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Chapter 1: Introduction

1.1 Trends in Computing

The development of powerful, energy-efficient, and low-cost computers in the

last half century brought about the information age, profoundly changing the world

we live in. In 2019, 93% of people on Earth lived within reach of a mobile broad-

band service, and 53.6% were internet users, limited mainly by the affordability of

computing devices in low-income countries [1]. As the affordability gap continues

to shrink and a larger fraction of the global population gains access to the internet,

demands for connectivity, computing power, and data storage will continue to rise

dramatically [2].

Moore’s law —- the observation that the number of transistors per unit area

doubles roughly every two years [3] —- has long held true, partly because the semi-

conductor industry has used it as a performance target. However, fundamental

physics limitations to the size of transistors are rapidly approaching, and Gordon

Moore himself predicts that his eponymous rule of thumb will stop being valid in

2025 [4]. A related principle, Dennard scaling, observed that as transistors shrink,

their voltage and current scale linearly, keeping power per unit area roughly con-

stant. Dennard scaling came to an end in the mid-2000s as transistors became
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small enough for leakage current to become non-negligible, and voltages became

low enough to run into threshold voltage limitations. As a result, processor speeds

have not exceeded about 4GHz since the mid-2000s. To compensate for stagna-

tion in clock frequency, chips have become multi-cored; however not all tasks take

advantage of being parallelized [5].

In a rapidly growing digital world, new fundamental computing paradigms are

needed to meet increasing global demands for connectivity and number-crunching

power. There are several general approaches that development can follow [6], from

making the current state of the art more efficient, to changing computing paradigms

completely.

1.1.1 More Moore

While bottom-up improvements to processors have slowed down, top-down

improvements to the computing stack may make computer applications faster in the

post-Moore era. Approaches include software performance engineering, hardware

streamlining, and new algorithm development. However, as Leiserson et al. argue,

these piecemeal improvements are unlikely to create the broad gains in computer

performance like bottom-up approaches have accomplished in the last half century

[7].
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1.1.2 More than Moore

Novel devices, processes, and materials may exceed CMOS performance and

unlock new regimes of computation. Emerging devices include tunneling FETs,

spintronic devices, graphene and carbon nanotube transistors [8]. Nonvolatile mem-

ories showing promise include phase change memory, spin-torque transfer memory,

and resistive memory [9]. Photonic and quantum computing also fall under the

beyond-CMOS umbrella.

Most beyond-CMOS approaches are still firmly within the realm of experi-

mentation and are far from practical implementation. The beyond CMOS roadmap

depends upon the development of new devices and materials, whose wide-scale man-

ufacturability remains unproven.

1.2 The Machine Learning Explosion

Machine learning (ML), a term popularized in a 1959 paper by computing

pioneer Arthur Samuel [10], describes algorithms that give computers the ability to

learn patterns and rules in data without being explicitly programmed with those

rules. Today, it encompasses many sub-fields including computer vision, natural

language processing, and deep learning. It is nearly impossible to escape the in-

fluence of machine learning in our technological society —- it is everywhere from

voice-activated virtual assistants, to ads internet users are served, to increasingly

popular self-driving vehicles.

While there are many algorithms under the machine learning umbrella, neural
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networks form the basis of deep learning and are arguably the most influential

concept. They are a family of algorithms inspired by neurons in the brain. Biological

neurons in the brain receive signals from other neurons. When a cumulative signal

threshold is surpassed, a spike-like signal is passed to subsequent neurons. The

synaptic connections between neurons change as the brain learns, strengthening or

weakening based on the relative timing of signals.

1.2.1 Machine Learning Opportunities

While machine learning has been studied since the dawn of computers, only in

the last decade has it exploded in popularity due to several interrelated factors. The

first is the decrease in cost of processors, memory, and network hardware which has

enabled the generation and storage of vast quantities of data. Secondly, algorithmic

developments allowed for more efficient training of deep neural networks. Finally,

the availability of graphics processing units (GPUs), while originally for media pro-

cessing and games, has allowed for efficient processing of neural networks as they

parallelize matrix multiplication operations.

Deep learning has in many ways enabled computers to surpass human abilities.

Today, machines can translate language in real time [11], win against humans at

games such as Go [12] and Starcraft [13], and autonomously drive vehicles that

could make roads safer [14]. Computers have been outperforming human accuracy

at the Imagenet image classification challenge since 2015 [15].

It is easy to take for granted the breathtaking progress that machine learning
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has made, but the current pace cannot continue for much longer. Deep learning

comes at a tremendous energy cost: between 2012 and 2018 there was a 300,000

times increase in the amount of computing power state-of-the-art networks required

[15]. Deep learning is also nearing its computational limits on present-day hardware:

Thompson et al. [16] studied the amount of processing incremental improvements

to major ML models will require, and the point of diminishing returns is fast ap-

proaching.

