
 

 

 

ABSTRACT 

Title of Dissertation: INTRODUCING A GRAPH-BASED 

NEURAL NETWORK FOR NETWORKWIDE 

TRAFFIC VOLUME ESTIMATION 

  

 Sara Zahedian 

  

Dissertation directed by: Professor Ali Haghani, Department of Civil and 

Environmental Engineering 
 

Traffic volumes are an essential input to many highway planning and design models; 

however, collecting this data for all the roads in a network is not practical nor cost-

effective. Accordingly, transportation agencies must find ways to leverage limited 

ground truth count data to obtain reasonable estimates at scale on all the network 

segments. One of the challenges that complicate this estimation is the complex spatial 

dependency of the links’ traffic state in a transportation network. A graph-based model 

is proposed to estimate networkwide traffic volumes to address this challenge. This 

model aims to consider the graph structure of the network to extract its spatial 

correlations while estimating link volumes. In the first step, a proof-of-concept 

methodology is presented to indicate how adding the simple spatial correlation between 

the links in the Euclidian space improves the performance of a state-of-the-art volume 

estimation model. This methodology is applied to the New Hampshire road network to 

estimate statewide hourly traffic volumes. In the next step, a Graph Neural Network 

model is introduced to consider the complex interdependency of the road network in a 

non-Euclidean domain. This model is called Fine-tuned Spatio-Temporal Graph Neural 

Network (FSTGCN) and applied to various Maryland State networks to estimate 15-

minute traffic volumes. The results illustrate significant improvement over the existing 

state-of-the-art models used for networkwide traffic volume estimation, namely ANN 

and XGBoost. 
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Chapter 1: Introduction 

 

 

1.1 Motivation 

Traffic volumes are an essential component for computing various traffic performance 

measurements on a road network – including those used for the performance-based 

planning and programming process under the Moving Ahead for Progress in the 21st 

Century Act (MAP-21). While this data is needed at the statewide road network level 

for such purposes, large-scale networkwide volume data collection is infeasible. 

Transportation agencies often spend a significant portion of their budget collecting 

traffic count data (Zhong et al., 2004); however, continuous recording of traffic volume 

data is limited to a small percentage of road segments where continuous count stations 

(CCS) are installed (Wang & Kockelman, 2009). Consequently, agencies must 

determine how to best obtain statewide link-level volume estimates given the limited 

locations where reliable ground truth count data can be collected – a topic that has 

produced several proposed approaches. Most of these methods use the data collected 

by CCS stations to estimate the link-level hourly volume. However, the temporal and 

spatial correlation between link volumes is often overlooked due to its inherent 

complexity. The primary motivation behind this dissertation is to incorporate the 

spatio-temporal relationships between traffic volume in different segments of the road 

network in the traffic volume estimation framework.  
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In the last decade, the revolutionary advancement achieved in the data analysis area has 

created the opportunity to recognize these types of complicated patterns (i.e., temporal 

and spatial correlations in a road network). In particular, the massively available traffic 

data, on the one hand, and the ever-growing analytical methods, on the other hand, may 

help transportation experts to estimate traffic measurements more accurately. 

Therefore, introducing a method that leverages these advancements to solve the volume 

estimation problem is of great importance as it can improve the accuracy and reduce 

the cost of collecting traffic counts data. 

While the volume data is not available for most links in a road network, link-level speed 

records are directly computable using probe vehicle data. The speed profiles of links 

are a valuable source of data that can also be used to estimate the networkwide traffic 

volume. A few studies have utilized advanced machine learning methods like deep 

learning to estimate statewide hourly traffic volume in the last couple of years. One of 

the state-of-the-art methodologies introduced by Sekula et al. (2018) uses a deep 

learning regression approach to estimate hourly traffic volume using the following data 

sources: 

• Vehicle probe speed 

• Vehicle probe counts 

• Weather stations 

• Road characteristics 

This approach yielded appreciably higher estimation accuracy than other existing 

methods. However, it overlooks incorporating the road network's underlying 

characteristics and geometry to capture the Spatio-temporal correlation between the 

road segments. The proof-of-concept artificial neural network-based model introduced 
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in this study, although it solves the problem in the Euclidian space, which ignores the 

complex configuration of the transportation network, presents improved estimation 

accuracy relative to Sekula et al. (2018). Therefore, the incorporation of link traffic 

flow dependencies in the modeling framework can improve the current traffic volume 

estimation models. 

1.2 Scope of the Dissertation  

The primary purpose of this study is to improve the networkwide traffic volume 

estimation using a representative graph of the road network. Considering the 

underlying characteristics of the road segments in the form of a graph is a crucial step 

toward extracting their spatio-temporal correlations. The link traffic volumes are 

available for a handful of this graph’s links (i.e., where CCS are deployed). This study 

aims to directly use these CCS data to estimate hourly traffic volume for all other graph 

links. Figure 1 presents the high-level architecture of the proposed graph-based model, 

while Figure 2 shows the architecture of the existing state-of-the-art ANN model 

(Sekula et al., 2018). 

 

Figure 1. High-level architecture of the proposed graph-based model. 
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Figure 2. High-level architecture of the existing ANN model (Sekula et al., 2018) 

The first step of this study introduces a proof-of-concept methodology to show how the 

direct incorporation of CCS volume data into the the-state-of-the-art model improves 

the networkwide hourly volume estimations. This framework aims to build off the 

initial work conducted in Sekula et al. (2018) by incorporating permanent CCS counts 

as a direct input to the model, thus accounting for the Spatio-temporal correlations 

between hourly link volumes. Whereas the previous work used CCS data solely for 

training and testing the proposed ANN, the current study further utilizes a subset of 

CCSs as an additional model input to improve the estimation accuracy, particularly 

focusing on choosing which CCSs to use for this purpose optimally. This task is 

addressed by assessing a handful of primary strategies to select the candidate CCSs, 

which will enter the model as explanatory variables and training new models. Using 

the New Hampshire road network as a case study, various estimation accuracy 

measures are employed to explore the effects of incorporating the CCS counts as 

additional features and compare the CCS selection scenarios. Note that throughout this 

study, traffic volume refers to the historical volume data unless otherwise stated. 
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Estimating historical traffic volume means that the introduced methods estimate 

statewide traffic volumes for time periods with known ground truth data of the CCS 

locations and networkwide traffic conditions such as traffic speed, weather, etc.  

Given the results of the initial framework, this study introduces a graph-based 

methodology to integrate the links' volume correlations and traffic state characteristics 

into a single model. The proposed framework first introduces an algorithm to generate 

a graph representation of the road network. Then, this graph, besides the attributes 

available for each road segment and the ground truth traffic counts collected for a few 

links of the network, is inputted into one of the most recent machine learning methods 

named Graph Convolutional Networks (GCN). The introduced methodology includes 

an innovative model framework enabling the model to capture both temporal and 

spatial correlations between the links' traffic flows. Various components of the 

presented method are first tested using the data of the Worcester and Wicomico 

counties in Maryland. Then, the optimal framework is used to estimate 15-minute 

historical traffic flows for two distinct networks of the Maryland Beltway area and 

western Maryland (i.e., Allegany and Washington counties). Additionally, the 

framework is tested for real-time operation when the ground truth data might be 

delivered with some lags forcing the model to use previous time intervals' data for 

estimation. 

1.3 Contributions 

This study tries to address several existing gaps in previous studies and contributes to 

the transportation literature in the following directions: 
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1) Introducing a straightforward methodology built off of a state-of-the-art hourly 

traffic volume estimation model to prove how its performance improves by taking the 

network structure into account. In this work, attributes of a few road network links are 

fed to the model as complementary input. Besides, it is shown that network 

observability varies significantly based on the input links' selecting procedure. Higher 

observability and, in turn, a more accurate traffic volume estimation are obtainable for 

methods that tend to consider network structure and select input links evenly distributed 

over the network. The benefits of incorporating the network structure are illustrated in 

estimating hourly traffic volumes in the New Hampshire road network as a proof-of-

concept. 

2) Constructing a graph of the road network, which represents its underlying traffic 

characteristics and Spatio-temporal correlations. This graph is built upon the traffic 

patterns extracted from the probe vehicle movements in the network as a sample of the 

entire traffic.  

3) Developing a GCN model that integrates the geometry of the road network and 

traffic conditions to estimate statewide 15-minute traffic flows using a handful of 

continuously collected volume data (i.e., CCSs data). The developed model borrows 

the idea of convolution operation from the Convolutional Neural Networks, a well-

known model structure in computer vision. Contrary to the convolution operation in 

CNN models, which is applied to adjacent pixels of an image, the model in the present 

study adopts the convolution operation on the graph representation of the road network. 

Therefore, the model is capable of capturing the correlations between traffic volume in 

each link with the traffic volume in its adjacent links in the graph representation. 
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4) Introducing an innovative model framework to capture the spatio-temporal pattern 

of traffic volumes in both historical and real-time settings. The proposed framework 

consists of two parts. The first part uses the entire input data to train a specific GCN 

model for all time intervals to find the relations between attributes and traffic volumes 

and capture the spatial and temporal correlations between links' traffic volume. In the 

second part, the trained model in the first part is fine-tuned for each time step separately 

to focus on the traffic conditions in that time. Since the second part has a runtime in the 

order of seconds, the proposed framework is shown to be applicable to real-time traffic 

volume estimations. 

1.4 Dissertation Structure 

The rest of the dissertation is arranged as follows: 

Chapter 2 summarizes the current research in the field of traffic volume estimation and 

reviews the literature of graph-based deep learning models and their application in 

transportation studies. The research gaps are discussed at the end of this chapter. In 

Chapter 3, a two-step proof of concept methodology is introduced. This methodology 

is designed to demonstrate the importance of incorporating the road network graph in 

a volume estimation model and is tested on the road network of the New Hampshire 

state. Chapter 4 introduces the proposed framework and elaborates on the GCN model, 

the graph generation algorithm, and the introduced model framework. Chapter 5 

presents the data and networks used for the study experiments. Chapter 6 discusses the 

model performance analysis settings and introduces some experiments to test various 

components of the introduced framework. Using the findings of this chapter, chapter 7 
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provides the numerical results of applying the introduced methodology to various 

networks. Moreover, this section presents the results of applying the model to real-time 

traffic volume estimation. Chapter 8 concludes the finding of the study and provides 

some recommendations for future works. 

 

 

 

 

  

 

  



 

9 

 

Chapter 2: Literature Review 

 

 

2.1 Overview 

The concept of traffic volume estimation has always been an interesting topic in the 

transportation field with several applications. The number of vehicles passing a road 

segment is one of the essential inputs to many traffic analysis models at various levels, 

including planning, design, control, operation, and management. 

However, the expensive procedure of collecting continuous traffic volume data has 

obligated researchers to use alternative and indirect measures. In the United States, 

states typically have 50 to 200 automatic traffic recorders (ATRs) within their highway 

network, permanently installed on or near the roadway and continually collecting 24-

hour traffic counts (Wang and Kockelman, 2009). Additionally, short-period traffic 

counts (SPTCs) are collected at thousands of locations statewide via temporary sensor 

deployments. These data are commonly used to estimate aggregate traffic volumes 

called Annual Average Daily Traffic (AADT). AADT, as an alternative for the exact 

traffic volume, is widely studied in the literature of transportation and is used in many 

transportation projects (AASHTO, 2001). Therefore, the first part of this section, which 

provides a comprehensive review of traffic volume estimation models, is divided into 

two subsections. The first one investigates the works focused on estimating AADT, 

and the second one reviews the few pieces of research that aim to address the hourly 

traffic volume estimation problem. 
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Since the main contribution of this study is introducing a graph-based model for 

networkwide traffic volume estimation, the second part of this section provides a 

concise overview of Graph Neural Networks (GNN) as a recently developed machine 

learning technique. This part is also divided into two subsections. The first one presents 

the general concept and categories of GNNs, and the second one reviews the studies 

which applied the idea of GNN for solving transportation-related problems. In the end, 

we summarize the section and discuss the existing traffic volume literature gapes that 

this study aims to fill.  

2.2 Volume Estimation Models 

Numerous research papers have tried to develop models to estimate traffic volume – 

often in the form of AADT. Thus, the following subsection discusses various methods 

developed to estimate AADT. This subsection is followed by another shorter 

subsection that reviews the few works specifically focused on hourly traffic volume 

estimation.  

2.2.1 AADT estimation 

AADT, as an essential measure of aggregate traffic volume, is widely studied in the 

literature of transportation. The traditional Federal Highway Administration (FHWA) 

method for computing AADT is based on expanding SPTC data using daily and 

monthly factors estimated from groups of CCSs with similar traffic patterns. Besides, 

many statistical approaches like regression models have been developed to improve 

AADT estimation. One of the early works in this regard is done by Fricker & Saha 

(1987). In this study, statistical analysis is combined with subjective judgment to 
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forecast AADT in rural areas. They introduce two series of models, first an aggregate 

model based on the functional classification of a highway and the other one, a location-

specific disaggregate model. They also present a six-step process for the following 

year's AADT prediction. 

In another study, Aldrin (1995) proposed a statistical method that models daily car 

traffic based on variables such as road level, traffic trend, seasonal variations, day of 

week and time of day, special days, and statistical errors. This method is trained with 

simultaneous data from various CCSs, which enables capturing their inter-

relationships. 

Adding more details to the existing models, Zhao and Chung (2001) developed a 

multiple linear regression model to estimate AADT considering geographic 

information systems, general land use, and accessibility measurements. Later on, Zhao 

& Park (2004) introduced a geographically weighted regression model for AADT 

estimation to consider the spatial variation of locally estimated parameters. 

Eom et al. (2006) used a spatial regression method to predict AADT for lower-class 

facilities. This model uses a geostatistical approach called Kriging to consider both 

spatial trends and spatial correlation. Other studies employed more advanced machine 

learning techniques to improve the AADT estimation accuracy, including Sharma et al. 

(2001), who developed an artificial neural network (ANN)-based method to estimate 

AADT. The main objective of their study is to improve AADT estimation in low-

volume roads. This improvement is obtained by eliminating major sources of errors in 

the traditional factoring approach, including sampling error, seasonal and daily 

variations, as well as CCSs grouping error. 
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More recently, Castro-Neto et al. (2009) used the support vector machine for regression 

(SVR) to forecast AADT. SVR-based models that had been already used to solve 

transportation problems, like short-term traffic flow prediction and travel time 

estimation, had demonstrated significant improvements compared with previous 

studies (Ding et al., 2002). In their research, Castro-Neto et al. (2009) used the 

distribution of the training data to compute SVR prediction parameters and developed 

a method called SVR with data-dependent parameters (SVR-DP). Additionally, Rossi 

et al. (2014) studied the effect of clustering methods to identify road groups based on 

typical traffic patterns to improve group factor estimation while computing AADT. 

One of the more recent studies concerning AADT estimation is the Khan et al. (2018) 

research. They applied ANN and support vector machines (SVM) to estimate AADT 

for various road classes using short-term counts. In their study, the SVM model is 

introduced as the best model, which not only outperforms regression and factor-based 

approaches but also yields better results compared to the introduced ANN model. 

