previously have 

been noted as being most abundant in the springtime (Thessen and Stoecker 2007; 

Trainer et al. 2012). DA is associated with Amnesic Shellfish Poisoning (ASP) 

which, in humans, can lead to amnesia and memory loss (Basti et al. 2018). Toxic 

blooms are found mainly within eastern boundary current upwelling systems, but 

non-toxic or low-toxic blooms can be found globally (Morton et al. 2018). Conditions 

required to produce Pseudo-nitzschia spp. blooms are highly variable, but the 

toxigenic species found in the Chesapeake Bay region are generally more abundant 

with low temperature and high salinity (Thessen and Stoecker 2007). In 2020, DA 

was found in mussels in Ocean City Inlet just below concentrations of regulatory 

concerns. Mussels collected on September 15th, 2020 had DA concentrations of 7.6 -

10.6 ppb, much higher than typical water samples at that time of year (MD DNR 

unpublished data; Cath Wazniak pers comm). 

Project aims and objectives 

The potential anthropogenic nutrient and climate change threats to the region have led 

to a NPS funded project, of which this thesis is a part, with the following overall aims 

and objectives: 

• To provide current data on nutrient and phytoplankton composition and potential 

HAB species to compare with previous MD DNR data along same sampling 

grid; 
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Figure 6: Photomicrograph of a Pseudo-nitzschia spp. sample collected during research 

cruises in the MD coastal ocean. Photomicrographs taken by Jen Wolny-MD DNR (used 

with permission). 
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• To use data acquired as a baseline for potential future monitoring of water 

quality and HAB species changes in terms of eutrophication and/or climate 

change; 

• General overarching aim is to provide information to help protect the natural 

environment and natural resources in the ASIS and surrounding areas vital in the 

economic and cultural well-being of the region. 

The primary objective of my thesis research, as part of this larger project, was 

to establish baseline concentrations of nutrients (Total Nitrogen [TN], Total 

Phosphorus [TP], Nitrate [NO3
-1

 + NO2
-1 = NOx], phosphate [PO4

3-], ammonium 

[NH4
+]) and investigate their impact on MD’s emergent HAB species of concern (i.e. 

Karenia spp., Dinophysis spp., Pseudo-nitzschia spp.) in the coastal waters offshore 

ASIS and to assess the potential threats of these factors to water quality in the region. 

There are three primary hypotheses for this research that were tested using data 

collected from five cruises in 2018-2019:  

• Nutrients and HAB species concentrations increase with high population density 

and human influence; 

• Nutrients and HAB species concentrations vary seasonally in association with 

human influences; 

• The population and use of Ocean City, MD and ASIS by seasonal visitors 

increase the concentrations of nutrient and HABs.  
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METHODS 

Study Locations and Sampling Period 

Water quality, phytoplankton community composition, chl a and nutrient 

(nitrogen and phosphorus) data were collected during five research cruises: June, July 

and October 2018; May and July 2019 aboard the University of Maryland Center for 

Environmental Science’s (UMCES) R.V. Rachel Carson, and the University of DE’s 

R.V. Joanne Daiber. Samples were collected at 31 stations located along 10 

latitudinal transects (Figure 2, Table 2). Transects ranged from 38.44830N to 

37.828870N, and from approximately 0.8 km offshore to 2.4 km offshore—a study 

area of ~2,500 km2. The Ocean City Inlet, adjacent to transect 4; and the 

Chincoteague Inlet, adjacent to transect 10, provide estuarine influences from the 

MCBs. Additionally, the DE Bay is just north of the first transect and could provide 

additional estuarine mixing. Sampling location sites correspond to two previous 

sampling efforts (MD DNR 2011 survey; and MCB’s Augmentative Grant Project, 

2012) which established areas of concern to ASIS. Additionally, three bioassay 

experiments were performed in June, July and September of 2019 using water 

samples collected during flood tide from the Oceanic Fishing Pier adjacent to the 

Ocean City Inlet.  

Field Sample Collection 

Water at each station along the transects was sampled using CTD 

(Conductivity Temperature Depth) casts to determine the water profile with depth of 

various parameters, as well as to collect discrete water samples for nutrient analysis:  
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Table 2: List of research cruise dates and research vessels. 
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TN, TP, NH4
+, NOx, PO4

3- and chl a. Discrete water samples for nutrient and chl a 

analyses were collected at the surface, the depth of the chlorophyll maximum (chl a 

max) determined by the CTD profile, and 1 m off of the bottom using a Rosette of 10 

L Niskin bottles (Figure 7). Samples for nutrient, chl a and phytoplankton analyses 

were collected at the surface and chl a max depths. Samples were filtered through 

GF/F filters (nominal pore size 0.7 µm), which were retained for chl a analyses and 

the filtrate retained for nutrient analyses at the University of Maryland Center for 

Environmental Science – Horn Point Laboratory (UMCES-HPL) Analytical Services 

Laboratory. Chl a and nutrient samples were frozen aboard the ship and transported to 

HPL and kept frozen until analysis. Phytoplankton samples were fixed with 5% 

Lugol’s iodine solution and maintained dark and cold, stored in a refrigerator until the 

time of analysis.  

Water samples for nutrient bioassay experiments were collected in the Ocean 

City Inlet from the Oceanic Fishing Pier (710 S. Philadelphia Avenue, ~0.7 km NW 

of the inlet origination) during flood tides, to capture ocean water coming into the 

MCBs through the inlet. Water was collected using a submersible pump into 10 L 

cubitainers and placed into reduced light. Samples were covered with wet towels to 

maintain ambient temperature and transported back to HPL where the nutrient 

bioassay experiments were conducted (Figure 8). Water quality parameter values 

including water temperature, dissolved oxygen (DO), salinity, and conductivity were 

measured off the Oceanic Fishing Pier using a YSI Pro2030 DO, Conductivity, 

Salinity Instrument at each initial sampling date. Each experiment consisted of 5-6 L 

of site surface water, with triplicate cubitainer treatments. In the  
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Figure 7: Photograph of Rosette with CTD and 8, 10 L Niskin bottles deployed at each 
sample site to measure in-situ physical parameters and collect discrete water 
samples at the surface, chl a max and bottom depths. Photo by Max Hermanson-
UMCES- IAN (used with permission). 
 

 
Figure 8: Taylor Floats holding bioassay cubitainers used for incubating samples at 
ambient light and temperature in the Horn Point Laboratory Harbor. Photo by J.M. 
O’Neil-UMCES- HPL (used with permission).  
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second bioassay experiments, 200 μM mesh screening was used to remove meso-

zooplankton such as copepods to assess grazing impacts. 

Nutrient Analysis 

In situ values of chemical and physical parameters were determined at each 

station and depth using the CTD’s DO (mg L-1), photosynthetic active radiation 

(PAR, µE m-2 s-1), and fluorescence (µg L-1) sensors. Discrete samples were taken at 

each depth for dissolved and particulate nutrient analyses (TN, TP, NH4
+, NOx, and 

PO4
3-) using standard methods of nutrient analysis at UMCES-HPL analytical 

services (D’Elia et al. 1977; Solórzano d Sharp 1980a; Solórzano and Sharp 1980b; 

Valderrama 1981; Parson et al. 1984; and, Clesceri et al. 1998). TN and TP 

concentrations are calculated using unfiltered water samples; therefore, total values 

are the sum of all dissolved and particulate constituents for each of these elements. 

TN and TP are indicators of total loading of nitrogen and phosphorus, whereas 

dissolved nutrients (NH4
+, NOx, and PO4

3-) are what phytoplankton are capable of 

direct uptake. N:P ratios were calculated based on the molar TN and TP 

concentrations, and dissolved N:P ratios were calculated based on the concentrations 

of NOx + NH4
+, and PO4

3-.  

Chlorophyll Extraction 

Chl a concentrations from discrete water samples collected at the surface, chl 

a max, and bottom depths were processed using EPA Standard Method 445.0 for in 

vitro determination of chl a in which samples were extracted in 10 mL of 90% 

acetone for 24 hours, while refrigerated (Arar and Collins 2021). Samples were then 
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centrifuged for 10 minutes at 1000 g, fluorescence measured for chlorophyll and then 

acidified to obtain phaeopigment concentrations, using a Turner Designs fluorometer 

and standardized to µg chl a L-1. 

