
ABSTRACT

Title of Dissertation: ON SCHEDULING AND COMMUNICATION
ISSUES IN DATA CENTERS

Sheng Yang
Doctor of Philosophy, 2020

Dissertation Directed by: Professor Samir Khuller
Department of Computer Science

The proliferation of datacenters to handle the rapidly growing amount of data

being managed in the cloud, necessitates the design, management and effective

utilization of the thousands of machines that constitute a data center. Many modern

big data applications require access to a large number of machines and datasets for

training neural nets or for other big data processing.

In this thesis, we present research challenges and progress along two fronts.

The first challenge addresses the need to schedule communication between ma-

chines in a much more effective manner, as several running applications compete

for network bandwidth. We address a basic question known as coflow scheduling

to optimize the weighted average completion time of tasks that are running across

different machines in a datacenter and to effectively handle their communication

needs. Sometimes, we are forced to distribute a task among multiple datacenters

due to cost or legal reasons. For this case, we also study a related model that ad-

dresses communication needs of tasks that process data on multiple data centers and

handles communication requirements of such tasks across a wide area network with

possibly widely varying bandwidth and network structures across different pairs of

machines.

The second challenge is from a cloud user’s perspective - since access to re-

sources such as those provided by Amazon AWS can be expensive at scale, cloud

computing providers often sell under utilized resources at a significant discount via

a spot instance market. However, these instances are not dedicated and while they

offer a cheaper alternative, there is a chance that the user’s job will be interrupted

to make room for higher priority tasks. Certain non-critical applications are not

significantly impacted by delays due to interruptions, and we develop an initial

framework to study some basic scheduling questions under this circumstance.

In all of these topics, the problems we study are NP-hard and our focus is

on developing good approximation algorithms. In addition, while we attack these

problems from a theoretical perspective, all the algorithms developed in this thesis

are practical and efficient, and can be easily deployed in practice, some are already

deployed.

ON SCHEDULING AND COMMUNICATION ISSUES IN DATA
CENTERS

by

Sheng Yang

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2020

Advisory Committee:
Professor Samir Khuller, Chair/Advisor
Professor Uzi Vishkin, Dean’s Representative
Professor Mosharaf Chowdhury
Professor David Mount
Professor Neil Spring

© Copyright by
Sheng Yang

2020

Acknowledgments

First and foremost, I would like to thank Professor Samir Khuller for being

the best advisor I could ever imagine. His incredible wisdom and ever-lasting energy

never failed to impress me, not to mention his mastering in the art of explaining

complicate stuff in a clean and insightful way. In spite of being the chair of the

CS Department for the University of Maryland, College Park and then for the

Northwestern University, Samir has always made himself available for help and

advice, as a mentor and a friend. I shall see him as a role model for a researcher

and an advisor.

Over the past few years, I have had the privilege of working with some great re-

searchers during my summer internships. I am very grateful to my mentor Randeep

Bhatia at Bell Labs, and Kanak Mahadik and David Jacobs at Adobe. The experi-

ence at Adobe led to further collaborations with Subrata Mitra, Sunav Choudhary,

and Kanak Mahadik, which provides me a viewing angle from industry I would be

otherwise unable to see. I was also lucky to work with Professor Mosharaf Chowd-

hury, who brought tremendous new ideas from the system community which made

this thesis possible. I would like to thank Professor Uzi Vishkin, Professor Mosharaf

Chowdhury, Professor David Mount, and Professor Neil Spring for agreeing to be

on my thesis committee. Their questions and comments helped me reflect on my

ii

research from different perspectives. And special regards to the entire staff of the

Computer Science Department, in particular — Jennifer Story, Adelaide Findlay,

Tom Hurst, Jodie Gray, and Sharron McElroy, for their warm help, especially those

related to my visiting to Northwestern University.

I would like to thank Professor Jian Li, my undergraduate advisor, for in-

troducing me to the world of theoretical computer science, and encouraging me to

pursue a PhD. His suggestions have been lighthouses that give me guidance through-

out the past few years.

My experience at UMD has been pleasant and unforgettable. I would like

to thank all my friends: Alejandro, Shuhao, Pan, Yue, especially my lab mates

Ahmed, Ioana, Saba, Pattara, Manish, with whom countless hours of discussions

were made, which has been a pleasure and a rich source of fruitful outcomes. The life

as an international student can be hard, but the hardness has been greatly reduced

for all my Chinese friends that makes it feel like home: Jianxin, Liyan, Qiang,

Honghao, Yiyang, Xin, Xiaodi, Penghui, Xingyao, Xuchen, Zeyu. Among them,

the greatest thank is to Tongyang, with whom I shared apartment for my whole

Maryland residency, in addition to the four years in college. He helped me for life

and research alike, building up a life-long friendship. The last year and a half I was

visiting Northwestern, where I met Professor Jason Hartline, Professor Konstantin

Makarychev, Professor Aravindan Vijayaraghavan, together with their students and

post-docs: Chenhao, Xue, Liren, Yingkai, Yiding, Yifan, Aidao, Hedyeh, Sumedha,

Aravind, and Sanchit. The year 2020 has been hard for everyone, but their help

and company has been the light in the darkness.

iii

I would like to acknowledge financial support from NSF grants CNS 156019

and CCF 1655073 (Eager). Part of the research is supported by research grant from

Amazon and Adobe. And special thanks to Northwestern University for supporting

me as a visiting pre-doctoral scholar.

Finally, I awe my deepest thanks to my family, my fater Qichang Yang and

mother Meiqin Zhang. None of this would have been possible without their love and

constant encouragements.

iv

Table of Contents

Acknowledgements ii

Table of Contents v

List of Figures viii

Chapter 1:Introduction 1
1.1 Coflow Scheduling in Switch Model 4
1.2 Coflow Scheduling in Networks . 7
1.3 Scheduling with Spot Instance . 8
1.4 Outline of the Dissertation . 11

Chapter 2:Coflow Scheduling in Switch Model 13
2.1 Related Works . 13

2.1.1 Relationship with Concurrent Open Shop 15
2.2 Our Contributions . 17
2.3 Preliminaries . 18

2.3.1 Scheduling a Single Coflow . 19
2.3.2 Linear Programming Relaxation 20

2.4 High Level Ideas . 21
2.5 Approximation Algorithm for Coflow Scheduling with Release Times 23

2.5.1 Finding a Permutation of Coflows Using a Primal Dual Algo-
rithm . 24

2.5.2 Scheduling Coflows According to a Permutation 26
2.6 Analysis . 28

2.6.1 Coflows with Zero Release Times 28
2.6.2 Coflows with Arbitrary Release Times 30
2.6.3 Analyzing the Primal-Dual Algorithm 33
2.6.4 Primal Dual Analysis . 34

2.7 An Alternative Approach Using LP Rounding 38
2.7.1 Proof of the LP Rounding Version of the Main Theorems . . . 39

2.8 A Combinatorial 3-approximation Algorithm For Concurrent Open
Shop with Release Times . 41

2.9 Correction of Algorithm by Qiu et al. 42
2.9.1 Interval-Indexed LP Formulation 42
2.9.2 Grouping Coflows . 43

v

2.9.3 Error . 44
2.9.4 Corrected Grouping Algorithm 45

2.10 Counterexample to Claim by Luo et al. 48

Chapter 3:Coflow Scheduling in Networks 50
3.1 Introduction . 50

3.1.1 Related Works . 53
3.1.2 Our Contributions . 54
3.1.3 Chapter Organization . 54

3.2 Model and Problem Definition . 55
3.3 Linear Programming Relaxation . 58

3.3.1 Model-specific Constraints . 60
3.4 Approximation Algorithms . 62

3.4.1 Stretch Algorithm . 63
3.4.2 Analysis . 65

3.5 Hardness of Approximation . 69
3.6 Experiments . 71

3.6.1 Implementation Details . 72
3.6.2 Baselines . 73
3.6.3 Experimental Results . 78

3.7 Sketch of generalization to super-polynomial time span 79
3.7.1 Analysis . 81

3.8 Conclusion . 84

Chapter 4:Scheduling with Spot Instances 86
4.1 Introduction . 86

4.1.1 Training ML jobs on the Cloud 88
4.1.2 Our Contributions . 90
4.1.3 Our Techniques . 90

4.2 Problem Formulation . 91
4.2.1 Notations . 91
4.2.2 Scheduling with Spot Instances 92
4.2.3 Final Problem Statement . 93
4.2.4 Eliminating an Assumption 94

4.3 Continuous Optimization Phase . 96
4.3.1 Stochastic Knapsack Exponential Constraints 96
4.3.2 Stochastic Knapsack Polynomial Constraints 99
4.3.3 Construct a solution {zπ,i,t, yπ,t} of ExpP from a solution {xu,t, su,t}100
4.3.4 Continuous Optimization . 101

4.4 Rounding Phase . 102
4.4.1 Contention Resolution Scheme 102
4.4.2 Rounding Algorithm . 103

Chapter 5:Conclusion 111
5.1 Future Directions . 113

vi

5.1.1 Coflow Scheduling . 113
5.1.2 Scheduling Spot Instances . 114

Bibliography 116

vii

List of Figures

1.1 An example coflow over a 2 × 2 switch. The figure illustrates two
equivalent representations of a coflow - (i) as a weighted, bipartite
graph over the set of ports, and (ii) as a m×m integer matrix. . . . 5

2.1 LP1 for Coflow Scheduling . 21
2.2 Example that illustrates sequentially scheduling coflows independently

can lead to bad schedules. 22
2.3 Dual of LP1 . 24
2.4 Simple counterexample to Claim 3 . 49

3.1 Example of coflow. The first graph shows the network topologies and
the bandwidth of each link. We have one coflow consisting of two
flows: one from NY to BA of demand 18 (denoted with dashed, green
lines), the other from HK to FL of demand 12 (denoted with solid,
red lines). The second graph shows the single path model, where
each flow needs to be transmitted along a given path. It also implies
a schedule in this model: transmit according to the path for 3 time
units, and both flows are done. The third graph shows the free path
model, where each flow can be split along multiple paths as long as
the capacity of edges are respected. Here both flows can share the
link from NY to FL and the entire coflow finishes in 2 units of time. . 53

3.2 On the left is the graph structure: bi-directed edge of independent
capacity of 1, on the right is the demanded coflow. There are four
coflows each containing one single flow: red (solid) from v1 to t, green
(dashed) from v2 to t, orange (dotted) from v3 to t, and blue (curly)
from s to t. The first three have demand 1, while the blue coflow has
a demand of 3. All of them have the same weight of 1. 57

3.3 For the single path model, we have the path assignment in the left
figure. Notice the path for green (dashed) flow shares an edge with
that for the blue (curly) flow. Here is one optimal solution for the
single path model. The total weighted completion time is 1+1+1+4 = 7. 57

3.4 This is the optimal solution in the free path model. At time 1, send
the red (solid), green (dashed), and orange (dotted) coflows. At time
2, send the blue (curly) coflow on all paths. The total weighted
completion time is 1 + 1 + 1 + 2 = 5. 57

viii

3.5 Here we show an example solution obtained from the LP, different
color indicate different flows. In the second picture, we stretch with
λ = 0.5. In the third picture, we leave the slots empty if the corre-
sponding flow is finished. In the fourth picture, we utilize the idle
slots and move some flows to earlier times. Though this does not im-
prove the theoretically bound, it is beneficial in practice and is used
in our experimental evaluation. 64

3.6 Free path model on SWAN, showing the performance bound of time
indexed LP value, the performance of heuristic (λ = 1), best λ among
samples, and the expected value when λ is chosen from the distribu-
tion mentioned in Section 3.4.1. 75

3.7 Free path model on G-Scale, showing the performance bound of time
indexed LP value, the performance of heuristic (λ = 1), best λ among
samples, and the expected value when λ is chosen from the distribu-
tion mentioned in Section 3.4.1. 75

3.8 Free path model on SWAN for workload FB, the different choice of
time interval ε may affect the performance bound of time interval LP
value and the performance of heuristic (λ = 1). 75

3.9 Single path model on SWAN, showing the performance bound of time
indexed and time interval LP value, the performance of heuristic (λ =
1), best λ among samples, and the expected value when λ is chosen
from the distribution mentioned in Section 3.4.1. Here we compare
against algorithm by Jahanjou et al.[2]. 76

3.10 Single path model on G-Scale, showing the performance bound of
time indexed and time interval LP value, the performance of heuristic
(λ = 1), best λ among samples, and the expected value when λ is
chosen from the distribution mentioned in Section 3.4.1. Here we
compare against algorithm by Jahanjou et al.[2]. 76

3.11 Free path model with no weight on graph SWAN, showing the perfor-
mance bound of time indexed LP value, the performance of heuristic
(λ = 1), best λ among samples, and the expected value when λ is
chosen from the distribution mentioned in Section 3.4.1. Here we
compare against Terra[17] . 77

3.12 Free path model with no weight on graph G-Scale, showing the perfor-
mance bound of time indexed LP value, the performance of heuristic
(λ = 1), best λ among samples, and the expected value when λ is
chosen from the distribution mentioned in Section 3.4.1. Here we
compare against Terra[17]. 77

ix

Chapter 1: Introduction

With the slowing of Moore’s law, significant new advances in improvement in

processor clock speeds having slowed, researchers have turned to massively parallel

machines to build significant processing capacity to successfully attack the next

generation of data intensive computational problems. Modern computation facilities

(datacenters) usually consist of hundreds to millions of machines that coordinately

are capable of performing tasks that no single computer can accomplish. Such

coordination calls for new frameworks that can effectively leverage the underlying

hardware, upon which thousands if not millions of applications run.

One example of a powerful framework to enable processing in data centers

would be Map-Reduce. In Map-Reduce, a computational task is broken into phases

that involves mappers that distribute parallel processed data and reducers that

collect and aggregate the output and pass them to the next phase. Each round

involves a significant amount of communication of data between machines. This

communication is so substantial that has become a major bottleneck in our ability

to process large scale data quickly. Thus, we focus mainly on the communication

phases that are involved. To address this challenge, a new scheduling problem

called coflow scheduling was defined by Chowdhury et al. [1]. In this problem,

1

each application has a communication matrix D that specifies the communication

required between each pair of machines. Each application can proceed to the next

round when all of its communication needs are met. The goal is to minimize the

weighted average completion time. In the original model, a data center is modeled

as a giant switch, through which any pair of machines can communicate by sending

a message, and we assume uniform bandwidth between different pairs of machines.

In addition, we also study a related model recently proposed by Jahanjou et al. [2],

which models the communication network as a general graph. This framework

can also be used to model a heterogeneous network within a data center, or a

network spanning multiple data centers. Certain applications are forced to run

across data centers to access data that is geographically distributed, for cost or legal

reasons. In this model, the application may send data along a single path or along

multiple paths simultaneously. We also allow a machine to be communicating data

to multiple other machines at the same time, provided the bandwidth constraints

are not violated. Since most of the problems we study in this area generalize the

classical open concurrent shop problem and are therefore NP-hard, our approach is

to develop approximation algorithms and recent studies [3] have shown both the

practicality and efficiency of the methods we develop.

Another problem we consider traces its root to the origin of “cloud comput-

ing”. Large datacenters require immense investments to build, let alone the cost

in electricity and salary for datacenter maintenance specialist. It would be a huge

burden if every company with computing needs has to build and maintain its own

datacenters, especially when the need is temporal. Therefore, there is great demand

2

for a cheaper access to computing power. In fact, such computing powers do exist.

Big companies build datacenters to meet their peak needs, e.g. Amazon builds its

datacenters to handle the extraordinary demand on Black Friday (Cyber Monday,

Prime Day, etc.), which is several times that of an average day. However, such peak

demands do not last long, leading to the poor utilization of datacenters off-peak.

Demands drop, machines run idle, but maintenance cost remains inelastic, leading

to unnecessary cost. The idea of “cloud computing” emerges when these companies

started to rent their surplus computing power to smaller entities. Such computing

power, utilizing the idle machines, incurs minimal marginal cost in the datacen-

ters. In fact, the marginal cost of additional computing power for big companies

is so low such that cloud services are no longer built purely on surplus computing

power, but also on dedicated servers. While dedicated servers are used, the tension

from fluctuating demands persists: to ensure the performance under peak demands,

companies still reserve much more than they normally need, causing machines to

idle most of the time. To improve utilization and help mitigate costs, major cloud

providers offer a discounted option called spot instance (Spot Instance for Amazon

AWS, low-priority VMs for Microsoft Azure and preemptible instances for Google

Cloud). Fundamentally, one can purchase certain configurations at a steep discount,

with one caveat — the jobs receive lower priority and may be interrupted.

This will be problematic for most jobs, but not a big hurdle for others, e.g.

machine learning training jobs. Such jobs make checkpoints periodically and can

recover from interruption. The main obstacle is the stochastic nature of the inter-

ruptions. We face the trade-off between low cost and uninterrupted computations.

3

We study the problem of scheduling with the presence of spot instances, maximize

the total utility obtained under a given budget.

In this dissertation, we focus on algorithmic problems arising from different

perspectives of cloud computing. In the following sections, we describe the problems

we consider in detail.

1.1 Coflow Scheduling in Switch Model

Large scale data centers have emerged as the dominant form of computing

infrastructure over the last decade. The success of data-parallel computing frame-

works such as MapReduce [4], Hadoop [5], and Spark [6] has led to a proliferation

of applications that are designed to alternate between computation and communi-

cation stages. Typically, the intermediate data generated by a computation stage

needs to be transferred across different machines during a communication stage for

further processing. For example, there is a “Shuffle” phase between every consec-

utive “Map” and “Reduce” phases in MapReduce. With an increasing reliance on

parallelization, these communication stages are responsible for a large amount of

data transfer in a datacenter. Chowdhury and Stoica [1] introduced coflows as an

effective networking abstraction to represent the collective communication require-

ments of a job. We consider the problem of scheduling coflows to minimize weighted

completion time and give improved approximation algorithms for this basic problem.

The communication phase for a typical application in a modern data center

may contain hundreds of individual flow requests, and the phase ends only when

4

all of these flow requests are satisfied. A coflow is defined as the collection of these

individual flow requests that all share a common performance goal. The underlying

data center is modeled as a single m × m non-blocking switch that consists of m

input ports and m output ports. We assume that each port has a unit capacity,

i.e., it can handle at most one unit of data per unit time. Modeling the data center

itself as a simple switch allows us to focus solely on the scheduling task instead of

the problem of routing flows through the network. Each coflow j is represented as

an m × m integer matrix Dj = [djio] where the entry djio indicates the number of

data units that must be transferred from input port i to output port o for coflow

j. Figure 1.1 shows a single coflow over a 2 × 2 switch. For instance, the coflow

depicted needs to transfer 2 units of data from input a to output b and 3 units of

data from input a to output d. Each coflow j also has a weight wj that indicates

its relative importance and a release time rj.

Input
Ports

2

3 1

4

2 3

1 4

a

c

b d
a b

c d

Output
Ports

Bipartite Graph
Representation

Matrix
 Representation

[]

Figure 1.1: An example coflow over a 2 × 2 switch. The figure illustrates two
equivalent representations of a coflow - (i) as a weighted, bipartite graph over the
set of ports, and (ii) as a m×m integer matrix.

A coflow j is available to be scheduled at its release time rj and is said to be

completed when all the flows in the matrix Dj have been scheduled. More formally,

5

the completion time Cj of coflow j is defined as the earliest time such that for every

input i and output o, djio units of its data have been transferred from port i to port o.

We assume that time is slotted and data transfer within the switch is instantaneous.

Since each input port i can transmit at most one unit of data and each output port o

can receive at most one unit of data in each time slot, a feasible schedule for a single

time slot can be described as a matching. Our goal is to find a feasible schedule that

minimizes the total weighted completion time of the coflows, i.e., minimize
∑

j wjCj.

We aim to find approximation algorithm. Suppose an optimal solution can achieve

weighted completion time OPT, and our algorithm produces a solution with a value

SOL that satisfies SOL ≤ αOPT for any input, then we say our algorithm produces

an α-approximation.

This problem was first introduced by Chowdhury and Stoica [1] to describe

the prevalent communication patterns in data centers. It has been a hot topic in

the systems community [7, 8, 9, 10, 11, 12]. In addition, it also caught interest of

the theory community, with a line of work [2, 13, 14, 15, 16] leading to the state-

of-the-art combinatorial approximation algorithm [15], which is the main content

of Chapter 2. In fact, this theoretical result manages to make its way back to the

system community, closing the loop of research from system to theory, and back

to system. A system called Sincronia [3] was developed based on the primal-dual

method. Their algorithm only allows zero release time, therefore looks simpler than

the algorithm in Chapter 2 which supports arbitrary release times. This system im-

proves upon state-of-the-art methods and gives practical and near-optimal solutions

in real testbeds.

6

In Chapter 2, joint work with Saba Ahmadi, Samir Khuller, and Manish Puro-

hit [15], we give a 4-approximation algorithm for the case without release time, and

5-approximation with release time. In addition to an LP-based solution, we also

give a primal-dual based version with the same approximation bounds that is com-

binatorial and efficient in practice.

1.2 Coflow Scheduling in Networks

The switch model is limited to uniform capacities and topology. Over time,

machines and links fail and get replaced or upgraded, resulting in non-uniformity.

Geo-distributed networks experience even worse uniformity with various link types,

evolving network structures, and unbalanced capacity. Direct links may be missing

between certain pairs of nodes, that demands proper routing of data transmission.

In order to solve these problems, a slightly different model of coflow scheduling

was proposed by Jahanjou et al. [2], which assumes that the underlying connection

between machines is an arbitrary directed graph rather than a complete bipartite

graph. Each node can be a machine, a datacenter or an exchange point (switch,

router, etc.), and an edge between two nodes represents a physical link between the

two Internet infrastructures. When some data needs to be transmitted from one

node to another, it needs to be transmitted along a chain of edges. Unlike in the

switch model where only one packet can be sent at each time slot, data for multiple

jobs is allowed to transfer on the same link at the same time, or in other words,

sharing a link is allowed. This is a natural requirement due to the non-blocking

7

property of the Internet. In order to capture the I/O speed constraint in the switch

model, we can replace every datacenter with a gadget of two nodes. The first node

has exactly the same neighbors and edges that the original node for the datacenter

has, plus links from and to the second node. The second node is only connected to

the first node, and is the true source and destination for all demands involving this

datacenter. By setting capacity on the links between these two nodes, we can enforce

I/O limit for the whole datacenter like in switch model. Jahanjou et al. [2] considered

the model in which data has to travel along a single specified path. In addition to

this model, we also consider the free path model which allows data to be split or

merged at nodes to utilize the whole graph when transmitting the same piece of data

as long as the capacity of each link is respected. This seems much more complicated

in practice than a single path transmission, but modern distributed computation

frameworks (with software defined network and link aggregation) allow this kind of

fine-grained control on network routing and transfer rate, which makes the model

realistic.

In Chapter 3, joint work with Mosharaf Chowdhury, Samir Khuller, Manish

Purohit, and Jie You [17], we give a tight 2-approximation algorithm based on LP

rounding. In Section 5.1.1 we cover future directions on this topic (on both the

switch model and the graph model).

8

1.3 Scheduling with Spot Instance

Cloud computing providers, due to economy of scale, are in a better position

in providing cheap computational resources than smaller entities. To cope with pe-

riodic peak demand, users (the cloud providers themselves included) reserve more

resources than they require, leaving the whole system at low utilization. The Spot

instance market, e.g. Amazon EC2 Spot Instances [18], Microsoft Low Priority

VM [19], Preemptible VM Instances [20], is an attempt to reallocate these unused

resources by providing them at a deep discount comparing to normal ones. Users

request spot instances, and will be guaranteed if current load is low and there are

instances available. When system demands spike up, spot instances may be inter-

rupted and reclaimed by the system with little or no advanced notification. While

most tasks are not compatible with spot instances due to interruptions, certain tasks

can take advantage of the reduced price with limited impact. Such tasks usually

have a best-effort property and can safely save to and restore from checkpoints. Act-

ing as a cheap computational solution, spot instances can dramatically increase the

computation resources available within a budget. One example that would benefit

is the training of machine learning models: modern training frameworks can handle

interruptions, and more training epochs increase the quality of the model.

We give a model for the general problem of scheduling tasks (especially ML

training jobs) on spot instances given a budget. This model captures three major

challenges. The first challenge is the unpredictable and stochastic nature of inter-

ruptions. It is tempting to use the cheapest instance available that can handle the

9

computation, but frequent interruptions may render this choice unfavorable. Pre-

mature interruptions may cause losses in unsaved progress and incur additional costs

for restoration, which means we may end up wasting our budget on the overheads

of repeated rescheduling without making much real progress. On the other hand,

more reliable instances may have a higher hourly rate or slower speed, rendering it

also sub-optimal. A good scheduling strategy would require a better trade-off be-

tween low price and uninterrupted computations. The second challenge comes from

the rescheduling of jobs. When a job is interrupted, we commonly reschedule it on

some other available instance. The new instance, in turn, may also get interrupted.