2.2.2 Hourly traffic volume estimation 

One of the approaches to solve the hourly volume estimation problem is utilizing 

macroscopic traffic models. Shimizu et al. (1998) applied state estimation algorithms 

to build an hourly traffic volume estimation system. They model the hourly traffic 

volume by a linear time-varying discrete dynamic system and use filtering algorithms 

(i.e., Kalman filter, interval smoother, and the MIPA Kalman filter) to remove noises 

from the data collected by detectors. 



 

13 

 

Herrera & Bayen (2008) added mobile sensor data to the collected data from detectors 

to improve traffic state estimation. They used assimilation methods such as the Kalman 

filter to find the state of the highway at any point in time and space. Their results show 

significant improvement achieved by incorporating mobile sensor data. 

Work et al. (2008) transformed GPS devices' data into usable traffic information using 

data assimilation algorithms to enhance traffic state estimation. Papageorgiou et al. 

(2010) presented METANET, which is a macroscopic simulation tool for estimating 

traffic variables such as traffic volume. These macroscopic model-based approaches, 

however, are not scalable to large networks like a state network. 

Transforming AADT into hourly volume profiles is perhaps the most common 

approach used for obtaining reasonable hourly traffic volume estimates at the state 

level– a process explained in Schrank et al. (2015) that uses AADT and speed profiles 

to obtain the hourly traffic profile for a typical week. While this approach was not 

initially intended for hourly volume estimation purposes, it often does an excellent job 

in capturing typical traffic behavior; however, by design, it does not capture aberrations 

caused by unique weather conditions or incidents. To consider these factors, Sekula et 

al. (2018) introduced an ANN-based regression approach that estimates hourly traffic 

volume using multiple data sources such as vehicle probe counts and speeds, weather 

stations, and road characteristics. This approach yielded appreciably higher estimation 

accuracy than the widely used profiling method and provided a framework for 

transportation agencies to obtain scalable statewide hourly volume estimates. However, 

their approach does not consider any spatial correlation between the transportation 

network links. To address this problem, Zahedian et al. (2020) introduced a framework 
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that selects some CCSs based on their position in the transportation network and adds 

their features, such as their count data and Euclidian distance, to the ANN model inputs 

so that the model can make more accurate estimation by capturing some level of spatial 

correlations in the network. Yi et al. (2021) used Breadth-first search (BFS) on the 

traffic network to extract spatial dependency features and add those features to their 

introduced extreme gradient boosting tree (XGBoost) for volume estimation. These 

studies indicate that adding spatial features to machine learning models improves their 

performance for traffic volume estimation. However, these methods cannot directly 

consider the transportation network's graph structure in the training process. 

2.3 Graph Neural Networks  

Many machine learning tasks are revolutionized in recent years due to two main 

reasons: first, a significant increase in the amount and variety of the available training 

data, and second, rapid developments in computer hardware resources (e.g., GPUs). 

Researchers have leveraged these advancements to implement innovative machine 

learning algorithms like neural networks to a variety of problems in various research 

fields. In most of these fields, the data has a Euclidian distance representation. 

However, there are many applications where data is generated from the non-Euclidian 

domain. 

Transportation networks are examples of such applications with complex relationships 

in the form of a general graph- i.e., with a non-Euclidian nature. For these networks, 

recently, many studies have been developed to address graph-based machine learning 

problems, such as Graph Neural networks (GNNs). The following sub-section provides 
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a concise review of the literature of GNNs, including general concepts and categories 

of this field of study. Further, another sub-section summarizes studies that use GNNs 

to solve transportation-related problems. 

2.3.1 General frameworks and categories 

End-to-end deep learning models like Recurrent Neural Networks (RNNs) and 

Convolutional Neural Networks (CNNs) perform effectively on Euclidian data. 

However, they fail to appropriately capture the hidden patterns in data presented in the 

form of a graph. GNNs, also known as geometric deep learning models, are specifically 

designed to fill this gap. This group of models tends to release the assumption of 

independence of data points and train a machine to recognize the statistical pattern of 

graphs with any complex forms. 

In general, given the graph structure and node features as the inputs of a GNN, the 

outputs can be node-level, edge-level, or graph-level labels. The GNN can be trained 

in supervised, semi-supervised, or completely unsupervised frameworks depending on 

the available label information. 

Implementing neural networks on graphs is studied since the late 1990s when Sperduti 

and Starita (1997) applied it to acyclic graphs. However, Gori et al. (2005) is the first 

study outlining the concept of GNNs. Wu et al. (2020) have published a comprehensive 

survey on GNNs. They define four main categories of GNNs: 

- Recurrent graph neural networks (RecGNNs), 

- Convolutional graph neural networks (ConvGNNs), 

- Graph autoencoders (GAEs), and 

- Spatial-temporal graph neural networks (STGNNs). 
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RecGNNs, as one of the early works on GNNs, are designed to learn node 

representation with recurrent neural architecture (Scarselli et al., 2009; Gallicchio et 

al., 2010). These early works that try to find a node representation by iteratively 

propagating neighbor features are incredibly costly in terms of computational time. 

However, they form the inspiring platforms of the ConvGNNs, which are the most 

popular category of GNN with applications in different areas. 

ConvGNNs, which are promoted by the successful application of CNNs, try to expand 

convolution operation to a general graph. Similar to CNNs, which perform on grid 

graphs (i.e., images), ConvGNNs aim to aggregate a node and its neighbors’ features 

to provide a high-level representation of that node. ConvGNNs are themselves divided 

into two categories of spectral-based and spatial-based models. 

Bruna et al. (2013) first used the spectral graph theory to develop a graph convolution. 

Later, many researchers (Defferrard et al., 2016; and Levie et al., 2017) developed and 

extended this idea. Although spatial-based ConvGNNs were first introduced in 2009 

by Micheli et al. (2009), they remained unpopular until recent years when Atwood and 

Towsley (2016) used the diffusion process to capture spatial dependency of graph-

structured data. 

The other two categories of GNNs (i.e., GAEs and STGNNs) are essentially built on 

RecGNNs and ConvGNNs. STGNNs, focusing on extracting the spatial-temporal 

dependencies in a graph, are explicitly applicable to transportation-related problems. 

The reason is the existence of the temporal and spatial correlations between the traffic 

patterns of different road segments. The following section introduces studies that are 

mainly used in this approach to address traffic measures estimation. 
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2.3.2 Application in transportation  

As mentioned earlier, GNNs have a variety of applications across different areas of 

research, including the transportation domain. Elaboration on the underlying graph of 

GNNs seems advantageous in analyzing the intricate pattern of traffic in a 

transportation network. Although the introduction of GNNs is relatively new, many 

studies applied GNNs to transportation-related problems. Yao et al. (2018) introduced 

a Deep Multi-View Spatial-Temporal Network (DMVST-Net) to predict taxi demand. 

This framework aims to capture both spatial and sequential temporal relations at the 

same time. They incorporate Long-Short Term Memory (LSTM), CNN, and network 

embedding (Tang et al., 2015) to forecast taxi demand for a location within a time 

interval. In this study, they show how the combination of CNN and LSTM by 

considering the graph structure of the road network can outperform state of the art 

prediction methods like XGBoost (Chen & Guestrin, 2016) and ST-ResNet (Zhang et 

al., 2017) when applied to the taxi demand prediction problem. 

In another application, Li et al. (2018) applied GNNs to predict speed in a road network. 

They introduce a GNN called Diffusion Convolutional Recurrent Neural Network 

(DCRNN) to consider spatial and temporal correlations between road segments while 

predicting short- and long-term speed. Their system architecture, illustrated in Figure 

3, includes Recurrent layers of Diffusion Convolutions, which are a general form of 

spectral graph convolutions. It also incorporates encoder and decoder recurrent neural 

networks to generate speed predictions based on either previously measured or 

estimated speed. 
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They test the introduced DCRNN on two datasets of METR-LA (Jagadish et al., 2014) 

and PEMS-BAY. The results are compared with both baseline models like Historical 

Average, Auto-Regressive Integrated Moving Average model with Kalman filter 

(ARIMA kal), Support Vector Regression (SVR), and deep learning-based models like 

Feedforward Neural Network (FNN) and Recurrent Neural Network with fully 

connected LSTM hidden units (FC-LSTM) (Sutskever et al., 2014). The DCRNN 

model outperforms all the mentioned models for all forecasting horizons, proving the 

importance of considering the spatial and temporal correlation in a road network. 

Zhang et al. (2018) also introduced a GNN model applicable to the traffic speed 

forecasting problem. They put forward Gated Attention Networks (GaAN), which is 

also a variation of STCNNs. In this study, the neural attention network idea (Bahadanau 

et al., 2015) is used as a graph aggregator to reduce the size of the Spatio-temporal 

network. Applying this model to the METR-LA dataset, the authors show how GaAN 

beats all the state-of-the-art models, including the DCRNN (Li et al., 2018). 

 

 

Figure 3. The system architecture of the DCRNN (Li et al., 2018). 
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Another STGNN method applied to traffic measurement estimation is developed by Yu 

et al. (2018), which is also concerned with traffic speed prediction. They introduce a 

Spatio-Temporal Graph Convolutional Networks (STGCN) to solve the time series 

furcating problem in a road network. The architecture of this Spatio-temporal graph 

convolutional network is illustrated in Figure 4. 

One of the innovative ideas of this study is formulating the problem on graphs and 

constructing a model with complete convolutional structures. This implementation 

enables a much more efficient training process compared to the regular convolutional 

and recurrent units. This STGCN model is tested on two datasets of BJER4, a dataset 

of double-loop detectors in Beijing City, and PeMSD7 collected from Caltrans 

Performance Measurement System (Chen et al., 2001). 

 

Figure 4. The system architecture of the STGCN (Yu et al., 2018). 

The authors compare their model with the state-of-the-art baseline models and show 

how the introduced STGCN outperforms all of them, including the model proposed by 



 

20 

 

Li et al. (2018). The main advantage of this model is its significantly lower required 

computational time. 

Recently, GNNs are also used for traffic flow prediction. Zhang et al. (2018) propose 

a Kernel-Weighted Graph Convolutional Network (KW-GCN) that combines node 

weights and learns the traffic features locally while considering the global structure of 

the road network. In this study, the weighted kernels are used to account for the diverse 

local traffic state. They test their model on the Beijing taxi dataset at intersection and 

road level. To predict traffic flow, they assume that they have traffic flow at all the 

graph nodes for the six-time intervals before predicting the flow. Their numerical 

results show that their proposed weighting approach leads to superior performance 

compared to other forecasting methods. 

Li et al. (2021) developed a Multisensor Data Correlation Graph Convolution Network 

model, named MDCGCN, constructed of three main parts of recent, daily, and weekly 

components. The architecture of their proposed method is presented in Figure 5. 

According to this figure, each of the three parts of recent (𝑌ℎ), daily (𝑌𝑑), and weekly 

(𝑌𝑤) include two multisensory data correlation convolution (MDCC) blocks and one 

2D convolution block. Moreover, the daily period component consists of a benchmark 

adaptive mechanism (BA-Block). They test their model on PEMSD4 and PEMSD5 

datasets and divide it into training, verification, and test sets temporally. This means 

that the same as previous research, they assume that the ground truth traffic volume 

data is available in previous times for the links on which they want to predict volume.  
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 They compare their results with other forecasting models, including different 

variations of GCN, and show how the proposed MDCGCN is outperforming other 

models for long-term predictions such as 60-minute ahead.  

 

 

Figure 5. The model architecture of the MDCGCN (Li et al., 2021). 

 

The studies mentioned above are only a sample of studies that developed in recent 

years, applying various GNN models for transportation-related problems. A recent 

study published by Jiang & Luo (2021) provides a comprehensive survey of these 

studies.  
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2.4 Chapter Summary 

As we discussed in the first section of this chapter, the problem of networkwide traffic 

volume estimation has been of interest to many researchers for a long time. In recent 

years, advanced machine learning methods have come to the help of transportation 

researchers to develop more accurate link volume estimation models applicable to a 

variety of road networks. However, the fact that the traffic state of the links in a road 

network is correlated is mainly overlooked. Even researchers that used advanced 

machine learning methods (i.e., deep learning-based models) ignore the complicated 

data structure of the road network. This gap can be filled by introducing models that 

estimate traffic volumes while considering the underlying graph of the road network.  

The second section of this chapter discussed a relatively new class of machine learning 

models called GNN. These models aim to expand deep learning models to apply them 

to problems with general graph-structured data. Transportation networks are one of 

those areas with complex graph-based relations. A few recent studies that used this kind 

of model in transportation-related problems were also introduced in this section.  

These studies show how GNN-based models outperformed the previous state-of-the-

art methods in solving problems like speed and flow prediction. However, to the best 

of our knowledge, their application in networkwide volume estimation, when the main 

challenge is estimating volume for locations where no previous traffic volume data is 

available, has not been investigated yet. The current study aims to address this problem 

by introducing a new GNN-based model that considers the complex characteristics of 

the traffic state and trip patterns in a road network.  
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Chapter 3: A Proof-of-Concept Methodology 

 

 

3.1 Overview 

This section introduces a two-step methodology designed to prove the importance of 

incorporating spatial correlations between roads in a statewide hourly traffic volume 

estimation model. The first step is selecting a subset of available CCSs (i.e., the source 

of ground truth volume data). The second step is incorporating the data of the selected 

CCSs as explanatory variables into a previously developed machine learning regression 

model (Sekula et al., 2018) for estimating hourly traffic volumes. In other words, for 

estimating hourly traffic volume in any specific road, the new model adds the selected 

CCSs data to its other available data to account for their possible dependency. The first 

part of this chapter, section 3.2, introduces various strategies to select the subset of 

CCSs. Section 3.3 explains the process of training a fully connected neural network 

with selected CCSs data as additional inputs. Then, the introduced proof of concept 

framework is tested using the network of New Hampshire, the data of which is 

described in section 3.4. Finally, the implementation and numerical results of the 

model are presented and discussed in section 3.5.  

3.2 Candidate CCS Selection Strategies 

The road network is a connected graph with intercorrelated traffic flows in its links, 

which means ground truth volume data in a road segment may have a high correlation 
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with (and thus valuable for accurately estimating) volume data in other links. States 

generally have several CCSs installed continuously recording hourly volumes - each of 

which represents the traffic volume of the links associated with it. 

This section seeks to utilize a subset of this recorded volume data (i.e., CCS counts and 

their features) as additional independent variables in a volume estimation model to 

capture the spatial and temporal interdependencies between links. In particular, 

explanatory (i.e., input) CCSs should be selected in a way to appropriately capture the 

intercorrelation between each of these CCS readings and other link volumes. In the 

following subsection, we introduce and briefly explain four basic strategies used here 

to select candidate CCSs as a proof of concept.  

Random Strategy 

This strategy randomly selects n CCSs among all the CCSs whose data is available and 

serves two purposes. First, any possible improvement in volume estimation based on 

this strategy demonstrates a benefit in adding CCS attributes to the volume estimation 

regardless of the applied selection strategy. Second, this strategy serves as a baseline 

for evaluating the performance of other selection strategies. 