Phytoplankton Community Analysis and Cell Counts 

Phytoplankton community analysis was performed for all samples at the 

surface and chl a max depths by MD DNR. Phytoplankton samples from bioassays 

were analyzed at UMCES-HPL microscopy lab. In all cases, samples were examined 

using a Zeiss Axiovert 200 inverted microscope using a modified Utermohl method in 

which a 9 mL sample was allowed to settle for 24 hours. Subsequently, a minimum of 

5 optical fields were examined at 400X to identify and enumerate small and 

numerous species. Additional optical fields were examined until a minimum of 200 

cells were enumerated. The entire chamber was scanned at 100X to allow for the 

identification and enumeration of large and rare species. Species were identified to 

the lowest taxon possible (Dodge 1982; Steidinger et al. 1997; Tomas 1997). The 

following emergent HAB species were enumerated: Dinophysis acuminata, D. acuta, 

D. norvegica, D. punctata, D. fortii, D.hastata, D. odiosa, D. ovum, D. sp.; Karenia 

brevis, K. mikimotoi, K. papilionacea, K. selliformis, D. sp.; Pseudo-nitzschia 

brasiliana, P. sp. However, for the purposes of this analysis, HAB species will be 

combined at the genus level; Dinophysis spp., Karenia spp., Pseudo-nitzschia spp. 

Synthesis of Nutrients, HABs, Environmental Factors  

For seasonal and geographical variation comparisons, nutrient and HAB 

species data was integrated along transects by calculating the mean concentration for 
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each nutrient (TN, NH4
+, NOx, TP, PO4

3-), HAB species (Dinophysis spp., Pseudo-

nitzschia spp., and Karenia spp.) and environmental factors (DO, temperature, 

salinity, chl a) at each sampling depth. Additionally, the average concentrations at 

each transect were summed to create a total nutrient, total HAB species, and total chl 

a concentration for each sampling date and sampling depth. Total concentrations of 

all variables are categorized by quartile. For all analyses the data is presented to show 

seasonal variation by using the following order: May 2019, June 2018, July 2018, 

July 2019, October 2018.  

Statistical significance of correlation between nutrients, HAB species, depth 

and environmental factors was determined using a linear regression model in R 

(Tables 3-4) (Wilkinson and Rogers 1973; Chambers 1992). Each regression was run 

using individual sampling locations, rather than integrating the data along transects. 

Additionally, N:P ratios and dissolved N:P ratios were included in the statistical 

testing. 

Principal Component Analysis 

Multiple principal component analyses (PCA) were completed using R 

software (Venables and Ripley 2002; Martin and Maes 2008). PCAs were run with 

the following variables: depth, TN, NH4
+, NOx, TP, PO4

3-, dissolved N:P ratio, total 

N:P ratio, DO, temperature, salinity, chl a, Dinophysis spp. concentration, Pseudo-

nitzschia spp. concentration, and Karenia spp. concentration. Two kinds of PCAs 

were run, PCAs for each sampling period and PCAs for each HAB species. PCAs for 

each sampling period (including one that combined data from all sampling periods) 

included physical variables and nutrient concentrations at the surface, chl a max and  
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Table 3: Statistical significance of the differences between HAB concentrations and 
nutrients/physical parameters. Statistical significance of linear regression model is 
defined by p-value<0.05 for t-test (Integration and Application Network 
ian.umces.edu/media-library). 
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bottom. PCAs for each HAB species included physical variables, nutrient 

concentrations and HAB species concentrations at the surface and chl a max.  

Nutrient Bioassay 

Three nutrient bioassay experiments were conducted in June, July, and 

September 2019 (Table 5). The June bioassay experiment ran for 7 days, but chl a 

concentrations declined after day 3, so the July and September bioassays ran for 3 

days. Bioassays were incubated in situ at HPL in “Taylor Floats” at ambient water 

temperature under 1-2 layers of neutral density screening in order to reduce photo-

inhibition and simulate the light level experienced at ocean surface (Figure 8). In the 

June and September bioassays, triplicate samples for all bioassay treatments included 

concentrations of 10 μM NH4
+, 10 μM NO3

-, 5 μM PO4
3-, a combined treatment of 10 

μM NO3
- + 5 μM PO4

3- (N+P); and a control treatment of 10 mL deionized water 

added daily. In the July bioassay, a second control was added with a filter to remove 

zooplankton grazers. Samples were taken to determine absolute chl a values every 3rd 

day in June, and every day in July and September. Chl a was extracted using the same 

methods as field samples. Additionally, samples were collected to measure HAB 

species (Dinophysis spp., Pseudo-nitzschia spp., and Karenia spp.) concentrations. 

HAB species concentration samples were taken in June on days 0, 1, 3; in July on 

days 0, 1, 3; and in September on days 0, 1, 2, 3 and analyzed using the same 

methods as field samples. 
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RESULTS 

Nutrients and Physical Characteristics 

NOx and NH4
+ were the primary components that explained the most variation 

(20.8% and 27.6%, respectively) when integrating nutrient data across surface, chl a 

max and bottom sampling depths, 31 sampling locations, and sampling times in June, 

July and October 2018, and May, July 2019 (Figure 9a). At each sampling time, the 

percentage of explained variability changed, but the principal components themselves 

remained the same during all cruises. In May there was a positive relationship 

between NH4
+ and salinity and PO4

3-, and a negative relationship between NH4
+ and 

temperature, total nutrients (nitrogen and phosphorus), N:P ratios (total and 

dissolved) (Figure 9b). During this sampling period there was also a negative 

relationship between NOx
 and dissolved N:P ratios, TP, and NH4

+. There was very 

little depth stratification in May, but the surface became more differentiated from the 

mid and bottom depths in June (Figure 9c). In June, the strength of the relationship 

between NH4
+ and salinity decreased, but there was a positive relationship between 

NOx and salinity. The correlation between NH4
+ and total nutrients (nitrogen and 

phosphorus), as well as chl a also increased compared to May. 

The summer months (July 2018, July 2019) had a higher percentage of 

explained variation by NH4
+ (49.8% and 54.4%, respectively) and had more depth 

stratification. However, there were a few commonalities in physical characteristics 

between July 2018 (Figure 9d) and 2019 (Figure 9e). In July 2018, there was a 

positive relationship between NH4
+ and total nutrients, dissolved nutrients, salinity, 
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and dissolved N:P ratios; and a negative relationship between NH4
+ and total N:P 

ratios, temperature, and chl a. Alternatively, in July 2019, the relationship between 

NH4
+ and total nutrients, dissolved nutrients, and salinity was negative. NH4

+ and chl 

a had a negative relationship, and NH4
+ and DO had a positive relationship in both 

July 2018 and 2019.  

 In October (just after a strong mixing event due to the impact of Hurricane 

Florence) there was very little depth stratification. The explained variation by NH4
+ 

was still high (46.1%) and the NOx was still lower than in the spring months (18.1%) 

(Figure 9f). The relationship between NH4
+ and total nutrients, dissolved nutrients, 

and N:P ratios (total and dissolved) was positive; and the relationships between NH4
+ 

and temperature, chl a, and salinity were negative. Additionally, there was a positive 

relationship between NOx
 and temperature, chl a, and total N:P ratios, but a negative 

relationship between NOx and salinity, DO, TP, and PO4
3-. 

Nutrients and Harmful Algal Bloom Species 

Linear regression correlation models were used, and statistical significance 

levels were established for each HAB species, each nutrient, temperature, salinity, 

and N:P ratios (total and dissolved) (Table 3). Using a p-value of <0.05 to reject the 

null hypothesis, a significant correlation was determined for the following pairs: 

Dinophysis spp. and dissolved N:P ratio, Dinophysis spp. and NH4
+, Dinophysis spp. 

and temperature, Pseudo-nitzschia spp. and PO4
3-. All of the statistically significant 

relationships with Dinophysis spp. had negative relationships. PO4
3- paired with 

Pseudo-nitzschia spp. had a positive relationship.  
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A principal component analysis (PCA) was run for each of the three emergent 

HAB species of concern, to assess the determinant environmental variables and 

nutrients when each species is present. Each species’ PCA combines all the data 

points (including HAB species concentrations) from the five sampling cruises and 

two sampling depths (surface and chl a max) when the species was present (Figure 

10). For every HAB species, the principal components that explained the most 

variation in the dataset were NH4
+ and NOx. Temperature, DO, and N:P ratios 

(dissolved and total) have a positive relationship with NH4
+, and chl a, salinity, TP, 

PO4
3-, TN, and NOx had a negative relationship with NH4

+. Nearly all of the nutrients 

and environmental variables had a negative relationship with NOx, except for chl a 

and salinity.  

For the datapoints in which Dinophysis spp. were present, 23.4% of the 

variation was explained by NH4
+ and 21.7% was explained by NOx (Figure 10a). 

Dinophysis spp. has a very small negative relationship with NH4
+, but a moderate 

positive relationship with NOx. When Karenia spp. were present, 23.3% of the 

variation was explained by NH4
+, and 20.5% was explained by NOx (Figure 10b). 