Such recursive behavior can be captured by dynamic programming, provided that

the utility of a job is additive in its progress, which is generally not true for ML

training jobs (details described in the next challenge). Dynamic programming may

also fail to work if the availability of instances may lead to exponential number of

different states. This could happen, for example, when an interruption on a par-

ticular instance indicates a high demand on it, which suggests we avoid it in later

schedules. The last challenge originates from the non-linear relationship between

the utility we obtained and the total progress we have on jobs. For most scheduling

problems, a job only earns its utility when it is completely finished. ML training

jobs, on the other hand, gets a valid model after each epoch, but with degraded

performance, or partial utilities. Such a partial utility is not linear in the processing

time, since doubling the number of training epochs will not double our utility due

to the diminishing returns in training.

We model this problem as follows. We have N jobs that can be scheduled on M

10

instances of cloud servers. Each job may run at different speed on different instances,

among which some are spot instances that may be interrupted prematurely. Once

interrupted, a job can be rescheduled to an available instance (possible a subset of all

instances depending on what schedule has been carried out) and resume from the last

checkpoint. A job can also be kept inactive indefinitely if it is no longer profitable

due to diminishing returns. We assume the distributions of interruptions are given,

and would like to maximize the expected utility under a given budget. To model the

diminishing returns in the total utility, we use submodular functions 1, a tool with

wide applications in fields as crowdsourcing [21], information gathering [22], sensor

placement [23], influence maximization [24, 25] and exemplar-based clustering [26].

This problem is then mapped to the correlated stochastic knapsack problem with a

submodular target function.

In Chapter 4, joint work with Sunav Choudhary, Subrata Mitra, Kanak Ma-

hadik, Samir Khuller[27], we present an algorithm that computes an adaptive policy

for this problem which is guaranteed to achieve (1− 1/
√
e)/2 ' 0.1967 of the opti-

mal solution. It improves on the (1−1/ 4
√

(e))/2 ' 0.1106 approximation ratio from

Fukunaga et al. [28]. Furthermore, we remove an assumption in Fukunaga et al.

[28], which assumes that possible overflow of the budget is not allowed.

1.4 Outline of the Dissertation

We organize the dissertation as follows.

1A function f : 2N → R is submodular if for every A ⊆ B ⊆ N and e ∈ N : f(A ∪ {e}) −
f(A) ≥ f(B ∪ {e})− f(B). An equivalent definition is that for every A,B ⊆ N : f(A) + f(B) ≥
f(A ∪B) + f(A ∩B).

11

In Chapter 2, we consider the coflow scheduling problem and give improved

poly-time approximation algorithms for both zero release time and arbitrary release

time. In addition, the algorithm proposed is combinatorial and does not require

solving a linear program.

In Chapter 3, we extend the coflow scheduling problem from the switch model

to the network model. We give a tight approximation algorithm and a matching

proof on hardness of approximation.

In Chapter 4, we consider the problem of scheduling on spot instances. We map

it a correlated stochastic knapsack problem that maximizes a submodular function.

We improve on the approximation ratio for this problem.

In Chapter 5, we conclude the dissertation.

12

Chapter 2: Coflow Scheduling in Switch Model

In this chapter, we formally define the coflow scheduling problem and give

detailed solutions. In Section 2.1, we describe the related works on coflow scheduling

and its relationship with the concurrent open shop problem. In Section 2.3 we

introduce some notations and explain how to schedule a single coflow. Section 2.4

covers the high-level ideas of our algorithms. Section 2.5 gives the approximation

algorithms with zero release time and arbitrary release time. In Section 2.6, we

analyze these algorithms. The LP rounding version of the same algorithms are

described in Section 2.7. As a side result, Section 2.8 describes a 3-approximation

for concurrent open shop problem. In Section 2.9 and Section 2.10, we give a fix to

the algorithm in Qiu et al. [13], and a counter example disproving a key lemma in

Luo et al. [7].

2.1 Related Works

The idea of scheduling coflows was first introduced by Chowdhury and Stoica

[1] to describe the prevalent communication patterns in data centers. Since then, it

has been a hot topic in both the systems [7, 8, 9, 10, 11, 12] and the theory [2, 13,

14, 15, 16] communities.

13

For the special case when all coflows have zero release time, Qiu et al. [13] es-

tablished the first polynomial-time constant approximation for this problem. They

obtained a deterministic 64
3

approximation and a randomized (8 + 16
√

2
3

) approxi-

mation algorithm for the problem of minimizing the weighted completion time. For

coflow scheduling with arbitrary release times, Qiu et al. [13] claimed a deterministic

67
3

approximation and a randomized (9 + 16
√

2
3

) approximation algorithm. However

in Section 2.9, we demonstrate a subtle error in their proof that deals with non-

zero release times. We show that their techniques in fact only yield a deterministic

76
3

-approximation algorithm for coflow scheduling with release times. Their result

still holds for the case with equal release times. Khuller and Purohit [14] obtained

a deterministic 12-approximation algorithm for coflow scheduling with arbitrary re-

lease times. For the special case when all release times are zero they obtained a

deterministic 8-approximation and a randomized 3 + 2
√

2 ≈ 5.83-approximation.

Their approach is based on reducing coflow scheduling to the concurrent open shop

scheduling problem (more detail in Section 2.1.1).

The current approximation ratio for coflow scheduling are due to Chapter 2,

a deterministic 5-approximation algorithm with arbitrary release times, and a 4-

approximation without release time. In an independent work, Shafiee and Ghaderi

[16] obtained the same approximation ratio. Both works need to solve an linear

program. We go further in Chapter 2 and get a more practical primal-dual based

algorithm that achieves the same approximation bound for both cases. This result

actually transfers to the system community. A system called Sincronia [3] was

also developed based on the primal-dual method. It improves upon state-of-the-art

14

methods and gives practical and near-optimal solutions in real testbeds.

For the online case, Khuller et al. [29] study coflow scheduling in the online

setting where the coflows arrive online over time. Using the results of this chap-

ter (Theorem 2), they obtained an exponential time 7-competitive algorithm and

a polynomial time 14-competitive algorithm. Since preemption often incurs large

overheads, some recent work [12] has tackled the problem of non-preemptive coflow

scheduling. Mao et al. [30] consider the non-preemptive coflow scheduling prob-

lem with stochastic sizes and give an algorithm with an approximation factor of

(2 logm+ 1)(1 +
√
m∆)(1 +m∆)(3 + ∆)/2, where ∆ is an upper bound of squared

coefficient of variation of processing times. This simplifies to a (3 logm+ 3
2
) approx-

imation for non-stochastic cases.

2.1.1 Relationship with Concurrent Open Shop

The coflow scheduling problem generalizes the well-studied concurrent open

shop problem [31, 32, 33, 34, 35]. In the concurrent open shop problem, we have a

set of m machines and each job j (with weight wj) is composed of m tasks {tji}mi=1,

one on each machine. Let pji denote the processing requirement of task tji . A job j

is considered completed once all its tasks have completed. A machine can perform

at most one unit of processing at a time. The goal is to find a feasible schedule

that minimizes the total weighted completion time of jobs. An LP-relaxation yields

a 2-approximation algorithm for concurrent open shop scheduling when all release

times are zero [31, 32, 33] and a 3-approximation algorithm for arbitrary release

15

times [32, 33]. The approximation ratio is improved to 2 by Im et al. [36], but with

an LP-based method. Mastrolilli et al. [34] show that a simple primal-dual algorithm

also yields a 2-approximation for concurrent open shop without release times. We

develop a primal-dual algorithm that yields a 3-approximation for concurrent open

shop with release times.

The concurrent open shop problem can be viewed as a special case of coflow

scheduling when the demand matrices Dj are diagonal for all coflows j [9, 13]. We

use our algorithm to get a schedule for coflows and then schedule the jobs in the same

order. Since coflow is preemptive by definition, our algorithm gives a preemptive

schedule. One might think by reducing the concurrent open shop problem to coflow

scheduling we get a preemptive schedule. However for the case when all release

times are zero, the schedule is automatically non-preemptive.

At first glance, it appears that coflow scheduling is much harder than concur-

rent open shop. For instance, while concurrent open shop always admits an optimal

permutation schedule, such a property does not hold for coflows [9]. Surprisingly,

we show that using a similar LP relaxation as for the concurrent open shop problem,

we can design a primal dual algorithm to obtain a permutation of coflows such that

sequentially scheduling the coflows after some post-processing in this permutation

leads to provably good coflow schedules. Since the coflow scheduling problem gen-

eralizes the well-studied concurrent open shop scheduling problem, it is NP-hard to

approximate within a factor better than (2 − ε) [37, 38]. For the concurrent open

shop scheduling problem, an LP-relaxation yields a 2-approximation algorithm when

all release times are zero [31, 32, 33] and a 3-approximation algorithm for arbitrary

16

release times [32, 33]. Mastrolilli et al. [34] showed a 2-approximation for concurrent

open shop without release times. By exploiting a connection with the well-studied

concurrent open shop scheduling problem, Luo et al. [7] claim a 2-approximation

algorithm for coflow scheduling when all the release times are zero. Unfortunately,

as we show in Section 2.10, their proof is flawed and the result does not hold.

2.2 Our Contributions

The main algorithmic contribution of this chapter is a deterministic, primal-

dual algorithm for the offline coflow scheduling problem with improved approxima-

tion guarantees.

Theorem 1. There exists a deterministic, combinatorial, polynomial time 5-approximation

algorithm for coflow scheduling with release times.

Theorem 2. There exists a deterministic, combinatorial, polynomial time 4-approximation

algorithm for coflow scheduling without release times.

Our results significantly improve upon the approximation algorithms devel-

oped by Khuller and Purohit [14] whose techniques yield a 12-approximation al-

gorithm for the case with release time, and an 8-approximation algorithm without

release time. In addition, our algorithm is completely combinatorial and does not

require solving a linear program. An LP-based version is also provided together

with its proof, to help show the intuition behind the primal-dual one.

We also extend the primal dual algorithm by Mastrolilli et al. [34] to give a 3-

approximation algorithm for the concurrent open shop problem when the jobs have

17

arbitrary release times. Leung et al. [33] have a LP based algorithm which gives

a 3-approximation as well, but our approach is the first combinatorial algorithm

which achieves this bound.

Theorem 3. There exists a deterministic, combinatorial, polynomial time 3-approximation

algorithm for concurrent open shop scheduling with release times.

2.3 Preliminaries

We first introduce some notation to facilitate the following discussion. For

every coflow j and input port i, we define the load Li,j =
∑m

o=1 d
j
io to be the total

amount of data that coflow j needs to transmit through input port i. Similarly, we

define Lo,j =
∑m

i=1 d
j
io for every coflow j and output port o. Equivalently, a coflow j

can be represented by a weighted, bipartite graph Gj = (I, O,Ej) where the set of

input ports (I) and the set of output ports (O) form the two sides of the bipartition

and an edge e = (i, o) with weight wGj(e) = djio represents that the coflow j requires

djio units of data to be transferred from input port i to output port o. We will abuse

notations slightly and refer to a coflow j by the corresponding bipartite graph Gj

when there is no confusion.

Representing a coflow as a bipartite graph simplifies some of the notation that

we have seen previously. For instance, for any coflow j, the load of j on port i is

simply the weighted degree of vertex i in graph Gj, i.e., if NGj(i) denotes the set of

18

neighbors of node i in the graph Gj.

Li,j = degGj(i) =
∑

o∈NGj (i)

wGj(i, o) (2.1)

For any graph Gj, let ∆(Gj) = maxs∈I∪O degGj(s) = max{maxi Li,j,maxo Lo,j}

denote the maximum degree of any node in the graph, i.e., the load on the most

heavily loaded port of coflow j.

In our algorithm, we consider coflows obtained as the union of two or more

coflows. Given two weighted bipartite graphs Gj = (I, O,Ej) and Gk = (I, O,Ek),

we define the cumulative graph Gj ∪Gk = (I, O,Ej ∪Ek) to be a weighted bipartite

graph such that wGj∪Gk(e) = wGj(e)+wGk(e). We extend this notation to the union

of multiple graphs in an obvious manner.

2.3.1 Scheduling a Single Coflow

Before we present our algorithm for the general coflow scheduling problem, it

is instructive to consider the problem of feasibly scheduling a single coflow subject

to the matching constraints. Given a coflow Gj, the maximum degree of any vertex

in the graph ∆(Gj) = maxv degGj(v) is an obvious lower bound on the amount of

time required to feasibly schedule coflow Gj. In fact, the following lemma by Qiu et

al. [13] shows that this bound is always achievable for any coflow. The proof follows

by repeated applications of Hall’s Theorem on the existence of perfect matchings in

bipartite graphs.

19

Lemma 1. [13] There exists a polynomial time algorithm that schedules a single

coflow Gj in ∆(Gj) time steps.

Lemma 1 also implicitly provides a way to decompose a bipartite graph G into

two graphs G1 and G2 such that ∆(G) = ∆(G1) + ∆(G2). Given a time interval

(ts, te], the following corollary uses such a decomposition to obtain a feasible coflow

schedule for the given time interval by partially scheduling a coflow if necessary.

Corollary 1. Given a sequence of coflows G1, G2, . . . , Gn, a start time ts, and an

end time te such that ts +
∑j−1

k=1 ∆(Gk) ≤ te < ts +
∑j

k=1 ∆(Gk), there exists a

polynomial time algorithm that finds a feasible coflow schedule for the time interval

(ts, te] such that -

• coflows G1, G2, . . . , Gj−1 are completely scheduled.

• coflow Gj is partially scheduled so that ∆(G̃j) = ts +
∑j

k=1 ∆(Gk)− te where

G̃j denotes the subset of coflow j that has not yet been scheduled.

• coflows Gj+1, . . . , Gn are not scheduled.

Proof. By scheduling coflows G1, G2, . . . , Gj−1 sequentially using Lemma 1, we can

completely schedule these coflows by time ts +
∑j−1

k=1 ∆(Gk) ≤ te. Similarly us-

ing Lemma 1, we find a schedule S for coflow Gj that requires ∆(Gj) time steps.

We schedule only the first te − (ts +
∑j−1

k=1 ∆(Gk)) matchings from S after all the

previous coflows have been completed. This partial scheduling of coflow Gj ends

at time te as desired. Let G̃j ⊂ Gj denote the partial coflow that has not yet

been scheduled. Inspecting schedule S, we observe that S schedules the partial

20

coflow G̃j from time steps te − (ts +
∑j−1

k=1 ∆(Gk)) to ∆(Gj). Hence, we must have

∆(G̃j) ≤ ts +
∑j

k=1 ∆(Gk)− te.

2.3.2 Linear Programming Relaxation

By exploiting the connection with concurrent open-shop scheduling, we adapt

the LP relaxation used for the concurrent open-shop problem [32, 33] to formulate

the following linear program as a relaxation of the coflow scheduling problem. We

introduce a variable Cj for every coflow j to denote its completion time. Let J =

{1, 2, . . . , n} denote the set of all coflows and M = I ∪ O denote the set of all the

ports. Figure 2.1 shows our LP relaxation.

min
∑
j∈J

wjCj

subject to, Cj ≥ rj + Li,j ∀j ∈ J,∀i ∈M (2.2)∑
j∈S

Li,jCj ≥
1

2

∑
j∈S

L2
i,j +

(∑
j∈S

Li,j

)2
 ∀i ∈M,∀S ⊆ J (2.3)

Figure 2.1: LP1 for Coflow Scheduling

The first set of constraints (2.2) ensure that the completion time of any job

j is at least its release time rj plus the load of coflow j on any port i. The second

set of constraints (2.3) are standard in scheduling literature (e.g. [39]) and are used

to effectively lower bound the completion time variables. For simplicity, we define

fi(S) for any subset S ⊆ J and each port i as follow

fi(S) =

∑
j∈S L

2
i,j + (

∑
j∈S Li,j)

2

2
(2.4)

21

2.4 High Level Ideas

We use the LP above in Fig 2.1 and its dual to develop a combinatorial algo-

rithm (Algorithm 1) in Section 2.5.1 to obtain a good permutation of the coflows.

This primal dual algorithm is inspired by Davis et al. [40] and Mastrolilli et al.

[34]. As we show in Lemma 5, once the coflows are permuted as per this algo-

rithm, we can bound the completion time of a coflow j in an optimal schedule in

terms of ∆(
⋃
k≤j Gk), the maximum degree of the union of the first j coflows in the

permutation.

A näıve approach now would be to schedule each coflow independently and

sequentially using Lemma 1 in this permutation. Since all coflows k ≤ j would need

to be scheduled before starting to schedule j, the completion time of coflow j under

such a scheme would be
∑

k≤j ∆(Gk). Unfortunately, for arbitrary coflows we can

have
∑

k≤j ∆(Gk) � ∆(
⋃
k≤j Gk). For instance, Fig 2.2 shows three coflows such

that ∆(G1) + ∆(G2) + ∆(G3) = 300 > ∆(G1 ∪G2 ∪G3) = 101.

100 ba

dc

e f

G1

ba

dc

e f

G2

1

99

ba

dc

e f

G3

1

99

Figure 2.2: Example that illustrates sequentially scheduling coflows independently
can lead to bad schedules.

One key insight is that sequentially scheduling coflows one after another may

waste resources, such as in Fig 2.2. Since the amount of time required to completely

22

schedule a single coflow k only depends on the maximum degree of the graph Gk,

if we augment graph Gk by adding edges such that its maximum degree does not

increase, the augmented coflow can still be scheduled in the same time interval.

This observation leads to the natural idea of “shifting” edges from a coflow j later

in the permutation to an earlier coflow k (k < j), so long as the release time of

j is still respected, as such a shift does not delay coflow k but may significantly

reduce the requirements of coflow j. Consider for instance the coflows in Figure 2.2

when all release times are zero; shifting the edge (c, d) from graph G2 to G1 and

the edges (e, f) and (c, f) from G3 to G1 leaves ∆(G1) unchanged but drastically

reduces ∆(G2) and ∆(G3). Let’s call the coflows after shifting edges G′1, G
′
2, G

′
3.

After moving edges, ∆(G′1) = 100, ∆(G′2) = 1 and ∆(G′3) = 0. If we schedule

G′1, G
′
2, G

′
3 sequentially, completion time of G1 (C1) will be ∆(G′1) = 100, C2 =

∆(G′1) + ∆(G′2) = 101 and C3 = ∆(G′1) = 100. Before shifting edges, on the

country, completion times were C1 = 100, C2 = 200, C3 = 300. Thus shifting edges

reduces completion times.

In Algorithm 3 in Section 3.4.1, we formalize this notion of shifting edges

and prove that after all such edges have been shifted, sequentially scheduling the

augmented coflows leads to a provably good coflow schedule.

In Section 2.7 we present an alternative approach using LP Rounding for find-

ing a good permutation of coflows. Then we schedule the coflows using Algorithm 3

and give proofs for the non-combinatorial version of Theorem 1 and Theorem 2.

23

2.5 Approximation Algorithm for Coflow Scheduling with Release

Times

In this section we present a combinatorial 5-approximation algorithm for min-

imizing the weighted sum of completion times of a set of coflows with release times.

Our algorithm consists of two stages. In the first stage, we design a primal-dual

algorithm to find a good permutation of the coflows. In the second stage, we show

that scheduling the coflows sequentially in this ordering after some postprocessing

steps yields a provably good coflow schedule.

2.5.1 Finding a Permutation of Coflows Using a Primal Dual Algo-

rithm

Although our algorithm does not require solving a linear program, we use the

linear program in Figure 2.1 and its dual (Figure 2.3) in the design and analysis of

the algorithm.

max
∑
j∈J

∑
i∈M

αi,j(rj + Li,j) +
∑
i∈M

∑
S⊆J

βi,Sfi(S)

subject to,
∑
i∈M

αi,j +
∑
i∈M

∑
S/j∈S

Li,jβi,S ≤ wj ∀j ∈ J

αi,j ≥ 0 ∀j ∈ J, i ∈M
βi,S ≥ 0 ∀i ∈M,∀S ⊆ J

Figure 2.3: Dual of LP1

Our algorithm works as follows. We build up a permutation of the coflows

24

in reverse order iteratively. Let κ be a constant that we specify later. Let J be

the set of unscheduled jobs, initially J = {1, 2, · · · , n}. In any iteration, let j be

the unscheduled job with the latest release time, let µ be the port with the highest

overall load and let Lµ be the load on port µ. Now if rj > κLµ, we raise the dual

variable αµ,j until the corresponding dual constraint is tight and place coflow j at

the last in the permutation. But if rj ≤ κLµ, we raise the dual variable βµ,J until the

dual constraint for some job j′ becomes tight and place coflow j′ at the last in the

permutation. Algorithm 1 gives the formal description of the complete algorithm.

Algorithm 1: Permuting Coflows

1 J is the set of unscheduled jobs and initially J = {1, 2, · · · , n};
2 Initialize αi,j = 0 for all i ∈M, j ∈ J and βi,S = 0 for all i ∈M,S ⊆ J ;
3 Li =

∑
j∈J Lij, ∀i ∈M ; // load of port i

4 for k = n, n− 1, · · · , 1 do
5 µ(k) = arg maxi∈M Li ; // determine the port with highest load

6 j = arg max`∈J r` ; // determine job that released last

7 if rj > κ · Lµ(k) then
8 αµ(k),j = (wj −

∑
i∈M

∑
S3j Li,jβi,S);

9 σ(k)← j;

10 end
11 else if rσ(k) ≤ κ · Lµ(k) then

12 j′ = arg minj∈J

(
wj−

∑
i∈M

∑
S3j Li,jβi,S

Lµ(k),j

)
;

13 βµ(k),J =
(
wj′−

∑
i∈M

∑
S3j′ Li,j′βi,S

Lµ(k),j′

)
;

14 σ(k)← j′;

15 end
16 J ← J \ σ(k);
17 Li ← Li − Li,σ(k), ∀i ∈M ;

18 end
19 Output permutation σ(1), σ(2), · · · , σ(n);

25

2.5.2 Scheduling Coflows According to a Permutation

We assume without loss of generality that the coflows are ordered based on

the permutation given by Algorithm 1, i.e. σ(j) = j.

As we discussed in Section 2.4, näıvely scheduling the coflows sequentially in

this order may not be a good idea. However, by appropriately moving edges from

a coflow j to an earlier coflow k (k < j), we can get a provably good schedule. The

crux of our algorithm lies in the subroutine MoveEdgesBack defined in Algorithm 2.

Algorithm 2: The MoveEdgesBack subroutine.

1 Function MoveEdgesBack(Gk, Gj)
2 for e = (u, v) ∈ Gj do
3 δ = min(∆(Gk)− degGk(u),∆(Gk)− degGk(v), wGj(e));
4 wGj(e) = wGj(e)− δ;
5 wGk(e) = wGk(e) + δ;

6 end
7 return Gk, Gj;

Given two bipartite graphs Gk and Gj (k < j), MoveEdgesBack greedily moves

weighted edges from graph Gj to Gk so long as the maximum degree of graph Gk

does not increase. The key idea behind this subroutine is that since the coflow k

requires ∆(Gk) time units to be scheduled feasibly, the edges moved back can now

also be scheduled in those ∆(Gk) time units for “free”.

If all coflows have zero release times, then we can safely move edges of a coflow

Gj to any Gk such that k < j. However, with the presence of arbitrary release times,

we need to ensure that edges of coflow Gj do not violate their release time, i.e. they

are scheduled only after they are released. Algorithm 3 describes the pseudo-code for

coflow scheduling with arbitrary release times. Here q denote the number of distinct

26

values taken by the release times of the n coflows. Further, let t1 < t2 < . . . < tq

be the ordered set of the release times. For simplicity, we define tq+1 = T as a

sufficiently large time horizon.

At any time step ti, let G′j ⊆ Gj denote the subgraph of coflow j that has

not been scheduled yet. We consider every ordered pair of coflows k < j such that

both coflows are released by time t and MoveEdgesBack from graph G′j to graph G′k.

Finally, we schedule the coflows sequentially in the order using Corollary 1 until all

coflows are scheduled completely or we reach time ti+1 when a new set of coflows

gets released and the process repeats.