As the need to improve the efficiency of deep learning has become clear, neural

network compression techniques have been developed. For example, quantizing neu-

ral networks, representing their internal states with fewer bits to reduce the compu-

tational overhead. Also, pruning them, meaning removing insignificant connections

to avoid needing to compute them. In fact, entirely binarized neural networks, in

which weights are only one or zero, have been developed without much of an accu-

racy reduction in some applications [17, 18]. As a major energy cost comes from

repeated DRAM accesses, re-using terms in memory as much as possible is another

strategy [5].

Specialized neural network hardware is also gaining in popularity. This is es-

pecially significant as neural network demands move increasingly to edge devices like

smartphones, which have stringent power limitations but abundant machine learn-

ing needs [19]. Major companies are investing in dedicated hardware to accelerate

their machine learning models, including Google which designed Tensor Processing

Units (TPUs) in-house to accelerate the multiply-accumulate operations that many

of Google’s services need [20]. Many neural network accelerator startups are ap-
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pearing to address the needs of industry, including Cerebras 1, Mythic2, Fathom

Computing3, Lightmatter4, Lightelligence5, Luminous Computing6, and LightOn7,

to name a few.

1.2.2 Our Approach

To push the frontiers of machine learning at a time when conventional hard-

ware is nearing its limits, completely new computing architectures must be explored

which efficiently use hardware resources. We propose an unconventional use of dig-

ital logic gates which holds the promise to more densely encode information than

conventional digital computation. In our approach, digital logic gate circuits are

configured into large random graphs that can exhibit complex dynamics. Rather

than the gates explicitly computing pre-programmed instructions, they are used col-

lectively as a dynamical system that becomed generally synchronized to input data.

The system evolves through time, exhibiting behavior that is dependent upon the

external inputs. The state of the system is captured and then applied as an input

to a simple readout map. Effectively, the network replaces many layers of a deep

neural network, performing all of its operations in parallel.

This method is a type of reservoir computing, in which our reservoir is a logic

gate network. It can be used for classification, regression, or time series prediction.

1https://cerebras.net/
2https://www.mythic-ai.com/
3https://www.fathomcomputing.com/
4https://lightmatter.co/
5https://www.lightelligence.ai/
6https://luminous.co/
7https://lighton.ai/
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In contrast to neural networks with many layers, it uses only a single trained output

layer, which allows it to be very fast.

1.2.3 Thesis Overview

In this thesis, Chapter 2 explores machine learning and reservoir computing

theory and background literature. Chapter 3 discusses background information

about Boolean network theory and circuit implementations. Chapter 4 covers our

results from studies on Boolean networks implemented on a field-programmable gate

array (FPGA), based on designs published in Komkov et al. [21] and experiments in

Shani et al. [22] and Komkov et al. [23]. Chapter 5 studies a network implemented

using discrete logic gates on a printed circuit board, which allows the full analog

behavior of the network to be probed [24]. Chapter 6 describes the design of a

monolithic chip implementing the same network architecture, based on designs in

patents [25, 26]. Chapter 7 describes the application of software-based reservoir

computing to the prediction of a nonlinear particle accelerator time series from the

University of Maryland Electron Ring, which was published in Komkov et al. [27].
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Chapter 2: Machine Learning and Reservoir Computing Theory and

Literature

2.1 Neural Network Theory

2.1.1 The Artificial Neuron

Neural networks are machine learning architectures based on the artificial neu-

ron. While biological neurons transmit voltage pulses and adjust their connection

strengths to other neurons based on relative pulse timing, the artificial neuron is

a static concept amenable to computation with combinational logic. A diagram of

the artificial neuron is shown in figure 2.1 and it is described by equations 2.1.

Figure 2.1: The artificial neuron. Inputs aj are weighted by wjk and summed, then
passed through a nonlinear activation function to arrive at output ak.

zk = σ(
n∑
i=1

ajwjk), ak = σ(zk), (2.1)
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The inputs, or input activations of the artificial neuron, denoted aj, are mul-

tiplied by weights wjk. All the weighted values are summed to arrive at the inter-

mediate value zk. This value is then passed through a typically nonlinear function

σ, called the activation function, to compute the neuron’s output activation ak.

The activation function is commonly a hyperbolic tangent (tanh), but it can also

be a step function (a hard threshold), sigmoidal, linear, a computationally friendly

piecewise linear approximation called a rectified linear unit (ReLu), or a number of

other options. A nonlinear activation function is needed to solve nonlinear problems;

otherwise, the function of the artificial neurons simplifies to matrix multiplication.

2.1.2 The Feed-forward Neural Network

Artificial neurons configured into sequential layers, such as in figure 2.2, form

a feed-forward neural network (FFNN), a structure sometimes called a multi-layer

perceptron (MLP) (though historically, perceptron refers to a neuron specifically

with a step activation function). The first layer of neurons is called the input layer,

the last layer is called the output layer, and any layers in between are called hidden

layers. Deep learning encompasses architectures based in part on feed-forward neural

networks, often with many layers – hence “deep”.