AADT-based strategy 

AADT is an essential measure of traffic and can be computed for the links with 

permanent traffic volume recorders (i.e., CCSs) by aggregating count data on the 

average annual daily level. Equation 1 illustrates the objective function used to select 

CCSs based on the AADT value: 

𝑎𝑟𝑔𝑚𝑎𝑥𝐴′∁ 𝐴,|𝐴′|=𝑛 ∑ 𝐴𝐴𝐷𝑇𝑖

𝑖∈𝐴′

 (1) 
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where 𝐴 is the set of all the CCSs within a state road network, 𝐴′ is the selected subset, 

and 𝐴𝐴𝐷𝑇𝑖 is the AADT of the ith CCS ∈ 𝐴′.  

Equation 1 immediately communicates that the n CCSs with the highest AADT values 

are selected. The reason for introducing this strategy is that roads with higher AADT 

are generally among the main arteries of the network, making it likely that traffic 

volume in these links may impact the traffic volume of many adjacent links. Therefore, 

adding these CCSs’ data as inputs may improve volume estimation in busier areas, 

where traffic control is more critical.  

CCSs distance-based strategy 

The primary motivation for adding new variables is to provide information about exact 

traffic counts in some links of the network, which are highly correlated to other links 

and should help estimate volumes on them with higher accuracy. In this regard, the 

spatial distribution of the selected CCSs is of great importance. One can reasonably 

assume that each CCS represents the traffic volumes in its vicinity; consequently, a 

CCS selection strategy that maintains a uniform coverage over the entire network is a 

reasonable objective. Equation 2 presents the general form of the objective function 

used to represent this strategy: 

𝑚𝑎𝑥𝐴′∁ 𝐴,|𝐴′|=𝑛 ∑ (𝑑𝑖𝑗)𝑚

𝑖,𝑗∈𝐴′

 (2) 

where 𝐴 and 𝐴′ are the same as the previous definition, 𝑑𝑖𝑗 is the Euclidian distance 

between the two selected CCSs based on this strategy, and 𝑚 is a parameter that 

normalizes the distance impact and is network specific. To choose a proper value of 𝑚, 

one can solve the optimization problem of this strategy for the study network and 
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different values of 𝑚. Therefore, the value of 𝑚, which visually presents a more 

uniform coverage over this specific network, will be chosen. 

TMC coverage-based strategy 

This last strategy is similar to the previous one, but rather than focusing on the 

geographical locations of the CCSs, it deals with the spatial distribution of the CCSs 

concerning their position in the Traffic Management Center (TMC) network. 

Specifically, this strategy selects a subset of CCSs evenly distributed over the TMC 

network, with each TMC assigned to its closest CCS within the selected subset. This 

strategy is presented as a linear program (LP) shown in a set of equations as follows: 

Min ∑ 𝑥𝑖𝑗𝑡𝑖𝑗

𝑖∈𝐴,𝑗∈𝑇

 (3) 

𝑠. 𝑡. 

∑ 𝑥𝑖𝑗 = 1, ∀𝑗 ∈ 𝑇

𝑖∈𝐴

 (4) 

∑ 𝑦𝑖 = 𝑛

𝑖∈𝐴

 (5) 

𝑥𝑖𝑗 ≤ 𝑦𝑖 , ∀𝑖 ∈ 𝐴, 𝑗 ∈ 𝑇 (6) 

𝑦𝑖, 𝑥𝑖𝑗 = 0 𝑜𝑟 1, ∀𝑖 ∈ 𝐴, 𝑗 ∈ 𝑇 (7) 

where T is the set of TMC network links, A is the set of all the CCSs, 𝑡𝑖𝑗 is the Euclidian 

distance between the start point of 𝑇𝑀𝐶𝑗 , 𝑗 ∈ 𝑇 and 𝐴𝑇𝑅𝑖 , 𝑖 ∈ 𝐴, and 𝑦𝑖 and 𝑥𝑖𝑗 are 

binary variables. 𝑦𝑖 = 1 if 𝐴𝑇𝑅𝑖 is selected based on this strategy and 𝑦𝑖 = 0 otherwise. 

𝑥𝑖𝑗 = 1 for 𝑇𝑀𝐶𝑗 , 𝑗 ∈ 𝑇 assigned to 𝐴𝑇𝑅𝑖 ∈ 𝐴, otherwise 𝑥𝑖𝑗 = 0.  
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The objective function of this LP, Equation 3, is minimizing the total distance between 

TMCs and their associated CCSs in the selected subset. Furthermore, Equations 4 and 

6 are satisfying the condition that each TMC must be assigned to one CCS from the 

selected subset. Finally, equation 5 imposes the constraint of the number of selected 

CCSs. 

3.3 Fully Connected Feedforward Multi-Layer ANN 

Inspired by animal brains, artificial neural networks (ANN) are computing systems 

consisting of layers of neurons. A general ANN contains three layer types: the input 

layer, hidden layers, and output layer. As a class of ANNs, a Fully Connected 

Feedforward Multi-Layer ANN includes multiple hidden layers where all the neurons 

in a layer are connected to all the neurons of the previous layer without forming a loop. 

The inputs to the first layer of an ANN are the data features, and the output of the last 

layer is the model estimation. The forward propagation rule in this model is presented 

in the following equation. 

𝑎𝑖
(𝑙+1)

= 𝑓(𝑤𝑖
(𝑙+1)

𝑎(𝑙) + 𝑏𝑖
(𝑙+1)

) (8) 

where 𝑎𝑖
(𝑙+1)

 is the output of the neuron 𝑖 in the (𝑙 + 1)th layer, 𝑤𝑖
(𝑙+1)

 and 𝑏𝑖
(𝑙+1)

are 

the weight and bias vector between that neuron in the (𝑙 + 1)th layer and all the neurons 

of the previous layer, and 𝑎(𝑙) is the output vector of all the neurons in the 𝑙th layer. 

𝑓(. ) is the so-called activation function used to account for the nonlinear relationships 

between the data points.  

Given this general configuration of the ANN model, Sekula et al. (2018) applied it to 

the hourly volume estimation problem. Their final model consists of three hidden 
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layers, 256 neurons, and exponential linear units (ELU) activation function in each 

hidden layer (Clevert et al., 2015). The detailed architecture of their model is shown in 

Figure 6. The ground truth data used for training and testing is the hourly traffic counts 

of the roads with CCSs.  

 

 

Figure 6. The detailed architecture of the fully connected ANN (Sekula et al., 2018). 

The input layer of this model includes the following 84 features: 

• Vehicle probe volumes. This is the number of vehicles in the sample GPS data 

(Marković et al., 2018). These volumes that include three classes of vehicles 

(less than 14k lb, between 14k and 26k lb, above 26k lb) are aggregated for 30-

minute intervals. Thus, for each hour, there are six vehicle probe volumes (three 

classes of vehicles in two 30-min intervals). In addition to these six features, 

vehicle probe volumes of the 30 minutes before the observed hour are also 

added as input features - forming a total of 9 features.  

• Vehicle probe speeds. This is the measured speed using vehicle probe data. This 

data is acquired from the Regional Integrated Transportation Information 
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System (RITIS). Two features of speed, including average hourly speed and 

approximate free-flow speed, are used. 

• Weather data. A total of 36 features that describe the hourly weather data are 

used. This data obtained from Weather Underground (2017) includes features 

like Temperature, Visibility, Precipitation, and Weather Description.  

• Infrastructure data. This data that forms seven features includes the number of 

lanes, speed limits, class of the road (motorway or trunk), and type of the road 

(Interstate, US, or state road).  

• Temporal data. This forms around 29 features describing the time of day (1, 2, 

..., 24), day of the week, and those special holidays during the observed period. 

• Volume profiles. This is the hourly volume profile of a typical day computed 

from the well-known profiling method (Schrank et al., 2015).  

In our proposed methodology, we use the same architecture and only change the 

network's input layer to add the attributes of the selected CCSs. In addition to the 84 

previously introduced features that are describing a road, we add attributes of the 

selected CCSs to the model. Figure 7 shows a schematic depiction of our proposed 

model vs. the base model of Sekula et al. (2018).  

 The list of added attributes from 𝑛 selected CCSs are as follows:  

• CCS volumes. This is the volume in the selected CCSs during the observed hour. 

Thus for 𝑛 selected CCSs, this adds 9𝑛 features. 
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Figure 7. Schematic depiction of our proposed model (up) vs. the base model of Sekula et al. (2018) (down) 

• Euclidian distance to selected CCSs. This is the Euclidian distance from each 

road to each selected CCS. This also adds 𝑛 features for any observed road, 

which is the same over the observed hours.  

• Speed. This is the speed on the selected CCSs during the observed hour 

measured from GPS probe data (2𝑛 features). 

• AADT. This is the average annual daily traffic of the selected CCSs, which is 

computed from their ground truth data (𝑛 features). 

• Reference speed. This is the reference speed on the selected CCSs (𝑛 features) 
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• Road characteristics. This includes features like the number of lanes, type of 

the road, and Functional Road Classes (FRC) of the selected CCSs (7𝑛 

features). 

• Open Street Map (OSM) features. This is the one-hot encoded OSM-based road 

class (4𝑛 features). 

After adding these features, a new model will be estimated based on each CCS selection 

strategy. The following section summarizes the process of selecting CCSs based on 

different strategies and training ANN models with CCSs’ additional inputs using the 

New Hampshire road network as a case study. 

3.4 Experiment Configuration and Data Description 

As mentioned in section 3.2, in our introduced method, unlike Sekula et al. (2018) that 

uses the entire ground truth data for training and testing, a portion of ground truth data 

comprises the additional inputs. Additionally, in section 3.2, we described four basic 

strategies for selecting the subset of input CCSs (i.e., roads), which are the extra inputs. 

Therefore, this section will first introduce the New Hampshire road network and data 

sources used to implement the two-step model. This introduction is followed by using 

the New Hampshire road network to apply the CCS selection strategies and training 

new ANN models based on the chosen CCSs to observe the performance improvement 

of the hourly volume estimation model. Further, a description of the numerical results 

of the trained models is presented. 

New Hampshire road network is an excellent example for testing the hourly volume 

estimation model because of its uneven distribution of traffic. Here we use the National 
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Performance Management Research Data Set (NPMRDS) TMC network of New 

Hampshire. Figure 8 illustrates the New Hampshire TMC network. 

The data sources used as inputs to the machine learning regression model are based on 

the model proposed in Sekula et al. (2018) with slight modifications to fit the new 

methodology. For clarity, these hourly TMC-based data sources are summarized 

below: 

Continuous Count Stations (CCS): New Hampshire DOT provided access to 

continuous count data from fixed locations throughout the state via a traffic 

management web application. These station locations were manually mapped 

to the TMC network via a manually created lookup table. Further, an automated 

process was developed to extract count data from the web application and 

assign it to the TMC network at the hourly level. Note that in the previous work 

(Sekula et al., 2018), CCS count data represented the ground truth data source 

used to calibrate and evaluate the model. However, in this study, the CCS count 

and additional attributes of each of the selected CCSs are also strategically 

introduced as model inputs. These attributes are CCS volumes, Euclidian 

distance to that CCS, speed, reference speed, number of lanes, AADT, 

Functional Road Classes (FRC), FHWA-approved Functional Classification 

System (F_system), type of the road, precipitation, temperature. It is 

noteworthy that these attributes are added per selected CCSs, which yields a 

total of 11 × 𝑛 additional features for 𝑛 selected CCSs.  
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Figure 8. New Hampshire network (red lines: the NPMRDS TMC network; circles: the location of CCSs)  

• Probe counts: GPS probe counts represent the number of unique probe vehicles 

traveling through a TMC segment in an hour and are obtained by extensively 

processing raw trajectory data. The raw trajectory data (i.e., GPS traces from a 

sample of vehicles on the road) must first be associated with the TMC road. 

• Probe speeds: Hourly speed data on each TMC segment was downloaded 

through the I-95 Corridor Coalition Vehicle Probe Project. 
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• Road / infrastructural characteristics: The majority of TMC-based road 

characteristics (e.g., road classifications, number of lanes, AADT) were 

obtained via conflation from other data sources. HPMS-based data attributes 

were obtained through a data conflation effort conducted by the Texas 

Transportation Institute for the National Performance Research Dataset 

(NPMRDS., 2018). However, OpenStreetMap (Haklay & Weber, 2008) 

attributes were obtained via a conflation approach developed by Vander Laan 

& Sadabadi (2019). 

• Weather: Historical weather information was obtained via the Iowa 

Environmental Mesonet (Accessed 2019), which archives granular weather 

data from weather stations. Aggregating weather station data provided TMC-

based weather attributes (e.g., precipitation, temperature) at the hourly level by 

assigning the nearest station’s attributes to each TMC. 

• Temporal Info: Temporal features include flags to indicate the hour of the day, 

day of the week, presence of a holiday, etc. 

• Volume profiles: Volume profiles capture the hourly traffic volume for an 

average week based on the TTI method described (Schrank et al., 2015). 

One of the hyperparameters of the introduced methodology is the number of selected 

CCSs, 𝑛. Since the selected CCSs will be entered as input variables and therefore 

cannot be used for training and testing the ANN model, the value of 𝑛 must balance the 

trade-off between the input CCSs and training and testing CCSs. In this example, we 

set 𝑛 = 8, which is roughly 20% of the CCSs. By doing so, we leave enough data for 

training and testing.  
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 3.5 Implementation of the Two-Step Model 

This section demonstrates and discusses the results of the four CCS selection strategies 

using the New Hampshire dataset as a case study. As was previously mentioned, the 

New Hampshire dataset includes data from 42 active CCSs. Here, we choose eight 

specific CCSs for each selection strategy (roughly 20% of all the stations) as input 

variables. For each strategy, we first select the optimal set of 8 stations and then use 

the data of the remaining 34 stations for training and testing of the ANN model. 

3.5.1 CCSs selection results 

Selecting the candidate CCSs based on the random strategy is a simple task; however, 

to capture the characteristics of a random strategy, the process must be done for more 

than one random set. Thus, we generate ten distinct random sets and use the average of 

the final outputs of all these ten sets as the reported results for the random strategy. The 

selection of the optimal set of CCSs for the other three strategies is more 

straightforward. For the AADT-based strategy, we simply sort the AADT of the 42 

active CCSs and select the top 8 stations to be used as input. Finding the optimal sets 

for the CCS distance-based and the TMC coverage-based strategies requires solving 

the associated LPs. Solving the LPs is done using the commercial optimization solver, 

FICO Xpress (2019). Note that for the CCS distance-based strategy, to choose a proper 

value of 𝑚, we solved the optimization problem of this strategy for the network of New 

Hampshire and different values of 𝑚. Each time we visually checked the spatial 

distribution of the selected subset to see which one presents a more uniform coverage 

over this specific network, resulting in 𝑚 = 0.5. Figure 9 illustrates the selected sets of 
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CCSs based on the last three strategies in the map of New Hampshire and its TMC 

network.  

Note that the AADT-based strategy yields selected stations accumulated in a small area 

due to the uneven distribution of the residential areas in the state. In the CCS distance-

based strategy, selected CCSs are distributed around the state’s border, yielding an 

uneven distribution considering the underlying network. On the other hand, the last 

strategy, which is more advanced and considers the TMC network, provides uniform 

distribution and coverage over the entire network. 