Algorithm 3: Coflow Scheduling

1 q ← number of distinct release times; tq+1 ← T ;
2 t1, t2, . . . , tq ← distinct release time in increasing order ;
3 for i = 1, 2, . . . , q do
4 // Each loop finds a schedule for time interval (ti, ti+1]
5 for j = 1, 2, . . . , n do
6 G′j ← unscheduled part of Gj;

7 end
8 for k = 1, 2, . . . , n− 1 do
9 if rk ≤ ti then

10 for j = k + 1, . . . , n do
11 if rj ≤ ti then G′k, G

′
j ← MoveEdgesBack(G′k, G

′
j) ;

12 end

13 end

14 end
15 Schedule (G′1, G

′
2, . . . , G

′
n) in (ti, ti+1] using Corollary 1;

16 end

27

2.6 Analysis

We first analyze Algorithm 3 and upper bound the completion time of a coflow

j in terms of the maximum degree of the cumulative graph obtained by combining

the first j coflows in the given permutation. For simplicity, we first state the proof

when all release times are zero, then proceed to the case with arbitrary release time

2.6.1 Coflows with Zero Release Times

For ease of presentation, we first analyze the special case when all coflows

are released at time zero. In this case, we have q = 1 in Algorithm 3, so the

outer for loop is only executed once. The following lemma shows that after the

MoveEdgesBack subroutine has been executed on every ordered pair of coflows, for

any coflow j, the sum of maximum degrees of graphs G′k (k ≤ j) is at most twice the

maximum degree of the cumulative graph obtained by combining the first j coflows.

Lemma 2. For all j ∈ {1, 2, . . . n},
∑

k≤j ∆(G′k) ≤ 2∆(
⋃
k≤j Gk).

Proof. Since the graphs G′k keep changing during the course of the algorithm, for

the sake of analysis, let Gk|j where k < j be the state of the graph G′k immediately

after we have transferred all possible edges from G′j to G′k. Let Gj|j denote the graph

G′j after all possible edges have been moved to G′j−1. Since we move edges back to

a graph G′k only if it does not increase the maximum degree, we have the following:

∆(G′k) = ∆(Gk|j) for all k ≤ j. (2.5)

28

For any j ∈ {1, 2, . . . , n}, consider the set S of graphs G1|j, G2|j, . . . Gj|j. Let u be a

vertex of maximum degree in Gj|j, i.e. degGj|j(u) = ∆(Gj|j) and consider any edge

e = (u, v) incident on u in Gj|j. Since edge (u, v) was not moved to any of the graphs

Gk|j for k < j, we must have that either u or v had maximum degree in Gk|j. Let

Su = {Gk|j | degGk|j(u) = ∆(Gk|j)} and Sv = {Gk|j | degGk|j(v) = ∆(Gk|j)} denote

the subsets of the graph where vertex u or v has the maximum degree respectively.

Now, let Ĝj =
⋃j
k=1Gk|j be the union of the graphs Gk|j. Since Ĝj contains

all edges from the graphs G1, . . . , Gj and no edges from graphs Gl for l > j, Ĝj is

identical to the cumulative graph of the first j coflows. In particular, we have the

following:

∆(Ĝj) = ∆(
⋃
k≤j

Gk). (2.6)

Let us now consider the maximum degree of the graph Ĝj.

∆(Ĝj) ≥ max
{
degĜj(u), degĜj(v)

}
(2.7)

≥ max

{∑
G∈Su

degG(u),
∑
G∈Sv

degG(v)

}
(2.8)

= max

{∑
G∈Su

∆(G),
∑
G∈Sv

∆(G)

}
(2.9)

From Equation (2.5), we have the following:

∑
k≤j

∆(G′k) =
∑
k≤j

∆(Gk|j) =
∑
G∈S

∆(G). (2.10)

However, since Su ∪ Sv = S as either u or v has maximum degree in every graph in

29

S, we get the following.

∑
k≤j

∆(G′k) ≤ 2 max

{∑
G∈Su

∆(G),
∑
G∈Sv

∆(G)

}
≤ 2∆(Ĝj) = 2∆(

⋃
k≤j

Gk)

where the last equality follows from Equation (2.6).

Lemma 3. Consider any coflow j and let Cj(alg) denote the completion time of

coflow j when scheduled as per Algorithm 3. Then Cj(alg) ≤ 2∆(
⋃
k≤j Gk).

Proof. Let G′1, . . . , G
′
n denote the coflows after all the edges have been moved back-

ward. According to Lemma 1 each coflow G′k could be finished at time ∆(G′k), thus

when the coflows are scheduled sequentially, we get the following.

Cj(alg) =
∑
k≤j

∆(G′k) ≤ 2∆(
⋃
k≤j

Gk)

where the last inequality follows from Lemma 2.

2.6.2 Coflows with Arbitrary Release Times

When the coflows have arbitrary release times, we can bound the completion

time of each coflow j in terms of the maximum degree of the cumulative graph

obtained by combining the first j coflows and the largest release time of all the jobs

before j in the permutation.

Lemma 4. For any coflow j, let Cj(alg) denote the completion time of coflow j

when scheduled as per Algorithm 3. Then Cj(alg) ≤ maxk≤j rk + 2∆(
⋃
k≤j Gk)

30

Proof. Consider any coflow j. Let ti = maxl≤j rl denote the earliest time when all

coflows in the set {1, 2, . . . , j} have been released. In Algorithm 3, consider the ith

iteration of the for loop. Let Gk,i denote the graph corresponding to coflow k in

iteration i before edges have been moved back, i.e., Gk,i denotes the state of coflow

k in iteration i after line 7. Since some edges from coflow k may have already

been scheduled in earlier iterations, we have Gk,i ⊆ Gk. Let G′k,i denote the graph

corresponding to coflow k after the MoveEdgesBack subroutines have been executed,

i.e. at line 14. We now claim that

Cj(alg) ≤ ti +
∑
k≤j

∆(G′k,i) (2.11)

If ti+1 ≥ ti +
∑

k≤j ∆(G′k,i), Corollary 1 guarantees that coflows 1 ≤ k ≤ j will

be completely scheduled sequentially in this iteration. Completion time of coflow j

is thus ti +
∑

k≤j ∆(G′k,i) as desired.

On the other hand, if ti+1 < ti +
∑

k≤j ∆(G′k,i), let p denote the first coflow

such that ti+1 < ti+
∑

k≤p ∆(G′k,i). Corollary 1 now finds feasible schedules for time

slots ti to ti+1 such that all coflows k ≤ p− 1 are completely scheduled and coflow

p is partially scheduled so that we have the following:

∆(G′p,i+1) = ∆(Gp,i+1) = ti +
∑
k≤p

∆(G′k,i)− ti+1 (2.12)

∆(G′k,i+1) = ∆(Gk,i+1) = 0,∀k ≤ p− 1. (2.13)

Also, since all the coflows 1 ≤ k ≤ j had already been released at time ti, any

31

new coflows that get released do not affect the movement of edges from graphs

corresponding to coflows 1 ≤ k ≤ j. Hence, we have:

∆(G′k,i+1) = ∆(G′k,i),∀p < k ≤ j (2.14)

From equations (2.12) - (2.14), we get:

ti+1 +
∑
k≤j

∆(G′k,i+1) = ti +
∑
k≤j

∆(G′k,i). (2.15)

Proceeding this way inductively, we obtain:

ti+x +
∑
k≤j

∆(G′k,i+x) = ti +
∑
k≤j

∆(G′k,i). (2.16)

where i + x is the last iteration such that ti+x < ti +
∑

k≤j ∆(G′k,i). By Corollary

1 at the end of iteration i + x, coflow j is completely scheduled at time ti+x +∑
k≤j ∆(G′k,i+x) = ti +

∑
k≤j ∆(G′k,i) as desired, thus completing the proof of the

claim.

We can now bound Cj(alg) as follows.

Cj(alg) ≤ ti +
∑
k≤j

∆(G′k,i) ≤ ti + 2∆

(⋃
k≤j

Gk,i

)
≤ ti + 2∆

(⋃
k≤j

Gk

)
. (2.17)

where the second inequality follows from Lemma 2.

32

2.6.3 Analyzing the Primal-Dual Algorithm

We are now in a position to analyze Algorithm 1. Recall that we assume that

the jobs are sorted as per the permutation obtained by Algorithm 1, i.e., σ(k) =

k,∀k ∈ [n]. We first give a lemma, which will be proved in Section .

Lemma 5. If there is an algorithm that generates a feasible coflow schedule such

that for any coflow j, Cj(alg) ≤ amaxk≤j rk + b∆(
⋃
k≤j Gk) for some constants a

and b, then the total cost of the schedule is bounded as follows.

∑
j

wjCj(alg) ≤ (a+
b

κ
)

n∑
j=1

∑
i∈M

αi,jrj + 2(aκ+ b)
∑
i∈M

∑
S⊆J

βi,Sfi(S).

Theorem 1. There exists a deterministic, combinatorial, polynomial time 5-approximation

algorithm for coflow scheduling with release times.

Proof. For scheduling coflows with arbitrary release times, Lemmas 4 and 5 (with

a = 1 and b = 2) together imply that:

∑
j

wjCj(alg) ≤
(

1 +
2

κ

) n∑
j=1

∑
i∈M

αi,jrj + 2(κ+ 2)
∑
i∈M

∑
S⊆J

βi,Sfi(S).

To minimize the approximation ratio, we substitute κ = 1
2

and obtain:

∑
j

wjCj(alg) ≤ 5

(
n∑
j=1

∑
i∈M

αi,jrj +
∑
i∈M

∑
S⊆J

βi,Sfi(S)

)
≤ 5 ·OPT,

where the last inequality follows from weak duality as α and β constitute a feasible

33

dual solution.

Theorem 2. There exists a deterministic, combinatorial, polynomial time 4-approximation

algorithm for coflow scheduling without release times.

Proof. Lemmas 4 and 5 (with a = 0 and b = 2) together imply that:

∑
j

wjCj(alg) ≤ 2

κ

n∑
j=1

∑
i∈M

αi,jrj + 4
∑
i∈M

∑
S⊆J

βi,Sfi(S).

To minimize the approximation ratio, we substitute κ = 1
2

and obtain:

∑
j

wjCj(alg) ≤ 4

(
n∑
j=1

∑
i∈M

αi,jrj +
∑
i∈M

∑
S⊆J

βi,Sfi(S)

)
≤ 4 ·OPT,

where the last inequality follows from weak duality as α and β constitute a feasible

dual solution.

2.6.4 Primal Dual Analysis

We devote this section to prove Lemma 5.

Recall that we assume that the jobs are sorted as per the permutation obtained

by Algorithm 1, i.e., σ(k) = k,∀k ∈ [n].

Let Sj be the set of jobs {1, · · · , j}. Let βi,j = βi,Sj and Li(Sj) =
∑

k≤j Li,k.

Also let µ(j) be the port with highest load in Sj, therefore Lµ(j)(Sj) =
∑

k≤j Lµ(j),k =

∆(
⋃
k≤j Gk). We will first state a few observations regarding the primal-dual algo-

rithm.

34

Observation 1. The following statements hold.

(a) Every nonzero βi,S can be written as βµ(j),j for some job j.

(b) For every set Sj that has a nonzero βµ(j),j variable, if k ≤ j then rk ≤ κ ·

Lµ(j)(Sj).

(c) For every job j that has a nonzero αµ(j),j, rj > κ · Lµ(j)(Sj).

(d) For every job j that has a nonzero αµ(j),j, if k ≤ j then rk ≤ rj.

The correctness of Observation 1 can be directly obtained from Algorithm 1.

Lemma 6. For every job j,
∑

i∈M αi,j +
∑

i∈M
∑

k≥j Li,jβi,k = wj.

Proof. A job j is added to the permutation in Algorithm 1 only if the constraint∑
i∈M αi,j +

∑
i∈M

∑
S/j∈S Li,jβi,S ≤ wj gets tight for this job, thus:

∑
i∈M

αi,j +
∑
i∈M

∑
S/j∈S

Li,jβi,S = wj

∑
i∈M

αi,j +
∑
i∈M

∑
k≥j

Li,jβi,k = wj.

Observation 2. For any i ∈M and S ⊆ J , we have that (
∑

j∈S Li,j)
2 ≤ 2fi(S).

Lemma 5. If there is an algorithm that generates a feasible coflow schedule such

that for any coflow j, Cj(alg) ≤ amaxk≤j rk + b∆(
⋃
k≤j Gk) for some constants a

35

and b, then the total cost of the schedule is bounded as follows.

∑
j

wjCj(alg) ≤ (a+
b

κ
)

n∑
j=1

∑
i∈M

αi,jrj + 2(aκ+ b)
∑
i∈M

∑
S⊆J

βi,Sfi(S).

Proof. In the following we denote Cj(alg) as Cj for ease of notation. By applying

Lemma 6:

n∑
j=1

wj · Cj =
n∑
j=1

(∑
i∈M

αi,j +
∑
i∈M

∑
k≥j

Li,jβi,k

)
· Cj

=
n∑
j=1

∑
i∈M

αi,j · Cj +
n∑
j=1

∑
i∈M

∑
k≥j

Li,jβi,k · Cj.

First let’s bound
∑n

j=1

∑
i∈M αi,j · Cj. Since ∆(

⋃
k≤j Gk) = Lµ(j)(Sj) :, by

applying Observation 1 parts (c), (d), we get:

n∑
j=1

∑
i∈M

αi,j · Cj

≤
n∑
j=1

∑
i∈M

αi,j

{
a ·max

`≤j
r` + b · Lµ(j)(Sj)

}

≤
n∑
j=1

∑
i∈M

αi,j

(
a · rj + b · rj

κ

)
≤
(
a+

b

κ

) n∑
j=1

∑
i∈M

αi,jrj.

Now we bound
∑n

j=1

∑
i∈M

∑
k≥j Li,jβi,kCj:

n∑
j=1

∑
i∈M

∑
k≥j

Li,jβi,kCj

36

≤
n∑
j=1

∑
i∈M

∑
k≥j

Li,jβi,k ·
{
a ·max`≤jr` + b · Lµ(j)(Sj)

}
≤

n∑
j=1

∑
i∈M

∑
k≥j

Li,jβi,k ·
{
a ·max`≤kr` + b · Lµ(j)(Sj)

}
.

By applying Observation 1 part (b):

≤
n∑
j=1

∑
i∈M

∑
k≥j

Li,jβi,k ·
{
aκ · Lµ(k)(Sk) + b · Lµ(j)(Sj)

}
≤ (aκ+ b)

n∑
k=1

∑
i∈M

∑
j≤k

Li,jβi,k · Lµ(k)(Sk)

≤ (aκ+ b)
n∑
k=1

∑
i∈M

βi,k
∑
j≤k

Li,j · Lµ(k)(Sk)

= (aκ+ b)
n∑
k=1

∑
i∈M

βi,k (Li(Sk)) · Lµ(k)(Sk)

≤ (aκ+ b)
∑
i∈M

n∑
k=1

βi,k
(
Lµ(k)(Sk)

)2
.

By sequentially applying Observation 2 and Observation 1 part (a), this is

upper bounded by

2(aκ+ b)
∑
i∈M

n∑
k=1

βi,kfµ(k)(Sk)

=2(aκ+ b)
n∑
k=1

βµ(k),kfµ(k)(Sk)

≤2(aκ+ b)
∑
i∈M

∑
S⊆J

βi,Sfi(S).

37

Therefore,

∑
j∈J

wjCj ≤
(
a+

b

κ

) n∑
j=1

∑
i∈M

αi,σ(j)rj + 2(aκ+ b)
∑
i∈M

∑
S⊆J

βi,Sfi(S).

2.7 An Alternative Approach Using LP Rounding

This alternative approach also consists of two stages. First, we find a good

permutation of coflows and after that we schedule the coflows sequentially in this

ordering using Algorithm 3.

Let Cj denote the completion time of job j in an optimal LP1 solution. We

assume without loss of generality that the coflows are ordered so that the following

holds.

C1 ≤ C2 ≤ . . . ≤ Cn (2.18)

We can use the LP-constraints to provide a lower bound on Cj in terms of the

maximum degree of the cumulative graph obtained by combining the first j coflows.

In particular, the following lemma follows from the constraints of LP1.

Lemma 7. For each coflow j = 1, 2, . . . , n, the following inequality holds.

Cj ≥
1

2
max
i

{
j∑

k=1

Li,k

}
=

1

2
∆(
⋃
k≤j

Gk)

38

Proof. Let S = {1, 2, . . . , j}. The LP constraint (2.3) implies that

max
i

{
j∑

k=1

Li,k · Ck

}
≥ max

i
fi(S) ≥ max

i

{
(
∑j

k=1 Li,k)
2

2

}

Since Ck ≤ Cj, for each k = 1, 2, . . . j we have

Cj·max
i
{

j∑
k=1

Li,k} = max
i

{
j∑

k=1

Li,kCj

}
≥ max

i

{
j∑

k=1

Li,kCk

}
≥ max

i

{
(
∑j

k=1 Li,k)
2

2

}

which is equivalent to

Cj ≥
1

2
max
i

{
j∑

k=1

Li,k

}
=

1

2
∆(
⋃
k≤j

Gk)

2.7.1 Proof of the LP Rounding Version of the Main Theorems

Theorem 4. There exists a deterministic, polynomial time 4-approximation algo-

rithm for coflow scheduling without release times.

Proof. Consider any coflow j and let Cj(alg) denote the completion time of coflow

j when scheduled as per Algorithm 3. Since all coflows have zero release times, at

time t1 = 0 all the coflows are arrived. Let G′1, . . . , G
′
n denote the coflows after all

the edges have been moved backward. According to Lemma 1 each coflow G′k could

be finished at time ∆(G′k), thus when the coflows are scheduled sequentially, we get

39

the following.

Cj(alg) =
∑
k≤j

∆(G′k)

Applying Lemma 2 and Lemma 7:

Cj(alg) =
∑
k≤j

∆(G′k) ≤ 2∆(
⋃
k≤j

Gk) ≤ 4Cj

Hence, the total weighted completion time of our schedule can be bounded by the

objective of the optimal LP solution.

n∑
j=1

wjCj(alg) ≤ 4
n∑
j=1

wjCj ≤ 4OPT

Theorem 5. There exists a deterministic, polynomial time 5-approximation algo-

rithm for coflow scheduling with release times.

Proof.

Cj(alg) ≤ max
k≤j

rk + 2∆(
⋃
k≤j

Gk) = max
k≤j

rk + 4Cj ≤ 5Cj

The first inequality follows from Lemma 4 and the second equality follows from

Lemma 7. The last inequality holds since Cj ≥ Ck for all 1 ≤ k ≤ j and Ck ≥ rk.

The cost of obtained coflow schedule is

n∑
j=1

wjCj(alg) ≤ 5
n∑
j=1

wjCj ≤ 5OPT.

40

2.8 A Combinatorial 3-approximation Algorithm For Concurrent Open

Shop with Release Times

Theorem 1. Algorithm 1 gives a 3-approximation for concurrent open shop schedul-

ing with release times.

Proof. We use algorithm 1 to get a permutation {1, 2, · · · , n} for a set of jobs J . If

we schedule the jobs according to this permutation sequentially, we’ll get:

Cj ≤ max
i′≤j

ri′ +
∑
k≤j

Lµ(j),k

Lemma 5 with a = 1 and b = 1, imply that:

∑
j

wjCj(alg) ≤ (1 +
1

κ
)

n∑
j=1

∑
i∈M

αi,jrj + 2(κ+ 1)
∑
i∈M

∑
S⊆J

βi,Sfi(S)

To minimize the approximation ratio, we substitute κ = 1
2

and obtain

∑
j

wjCj(alg) ≤ 3

(
n∑
j=1

∑
i∈M

αi,jrj +
∑
i∈M

∑
S⊆J

βi,Sfi(S)

)
≤ 3 ·OPT

where the last inequality follows from weak duality as α and β constitute a feasible

dual solution.

41

2.9 Correction of Algorithm by Qiu et al.

We now give a brief overview of the approximation algorithm given by Qiu

et al. [13].

2.9.1 Interval-Indexed LP Formulation

In the first step we write an interval-indexed linear programming relaxation for

the coflow scheduling problem similar to that for the concurrent open shop problem

by Wang and Cheng [35].

Let C̄j denote the approximated completion time of coflow j obtained by an

optimal feasible solution to this LP relaxation. We first order the coflows in non-

decreasing order of these approximated completion times, i.e. we have the following.

C̄1 ≤ C̄2 . . . ≤ C̄n (2.19)

Let Vj denote the maximum load on any port by the first j coflows taken

together in the above ordering, i.e.

Vj = max

[
max
i

{
j∑

k=1

∑
o

dkio

}
,max

o

{
j∑

k=1

∑
i

dkio

}]
.

Qiu et al. [13] prove that these Vj values provide a good approximation for

the optimal completion times of the coflows. In particular, they show the following

where C∗j denotes the completion time of coflow j in an optimal schedule.

42

∑
j

wjVj ≤
16

3

∑
j

wjC
∗
j (2.20)

2.9.2 Grouping Coflows

Divide time into geometrically increasing intervals as follows - [1], [2], [3, 4], [5, 8], [9, 16],

Let Il = (2l−2, 2l−1] denote the lth interval.

Now group the coflows based on the interval where their V values lie and let Sl

denote the set of coflows assigned to interval Il. In other words, all coflows j ∈ Sl,

we have 2l−2 < Vj ≤ 2l−1.

Algorithm 1

• For l = 1, 2, . . .

– Wait until the last coflow in Sl is released.

– Group all coflows in Sl and schedule as per Algorithm 1 in [13]. This

would take time at most Vk ≤ 2l−1 where k is the last job in the group.

Analysis

Qiu et al. claim the following (Proposition 1 in [13]).

Proposition 1. For any coflow j, let Cj(alg) denote the completion time of coflow

j as per Algorithm 1. Then we have

Cj(alg) ≤ max
1≤g≤j

{rg}+ 4Vj.

43

Since C∗j ≥ max
1≤g≤j

{rg}, Proposition 1 and Equation (2.20) together imply the

following theorem (Theorem 1 in [13]).

Theorem 1. There exists a deterministic polynomial time 67/3 approximation al-

gorithm for coflow scheduling, i.e.

∑
j

wjCj(alg) ≤ 67

3

∑
j

wjC
∗
j .

2.9.3 Error

We now show that the Proposition 1 stated above is incorrect. Consequently,

Theorem 1 no longer holds. Recall that Algorithm 1 groups jobs based on their V

values alone and does not consider their release times.

Consider a simple case where m = 1 and we have just one input port and one

output port. Say we have two jobs j1 and j2 such that j1 needs to send 3 units

of data and j2 needs to send 1 unit of data. Also say rj1 = 0 and rj2 = 100. By

definition, we have Vj1 = 3 and Vj2 = 4; note that both the jobs belong to the same

interval I3 = (2, 4]. Now since both jobs belong to the same interval, Algorithm 1

waits for both the jobs to be released and then schedules them together (after time

100). In this case, the claim in Proposition 1 clearly does not hold for job j1.

Proposition 2 in [13] makes a similar claim for a grouping algorithm using

randomized intervals. Again, the above instance serves as a counterexample to the

claim. Consequently, Theorem 2 in [13] does not hold.

In the following section, we show that the deterministic grouping algorithm

44

can be modified to yield a 76
3

-approximation algorithm. Note that this is worse than

the 67
3

factor claimed earlier. It is not immediately clear whether the randomized

algorithm from [13] can be corrected via a similar modification.

2.9.4 Corrected Grouping Algorithm

We first solve the interval-indexed LP formulation to obtain approximated

completion times C̄j. Without loss of generality, we assume that the coflows are

ordered as per Equation (2.19).

As shown by Leung, Li, and Pinedo (Theorem 13 in [33]), the analysis of Wang

and Cheng [35] can be extended to the case of general release times to obtain the

following. ∑
j

wjC̄j ≤
19

3

∑
j

wjC
∗
j (2.21)

This is analogous to Lemma 3 in [13] that shows that
∑

j wjVj ≤
16
3

∑
j wjC

∗
j

where Vj is the maximum load on any port by the first j coflows taken together (as

per the ordering).

Since C̄j denotes the approximation completion time of coflow j as computed

by the valid LP relaxation, we also have the following where rj denotes the release

time of coflow j.

C̄j ≥ rj (2.22)

C̄j ≥ Vj (2.23)

45

2.9.4.1 Algorithm

Divide time into geometrically increasing intervals as follows - [1], [2], [3, 4], [5, 8], [9, 16],

Let Il = (2l−2, 2l−1] denote the lth interval.

Now group the coflows based on the interval where their C̄ values lie and let

Sl denote the set of coflows assigned to interval Il. So for all coflows j ∈ Sl, we have

2l−2 < C̄j ≤ 2l−1.

Algorithm

• For l = 1, 2, . . .

– Wait until the last coflow in Sl is released AND all coflows in Sl−1 have

finished. (whichever is later).