In figure 2.2, a feed-forward neural network with one hidden layer is shown.

In this diagram, activations have the subscript i in the input layer, j in the hidden

layer, and k in the output layer, and weights are denoted wij and wjk between input

and hidden, and hidden and output layers respectively. Equation 2.2 is an output

9



Figure 2.2: A feed-forward neural network with one hidden layer. Neuron activations
are denoted ai, aj, and ak for the input, hidden, and output layers, respectively.
Weights between them are wij and wjk. The output dependence upon all other
parameters is in 2.2.

activation written explicitly in terms of all of the other parameters.

ak = σk(
∑

(σj(
∑

aiwij))wjk) (2.2)

2.1.3 Using a Neural Network

Artificial neural networks can be used for classification or regression problems.

Inputs to the neural network are numerical features of data. Outputs represent

what we desire to learn from the data. A classifier has as many output neurons as

there are classes, and the output activations represent the probability of the input

data belonging to a particular category. The outputs of a regressor are continuous

values.
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Forward propagation is the computation of all of the hidden and output neuron

activations within the network given some input. For a network with one hidden

layer, it would be the evaluation of equation 2.2 for all outputs. Training is the

process of adjusting the weights within the neural network to arrive at a desired

outcome.

2.1.4 Training a Neural Network

Neural networks are trained by example rather than by programming explicit

rules. To train the network, first forward propagate training data. Choose an loss

function (also called error function or cost function) E, which quantifies how far

the output is from a training goal. Then, determine how each of the trainable

parameters—the weights in the network—depend upon the loss function by com-

puting the gradient of the loss function with respect to each of the weights. Finally,

take a step to decrease the loss function by updating each of the weights in the

direction of the negative gradient.

A popular loss function choice for regression tasks is mean squared error

(MSE), which is the sum of squared errors:

E =
1

2N

N∑
k=1

(tk − ak)2 (2.3)

In this equation, ak are output activations, tk are the target values, and there

are N output neurons. A different loss function often used for classification problems

is cross-entropy loss, which can be used when output activations and targets are
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between zero and one, and heavily penalizes outliers:

E =
1

N

N∑
k=1

aklog(tk) (2.4)

To compute the gradient of the loss function with respect to the weights, apply

the chain rule to expand the partial derivatives. In a FFNN with one hidden layer,

the gradient of the output layer can be written:

∂E

∂wjk
=
∂E

∂ak

∂ak
∂zk

∂zk
∂wjk

, (2.5)

and the gradient of the hidden layer weights can be written

∂E

∂wij
=
∂E

∂ak

∂ak
∂zk

∂zk
∂aj

∂aj
∂zj

∂zj
∂wij

. (2.6)

Each of the intermediate values in these expressions can be computed from

equation 2.2 and the definition of the loss function. In some cases the result is very

simple, for example in a neural network with linear activations and no hidden layers,

using an MSE loss function, the gradient (equation 2.5) reduces to a straightforward

expression:

∂E

∂wjk
= (ak − tk)σ′k(zk)aj = (ak − tk)zkaj (2.7)
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2.1.5 Backpropagation and Gradient Descent

In a process called gradient descent, weights are updated in the negative di-

rection of the gradient, which is multiplied by a learning rate η which determines

the size of the step:

∆wjk = −η ∂E
∂wjk

(2.8)

The weight updates are computed layer by layer, starting from the output and

moving backwards. This algorithm is called backpropagation and was introduced in

the 1980s [28].

As the backpropagation routine is computationally intensive, it is advanta-

geous to forward propagate batches of data and perform weight updates based on

averaged results, rather than doing so one sample at a time. This is called batch

gradient descent. On the other hand, batch size is limited by memory, and the whole

dataset usually cannot be forward propagated all at once. Using sub-samples of the

dataset to update the network is called stochastic gradient descent (SGD) as the

trajectory through the error landscape is stochastic, depending upon the random

subsamples of data in the batches.

To solve a machine learning problem, the choice of algorithm and its related

hyperparameters require careful consideration. Hyperparameters are variables af-

fecting the a machine learning model’s structure, and are usually not learned but

rather set by the designer. In a feedforward neural network, they would include the

number of layers, the size of the layers, the choice of activation function, choice of

13



error function, and the choice of optimization algorithm and its configurable param-

eters such as learning rate.

There are many pitfalls that one can encounter while iteratively optimizing a

high dimensional objective function. For example, using too small a learning rate,

it’s possible to get stuck in a local error minimum or a plateau; too large of a

learning rate, and the steps can completely skip over or climb away from the global

minimum. Modern optimizers use adaptive learning rates for this reason. In fact,

pure stochastic gradient descent as described in this section is rarely used in practice

in such a simple form, but it is the basis for the more sophisticated optimization

techniques commonly found in machine learning software packages today, such as

Adam [29].