Since all sampled Karenia spp. concentrations were small, the relationships between 

Karenia spp. and nutrients and environmental variables were also small. Karenia spp. 

did have a slight positive relationship with both NOx and NH4
+, and a negative 

relationship with TN, and TP. The explained variation by NH4
+ and NOx when 

Pseudo-nitzschia spp. was present was 23.7% and 20.6%, respectively. (Figure 10c). 

Pseudo-nitzschia spp. had a negative relationship with both NH4
+ and NOx, but a 

relatively strong relationship with PO4
3-, TP and TN.  
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Correlation tests to assess the statistical significance of differences between 

surface and chl a max concentrations were established for each emergent HAB 

species of concern (Table 4). For Dinophysis spp. there was a large statistically 

significant difference between surface and chl a max samples (p-value = <0.01) with 

higher abundances in the chl a max layer. Pseudo-nitzschia spp. also had a 

statistically significant difference between surface and chl a max samples (p-value = 

<0.01), also with higher values in the chl a max layer. However, the difference in 

depth of Karenia spp. samples was not statistically significant (p-value = 0.3). The 

highest concentrations of Karenia spp. occurred at the chl a max depth, but there 

were more sites with Karenia spp. presence at the surface.   

Dissolved nutrient variations 

The dissolved nutrient concentrations and the nutrient species with the highest 

concentration percentage varied seasonally, geographically and by depth (Figure 11). 

The highest combined dissolved nutrient concentration ranges were found at the chl a 

max layer (up to 19 μM), with both the surface and bottom concentration peaks 

significantly lower (up to 8.4 μM at the surface and 12.1 μM at the bottom). At the 

surface, the highest concentrations were found in July 2019 and October 2018 and the 

lowest concentrations were found in July 2018. Overall, surface dissolved nutrients 

were primarily dominated by NH4
+, with increased PO4

3- concentrations in July and 

October 2018. At the chl a max, May 2019 and October 2018 had the highest 

combined dissolved nutrient concentrations, and there was an overall higher portion 

of PO4
3- than in surface samples for every sampling period. At the bottom, the highest 
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combined concentrations were found in July 2018, July 2019 and October 2018, with 

many samples being coincident with the chl a max depth.  

In May 2019, the dominant dissolved combined nutrient species was NH4
+, 

and there was a relatively equal distribution of NOx
 and PO4

3- (Figure 11a).  In June 

2018, there was a more even distribution of NOx to NH4
+, with a couple of transects 

(transects 4, 10) having higher PO4
3- concentrations. Geographic variation in June 

was much stronger—higher total nutrient concentrations in the northernmost and 

southernmost transects. July 2018 shifted to a much stronger dominance of NH4
+ and 

PO4
3- across all transects. The geographic variation for July 2018 was the opposite of 

June in that the lowest total dissolved nutrient concentrations were located in the 

northernmost and southernmost transects, with the more average concentrations at the 

central sampling locations. Similarly, July 2019 geographic variation had higher total 

concentrations of dissolved nutrients in all sites except for the two northernmost 

transects (transects 1, 2). NH4
+ had the highest percentage of combined nutrient 

concentrations in July 2019, with a small percentage of NOx and little PO4
3- present. 

Lastly, October 2018 was very different than the spring and summer months—there 

were high total concentrations of dissolved nutrients at all locations, and a more 

balanced nutrient profile. NOx and NH4
+ were both dominant, but PO4

3- 

concentrations were higher as well.   

At the chl a max, there were seasonal and geographic variations that were 

unique from those of the surface concentrations (Figure 11b). In May 2019, the total 

concentration of dissolved nutrients across all transects was higher than at any other 

sampling time. NH4
+ had the highest percentage distribution, but there were moderate 
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amounts of NOx and PO4
3- as well. In June 2018, the dissolved concentrations were 

very low across all transects, except the northernmost transect. Similar to May 2019, 

NH4
+ was the dominant nutrient, but NOx and PO4

3- were also present in moderate 

concentrations. In July 2018 the overall concentration of dissolved nutrients was 

moderate, with a lower concentration at transect 6 and higher concentrations at 

transects 8, 9. PO4
3- made up a higher percentage of the dissolved nutrient profile, but 

NH4
+ still made up the largest portion of the nutrient pool. In July 2019 there was 

much more geographic variation, with very low nutrient concentrations at transects, 1, 

2 and higher concentrations south of the Ocean City inlet. NH4
+ was the largest 

contributor to the dissolved nutrient pool, but at transects 1, 2, 6, and 8, there was a 

more even distribution of PO4
3-, NOx and NH4

+. October 2018 had a strong 

geographic variation—northern sites had higher concentrations and were dominated 

by NOx, whereas southern sites had lower concentrations and were more evenly 

distributed with NH4
+ dominance.  

At the bottom depths, nutrient concentrations early in the season were lower 

than July and October (Figure 11c). May 2019 had generally low concentrations of 

dissolved nutrients with slightly higher concentrations at transects 6 and 10. NH4
+ had 

the highest percentage of the total dissolved nutrients, with small concentrations of 

PO4
3-. In June 2018, the dissolved nutrient concentrations were low at all transects 

except for transects 1, 2, 4, 10. NOx had a higher percentage of the nutrient profile at 

transects 1, 2, but NH4
+ was higher at all other locations. In July 2018 there were very 

high concentrations of dissolved nutrients at all transects except transect 6—again, 

NH4
+ made up the largest portion of the nutrients in all locations. In July there were  
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Figure 11: Average dissolved nutrient concentrations (NH4
+, NOx, PO4

3-) by 
transect (1-10). Concentrations are categorized in columns from left to 
right by season (May 2019, June 2018, July 2019, October 2018). The size 
of each pie chart is determined by the quartile value of the combined 
dataset (<1.2, 1.5, 2.5, 8.3). Individual nutrients are distinguished by color 
and represent their portion of the total average concentration across a 
transect and sampling time. Maps are categorized by sampling depth; (A) 
surface, (B) chl a max, (C) bottom.  
 

A. 

B. 

C. 
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missing data points within transects 6 through 10, but the northern transects had high 

concentrations overall with large portions of NH4
+. In October 2018 NOx and NH4

+ 

both comprised high percentages of the nutrient profile, and there were high 

concentrations at all sampling locations (there are missing data points within transects 

7, 8, 9).  

Nutrient and Harmful Algal Bloom species variations at the surface 

The nutrient concentrations followed a similar pattern to that of the HAB 

species, with highest concentrations at the northern sites and decreasing 

concentrations towards the southern transects. Unlike the HAB species concentrations 

though, the nutrient concentrations spiked at the southernmost transect. The nutrient 

composition at most sites was consistent.  

 At the surface in July 2018, total average HAB concentrations ranged from 

1462-4895 cells L-1, and total average nutrient concentrations ranged from 10.7-25.5 

μM (Figure 12c). Pseudo-nitzschia spp. and Karenia spp. were more prominent in the 

northern transects (1-7), but Dinophysis spp. was high at transect 8. In one sampling 

location along transect 8, Dinophysis spp. exceeded MD DNR guideline’s bloom 

level of concern values, with a concentration of ~11,000 cells L-1. TN had the highest 

portion of the nutrient pool at all sampling locations in July 2018, but TP and PO4
3- 

concentrations were elevated at transects 3, 6, 8, and 10.  

In July 2019, nutrient concentrations were highest in the northern half of the 

sampling grid (1-5) with a range of 11.5-16.3 μM (Figure 12d, Table 6a). TN made 

up the highest portion of the nutrient pool across all transects, but NH4
+ made up over 
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25% of the total nutrient pool at transects 3, 4, 5, 7, 8. TP was the next largest portion 

of the combined nutrients, followed by NOx, and then PO4
3-.  

HAB concentrations in July 2019 were unique because all three HAB species 

were present, but not simultaneously at any single transect (Figure 12d). Transect 1, 

3, 4, and 5 contained small concentrations of Dinophysis spp.; transects 2 and 10 

contained only Karenia spp.; and transect 8 had small concentrations of Pseudo-

nitzschia spp. (125-1050 cells L-1). Transects 7 and 9 had no detected emergent HAB 

species (Table 6a). 

In October 2018, sampling took place following Hurricane Florence which 

impacted the mid-Atlantic Coast from September 9-17th, 2018 (Dance 2018). The 

combined average nutrient concentrations at the surface across all transects were 

relatively high with a range of 15.8-29.9 μM; the HAB concentrations had a very 

wide range of 725-17,120 cells L-1 (Figure 12e). The geographic variation of the 

nutrients showed higher concentrations in northern locations and incrementally 

decreasing concentration towards southern locations. The same was true of HAB 

species concentrations, with the exception of transect 9 that showed a spike in 

Pseudo-nitzschia spp. TN was still the dominant nutrient, but there was a higher 

concentration of NOx (in comparison to other sampling times) in the northern sites (1-

4). Overall, Pseudo-nitzschia spp. was the primary HAB species, but Karenia spp. 

and Dinophysis spp. were also present in low concentrations in northern sites.  