– Group all coflows in Sl and schedule as per Algorithm 1 in [13]. This

would take time at most Vk ≤ 2l−1 where k is the last job in the group.

Analysis

Let C̃l denote the time by which all coflows in Sl have been scheduled by the

above algorithm.

Claim 1. C̃l ≤ 2× 2l−1 = 2l for every group Sl.

Proof. We prove by induction. For group S1, we start executing the schedule at

maxj∈S1 rj ≤ maxj∈S1 C̄j ≤ 21−1 = 1 and the schedule takes time at most Vk ≤

21−1 = 1 where k is the last coflow in the group. So the base case is true.

46

Now assume that the claim is true for some group Sl. As per the algorithm,

the coflows in group Sl+1 start executing at C̃l or maxj∈Sl+1
rj whichever is later. By

induction, we are guaranteed that C̃l ≤ 2l. Also maxj∈Sl+1
rj ≤ maxj∈Sl+1

C̄j ≤ 2l.

Thus the coflows in group Sl+1 start executing latest at time 2l. We know that all

these coflows require at most Vk ≤ C̄k ≤ 2l time units to complete. As a result, all

the coflows in this group are scheduled by time 2l + 2l = 2l+1.

And thus the claim follows by induction.

Claim 2. For any coflow j, let Cj(alg) denote the completion time of coflow j as

per the algorithm. Then Cj(alg) < 4C̄j.

Proof. Consider any coflow j, and let l be such that j ∈ Sl. Hence we have C̄j > 2l−2.

By the previous claim, we have

Cj(alg) ≤ C̃l ≤ 2l = 4× 2l−2 < 4C̄j

Corollary 2. There is a deterministic 76
3

-approximation for coflow scheduling with

arbitrary release times.

Proof. Claim 2 and Equation (2.21) together imply a 76
3

-approximation algorithm

for coflow scheduling with release times.

47

2.10 Counterexample to Claim by Luo et al.

Luo et al. [7] claim a 2-approximation algorithm for the coflow scheduling

problem by proving that it is equivalent to concurrent open shop scheduling. One

of the key ingredients of their proof is the following claim that is implicit in Lemma

3 in Luo et al. [7].

Claim 3 (Restated from [7]). Given two coflows Gk and Gl, we can find a feasible

schedule for both the coflows such that Ck+Cl = min{∆(Gk)+∆(Gk

⋃
Gl),∆(Gl)+

∆(Gk

⋃
Gl)}.

Counterexample

We show that Claim 3 is erroneous via a simple counterexample. Consider

two coflows on a 3 × 3 datacenter as shown in Figure 2.4. Note that while coflows

G1 and G2 have ∆(G1) = 1 and ∆(G2) = 2, the combined coflow G1

⋃
G2 also has

∆(G1

⋃
G2) = 2. Consequently, the RHS in Claim 3 equals ∆(G1) + ∆(G1

⋃
G2) =

3.

On the other hand, as seen in Figure 2.4, if coflow G1 is scheduled so that

C1 = ∆(G1) = 1, then the matching constraints force coflow G2 to have completion

time C2 = 3. On the other hand, delaying one edge of coflow G1, leads to a schedule

with C1 = C2 = 2. In both cases, we have C1 + C2 = 4 (instead of 3) leading to a

contradiction to the claim.

48

1

1 1

1

v1u1

v2u2

u3
v3

u1

u3

v1

v2
u2

v3

Coflow G 1
Coflow G 2

1 2Time: 3 1 2

OR

1

1 1

1

v1u1

v2u2

u3
v3

u1

u3

v1

v2
u2

v3

Coflow G 1
Coflow G 2

1 2

Schedule 2

3 1 2

OR

Coflows:

Schedule 1

Figure 2.4: Simple counterexample to Claim 3

49

Chapter 3: Coflow Scheduling in Networks

3.1 Introduction

Modern computing applications have rather intensive computational needs.

Many machine learning applications require up to tens of thousands of machines

and often involve processing units across multiple data centers collaborating on the

same application. This collaboration is usually handled by a large-scale distributed

computing framework that ideally ensures a close-to-linear speedup compared to

a single machine. A crucial part of the collaboration is that large chunks of data

require both inter and intra-datacenter transmissions.

For intra-datacenter transmission, a common example would be the MapRe-

duce framework. Map workers write all intermediate results independently to several

servers to guard against failure and allow possible re-calculation. These results are

shuffled and sent to Reduce workers. The volume of transmission between machines

is so large that it has become a major bottleneck in the performance. In addition

to this challenge, multiple applications may share the same cluster, and an un-

coordinated schedule of their data transmission may cause an unacceptable delay in

their completion times.

Chowdhury and Stoica [1] first introduced the abstraction of coflow scheduling,

50

which assumes that each application consists of a set of flows, and is finished once all

the flows are completed. In their framework the network between machines is mod-

eled as a switch: the input ports of different machines on one side, and output ports

on the other side. A machine can send (receive) data to (from) any other machine,

but to (from) only one machine at a time (sending and receiving may happen con-

currently). The transmission speed between all machines is uniform. This describes

a “perfect” datacenter where networking between machines is handled by a high-

speed central switch (modeled by a complete bipartite graph) connected directly

to all the machines [1]. However, real world datacenters are far more complicated;

direct (virtual) links between machines may exist to avoid latency, duplicate links

may exist to tolerate failure, network speeds may vary widely for different machines

and links, and complicated network structures may exist for a variety of reasons. To

make things worse, some tasks may involve multiple datacenters around the globe,

and the switch model simply cannot accurately capture the graph based network

that connects all the data centers.

For inter-datacenter transmission, distributed machine learning tasks can gen-

erate huge amounts of traffic. Due to legal or cost reasons, some datasets cannot

be gathered into a single datacenter for processing. Instead, several geographically

distributed datacenters work together to train a single model, and exchange local

updates frequently to ensure accuracy and convergence. Though the size of a sin-

gle transmission may be small considering the network bandwidth, the repeated

exchange blows up the volume of transmission and makes network traffic its bottle-

neck.

51

In order to solve these problems, a slightly different model of coflow scheduling

was proposed by Jahanjou et al. [2], which assumes that the underlying connection

between machines is an arbitrary graph rather than a complete bipartite graph.

Each node can be a machine, a datacenter or an exchange point (switch, router,

etc.), and an edge between two nodes represents a physical link between the two

Internet infrastructures. When some data needs to be transmitted from one node to

another, it needs to be transmitted along edges. Unlike in the switch model where

only one packet can be sent at each time slot, data for multiple jobs is allowed to

transfer on the same link at the same time, or in other words, shared traffic on links

is allowed. The total volume of data transmission on a link however is bounded by

the link bandwidth1. Jahanjou et al. [2] considered the model in which data has

to travel along a single specified path. In addition to this model, we also consider

the free path model which allows data to be split or merged at nodes to utilize the

whole graph when transmitting the same piece of data as long as the capacity of

each link is respected. This seems much more complicated in practice than a single

path transmission, but modern distributed computation frameworks [17] allow this

kind of fine-grained control on network routing and transfer rate, which makes the

model realistic. See Figure 3.1 for a brief illustration of the two models. The formal

definitions come in Section 3.2.

1One major challenge in the switch model is the node-wise I/O speed constraint. In order to
capture this in the graph model, we can replace every datacenter with a gadget of two nodes. The
first node has exactly the same neighbors and edges that the original node for the datacenter has,
plus links from and to the second node. The second node is only connected to the first node, and
is the true source and destination for all demands involving this datacenter. By setting capacity
on the links between these two nodes, we can enforce I/O limit for the whole datacenter like in
the switch model.

52

HK LA

NY FL

BA

4

2

4

5

4

6 4

HK LA

NY FL

BA

12

12

18

HK LA

NY FL

BA

8

84

4

12

6

6

Figure 3.1: Example of coflow. The first graph shows the network topologies and
the bandwidth of each link. We have one coflow consisting of two flows: one from
NY to BA of demand 18 (denoted with dashed, green lines), the other from HK to
FL of demand 12 (denoted with solid, red lines). The second graph shows the single
path model, where each flow needs to be transmitted along a given path. It also
implies a schedule in this model: transmit according to the path for 3 time units,
and both flows are done. The third graph shows the free path model, where each
flow can be split along multiple paths as long as the capacity of edges are respected.
Here both flows can share the link from NY to FL and the entire coflow finishes in
2 units of time.

3.1.1 Related Works

We briefly describe the related works on coflow scheduling in networks here.

For related works on the original coflow scheduling problem, please see Section 2.1.

Zhao et al. [11] consider coflow scheduling over arbitrary graphs and attempt to

jointly optimize routing and scheduling. They give a heuristic based on shortest job

first, and use the idle slots to schedule flows from the longest job. Jahanjou et al.

[2] studied two variants of coflow scheduling over general graphs, namely, when the

path for a flow is given or if the path is unspecified. In both cases, the transmission

rate may change over time, but each flow can only take a single path, whether given

to or chosen by the fractional routing algorithm. In the first case, Jahanjou et al.

[2] develop the first constant approximation algorithm (approximation ratio 17.6)

and in the second case they develop an O(logn
log logn

) approximation algorithm (n is the

number of nodes in the graph), matching the lower bound given by Chuzhoy et al.

53

[41].

3.1.2 Our Contributions

The main result of this chapter is a unified, tight 2-approximation algorithm

for the coflow scheduling problem in both the single path model and the free path

model when all release times and demands are polynomially sized, and a (2 + ε)-

approximation when the release times and demands can be super-polynomial. This

improves upon the 17.6 approximation given by Jahanjou et al. [2] for the single path

model, and is the first approximation algorithm for the free path model (introduced

by You and Chowdhury [17]).

We also evaluated our algorithm using two WAN topologies (Microsoft’s SWAN [42]

and Google’s G-Scale [43]) on four different workloads (BigBench [44], TPC-DS [45],

TPC-H [46], and Facebook (FB) [47, 48]) and compared with state-of-the-art for

both models [2, 17]. For the single path model, we significantly improved over Ja-

hanjou et al. [2]. For the free path model, we are close to what Terra [17] gets, but

have the extra capability of dealing with weights. Across all variants and models, we

have shown that taking the LP solution directly is an effective heuristic in practice.

3.1.3 Chapter Organization

In Section 3.2 we give a formal definition of the two models for coflow schedul-

ing. In Section 3.3 we give a general linear program that deals with both models.

We give the additional flow constraints for the two models in Section 3.3.1. In Sec-

54

tion 3.4.1 we describe the main algorithm and present the analysis in Section 3.4.2.

We prove both models to be NP-hard in Section 3.5. In Section 3.6, we show exper-

imental results by comparing our algorithms to some baseline algorithms.

3.2 Model and Problem Definition

We now formally define the models of coflow scheduling that we consider in

this chapter. Let G = (V,E) be a directed graph that represents the data center

network and c : E → R+ be a function that denotes the capacity (bandwidth)

available on each edge of the network. Let J = {F1, F2, . . . , Fn} denote the set of

n coflows. A coflow Fj has weight wj that denotes its priority and consists of nj

individual flows, i.e., Fj = {f 1
j , . . . , f

nj
j } where f ij = (sij, t

i
j, σ

i
j) denotes a flow from

source node sij ∈ V to sink tij ∈ V with demand σij ∈ R+. We assume that time

is discrete and data transfer is instantaneous, i.e., it takes negligible time for data

to cover multiple hops of edges as network delay is low compared to the time to

transmit large chunks of data. A coflow Fj is said to be completed at the earliest

time t such that for each flow f ij ∈ Fj, σij units of data have been transferred from

source sij to sink tij. Our goal is to find a schedule that routes all the requisite flows

(i.e. at any time, what fraction of a certain flow is transmitted and along which

path/paths) subject to the edge bandwidth constraints so that the total weighted

completion time of the coflows
∑

j wjCj is minimized. Figure 3.2 gives an example

of an instance of the coflow scheduling problem over a simple network.

We consider two different transmission models, based on whether a flow f ij has

55

restrictions as to how the data is transmitted. In the single path model, each flow

f ij specifies a path pij from source sij ∈ V to sink tij ∈ V so that the flow can only be

routed along that path. This is exactly the “circuit-based coflows with paths given”

model studied by Jahanjou et al. [2].

In the free path model, we can freely select the routing we desire for any flow f ij .

In any time slot, data transmission occurs as a feasible multi-commodity flow so that

both flow-conservation and edge bandwidth constraints are satisfied. Thus, we can

split any flow f ij along multiple paths from its source to destination. This model was

proposed in Terra [17]. Since the shortest paths of different flows can share edges and

cause congestion, the free path model offers the flexibility of rerouting flows along

less congested paths. In addition, modern internet infrastructures support using

multiple paths together to get a higher overall speed (known as link aggregation),

which is captured in the free path model as network flow.

In fact, both models are handled uniformly by the same framework, and the

only difference is the set of flow constraints that describe what are considered feasible

transmissions. It is also possible to handle other kinds of transmissions, like an

intermediate case between single path and free path: several paths are given, and

we can use them together and decide at what rate we are transmitting along each

path. Figures 3.3 and 3.4 show the optimal solutions for the example coflow problem

in the single path and free path models respectively.

56

s

v1

v2

v3

t

1

1

1

1

1

1

s

v1

v2

v3

t

3
1

1

1

Figure 3.2: On the left is the graph structure: bi-directed edge of independent
capacity of 1, on the right is the demanded coflow. There are four coflows each
containing one single flow: red (solid) from v1 to t, green (dashed) from v2 to t,
orange (dotted) from v3 to t, and blue (curly) from s to t. The first three have
demand 1, while the blue coflow has a demand of 3. All of them have the same
weight of 1.

s

v1

v2

v3

t

Path given

s

v1

v2

v3

t

1

1

1

t = 1

s

v1

v2

v3

t
1 1

t = 2, 3, 4

Figure 3.3: For the single path model, we have the path assignment in the left figure.
Notice the path for green (dashed) flow shares an edge with that for the blue (curly)
flow. Here is one optimal solution for the single path model. The total weighted
completion time is 1 + 1 + 1 + 4 = 7.

s

v1

v2

v3

t

1

1

1

t = 1

s

v1

v2

v3

t

1

1

1

1

1

1

t = 2

Figure 3.4: This is the optimal solution in the free path model. At time 1, send the
red (solid), green (dashed), and orange (dotted) coflows. At time 2, send the blue
(curly) coflow on all paths. The total weighted completion time is 1 + 1 + 1 + 2 = 5.

57

3.3 Linear Programming Relaxation

We use a time-indexed linear program to model this problem. Let T denote

an upper bound on the total time required to schedule all the coflows. Note that T

might be super-polynomial if the release times or coflow sizes are large. However,

there is a standard technique that achieves polynomial size at the cost of a (1 + ε)

factor on approximation ratio. We will assume T to be polynomial in the main part,

and present the fix for super-polynomial T in Section 3.7.

Let time be slotted and time slot t cover the interval of time [t − 1, t]. For

a given flow f ij and a time slot t, we introduce the variable xij(t) to indicate the

fraction of flow f ij that is scheduled at time t. For each coflow Fj, we introduce

variables Xj(t) to indicate if all the flows f ij ∈ Fj have been completely scheduled

by time t. Finally, we introduce a variable Cj that models the completion time of

coflow Fj.

To make the linear program compatible with both single path model and free

path model, we exclude the flow constraints and edge bandwidth constraints for now

and delay them to Section 3.3.1.

Minimize
∑
j

wjCj, subject to

∑
t

xij(t) = 1 ∀j ∈ [n],∀i ∈ [nj] (3.1)

Xj(t) ≤
t∑

`=1

xij(`) ∀j ∈ [n],∀i ∈ [nj],∀t ∈ T (3.2)

58

Cj ≥ 1 +
∑
t

(1−Xj(t)) ∀j ∈ [n] (3.3)

rij ≥ t⇒ xij(t) = 0 ∀j ∈ [n], ∀i ∈ [nj],∀t ∈ T (3.4)

xij(t) ≥ 0 ∀j ∈ [n],∀i ∈ [nj],∀t ∈ T (3.5)

Constraint (3.1) certifies that each flow is fully scheduled. Constraint (3.2)

ensures that coflow Fj is considered completed at time t only if all flows f ij ∈ Fj

have been fully scheduled by time t. In Proposition 2, we show that Constraint

(3.3) enforces a valid lower bound on the completion time of coflow Fj. Finally,

Constraint (3.4) ensures that no flow is scheduled before it has been released. Note

this is not a typical LP relaxation, since any fractional solution is valid. The main

relaxation is around the completion time, since representing the exact completion

time of job is beyond the capability of a linear program.

Proposition 2. The completion time of a coflow Fj can be lower bounded by Cj ≥

1 +
∑

t(1 − Xj(t)) where Xj(t) ∈ [0, 1] denotes the fraction of coflow Fj that has

been completed by (the end of) time slot t.

Proof. Conventionally, in time-indexed linear programming relaxations, the com-

pletion time of a job j is lower bounded by the fractional completion time in the

schedule, or Cj = Cj ·
∑T

t=1 xj(t) ≥
∑T

t=1 t ·xj(t). In our setting, this corresponds to

the constraint Cj ≥
∑

t t ·xj(t) where xj(t) = Xj(t)−Xj(t− 1) denotes the fraction

of coflow Fj that is scheduled during time slot t. The desired constraint in Eq (3.3)

is exactly the same constraint rearranged in a format that is more convenient for

59

analysis.

Cj ≥
T∑
t=1

t · xj(t) =
T∑
t=1

xj(t)
t∑

τ=1

1

=
T∑
τ=1

T∑
t≥τ

xj(t) =
T∑
τ=1

(
T∑
t=1

xj(t)−
τ−1∑
t=1

xj(t)

)

=
T∑
τ=1

(1−Xj(τ − 1)) =
T−1∑
τ=0

(1−Xj(τ)) = 1 +
T−1∑
τ=1

(1−Xj(τ))

3.3.1 Model-specific Constraints

3.3.1.1 Single Path Model

In the single path model, a flow f ij can only be routed along a specified path

pij. Thus, we do not need to make any routing decisions in the linear program and

only need to ensure that edge bandwidths are respected.

∑
pij3e

xij(t) · σij ≤ c(e), ∀e ∈ E,∀t ∈ T (3.6)

Constraint (3.6) enforces that the total flow scheduled through edge e at any time

slot t does not exceed the edge bandwidth. Constraints (3.1)-(3.6) thus form the

complete linear programming relaxation for coflow scheduling in the single path

model.

60

3.3.1.2 Free Path Model

In the free path model, the path for flow f ij is not specified. In fact, data can

split and merge at vertices to utilize all possible capacity. We use variable xij(t, e)

to denote the fraction of flow f ij transmitted through edge e in time slot t. Recall

that we use xij(t) to denote the total fraction of flow f ij that is transmitted in time

slot t. δin(v) (δout) represents the set of edges that comes in (out of) vertex v. Here

are the flow conservation constraints we need.

∑
e∈δout(sij)

xij(t, e) = xij(t), ∀j ∈ [n],∀i ∈ [nj], ∀t ∈ T (3.7)

∑
e∈δin(tij)

xij(t, e) = xij(t), ∀j ∈ [n],∀i ∈ [nj], ∀t ∈ T (3.8)

∑
e∈δin(v)

xij(t, e) =
∑

e∈δout(v)

xij(t, e), ∀j ∈ [n],∀i ∈ [nj],∀t ∈ T,

∀v ∈ V \{sij, tij} (3.9)∑
j∈[n],i∈[nj]

xij(t, e) · σij ≤ c(e), ∀t ∈ T,∀e ∈ E (3.10)

Constraints (3.7) and (3.8) enforce that the total fraction of flow f ij satisfied at

time t over all the paths is exactly xij(t). Constraints (3.9) ensure flow conservation

at all nodes other than source and sink. Constraints (3.10) guarantee that all edge

bandwidths are satisfied at all time steps. Constraints (3.1)-(3.5) and (3.7)-(3.10)

thus form the complete linear programming relaxation for coflow scheduling in the

free path model.

61

Let C∗j denote the completion time of coflow Fj in an optimal solution of

the LP relaxation, and let Cj(opt) denote the completion time of coflow Fj in the

corresponding optimal integral solution. Thus, for both the models, we have

∑
j

wjC
∗
j ≤

∑
j

wjCj(opt). (3.11)

3.4 Approximation Algorithms

Let xij(t) denote the fraction of flow f ij that is scheduled at time step t in an

optimal solution to the above LP. The LP constraints guarantee that this yields a

feasible schedule to the coflow scheduling problem (in both the single path as well as

the free path models). However, since the completion time of a coflow Fj is defined

as the earliest time t such that all flows f ij ∈ Fj have been completely scheduled,

the true completion time of coflow Fj obtained in this scheduled is given by

Cj(LP Sched) = max
i
{ max
t:xij(t)>0

[t]}. (3.12)

Unfortunately, this completion time Cj(LP Sched) can be much greater than the

completion time variable in the optimal LP solution C∗j , and thus the obtained

schedule is not a constant-approximate coflow schedule. For instance, consider a

coflow Fj with only one flow (nj = 1) and let the optimal LP solution set its

schedule as follows x1
j(1) = 0.9, x1

j(10) = 0.1, and x1
j(t) = 0,∀t /∈ {1, 10}. Now,

the completion time variable in the optimal LP solution is C∗j =
∑

t tx
1
j(t) = 1.9.

62

However, true completion time of the coflow Fj in such a schedule is Cj(LP Sched) =

10� C∗j .

To overcome the obstacle above, we propose the following algorithm called

Stretch (see Section 3.4.1) that modifies the schedule obtained by the linear program

so that the completion time of each coflow in the modified schedule can be compared

with the completion time variable of the corresponding coflow in an optimal LP

solution. The schedule “stretching” idea (also called ‘slow-motion’) used in our

algorithm has been used before successfully in other scheduling contexts [49, 50, 51].

3.4.1 Stretch Algorithm

1. Solve the linear program in Section 3.3 and obtain a fractional optimal solu-

tion.

2. Let λ ∈ (0, 1) be drawn randomly according to the p.d.f f(v) = 2v. We can

verify that this is indeed a valid probability distribution.

3. Stretch the LP schedule by 1
λ
. This means that we schedule everything exactly

as per the LP solution - but whatever LP schedules in the interval [a, b], we

will schedule in the interval [a
λ
, b
λ
].

4. Once σij units of flow f ij have been scheduled, leave the remaining slots for f ij

empty.

Figure 3.5 illustrates the key ideas of the algorithm. To help understand this

algorithm, start with the simple case where we have a fixed λ = 0.5, in other words

63

t
0 1 2 3 4 5 6 7 8 9 10

1

0.3
0.5

0.8

t
0 1 2 3 4 5 6 7 8 9 10

1

0.3
0.5

0.8

t
0 1 2 3 4 5 6 7 8 9 10

1

0.3
0.5

0.8

t
0 1 2 3 4 5 6 7 8 9 10

1

0.3
0.5

0.8

Figure 3.5: Here we show an example solution obtained from the LP, different color
indicate different flows. In the second picture, we stretch with λ = 0.5. In the third
picture, we leave the slots empty if the corresponding flow is finished. In the fourth
picture, we utilize the idle slots and move some flows to earlier times. Though this
does not improve the theoretically bound, it is beneficial in practice and is used in
our experimental evaluation.

stretch the time axis by a factor of 1/λ = 2. Intuitively, we move everything at time

slot t and to both time slots 2t− 1 and 2t. What used to be transmitted at time t

will be transmitted no later than time 2t. Consider any flow f ij and let τ denote the

earliest time by which the LP has scheduled at least 1/2 fraction of the flow. Then,

it is easy to verify that the flow f ij is completely scheduled by time 2τ .

Now we consider a general λ and prove that this algorithm does output a

feasible schedule. Due to fractional λ, it might be the case that some flow f ij of

LP variable xij(t) in integral interval [t− 1, t] becomes [t−1
λ
, t
λ
], a fractional interval.

In this case, for a time slot τ , or a interval [τ − 1, τ] after stretching, we just add

xij(t) · |[τ − 1, τ] ∩ [t−1
λ
, t
λ
]|.

The only flows that might be scheduled in time slot τ are those scheduled in

time slot 1 + bλ(τ − 1)c and 1 + bλτc before stretching, or flows f ij(1 + bλ(τ − 1)c)

and flows f ij(1 + bλτc). (The two time slots might be the same. If so, feasibility

is automatically met. Otherwise, we have 1 + bλ(τ − 1)c + 1 = 1 + bλτc.) For

all flows at time 1 + bλ(τ − 1)c before stretching, the factor we multiplied with

64

is w1 =
∣∣∣[τ − 1, τ] ∩ [bλ(τ−1)c

λ
, 1+bλ(τ−1)c

λ
]
∣∣∣. For all flows at time 1 + bλτc before

stretching, the factor we use to multiply with is w2 =
∣∣∣[τ − 1, τ] ∩ [bλτc

λ
, 1+bλτc

λ
]
∣∣∣.