3.5.2 ANN model results 

After selecting the input CCS subset for each strategy, the rest of the CCSs are used for 

full cross-validation of the ANN model. Full cross-validation results in different 

training and testing sets for each strategy, a consequence of which is that a meaningful 

comparison of the absolute error metrics is not possible. To make the results 

comparable, two distinct ANN models are trained for each strategy, one of which has 

the attributes of the selected CCSs as input variables, while the other one does not. 

Since both models use the same set of training and testing data (i.e., data from 34 

remaining stations), investigating the impact of added explanatory variables (i.e., 

attributes of the input CCSs) is possible. The learning process is performed with the 

AdaM (Adaptative Momentum) optimizer algorithm (Kingma & Ba, 2014) using the 

following parameters: learning_rate = 0.001, β1=0.9, and β2=0.999, and also utilizing 

the Dropout technique (Hinton et al.,2012). The input data is normalized with the 

following formula:  
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AADT-based strategy CCS distance-based strategy TMC coverage-based strategy 

Figure 9. Selected sets of CCSs based on three strategies in the New Hampshire network (circles show the location of CCSs, the yellow ones are the selected stations, red 

lines are the NPMRDS TMC network) 
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𝑥𝑛𝑜𝑟𝑚 =
𝑥 − �̅�

𝑠𝑡𝑑(𝑥)
 (9) 

where 𝑥𝑛𝑜𝑟𝑚 is the normalized feature, 𝑥 is the original feature, �̅� is a mean of 𝑥 and 

𝑠𝑡𝑑(𝑥) stands for the standard deviation of 𝑥, and the loss function is defined using the 

Mean Absolute Error of the estimations. Previous research (Sekula et al., 2018) showed 

that this architecture and training procedure leads to good results and is not prone to 

overfitting even with relatively small datasets. To be consistent with that study, three 

error measures of Mean Absolute Percentage Error (MAPE), Mean Error to Maximum 

Flow Ratio (MEMFR) and 𝑅2 were selected for evaluating the model results. The 

formulas for these metrics are as follows: 

𝑀𝐴𝑃𝐸 = (
1

𝑛
∑ |

�̂�𝑖 − 𝑦𝑖

𝑦𝑖
|

𝑛

𝑖=1

) ∗ 100 (10) 

𝑀𝐸𝑀𝐹𝑅 = (
1

𝑛
∑ |

�̂�𝑖 − 𝑦𝑖

𝑦𝑚𝑎𝑥
|

𝑛

𝑖=1

) ∗ 100 (11) 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 (12) 

Tables 1 to 4 illustrate the overall performance of the ANN model with and without 

CCS variables selected based on previously described strategies. Note that the values 

represented in Table 1 are computed by averaging the results of 10 distinct pairs of 

models trained based on ten different random sets. Looking at each table individually, 

it is apparent that adding extra CCS input data – regardless of strategy – yields a 

positive impact. However, to find the optimal strategy for selecting candidate CCSs, it 

is useful to look at the relative improvements achieved by each strategy (relative to 

their baseline counterparts without the additional data). Table 5 summarizes the relative 
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improvement of the mean values for all the strategies and shows that the TMC 

coverage-based strategy yields the best improvements in all of the evaluation measures. 

To better understand how each strategy improves the hourly traffic volume estimation, 

Figure 10 summarizes the relative improvements of the mean values for all strategies 

in a single figure. It re-emphasizes that all strategies improve the results with respect 

to the baseline conditions without including CCS data and clearly shows that the TMC 

coverage-based strategy yields the most improvement. These results corroborated via 

statistical testing confirm that the improvements in the mean error metrics achieved by 

the TMC coverage-based approach are statistically significant (student’s t-test at 5% 

significance level). Additionally, Figure 11 illustrates the error distribution (a) without 

CCS inputs and (b) with CCS inputs of TMC coverage-based strategy for each metric 

using box-whisker plots, which are more informative about the distribution of each 

measure. These plots communicate that the median R2 increases while the median of 

the other two metrics (i.e., MAPE and MEMFR) decrease, showing performance 

improvement when the ANN uses CCS inputs. 

Additionally, Figure 11 shows that all quantiles improve for each error metric, although 

the improvement is more noticeable for MAPE and MEMFR. This improvement is also 

evident in the range of these measures. The lower range of the measures together 

indicates a smaller variation in the estimations of the model with CCS inputs. For a 

better illustration of this claim, the heat maps of all the data points used for testing the 

ANN models without and with CCS inputs of TMC coverage-based strategy are shown 

in Figure 12. 
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Table 1. Overall performance of the ANN with and without CCS inputs of random strategy 

ANN Model Without CCS inputs With CCS inputs 

Measure 𝑹𝟐 𝑴𝑨𝑷𝑬 𝑴𝑬𝑴𝑭𝑹 𝑹𝟐 𝑴𝑨𝑷𝑬 𝑴𝑬𝑴𝑭𝑹 

Minimum -2.26 15.94 4.76 0.33 12.75 3.87 

25th percentile 0.74 23.14 5.99 0.74 21.10 5.61 

Median 0.81 28.34 7.29 0.84 26.91 6.76 

75th percentile 0.88 40.51 8.51 0.89 36.48 8.44 

Maximum 0.94 319.24 26.69 0.95 178.65 17.40 

Mean 0.71 47.57 8.24 0.81 36.11 7.40 

 

 
Table 2. Overall performance of the ANN with and without CCS inputs of AADT-based strategy 

ANN Model Without CCS inputs With CCS inputs 

Measure 𝑹𝟐 𝑴𝑨𝑷𝑬 𝑴𝑬𝑴𝑭𝑹 𝑹𝟐 𝑴𝑨𝑷𝑬 𝑴𝑬𝑴𝑭𝑹 

Minimum -1.83 14.79 4.46 -0.03 13.08 3.75 

25th percentile 0.72 23.88 6.02 0.76 22.82 5.55 

Median 0.80 28.74 7.23 0.83 25.97 6.67 

75th percentile 0.87 43.52 8.57 0.88 36.40 7.97 

Maximum 0.93 331.52 25.98 0.95 141.47 19.49 

Mean 0.71 46.08 8.23 0.79 37.53 7.47 
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Table 3. Overall performance of the ANN with and without CCS inputs of CCS distance-based strategy 

ANN Model Without CCS inputs With CCS inputs 

Measure 𝑹𝟐 𝑴𝑨𝑷𝑬 𝑴𝑬𝑴𝑭𝑹 𝑹𝟐 𝑴𝑨𝑷𝑬 𝑴𝑬𝑴𝑭𝑹 

Minimum -0.13 15.91 4.64 0.46 12.06 3.75 

25th percentile 0.77 22.31 5.87 0.78 19.57 5.31 

Median 0.83 26.14 7.02 0.87 24.15 6.24 

75th percentile 0.88 38.14 8.13 0.90 34.62 8.01 

Maximum 0.94 272.84 18.60 0.96 179.24 15.19 

Mean 0.80 38.82 7.54 0.83 32.79 6.92 

 

Table 4. Overall performance of the ANN with and without CCS inputs selected by TMC coverage-based 

strategy 

ANN Model Without CCS inputs With CCS inputs 

Measure 𝑹𝟐 𝑴𝑨𝑷𝑬 𝑴𝑬𝑴𝑭𝑹 𝑹𝟐 𝑴𝑨𝑷𝑬 𝑴𝑬𝑴𝑭𝑹 

Minimum -3.65 16.02 4.96 0.29 12.63 3.61 

25th percentile 0.74 24.70 5.89 0.75 21.43 5.44 

Median 0.81 29.95 7.48 0.84 25.34 6.70 

75th percentile 0.88 47.39 8.99 0.90 41.81 8.18 

Maximum 0.94 411.14 32.83 0.96 175.76 19.96 

Mean 0.67 55.56 8.51 0.80 35.90 7.36 
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Table 5. The relative improvement of the mean values for all the strategies 

                  Measure 

  Strategy 

𝑹𝟐 𝑴𝑴𝑨𝑷𝑬 𝑴𝑬𝑴𝑭𝑹 

Random 13.88% 24.10% 10.18% 

AADT-based 12.44% 18.56% 9.28% 

CCS distance-based 4.30% 15.54% 8.25% 

TMC coverage-based  19.39% 35.39% 13.44% 

 

 

 

Figure 10. Relative improvements of the mean values for all the strategies 
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Figure 11. Error distribution without and with CCS inputs of TMC coverage-based strategy 

 

Figure 12. Heat maps of all data points used for testing the ANN models without and with CCS inputs of 

TMC coverage-based strategy. 

A close look at this figure reveals that the estimates are more centered along the 45° 

line, and the number of outliers is reduced (a smaller number of scattered yellow dots). 

This indicates that not only does the model with CCS inputs provide a more accurate 

estimation of the volume counts in general, but it also improves the estimation in 

particular links where the base ANN model highly overestimates (or underestimates) 

the hourly traffic volumes. 
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3.6 Chapter Summary 

In summary, this chapter reveals that incorporating the data of some CCSs as an input 

variable into the hourly traffic volume estimation model can significantly improve its 

performance if the input CCSs have been selected based on a reasonable strategy. This 

strategy can be as straightforward as TMC coverage-based strategy introduced here; 

however, more advanced strategies may be developed given a more comprehensive 

dataset – for example, perhaps incorporating road class into the optimization. 

More importantly, the proof-of-concept model illustrated the essentiality of accounting 

for the dependencies in the traffic state of the network’s links. The considerable 

estimation accuracy improvement in the proof-of-concept model, which is very limited 

in incorporating the traffic volume dependencies between road network links, 

motivates the direct incorporation of the road network graph structure. Therefore, the 

results and the improvement in estimation accuracy are the main incentives for 

proposing the graph-based model, where the road network graph will be a part of the 

regression model. In this way, any spatial correlation between the traffic volume of 

different road network segments will be captured through training a single model 

resulting in an elegant and accurate modeling framework. 
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Chapter 4: Proposed Framework 

 

 

4.1 Overview  

The previous chapter introduced a two-step methodology to prove how adding data 

from only a few links as input variables into the model can improve the accuracy of 

volume estimation in a road network. The results obtained from this methodology 

confirm that even indirect incorporation of the road network graph structure into the 

traffic estimation model improves its performance. Given these findings, the current 

chapter aims to propose a graph-based model that directly combines the traffic pattern's 

graph structure with the deep learning regression model to estimate traffic volumes. In 

the following sections, we first discuss the mathematical formula of the proposed model 

in section 4.2. Then we introduce the novel graph generation method developed for this 

research in section 4.3. In the end, the structure of the proposed model and its training 

process are described in section 4.4. 

4.2 Mathematical Formulation  

The problem of estimating networkwide traffic volumes where ground truth data is only 

accessible for a small set of roads can be framed as graph-based semi-supervised 

learning. Kipf & Welling (2017) suggested the following loss function to smooth the 

available data over the graph using graph Laplacian regularization: 
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𝑙 = 𝑙0 + λ𝑙𝑟𝑒𝑔 , 𝑙𝑟𝑒𝑔 = ∑ 𝐴𝑖𝑗‖𝑓(𝑋𝑖)𝑓(𝑋𝑗)‖
2

= 𝑓(𝑋)𝑇∆𝑓(𝑋)

𝑖,𝑗

 (13) 

Here, 𝑙0 is the loss of the labeled part of the graph, 𝑓(. ) is a differentiable function like 

a neural network, λ is a weighing factor, and 𝑋 is the matrix of node features 𝑋𝑖. ∆=

𝐷 − 𝐴 is the graph Laplacian of an undirected graph with an adjacency matrix 𝐴 ∈

𝑅𝑁×𝑁 and degree matrix 𝐷. 

This formulation assumes that connected nodes probably share the same label, which 

may restrict the model capacity. Therefore, Kipf & Welling (2017) encoded the graph 

structure directly using a neural network model 𝑓(𝑋, 𝐴). This model is a multi-layer 

Graph Convolutional Network (GCN) with the following propagation rule: 

𝐻(𝑙+1) = 𝜎 (�̃�−
1
2�̃��̃�−

1
2𝐻(𝑙)𝑊(𝑙)) (14) 

where �̃� = 𝐴 + 𝐼𝑁 is the adjacency matrix with added self-connections that belongs to 

the undirected graph 𝑔, �̃� is the degree matrix of �̃�. 𝑊𝑙 is the weight matrix in layer 𝑙, 

𝜎(. ) is an activation function and 𝐻(𝑙) ∈ 𝑅𝑁×𝐷 is the matrix of activation in layer 𝑙.  

Using this propagation rule with rectified linear unit (ReLU) activation function and 

defining �̂� = �̃�−
1

2�̃��̃�−
1

2 , their two-layer GCN model takes the following form: 

�̂� = 𝑓(𝑋, 𝐴) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(�̂� 𝑅𝑒𝑙𝑢(�̂�𝑋𝑊(0))𝑊(1)) (15) 

This study uses the basic ideas of the propagation rule presented in equation (14) to 

develop a networkwide traffic volume estimation model. To do so, we first need to 

define the adjacency matrix to represent the traffic volume pattern correlations in the 

road network. Then we need to develop the model structure based on the research 
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objective, which is the Spatio-temporal traffic volume estimation. The following two 

sections elaborate on the methodologies developed to address these tasks. 

4.3 Graph Generation 

The geometry of a road network forms a graph per se; however, this graph cannot be 

efficiently used in a GNN model to solve the traffic volume estimation problem. There 

are two main reasons for this. First, most of the efficient GNN models are designed for 

node-level regression on undirected graphs (Wu et al., 2020), while roads are directed 

edges of the network. Besides, the physical connections and Euclidian distances in a 

road network do not represent the actual dependency between the links. A 

straightforward way of generating the representative graph, used in previous studies, is 

to put a corresponding node for each road and connect them based on their distance 

(Yu et al., 2018). However, using only the geometry of the road networks is not enough 

to indicate traffic volume correlations. Figure 13 presents an example to clarify this 

point. According to this figure, despite Link 2 and Link 3 being closer geometrically, 

they have significantly different traffic flow patterns compared with Link 1 and Link 

3. In reality, the trip patterns in the networks determine the traffic volume correlations 

between links. Therefore, in this study, a graph generation method based on trip 

patterns is proposed.  

The proposed graph generation method involves using probe vehicles' waypoints to 

extract trip patterns in a transportation network. Since these vehicles are a sample of 

the total vehicles in the network, they can be used to generate a weighted graph 

reflecting the flow dependencies in the network. The graph generation algorithm in this 
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study yields three representative graphs corresponding to three time periods of morning 

peak, afternoon peak, and off-peak hours.  

 

 
Figure 13. An example to show how road network geometry is not an appropriate indicator of traffic 

volume correlations. 

 

The graph generation algorithm 

1. For each probe trip, if the trip is connected, go to step 3; otherwise, go to step 

2. 

2. Make each probe trip connected by finding the shortest path between any two 

consecutive disconnected links in the trip.  

3. Compute 𝑓𝑖
𝑡 as the total number of probe waypoints passing each road segment 

𝑖 in the network during each time interval 𝑡. 

4. For each two road segments 𝑖 and 𝑗, compute 𝐶𝑖𝑗
𝑡  as the total number of probe 

waypoints that are common between the two roads (i.e., segments 𝑖 and 𝑗 are 

part of the same trip) during time interval 𝑡. 