Nutrient and Harmful Algal Bloom species variations at the chlorophyll max 

The chl a max depth combined HAB species counts from May 2019 had the  
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smallest and lowest range of any sampling periods (1185-2188 cells L-1) (Table 6b, 

Figure 13a). The higher combined HAB species counts were located in the northern 

half of the sampling grid (transects 1, 2, 4). The primary HAB species present was 

Dinophysis spp., but Karenia spp. was present in lower concentrations at every 

transect except for transect 8. Pseudo-nitzschia spp. was present only in the 

northernmost transect and had the smallest portion of the HAB species concentration.  

 In May 2019, the higher combined nutrient concentrations were at the 

southernmost transects (9, 10) along with the transect immediately adjacent to the 

Ocean City Inlet (transect 3) (Figure 13a). The combined concentration of nutrients at 

the chl a max depth had the same range as the surface sampling depth (12.2-18.9 

μM). TN comprised the largest portion of the nutrient pool, and PO4
3- and NH4

+ had 

the next highest portions.  

In June 2018, chl a max depth samples of HAB species had the highest range 

of concentrations of all sampling times and depths (5270-87760 cell L-1) (Figure 13b, 

Table 6b). The highest combined concentrations of all HAB species were located 

along transects 3-7—transect 3 was located directly adjacent to the Ocean City Inlet. 

Karenia spp. was present at all transects except for the southernmost transect (10) and 

comprised the largest portion of the combined HAB species concentration at all 

transects except 8 and 10. Dinophysis spp. was present primarily along the 

northernmost (1, 2), and southernmost (7-10) transects. While Dinophysis spp. did not 

make up the largest portion of the combined HAB concentrations, it did have a large 

enough concentration at a single site along transects 1, 2, and 9 to exceed the MD 

state bloom level of concern guidelines (Table 1). Pseudo-nitzschia spp. was only 
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present at transects 1, 2 and had the smallest portion of the combined HAB species 

concentration along both transects. 

 July 2018 chl a max nutrient concentration ranges (12.7-22.4 μM) were very 

similar to the July 2018 surface ranges (10.7-25.5 μM) (Table 6b). The highest 

concentrations of combined nutrients were at the northern transects 1-3 and the 

southern transects 8, 9 (Figure 13b). The nutrient species proportions of the total 

combined concentrations remained similar regardless of geography: TN comprised 

the largest portion, then NH4
+, TP, PO4

3-, and NOx.  

 The combined HAB species concentrations in July 2018 (2720 – 21540 cells 

L-1) were much lower than those at the surface (1460 – 4895 cells L-1) (Table 6b). 

The higher combined concentrations were located along the more central transects (2-

6) (Figure 13c). Pseudo-nitzschia spp. was present along all transects and comprised 

the largest portion of the combined concentrations of HAB species at transects 1, 3, 4, 

9, and 10. Karenia spp. were present along every transects except for transect 8, but 

Karenia spp. had the highest portion of the combined concentrations along transects 

2, 5, and 6. Neither Karenia spp. nor Pseudo-nitzschia spp. had concentrations that 

exceeded MD state’s bloom level of concern at any single site. Dinophysis spp. did 

however have concentrations that exceeded MD’s bloom level of concern at a single 

site along transect 8 (Table 1). Dinophysis spp. was also present along all transects 

and takes up the largest portion of the combined concentrations at transects 7, 8.   

 In July 2019, combined nutrient concentration ranges at the chl a max (15.2-

24 μM) were much higher than that of the surface (11.5-16.3 μM) (Table 6b). The 

highest combined nutrient concentrations in July 2019 at the chl a max were along 
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transects 3, 5, 6, 9, 10 (Figure 13d). TN had the highest portion of the combined 

nutrient concentrations along all transects. Additionally, the transects with the highest 

combined nutrient concentrations had a larger portion of NH4
+ than at of the other 

transects. 

July 2019 combined HAB species concentrations were very different from the 

surface samples as well as all samples from July 2018 (Table 6b). The combined 

HAB species concentrations ranged from 250-11400 cells L-1 which was significantly 

higher than the surface concentration ranges (125-1050 cells L-1) and significantly 

lower than the July 2018 chl a max concentration ranges (2720-21540 cells L-1). The 

higher combined concentrations of HAB species were in the north and south 

(transects 1, 2, 10). At the chl a max in July 2019, Dinophysis spp. was the only HAB 

species present along all transects (Figure 13d). Karenia spp. was present along 

transects 1 and 2 and had the largest portion of the combined concentrations along 

transect 1. However, no concentration at a single sampling location was higher than 

the MD bloom level of concern thresholds for any emergent HAB species.  

In October 2018, the combined nutrient concentrations at the chl a max (20.1-

30.1 μM) were slightly higher than the surface (15.8-20.1 μM) 2018 (Table 6b). The 

combined concentrations of nutrients were higher in the northern half (transects 1-4) 

and lower in the southern half (transects 5-10) of the sampling grid. October 2018 

was different from all other sampling times because it had a significant amount of 

NOx and TP in comparison to other months. TN still was the dominant form of the 

combined nutrient pool along each transect (Figure 13e). NH4
+ had the second highest 

portion of the total combined nutrient pool at transects 1-3, but NOx had the second  
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highest portion at transects 7 and 9. TP contributed a more significant amount to the 

nutrient pool than in any other month and did not vary significantly by geography. 

PO4
3- proportions of total dissolved nutrients were the smallest and did not change 

geographically.  

The chl a max combined HAB species counts were also unique in October 

2018. The concentration ranges at the chl a max depths (870-19430 cells L-1) were 

very similar to those at the surface (725-17120 cells L-1) (Table 6b). With the 

exception of transect 3, 4 and 10, the combined HAB concentrations were at the 

higher end of the concentration range (Figure 13e). Transects 1, 5 and 9 had the 

highest combined concentrations. Unlike any of the other sampling times, Pseudo-

nitzschia spp. was the primary emergent HAB species present. Pseudo-nitzschia spp. 

had the highest portion of the total combined concentrations across all transects 

except for transect 3. Karenia spp. is the only other HAB species present at the chl a 

max in October 2018. Karenia spp. had the highest portion of the combined 

concentrations at transect 3, and had a portion at transects 4, 6 and 7, but transects 2 

and 10 contained only Pseudo-nitzschia spp.  

Nutrient, chlorophyll and Harmful Algal Bloom species threshold comparisons  

In order to assess the nutrient, chl a, and HAB species concentrations in more 

detail, scatter plot matrices for each variable (TN, TP, NH4
+, NOx, PO4

3-, chl a, 

Dinophysis spp., Karenia spp., and Pseudo-nitzschia spp.) were compared to 

threshold values from the MCB standards (for total nutrients and chl a) and the MD 

state guidelines for bloom levels of concern for HAB species (Figure 14-16, Table 7-
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8). There were no threshold values for dissolved inorganic nutrients, but scatter plots 

still revealed patterns based on depth, proximity to shore, and latitude (Figure 17-19).  

 Chl a concentration patterns did not show strong variation with proximity to 

shore during any sampling time or at any transect (Figure 14). The highest overall 

concentrations of chl a occurred in May 2019 and July 2019 (with concentrations of 

~8 μg chl a L-1) (Figure 14a,14d). Moderate concentrations across the sampling grid 

occurred in June 2018, July 2018 and October 2018 (Figure 14b, 14c, 14e). The 

highest individual concentration was found in October 2018 at the bottom depth, 

offshore, transect 3 (~9 μg chl a L-1). Many of the chl a max depth samples were 

coincident with either surface of bottom samples (shown by missing data points in the 

“Chlorophyll Max” column of the matrix). Coincident samples were most frequent in 

July 2018, July 2019 and October 2018 at the midshore locations (Figure 14c, 14d, 

14e). None of the chl a concentrations exceeded the MCB maximum threshold of 15 

μg chl a L-1.  

 The TN concentrations had more seasonal variation than the chl a 

concentrations (Figure 15). May and July 2019 had the lowest concentrations, and 

most samples were ~10 μM-N, and higher concentrations to the south (inshore) ~18 

μM-N (Figure 15a). June 2018 had a broader range of TN concentrations (~10-22 

μM-N), and the highest concentration was at the midshore site along transect 6 at the 

bottom depth (~39 μM-N) (Figure 145b). In July 2018, the majority of the 

concentrations were low (~10-15 μM-N) but there were several peaks in the midshore 

samples (Figure 15c). The highest July 2018 sample was at the midshore site along 

transect 9 at the surface, and at ~52 μM-N it did exceed the MCB threshold value of  
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46 μM-N (Table 7). Another spike in the TN concentrations during July 2018 was 

located at the chl a max midshore site along transect 9 with a concentration of ~31 

μM-N (Figure 15d). October 2018 concentrations had consistently higher 

concentrations across all sampling locations with a range of ~10-28 μM-N (Figure 

15e). 