Note w1 + w2 = 1. In fact, the schedule at time τ can be viewed as a weighted

average of the schedule at time [bλ(τ − 1)c, 1 + bλ(τ − 1)c] and [bλτc, 1 + bλτc] (if

λ(τ − 1) is a integer, then the schedule will be exactly what it used to be at time

λτ), the first with weight w1 and the second with weight w2. The nature of network

flow ensures that the weighted sum of two feasible flows is a feasible flow.

Another fact that needs proof is that every flow is finished. This is guaranteed

since schedules are stretched, and we only leave the remaining slots empty for f ij if

σij units of flow have been scheduled, or in other words, all the demand for this flow

has been scheduled.

3.4.2 Analysis

Recall that C∗j denotes the completion time of coflow Fj in the optimal LP

solution. While we consider that time is slotted in the LP formulation and time slot

t covers the interval of time [t−1, t], at this stage it is more convenient to work with

continuous time rather than discrete time. For any continuous time τ ∈ [0, T], define

Xj(τ) to be the fraction of coflow Fj that has been scheduled in the LP solution by

time τ . We define Xj(τ) by assuming that the flow is scheduled at an uniform rate

in every time slot. Formally, we have

Xj(τ) = Xj(bτc) + (τ − bτc) (Xj(bτc+ 1)−Xj(bτc)) . (3.13)

65

The LP constraints (3.3) guarantee that for any coflow Fj, we have C∗j ≥

1 +
∑

t(1−Xj(t)). We can now lower-bound the LP completion time by replacing

the above summation by an integral.

Lemma 1.
∫ T
τ=0

(1−Xj(τ))dτ ≤ C∗j − 1
2

where Xj(τ) is defined as per Eq. (3.13).

Proof. By definition of Xj(τ), we have the following.

∫ T

τ=0

(1−Xj(τ))dτ = T −
∫ T

τ=0

Xj(τ)dτ

= T −
T−1∑
t=0

∫ t+1

τ=t

Xj(τ)dτ

= T −
T−1∑
t=0

∫ t+1

τ=t

[Xj(t) + (τ − t) (Xj(t+ 1)−Xj(t))] dτ

= T −
T−1∑
t=0

[
Xj(t) + (Xj(t+ 1)−Xj(t))

∫ t+1

τ=t

(τ − t)dτ
]

= T −
T−1∑
t=0

1

2
[Xj(t) +Xj(t+ 1)]

= T −

[
1

2
(Xj(0) +Xj(T)) +

T−1∑
t=1

Xj(t)

]

Since by definition, Xj(0) = 0 and Xj(T) = 1, we get

= T −

[
1

2
+

T−1∑
t=1

Xj(t)

]

Rearranging the terms, we get

= 1 +
T−1∑
t=1

(1−Xj(t))−
1

2
≤ C∗j −

1

2

66

where the last inequality follows from Constraint (3.3).

For any λ ∈ [0, 1], define C∗j (λ) to be the earliest time τ such that λ fraction

of the coflow Fj has been scheduled in the LP solution, i.e., in other words its the

smallest τ such that Xj(τ) = λ. Note that by time C∗j (λ), λ fraction of every flow

f ij ∈ Fj has been scheduled by the LP.

Proposition 3.

∫ 1

λ=0

C∗j (λ)dλ =

∫ T

τ=0

(1−Xj(τ))dτ

Proof.

∫ 1

λ=0

C∗j (λ)dλ =

∫ 1

λ=0

∫ T

τ=0

1[C∗j (λ)>τ]dτdλ

=

∫ T

τ=0

∫ 1

λ=0

1[C∗j (λ)>τ]dλdτ

=

∫ T

τ=0

∫ 1

λ=Xj(τ)

1dλdτ =

∫ T

τ=0

(1−Xj(τ))dτ

Finally, we are ready to bound the completion time of coflow Fj in the stretched

schedule (denoted as Cj(alg)). For any fixed λ ∈ (0, 1), since we stretch the schedule

by a factor of 1
λ
, we have Cj(alg) ≤

⌈
C∗j (λ)

λ

⌉
. Notice the ceiling function in the

bound 2. Since λ is drawn randomly from a distribution, the following lemma

bounds the expected completion time of coflow Fj in the stretched schedule.

Lemma 2. The expected completion time of any coflow Fj in the stretched schedule

is bounded by 2C∗j .
2All flows f ij ∈ Fj were completed by at least λ fraction by time C∗j (λ). So in the stretched

schedule, all those flows must be completed by time
C∗

j (λ)

λ . The ceiling is necessary since
C∗

j (λ)

λ
may be fractional (i.e. occur in the middle of a time slot)

67

Proof.

E[Cj(alg)] ≤
∫ 1

λ=0

f(λ)

⌈
C∗j (λ)

λ

⌉
dλ ≤

∫ 1

λ=0

(2λ)

(
C∗j (λ)

λ
+ 1

)
dλ

= 2

∫ 1

λ=0

C∗j (λ)dλ+ 1

By Lemma 1 and Proposition 3,

= 2

∫ T

τ=0

(1−Xj(τ))dτ + 1 ≤ 2

(
C∗j −

1

2

)
+ 1 = 2C∗j

Theorem 2 thus follows from the linearity of expectation.

Theorem 2. There is a randomized 2-approximation algorithm for coflow scheduling

in networks in both the single path and free path models when all release times and

coflow sizes are polynomially sized.

For the case where the total time we need to schedule all coflows is super-

polynomial, we use the standard trick of geometric series time intervals, and claim

the following theorem. Proof comes in Section 3.7.

Theorem 3. For any ε > 0, there is a randomized (2 + ε)-approximation algorithm

for coflow scheduling in networks in both the single path and the free path models

(with possibly super polynomial release times and demands).

68

3.5 Hardness of Approximation

We claim the following theorem:

Theorem 4. For the coflow scheduling problem, in both the single path and the free

path model, it is NP-hard to obtain a (2− ε) approximation, for any ε > 0.

Proof. We prove it by a reduction from concurrent open-shop problem (proved NP-

hard to approximate within a factor better than (2 − ε) [37, 38]). The definition

of concurrent open shop problem is as follows: there are m machines and n jobs,

each job j need to be processed on machine i for pij time non-preemptively. We

would like to minimize the total weighted completion time. Unlike the open shop

problem, in the concurrent open shop problem a job can be processed on more than

one machine at the same time.

Given a concurrent open-shop problem instance with M machines, we con-

struct an instance of the coflow scheduling problem as follows. For every machine i,

we have two nodes xi and yi, and an edge of unit bandwidth from xi to yi. Notice

the graph has M different components, between each pair (xi, yi), there is only one

path from xi to yi. Thus this construction works for both the single path model and

the free path model. We will not distinguish the models in the following proof.

For a certain job j with demands σij in the concurrent open shop instance,

we add a coflow j with demand of σij from xi to yi. Weights are directly taken

from the concurrent open shop problem instance. Suppose we get a solution for this

coflow scheduling instance, we can get a solution of no larger cost for the concurrent

69

open shop instance as follows. If we have a flow f ij for job j on edge (xi, yi) of size

xij(t) at time t, then we schedule a fraction of xij(t) for job j on machine i at time

t. Suppose a flow f ij is finished at time Ci
j in the coflow scheduling problem, the

corresponding concurrent open shop problem for job j and machine i is also finished

at time Ci
j. Similarly, the finishing time Cj of coflow j and concurrent open shop job

j are the same. However, the solution we get is fractional, and might be preemptive

(we might pause a job and resume it later).

Now we prove that we can modify this solution to get a non-preemptive integral

solution without raising the total weighted completion time. For each machine i,

consider all completion times Ci
j. Sort them in non-decreasing order Ci

l1
, Ci

l2
, . . . , Ci

lJ
,

and we can safely reschedule these demand in the order of l1, l2, . . . , lj, and get new

completion times Ci
l1
, . . . ,Ci

lj
while not raising any completion time. We know all

demand of job l1 on machine i has been finished by Ci
l1

, so Ci
l1

= dl1,i ≤ Ci
l1

, similarly

all demands of job l1 and l2 have been finished by Ci
l2

, and Ci
l2

= dl1,i + dl2,i ≤ Ci
l2

.

We can continue and get Ci
lj
≤ Ci

lj
,∀j ∈ {J}. Thus the total weighted completion

time for this integral solution would be upper bounded by the cost for the coflow

scheduling instance.

∑
j∈{J}

wj · Cj =
∑
j∈{J}

wj · max
i∈{M}

Ci
j ≤
∑
j∈{J}

wj · max
i∈{M}

Ci
j =
∑
j∈{J}

wj · Cj

For the other direction, for a certain solution of a concurrent open-shop prob-

lem, if task i of job j is scheduled from time t1 to time t2, we make the flow f ij take

up all bandwidth of edge (xi, yi) from time t1 to time t2. Then flow f ij is finished

70

the same time when task i of job j is finished. Since every task i is finished the

same time before and after reduction, completion times and the objective weighted

completion time stays the same for the coflow scheduling problem.

In conclusion, for a solution SOL of concurrent open-shop problem with

weighted completion time W , we can construct a solution SOLcoflow for coflow

scheduling problem of the same weighted completion time W . For a solution

SOL′coflow of coflow scheduling problem with weighted completion time W ′, we can

construct a solution SOL′ for the original concurrent open-shop problem, with cost

at most W ′. Since concurrent open-shop problem is NP-hard to get a (2 − ε) ap-

proximation, we know it is also NP-hard to approximate coflow scheduling problem

to a factor of (2− ε), for both single path model and free path model.

3.6 Experiments

We evaluated the Stretch Algorithm on 2 topologies and 4 benchmarks/industrial

workloads. Experiments were run on a machine with dual Intel(R) Xeon(R) CPU E5-

2430, and 64GB of RAM, and using Gurobi [52] as the LP solver. We first discuss the

experimental set up and then in Section 3.6.2 discuss what evaluation we performed.

WAN topology: We consider the following graph topologies.

1. Swan [42]: Microsoft’s inter-datacenter WAN with 5 datacenters and 7 inter-

datacenter links. We calculate link bandwidth using the setup described by

Hong et al. [42].

2. G-Scale [43]: Google’s inter-datacenter WAN with 12 datacenters and 19 inter-

71

datacenter links.

Workloads: We use the following mix of jobs from public benchmarks - TPC-

DS [45], TPC-H [46], and BigBench [44] - and from Facebook (FB) production

traces [47, 48]. We follow [17] to set up the benchmarks: for a certain workload,

jobs are randomly chosen and since they do not have a release time, we assign a

release time similar to that in production traces. Each job lasts from a few minutes

to dozens of minutes. Each benchmark experiment has 200 jobs. We randomly

assign these jobs to nodes in the datacenter, and the demand will be between the

corresponding nodes. Since weights are not available, we assign weights that are

uniformly chosen from the interval between 1.0 and 100.0.

3.6.1 Implementation Details

In this subsection we discuss some details related to the implementation.

Time Index: There is a trade-off in selecting the size of a time slot. If the length

of a time slot is shorter, we get more accurate answers, but need to solve a larger

LP. On the contrary, if we make each time slot longer, the amount of computational

resources need is greatly reduced, but the quality of the solution suffers. In all our

experiments, we considered time slots of length 50 seconds as this led to tractable

LP relaxations.

Rounding: Algorithm Stretch is meant for easy theoretical analysis, and is not a

sophisticated rounding method; we are not trying to schedule later flows in the slots

that are idle. This can cause huge overhead in experiments. See Figure 3.5 for an

72

illustration. In our implementation, we deal with this issue by moving the schedule

of every time slot t to an earlier idle slot t′ if for all flows scheduled at t, its release

time is before t′.

To address the random sampling of λ, we sample 20 times from the distri-

bution mentioned in Section 3.4.1 to get the expected weighted completion time

for Algorithm Stretch, and denote it with “Average λ”. We also measure the best

solution obtained over these random choices (denoted by “Best λ”).

3.6.2 Baselines

LP-based Heuristic: In addition to algorithms with theoretically worst case

guarantee, we also propose a heuristic that works well in practice. Recall in Sec-

tion 3.4.1, we mentioned that the LP solution itself is a valid schedule. We can use

this solution as a heuristic, for both the single path and free path models. Note the

weighted completion time for this LP solution is NOT the same as the LP objec-

tive function, as explained in Section 3.4.1. This implies that the solution from the

heuristic can be arbitrarily bad in the worst case. In practice, however, this proves

to be a very effective algorithm that can be quite close to the lower bound we get

from LP.

Jahanjou et al. (Single path model): Since path information is not avail-

able in the datasets, we randomly generate one for each flow. For a source sink pair

(sij, t
i
j), we randomly select one of the shortest paths as the path for flow f ij . For

this model, we compare our algorithm with the algorithm presented by Jahanjou et

73

al. [2]. Here is a brief description of their approach. First write an LP using geo-

metric time intervals, then schedule each job according to the interval its α point

(the time when α fraction of this job is finished) belongs to. A common reason

for geometric time intervals is to avoid having a super-polynomial time horizon (a

practical reason is to make the LP smaller), and a time series of {(1 + ε)i} is chosen

where ε is close to 0. The closer ε is to 0, the better the approximation ratio can

be. However, in Jahanjou et al.’s algorithm, the rounding step has a dependency

on ε. To optimize the approximation ratio, ε is set to 0.5436. Our algorithm, on

the contrary, is time slot based, and can be turned into a geometric series of time

intervals by losing a factor of (1 + ε). In experiments, we include both the case of

ε = 0.2 and the case of ε = 0.5436 for completeness.

Terra (Free path model): For the flow-based model, we are comparing to

the offline algorithm in Terra [17]. This algorithm only works for the unweighted

case. It calculates the time for each single coflow to finish individually, and then

schedule with SRTF (shortest remaining time first). Instead of one large LP like all

other algorithms compared here, this algorithm solves a large number of LPs, twice

the number of coflow jobs. Terra can work with very fine grained time, to the order

of milliseconds (and does not need time to be slotted). Since there is no previous

work on weighted case, we compare the weighted case with the LP solution and our

heuristic directly based on time indexed LP.

74

BigBench TPC-DS TPC-H FB

0

1

2

3

4

5

6

·106

W
ei

gh
te

d
C

om
p

le
ti

on
T

im
e

Solution for SWAN (less is better)

LP(lower bound)
Heuristic(λ = 1.0)

Best λ
Average λ

Figure 3.6: Free path model on SWAN, showing the performance bound of time
indexed LP value, the performance of heuristic (λ = 1), best λ among samples, and
the expected value when λ is chosen from the distribution mentioned in Section 3.4.1.

BigBench TPC-DS TPC-H FB

0

1

2

3

4

5

6

·106

W
ei

gh
te

d
C

om
p

le
ti

on
T

im
e

Solution for G-Scale (less is better)

LP(lower bound)
Heuristic(λ = 1.0)

Best λ
Average λ

Figure 3.7: Free path model on G-Scale, showing the performance bound of time
indexed LP value, the performance of heuristic (λ = 1), best λ among samples, and
the expected value when λ is chosen from the distribution mentioned in Section 3.4.1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

·107

W
ei

gh
te

d
C

om
p

le
ti

on
T

im
e

Different Choice of ε

Time interval LP(lower bound)
heuristic(λ = 1.0)

Figure 3.8: Free path model on SWAN for workload FB, the different choice of
time interval ε may affect the performance bound of time interval LP value and the
performance of heuristic (λ = 1).

75

BigBench TPC-DS TPC-H FB

0

1

2

3

4
·107

W
ei

gh
te

d
C

om
p

le
ti

on
T

im
e

Solution for SWAN (less is better)

Time indexed LP(lower bound)
heuristic(λ = 1.0)

Time interval LP(lower bound, ε = 0.2)
heuristic(λ = 1.0)

Jahanjou et al.

Figure 3.9: Single path model on SWAN, showing the performance bound of time
indexed and time interval LP value, the performance of heuristic (λ = 1), best
λ among samples, and the expected value when λ is chosen from the distribution
mentioned in Section 3.4.1. Here we compare against algorithm by Jahanjou et
al.[2].

BigBench TPC-DS TPC-H FB

0

1

2

3

·107

W
ei

gh
te

d
C

om
p

le
ti

on
T

im
e

Solution for G-Scale (less is better)

Time indexed LP (lower bound)
heuristic (λ = 1.0)

Time interval LP (lower bound, ε = 0.2)
heuristic (λ = 1.0)

Jahanjou et al.

Figure 3.10: Single path model on G-Scale, showing the performance bound of time
indexed and time interval LP value, the performance of heuristic (λ = 1), best
λ among samples, and the expected value when λ is chosen from the distribution
mentioned in Section 3.4.1. Here we compare against algorithm by Jahanjou et
al.[2].

76

BigBench TPC-DS TPC-H FB

0

0.2

0.4

0.6

0.8

1

1.2
·105

T
ot

al
C

om
p

le
ti

on
T

im
e

Solution for SWAN (less is better)

Time indexed LP (lower bound)
heuristic(λ = 1.0)

Best λ
Average λ

Terra

Figure 3.11: Free path model with no weight on graph SWAN, showing the perfor-
mance bound of time indexed LP value, the performance of heuristic (λ = 1), best
λ among samples, and the expected value when λ is chosen from the distribution
mentioned in Section 3.4.1. Here we compare against Terra[17]

BigBench TPC-DS TPC-H FB

0

0.2

0.4

0.6

0.8

1

1.2

·105

T
ot

al
C

om
p

le
ti

on
T

im
e

Solution for G-Scale (less is better)

Time indexed LP (lower bound)
heuristic(λ = 1.0)

Best λ
Average λ

Terra

Figure 3.12: Free path model with no weight on graph G-Scale, showing the perfor-
mance bound of time indexed LP value, the performance of heuristic (λ = 1), best
λ among samples, and the expected value when λ is chosen from the distribution
mentioned in Section 3.4.1. Here we compare against Terra[17].

77

3.6.3 Experimental Results

Impact of λ: See Figure 3.6 and Figure 3.7. When λ is 1.0, we take the LP

solution directly (this is exactly the LP-based heuristic). Across all experiments,

this seems the best choice of λ. The best sampled λ and the average case λ are

pretty close, indicating the performance does not change much across different λ.

Impact of ε: To study the effect of the size of the time interval, we measure

the LP objective and the schedule obtained by the LP-based heuristic as we vary

ε in Figure 3.8. As ε increases, the size of the linear program will drop, making it

faster to solve. On the other hand, the quality of solution drops, as we will not start

a job until the whole current interval is after its release time, and will not consider

a job finished until the interval its completion time belongs to ends. Thus a proper

selection of ε may depend on the available computational resources for solving the

LP.

Single Path Model: Figures 3.9 and 3.10 compare the performance of our

algorithms with that of Jahanjou et al. [2] on all the benchmarks and topologies.

Across all the experiments, we observe that our algorithms perform significantly

better.

Free Path Model: See Figure 3.11 and Figure 3.12 for comparisons with

the algorithm in Terra[17]. Since Terra only handles uniform coflow weights, we set

all weights to be unit for these experiments. Surprisingly, we observe that Terra

performs slightly better than even the LP objective itself. This disparity arises as

the LP relies on time slots of 50 seconds while Terra deals with time slots of much

78

finer granularity. For the weighted case, we are not aware of previous work, and

only compare to LP solution in Figures 3.6 and 3.7.

3.7 Sketch of generalization to super-polynomial time span

Geometric series time interval is defined as follows. For an ε > 0, let τ0 =

0, τ1 = 1, · · · , τk = (1 + ε)k−1, · · · . We define the k-th interval as lk = [τk−1, τk].

Since T is at most the sum of all processing time and all release time, we know the

number of intervals T = 1 + dlog1+ε T e is polynomial.

We change the LP as follows. We abuse notation a bit and allow T to represent

the set {1, 2, · · · ,T} when there is no confusion. We replace all accurance of T with

T in Section 3.3, modify Equation (3.4) and Equation (3.3) to accommodate for

release time, and get the following linear program.

Minimize
∑
j

wjCj, subject to

∑
t

xij(t) = 1 ∀j ∈ [n],∀i ∈ [nj] (3.14)

Xj(t) ≤
t∑

`=1

xij(`) ∀j ∈ [n],∀i ∈ [nj],∀t ∈ T (3.15)

Cj ≥ 1 +
∑
t

(τt − τt−1)(1−Xj(t)), ∀j ∈ [n] (3.16)

rij ≥ τt ⇒ xij(t) = 0 ∀j ∈ [n],∀i ∈ [nj],∀t ∈ T (3.17)

xij(t) ≥ 0 ∀j ∈ [n],∀i ∈ [nj],∀t ∈ T (3.18)

79

For the model specific part of linear program, we only need to change the

capacity constraints: replace Equation (3.6) for single path model to get

∑
pij3e

xij(t) · σij ≤ (τt − τt−1)c(e), ∀e ∈ E,∀t ∈ T (3.19)

and Equation (3.10) for free path model to get

∑
e∈δout(sij)

xij(t, e) = xij(t), ∀j ∈ [n],∀i ∈ [nj],∀t ∈ T (3.20)

∑
e∈δin(tij)

xij(t, e) = xij(t), ∀j ∈ [n], ∀i ∈ [nj],∀t ∈ T (3.21)

∑
e∈δin(v)

xij(t, e) =
∑

e=δout(v)

xij(t, e), ∀j ∈ [n], ∀i ∈ [nj],∀t ∈ T,

∀v ∈ V \{si, ti} (3.22)∑
j∈[n],i∈[nj]

xij(t, e) · σij ≤ (τt − τt−1)c(e), ∀t ∈ T,∀e ∈ E (3.23)

Similar to Proposition 2, we prove Constraint (3.16) is a good lower bound.

Proposition 4. The completion time of a coflow Fj can be lower bounded by Cj ≥

1 +
∑

t(τt − τt−1)(1 − Xj(t)) where Xj(t) ∈ [0, 1] denotes the fraction of coflow Fj

that has been completed by (the end of) time interval [τt−1, τt].

Proof. If a job completes in the interval (τt−1, τt], then its finishing time is at least

τt−1 + 1.

Cj ≥
T∑
t=1

(1 + τt−1) · xj(t) =
T∑
t=1

xj(t) +
T∑
t=1

xj(t)
t−1∑
ρ=1

(τρ − τρ−1)

80

= 1 +
T−1∑
ρ=1

(τρ − τρ−1)
T∑

t=ρ+1

xj(t)

= 1 +
T−1∑
ρ=1

(τρ − τρ−1)

(
T∑
t=1

xj(t)−
ρ∑
t=1

xj(t)

)

= 1 +
T−1∑
ρ=1

(τρ − τρ−1)(1−Xj(ρ))

After getting a solution, we would schedule coflows into intervals instead of

into time slots. Inside each time interval, we just schedule each flow at uniform

speed, and break into actual time slots. Similar to Section 3.4.1, we can prove that

this solution is feasible.

3.7.1 Analysis

Recall that C∗j denotes the completion time of the coflow Fj in the optimal

LP solution. For any continuous time t ∈ [0, T], define X̂j(t) to be the fraction of

coflow Fj that has been scheduled in the LP solution by time t. Note Xj(t) is for

time interval [τt−1, τt], but X̂j(t) is for original time slots. Flows are scheduled at

an uniform rate in every time interval. Use ρ(t) to denote the smallest ρ such that

t ∈ (τρ−1, τρ], we have

X̂j(t) = Xj(ρ(t)) +
t− τρ(t)−1

τρ(t) − τρ(t)−1

(Xj(ρ(t) + 1)−Xj(ρ(t))) (3.24)

Similar to Lemma 1, we state and prove the following lemma.

81

Lemma 3.
∫ T
t=0

(1 − X̂j(t))dt ≤ (1 + ε)C∗j − 1
2

where Xj(ρ) is defined as per Eq.

(3.24).