5. For each road segment 𝑖 in the network, create a corresponding node called 𝑖. 
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6. If road segments 𝑖 and 𝑗 are connected in the road network, connect their 

corresponding nodes with a link whose weight is computed based on the 

following formula: 

𝑤𝑖𝑗
𝑡 =

𝐶𝑖𝑗
𝑡

0.5 × (𝑓𝑖
𝑡 + 𝑓𝑗

𝑡)
 (16) 

7. Once the weights are computed for all connections and time intervals, aggregate 

them over the three-time periods of the morning peak, afternoon peak, and off-

peak hours by averaging the weights according to the following formula: 

𝑤𝑖𝑗
𝑃 =

1

|𝑆𝑃|
∑ 𝑤𝑖𝑗

𝑡

 

𝑡∈𝑆𝑃

  ∀𝑃 ∈ {𝐴𝑀 − 𝑃𝑒𝑎𝑘, 𝑃𝑀 − 𝑃𝑒𝑎𝑘, 𝑂𝑓𝑓 − 𝑃𝑒𝑎𝑘},

𝑆𝑃 = {𝑡|𝑡 ∈ 𝑃}  

(17) 

8. Put the aggregated weights together to build the symmetric weighted adjacency 

matrices as presented in equation (18).  

𝐴𝑤
𝑃 = [

0 ⋯ 𝑤1𝑛
𝑃

⋮ ⋱ ⋮
𝑤𝑛1

𝑃 ⋯ 0
] , 𝑤𝑖𝑗

𝑃 = 𝑤𝑗𝑖
𝑃 (18) 

where 𝑛 is the number of connections generated by the algorithm. 

The intuition behind this graph generation algorithm is that two connected links of a 

road network are more correlated when they are part of the same path. Additionally, in 

reality, the links’ flow correlations in each time interval of the morning peak, afternoon 

peak, and off-peak hours remain relatively the same from one day to another. 

Therefore, the last steps of the graph generation algorithm (steps 7 and 8) aggregate the 

time-dependent weights to get robust weighted adjacency matrices for each time 

interval. To better understand how this algorithm builds the representative graph with 
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additional information about the traffic condition, an illustrative example is presented 

in Figure 14. 

In this example, for a specific time interval, a total of 10 trips are generated in the only 

origin of the network, 𝑂, 5 units of which are going to destination 1, 𝐷1, using the 

connected path of 1 → 2 → 3, and the remaining 5 are going to destination 2, 𝐷2, using 

the connected path of 1 → 2 → 4. Therefore, the values for 𝑓𝑖
𝑡 and 𝐶𝑖𝑗

𝑡  are as presented 

in Table 6. Given this information, we can build a representative graph as represented 

in Figure 14.  

The weights in this graph are computed as follows: 

 

 
Figure 14. Graph generation example 
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Table 6. Computed flows for the example network.  

Flow at each link 

𝑖 1 2 3 4 

𝑓𝑖
𝑡 10 10 5 5 

The common flow between two connected links 

𝑖𝑗 1-2 2-3 2-4 3-4 

𝐶𝑖𝑗
𝑡  10 5 5 0 

𝑤12
𝑡 =

10

0.5 × (10 + 10)
= 1 

𝑤23
𝑡 =

5

0.5 × (10 + 5)
= 0.67 

𝑤24
𝑡 =

5

0.5 × (10 + 5)
= 0.67 

𝑤34
𝑡 =

0

0.5 × (10 + 10)
= 0 

The presented example shows how the weights are calculated for a specific time 

interval. Once these weights are computed at different times and days, we will 

aggregate them to build static weighted adjacency matrices for each three time periods. 

4.4 Model Structure 

This section introduces an innovative model structure and training process that uses the 

basic mathematical formulation of the graph convolutional network described in 

section 4.2 and expands it to suit the traffic volume estimation problem. One of the 

main components of this model is the static graph adjacency matrix generated 

according to the algorithm introduced in section 4.3. Given that the graph structure 
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accounts for the spatial correlation in the road network, the next challenge is to consider 

the dynamic characteristics of the traffic state to capture the temporal correlations. 

For capturing the temporal correlations, the current study introduces a temporally 

dynamic GCN-based framework whose schematic architecture is illustrated in Figure 

15. This framework is constructed from two main blocks. The left block, we name it 

the Spatio-Temporal GCN (STGCN) model, is a three-layer GCN trained using the 

entire data available for a time period (e.g., AM-Peak). Although the graph structure 

(i.e., the adjacency matrix) is static for a specific time period like morning peak, the 

node features dynamically change over the time intervals that belong to that period. 

Therefore, the input data of the STGCN model is a static graph whose features are 

changing dynamically. For instance, if we have data of an entire year, and the objective 

is to estimate networkwide traffic volumes for 15-minute time intervals in the morning 

peak, the input data to the STGCN model is the data of all the 15-minute time intervals 

in morning peak over the entire year. For each time interval, the inputs are the features 

such as probe speed, probe counts, road characteristics, temporal variables for all nodes 

(i.e., road network links), and ground-truth labels for a few nodes (i.e., links where 

CCSs are located).  

The STGCN model is designed to capture the spatial and temporal variations in the 

network and helps the model learn the correlations between the traffic volumes and 

input features. The output of the left block is the STGCN model weights that are the 

initial weights of the Fine-tuned STGCN model (FSTGCN) in the right block. As 

shown in the figure, the fine-tuned model is designed to fine-tune the base model for 

each specific time interval. In other words, the STGCN model is fine-tuned for each 
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particular time interval to pay more attention to the state of the network in that time 

interval and captures the spatial correlations. To better understand how the introduced 

model works, Figure 16 illustrates the training process flowchart. 

 

 

Figure 15. The schematic architecture of the introduced FSTGCN model.  
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Figure 16. Training process flowchart. 

4.5 Chapter Summary 

In this chapter, the modeling framework in which the dependencies of link traffic flows 

are accounted for is introduced. As described in chapter two, the major gap in most of 

the previous studies is overlooking the interactions between traffic volume in different 

road segments. The interactions arise from the system users' route selection and should 

be incorporated in the modeling framework to produce robust traffic flow estimates. 
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The proposed approach in this study directly incorporates the traffic flow dependencies 

between road network links in its structure. 

In the first section of this chapter, the mathematical formulation of the GCN model is 

presented and discussed. The GCN model is a graph-based semi-supervised deep 

learning model capable of estimating the labels of all nodes in a graph given the 

attributes of all nodes and the ground truth labels for some of the nodes. The 

mathematical formulation of the GCN model is followed by introducing the 

methodology for generating the graph representation of the road network traffic 

volumes. The proposed graph generation technique considers both the geometry of the 

road network and trip patterns to extract the relations between traffic volumes in 

different links. The traffic volumes utilized for generating the graph are the probe 

vehicle waypoints data, a sample of the entire vehicles traversing the roads. Finally, in 

the last section, the introduced GCN model and the graph generation technique are 

combined, and the graph-based model of FSTGCN is introduced for network-wide 

traffic volume estimation.  
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Chapter 5: Data 

 

 

5.1 Overview 

The proposed approach aims to estimate the 15-minutes traffic volumes by capturing 

the spatio-temporal dependencies between the traffic volumes in different segments of 

a road network besides learning the relations between traffic volume in a link and the 

attributes of that link. The introduced framework in the previous chapter is applied to 

the NPMRDS network of various areas in the state of Maryland using the 2019 data. 

The results of training and testing the model illustrate the proposed framework’s 

performance in traffic flow estimation. In this chapter, the Maryland NPMRDS 

network is introduced, along with a brief descriptive analysis of the data used for 

numerical analysis of the presented framework. 

5.2 Study Area 

The focus for illustrating the performance of the proposed framework is on estimating 

the traffic volumes in the NPMRDS road network of various areas in the state of 

Maryland. The NPMRDS is a national database of probe vehicle-based speed and travel 

time data with free access for transportation authorities and agencies. The NPMRDS 

data is available across the national highway system (NHS) and has a spatial resolution 

based on Traffic Message Channel (TMC) location codes. The selection of the 

NPMRDS network is due to the availability of geometric and functional characteristics 
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of the segments in this network. The NPMRDS network in Maryland comprises about 

4,430 miles of highways and interstate freeways with concentrations of road network 

in and around the urban regions of Washington DC and Baltimore. The NPMRDS 

network in the state of Maryland is shown in Figure 17. There are 45 CCSs on this 

network collecting traffic counts throughout the year. The location of the TMCs with 

installed CCSs is also illustrated in Figure 17 in yellow. As it can be seen, these stations 

are distributed throughout the entire network.  

Since different regions of the Maryland NPMRDS network have different 

characteristics, three areas of this network are considered separately to investigate the 

proposed framework. These regions are Eastern Maryland, the Beltway area, and 

Western Maryland. The Eastern Maryland region incorporates Wicomico and 

Worcester counties, and the Western Maryland region comprises Garret and Allegany 

counties. These two regions typically have a low congestion level, with speeds close to 

the free flow speed. However, the difference between the Eastern and Western 

networks is the presence of different road classes in the Eastern region. The Beltway 

area includes all the TMC segments of the NPMRDS Maryland inside the I-495 Capital 

Beltway and the I-495 TMC segments. This area has a congested road network with 

high variations in speed profile throughout the day. The location of these three regions 

is illustrated in Figure 18. 
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Figure 17. Maryland NPMRDS network 

 

Figure 18. Study NPMRDS Maryland regions 

5.3 Conflation of NPMRDS Network Attributes to OSM Network 

The graph generation procedure introduced in this study requires a connected road 

network. However, the NPMRDS network, being a high-level performance-oriented 

definition, is not a connected network thus not appropriate for generating the traffic 

volumes graph representation. On the other hand, the OSM road network is a detailed 

map of the road network satisfying the connectivity requirement, thus suitable for the 

graph generation task. The downside of revering to the OSM network is that the 
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geometric and performance attributes are not reported for the OSM segments. 

Therefore, a mapping procedure is needed between the road links in the NPMRDS and 

OSM networks to transfer data attributes between these base maps. The conflation 

process consists of two high-level steps of setting up a crosswalk and data conflation. 

First, a list of matched segments from the NPMRDS network is generated for each 

segment in the OSM network in the crosswalk step. The attributes are linked from the 

NPMRDS network to the OSM network in the second step. Since the OSM network 

has much more granular segments, an NPMRDS TMS is often linked to many OSM 

segments. For cases where more than one TMC is associated with an OSM segment, 

the attributes of the TMC with the highest coverage in length are linked to the OSM 

segment. 

5.4 Probe Vehicle Data 

The procedure for generating the graph representation of the traffic flows, as discussed 

in 4.3, is based on the probe vehicle movements in the road network. The probe vehicle 

data is obtained from INRIX, one of the most renowned data vendors for transportation 

agencies. The INRIX data includes the records of vehicle waypoints in 2019 snapped 

to an OSM-based map modified by INRIX. The timestamps on which the waypoints 

are recorded are around 40 seconds on average. However, this value can vary 

significantly among trips and can be as much as several minutes. This difference 

between the timestamps means that the chain of traversed segments according to the 

raw data is not a connected route. Therefore, for each discontinuity, the shortest path 

between the traversed links is computed, and the links in this path are added to the 
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chain of links in a given trip. For instance, in Figure 19, a trip has records in segments 

1, 2, 3, and 6, while there are no records in segments 4 and 5. Therefore, in the data 

preparation step, the missing segments should also be added to the chain of segments 

to form a connected trip. 

After all the trips in the database have a connected chain of segments, the number of 

trips that pass each segment in each time period can be aggregated to compute the 

adjacency matrices. 

 

 

Figure 19. INRIX probe vehicle data discontinuity 

 



 

61 

 

5.5 Input Features 

In this section, the data used for training and testing the model is briefly described. This 

descriptive analysis helps the readers obtain a broad perspective of the data and traffic 

volume characteristics in different regions of the Maryland NPMRDS network. The 

proposed framework requires the attributes for each road segment included in the 

model inputs. The features used in training the model are presented in Table 7. 

 

Table 7. Input attributes for the proposed model 

Variable Details Type 

CCS data traffic volume counts Continuous 

Probe vehicle speed speed, average speed, reference speed Continuous 

Probe vehicle Count  Continuous 

Weather data temperature, precipitation,  Categorical 

 Infrastructure data number of lanes, speed limits, class of the road 

(motorway or trunk), and type of the road 

(Interstate, US road, or MD road) 

Categorical 

Temporal data The quarter of the hour, The hour of the day, 

The day of the week, The month of the year 

Categorical 

 

The distribution of traffic flow counts and speed for each of the three study regions are 

presented in Figure 20. As it can be observed in this figure, expectedly, the Eastern and 

Western Maryland regions roads carry less amount of traffic than the Beltway area 

roads. There are numerous instances where traffic flow exceeded 1,500 vehicles per 
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hour per lane in the Beltway area, illustrating that the segments are operating at or near 

their capacity. In the Eastern Maryland region, the speed shows two distinct congestion 

levels. Most of the time, there is no congestion, and speeds are close to the free flow 

speed; however, there are periods that the roads are congested, and the speeds are much 

lower than the free-flow speed. The congested durations in Eastern Maryland are 

observable during national holidays and summers. 

 

 

Figure 20. Distribution of flow and speed in Eastern Maryland, Western Maryland, and Beltway area 
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In Western Maryland, the speeds show variations around the free flow speeds since this 

region is free from recurring congestion. On the contrary, the Beltway area experiences 

recurring congestion in many of its segments; thus, the traffic speeds illustrate a 

significant amount of variability. The summary of the input data is presented in Table 

8. The numbers in this table demonstrate that the traffic pattern in the Beltway area is 

entirely different from that of the Eastern Maryland and Western Maryland regions.  

 

 Table 8. Summary of the input data 

 Western Maryland Beltway area Eastern Maryland 

NPMRDS network 

length (miles) 

298.91 342.65 276.19 

Total number of 

NPMRDS segments 

397 748 232 

Total number of 

OSM segments 

879 5175 

 

2051 

Number of CCSs 3 6 6 

CCS FRC 1 1, 2 2, 3 

Average AADT on 

CCSs 

23,800 183,700 21,450 

Average number of 

observations for 

each CCS in 2019 

28,543 34,581 33,527 
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5.6 Chapter Summary 

This section introduces the networks and data used for testing and analyzing the 

proposed graph-based framework. It first discusses the steps to build the desirable input 

data using available datasets and maps of NPMRDS, OSM, and INRIX. Additionally, 

the three case study networks of Eastern Maryland, Western Maryland, and Beltway 

are introduced, and some of their high-level traffic characteristics are discussed.  
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Chapter 6: Experiments 

 

 

6.1 Overview 

The FSTGCN model introduced in chapter 4 is constructed from various components 

that require investigation. This section discusses three experiments designed to explore 

the graph-based framework before providing the final numerical results in the next 

chapter. The first experiment investigates the effects of training size on the model 

performance. The second experiment explores the improvement obtained by adding the 

fine-tuning step to the graph-based framework. Finally, the last experiment compares 

the performance of the FSTGCN using different loss functions. However, before going 

through these experiments, we first briefly describe the models and criteria used to 

evaluate the introduced framework in the rest of this study.  