 The TP MCB threshold is 1.2 μM-P and there were numerous locations from 

every sampling time that exceeded the threshold value (Figure 16, Table 7). May 

2019 and June 2018 both had the lowest ranges of the sampling times, going from 

~0.1-1.4 μM-P (Figure 16a, 16b). In May 2019, the locations that exceeded the MCB 

threshold were located at the surface and bottom inshore and midshore along transect 

3, as well as the chl a max (inshore and offshore) and bottom (inshore) along transect 

10 (Figure 16a). June 2018 was different than May 2019 because the range of 

concentrations across all sampling locations was generally higher (~0.4-1.3 μM-P) 

but there are fewer sites that exceeded the MCB threshold. All of the threshold 

exceedances occurred at the inshore sites; along transect 10 at the surface and chl a 

max, and along transect 2 at the bottom site (Figure 16b). July 2018 had a large 

portion of the sampling locations above the MCB threshold, and some of the locations 

had concentrations values more than double the threshold (Figure 16b). At the surface 

in July 2018 there was one location that exceeded the MCB threshold, midshore 

transect 9 with a concentration of 2.6 μM-P. At the chl a max. there were numerous 

locations that exceeded the threshold value of 1.2 μM-P; transect 1 offshore, transect 

2 midshore, transect 8 inshore, transect 9 midshore and offshore, and transect 10 

inshore and offshore. In July 2018’s bottom samples there were more samples that  
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exceeded the MCB threshold than did not. Inshore sites along transect 2, 3, 5, 8, 9, 

and 10; midshore sites along transects 2, 3, 6, and 9; and offshore sites along transects 

1, 2, 3, 5, 7, 8, 9, and 10 all had concentrations higher than 1.2 μM-P (Figure 16b). 

October 2018 and July 2019 had the highest concentration ranges of all sampling 

times (~0.4-2.8 μM-P) (Figure 16d, 16e). At the surface, inshore sites along transect 

1, 2, 3, 4, 5, 6, and 9; midshore sites along transects 2, 3, 4, 5, and 9; and offshore 

sites along transects 2, 3, 6, and 10 all exceeded the MCB thresholds in October 2018 

(Figure 16e). Despite having many coincident values with the chl a max and 

surface/bottom depths, the inshore site along transects 3 and 6 also exceeded the 1.2 

μM-P threshold. At the bottom sampling depth, nearly every site exceeded the MCB 

threshold except for the inshore and offshore sites along transect 2. In July 2019, 

nearly all bottom sampling sites exceeded the MCB threshold regardless of proximity 

to shore (Figure 16d). Additionally, non-coincident chl a max sites all exceeded the 

MCB threshold for TP in July 2019.  

 The dissolved inorganic nutrients did not have thresholds set for MD’s coastal 

ocean, but there was drastic depth, geographic and seasonal variation specific to each 

nutrient species (Figure 17-19). NH4
+ was highest in July 2019 and October 2018 

with the highest concentrations (up to 7.1 μM-N) (Figure 17d, 17e). NOx
 also had its 

highest concentrations in July 2019. and October 2018 with a high of ~2.1 μM-N in 

July and ~6.0 μM-N in October (Figure 18c,18e). There was also a distinct 

geographic pattern during all sampling times; NOx concentrations were higher in the 

northern and southern sites (1, 2, 9, 10) with a narrow peak at central sites (3, 4)—all 

of which were associated with anthropogenic influences near the outfalls and inlets  
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(Figure 18). PO4
3- concentrations were generally higher at the bottom sampling depth 

across all sampling times and locations (Figure 19). The highest concentrations were 

in July 2018 and October 2018, however October had overall higher concentrations 

(up to 1.2 μM-P) across all sites rather than a single peak concentration (Figure 19c, 

19e).  

Dinophysis spp. was the only emergent HAB species of concern that had 

sample locations which exceeded the MD state guidelines for bloom levels of concern 

(10,000 cells L-1) (Figure 20, Table 8). No samples in May 2019, July 2019, nor 

October 2018 exceeded the threshold, but four samples in June 2018 and two samples 

in July 2018 were higher than 10,000 cells L-1. In June 2018 the inshore surface 

sample along transect 1 had a concentration of ~1400 cells L-1 (Figure 20b). Chl a 

max samples from June 2018 exceeded the bloom level of concern threshold at 

inshore sites along transects 1, 2 and 9.  July 2018 samples were very similar to June 

2018 with an inshore surface and chl a max sample above 10000 cells L-1 along 

transect 8 (Figure 20c). May 2019 had values that reached up to 5000 cells L-1 at the 

surface along inshore transects 2 and 7, and offshore transect 1; and at the chl a max 

along midshore transect 1, and offshore transects 1 and 4 (Figure 20a). In July 2019, 

the Dinophysis spp. concentrations (~0-2600 cells L-1) with only one single site at the 

chl a max offshore transect 1 was higher than 5000 cells L-1 (Figure 20d). In October 

2018, only five samples include Dinophysis spp. concentrations at all and they were 

all less than 500 cells L-1; surface samples inshore along transect 2, 3 and 4, as well as 

midshore along transect 9 and offshore along transect 8 (Figure 20e).  

  



 

 

59 

 

  

Ta
b

le
 8

: 
Li

st
 o

f 
M

C
B

 t
h

re
sh

o
ld

 e
xc

ee
d

an
ce

s 
o

f 
H

A
B

 s
p

ec
ie

s,
 s

am
p

lin
g 

lo
ca

ti
o

n
, d

ep
th

 a
n

d
 s

am
p

lin
g 

ti
m

e.
 



 

 

60 

 

  

Fi
gu

re
 1

9:
 M

at
ri

x 
p

lo
ts

 o
f 

ra
w

 d
at

a 
sp

lit
 in

to
 w

it
h

 t
h

re
e

 c
o

lu
m

n
s 

to
 c

at
eg

o
ri

ze
 b

y 
d

ep
th

 a
n

d
 t

h
re

e
 r

o
w

s 
to

 
ca

te
go

ri
ze

 b
y 

p
ro

xi
m

it
y 

to
 s

h
o

re
. E

ac
h

 p
lo

t 
w

it
h

in
 t

h
e 

m
at

ri
x 

h
as

 in
d

iv
id

u
al

 d
at

a 
p

o
in

ts
 f

ro
m

 t
ra

n
se

ct
s 

1
-1

0 
al

o
n

g 
th

e 
x-

ax
is

 a
n

d
 c

o
n

ce
n

tr
at

io
n

 v
al

u
es

 o
f 

P
O

4
3-

 (μ
M

-P
) 

o
n

 t
h

e 
y-

ax
is

. (
A

) 
M

ay
 2

01
9,

 (
B

) 
Ju

n
e 

20
18

, (
C

) 
Ju

ly
 2

01
8,

 (
D

) 

Ju
ly

 2
01

9,
 (

E)
 O

ct
o

b
er

 2
0

18
. 

 
 



 

 

61 

 

  

Fi
gu

re
 2

0:
 M

at
ri

x 
p

lo
ts

 o
f 

ra
w

 d
at

a 
sp

lit
 in

to
 w

it
h

 t
w

o
 c

o
lu

m
n

s 
to

 c
at

eg
o

ri
ze

 b
y 

d
ep

th
 (

su
rf

ac
e 

an
d

 c
h

l a
 m

ax
) 

an
d

 t
h

re
e

 
ro

w
s 

to
 c

at
eg

o
ri

ze
 b

y 
p

ro
xi

m
it

y 
to

 s
h

o
re

. E
ac

h
 p

lo
t 

w
it

h
in

 t
h

e 
m

at
ri

x 
h

as
 in

d
iv

id
u

al
 d

at
a 

p
o

in
ts

 f
ro

m
 t

ra
n

se
ct

s 
1

-1
0 

al
o

n
g 

th
e 

x-
ax

is
 a

n
d

 c
o

n
ce

n
tr

at
io

n
 v

al
u

es
 o

f 
D

in
op

h
ys

is
 s

pp
. (c

el
ls

 L
-1

) 
o

n
 t

h
e 

y-
ax

is
. T

h
e 

re
d

 li
n

e 
in

d
ic

at
es

 t
h

e 
M

C
B

 t
h

re
sh

o
ld

 o
f 

10
,0

0
0 

ce
lls

 L
-1

. (
A

) 
M

ay
 2

0
1

9
, (

B
) 

Ju
n

e
 2

0
1

8
, (

C
) 

Ju
ly

 2
0

1
8

, (
D

) 
Ju

ly
 2

0
1

9
, (

E)
 O

ct
o

b
er

 2
0

1
8

.  