Another issue that deep neural networks encounter is the vanishing gradient

problem, where the gradient becomes smaller and smaller as it passes backwards

through the layers, and weights at the front of the network are practically no longer

updated. A related issue is the exploding gradient problem, when the gradients are

too large and result in an untrainable network. These are significant issues in neural

networks with many hidden layers, and also in recurrent neural networks.

2.1.6 Recurrent Neural Networks

Recurrent neural networks (RNNs) are used for processing temporal or sequen-

tial information, where information in each time step has dependencies on activity

of the past. There are many recurrent neural network architectures, all having in
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common neurons, or groups of neurons, with feedback connections, as contrasted to

the strictly feed forward designs discussed in the last sections. Recurrence gives the

neural network memory, as information can circulate in a loop and persist.

The predominant approach to training recurrent neural networks is back prop-

agation through time (BPTT), in which the state of the system at every timestep

is unfurled into a feed-forward configuration as shown in figure 2.3. Then, conven-

tional gradient descent and backpropagation is used to train the weights. BPTT

is computationally intensive and notoriously suffers from exploding and vanishing

gradients that make training unstable.

Figure 2.3: Unfolding of a recurrent neural network, with state xt and input ut, for
backpropagation through time.

Today’s most commonly used RNN architectures, long short term memory

(LSTM) and the simpler gated recurrent unit (GRU), overcome the instability of

BPTT by using much more complicated base units than the plain artificial neuron.

Both of their recurrent computational units have the ability to keep or forget in-
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formation, allowing them to retain long-term temporal associations in a way that

a simple RNN cannot. These architectures have made great strides in fields reliant

upon sequential data such as natural language processing. However, the LSTM

and its variants are cumbersome to use and train, and are very computationally

demanding.

2.2 Reservoir Computing

A specialized neural network architecture that has shown promise in rapid

time-series prediction is called the reservoir computer (RC), shown in figure 2.4. It

is a machine learning model independently proposed around the same time as an

echo state network (ESN) by Jaeger [30] using conventional artificial neurons, and as

a liquid state machine (LSM) by Maass et al. [31] using more biologically plausible

spiking neurons. Reservoir computing is a promising architecture for a variety of

time series prediction tasks that rely on short-term associations.

Figure 2.4: The reservoir computer. The reservoir is the fixed, randomly initialized
recurrent neural network whose internal states at time n are ~Xn. The input layer
Win is also fixed and randomly set. The output layer Wout is trained using a simple
rule such as linear regression.

Reservoir is the term for the RNN inside of the RC, which has random connec-
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tivity and random weights. To avoid the computationally intensive step of training

the weights W within the RNN, the reservoir is left fixed, and its state is put into an

output layer whose weights Wout are trained. As are many machine learning meth-

ods, reservoir computing is loosely brain-inspired; there is evidence that neuron

groups in the prefrontal cortex [29] and the cerebellum [30] are reservoir-like.

The internal reservoir states at timestep n can be described as follows:

~X(n) = f
(
Win

~U(n) +W ~X(n− 1)
)

(2.9)

where f is the transfer function of each node, often chosen to be a tanh function

which constrains the node output to within [-1,1]. Win is uniformly sampled from

[−ω, ω], where ω is one of the hyperparameters used in the designs, determines

the strength of the input(s) and which nodes they are coupled to, which can be

all of the nodes, or a subset of them. The external input ~U(in) can be univariate

or multivariate. The adjacency matrix W is populated by random numbers in the

range [-1,1] and has both weights and connectivity information.

Some implementations also vary the timescale of internal reservoir activity

using leakage parameter α, which determines how much of the reservoir state is

carried over to the subsequent timestep:

~X(n) = (1− α) ~X(n− 1) + αf(Win
~U(n) +W~(X)(n− 1)) (2.10)

The reservoir output Y is simply the reservoir state multiplied by the output

17



layer weights:

~Y (n) = Wout
~X(n) (2.11)

Any learning rule can be applied to calculate the weights of Wout in training.

The simplest is linear regression, which minimizes the mean squared error and has

the a closed-form solution:

Wout = ( ~XT ~X)−1 ~XT ~Y (2.12)

Alternatively, the output weights may be updated iteratively using gradient

descent using equation 2.7.

To avoid overfitting, Tikhonov regularization may be used, in which the L2

norm of the coefficients is added to the cost function, and the closed-form solution

becomes:

Wout = ( ~XT ~X + ηI)−1 ~XT ~Y (2.13)

where η is the Tikhonov parameter which determines the magnitude of the

smoothing effect, and I is the identity matrix. As an alternative to adding a penalty

to the cost function to prevent overfitting, noise may be added to the training data.