Proof. From constraints (3.16), we have that

∫ T

t=0

(1− X̂j(t))dt =
T∑
ρ=1

∫ τρ

t=τρ−1

(1− X̂j(t))dt

Since 1− X̂j(t) is linear for t ∈ (τρ−1, τρ],

=
T∑
ρ=1

τρ − τρ−1

2
(1−Xj(ρ) + 1−Xj(ρ− 1))

=
T∑
ρ=1

τρ − τρ−1

2
(1−Xj(ρ)) +

T∑
ρ=1

τρ − τρ−1

2
(1−Xj(ρ− 1))

=
T∑
ρ=1

τρ − τρ−1

2
(1−Xj(ρ))

+ (1 + ε)
T∑
ρ=2

τρ−1 − τρ−2

2
(1−Xj(ρ− 1)) +

τ1 − τ0

2
(1−Xj(0))

=
T−1∑
ρ=1

τρ − τρ−1

2
(1−Xj(ρ)) +

τT − τT−1

2
(1−Xj(T))

+ (1 + ε)
T−1∑
ρ=1

τρ − τρ−1

2
(1−Xj(ρ)) +

τ1 − τ0

2
(1−Xj(0))

=
2 + ε

2

T−1∑
ρ=1

(τρ − τρ−1)(1−Xj(ρ)) +
1

2

Plugging in Proposition 4,

≤2 + ε

2
(C∗j − 1) +

1

2
≤ (1 + ε)C∗j −

1

2

82

For any λ ∈ [0, 1], define C∗j (λ) to be the earliest time ρ such that λ fraction

of the coflow Fj has been scheduled in the LP solution, i.e., in other words its the

smallest t such that X̂j(t) = λ. Note that by time C∗j (λ), λ fraction of every flow

f ij ∈ Fj has been scheduled by the LP.

Proposition 5.

∫ 1

λ=0

Cj(λ)dλ ≤
∫ T

t=0

(1− X̂j(t))dt.

Proof.

∫ 1

λ=0

Cj(λ)dλ =

∫ 1

λ=0

∫ T

t=0

1[Cj(λ)>t]dtdλ =

∫ T

t=0

∫ 1

λ=0

1[Cj(λ)>t]dλdt

=

∫ T

t=0

∫ 1

λ=Xj(t)

1dλdt =

∫ T

t=0

(1− X̂j(t))dt

Finally, we are ready to bound the completion time Cj(alg) of coflow Fj in

the stretched schedule. For any fixed λ ∈ (0, 1), since we stretch the schedule by a

factor of 1
λ
, it is easy to verify3 that Cj(alg) ≤

⌈
Cj(λ)

λ

⌉
. Since λ is drawn randomly

from a distribution, the following lemma bounds the expected completion time of

coflow Fj in the stretched schedule.

Lemma 4. The expected completion time of any coflow Fj in the stretched schedule

is bounded by 2(1 + ε)C∗j .

3All flows f ij ∈ Fj were completed by at least λ fraction by time Cj(λ). So in the stretched

schedule, all those flows must be completed by time
⌈
Cj(λ)
λ

⌉
.

83

Proof.

E[Cj(alg)] ≤
∫ 1

λ=0

f(λ)

⌈
Cj(λ)

λ

⌉
dλ ≤

∫ 1

λ=0

2λ

(
1 +

Cj(λ)

λ

)
dλ

=

∫ 1

λ=0

2λdλ+ 2

∫ 1

λ=0

Cj(λ)dλ

= 1 + 2

∫ 1

λ=0

Cj(λ)dλ

By Lemma 3 and Proposition 5,

≤ 2(1 + ε)C∗j .

Theorem 3 thus follows from the linearity of expectation.

3.8 Conclusion

In this chapter we developed an efficient approximation algorithm for the

coflow scheduling problem in general graph topologies. This algorithm is shown

to be practical and one that delivers extremely high quality solutions. The new

insight was to write a time indexed LP formulation and to convert it using the idea

of stretching the schedule.

The next major challenge is developing online methods for coflow scheduling to

minimize weighted flow time. Prior work Khuller et al. [29] deals with the problem

of minimizing weighted completion time by making use of offline approximation

84

algorithms. However, the problem of minimizing weighted flow time is considerably

more challenging. The technical difference is that flow time is defined as Cj − rj

where Cj is the completion time of a job, and rj the release time. Optimizing flow

time non-preemptively even on a single machine (a different model) is a notoriously

difficult problem with some recent progress [53, 54].

85

Chapter 4: Scheduling with Spot Instances

4.1 Introduction

The rapidly increasing adoption of machine learning and cloud computing are

arguably two of the most important technological trends of the last decade. While

cloud computing has greatly simplified infrastructure management and software de-

livery for small and large businesses alike, machine learning has enabled software

applications to improve in quality by learning from various sources of data. The

intersection of these two trends is unavoidable today and it generates several ques-

tions of interest for the computer science community. The utility and novelty of this

intersection stems from the unique characteristics of machine learning training jobs

and the dynamics of the cloud computing market.

Cloud Computing Instance Characteristics: Cloud vendors can pro-

vide cheap computational resources owing to economies of scale. Businesses often

provision cloud resources to sustain peak demands from critical services for their

customers. However, the actual demands display large fluctuations across time and

availability zones and may show specific diurnal and seasonal patterns [55, 56]. Dur-

ing times of low actual demand, cloud vendors make the unused resources (i.e. com-

pute cores) available for use as cheaper entities that may be interrupted. These

86

are called spot instances by Amazon Web Services (AWS), low-priority VMs by

Microsoft Azure, preemptible instances by Google Cloud and transient virtual ma-

chines/servers in literature [57, 58, 59, 60, 61]. In practice, spot instances1 are

often available at up to 70%-90% discounts compared to their on-demand equiva-

lences [62, 63]. Data on interruption frequency for spot instances of different config-

urations in various availability zones is published by AWS [63] and it suggests that

interruptions do occur in practice with non-negligible probability.

Machine Learning Characteristics: ML training is concerned with esti-

mating parameters of an ML model family to produce a model instance that best fits

a given dataset according to a given statistical performance metric. An ML training

algorithm is often an iterative algorithm (each iteration is also known as an epoch)

derived from the (stochastic) gradient descent family of algorithms [64, 65] and

it produces better estimates of the model parameters with each iteration, usually

with diminishing marginal returns. With the explosion in data availability, rising

hardware capabilities and resurgence of deep learning [66] over the past decade,

a practical trend in ML has been to use large model families to leverage larger

datasets at the expense of longer training times. To train ML models in the ball-

park of state-of-the-art statistical accuracy, it can take anywhere between a few days

to a few months with today’s hardware. If such a long-running ML training jobs

is interrupted prematurely, model parameter estimates from the latest successfully

completed iteration is still a valid model instance.

1Terminology: We refer to all such revocable computing instances as spot instances.

87

4.1.1 Training ML jobs on the Cloud

Cloud computing is convenient, attractive and often the go-to choice for de-

veloping and deploying machine learning powered software applications and services

at scale. However, the cost of large scale ML training could be prohibitively high,

especially if on-demand instances are used for ML training jobs. For a cloud cus-

tomer that rents servers within her budget, she hopes to get as much computation

power as possible. In order to achieve this, the low cost spot instance is a superior

option if interruptions can be handled properly. In this paper, we try to answer the

following question from a theoretical perspective:

How can ML training jobs be scheduled and executed on interruptible

but relatively inexpensive spot instances to increase their cost efficiency?

Here is the typical process of running a single ML training job on spot instances.

You pick one out of all the available instances to dispatch the current job, possibly

with a budget cap. The job will run either until an interruption happens or when

the budget cap is met. If there is still budget remaining, we reschedule the job and

resume from the last checkpoint. This process is repeated until all the budget is

used up. The final utility, e.g. a constant minus the loss function, is a combination

of all the progress you make across multiple reschedules. Typically, this utility is a

sub-additive function of the number of epochs. If there are multiple jobs, you also

need to balance the computation received for each job so the budget is spent on the

most “profitable” jobs.

Several factors and trade-offs need to be accounted for before the aforemen-

88

tioned question can be comprehensively answered and a scheduling algorithm be de-

signed. The first obstacle is that interruptions and restorations result in inevitable

overheads when a job runs on spot instances. If the overhead is large enough and/or

the interruption frequency is high enough, the overall time and hence the dollar cost

for an ML training job on cheaper spot instances may overshoot that on an expensive

interruption-free on-demand instance. We handle this trade-off between cheap price

and uninterrupted computation by mapping it to the correlated knapsack problem.

In this problem, items of stochastic states are packed into a capacitated bag. Each

state of an item corresponds to a value and a weight, and the state is only revealed

when it is added in the bag. We add items one by one into bag until it overflows,

and gets the total value of all the items except the overflown one. Another layer of

complexity is added by rescheduling. When a job is interrupted, we may decide to

reschedule it on one (possibly the same) instance, which may in turn also be inter-

rupted. Powerful techniques like dynamic programming will only work for unlimited

supply of instances. The interruption of a configuration may indicate an imbalance

in its demand and supply, and discourage us from dispatching (the same or other)

jobs on it. There can also be a quota enforced by cloud providers, so we can use

no more than a limited number of copy of a particular instance. This trade-off is

captured by a partition matriod2. The last challenge is non-linearity. Typical ML

training jobs have diminishing marginal returns, where twice the number of epochs

will not give twice the utility. This can be handled easily if no rescheduling is al-

lowed, but the combination of training epochs in separate reschedules is far from

2See definition in Section 4.2.3

89

trivial. The situation is further complicated when multiple jobs are involved. We

use a variant of the monotone submodular function 3 to model the utility function

with diminishing returns. In this work, we mainly focus on ML training that runs

on a single machine. For the increasingly popular distributed ML training, it is not

obvious how spot instances can be used. One attempt was Zhang et al. [67], in which

a group of identical spot instances are rented and utilized in synchronization. Our

model can handle this case by using meta instances corresponding to such bundles.

4.1.2 Our Contributions

We model the spot instance scheduling problem and map it to the correlated

stochastic knapsack problem with a submodular target function. We present an

algorithm that computes an adaptive policy for this problem which is guaranteed to

achieve (1− 1/
√
e)/2 ' 0.1967 of the optimal solution on expectation. It improves

on the (1 − 1/ 4
√
e)/2 ' 0.1106 approximation algorithm from Fukunaga et al. [28].

Furthermore, we remove the assumption in Fukunaga et al. [28] where possible

overflown of the budget is not allowed.

4.1.3 Our Techniques

If the target function is linearly additive, this problem becomes the corre-

lated stochastic knapsack problem. For this problem, Gupta et al. [68] gave an 1/8

approximation algorithm for adaptive policies based on LP relaxation. The approxi-

3A function f : 2N → R is submodular if for every A ⊆ B ⊆ N and e ∈ N : f(A ∪ {e}) −
f(A) ≥ f(B ∪ {e})− f(B). An equivalent definition is that for every A,B ⊆ N : f(A) + f(B) ≥
f(A ∪B) + f(A ∩B).

90

mation ratio was improved to 1/(2+ε) in Ma [69, 70], via a different LP formulation

and a more sophisticate rounding scheme. A natural idea for the submodular target

function case would be to generalize these algorithms, which is exactly what Fuku-

naga et al. [28] did. Their algorithm extends the 1/8 approximation algorithm in

Gupta et al. [68], and achieves a (1−1/ 4
√
e)/2 approximation. This is achieved by a

combination of the stochastic continuous greedy algorithm [71], and the contention

resolution scheme [72]. The 1/(2 + ε) algorithm by Ma [70] is based on a different

and tighter LP, and the rounded solution exhibits complicate dependencies. Worse

still, their rounding scheme would break a monotone property, which is a critical

component of the contention resolution scheme. This rules out the possibility of a

direct merger of the two algorithms. We manage to overcome this obstacle by a

direct analysis of the correlated probability of events to fit in the contention reso-

lution scheme. A factor of (1− 1/
√
e) is lost for the continuous optimization part,

and another factor of 2 is lost for rounding, leading to our (1 − 1/
√
e)/2 ' 0.1967

approximation algorithm.

4.2 Problem Formulation

4.2.1 Notations

For a given integer n ∈ Z+, let [n] = {0, 1, 2, . . . , n}. Let S be a set of items.

Given two vectors u, v ∈ [n]S, u ≤ v denotes the coordinate wise inequality, i.e.

∀i ∈ S, u(i) ≤ v(i). u ∨ v and u ∧ v are also defined coordinate wise: (u ∨ v)(i) =

max{u(i), v(i)}, (u ∧ v)(i) = min{u(i), v(i)}. For a function f : [M]n → R+, it is

91

called monotone if f(u) ≤ f(v) for all u ≤ v, and is called lattice-submodular if

f(u) + f(v) ≥ f(u ∧ v) + f(u ∨ v) holds for all u, v ∈ [M]n.

4.2.2 Scheduling with Spot Instances

We model the problem as follows. N jobs need to be scheduled onM different

instances, where the instances may have different CPU/RAM configurations or come

from different available zones, i.e. have different interruption patterns. We assume

each instance has a finite supply, the prices/interruptions of different instances and

different copies of the same instance are independent. For a spot instance i, the

length of time a job can run on it before interruption follows a known distribution.

When we schedule a job on an instance, we can also specify a budget cap. For a

spot instance i, let πi,s be the probability that it uses exactly s dollars before it

gets interrupted. For a spot instance i and job j, let R(j,i)(s) denotes the progress

it achieves before the last check point, e.g. number of trained epochs. Notice the

function R(j,i)(·) is monotone, i.e. R(j,i)(s) ≤ R(j,i)(s
′) if s ≤ s′. When we schedule

job j onto instance i, some processing time is wasted on environment setup and

checkpoint restoration, which does not count towards progress. This is captured

by setting R(j,i)(s) = 0 if s dollars is not enough to finish the first epoch. An

on-demand instance and a spot instance of the same configuration are considered

different instances. The utility of a job is a submodular function (more details

later), which captures diminishing returns of ML training. With a given budget B,

we would like to maximize the total expected utility of all jobs.

92

In this work, we focus on the offline case where price and interruption distri-

bution never changes. To deal with the online updates in parameters of instances or

a refreshed quota, we can simply re-run an algorithm for this case on the updated

information to find a new schedule.

4.2.3 Final Problem Statement

This problem is further mapped into the following correlated stochastic knap-

sack problem that maximizes a set submodular function. There are n items, each

item takes a random size sizei ∈ N with probability pi(s), and gets a reward ri ∈ [M].

Each size corresponds to reward. In other words, for each item i, there is a re-

ward function Ri : [N] → [M], such that ri = Ri(sizei). We assume Ri to be

non-decreasing, i.e., the larger an item, the more reward it deserves. We further

require that the chosen set of items S be an independent set of a partition matriod4

I = {Ik}k∈[K]. We have a budget B ∈ N for the total size of items, and wish to

extract as much reward as possible. The total reward is a lattice-submodular func-

tion 5 f : [M]n → R+ on the rewards of every item. Let S ⊆ [n], we sample a vector

q ∈ [M]n as follows. Each component q(i) is sampled independently. For i ∈ S,

Pr[ri = Ri(s)] = pi(s); for i /∈ S, ri = 0 with probability 1. Denote this distribution

as qS. Then the objective is to find a (random) set S ⊆ I of items that maximizes

Eθ∼qS [f(θ)] subject to
∑

i∈S sizei ≤ B.

The reduction is as follows. We consider instances with quota larger than one

4for a partition matriod I = {Ik}k∈[K], set S is considered independent iff ∀k, S ∩ Ik ≤ 1
5See definition in Section 4.2.2

93

as multiple independent copies. For each job j, instance i and budget cap b, we

define an item (j, i, b), where p(j,i,b)(s) = πi,s when s < b; p(j,i,b)(s) =
∑

s′≥s πi,s′

when s = b; and 0 otherwise. The new reward function is exactly R(j,i,b)(·). Notice

for each instance, only a single job can be scheduled on it, and a specific budget cap

can be chosen, we further impose a partition matriod {Ii}i∈[K] on the items, where

Ii = {(j, i, b)|∀j,∀b}.

We consider adaptive policies, i.e. we can choose an item to include, observe

its realized size, and make further decisions based on the feedback. At first, only the

size distribution of items are known. When the policy includes an item, its size sizei

is realized, together with its reward ri. An adaptive policy can make its decision

based on all the realizations it has seen so far. An non-adaptive policy, on the other

hand, does not see the realizations. All it can do is propose a S of items, and hope

for the best. In this work, we only consider adaptive policies without cancellation,

i.e., the inclusion of an item is irrevocable.

For a vector q ∈ [M]n, let Prπ[q] denote the probability that we get outcome

q when running policy π. Note this probability is with respect to the randomness

in the state of items and in the the policy π. Let favg(π) denote
∑

q∈[B]n Pr[q]f(r),

i.e., the average objective value obtained by π. Our aim is to find a policy π that

maximizes favg(π). We say π is an α-approximation policy if favg(π) ≥ αfavg(π∗) for

any policy π∗.

94

4.2.4 Eliminating an Assumption

In Fukunaga et al. [28], the authors considered the stochastic knapsack problem

with a lattice-submodular target function. They made two assumptions. The first

assumption states that larger size means larger reward for every particular job. This

is a reasonable assumption for our spot instance scheduling problem, and remains

crucial in the analysis. We eliminate the need of the second assumption. This

assumption states that we will never select an item which could overflow the budget,

given the realization of selected items. For example, suppose we are left with a

remaining budget of 20 at some time, and all items have a 0.001 probability of size

21. What this assumption suggests is that none of the items is allowed to be selected.

However, for many cases, selecting such an item is a desirable choice since additional

value is obtained with high probability. If we are unlucky and the size goes beyond

the remaining budget, we either receive a partial value, or do not get any value at

all. We achieve the elimination via a budget cap b, which creates the truncated

version of item i at budget b. Item (i, b) is only available to be scheduled when the

remaining budget is B − b. Depending on whether we allow partial reward, we set

the distribution of size and rewards for item (i, b). If we get 0 reward when the item

overflows, then p(i,b)(s) = pi(s) when 0 < s ≤ b, and p(i,b)(s) = 0 otherwise. If we

allow the item to collect a reward for size τ if overflow happens, then p(i,b)(s) = pi(s)

when 0 ≤ s < b, and p(i,b)(b) = 1−
∑

s<τ pi(s). It is not hard to see that these new

items are valid, and we will see later that the limitation on which slot to schedule

can be handled easily via a time indexed LP. Another thing to notice is that at most

95

one of the items in {i} ∪ {(i, b)|b ∈ [B]} can be selected, which is captured by the

partition matroid constraint.

4.3 Continuous Optimization Phase

Like most submodular maximization problems, our algorithms consists of two

phases, a continuous optimization phase and a rounding phase. In this section, we

describe the continuous optimization phase. Given a lattice-submodular function

f : [M]n → R+, we define a submodular set-function f̄ : 2n → R+. Then f̄ :=

Er∼qS [f(r)] for any S ⊆ [n]. If f is lattice-submodular, then f̄ is guaranteed to

be a monotone set-submodular function [71]. We define F̄ : 2n → R+ to be the

multilinear extension of f̄ , i.e., F (y) =
∑

S⊆[n]

∏
i∈S yi

∏
i′ /∈S(1 − yi′)f̄(S). Note

evaluating the function F can take exponential time, but it can be approximated

within a multiplicative factor of (1 + ε) for any constant ε > 0, which is standard

in submodular maximization, see [73]. In this paper, we assume it can be evaluated

exactly for simplicity. If w̄(i) is the probability that item i is in S, then the target

function we are maximizing would be F̄ (w̄). What remains are the constraints.

4.3.1 Stochastic Knapsack Exponential Constraints

Consider a certain item i, we replace it with an equivalent Markovian bandit.

It starts at state ρi. The first pull will move it to one of the states ui(1, ∗), arriving at

ui(1, s) with probability pρi,ui(1,s) = pi(s) (the corresponding item has size s). When

this arm is pulled, we are forced to keep pulling the same arm until arriving at the

96

termination state ∅i. A state ui(k, s) indicates that this arm has used up k units

of time, and have arrived at state ui(1, s) (in other words, the corresponding item

have size s). Therefore, if k < s, it will transit to state ui(k + 1, s) with probability

pui(k,s),ui(k+1,s) = 1. Otherwise, with probability pui(k,s),∅i = 1, transit to state ∅i. We

reform the constraints in Ma [70] as follows. Let Si = {u∗,∗i }∪{∅i} for all i ∈ [n]. Let

S ′ = {π : πi /∈ {ρi, ∅i}, πj /∈ {ρj, ∅j}, i 6= j}, the set of states where at least two arms

are in the middle of processing at the same time. Let S ′′ = {π : πi 6= ρi and πj 6=

ρj, i, j ∈ Ik for some k}, the set of states where some conflicting arms (due to the

partition matriod) have been started. Define S := S1×· · ·×Sn \ (S ′∪S ′′), which is

the set of all valid states. Let I(π) = {i : πi 6= ∅i} be the set of arms that could be

played from π. Let πu denote the joint node where the i-th component is replaced

by u. Let yπ,t be the probability of at state π at time t, and zπ,i,t be the probability

that we pull arm i at time t, when the current state is π.

∑
i∈I(π)

zπ,i,t ≤ yπ,t π ∈ S, t ∈ [B] (4.1)

zπ,i,t = yπ,t π ∈ S, i : πi ∈ Si \ {ρi, ∅i}, t ∈ [B] (4.2)

zπ,i,t ≥ 0 π ∈ S, i ∈ [n], t ∈ [B] (4.3)

Let Ai = {π ∈ S : πi /∈ {ρi, ∅i}}, the joint node with arm i in the middle

of processing. We call arm i the active arm. Let A =
⋃n
i=1 Ai, the set of all

states where some arm is in the middle of processing. For state π ∈ S, let P(π)

denote the subset of S that would transit to π with no play: if π /∈ A, then

97

P(π) = {π}∪(
⋃
i/∈I(π){πu : u ∈ Si\{ρi}}; if π ∈ A, then P(π) = ∅. Define Par(π) =

{v ∈ S : pv,u > 0}, the node that have a positive probability of transitioning to u.

Then y-variables are updated as follows:

y(ρ1,...,ρn),1 = 1 (4.4)

yπ,1 = 0 π ∈ S \ {(ρ1, · · · , ρn)} (4.5)

yπ,t =
∑

π′∈P(π)

(
yπ′,t−1 −

n∑
i∈I(π′)

zπ′,i,t−1

)
t > 1, π ∈ S \A (4.6)

yπ,t =
∑

ρi∈Par(πi)

(n∑
π′∈P(πρi)

zπ′,i,t−1

)
· pρi,πi t > 1, i ∈ [n], π ∈ Ai, πi ∈ {u1,∗

i } (4.7)

yπ,t =
∑

u∈Par(πi)

zπu,i,t−1 · pu,πi t > 1, i ∈ [n], π ∈ Ai, πi /∈ {u1,∗
i } (4.8)

Equation (4.6) updates yπ,t for π /∈ A, i.e. joint nodes with no active arms.

Such a joint node π can only come from a no-play from a joint node in P(π).

Equation (4.7), Equation (4.8) update yπ,t for π ∈ A. To get to the joint node π, we

must have played arm i in previous step(s). In Equation (4.7), we consider the case

if πi is one of ui(1, ∗). We were at ρi right before, so it is possible that in the last

step, we switched to πρi from some joint node in P(πρi) without playing an arm.

In Equation (4.8), we consider other cases, in which case arm i was played at time

t − 1. These equations guarantee that at each time step, y∗,t form a distribution,

i.e.
∑

π∈S yπ,t = 1. Combined with Equation (4.1), we get

98

∑
π∈S

∑
i∈I(π)

zπ,i,t ≤ 1 t ∈ [B].

The exponential constraints are a combination of Equation (4.1), (4.2), (4.3), (4.4),

(4.5), (4.6), (4.7), (4.8).

4.3.2 Stochastic Knapsack Polynomial Constraints

The previous formulation is exponential due to the size of S. In order to solve

in polynomial time, we relax it by no longer consider the joint distribution of items.

Let su,t be the probability that arm i is on node u at the beginning of time t. Let

xu,t be the probability that we pull an arm on node u at time t. The objective would

persist, with x̄, where x̄(u) =
∑

t xu,t. The new set of constraints is

xu,t ≤ su,t u ∈ S, t ∈ [B] (4.9)

xu,t = su,t u ∈
⋃
i∈[n]

{u∗,∗}, t ∈ [B] (4.10)

xu,t ≥ 0 u ∈ S, t ∈ [B] (4.11)∑
u∈S

xu,t ≤ 1 t ∈ [B] (4.12)

There is a constraint due to the partition matriod of arms (recall Ik is one partition

of the partition matroid).

∑
i∈Ik

sρi,1 = 1, ∀Ik (4.13)

99

sρi,1 ≥ 0, i ∈ [n] (4.14)

And here are the state transition constraints.

su,1 = 0 u ∈ S \ {ρ1, · · · , ρn} (4.15)

sρi,t = sρi,t−1 − xρi,t−1 t > 1, i ∈ [n] (4.16)

su,t =
∑

v∈Par(u)

xv,t−1 · pv,u t > 1, u ∈ S \ {ρ1,...,ρn} (4.17)

We denote this polynomial program with PolyP. For any program P, let OPTP

denote its optimal value. We state without proof for the following theorem.