6.2 Evaluation Models and Criteria 

As previously stated, the two advanced machine learning models of ANN and XGBoost 

are currently used for network-wide traffic volume estimation (Sekula et al., 2018; Yi 

et al., 2021). The ANN model was fully described in section 3.3. Here, we first briefly 

introduce the XGBoost model and then discuss how we compare the study framework 

with ANN and XGBoost. 
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6.2.1 XGBoost model 

XGBoost is the short name for "Extreme Gradient Boosting," an efficient and scalable 

implementation of gradient boosting framework (Friedman et al., 2000). XGBoost is a 

cutting-edge application of gradient boosting machines and has proven to push the 

limits of computing power for boosted trees algorithms. It was developed to improve 

model performance and computational speed. Boosting is an ensemble technique in 

which new models are added to adjust the errors made by existing models. The new 

models are created that predict the residuals of prior models and then added together to 

make the final prediction. The objective function of the XGBoost algorithm comprises 

a loss function over the training set and a regularization term penalizing more complex 

trees to reduce the overfitting: 

𝑂𝑏𝑗 = ∑ 𝐿(𝑦𝑖, �̂�𝑖)

𝑖

+ ∑ Ω(𝑓𝑘)

𝑘

 (19) 

Where 𝐿(𝑦𝑖, �̂�𝑖) can be any convex differentiable loss function and Ω(𝑓𝑘), the 

complexity term, is defined as: 

Ω(𝑓𝑘) = 𝛾𝑇 +
1

2
𝜆𝑤2 (20) 

where 𝑇 is the number of leaves of the tree 𝑓𝑘 and 𝑤 is the leaf weights. After taking 

the Taylor expansion and removing the constant terms, the objective function for 

iteration m is as follows: 

𝑂𝑏𝑗𝑚 = ∑ [𝐺𝑗𝑤𝑗 +
1

2
(𝐻𝑗 + 𝜆)𝑤𝑗

2]

𝑇

𝑗=1

+ 𝛾𝑇 (21) 

where 𝐺𝑗 and 𝐻𝑗 are defined in (22): 
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𝐺𝑗 = ∑
𝑑𝐿(𝑦𝑖, �̂�𝑖

(𝑚−1)
)

𝑑�̂�𝑖
(𝑚−1)

𝑖∈𝐼𝑗

, 𝐻𝑗 = ∑
𝑑2𝐿(𝑦𝑖 , �̂�𝑖

(𝑚−1)
)

𝑑(�̂�𝑖
(𝑚−1)

)
2

𝑖∈𝐼𝑗

 (22) 

𝐼𝑗 is the set of training instances in leaf 𝑗. 

The best leaf weight 𝑤𝑗 given the current tree structure will be: 

𝑤𝑗 = −
𝐺𝑗

𝐻𝑗 + 𝜆
 (23) 

6.2.2 Model settings and comparison criteria 

As described in chapter 5, the study area for evaluating the introduced framework of 

chapter 4 is different networks inside the state of Maryland. Therefore, the ground-truth 

data used for the FSTGCN model is limited to the CCSs within the case study networks. 

However, for the two models of ANN and XGBoost, we use the entire state CCSs' 

ground truth data for training. There are two reasons for this. First, unlike the FSTGCN 

model that takes the input features from all the links in the study network, ANN and 

XGBoost only need the input features from locations where the ground-truth volume 

data is available. Thus, the ANN and XGBoost models demand much smaller memory 

and processing power for training. As a result, there are no capacity limitations to use 

the entire state CCSs' data for these two models. Secondly, one of the study's objectives 

is to independently evaluate the introduced FSTGCN model in different locations. 

Therefore, we limit both input features and ground-truth data to the study network for 

this model, which can be any of the Eastern Maryland, Beltway area, or Western 

Maryland NPMRDS networks introduced in chapter 5. Note that in this way, we are 

favoring the ANN and XGBoost model in terms of the given information since it is the 
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ground-truth volume data that is limited, and machine learning models almost always 

perform better with access to more ground-truth data.  

At the same time, regardless of the model we are using, the input features must be 

available for any link that traffic volume is estimated for it. To understand this more 

clearly, the first experiment of this section is designed to investigate the ground truth 

data size used for training on the FSTGCN model performance. 

Eastern Maryland is the network used for conducting the experiments in this chapter. 

The evaluation criteria are the two famous metrics of Absolute Prediction Error (APE), 

and Error to Maximum Flow Ratio (EMFR) defined according to Equations (24) and 

(25). 

𝐴𝑃𝐸𝑖
𝑡 =

|𝑦𝑖
𝑡 − �̂�𝑖

𝑡|

𝑦𝑖
𝑡 ∗ 100 (24) 

𝐸𝑀𝐹𝑅𝑖
𝑡 =

|𝑦𝑖
𝑡 − �̂�𝑖

𝑡|

𝑦𝑖,𝑚𝑎𝑥
∗ 100 (25) 

where 𝑦𝑖
𝑡 is the ground-truth and �̂�𝑖

𝑡 is the estimated traffic volume in link 𝑖 during time 

interval 𝑡, and 𝑦𝑖,𝑚𝑎𝑥 is the maximum ground-truth traffic volume in link 𝑖.  

One other point worth mentioning about the results presented in this chapter and the 

following one is that we are using full cross-validation for all models. Therefore, each 

time one CCSs' data of the study area is left out and the rest are used for training. This 

procedure is repeated until we test the model on all CCSs in the study area. The training 

process flowchart provided in Figure 16 is updated in Figure 21 to reflect the cross-

validation step. In this figure, 𝐴 represents the set of CCS stations in the study network 
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Figure 21. FSTGCN flow chart with cross-validation. 

and all other variables are defined previously. The data used for training and testing is 

the entire 2019 data which means 𝑆𝑃 is the set of all time intervals in period 𝑝 

throughout the year 2019. 
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Note that cross-validation leads to the same testing set for all models. However, based 

on what we discussed here, the number of CCSs used to train ANN and XGBoost is 

45 − 1 = 44 stations, as we have a total of 45 CCSs in Maryland. However, for the 

FSTGCN model, this value depends on the number of CCSs falling inside the study 

area.  

Finally, the main hyperparameters used for the FSTGCN model are as follows: 

• Each GCN layer is followed by the LeakyRelu activation function with the 

following formulation: 

𝑓(𝑥) = {
𝑥        ∀𝑥: 0 ≤ 𝑥
0.1𝑥  ∀𝑥: 𝑥 < 0

  (26) 

• There are dropout layers with a dropout rate set to 0.5 after the first two GCN 

layers. 

• The output dimension is 256,128,1 for the three GCN layers in order.  

• AdaM optimizer with a learning rate equal to 0.001 is used for optimization. 

6.3 Experiment 1: Training ground-truth data size  

As noted earlier in this chapter, we use much less ground-truth data to train the 

FSTGCN model than what is used to train the ANN and XGBoost models. Intuitively, 

using less amount of training data negatively affects the FSTGCN model performance. 

This section investigates this effect by training the FSTGCN model using two sets of 

CCSs on the Eastern Maryland network. The objective is to estimate traffic volume for 

Worcester county NPMRDS segments. This network, highlighted in Figure 22, itself 

has three CCSs (i.e., Stations 1, 2, and 3). The adjacent county of Wicomico, shown in 

gray in Figure 22, also has three CCSs (i.e., Stations 4, 5, and 6).  

Here we first train a model only using the data and network of Worcester county. We 

refer to this model as the "Base Network" model. Then we add the network and data of 
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the adjacent county to the study area to see how using more training data improves the 

estimates on the Worcester county network. We refer to this as the "Expanded 

Network" model. Figure 23 shows the distribution of 𝐴𝑃𝐸 and 𝐸𝑀𝐹𝑅 for these models 

compared to ANN and XGBoost. According to this figure, the Expanded Network 

model provides significantly better estimates than the Base Network model using more 

CCS data. However, even the Base Network FSTGCN model outperforms both ANN 

and XGBoost despite using much fewer CCSs ground-truth data for training (i.e., two 

stations vs. 44 stations). 

 

 

Figure 22. Eastern Maryland Network and locations of its CCSs. 
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Figure 23. APE and EMFR distribution to investigate ground-truth data size effects. 
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6.4 Experiment 2: Fine-tuned model gain  

As discussed in section 4.4, the FSTGCN framework introduced in this study is 

constructed from two primary components of the “STGCN model” and “Fine-tuned 

model.” While in this framework, we only use the weights of the STGCN model as an 

input to the Fine-tuned model, we can use the STGCN model to get initial estimations 

of networkwide traffic volumes. This section compares the accuracy of such initial 

estimations with the final output of the introduced framework to investigate the benefits 

of fine-tuning for any time interval that we want to estimate networkwide traffic flows 

for it. 

Here, we use the data and network of Eastern Maryland, illustrated in Figure 18. We 

first estimate traffic volumes using only the first part of the introduced framework, the 

STGCN model. Then, we compare it with the traffic volumes estimated using the entire 

framework and going through the fine-tuning process, i.e., the FSTGCN model. We 

also compare these estimations with those of ANN and XGBoost models. Same as 

before, the two metrics of APE and EMFR are used to compare models’ performance. 

Figure 24 presents the distribution of APE and EMFR to compare the performance of 

the FSTGCN model with the STGCN, ANN, and XGBoost. According to this figure, 

the STGCN model itself has better performance than the two other state-of-the-art 

models of ANN and XGBoost. However, this performance is significantly improved 

by introducing the fine-tuning step to the study graph-based model. This suggests that 

the STGCN model itself can extract the relation between traffic volumes and the input 

features and improve the estimation accuracy compared to ANN and XGBoost using 
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Figure 24. APE and EMFR distribution to investigate Fine-tuning gains. 
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the graph structure of the network. However, the most benefits from graph structure are 

gained with fine-tuning and focusing the model attention on the network's ongoing 

traffic condition. 

6.4 Experiment 3: Loss function  

The last experiment ran in this chapter is training the FSTGCN model using three 

different loss functions to see which one yields more accurate estimations of the 

network-wide traffic volumes. These three loss functions are Mean Squared Error 

(MSE), Mean Absolute Error (MAE), the summation of Mean Absolute Error, and 

Conservation of Flow (CoF). For the purposes of this study, these functions are defined 

as follows: 

𝑀𝑆𝐸 =
1

|𝑁| × |𝑇|
∑ ∑(𝑦𝑖

𝑡 − �̂�𝑖
𝑡)2 

𝑖∈𝑁𝑡∈𝑇

 (27) 

𝑀𝐴𝐸 =
1

|𝑁| × |𝑇|
∑ ∑|𝑦𝑖

𝑡 − �̂�𝑖
𝑡| 

𝑖∈𝑁𝑡∈𝑇

 (28) 

𝑀𝐴𝐸 + 𝐶𝑜𝐹 =
1

|𝑁| × |𝑇|
∑ ∑|𝑦𝑖

𝑡 − �̂�𝑖
𝑡| 

𝑖∈𝑁𝑡∈𝑇

+ 𝜆 ∑ ∑ ∑|�̂�𝑖
𝑡𝑥𝑖

𝑐|

𝑖∈𝑁𝑐∈𝐶𝑡∈𝑇

 (29) 

In this formula, 𝑁 is the set of links in the road network (i.e., nodes in the representative 

graph), 𝑇 is the set of time intervals that we want to estimate link traffic flows, 𝐶 is the 

set of road segment junctions in the road network, and 𝑥𝑖
𝑐 is a value determining the 

relation of traffic flow in link 𝑖 with junction 𝑐, defined as follows: 

𝑥𝑖
𝑐 = {

   1:
    0:
−1:

     if the flow of link 𝑖 is entering junction 𝑐
                if link 𝑖 is not directly connected to junction 𝑐

   if the flow of link 𝑖 is exiting junction 𝑐
 (30) 
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To better understand the 𝐶𝑜𝐹 part of the equation (28), Figure 25 shows an example 

of 𝑥𝑖
𝑐 computation in a network. According to this figure, the traffic flow of link 1 is 

entering the junction 𝑐1 and traffic volume of link 2 is exiting it. Links 3 and 4 are not 

directly connected to the junction 𝑐1. Therefore, 𝑥1
𝑐1 = 1, 𝑥2

𝑐1 = −1,  𝑥3
𝑐1 = 0, 

 𝑥4
𝑐1 = 0. 

With the same logic at 𝑐2, 𝑥1
𝑐1 = 0, 𝑥2

𝑐1 = 1,  𝑥3
𝑐1 = −1, 𝑥4

𝑐1 = −1. Another value in 

MAE + CoF is 𝜆, which is a hyperparameter to be set based on the network 

configuration. This value determines the weight of the 𝐶𝑜𝐹 relative to the 𝑀𝐴𝐸 in the 

loss function.  

MSE and MAE are well-known loss functions used for various regression models. On 

the other hand, the summation of MAE and the conservation of flow is an innovative 

loss function introduced in this study to investigate whether adding a sense of 

conservation of flow can improve the FSTGCN model estimations. 

Now that the experiment loss functions are defined, we train the introduced FSTGCN 

model using each loss function separately and compare the results. The network used 

for this experiment is a small part of the Eastern Maryland network separated by the 

black rectangular in Figure 26. The reason behind choosing this small network is that 

the MAE + CoF loss function requires a network with no missing links at connections. 

Conversely, the NPMRDS network used in this study only provides data on the high-

level roads and often does not include connection links such as ramps. Therefore, we 

selected the small network to be able to add these connections and their data manually. 
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We use the same small network for all three loss functions to make a fair comparison 

between the results. The final 𝜆 value used for this network while using MAE + CoF 

loss function is 5𝑒−8. This value is selected after training the model with a range of 𝜆 

values to find the one that yields the best performance.  

 

Figure 25. 𝑴𝑨𝑬 + 𝑪𝒐𝑭 loss function clarifying example. 

The APE and EMFR of the models trained using the three discussed loss functions are 

presented in Figure 27. According to this figure, both MAE and MAE + CoF have 
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better performance compared to MSE loss function. However, the difference between 

MAE and MAE + CoF is not significant. Given the high computational cost of adding 

the conservation of flow to the loss function, which has enforced using fewer nodes in 

the GCN layers of the models trained for this experiment, MAE is the objective function 

we use for our numerical experiments in the rest of this study. However, the idea 

of MAE + CoF might be used in cases where the data is coming from a more granular 

network with a denser network of count sensors. 

6.5 Chapter Summary  

In the first section, this chapter presented the formulation of the XGBoost model trained 

to evaluate the FSTGCN model performance in estimating traffic volumes. Further, the 

model development procedure, along with the hyperparameters of the FSTGCN model, 

is discussed. Finally, the results of three experiments designed to investigate different 

settings of the FSTGCN model development are provided. These experiments 

illustrated the benefits of the proposed modeling framework and its capabilities 

compared to the ANN and XGBoost models. In the first experiment, possible benefits 

of expanding the study road network to include more CCSs in the training process are 

investigated. It is illustrated that inputting the data and graph representation of traffic 

volume of this expanded network can improve the model performance. In the second 

experiment, the fine-tuning step of the proposed framework is investigated to determine 

its benefits on model performance. The findings of the second experiment revealed the 

advantages of the fine-tuning step. However, even the STGCN model, which has not 
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undergone the fine-tuning phase, outperforms the ANN and XGBoost models 

indicating the benefits of adding graph structure to such models. 