The reservoir computer is often used for time series prediction, but can also

be used for classification tasks. For time series prediction, the training target is the

value of the series one step ahead, ~Xn+1. After sufficient training steps, when the
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reservoir has adequately learned the transfer map from one time step to the next

and the training loss is low enough, the output ~Yn is fed back into the reservoir

input for a free-running prediction, as shown in figure 2.5.

Figure 2.5: Reservoir configured for free-running prediction.

2.2.0.1 Reservoir Hyperparameters

In a software reservoir computer, the main hyperparameters are:

• Reservoir size, N : the number of neurons in the recurrent neural network.

N should be chosen so that it is much larger than the number of inputs.

• Connection probability, p: the probability of two nodes being connected.

• Input scaling coefficient, ω: the amount by which inputs are scaled.

• Spectral radius, ρ: the magnitude of the largest eigenvalue of the adja-

cency matrix. This determines the overall magnitude of activity within the

network. After random initialization of W , the entire matrix is scaled so that

the spectral radius is the desired value, typically slightly below 1.

• Memory leakage parameter, α: a scalar determining how much of the

previous state of the network is retained in every step.
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• Tikhonov regularization parameter, η: A penalty added to the loss func-

tion to prevent the regression algorithm from achieving the global minimum,

which would cause overfitting.

The reservoir is a complicated nonlinear structure for which there is little in

the way of mathematical understanding to systematically guide choices of hyper-

parameters. Why a particular setup yields a good or poor result on a particular

machine learning problem remains an active research area. For example, a study of

the effect of spectral radius on the prediction of several complex nonlinear systems

found that there was an optimal range for ρ, but admitted no analytical insight as

to why those values were found [32].

To illustrate the interrelated effects of hyperparameters, the following figures

(2.6, 2.7, and 2.8) are the states of a 100-node reservoir as it evolves through 100

timesteps with no external forcing, meaning that there is no external input data.

In each of the figures, connectivity is fixed, connection probability p is fixed, and

memory leakage parameter α and spectral radius ρ are set to three different values.

The left-hand side column of each figure represents the states of each of the 100

nodes in the network, and in each figure this starting point is the same. The network

evolution through time can be seen in the figure from left to right.

General patterns emerge from examining the networks’ self-excited behavior.

Reservoirs with a greater leakage parameter α retain less memory of prior net-

work states, thereby having faster temporal dynamics than networks with smaller

α. Smaller α means a longer settling time in networks that settle into a fixed state,
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or lower frequency in networks that settle into a periodic pattern. A larger spectral

radius ρ of the adjacency matrix results in greater overall network activity. A larger

connection probability p typically results in steady states of larger magnitude while

small values of p generally ensure that the network activity dies down to zero.

However, all of these observations are only guiding principles, and networks

with different adjacency matrices can exhibit very different behavior. In practice, a

particular choice of parameters must be empirically tested to determine whether a

reservoir will perform well at a certain task.
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Figure 2.6: Self-activity of a 100-node software echo state network with connection
probability p=0.01 with various spectral radius ρ and memory parameter α values.
The vertical axis is node number, and the horizontal axis is time.

22



Figure 2.7: Self-activity of a 100-node software echo state network with connection
probability p=0.05 with various spectral radius ρ and memory parameter α values.
The vertical axis is node number, and the horizontal axis is time.
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Figure 2.8: Self-activity of a 100-node software echo state network with connection
probability p=0.5 with various spectral radius ρ and memory parameter α values.
The vertical axis is node number, and the horizontal axis is time.

From the perspective of data processing, there are several complementary in-

terpretations of the reservoir’s function:

• As short-term memory. Due to recurrence within the reservoir and the

scaling of the spectral radius to be slightly below 1, information circulates for

some time before being reduced asymptotically to zero. This is the reason
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for the “echo state” name –– the network has fading “echoes” of the previous

inputs. Jaeger et al. [33, 34] subjected ESNs to various benchmarking tasks

and characterized the networks’ memory capacity, finding that the number of

timesteps of memory was generally ≤ N. The reservoir’s function goes beyond

simple memory, however: in a comparative study, the ESN outperformed a

tapped delay line with no recurrence [35].

• As a kernel expansion of features into higher-dimensional state space. Ker-

nel methods are often used in combination with support vector machines or

principal component analysis, to transform data into a space in which it be-

come linearly separable. These methods use a mathematical trick that avoids

explicit computation in the higher-dimensional space. Popular kernels include

Gaussians, radial basis functions, or polynomials. Choosing which kernel to

apply to data is often a matter of educated or blind guessing. The reservoir

effectively acts as a random temporal kernel, nonlinearly casting the input

and its recent history to a much higher-dimensional representation. The lin-

ear readout then chooses which parts of the transformation produce a useful

result. Maass et al. [36, 37] explore the kernel properties of LSMs. They pro-

pose that the separation of inputs that a neuronal circuit creates could be an

empirical measure for its quality as a kernel — in other words, the complexity

and diversity of nonlinear operations carried out by a neuronal circuit on its

input stream in order to boost the classification power of a subsequent linear

classifier.
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• As a universal function approximator. The universal approximation theo-