Theorem 5 (reformation of Lemma 2.3 from Ma [70]). Given a feasible solution

{zπ,i,t}, {yπ,t} to ExpP, we can construct a solution to PolyP with the same objective

value by setting xu,t =
∑

π∈S:πi=u
zπ,i,t, su,t =

∑
π∈S:πi=u

yπ,t for all i ∈ [n], u ∈ [0, 1],

t ∈ B. Thus, the feasible region of PolyP is a projection of that of ExpP onto a

subspace and OPTExpP ≤ OPTPolyP.

4.3.3 Construct a solution {zπ,i,t, yπ,t} of ExpP from a solution {xu,t, su,t}

Our objective is that the new solution will obtain half the objective value of

PolyP. It will satisfy

∑
π∈S:πi=u

zπ,i,t =
xu,t
2

i ∈ [n], u ∈ Si, t ∈ [B].

We define specific {zπ,i,t, yπ,t} over B iterations t = 1, . . . , B. On iteration t:

100

• Compute yπ,t for all π ∈ S.

• Define ỹπ,t = yπ,t if π /∈ A, and ỹπ,t = yπ,t −
∑

a∈A zπ,i,t if π ∈ Ai for some

i ∈ [n] (if π ∈ Ai, then {zπ,i,t : a ∈ A} has already been set in a previous

iteration).

• For all i ∈ [n], define fi,t =
∑

π∈S:πi=ρi
ỹπ,t.

• For all i ∈ [n], π ∈ S such that πi = ρi, and a ∈ A, set zaπ,i,t = ỹπ,t · 1
2
· xρi,t
fi,t

.

• For all i ∈ [n], π ∈ S such that πi = ρi and πj ∈ {ρj, φj} for j 6= i, define

gπ,i,t =
∑

π′∈P(π) zπ′,i,t.

• For all i ∈ [n], u ∈ Si \ {ρi}, π ∈ S such that πi = u, and a ∈ A, set

zaπ,i,t+depth(u) = gπρi ,i,t ·
xa
u,t+depth(u))

xρi,t
.

4.3.4 Continuous Optimization

In order to solve PolyP, we use the Stochastic Continuous Greedy algorithm.

This algorithm maximizes the multilinear extensionG of a monotone set-submodular

function g over a solvable downward-closed polytope. A polytope P ⊆ [0, 1]N is

considered solvable if we can find an algorithm to optimize linear functions over it,

and downward-closed if x ∈ P and 0 ≤ y ≤ x imply y ∈ P . In our case, P is

solvable due to its linearity, and that solving a linear program falls in P. Note P

is down-monotone. The algorithm involves a controlling parameter called stopping

time. For a stopping time 0 < b ≤ 1, the algorithm outputs a solution x such that

x/b ∈ P , while G(x) ≥ (1 − e−b − O(n3δ)) maxy∈QG(y), where n is the size of the

101

set over which g is defined and δ is the step size used in the algorithm. Here P is

assumed to include the characteristic vector of every singleton set.

Theorem 6 (reformation of Theorem 3 from Fukunaga et al. [28]). If the stochastic

continuous greedy algorithm with stopping time b = 1/2 ∈ (0, 1] and step size δ =

o(|I|−3) is applied to program PolyP, then the algorithm outputs a solution x ∈ bP

such that F̄ (x̄) ≥ (1− e−b − o(1))favg(π
∗) for any adaptive policy π∗.

4.4 Rounding Phase

Now that we have a fractional solution x, we proceed to round it to an integral

policy. We need a variant of the contention resolution scheme that was introduced

as a general framework for designing rounding algorithms that maximizes expected

submodular functions ([72, 74, 75]). The variant is an extension from a set submod-

ular function to a lattice-submodular function, first introduced in Fukunaga et al.

[28].

4.4.1 Contention Resolution Scheme

Let f : [B]n → R+ be a monotone lattice-submodular function and the proba-

bility distribution qi : [B]→ [0, 1] on [B] be given for each i ∈ I. We write v ∼ q if

v ∈ [B]n is a random vector such that, for each i ∈ [n], the corresponding component

v(i) is determined independently as j ∈ [B] with probability qi(j). Let F ⊆ [B]n be

a downward-closed subset of [B]n (i.e., if u ≤ v ∈ F , then u ∈ F), and let α ∈ [0, 1].

We have the following definition for an α-contention resolution scheme (α-CRS).

102

Definition 1 (α-Contention Resolution Scheme (α-CRS)). A mapping ψ : [B]n →

F is an α-Contention Resolution Scheme with respect to q if it satisfies:

1. ψ(v)(i) ∈ {v(i), 0} for each i ∈ [n];

2. if v ∼ q, then Pr[ψ(v)(i) = j|v(i) = j] ≥ α holds for all i ∈ I and j ∈ B. The

probability is based on randomness both in v and in ψ when ψ is randomized.

Definition 2 (monotone α-CRS). An α-CRS ψ is considered monotone, if, for each

u, v ∈ [B]n such that u(i) = v(i) and u ≤ v, Pr[ψ(u)(i) = u(i)] ≥ Pr[ψ(v)(i) = v(i)]

holds. The probability is based only on the randomness of ψ.

We have the following lemma:

Lemma 5 (Theorem 4 from Fukunaga et al. [28]). If ψ is a monotone α-CRS with

respect to q, then Ev∼q[f(ψ(v))] ≥ αEv∈q[f(v)].

4.4.2 Rounding Algorithm

For each item i, we propose to include it at time t with probability xρi,t, and

drop it with probability 1 −
∑

t xρi,t. Now we have a set R′ = {(i, t)} of proposed

item time pairs. We sort the set according to t, and include the items one by one.

For a pair (i, t), we will include item i if time t is available. After including it in our

solution, we get its realized size, and mark the corresponding time slots unavailable.

If it is not available, we will simulate its inclusion, and sample its size sizei should

it be included. We also mark those time slots unavailable even though this item is

not included. This seemingly wasteful step is to ensure that the rounding scheme is

monotone.

103

Algorithm 4: Rounding Algorithm

1 for Partition group Ik do
2 Sample (i, t) from Ik × [C], get (i, t) with probability xρi,t, and gets ∅

with probability 1−
∑

i∈Ik

∑
t xρi,t;

3 if not get ∅ then
4 I ← I ∪ {(i, t)} ;
5 end

6 end
7 Sort I according to a non-decreasing ordering of t, break ties uniformly at

random ;
8 C = 0, S = ∅, mark all times slots available ;
9 for (i, t) ∈ I do

10 if time slot t is available then
11 Include item i ;
12 Observe si ;

13 else
14 Simulate including item i, and observe si;
15 end
16 Mark time slots from t to t+ si unavailable;

17 end

First note
∑

i∈Ik

∑
t xρi,t ≤ 1 for all partition Ik. We have

∑
t xρi,t ≤ sρi,1

due to Equation (4.16), which lead to our claim with the help of Equation (4.13).

Therefore, our algorithm is well-defined. The remaining of this section is devoted

to proving the following theorem.

Theorem 7. Let π denote Algorithm 4, and x denote the solution we get from

PolyP. Then favg(π) ≥ F̄ (x̄)/2.

We define two mappings σ(·) and ω(·), where the first (roughly) corresponds

to the step that maps x to I in Algorithm 4, and ω(·) corresponds to the mapping

from set I to the final output. The mapping σ(v) receives a vector x̄ ∈ [0, 1]n and

returns a random vector v ∈ [B]n. From each partition Ik, we pick at most one i,

each i ∈ Ik is picked with probability
∑

t xρi,t. If it is picked, the i-th component v(i)

104

independently takes value j with probability pi(j), and 0 otherwise, which happens

with probability 1 −
∑

j pi(j). This captures the construction of set I (only the

item part, note Pr[σ(x)(i) > 0] = Pr[∃t, s.t.(i, t) ∈ I]), together with the random

outcome of the item. The mapping ω(·) maps v ∈ [B]n to w ∈ [B]n. To mimic

Algorithm 4, we first assign time value t(i) to each component v(i), according to

xρi,t. Based on t(i), we form a precedence ordering ≺ between i after random tie

breaking (a random tie breaking is crucial). Then, we set ω(v)(i) = 0 if there exists

a component j ≺ i such that t(j) ≤ t(i) < t(j) + v(i), and w(v)(i) = v(i) otherwise.

We can observe that given input x, Algorithm 4 outputs exactly ω(σ(x)) if the

random realized sizes of items are the same.

We first prove the following helping lemma.

Lemma 6. Let X1, . . . , Xn be {0, 1} random variables with E[Xi] = xi. Suppose

Xi form a partition matroid I with partition I1, . . . , IK, and f is a submodular set

function on [n] with f(∅) = 0, then E[f(X1, . . . , Xn)] ≥
∑

S⊆[n]

∏
i∈S xi

∏
i′ /∈S(1 −

xi′)f(S).

Proof of Lemma 6. We prove by induction on K, the number of partitions. When

K = 1, at most one Xi is one. Let 0 denote the all 0 vector, and 1i denote the

vector where the i-th entry is 1 while all other entries are zero. Therefore,

E[f(X1, . . . , Xn)]

= Pr[∀i,Xi = 0]f(∅) +
n∑
i=1

Pr[Xi = 1]f({i})

=
n∑
i=1

xif({i}).

105

On the other hand,

∑
S⊆[n]

∏
i∈S

xi
∏
i′ /∈S

(1− xi′)f(S)

≤
∑
S⊆[n]

∏
i∈S

xi
∏
i′ /∈S

(1− xi′)(
∑
i′′∈S

f({i′′}))

=
∑
i′′

f({i′′})
∑
S⊆[n]

i′′∈S

∏
i∈S

xi
∏
i′ /∈S

(1− xi′)

=
∑
i′′

xi′′f({i′′})
∑

S⊆[n]\{i}

∏
i∈S

xi
∏
i′ /∈S

(1− xi′)

=
∑
i′′

xi′′f({i′′})

=E[f(X1, . . . , Xn)]

Suppose the lemma is true for K = K0. Let fS(X1, . . . , Xn) denote the function

f where Xi = 0,∀i /∈ S. We slightly abuse the notations and use f(S) to denote

fS(X1, . . . , Xn) when there is no confusion. On the one hand, we have

E[f(X1, . . . , Xn)] = (1−
∑
i∈I1

Pr[Xi = 1])fσk=0(X1, . . . , Xn)

+
∑
i∈I1

Pr[Xi = 1]E[fσk=i(X1, . . . , Xn)].

On the other hand,

∑
S⊆[n]

∏
i∈S

xi
∏
i′ /∈S

(1− xi′)f(S)

≤
∑
S⊆[n]

∏
i∈S

xi
∏
i′ /∈S

(1− xi′)

(
f(S \ I1) +

∑
i∈I1∩S

(f({i} ∪ (S \ I1))− f(S \ I1))

)

106

=
∑
S⊆[n]

∏
i∈S

xi
∏
i′ /∈S

(1− xi′)f(S \ I1)

+
∑
S⊆[n]

∏
i∈S

xi
∏
i′ /∈S

(1− xi′)
∑

i∈I1∩S

(f({i} ∪ (S \ I1))− f(S \ I1))

=
∑
S⊆[n]

∏
i′∈S

i′∈I1\{i}

xi′
∏
i′′ /∈S

i′′∈I1\{i}

(1− xi′′)
∏
j∈S
j /∈I1

xi
∏
j′ /∈S
j /∈I1

(1− xi′)(1− xi′)f(S)

+
∑
i∈I1

xi
∑
S⊆[n]
S3i

∏
i′∈S

i′∈I1\{i}

xi′
∏
i′′ /∈S

i′′∈I1\{i}

(1− xi′′)
∏
j∈S
j /∈I1

xi
∏
j′ /∈S
j /∈I1

(1− xi′)(f({i} ∪ (S \ I1))− f(S \ I1))

=
∑

S⊆[n]\I1

∏
i∈S

xi
∏
i′ /∈S

(1− xi′)f(S)

+
∑
i∈I1

xi
∑

S⊆[n]\I1
S3i

∏
j∈S
j /∈I1

xi
∏
j′ /∈S
j /∈I1

(1− xi′)(f({i} ∪ (S \ I1))− f(S \ I1))

=
∑

S⊆[n]\I1

∏
i∈S

xi
∏
i′ /∈S

(1− xi′)f(S)

+
∑
i∈I1

xi
∑

S⊆[n]\I1

∏
j∈S
j /∈I1

xi
∏
j′ /∈S
j /∈I1

(1− xi′)(f({i} ∪ (S))− f(S))

=(1−
∑
i∈I1

xi)
∑

S⊆[n]\I1

∏
i∈S

xi
∏
i′ /∈S

(1− xi′)f(S)

+
∑
i∈I1

xi
∑

S⊆[n]\I1

∏
j∈S
j /∈I1

xi
∏
j′ /∈S
j /∈I1

(1− xi′)f({i} ∪ (S))

≥(1−
∑
i∈I1

Pr[Xi = 1])f[n]\I1(X1, . . . , Xn) +
∑
i∈I1

Pr[Xi = 1]E[f[n]\(I1\{i})(X1, . . . , Xn)]

=E[f(X1, . . . , Xn)]

The first inequality is the submodular property of f . The last inequality applies the

induction hypothesis.

Now we are ready to bound E[f(σ(x))] with the following lemma.

107

Lemma 7. E[f(σ(x))] ≥ F̄ (x̄) holds for any x ∈ P .

Proof of Lemma 7. Consider the distribution of σ(x). Let Xi,j denote the event that

item i has size j. We know Pr[Xi,j] = x̄ · pi(j). Suppose the partition matriod I has

partition I1, . . . , IK , then the set {(i, j)|i ∈ [n], j ∈ [M]} forms a partition matriod

I ′, where I ′k = {(i, j)|i ∈ Ik, j ∈ [M]}. Applying Lemma 6, we get E[f(σ(x))] ≥

F̄ (x1, . . . , xn) = F̄ (x̄).

With Lemma 6, we are ready to prove

Lemma 8. ω is a monotone 1/2-CRS with respect to x̄.

Proof of Lemma 8. We first prove ω is a 1/2-CRS, then prove it monotone. The first

condition is obvious due to the definition of w(·). The second condition is asking a

proof for Pr[w(v)(i) = j|v(i) = j] ≥ 1/2. In the language of the rounding algorithm,

let Dropi denotes the event (respect to the randomness in ω and v) that we drop

the pair (i, t). It is the same as proving Pr[Dropi|item i is selected at time t] ≤ 1
2
.

Due to the way we round the solution, item i is only included once, so item i

is always available. Conditioned on the event that item i ∈ I, the only reason that

it is dropped is when some item j (j ≺ i) marked the time slot t unavailable. Fix j,

the probability that it marked time slot t unavailable is

1

2

t−1∑
t′=1

xρj ,t′ · Pr[sizej ≥ t− t′] + Pr[item j is considered before i] · 1

2
xρj ,t

≤1

2

t−1∑
t′=1

xρj ,t′ · Pr[sizej ≥ t− t′] +
1

2
xρj ,t.

108

Where

t−1∑
t′=1

xρj ,t′ · Pr[sizej ≥ t− t′]

=
t−1∑
t′=1

B−t∑
τ=t−t′

xρj ,t′ Pr[sizej = τ]

=
t−1∑
t′=1

B−t∑
τ=t−t′

xuj(1,τ),t′+1

=
t−1∑
t′=1

B−t∑
τ=t−t′

xuj(t−t′,τ),t

≤
∑

u∈{∅j}∪{ui(∗,∗)}

xu,t

Therefore, the total probability that item i is blocked by any item is upper bounded

by union bound:

1

2

∑
j 6=i

t∑
t′=1

xρj ,t′ · Pr[sizej ≥ t− t′] +
1

2

∑
j 6=i

xρj ,t

≤1

2

∑
j 6=i

∑
u∈{∅j}∪{ui(∗,∗)}

xu,t +
1

2

∑
j∈[n]

xρj ,t

≤1

2

∑
j∈[n]

∑
u∈{∅j}∪{ui(∗,∗)}

xu,t +
1

2

∑
j∈[n]

xρj ,t

≤1

2
(1−

∑
j∈n

xρj ,t) +
1

2

∑
j∈[n]

xρj ,t

=
1

2
.

Lastly, we show ω is monotone. Suppose vectors u, v ∈ [B]n satisfies u ≤ v, and

u(i) = v(i) = j > 0. We only need to show Pr[ω(u)(i) = j] ≥ Pr[ω(v)(i) = j], where

109

randomness is with respect to the choice of time and ordering. In this case,

Pr[w(u)(i) = j] =
B∑
t=1

xρi,t

1−
∑
i′

Pr[i′ ≺ i|t(i) = t]
t∑

t′=t−u(i′)

xρi′ ,t′

 .

Therefore

Pr[w(u)(i) = j]− Pr[w(v)(i) = j]

=
B∑
t=1

xρi,t
∑
i′

Pr[i′ ≺ i|t(i) = t]

 t∑
t′=t−v(i′)

xρi′ ,t′ −
t∑

t′=t−u(i′)

xρi′ ,t′

=

B∑
t=1

xρi,t
∑
i′

Pr[i′ ≺ i|t(i) = t]

t−u(i′)−1∑
t′=t−v(i′)

xρi′ ,t′

≥0.

The second equality is due to v(i′) > u(i′) for all i′. The last inequality is due the

non-negative property of xu,t. Hence, Pr[ω(u)(i) = j] ≥ Pr[ω(v)(i) = j] holds

Proof of Theorem 7. The output r of Algorithm 4 satisfies E[f(r)] = E[f(ω(σ(x)))],

and it is always feasible. By Lemma 8, ω is a monotone 1/2-CRS with respect

to q, where q is the probability defined in Lemma 8. Moreover, σ(x) ∼ q holds.

Hence, by Lemma 5, E[f(ω(σ(x)))] ≥ E[f(σ(x))]/2. Plugging in Lemma 6, we get

favg(π) = E[f(r)] = E[f(ω(σ(x)))] ≥ F̄ ((̄x))/2.

110

Chapter 5: Conclusion

With the ever-increasing volume of data and the growing popularity of data

centers, classic and well studied fields like job scheduling are revealing yet another

fascinating perspective. In this thesis, we have studied various scheduling problems

originating from the context of data center and cloud computing.

In Chapters 2 and 3, we studied a general framework that captures the application-

level data communication patterns in data centers. Classical algorithms are not

designed to take such data transfer into account. Chowdhury and Stoica [1] mod-

eled this challenge as the coflow scheduling problem, which captures the scenario

where data transfers occur in a uniform network. In Chapter 2, we follow the line

of research from a theoretical perspective and improve on the approximation ratio.

The improvement is achieved with a further exploitation of its relationship with

the concurrent open shop problem, a relationship first discovered by Khuller and

Purohit [14]. In addition to the LP based algorithm, we also developed a practically

efficient algorithms based on the primal-dual technique, with the same theoretical

guarantee. This theoretical result makes it way back to the system community [3],

closing the loop of research from system to theory, and back to system. There is still

a gap of two between upper and lower theoretical bounds, and we leave the closing

111

of this gap as an open question.

In Chapter 3, we consider the generalized case where data transfers hap-

pen on non-uniform or geo-distributed networks. In order to capture the shar-

ing/merging/splitting capability of modern networks, we solve the problem via linear

programming and multi-commodity flow, resulting in a nice heuristic that achieves

close to optimality in experiments. The solution is further massaged to result in a

tight approximation algorithm. Such a solution can be slow for large networks or

a long period of time, but we believe that this result give the impetus for better

approximation algorithms as well as fast heuristics that works well in practice.

While the previous chapters deal with the challenge originating from data

transmission, in Chapter 4 we study the scheduling problem in the presence of cloud

computing platforms. With rentable and revocable computing resources, another

dimension is added to the classical scheduling problems: which instance to rent,

and how to handle stochastic interruptions. We model and reduce this problem

to the well studied correlated stochastic knapsack problem, replacing the target

function with a submodular one, in order to capture the property of diminishing

returns. An extra partition matriod constraint is added to capture budget cap and

eliminate assumptions in previous works. For the reduced problem, we improved on

the approximation ratio. There is still a gap comparing to the variant with linear

target function, and we leave it as an open problem. This work is an attempt for

the algorithmic challenges from rentable and revocable cloud servers, and we believe

that it will inspire more work from both the theory and the system community.

112

5.1 Future Directions

In this section, we discuss the future directions of coflow scheduling and

scheduling with spot instances.

5.1.1 Coflow Scheduling

Currently, the best approximation ratio for coflow scheduling in switch model

is 5 approximation with release time and 4 approximation without release time [15].

On the hardness side, this problem generalizes concurrent open shop problem, which

is NP-hard to get (2 − ε) approximation for any ε > 0 [37, 38]. There is a gap of

factor 2 in the approximation ratio. We want to either improve the approximation

ratio or to get a tighter hardness bound. For the graph model, we currently have

matching lower and upper bounds, but the solution uses time indexed LP which is

not efficient to solve in practice. We hope to find some practically efficient algorithm

which has the same or a slightly worse approximation bound.

While experiments show that our algorithm for the switch model works well in

practice, there are several concerns. The first scenario that need attention is online

setting: decisions need to be made before the next new job comes. In the work of

Khuller et al. [29], a 12 adaptive online algorithm for coflow scheduling was given,

and it can be improved to 6 adaptive if exponential time online algorithm is allowed.

The next scenario is about special network structures. Real networks lie between

switch model and graph model. Is it possible to get better approximation ratio in

special graph types commonly found in datacenters, e.g., big tree, expander, etc.

113

The third scenario is a different target function. While weighted completion time is

well studied target function, it is not fully satisfying in this situation. If a short job

is released at time 1000, the optimal solution might schedule it right away, while an

approximation algorithm targeting completion time would probably schedule at time

2000, getting a 2 approximation. The idea of flow time (also known as job lateness)

is designed to address this: it denotes the difference between release time of a job and

the time it finishes. Optimization for flow time proves hard [53, 54, 76, 77, 78, 79].

Recently, Batra et al. [53] made a breakthrough on flow time scheduling on single

machine and got constant approximation ratio in pseudo-polynomial time. Feige

et al. [54] improved the running time on this via black-box reduction and got a

true polynomial time constant approximation algorithm. A nice direction would

be follow up these work and extends to coflow scheduling, starting from concurrent

open shop.

5.1.2 Scheduling Spot Instances

Comparing to previous works on correlated stochastic knapsack problems with

linear target function, our work has a limitation from assumption we make. De-

spite the elimination of one assumption (see Section 4.2.4), the other assumption in

Fukunaga et al. [28] remains. This assumption ensures a monotone property which

is necessary for the contention resolution framework. Therefore, we would need a

different technique to remove this constraint. Apart from this limitation, we lose

another factor of 2 when rounding the solution, where in Ma [70], no factor is lost.

114

The reason behind the extra factor is partly due to the monotone property we just

mentioned, and partly due to the complicated dependency in the rounding process

of Ma [70]. An attempt to reduce or even remove this additional factor would help

us both in the understanding of dependencies in the rounded solution, and better

understanding of the contention resolution scheme.

In Ma [70], both the correlated stochastic knapsack problem and the MAB

superprocess problem can be handled. However, our algorithm can only handle

correlated stochastic knapsack problem. To be more precise, our proof technique

will only work if for each arm in the MAB, for all but the transition after the first

action, it happens with probability 0 or 1. In other words, there are no random

events that are partially correlated with each other except for those related to the

first action. It would be a great improvement if the fully generalized model in Ma

[70] can be supported.

The last direction is to make the algorithm practical. Our algorithm is based

on the multilinear-extension of submodular function. Such a function takes expo-

nential time to evaluate, but can be approximated to arbitrary precision within

polynomial time using sampling and concentration bounds. However, this is gen-

erally considered not very efficient in practice. To make things worse, the time

indexed program and the budget cap add a factor of N2 to the size of the problem,

leading to a more impractical algorithm. This can be partially fixed by limiting the

set of possible budget caps. There is a line of research on monotone submodular

optimization without multilinear-extension, which may be a promising direction to

give algorithms that are efficient and applicable in practice.

115

Bibliography

[1] Mosharaf Chowdhury and Ion Stoica. Coflow: A networking abstraction for
cluster applications. In ACM Workshop on Hot Topics in Networks, pages
31–36. ACM, 2012.

[2] Hamidreza Jahanjou, Erez Kantor, and Rajmohan Rajaraman. Asymptotically
optimal approximation algorithms for coflow scheduling. In Proceedings of the
28th ACM Symposium on Parallelism in Algorithms and Architectures, pages
45–54. ACM, 2017.

[3] Saksham Agarwal, Shijin Rajakrishnan, Akshay Narayan, Rachit Agarwal,
David Shmoys, and Amin Vahdat. Sincronia. In Proceedings of the 2018 Con-
ference of the Acm Special Interest Group on Data Communication, 8 2018.
doi: 10.1145/3230543.3230569. URL https://doi.org/10.1145/3230543.