 



 

 

62 

 

Karenia spp. had no samples that exceeded the MD state guidelines for bloom levels 

of concern (10,000,000 cells L-1) (Figure 21). The highest concentration of any 

Karenia spp. sample was around 30,000 cells L-1 (Figure 22). In May 2019, nearly all 

Karenia spp. concentrations were from the chl a max sampling depth and the highest 

concentrations were located offshore along transects 1 and 4 (Figure 22). June 2018 

had more abundance at the surface and chl a max with samples reaching up to 

~19,000 cells L-1 at the chl a max midshore sample along transect 5 (Figure 22b). 

July 2018 also had Karenia spp. presence at the surface and chl a max, with one 

single location at the chl a max along offshore transect 2 reaching over 30,000 cells 

L-1—the highest concentration of Karenia spp. found at any sampling time (Figure 

22c). July 2019 had very few samples with Karenia spp. presence, mostly at surface 

samples. However, the inshore sample at the chl a max along transect 1 did have the 

highest concentration of this sampling time (~1,650 cells L-1) (Figure 22d). October 

2018 had few samples at the surface and chl a max with Karenia spp. present, but the 

highest concentration was a chl a max depth inshore site along transect 7 (with only 

1,000 cells L-1 (Figure 22e). 

 Pseudo-nitzschia spp. also had no samples that exceeded the MD state 

guidelines for bloom levels of concern (1,000,000 cells L-1) (Figure 23). In May 

2018, only the chl a max inshore and offshore sites contained any appreciable 

concentrations of Pseudo-nitzschia spp. (with a high of ~300 cells L-1) (Figure 23a). 

June 2018 had small concentrations (up to ~1,600 cells L-1) at inshore, midshore, and 

offshore sites along transects 1-6 (Figure 23b). July 2018 had Pseudo-nitzschia spp. 

presence at nearly every sampling location, but with low concentrations, up to ~6200  
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cells L-1 (Figure 23c). In July 2019 there were concentrations of Pseudo-nitzschia spp. 

only in surface samples, but at inshore, midshore, and offshore sites along nearly 

every transect (Figure 23d). October 2018 had the highest concentrations as well as 

the most presence (Figure 23e). The highest concentrations reached up to ~52,000 

cells L-1 at the inshore and midshore sites along transect 9 (surface and chl a max). 

Nearly every sampling location and depth had some presence of the HAB species, but 

at concentrations less than 10,000 cells L-1. 

Bioassay Experiments 

Chlorophyll a 

Bioassay experiments had highest chl a concentrations in the N+P treatments 

in June and July, and NOx in September (Figure 24a, 24b, 24c). The highest 

concentration from bioassay 1 was N+P treatment at 22.9 μg L-1, followed closely by 

nitrate and ammonium treatments (Figure 24a). The highest concentration from the 

July bioassay was the N+P treatment with 18.2 μg chl a L-1, followed closely by the 

NH4
+ treatment (Figure 24b). The September bioassay was slightly different than 

June and July, with the highest chl a concentrations in the NOx treatment, followed by 

the N+P treatment, then the PO4
3- treatment (Figure 24c). September bioassay results 

were different from the other experiments likely because the initial water samples 

were collected under a storm surge and hurricane warning, so the nutrient 

concentrations were probably much higher during the initial water collection. For all 

bioassay results, chl a concentrations remained low in the PO4
3- treatment and control, 

even within replicates.  
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Harmful Algal Bloom species 

Dinophysis spp. had the highest concentration in bioassay 1 with a peak of 

600 cells L-1 during day 1 from the control treatment (Figure 25a). Karenia spp. had 

concentrations up to 400 cells L-1 during bioassays 1 and 3. Higher concentrations of 

Karenia spp. occurred in the control, N+P and NO3
- treatments (Figure 25b). Pseudo-

nitzschia spp. had the highest concentrations of all HAB species for every bioassay 

(up to 18,000 cells L-1 in bioassay 3) (Figure 25c). The highest concentrations of 

Pseudo-nitzschia spp. occurred on days 2 and 3 in the N+P, and NH4
+ and PO4

3- 

treatments. 
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Figure 24: Average extracted chl a concentrations from bioassay experiments under 
nutrient treatments (Control, N+P, NH4

+, NOx, PO4
3-) from the Ocean City Inlet. (A) 

Bioassay 1 - June 2019, (B) Bioassay 2 - July 2019, (C) Bioassay 3 – September 2019.  
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DISCUSSION 

Physical factors 

Physical factors are the dominant source of variation in the nutrient, chl a, and 

HAB concentrations in the coastal waters of the Mid-Atlantic Bight (MAB) but they 

are neither stable nor predictable (Cloern and Jassby 2008; Racault et al. 2012). 

Statistical analyses and seasonal comparisons from the present study showed strong 

influence of physics including stratification, on the water column in MD’s coastal 

ocean. Intra-annual temperature, salinity, and density changes in the water column 

affecting stratification in the region's coastal waters are influenced by estuarine and 

freshwater discharge as well as precipitation and storm frequency (Xu et al. 2011; Xu 

et al. 2020). Statistical significance testing of temperature and salinity identified 

temperature as a significant factor in the HAB concentration variations. The regional 

physical variables (wind direction, freshwater discharge) affect the water column 

stratification (including the presence of a sub-surface chl a max layer) and the 

seasonal phytoplankton bloom dynamics (Li et al. 2015). Wind forcing and upwelling 

are also important factors in shorter term water column stratification and chl a 

concentrations (Glenn et al. 2004a; Kang et al. 2017). In the MCBs in particular, wind 

forcing and tidal exchange of saltwater into the embayments are both important for 

nutrient, chl a, and salt flux, but tides become less important when there are higher 

stronger winds that align with the shape of the bays (southwest) (Kang et al. 2017).  

The North Atlantic coastal waters are influenced by the Gulf Stream moving 

north, offshore near the edge of the continental shelf. Anti-cyclonic eddies can spin 
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off from the Gulf Stream and transport cold, nutrient rich waters into the coastal 

environment. Cyclonic eddies, which tend to last longer and have higher energy, can 

also propagate westward towards the coastal United States transporting nutrients 

(Kang and Curchitser 2013). Labrador Slope Water from the Labrador Sea and Warm 

Slope Water from the Central North Atlantic can be carried southwest to the MAB 

during years with low North Atlantic Oscillation (NAO) indices (Townsend et al. 

2004). The Labrador Slope Water is low in inorganic nutrients (such as NOx), 

whereas Warm Slope Water has NOx concentrations averaging 17 µM (Townsend 

1998). The influence of these water masses impacts the primary production and 

phytoplankton community structure of the North Atlantic coastal waters.  

Summertime upwelling events are common on the New Jersey shelf (north of 

MD coastal waters) and are often associated with strong southwesterly winds (Glenn 

et al. 2004a). Similarly, in the present study, July and October observations provided 

evidence of upwelling conditions with colder, saltier, and nutrient-rich waters at the 

bottom near Chincoteague Inlet. Weather events, such as tropical storms and 

hurricanes, are common in late summer and early autumn in this region and create a 

well-mixed water column (from wind/storm-surges) which re-suspend nutrients and 

phytoplankton and enhances benthic-pelagic coupling (Griffiths et al. 2017; 

Friedrichs et al. 2019).  

When combining all the data collected over 5 cruises, strong seasonal patterns 

emerged for both dissolved nutrients and chl a concentrations (Figure 26). Across all 

sampling times, dissolved nutrients were highest at the bottom sampling depths and 

NH4
+ had the highest concentration of all dissolved nutrients, with varying  
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Figure 26: Seasonal diagram summarizing the chl a and dissolved nutrient (NH4

+, 
NOx, PO4

3-) concentration patterns by depth and season. The size of each pie chart is 
determined by the quartile value of the combined dataset—<2.7-4.8 μg L-1 for chl a 
and <1.7-15.1 μM for nutrients. Individual nutrients are distinguished by color and 
represent their portion of the total average concentration across the entire sampling 
grid. Columns are separated by season and rows are separated by depth. Spring 
consists of May 2019 and June 2018 sampling times; summer is July 2018 and July 
2019, and Autumn is October 2018.  
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proportions of PO4
3- and NOx. In the spring, combined dissolved nutrient 

concentrations were lower than in the summer and autumn (with elevated NOx
 

concentrations at the surface) but chl a concentrations overall, were the highest. 