 

 

Figure 26. Experiment 3 study network. 

One other experiment worth investigating with a graph-based model such as FSTGCN 

is to analyze the impact of the input CCSs location on the model performance. 

However, running such an experiment requires ground truth volume data on relatively 

close locations with the same road characteristics so that we can evaluate the effect of 

CCSs locations regardless of other influencing factors. In the currently available data 

for this study, it is impossible to set such an unbiased configuration to evaluate the 

effects of sensor location; however, given the availability of ground truth data on links 

close to CCSs, this experiment can be an interesting subject for future works. 
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Figure 27. APE and EMFR distribution to investigate loss functions performance.  
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Chapter 7: Numerical Results 

 

 

7.1 Overview 

This section aims to provide the results of applying the proposed graph-based 

framework, the FSTGCN model, and the findings of the experiments designed in the 

previous chapter to the real-world data and compare its performance with the existing 

state-of-the-art models for network-wide traffic flow estimation. The superiority of this 

model is already investigated in chapter 6 using the Eastern Maryland network in 

various situations. Given the findings of chapter 6, we apply the model to two other 

previously introduced NPMRDS networks in Maryland, namely, Western Maryland 

and Beltway area. As discussed in chapter 5, these two networks have significantly 

different road characteristics and traffic patterns compared to each other and the 

Eastern Maryland network. Therefore, the results provided in this chapter enable an in-

depth assessment of the introduced model performance in different traffic conditions 

and an exploration of the generalizability of the previous chapter’s findings. Moreover, 

we provide results of applying the proposed FSTGCN model for traffic flow prediction 

to show its operational capabilities. 

This chapter first provides the results using the FSTGCN model to estimate traffic 

volume for Western Maryland and Beltway area networks in section 7.2. Then we take 

one step further and apply the model for real-time volume prediction on the Beltway 

area network in section 7.3. The findings of this chapter are summarized in section 7.4. 
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7.2 Networkwide traffic flow estimation results 

As mentioned before, the two networks of the Western Maryland and Beltway area are 

used for numerical analysis in this section. Here, we first present and discuss the graph-

based framework performance in the Western Maryland network and then for the 

Beltway area network. In the end, we provide several aggregated analyses based on the 

results obtained from the case studies. 

7.2.1 Western Maryland network 

As presented in chapter 5, Western Maryland has a sparse NPMRDS network with 

relatively low traffic volumes. Figure 28 illustrates this network and its CCSs’ 

locations. This network is passing through Garrett, Allegany, and Washington counties. 

All three CCSs are located on I-68, which has the highest concentrations of links in the 

network. 

The same as the procedure described in chapter 6, we use the data of the entire year of 

2019 for training and testing in this section. The results provided here are obtained 

from full cross-validation on CCSs. It means that each time the base model is trained 

using the 2019 yearly data of two CCSs and is separately fine-tuned for each time 

interval throughout the year. Then, the model is tested on the third CCS at each of 

those time intervals. This process is repeated to test all three stations individually. The 

training and testing process flowchart is presented earlier in Figure 21. The final results 

of the model are 15-minute traffic volumes for all links in the network during the year 

2019. However, the evaluation of the model’s accuracy is only possible on CCSs’ 

locations where ground-truth traffic volumes are available. The distribution of APE 
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Figure 28. Western Maryland network and its CCSs’ locations 
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and EMFR measures for the Western Maryland CCSs is presented in Figure 29. 

Moreover, these values are averaged for each TMC and provided in Table 9. According 

to Figure 29 and Table 9, the FSTGCN model outperforms the two other models based 

on all metrics before and after aggregating the results. Note that the ANN and XGBoost 

models are using the ground-truth data of 44 CCSs for training. Considering that the 

FSTGCN model only uses the ground-truth data of two CCSs, this model yields better 

results using approximately 5% ground-truth traffic volume data for training. 

Another informative graphic is the daily patterns of traffic in a link. Figure 30 presents 

two sample daily traffic flow patterns estimated using the three models of FSTCGN, 

ANN, and XGBoost. This pattern is compared against the ground-truth traffic volume 

in the link. There are two sample days whose daily traffic flow patterns are plotted in 

this figure. The top plot illustrates a random day traffic pattern when all three models 

follow the actual traffic pattern.  

Table 9. Western Maryland aggregated metrics group by TMC.  

Location FSTGCN ANN  XGBoost 
MAPE MEMFR MAPE MEMFR MAPE MEMFR 

122+04845 17.27 4.52 35.70 6.35 33.33 7.41 
122+04858 22.36 4.86 24.34 6.36 33.94 8.69 
122+04864 22.46 5.43 36.88 6.08 49.38 10.46 
122-04844 20.17 5.26 42.65 6.35 40.30 7.83 
122-04857 25.36 6.62 27.10 8.32 37.45 11.12 
122-04863 23.09 5.15 45.38 6.33 46.84 9.75 
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Figure 29. APE and EMFR distributions in Western Maryland. 
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Figure 30. Daily traffic pattern samples in Western Maryland. 
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According to this plot, the FSTGCN and ANN estimations are very close to the actual 

traffic volumes. However, the bottom plot, which belongs to a snowy day in Maryland, 

presents an example of the FSTGCN model significantly outperforming the two other 

models. This finding indicates how adding spatial features to the model helps 

improving traffic volume estimation when an unusual traffic condition is observed in 

the network. 

7.2.2 Beltway area network 

Beltway area network is a congested network with a much higher number of links 

compared to Western Maryland. This network’s map and its CCSs’ locations are 

presented in Figure 31. There are five CCSs in this area that are mostly located on I-

495 beltway links. These links are experiencing heavy traffics in rush hours, making 

traffic management challenging in the area. 

We train the graph-based model through the same process as Eastern and Western 

Maryland networks (i.e., Figure 21). Note that we use four CCSs for training and one 

for testing as we have five CCSs in this network. Accordingly, the distribution of APE 

and EMFR for Beltway area CCSs are presented in Figure 32. Moreover, these values 

are averaged for each TMC and shown in Table 10.  

According to Figure 32 and Table 10, all metrics are improved using the FSTGCN 

model. As far as daily traffic flow patterns are concerned, Figure 33 illustrates two 

sample days similar to the Western Maryland region. Although we see significantly 

different daily traffic patterns here, the same story we observed on the Western 
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 Figure 31. Beltway area network and its CCSs’ locations. 
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Figure 32. APE and EMFR distributions in the Beltway area. 
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Table 10. Beltway area aggregated metrics group by TMC.  

Location 
FSTGCN ANN XGBoost 

MAPE MEMFR MAPE MEMFR MAPE MEMFR 

110+04339 27.05 11.93 47.34 14.41 52.25 17.75 

110+04616 11.73 3.44 17.19 5.61 29.51 7.44 

110+04626 9.28 4.69 12.25 5.70 17.36 6.43 

110+04632 9.08 4.01 12.73 5.03 19.35 6.86 

110+04637 8.08 4.39 11.14 5.03 20.29 8.04 

110-04338 32.88 12.11 28.17 11.71 41.98 17.49 

110-04615 9.66 5.17 13.54 5.94 21.95 8.02 

110-04625 12.50 4.28 14.91 6.18 17.56 6.54 

110-04631 7.31 3.17 12.48 4.86 21.18 7.01 

110-04636 6.47 3.13 12.33 5.59 23.04 8.38 

 

Maryland samples is repeated here. Both the FSTGCN and ANN models are closely 

following actual traffic volumes on a typical random day. Although not as good as the 

FSTGCN and ANN models, XGBoost also captures the typical traffic pattern. 

However, the FSTGCN significantly outperforms the other two for the snowy day when 

the network is experiencing much lower traffic volumes than usual. 

The results provided for the Beltway area confirm that the FSTGCN model outperforms 

the existing models regardless of the study network geometry and its general traffic 

conditions. The following section puts the results of the three study areas together and 

compares them with the state-of-the-art ANN model from different aspects. This 

provides more information about the overall performance of the introduced model 

compared to the ANN. 
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 Figure 33. Daily traffic pattern samples in the Beltway area. 
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7.2.3 Overall numerical results 

The results provided in previous sections and chapter 6 indicated that the FSTGCN 

model improves the accuracy of estimated traffic volumes in various traffic conditions. 

This section combines the results of training and testing the models over the three 

introduced regions of the Maryland NPMRDS network and analyzes them based on 

different traffic characteristics categories. However, before presenting the categorized 

comparison results, Table 11 presents the summary statistics of FSTGC, ANN, and 

XGBoost performances across all three networks based on the two metrics of APE and 

EMFR. According to this table, FTGCN outperforms ANN and XGBoost for all 

measures. Additionally, Figure 34 shows the heatmaps of all estimated traffic volumes 

obtained from the three models vs. actual values to see the results with more details. 

According to this figure, it is evident that FSTGCN has more accurate estimates as the 

observations are centered around the 45-degree line more rigorously compared to the 

other two models. 

Table 11. Summary statistics of FSTGC, ANN, and XGBoost performances across all three networks.  

Model FSTGCN ANN XGBoost 

Measure APE EMFR APE EMFR APE EMFR 

25th percentile 3.91 0.90 7.96 2.21 10.95 3.13 

Median 12.34 3.05 19.18 5.05 27.67 7.37 

75th percentile 26.75 7.66 38.84 10.09 60.99 15.16 

Mean 19.81 5.54 34.22 7.60 53.15 11.54 
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Figure 34. Heatmaps of the estimated volumes vs. actual volumes. 
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Based on the numerical results provided so far, the FSTGCN model is followed by the 

ANN model as the second-best model. Therefore, in what follows, we compare the 

FSTGCN model with the ANN based on different traffic characteristics. The first traffic 

characteristic we consider here is the Functional Road Class (FRC) of the links, where 

we can compare the estimations with the ground-truth traffic volumes. Figure 35 

illustrates relative median error reduction using the FSTGCN model versus the ANN 

model in different FRC levels. The error metrics used here are EMFR and APE as 

before, and the values for each group (i.e., FRC level here) are computed based on the 

following formulas: 

𝐸1 =
𝑀𝑒𝑑 (𝐸𝑀𝐹𝑅𝐴𝑁𝑁) − 𝑀𝑒𝑑 (𝐸𝑀𝐹𝑅𝐹𝑆𝑇𝐺𝐶𝑁)

𝑀𝑒𝑑 (𝐸𝑀𝐹𝑅𝐴𝑁𝑁)
× 100 (31) 

𝐸2 =
𝑀𝑒𝑑 (𝐴𝑃𝐸𝐴𝑁𝑁) − 𝑀𝑒𝑑 (𝐴𝑃𝐸𝐹𝑆𝑇𝐺𝐶𝑁)

𝑀𝑒𝑑 (𝐴𝑃𝐸𝐴𝑁𝑁)
× 100 (32) 

This means that for each FRC level, we compute the median EMFR and APE of all 

observations belong to that FRC level for both ANN and FSTGCN to see how much 

each metrics is reduced using FSTGCN versus ANN. 

As presented in Figure 35, both EMFR and APE are reduced significantly for all FRCs. 

However, this reduction is more noticeable for FRC=3, which are the lower-level roads. 

This is a valuable observation because, in general, the traffic volume estimation is less 

accurate on lower-level roads. Therefore, the higher improvement gained for these 

roads using FSTGCN indicates the model's superiority in challenging situations.  

Another level of aggregation used for comparison in this section is grouping the 

observations based on the congestion level in links. The congestion level we defined 
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Figure 35. Error reduction based on FRC. 

here is computed by dividing the ground-truth traffic flow at each time interval by the 

maximum flow observed in that link. This method produces a value between 0 and 1 

corresponding to the lowest and highest congestion levels, respectively. Based on this 

definition, we divided the congestion level into ten bins. The error reduction results for 

each bin computed based on equations (31) and (32) are presented in Figure 36. 

According to this figure, the error is reduced for all congestion levels. This reduction 

is more significant for the bins corresponding to uncongested situations. The reason for 

lower improvements in congested situations is that in these conditions, the traffic speed 

is a robust indicator of traffic volumes; thus, the ANN model is already performing 

well. This observation is consistent with our previous findings regarding the superiority 

of the FSTGCN in traffic volume estimation in extreme and challenging conditions. 
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Figure 36. Error reduction based on congestion level. 

7.3 Temporally aggregated results 

This section aims to analyze the performance of FSTGCN compared to the ANN and 

XGBoost models when the 15-minute estimated volumes across all three study areas 

are aggregated temporally. Three aggregation levels of hourly volumes, daily volumes, 

and AADT values are used for temporal aggregation analysis in this section.  

To compute the hourly and daily volumes, we simply sum the 15-minute estimations 

for each hour and day of the year, respectively. Further, similar to 15-minute estimates, 

the previously introduced error measures are calculated for these estimates. The 

distribution of APE and EMFR of hourly and daily volumes computed for FSTGCN, 

ANN, and GXBoost are presented in Figures 37 and 38. From these figures, we can 

see that for both hourly and daily aggregated volumes, the FSTGCN outperforms the 

other two models. 
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Figure 37. APE and EMFR distributions for hourly aggregated volumes. 
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Figure 38. APE and EMFR distributions for daily aggregated volumes. 
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Having the hourly traffic volumes, we can compute GEH statistic, which is an empirical 

formula named after its inventor Geoffrey E. Havers (DMRB, 2005). GEH formula is 

presented in Equation (33): 

𝐺𝐸𝐻 = √
2(𝑦ℎ − �̂�ℎ)2

(𝑦ℎ + �̂�ℎ)
 (33) 

where 𝑦ℎ is the observed hourly traffic volume and �̂�ℎ is the estimated hourly volume. 

Figure 39 shows the distribution of GEH computed using the hourly traffic volumes 

estimated by all three models. According to this figure, FSTGCN has lower GEH 

values compared to the other two models. The 85-percentile GEH value for the 

FSTGCN, ANN, and XGBoost is equal to 8.33, 10.18, and 16.12, respectively. 

 

Figure 39. GEH distribution based on hourly traffic volumes estimated by FSTGCN, ANN and XGBoost. 
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According to FHWA Traffic Analysis Toolbox (2019), the 85-percentile GEH value 

for individual link flows less than 5 is acceptable. Although none of the models fall 

into this threshold, the significant reduction in 85-percentile GEH value gained by 

using FSTGCN proves this model’s superiority. 