3230569.

[4] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing
on large clusters. Communications of the ACM, 51(1):107–113, 2008. doi: 10.
1145/1327452.1327492. URL https://doi.org/10.1145/1327452.1327492.

[5] Apache Software Foundation. Hadoop. URL https://hadoop.apache.org.

[6] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and
Ion Stoica. Spark: Cluster computing with working sets. In Proceedings of
the 2nd Usenix Conference on Hot Topics in Cloud Computing, HotCloud’10,
page 10, USA, 2010. USENIX Association.

[7] Shouxi Luo, Hongfang Yu, Yangming Zhao, Sheng Wang, Shui Yu, and Lemin
Li. Towards practical and near-optimal coflow scheduling for data center net-
works. IEEE Transactions on Parallel and Distributed Systems, 27(11):3366–
3380, 2016.

[8] Yupeng Li, Shaofeng H.-C. Jiang, Haisheng Tan, Chenzi Zhang, Guihai Chen,
Jipeng Zhou, and Francis C. M. Lau. Efficient online coflow routing and schedul-
ing. In Proceedings of the 17th Acm International Symposium on Mobile Ad
Hoc Networking and Computing - Mobihoc ’16, - 2016. doi: 10.1145/2942358.
2942367. URL https://doi.org/10.1145/2942358.2942367.

[9] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. Efficient coflow scheduling
with varys. SIGCOMM Comput. Commun. Rev., 44(4):443–454, August 2014.

116

https://doi.org/10.1145/3230543.3230569
https://doi.org/10.1145/3230543.3230569
https://doi.org/10.1145/1327452.1327492
https://hadoop.apache.org
https://doi.org/10.1145/2942358.2942367

ISSN 0146-4833. doi: 10.1145/2740070.2626315. URL https://doi.org/10.

1145/2740070.2626315.

[10] Mosharaf Chowdhury and Ion Stoica. Efficient coflow scheduling without prior
knowledge. SIGCOMM Comput. Commun. Rev., 45(4):393–406, August 2015.
ISSN 0146-4833. doi: 10.1145/2829988.2787480. URL https://doi.org/10.

1145/2829988.2787480.

[11] Yangming Zhao, Kai Chen, Wei Bai, Minlan Yu, Chen Tian, Yanhui Geng,
Yiming Zhang, Dan Li, and Sheng Wang. Rapier: Integrating routing and
scheduling for coflow-aware data center networks. In 2015 Ieee Conference on
Computer Communications (INFOCOM), 4 2015. doi: 10.1109/infocom.2015.
7218408. URL https://doi.org/10.1109/infocom.2015.7218408.

[12] Ruozhou Yu, Guoliang Xue, Xiang Zhang, and Jian Tang. Non-preemptive
coflow scheduling and routing. In 2016 Ieee Global Communications Conference
(GLOBECOM), 12 2016. doi: 10.1109/glocom.2016.7842029. URL https:

//doi.org/10.1109/glocom.2016.7842029.

[13] Zhen Qiu, Cliff Stein, and Yuan Zhong. Minimizing the total weighted com-
pletion time of coflows in datacenter networks. In ACM Symposium on Paral-
lelism in Algorithms and Architectures, pages 294–303, New York, NY, USA,
2015. ACM. ISBN 978-1-4503-3588-1. doi: 10.1145/2755573.2755592. URL
http://doi.acm.org/10.1145/2755573.2755592.

[14] Samir Khuller and Manish Purohit. Brief announcement: Improved approxima-
tion algorithms for scheduling co-flows. In Proceedings of the 28th Acm Sym-
posium on Parallelism in Algorithms and Architectures, pages 239–240, New
York, NY, USA, 2016. ACM. ISBN 978-1-4503-4210-0. doi: 10.1145/2935764.
2935809. URL https://doi.org/10.1145/2935764.2935809.

[15] Saba Ahmadi, Samir Khuller, Manish Purohit, and Sheng Yang. On scheduling
coflows. Algorithmica, 82(12):3604–3629, 2020. doi: 10.1007/s00453-020-00741-
3. URL https://doi.org/10.1007/s00453-020-00741-3.

[16] Mehrnoosh Shafiee and Javad Ghaderi. An improved bound for minimizing the
total weighted completion time of coflows in datacenters. IEEE/ACM Transac-
tions on Networking, 26(4):1674–1687, 2018. doi: 10.1109/tnet.2018.2845852.
URL https://doi.org/10.1109/tnet.2018.2845852.

[17] Jie You and Mosharaf Chowdhury. Terra: Scalable cross-layer gda optimiza-
tions. https://arxiv.org/abs/1904.08480, 2019.

[18] Amazon. Amazon ec2 spot instances. https://aws.amazon.com/ec2/spot/.

[19] Microsoft. Microsoft low priority vm. https://azure.microsoft.com/en-

us/pricing/details/batch/.

117

https://doi.org/10.1145/2740070.2626315
https://doi.org/10.1145/2740070.2626315
https://doi.org/10.1145/2829988.2787480
https://doi.org/10.1145/2829988.2787480
https://doi.org/10.1109/infocom.2015.7218408
https://doi.org/10.1109/glocom.2016.7842029
https://doi.org/10.1109/glocom.2016.7842029
http://doi.acm.org/10.1145/2755573.2755592
https://doi.org/10.1145/2935764.2935809
https://doi.org/10.1007/s00453-020-00741-3
https://doi.org/10.1109/tnet.2018.2845852
https://arxiv.org/abs/1904.08480
https://aws.amazon.com/ec2/spot/
https://azure.microsoft.com/en-us/pricing/details/batch/
https://azure.microsoft.com/en-us/pricing/details/batch/

[20] Google. Preemptible vm instances. https://cloud.google.com/compute/

docs/instances/preemptible.

[21] Adish Singla, Sebastian Tschiatschek, and Andreas Krause. Noisy submodular
maximization via adaptive sampling with applications to crowdsourced image
collection summarization. In Proceedings of the Thirtieth Aaai Conference on
Artificial Intelligence, AAAI’16, pages 2037–2043. AAAI Press, 2016.

[22] Andreas Krause and Carlos Guestrin. Submodularity and its applications in
optimized information gathering. ACM Transactions on Intelligent Systems
and Technology, 2(4):1–20, 2011. doi: 10.1145/1989734.1989736. URL https:

//doi.org/10.1145/1989734.1989736.

[23] Rishabh Iyer and Jeff Bilmes. Submodular optimization with submodular cover
and submodular knapsack constraints. In Proceedings of the 26th International
Conference on Neural Information Processing Systems - Volume 2, NIPS’13,
pages 2436–2444, Red Hook, NY, USA, 2013. Curran Associates Inc.

[24] Alan Kuhnle, J. David Smith, Victoria Crawford, and My Thai. Fast
maximization of non-submodular, monotonic functions on the integer lat-
tice. volume 80 of Proceedings of Machine Learning Research, pages 2786–
2795, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL
http://proceedings.mlr.press/v80/kuhnle18a.html.

[25] Tasuku Soma and Yuichi Yoshida. Non-monotone dr-submodular function max-
imization. In Proceedings of the Thirty-First Aaai Conference on Artificial
Intelligence, AAAI’17, pages 898–904. AAAI Press, 2017.

[26] Ryan Gomes and Andreas Krause. Budgeted nonparametric learning from data
streams. In Proceedings of the 27th International Conference on International
Conference on Machine Learning, ICML’10, pages 391–398, Madison, WI, USA,
2010. Omnipress. ISBN 9781605589077.

[27] Sheng Yang, Sunav Chodhary, Subrata Mitra, Kanak Mahadik, and Samir
Khuller. Distributed ml on aws spot instances. unpublished manuscript, 2019.

[28] Takuro Fukunaga, Takuya Konishi, Sumio Fujita, and Ken ichi Kawarabayashi.
Stochastic submodular maximization with performance-dependent item costs.
Proceedings of the AAAI Conference on Artificial Intelligence, 33:1485–1494,
2019. doi: 10.1609/aaai.v33i01.33011485. URL https://doi.org/10.1609/

aaai.v33i01.33011485.

[29] Samir Khuller, Jingling Li, Pascal Sturmfels, Kevin Sun, and Prayaag Venkat.
Select and permute: An improved online framework for scheduling to minimize
weighted completion time. Theoretical Computer Science, 795:420–431, 2019.

[30] Ruijiu Mao, Vaneet Aggarwal, and Mung Chiang. Stochastic non-preemptive
co-flow scheduling with time-indexed relaxation. IEEE International Confer-
ence on Computer Communications, 2018.

118

https://cloud.google.com/compute/docs/instances/preemptible
https://cloud.google.com/compute/docs/instances/preemptible
https://doi.org/10.1145/1989734.1989736
https://doi.org/10.1145/1989734.1989736
http://proceedings.mlr.press/v80/kuhnle18a.html
https://doi.org/10.1609/aaai.v33i01.33011485
https://doi.org/10.1609/aaai.v33i01.33011485

[31] Zhi-Long Chen and Nicholas G Hall. Supply chain scheduling: Conflict and
cooperation in assembly systems. Operations Research, 55(6):1072–1089, 2007.

[32] Naveen Garg, Amit Kumar, and Vinayaka Pandit. Order Scheduling Mod-
els: Hardness and Algorithms, pages 96–107. FSTTCS 2007: Foundations of
Software Technology and Theoretical Computer Science. Springer Berlin Hei-
delberg, 2007. doi: 10.1007/978-3-540-77050-3 8. URL https://doi.org/10.

1007/978-3-540-77050-3_8.

[33] Joseph Y-T Leung, Haibing Li, and Michael Pinedo. Scheduling orders for
multiple product types to minimize total weighted completion time. Discrete
Applied Mathematics, 155(8):945–970, 2007.

[34] Monaldo Mastrolilli, Maurice Queyranne, Andreas S Schulz, Ola Svensson, and
Nelson A Uhan. Minimizing the sum of weighted completion times in a con-
current open shop. Operations Research Letters, 38(5):390–395, 2010.

[35] Guoqing Wang and TC Edwin Cheng. Customer order scheduling to minimize
total weighted completion time. Omega, 35(5):623–626, 2007.

[36] Sungjin Im, Benjamin Moseley, Kirk Pruhs, and Manish Purohit. Matroid
coflow scheduling. International Colloquium on Automata, Languages and Pro-
gramming, 2019.

[37] Nikhil Bansal and Subhash Khot. Inapproximability of hypergraph vertex cover
and applications to scheduling problems. In International Colloquium on Au-
tomata, Languages and Programming, pages 250–261. Springer, 2010.

[38] Sushant Sachdeva and Rishi Saket. Optimal inapproximability for scheduling
problems via structural hardness for hypergraph vertex cover. In IEEE Con-
ference on Computational Complexity, pages 219–229. IEEE, 2013.

[39] Maurice Queyranne. Structure of a simple scheduling polyhedron. Mathematical
Programming, 58(1-3):263–285, 1993.

[40] James M Davis, Rajiv Gandhi, and Vijay H Kothari. Combinatorial algorithms
for minimizing the weighted sum of completion times on a single machine.
Operations Research Letters, 41(2):121–125, 2013.

[41] Julia Chuzhoy, Venkatesan Guruswami, Sanjeev Khanna, and Kunal Talwar.
Hardness of routing with congestion in directed graphs. In ACM Symposium
on Theory of Computing, pages 165–178. ACM, 2007.

[42] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mo-
han Nanduri, and Roger Wattenhofer. Achieving high utilization with software-
driven wan. In ACM SIGCOMM Computer Communication Review, pages
15–26. ACM, 2013.

119

https://doi.org/10.1007/978-3-540-77050-3_8
https://doi.org/10.1007/978-3-540-77050-3_8

[43] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Ar-
jun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4:
Experience with a globally-deployed software defined wan. In ACM SIGCOMM
Computer Communication Review, pages 3–14. ACM, 2013.

[44] Intel Hadoop. Big data benchmark for big bench. https://github.com/

intel-hadoop/Big-Data-Benchmark-for-Big-Bench, 2016.

[45] Raghunath Othayoth Nambiar and Meikel Poess. The making of tpc-ds. In
Proceedings of the 32nd International Conference on Very Large Data Bases,
VLDB ’06, pages 1049–1058. VLDB Endowment, 2006.

[46] Meikel Poess and Chris Floyd. New tpc benchmarks for decision support and
web commerce. ACM Sigmod Record, 29(4):64–71, 2000.

[47] Facebook. Statistical workload injector for mapreduce (swim). https://

github.com/SWIMProjectUCB/SWIM, 2014.

[48] Mosharaf Chowdhury. Coflow benchmark based on facebook traces. https:

//github.com/coflow/coflow-benchmark, 2015.

[49] Sungjin Im, Maxim Sviridenko, and Ruben Van Der Zwaan. Preemptive and
non-preemptive generalized min sum set cover. Mathematical Programming,
145(1-2):377–401, 2014.

[50] Maurice Queyranne and Maxim Sviridenko. A (2+ ε)-approximation algorithm
for the generalized preemptive open shop problem with minsum objective. Jour-
nal of Algorithms, 45(2):202–212, 2002.

[51] Andreas S. Schulz and Martin Skutella. Random-based scheduling new approx-
imations and LP lower bounds, pages 119–133. Randomization and Approxi-
mation Techniques in Computer Science. Springer Berlin Heidelberg, 1997. doi:
10.1007/3-540-63248-4 11. URL https://doi.org/10.1007/3-540-63248-

4_11.

[52] Gurobi Optimization, LLC. Gurobi optimizer reference manual, 2018. URL
http://www.gurobi.com.

[53] Jatin Batra, Naveen Garg, and Amit Kumar. Constant factor approximation
algorithm for weighted flow time on a single machine in pseudo-polynomial
time. In Foundations of Computer Science, pages 778–789. IEEE, 2018.

[54] Uriel Feige, Janardhan Kulkarni, and Shi Li. A Polynomial Time Constant
Approximation For Minimizing Total Weighted Flow-time, pages 1585–1595.
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Al-
gorithms. Society for Industrial and Applied Mathematics, 2019. doi: 10.1137/
1.9781611975482.96. URL https://doi.org/10.1137/1.9781611975482.96.

120

https://github.com/intel-hadoop/Big-Data-Benchmark-for-Big-Bench
https://github.com/intel-hadoop/Big-Data-Benchmark-for-Big-Bench
https://github.com/SWIMProjectUCB/SWIM
https://github.com/SWIMProjectUCB/SWIM
https://github.com/coflow/coflow-benchmark
https://github.com/coflow/coflow-benchmark
https://doi.org/10.1007/3-540-63248-4_11
https://doi.org/10.1007/3-540-63248-4_11
http://www.gurobi.com
https://doi.org/10.1137/1.9781611975482.96

[55] Maria Carla Calzarossa, Marco L. Della Vedova, Luisa Massari, Dana Petcu,
Momin I. M. Tabash, and Daniele Tessera. Workloads in the Clouds, pages
525–550. Springer International Publishing, Cham, 2016. doi: 10.1007/978-3-
319-30599-8 20.

[56] Prasad Saripalli, G. V. R. Kiran, R. Ravi Shankar, Harish Narware, and Nitin
Bindal. Load prediction and hot spot detection models for autonomic cloud
computing. In Proceedings of the 2011 Fourth IEEE International Conference
on Utility and Cloud Computing, UCC ’11, pages 397–402, Washington, DC,
USA, 2011. IEEE Computer Society. doi: 10.1109/UCC.2011.66.

[57] Pradeep Ambati and David Irwin. Optimizing the cost of executing mixed inter-
active and batch workloads on transient vms. In Abstracts of the 2019 SIGMET-
RICS/Performance Joint International Conference on Measurement and Mod-
eling of Computer Systems, SIGMETRICS ’19, pages 45–46, New York, NY,
USA, 2019. ACM. ISBN 978-1-4503-6678-6. doi: 10.1145/3309697.3331489.

[58] Andrew Chung, Jun Woo Park, and Gregory R. Ganger. Stratus: Cost-aware
container scheduling in the public cloud. In Proceedings of the ACM Symposium
on Cloud Computing, SoCC ’18, pages 121–134, New York, NY, USA, 2018.
ACM. ISBN 978-1-4503-6011-1. doi: 10.1145/3267809.3267819.

[59] Youngseok Yang, Geon-Woo Kim, Won Wook Song, Yunseong Lee, Andrew
Chung, Zhengping Qian, Brian Cho, and Byung-Gon Chun. Pado: A data
processing engine for harnessing transient resources in datacenters. In Proceed-
ings of the Twelfth European Conference on Computer Systems, EuroSys ’17,
pages 575–588, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4938-3.
doi: 10.1145/3064176.3064181.

[60] Prateek Sharma, David Irwin, and Prashant Shenoy. Portfolio-driven re-
source management for transient cloud servers. Proceedings of the ACM
on Measurement and Analysis of Computing Systems, 1(1):1–23, 2017. doi:
10.1145/3084442. URL https://doi.org/10.1145/3084442.

[61] Ying Yan, Yanjie Gao, Yang Chen, Zhongxin Guo, Bole Chen, and Thomas
Moscibroda. Tr-spark: Transient computing for big data analytics. In Proceed-
ings of the Seventh ACM Symposium on Cloud Computing, SoCC ’16, pages
484–496, New York, NY, USA, 2016. ACM. doi: 10.1145/2987550.2987576.

[62] Aaron Harlap, Alexey Tumanov, Andrew Chung, Gregory R Ganger, and
Phillip B Gibbons. Proteus: agile ml elasticity through tiered reliability in
dynamic resource markets. In Proceedings of the Twelfth European Conference
on Computer Systems, pages 589–604. ACM, 2017.

[63] Amazon Inc. Spot Instance Advisor. https://aws.amazon.com/ec2/spot/

instance-advisor/, 2019.

121

https://doi.org/10.1145/3084442
https://aws.amazon.com/ec2/spot/instance-advisor/
https://aws.amazon.com/ec2/spot/instance-advisor/

[64] Sébastien Bubeck et al. Convex Optimization: Algorithms and Complexity.
Foundations and Trends in Machine Learning, 8(3-4):231–357, 2015. ISSN
1935-8237. doi: 10.1561/2200000050.

[65] Prateek Jain and Purushottam Kar. Non-convex Optimization for Machine
Learning. Foundations and Trends in Machine Learning, 10(3-4):142–363, 2017.
doi: 10.1561/2200000058.

[66] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The
MIT Press, 2016. ISBN 0262035618, 9780262035613.

[67] Xiaoxi Zhang, Jianyu Wang, Fanjing Wu, Gauri Joshi, and Carlee Joe-Wong.
Machine learning on the cheap: An optimized strategy to exploit spot instance.
https://www.andrew.cmu.edu/user/gaurij/spot_instance_ml.pdf, 2019.

[68] Anupam Gupta, Ravishankar Krishnaswamy, Marco Molinaro, and R Ravi.
Approximation algorithms for correlated knapsacks and non-martingale ban-
dits. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual
Symposium on, pages 827–836. IEEE, 2011.

[69] Will Ma. Improvements and generalizations of stochastic knapsack and multi-
armed bandit approximation algorithms. In Proceedings of the twenty-fifth an-
nual ACM-SIAM symposium on Discrete algorithms, pages 1154–1163. Society
for Industrial and Applied Mathematics, 2014.

[70] Will Ma. Improvements and generalizations of stochastic knapsack and marko-
vian bandits approximation algorithms. Mathematics of Operations Research,
43(3):789–812, 2018. doi: 10.1287/moor.2017.0884. URL https://doi.org/

10.1287/moor.2017.0884.

[71] Arash Asadpour and Hamid Nazerzadeh. Maximizing stochastic monotone
submodular functions. Management Science, 62(8):2374–2391, 2016. doi: 10.
1287/mnsc.2015.2254. URL https://doi.org/10.1287/mnsc.2015.2254.

[72] Moran Feldman, Joseph Naor, and Roy Schwartz. A unified continuous greedy
algorithm for submodular maximization. In 2011 IEEE 52nd Annual Sympo-
sium on Foundations of Computer Science, 10 2011. doi: 10.1109/focs.2011.46.
URL https://doi.org/10.1109/focs.2011.46.

[73] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximiz-
ing a monotone submodular function subject to a matroid constraint. SIAM
Journal on Computing, 40(6):1740–1766, 2011. doi: 10.1137/080733991. URL
https://doi.org/10.1137/080733991.

[74] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular function
maximization via the multilinear relaxation and contention resolution schemes.
SIAM Journal on Computing, 43(6):1831–1879, 2014. doi: 10.1137/110839655.
URL https://doi.org/10.1137/110839655.

122

https://www.andrew.cmu.edu/user/gaurij/spot_instance_ml.pdf
https://doi.org/10.1287/moor.2017.0884
https://doi.org/10.1287/moor.2017.0884
https://doi.org/10.1287/mnsc.2015.2254
https://doi.org/10.1109/focs.2011.46
https://doi.org/10.1137/080733991
https://doi.org/10.1137/110839655

[75] M. Feldman. Maximization Problems with Submodular Objective Functions.
Ph.d. dissertation,, Technion - Israel Institute of Technology, 2013.

[76] Hans Kellerer, Thomas Tautenhahn, and Gerhard Woeginger. Approximabil-
ity and nonapproximability results for minimizing total flow time on a single
machine. SIAM Journal on Computing, 28(4):1155–1166, 1999.

[77] Nikhil Bansal and Kirk Pruhs. The geometry of scheduling. SIAM Journal
on Computing, 43(5):1684–1698, 2014. doi: 10.1137/130911317. URL https:

//doi.org/10.1137/130911317.

[78] Nikhil Bansal and Ho-Leung Chan. Weighted flow time does not admit o(1)-
competitive algorithms. In Proceedings of the Twentieth Annual Acm-Siam
Symposium on Discrete Algorithms, 1 2009. doi: 10.1137/1.9781611973068.134.
URL https://doi.org/10.1137/1.9781611973068.134.

[79] Nikhil Bansal and Kedar Dhamdhere. Minimizing weighted flow time. ACM
Transactions on Algorithms, 3(4):39, 2007. doi: 10.1145/1290672.1290676.
URL https://doi.org/10.1145/1290672.1290676.

123

https://doi.org/10.1137/130911317
https://doi.org/10.1137/130911317
https://doi.org/10.1137/1.9781611973068.134
https://doi.org/10.1145/1290672.1290676

	Acknowledgements
	Table of Contents
	List of Figures
	Introduction
	Coflow Scheduling in Switch Model
	Coflow Scheduling in Networks
	Scheduling with Spot Instance
	Outline of the Dissertation

	Coflow Scheduling in Switch Model
	Related Works
	Relationship with Concurrent Open Shop

	Our Contributions
	Preliminaries
	Scheduling a Single Coflow
	Linear Programming Relaxation

	High Level Ideas
	Approximation Algorithm for Coflow Scheduling with Release Times
	Finding a Permutation of Coflows Using a Primal Dual Algorithm
	Scheduling Coflows According to a Permutation

	Analysis
	Coflows with Zero Release Times
	Coflows with Arbitrary Release Times
	Analyzing the Primal-Dual Algorithm
	Primal Dual Analysis

	An Alternative Approach Using LP Rounding
	Proof of the LP Rounding Version of the Main Theorems

	A Combinatorial 3-approximation Algorithm For Concurrent Open Shop with Release Times
	Correction of Algorithm by qiu2015minimizing
	Interval-Indexed LP Formulation
	Grouping Coflows
	Error
	Corrected Grouping Algorithm

	Counterexample to Claim by luo2016towards

	Coflow Scheduling in Networks
	Introduction
	Related Works
	Our Contributions
	Chapter Organization

	Model and Problem Definition
	Linear Programming Relaxation
	Model-specific Constraints

	Approximation Algorithms
	Stretch Algorithm
	Analysis

	Hardness of Approximation
	Experiments
	Implementation Details
	Baselines
	Experimental Results

	Sketch of generalization to super-polynomial time span
	Analysis

	Conclusion

	Scheduling with Spot Instances
	Introduction
	Training ML jobs on the Cloud
	Our Contributions
	Our Techniques

	Problem Formulation
	Notations
	Scheduling with Spot Instances
	Final Problem Statement
	Eliminating an Assumption

	Continuous Optimization Phase
	Stochastic Knapsack Exponential Constraints
	Stochastic Knapsack Polynomial Constraints
	Construct a solution {z, i, t, y, t} of ExpP from a solution {xu, t, su, t}
	Continuous Optimization

	Rounding Phase
	Contention Resolution Scheme
	Rounding Algorithm

	Conclusion
	Future Directions
	Coflow Scheduling
	Scheduling Spot Instances

	Bibliography