rem is often cited as the reason for the wide-ranging utility of neural networks:

it states that any continuous real-valued function can be approximated by

feed-forward neural networks with nonlinear activation functions. In 1989,

Cybenko showed that this holds true for networks of arbitrary width with

only a single hidden layer, with sigmoidal activations [38]. In 1991, Hornik

generalized the result to networks with any smooth nonlinear activation func-

tion [39]. Recently, it was shown that any fading memory system in discrete

time can be realized as a simple finite dimensional neural network-type state-

space model with a static linear readout map, and that echo state networks

are also universal uniform approximants [40].

2.2.1 Comparison to Other RNN Methods

As mentioned previously, notable competing methods to reservoir computing

are long short-term memory (LSTM), and gated recurrent units (GRUs), both of

which are trained with the backpropagation through time (BPTT) algorithm. While

LSTMs and GRUs work very well for some tasks, reservoirs outperform them in

dynamical system prediction. Gallicchio et al. found that ESNs and a sequence of

serial ESNs (which they call DeepESN, also described in section 2.2.3.3) provided

comparable accuracy as LSTMs and GRUs on a polyphonic music prediction task,

while requiring much less computation time on the same hardware [41]. Figure

2.9, reproduced from [42], compares RC, GRU and LSTM networks for dynamical
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system prediction tasks, and found that reservoir computing resulted in longer valid

predictions after vastly less training time and less RAM used. The short training

time in particular makes reservoir computing shine in adaptive control scenarios

when the reservoir needs to be quickly re-trained to learn the dynamics of new data.

Figure 2.9: Comparison of RC, LSTM and GRU networks for dynamical system
prediction tasks. (a) shows the amount of time for which the network makes valid
predictions after being trained. (b) shows the training time, and (c) shows the
average RAM requirement to run the networks. Reproduced from [42].

2.2.2 Reservoir Computing Applications

The area in which reservoir computing has yielded the most impressive results

is in the modeling of dynamical systems. It indeed makes sense to use a dynamical

system to simulate a dynamical system.

In particular, the results of modeling chaotic systems with reservoirs have

shown success. Chaotic systems can often have simple underlying equations, but

exhibit extraordinarily complex behavior. They are characterized by sensitivity to

initial conditions and having behavior that can appear to be random, but is in fact

deterministic. Complex behavior comes about from thorough topological mixing

and dense periodic orbits in phase space.
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Reservoirs have been used with much success for state of the art chaotic time

series prediction [43], replication of chaotic attractors [44], and chaotic time series

separation [45]. Notable chaotic time series prediction results are shown in figure

2.10. That is a prediction test of the Kuramoto-Sivashinsky system, described by the

following partial differential equation (which has an additional spatial inhomogeneity

term):

yt = yyx + yxx − yxxx + µcos(
2πx

λ
) (2.14)

Twenty four time series of the spatiotemporal system are plotted in figure

2.10, as well as the free-running reservoir prediction of the system and the difference

between the prediction and the solution. The horizontal axis is in units of Lyapunov

time, which is a measure of the exponential divergence of the trajectories.

In addition to making accurate chaotic time series predictions for more Lya-

punov times than any other existing method, the reservoir can capture the overall

behavior of the system, producing a time series that looks realistic even after it

departs from the true solution (contrast this to the solution diverging or going to

zero). This accurate capture of the climate of the system enables reconstructing

the spectrum of Lyapunov exponents and understanding the attractors of the sys-

tem—straightforward operations when the equations of motion are accessible, but

extremely difficult from finite time series for systems such as Kuramoto-Sivashinsky.

Reservoir computing has also been used for the following non-exhaustive list

of applications:
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.

Figure 2.10: Spatiotemporal plots of the Kuramoto-Sivashinsky (KS) system and
reservoir prediction. (a) Is the KS system, (b) is the reservoir prediction, and (c)
shows the difference between them. The x-axis is in units of Lyapunov times. The
Lyapunov time is a measure of the departure of the system from initial conditions
by a factor of e. Reproduced from [43]

• Wireless signal recovery [46]

• Seizure detection from EEG signals [47]

• Pattern and signal generation [48]

• Phoneme recognition [49]

• Million words per second spoken digit classification [50]

• Control systems [51, 52]

• Human action recognition [53]

• Image recognition and radio transmitter classification from time series [22]

• Particle accelerator beam trajectory prediction [27], also described in this the-
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sis.