Summer samples were slightly elevated for dissolved nutrients, but much lower for 

chl a. However, because there is a stark difference between the 2018 (record rainfall) 

and 2019 (less rainfall) summer samples (Ocean City Municipality Airport, Surface 

from the University of Utah MesoWest Surface Weather Maps), it is important to 

note that dissolved nutrients were much higher in both the surface and chl a max in 

summer 2019 (Figure 27) (cf. Sedwick et al. 2018). This difference was perhaps due 

to a lag effect of record rains of late 2018 into the following season of 2019, caused 

by freshwater storage in soils that was slowly released through groundwater 

(Brookfield et al. 2021). Based on PCA analysis, summer months had less overlap of 

data categorized by depth, which indicates stronger depth stratification—particularly 

in July 2019. The relationship between NH4
+ and depth was negative in July 2019, 

unlike any other sampling time. Additionally, 2019 chl a concentrations were lower at 

the surface samples compared to 2018. After strong physical mixing events and 

increased precipitation, October 2018 observations had the highest dissolved nutrient 

concentrations (with elevated NOx and PO4
3-) compared to other sampling times.  

The highest chl a concentrations occurred at the bottom sampling depths, 

potentially as a result of nutrient upwelling and benthic pelagic coupling (Nixon 

1981). NH4
+ was the primary dissolved nutrient during the spring and summer 

months, but higher concentrations of PO4
3- and NOx occurred in the autumn, likely 

due to mixing events (such as hurricanes and other storm events). Episodic small  
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Figure 27: Diagram summarizing the chl a and dissolved nutrient (NH4

+, NOx, PO4
3-) 

concentration patterns by depth for July 2018 and July 2019. The size of each pie 
chart is determined by the quartile value of the combined dataset—<2.6-4.6 μg L-1 
for chl a and <2.0-4.1 μM for nutrients. Individual nutrients are distinguished by 
color and represent their portion of the total average concentration across the 
entire sampling grid. Columns are separated by season and rows are separated by 
depth.  
  



 

 

75 

 

upwelling events are a common phenomenon north of this sampling grid, in New 

Jersey (especially during the late summer, early autumn months) (Glenn et al. 2004b). 

More details of the physical oceanographic features of the Delmarva region of the 

Mid-Atlantic coast would help discern some of the causes of these features.  

Spatial Comparison 

The coastal waters of the Mid Atlantic Bight (MAB) consist of North Atlantic 

waters on the eastern US continental shelf. The water depth in this region ranges from 

14 – 98 m and varies in surface salinity from 30-35.3 psu (Balthius et al. 2009). DIN 

and DIP are typically higher in the bottom waters, with average concentrations ~3 

µM-N and ~1.3 µM-P (Balthius et al. 2009). Chl a concentrations of the shelf waters 

have an average of 0.23 µg chl a L-1 in surface waters and 0.3 µg chl a L-1 in bottom 

waters (Balthius et al. 2009). In the New York Harbor region, TN concentrations 

range from 28.6 – 85.7 µM-N, TP concentrations range from 1.0 – 4.1 µM-P, and chl 

a concentrations range from 5-20 µg chl a L-1 (Taillie et al. 2020). The MCB 

thresholds are 46 µM-N (0.65 mg L-1) for TN, 1.2 µM-P (0.037 mg L-1) for TP, and 

15 µg L-1 for chl a (Table 1) (Dennison et al. 2009). Regional chl a ranges are also 

broad, with average concentrations of 10.3 µg chl a L-1 in the lower Chesapeake Bay, 

4.4 µg chl a L-1 in the inshore MAB, and 0.36 µg chl a L-1 in the offshore MAB 

(Harding et al. 2005). Additionally, an EPA technical report in 2001, established 

Chesapeake Bay polyhaline chl a ranges; 3 – 7 µg chl a L-1 in the spring, 4 – 9 µg chl 

a L-1 in the summer (EPA 2001). 

Average chl a concentrations from MD coastal waters data in 2018 and 2019 

(Table 9) had ranges from 2.7 – 5.0 µg chl a L-1, which aligns well with the inshore  
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MAB, but is higher (in many cases) than the EPA ranges, and lower than the New 

York Harbor region, MCBs and Chesapeake Bay. Average 2018 – 2019 TN 

concentrations in MD’s coastal waters are about half of the New York Harbor and 

MCB concentrations, with a range of 10.3 – 17.4 µM-N. TP concentrations are only 

slightly lower in MD’s coastal waters (0.8 – 1.4 µM-P) than in the New York Harbor 

region, but often exceed the MCB threshold.  

Nutrient limitation 

Nitrogen limitation is a key factor in coastal eutrophication and algal growth, 

and elevated nitrogen sources in coastal waters are often caused by human waste 

(Ryther and Dunstan 1971). The DIN:DIP ratio for the MAB region suggests nitrogen 

limitation (which is indicative of typical ocean water in the North Atlantic region) 

with an average ratio of 4.5 in bottom waters and 7.0 in surface waters (Balthius et al. 

2009). The typical molar ratio associated with ocean ecosystems for nitrogen and 

phosphorus is 16:1 (Redfield 1934), with ratios less than 16:1 indicative of nitrogen 

limitation.  

Excess nitrogen is a potential cause for the elevated HAB concentrations that 

coincided with sampling locations in proximity to areas with higher population 

densities on Fenwick Island during densely populated summer months (Figure 28). 

Based on statistical analyses, NOx and NH4
+ were the most determinant factors in the 

variation of nutrient, HAB and environmental variables in the sampling region. 

Additionally, bioassay experiment results and N:P ratios were consistent with 

nitrogen limitation.  Nutrient input into the coastal ocean is multi-faceted and has 

numerous sources—submarine groundwater discharge, riverine input, oceanic  
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circulation, and atmospheric deposition of nitrogen can all impact the regional 

nutrient budget and cause major changes in algal growth ability (Fisher et al. 1992; 

Paerl et al. 2002; Sedwick et al. 2018; Brookfield et al. 2021). 

Karenia spp. 

Karenia spp. are more commonly associated with sub-tropical conditions, but 

the spatial variability has been increasing over time (Heisler et al. 2008; Townhill et 

al. 2018; X. Li et al. 2019; Anderson et al. 2021). Karenia mikimotoi is commonly 

found in New England, and has been found in bloom concentrations as far north as 

Maine in 2019 (Townhill et al. 2018; X. Li et al. 2019). While Karenia spp. has some 

mixotrophic ability; taking up dissolved organic nitrogen and phosphorus from 

Trichodesmium (Mulholland et al. 2004; Sipler et al. 2013) and preying on 

picoplankton (Glibert et al. 2009; Procise 2012), there are still a lot of unknowns 

regarding species details, bloom triggers, and toxicity (Burkholder et al. 2008; Heil et 

al. 2014a; Glibert et al. 2016; Stoecker et al. 2017). Karenia spp. are most prominent 

in Florida’s Gulf Coast, and typically associated with increased terrestrially sourced 

nitrogen during summer months (Heil et al. 2007; Heil et al. 2014a; Heil. et al. 2014b; 

Medina et al. 2020).  

While the MD coastal data from 2018 and 2019 had evidence of several toxin 

producing Karenia spp. in low concentrations, there are questions over the regulatory 

threshold values in the region, given the mixed species assemblage, and the fact that 

most research has revolved around K. brevis in the Gulf of Mexico. The National 

Shellfish Sanitation Program (NSSP) has set the Karenia brevis cell concentration 

threshold at 5,000 cells L-1—due to the prevalence of NSP in that regions and the 
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potential human health impacts. Due to difficulties in distinguishing species of 

Karenia, this threshold is often used nationally to increased monitoring and test for 

toxins (National Shellfish Sanitation Program (NSSP) Guide for the Control of 

Molluscan Shellfish 2015). However, given that K. brevis has not been the dominant 

species of Karenia sampled in MD waters, and the questions about toxicity of the 

more prominent species in this region, K. papilionacea and K. mikimotoi, the 

threshold of concern in MD is currently 10,000,000 cells L-1 (Table 1) (Allen et al. 

2014; Heil and Steidinger 2009). None of the 2018 – 2019 MD coastal water data 

exceeded the MD DNR threshold, but there were concentrations up to 300,000 cells 

L-1 in June 2018, 30,000 cells L-1 in July 2018, and 22,000 cells L-1 in July 2019, 

which did exceed the NSSP threshold and, in June 2018, the human respiratory health 

impact threshold (Heil and Steidinger 2009; National Shellfish Sanitation Program 

(NSSP) Guide for the Control of Molluscan Shellfish 2015). Additional research 

regarding the toxicity of other Karenia spp. is urgently needed to establish 

appropriate monitoring thresholds.  

Dinophysis spp. 

Dinophysis spp. is found all around the world because it is adaptable to a wide 

range of water quality conditions (De Gruyter et al. 2012; Tong et al. 2015). 