The other temporally aggregated metric widely used for volume count analysis is 

AADT. The FHWA-recommended computation procedure of AADT (TMG, 2016) 

when there are missing data in traffic counts are presented in Equations (34) and (35): 

𝑀𝐴𝐷𝑇𝑚 =

∑ 𝑤𝑗𝑚 ∑ [
1

𝑛ℎ𝑗𝑚
∑ 𝑉𝑂𝐿𝑖ℎ𝑗𝑚

𝑛ℎ𝑗𝑚

𝑖=1
]24

ℎ=1
7
𝑗=1

∑ 𝑤𝑗𝑚
7
𝑗=1

 (34) 

𝐴𝐴𝐷𝑇 =
∑ 𝑑𝑚

12
𝑚=1 𝑀𝐴𝐷𝑇𝑚

∑ 𝑑𝑚
12
𝑚=1

 (35) 

where:  

𝐴𝐴𝐷𝑇 = average annual daily traffic, 

𝑀𝐴𝐷𝑇𝑚= monthly average daily traffic for month 𝑚, 

𝑉𝑂𝐿𝑖ℎ𝑗𝑚= total traffic volume for 𝑖th occurrence of the ℎth hour of day within 𝑗th day 

of the week during the 𝑚th month, 

𝑖 = occurrence of a particular hour of day within a particular day of the week in a 

particular month (𝑖 = 1, … , 𝑛ℎ𝑗𝑚) for which traffic volume is available, 

ℎ = hour of the day (ℎ = 1,2, … ,24) – or other temporal intervals, 

𝑗 = day of the week (𝑗 = 1,2, … ,7), 

𝑚 = month (𝑚 = 1, … ,12), 
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𝑛ℎ𝑗𝑚= the number of times the ℎth hour of day within the 𝑗th day of the week during 

the 𝑚th month has available traffic volume (𝑛ℎ𝑗𝑚ranges from 1 to 5 depending on the 

hour of the day, day of the week, month, and data availability), 

𝑤𝑗𝑚= the weighting for the number of times the 𝑗th day of the week occurs during the 

𝑚th month (either 4 or 5); the sum of the weights in the denominator is the number of 

calendar days in the month (i.e., 28, 29, 30, or 31), 

𝑑𝑚= the weighting for the number of days (i.e., 28, 29, 30, or 31) for the 𝑚th month in 

the particular year. 

The results of computing AADT according to estimates of each model and ground truth 

data for each CCS are presented in Table 12. Furthermore, these values are used to 

compute the absolute error percentage between the difference of observed and 

estimated AADT values, as shown in Equation (36). 

𝐸𝑖
𝑗

= |
𝐴𝐴𝐷�̂�𝑖

𝑗
− 𝐴𝐴𝐷𝑇𝑖

𝐴𝐴𝐷𝑇𝑖
| × 100 (36) 

Where: 

𝐸𝑖
𝑗
= Absolute AADT estimation error in TMC 𝑖, using model 𝑗, 

𝐴𝐴𝐷�̂�𝑖
𝑗
= Estimated AADT in TMC 𝑖, using model 𝑗, 

𝐴𝐴𝐷𝑇𝑖= Computed AADT in TMC 𝑖, using the recorded traffic volume counts. 

The distribution of Absolute AADT estimation error is presented in Figure 40 for 

different CCS locations and their corresponding TMC segments. According to Table 

12 and Figure 40, although the FSTGC, with an average error of 10.78% compared to 

13.60% for ANN and 21.45% for XGBoost, has a better average performance 
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estimating AADT, there are locations where ANN or even XGBoost estimate AADT 

more accurately. Given the results we have shown so far, this indicates that although 

ANN and XGBoost have significantly higher error estimating volume on 15-minute, 

hourly, and daily levels, these errors are often not biased in a way that makes inaccurate 

estimations of highly aggregated metrics such as AADT.  

 

Table 12. Observed and Estimated AADTs on CCS locations.  

CCS CCS_Counts FSTGCN ANN XGBoost 

110+06339 

110+06339 
26,886 22,307 20,855 28,117 

122+04864 

122-04863 
18,849 21,629 19,913 23,121 

110+06366 

110-06365 
20,501 21,907 20,680 15,310 

110+04626  

110-04625 
216,905 208,756 210,552 214,476 

110+04637 

110-04636 
226,665 222,199 216,926 215,548 

122+04845 

122-04844 
23,093 20,132 25,860 24,068 

110+04632 

110-04631 
213,625 222,302 218,099 214,144 

110+04339 

110-04338 
82,062 61,942 101,653 110,085 

110+07791 

110-06335 
15,080 17,864 19,803 16,675 

110+09016 

110-07392 
8,625 7,697 6,160 17,605 

122+04858 

122-04857 
31,875 30,705 26,887 24,200 

 



 

103 

 

 

Figure 40. Comparison of AADT absolute error percentage 

7.4 Graph-based model real-time application 

So far, we analyzed the performance of the FSTGCN for network-wide traffic volume 

estimation and illustrated how this model outperforms the existing state-of-the-art 

models. In this section, we investigate the capability of the FSTGCN model for real-

time applications. 

Although the FSTGCN model is originally designed for historical traffic volume 

estimation, the model can be adopted to predict traffic flow in real-time. As discussed 

in chapter 4, this model is constructed from two sections of STGCN model training and 

Fine-tuning the STGCN model. For real-time applications, the STGCN part can be 

trained offline using the available historical data. Once the model weights are 

determined, the model can be Fine-tuned in real-time using the most recent data 

available for the study network.  
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Here we use the Beltway area network to analyze the accuracy of the FSTGCN model 

for real-time traffic flow prediction. To do so, we assume that the data of the first eight 

months of 2019 is available, and the objective is to see how the FSTGCN predicts 

traffic volume for the remaining four months when the online data is arriving with 15, 

30, 45, and 60 minutes delays. It means that we train the STGCN model using eight 

months of data, and for each interval in the following four months, we fine-tune the 

model using the most recent data (i.e., last 15, 30, 45, or 60 minutes). 

The training process for this analysis is represented in Figure 41, where Δt is the data 

arrival delay and can be equal to 15, 30, 45, or 60 minutes. Note that training of the 

STGCN, which is done offline, is taking about 90 minutes using a computer with 

Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz, 40 cores, and NVIDIA Quadro M4000 

GPU. However, fine-tuning for each time interval takes less than 10 seconds, which 

can be easily done in real-time. 

The distribution of APE and EMFR for each Δt is illustrated in Figure 42. According 

to this figure, the FSTGCN model has an average APE of less than 20% and an average 

EMFR of less than 10%, even when the data arrives with a one-hour delay. These are 

acceptable values given that they present the model's accuracy predicting volume for 

the locations whose ground-truth traffic volume data has never been introduced to the 

model. 

Additionally, Figure 43 presents some sample daily traffic volume patterns predicted 

by the FSTGCN model with different Δts against the actual values. An interesting 

observation here is that, although the model can predict the general traffic pattern, there 

is a lag in predictions directly correlated to the data arrival delay. This lag is more 
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evident when traffic increases fast to reach the peak during the morning hours. This 

observation can be used for future studies focused on traffic volume prediction using 

GCN-based models. 

 

Figure 41. Training process flowchart for FSTGCN application in real-time. 
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Figure 42. APE and EMFR distributions for predicting traffic flows in Beltway area. 
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Figure 43. Daily traffic pattern samples predicted for Beltway area. 
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7.5 Chapter Summary 

This chapter presented the results of applying the FSTGCN model and the ANN and 

XGBoost models to different regions in the Maryland NPMRDS road network. The 

results demonstrated the superiority of the proposed modeling framework relative to 

the XGBoost and ANN models, which on their own are capable state-of-the-art models 

in traffic volume estimation. Additionally, the framework is tested in the prediction of 

traffic volumes when there is a lag in reporting segment attributes such as speed profile. 

Further, the results of traffic volume estimation are aggregated over different functional 

road classes and various congestion levels, and it is shown that the superiority of the 

FSTGCN model is more evident in extreme conditions. 
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Chapter 8: Conclusions and Future Work 

 

 

8.1 Research Summary and Contributions 

This sturdy presented a graph-based model for networkwide traffic volume estimation. 

Traffic volume and speed are the two most fundamental inputs used by transportation 

agencies for quantifying traffic conditions, transportation system performance 

assessment, and cost-effective management of mobility projects and programs. While 

networkwide speed data are already available through data sources such as probe 

vehicle data, traffic volume remains a missing key in networkwide performance 

analysis.  

The most common approach to compensate for the absence of traffic volume data is 

substituting it with the aggregate measure of AADT. The recent advancement in both 

available transportation large datasets and efficient pattern recognition algorithms 

provide the opportunity to estimate time-variant networkwide traffic volumes. 

However, the existing literature in this field lacks a comprehensive systematic 

framework for capturing spatio-temporal correlations that exist in a road network. The 

proposed framework aims to fill this gap by directly incorporating a graph 

representation of the road network in the volume estimation model. 

Firstly, a two-step framework was developed to illustrate the significance of adding 

spatio-temporal features to the existing state-of-the-art traffic ANN developed for 

traffic volume estimation. This framework included selecting some CCSs based on 
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their location in the study network and adding their attributes as additional inputs to the 

ANN model. In this study, we illustrated how these additional features could improve 

the accuracy of the estimated volume in the case study network of New Hampshire 

state. 

Encouraged by the findings of the proof-of-concept framework, this study proposed a 

graph-based methodology that directly incorporates a representative graph structure of 

the road network into the training process. This innovative methodology includes two 

main components of graph generation and model structure. This study's novel graph 

generation algorithm aims to build a systematic representation of a road network that 

considers its geometry and takes the existing trip patterns into account.  

The innovative model architecture introduced in this study first uses the available data 

sources to extract correlations between the links' available features such as speed, road 

characteristics, temporal variables, etc., and traffic volumes by training a GCN-based 

model called STGCN. This model then goes through a fine-tuning process to consider 

the ongoing traffic condition in the road network while estimating volume for those 

links whose ground-truth volume data is not available. The fine-tuned model is called 

the FSTGCN model.  

The FSTGCN model was analyzed by comparing its performance with two existing 

volume estimation models of ANN and XGBoost in various areas of Maryland state. 

The numerical results showed the significant improvement gained by using the 

introduced FSTGCN model for networkwide historical traffic volume estimation. In 

this study, APE and EMFR were used for models' performance analysis under various 

conditions. The overall results indicated 36 and 40 percent reductions in median APE 
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and EMFR obtained using FSTGCN instead of the state-of-the-art ANN model. These 

values are 42 and 27 percent for the average APE and EMFR, respectively. 

Additionally, the results illustrated more significant improvements when volume 

estimation is more challenging like on lower FRC roads, an unusual pattern in the 

network, or low congestion time intervals when speed is not a powerful indicator of the 

volume.  

Considering the significant superiority of the FSTGCN model in historical volume 

estimation and its built-in structure, we expanded our analysis to estimate the FSTGCN 

model's performance for real-time traffic volume estimation. The results revealed the 

model's potential for real-time applications. The prediction accuracy measured by 

median APE and EMFR stayed under 20% and 7.5%, respectively, even when the most 

recent available data belongs to one hour before prediction time. Moreover, the fine-

tuning processing time was calculated to be less than 10 seconds confirming its 

suitability for real-time applications.  

As far as the overall computational cost of the models is concerned, FTGCN requires 

significantly more memory than ANN and XGBoost. This is because for training the 

STGCN part of the model, we need to read into memory the input features of the entire 

network on the whole study duration. In contrast, for ANN and XGBoost, we only input 

features of the CCSs to be read into memory. In this study, the largest network tested, 

the Beltway area network with 5157 OSM segments (i.e., 5157 nodes in the 

representative graph), required 70 GB of memory to read the entire 2019 data. Given 

the existing computational powers of today’s computers that go way beyond 70 GB, 
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the FSTGCN model can be applied to more extensive networks such as an entire state 

or country.  

The proposed graph-based framework presented significant improvement over the 

existing methods and indicated its potential for real-time applications. However, some 

suggestions for expanding the model capabilities and practical implementations can be 

considered for future research. These suggestions are presented in the following 

section.  

8.2 Potential Future Research 

Several aspects of this study can be expanded in future works to result in more accurate 

traffic volume estimates. The following is a list of recommended directions for future 

research: 

1. In this study, the attributes of the road segments are obtained from the 

NPMRDS network. However, since this network is a high-level network 

concerning the regional and statewide traffic performance, the connection links 

between the main road segments are missing; therefore, building a connected 

graph from this network requires additional steps and approximations. 

Developing the input data for a more granular network that includes the lower-

level roads and, more importantly, the connection links can improve the model 

input data quality, thus increasing estimation accuracy. 

2. Moreover, in this study, the weight matrix is assumed to be fixed during each 

considered period (e.g., AM-Peak, PM-Peak, or Off-Peak), a simplifying 

assumption. In reality, there can be variations in correlations between traffic 
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volumes at each time interval. However, updating the weight matrix of traffic 

volumes requires robust information on the turning movement patterns of 

vehicles in the network. The proposed framework can be expanded to estimate 

turning movements and update the representative graph weights iteratively. 

This way, the accuracy of the estimated volume increases, and turning 

movement patterns are evaluated simultaneously. Additionally, estimated 

volumes and turning movements can be combined to estimate OD patterns in 

the network.  

3. The proposed methodology is designed to estimate historical volumes; thus, 

traffic volumes' temporal characteristics are captured by adding temporal 

features such as time of day, day of the week, month, etc. However, temporal 

features can be embedded in the model structure to predict the short-term traffic 

volumes with higher accuracy. There are GCN-based models developed 

explicitly for such dynamic tasks and can be combined with the findings of this 

study to build a framework designated for short-term traffic volume prediction. 

Advancing the proposed model for real-time applications can be beneficial in 

traffic management and operational strategies for congestion mitigation. 

4. The computation of the weight matrix in this study was solely based on the 

movement of probe vehicles. However, the probe vehicle data is a small sample 

relative to the size of traffic volumes on the links. The relations between traffic 

volumes at different road network links can be explored from other 

perspectives, such as travel patterns from travel demand modeling frameworks, 

land-use distribution, and activity choice and scheduling of individuals. This 
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exploration can benefit the model in more robust estimation of weight matrix 

and, in turn, improved traffic volume estimation. 

5. Another noteworthy application of the volume estimation models is the 

management of traffic operations when a sudden disruption, for instance, 

resulting from an accident, occurs in the network. These models can be 

employed to estimate and predict the traffic volume in the road links impacted 

by the incident, such as those used by rerouting vehicles. Given that the 

FSTGCN model gets the most recent speed data of the entire study area as input, 

it can detect the flow disruption as long as it directly impacts the speed in the 

area. However, we need ground truth data in adjacent links to investigate this 

more precisely in future works. 

6. One other possible direction for future work is to explore the effect of CCSs 

locations on the model accuracy. As mentioned in chapter 6, this investigation 

is feasible if a denser network of count stations is available. Given such data, 

different settings of CCS locations can be selected for training and testing the 

model. The model performance in various links can be compared when nearby 

CCS data is fed into the model against when this data is not provided to the 

model.  

7. Last but not least, a sensor placement optimization model can be developed on 

top of the introduced framework to investigate the impacts of CCS locations on 

networkwide volume estimation accuracy and optimize it accordingly. This 

optimization scheme enables the authorities to strategically plan the traffic 

count sensors placement in the network and improve the efficiency of the data 
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collection. A carefully planned sensor placement scheme improves the network 

observability and information gains through observations of the traffic count 

data. The currently available ground truth data is limited to a few existing CCSs, 

which is not enough for solving the sensor placement optimization problem. 

However, accessing a more widespread ground truth volume data or designing 

a simulation framework to simulate networkwide volumes can be the directions 

to solve the sensor allocation problem in the context of networkwide volume 

estimation.  
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