2.2.3 Reservoir Computing Variants

2.2.3.1 Single-node time-delay reservoirs

A single processing element with time-delayed feedback forms a delay-dynamical

system that can be used as a reservoir. First proposed by Appeltant et al., [54],

the setup relies on time-multiplexing with a single neuron, rather than the use of

multiple neurons. The neuron’s output is fed through a delay, and then back into

the input to be combined with new data. In that way, the neuron’s state at any

time contains traces of the entire history of the signal. Neuron states throughout

time are saved and then put through an output layer. This differs from a tapped

delay line because the data is put through the nonlinear processing element multiple

times, and allowed to mix in time. Photonic reservoirs are usually of this type, as

electron-photon conversion is inefficient so processing element reuse makes sense.

Additionally, optical processing often happens faster than I/O making time multi-

plexing practical. Hart et al. [55] and Brunner et al. [56] analyze the dynamics of

some time-delay optical reservoirs.

2.2.3.2 Parallel reservoirs

Some spatiotemporal systems, including the Kuramoto-Sivashinsky system,

have strong local interactions. Figure 2.11 shows parallel reservoirs that take inputs

from a sliding window of the input time series. Taking inspiration from the slid-
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ing window of a convolutional neural network, this configuration emphasizes local

interactions between points in space or time.

Figure 2.11: Parallel reservoirs taking inputs from a sliding window over the time
series. This configuration emphasizes local interactions between points in space or
time. Reproduced from [42].

2.2.3.3 Deep reservoirs

Figure 2.12: Serial reservoirs, called DeepESN, Reproduced from [41].

Reservoirs arranged in a serial configuration, with outputs of one going into

inputs of another, are called deep reservoirs or deepESNs. The outputs of all reser-

voirs are used to compute the result. Gallicchio et al. [41] explored the properties

of several different deepESN configurations, finding some advantages in accuracy
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and better processing at different time scales, at the expense of introducing more

complexity to the model.

2.2.3.4 Extreme Learning Machine

A related architecture is the extreme learning machine (ELM), which is not

a reservoir as it lacks recurrence, but it is rather a shallow feed-forward network

also exploiting random initialization [57]. The ELM has inputs connected to a

single layer of hidden neurons via random weights. The weights between the hidden

neurons and output neurons are then trained. Linear output neurons enable linear

regression to be used, which makes the training process very fast. Despite their

simplicity, ELMs and their variants perform comparably to deep neural networks

while requiring much less training time [57, 58].

Figure 2.13: The extreme learning machine (ELM). Input-to-hidden connections are
randomly chosen, and hidden-to-output weights are learned. Linear output neurons
make training very fast.
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2.3 Reservoir Computing Using Physical Systems

The behavior of real-world systems can be used for information processing.

Reservoir computing is arguably an ideal use case for leveraging the properties

of physical nonlinear dynamical systems to perform computation. The reservoir’s

function is to achieve a higher-dimensional representation of input data, mixed in

time, and how exactly it achieves that goal does not necessarily matter. In software it

is done by setting up a recurrent neural network with artificial neurons and explicitly

computing each node’s value, step by step. Nonlinear physical systems, subject to

nonlinear differential equations governing their behavior, have been shown to also

effectively act as reservoirs, with the promise of exceeding software models in speed

and power.

A number of physical systems have been studied for reservoir computing, in-

cluding memristor, spintronic, optical, and soft body reservoirs [59]. However, com-

paratively evaluating the performance of physical substrates is an active area of

study. In this section we give an overview of the current research.

2.3.1 Physical Implementation of Reservoirs

Theory predicts that any physical system that contains the following properties

can function as a reservoir [59]:

• high dimensionality,

• separation of inputs,
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• fading memory,

• nonlinearity,

• deterministic dynamics.

2.3.1.1 High Dimensionality

As discussed previously, the reservoir nonlinearly casts a spatiotemporal signal

to a higher-dimensional state space to enhance the function of a simple classifier.

A physical dynamical system can perform this function as long as the dynamical

dimensionality of the system is sufficiently large and repeatable to yield a useful

kernel transformation.

2.3.1.2 Separation of Inputs

Separation of inputs means that slightly different inputs result in distinguish-

able network states. For this reason, reservoirs are designed to operate at the edge

of chaos or near a phase transition: inputs push the network over the edge into

a state of heightened activity whose state is very sensitive to inputs. The term

edge of chaos emerged from the study of cellular automata, where it was found that

conditions for information transmission, storage, and modification, are achieved in

the vicinity of a phase transition between high and low activity [60]. In fact there

is evidence of brain similarly operating at a point of dynamic instability, which in

neuroscience is called the critical brain hypothesis [61].
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2.3.1.3 Nonlinearity

Finally, nonlinearity in the system is necessary for the approximation of non-

linear functions. In a physical system, the nonlinearity can come about from effects

such as higher order terms in a spring constant, an irregularly shaped optical cavity,

or chaotic mixing in the time domain.
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2.3.2 Mechanical Reservoirs

Figure 2.14: Example of a soft body being used as a reservoir. An actuator at the
top moves the silicone tentacle, and the readout map is applied to bend sensors
along its length. Reproduced from Nakajima et al. [62].