However, high concentrations of toxin producing Dinophysis spp. are typically found 

in areas with stable water columns (Tong et al. 2015; Anderson et al. 2021). 

Dinophysis spp. is known to be strongly mixotrophic and specifically reliant on 

grazing, particularly on Myrionecta rubra, and has employs chloro-kleptoplasticity, 

retaining acquired plastids from prey, which allows Dinophysis to survive in a broad 
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range of geographic regions (Kim et al. 2008, Pappas pers comms). Indeed, toxin 

production in Dinophysis spp. is associated with high reliance on grazing (Tong et al. 

2011). Increased rates of DIN and DIP do not directly affect Dinophysis spp. toxin 

production but increase prey biomass as a food source (Kozlowsky-Suzuki et al. 

2006; Tong et al. 2015). Dinophysis spp. is also preyed upon by numerous copepods, 

including Acartia bifilosa, Temora longicornis, and Centropages typicus, which do 

not appear to be affected by the toxicity (Kozlowsky-Suzuki et al. 2006).  

In MD’s coastal waters, Dinophysis spp. had higher concentrations associated 

with lower ambient dissolved nutrients in the present study. This is likely due to 

better suitability to physical conditions that are known to be exploited by HAB 

species, such as temperature, light availability, and prey rapidly taking up dissolved 

nutrients, and its strong mixotrophic capacity. Dinophysis spp. exceeded MD bloom 

level of concern thresholds at both the surface and chl a max 0.03% of the time in 

July 2018. In June 2018, samples of Dinophysis spp. exceeded MD threshold values 

0.1% of the time at the surface; and 0.03% of the time at the chl a max. These 

exceedances all occurred at inshore sites adjacent to MCB inlets/sewage outflow 

areas (transects 1, 2, 8, 9). Due to increased eutrophication associated with global 

climate, Dinophysis spp. toxicity, bloom concentration frequency and intensity, as 

well as spatial distribution is increasing (Heisler et al. 2008). Thus, close future 

monitoring of Dinophysis spp. is warranted. 

Pseudo-nitzschia spp. 

Pseudo-nitzschia spp. is one of the dominant phytoplankton in the MAB (De 

Gruyter et al. 2012). Toxigenic Pseudo-nitzschia spp. have high competitive fitness 
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and are able to survive in unfavorable conditions (Olson et al. 2008; Trainer et al. 

2012). In the Chesapeake Bay region in particular, Pseudo-nizschia spp. is known to 

occur in low temperature, high light fluctuation events (upwelling conditions) and 

some species are found primarily in upwelling zones (Thessen and Stoecker 2007). . 

These areas are generally higher in NOx, which diatoms such as Pseudo-nitzschia 

generally uptake better than other phytoplankton (Glibert et al. 2016). Additionally, 

Pseudo-nitzschia spp. abundance is important to toxin bioaccumulation in the food 

web because its predators, which include copepods such as Calanus spp. Acartia spp., 

and dinoflagellates such as Protoperidinium spp., do not appear to be affected by the 

toxin (Olson et al. 2006; Trainer et al. 2012; Miesner et al. 2021).  

In MD coastal waters from 2018 – 2019, Pseudo-nitzschia spp. occurred in 

higher concentrations in October 2018, which is consistent with being re-suspended 

by mixing events partially because they lack flagella and are unable to move up and 

down in the water column (Trainer et al. 2012), as well as the increase in NOx during 

this time period which is also consistent with other studies (Glibert et al 2016). It is 

also possible that the increased PO4
3- concentrations present in the water column 

created more suitable nutrient conditions (Lema et al. 2017). There are, however, 

significant knowledge gaps in the dissolved nutrient and grazing effects on Pseudo-

nitzschia spp. as well as toxin production, in MD’s coastal waters.  

Management Implications 

The MCBs water quality has been routinely monitored for over a decade, with 

nutrient and chl a thresholds in place to monitor ecosystem changes (Table 1). There 

have been significant management measures implemented to improve the health of 
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the MCBs, and an annual report card is published by the University of Maryland 

Center for Environmental Science- Integration and Application Network (UMCES-

IAN) in association with the MD DNR and the MCBs Program (MCBP) among 

others (Dennison et al. 2009; 2018 Coastal Bays Report Card).  

In 2009, scientists and managers established the following water quality 

nutrient threshold concentrations; 46µM (0.65 mg L-1) for TN, 1.2 µM (0.037 mg L-1) 

for TP, and 15 µg chl a L-1 (Table 1) (Dennison et al. 2009). These threshold values 

were determined from data collected between 2004-2006 and are used to indicate the 

ecosystem health conditions of the MCBs. The annual Coastal Bays Report Card 

ranks the condition of the coastal bays in regard to the threshold values previously 

established (2018 Coastal Bays Report Card). In 2018, the overall health of the 

MCBs was ranked “good” scoring 71/100. TN concentrations were “good”, Total Chl 

a concentrations were “very good” , and TP concentrations were “moderate” (2018 

Coastal Bays Report Card). While the health of the MCB system is important, it is 

not a closed system. Influences from the connected waterways impact the water 

quality of the MCBs as well, and vice versa.  There are two inlets connecting the 

Atlantic Ocean into the MCBs: Ocean City Inlet, and Chincoteague Inlet in VA to the 

south (Figure 1). Tides and currents create an exchange of the water from rivers 

flowing into the MCBs with the Atlantic Ocean water (Kang et al. 2017). This water 

can carry nutrients and phytoplankton which ultimately affect the health of the coastal 

ocean ecosystem. 

On the east coast, it is unusual to have an undeveloped coastal National Park 

region that is protected and preserved, such as ASIS (Carruthers et al. 2013), which 
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makes this region particularly unique. The NPS has the responsibility of monitoring 

all natural resources that influence ASIS, as well as “protect water and the people, 

and environment that rely on the availability of clean water,” (National Parks Service 

1916). Data from the present study in 2018 and 2019, showed the highest 

concentrations of nutrients, chl a, and HABs all occurred in areas in proximity to 

estuarine inlets and/or sewage outflow areas. The most northern sites were impacted 

more intensely by anthropogenic influences and have larger inlet inflow and outflow 

through DE sewage outflow to the north of the sampling grid, the OC sewage outflow 

and the OC inlet. In the summertime when there are more people visiting the region 

for vacation, recreation, fishing, etc., there is compounding influence of high 

nutrients, chl a, and HAB concentrations in the northern transects, especially in 

surface samples. While there is substantial nutrient, HAB and chl a monitoring inside 

MD’s coastal lagoons, coastal ocean waters are not given the same attention. There is 

a significant need to monitor the sewage outflows in the region in order to understand 

the baseline nutrient and chl a concentrations that are being released into offshore 

ocean waters in order to protect the integrity of ASIS as a unique area as well as the 

coastal MD communities.  

 Additionally, there are current and future development projects that will 

significantly impact ASIS, the MCBs, Fenwick Island and the coastal inland region of 

MD. Fenwick Island is regularly stabilized by pumping offshore sand onto the 

beaches, and an artificial jetty was built in 1934 to preserve the Ocean City inlet. The 

artificial inlet and stabilization has disrupted the natural sand cycling that is still 

occurring on ASIS (Dennison et al. 2009). Additionally, Ocean City has proposed a 
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controversial offshore windfarm development project that could increase boat traffic 

in the area during construction, and create irreversible changes to the ocean 

ecosystem (Soper 2021; Town of Ocean City Maryland 2021). Without regular 

monitoring of the current ocean ecosystem, it will not be possible to understand the 

full extent to which these construction projects alter the landscape.  
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FUTURE RESEARCH 

The statistically significant differences in HAB species concentrations 

between the surface and chl a max sampling depths suggest that further routine 

monitoring is needed in the area. Currently, only monthly surface samples are taken 

by the Maryland Department of the Environment (MDE) in conjunction with MD 

DNR analyses for emergent HAB species presence. Surface samples alone do not 

provide enough information about the potential for bloom events. Additionally, the 

threshold values used by the MCBs are not adequate for the coastal ocean. New 

threshold values for chl a, HABs, total nutrients, and dissolved nutrients should be 

formulated for the coastal ocean because the physical, chemical, and biological 

processes that occur and the potential impacts in coastal waters are very different to 

those of estuarine waters such as the MCBs.  

There is still much more information that can be synthesized from the dataset 

that was generated as part of this project, including the impact of temperature and 

precipitation over time with regards to nutrients and HABs. Additionally, identifying 

the physical dynamics of the coastal region, as well as potential nutrient sources using 

stable isotope (del N15) techniques will help determine the causes of nutrient and 

HAB fluctuations. Tidal inlet exchange, upwelling and other physical models can 

help paint a more complete picture of MD’s coastal ocean. Precipitation and 

temperature studies are underway to compliment this dataset as well.  
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