Mechanical systems are attractive candidates for morphological computation:

the outsourcing of processing to inherent functions of the body [63]. The theory
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of how mass-spring systems could be used for reservoir computing was developed

by Hauser et al. [64]. Dion et al. demonstrated spoken word recognition with a

micro-electromechanical cantilever exhibiting nonlinearities [65]. Tensegrity struc-

tures have been controlled by using their own actuator readouts as reservoir node

states [66]. Perhaps the least practical, but most amusing example is the paper by

Fernando et al. entitled “Pattern Recognition in a Bucket”, in which wave patterns

in a bucket of water were used as a reservoir [67].

Soft robotics takes inspiration from the highly compliant materials that abound

in biology to create flexible and adaptable robots. Controlling the many degrees of

freedom of a soft body is a challenge for locomotion and control. However this can

be repurposed as a computational resource. Figure 2.14 shows a silicone tentacle as

a reservoir computer, which was able to perform a nonlinear auto-regressive moving

average (NARMA) time series benchmarking task [62]. A motor at the top of the

body provided the input stimulus, and bend sensors along the body were used as

readouts of the reservoir state.

2.3.3 Optical Reservoirs

Optical computers have been considered since the invention of the laser in the

1960s. Substantial challenges to optical computing must be overcome if it will ever

be a serious contender to electronic processors: electron to photon conversion (and

vice versa) is quite inefficient; an optical transistor that doesn’t distort data remains

elusive; optical memory is nonexistent. However, optical processing is attractive for
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Figure 2.15: A schematic of an optoelectronic time-delay reservoir implementation,
reproduced from Hart et al. [55].

neural network computation as operations on a light beam can be highly parallel,

parts of the beam can travel without crosstalk, and linear operations can be per-

formed with minimal energy cost [68]. It can be argued that the only way machines

will ever approach the cognitive capacity of the human brain is via photonic inter-

connects which efficiently fan out neuron outputs to thousands of other neurons [69].

Photonic neural network accelerator chips have been explored for decades [70].

Optical RCs have been made using networks of waveguides, splitters, and com-

biners; using signal-mixing cavities [71]; diffractive resonator mixing laser signals

[72]; systems of nonlinearly coupled lasers [73], and single-node time-delay feed-

back loops [50, 55, 65]. Figure 2.15, reproduced from [55], shows an optoelectronic

time-delay reservoir implementation using a Mach-Zender modulator, which per-

forms amplitude modulation on an optical signal. Laser light enters the modulator,

whose gain is controlled by the voltage x(t). The light is then passed through an

optical fiber delay line with delay τD. The photodiode converts the light back to an
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electronic signal, which amplified by gain β. The amplifier output is then used to

modulate the Mach-Zender interferometer, completing the feedback loop.

2.3.4 Electronic Reservoirs

Electronic reservoirs arguably have the greatest potential to be easily adopted

into existing hardware workflows as machine learning accelerators if they do not

rely on exotic materials or novel manufacturing methods. Some prior work has

focused on more efficiently implementing either static or spiking artificial neurons

in dedicated hardware. For example Schrauwen et al. [74] who used a FPGA to

implement a liquid state machine with spiking neurons and Canaday et al. [51] who

used an ESN-variety reservoir computer implemented on an FPGA. Penkovsky et

al. [75] performed a genetic algorithm optimization of a spiking reservoir before

transferring the configuration to an FPGA for fast processing.

Other electronic approaches instead used single nonlinear elements in a time-

delay reservoir approach. An example in hardware was performed by Soriano et

al. [76] who simulated the Mackey-Glass system using a single BJT as a nonlinear

element, with a DAC to convert the input to analog, then an ADC at the end to

convert back to digital for output layer computation on a computer. Jensen and

Tufte [77] used a Chua oscillator, a simple chaotic circuit with only four components,

and applied a driven input. To make a system with very low hardware resource

needs, Alomar et al. [78] took a probabilistic computing approach and implemented

a stochastic reservoir computer on an FPGA.
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Yet other implementations used the behavior of electronic networks for reser-

voir computing, without specifically using artificial neurons. Haynes et al. [79] used

a single XOR gate in a feedback configuration in a time-delay reservoir. Canaday et

al. and Shani et al. have both used FPGA-based dynamical networks as reservoirs,

demonstrating success in time series classification and prediction [22, 80]. Recently,

Komkov et al. [23] demonstrated radio frequency classification with about one-tenth

of the trainable parameters of a state of the art convolutional neural network using

careful preprocessing and an FPGA-based Boolean reservoir.
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Chapter 3: Boolean Network Theory

3.1 Boolean Network Dynmics and Circuits

The field of network science studies networks of all kinds, such as social net-

works, neural networks, communication networks, and biological networks, to name

a few. Boolean networks were originally proposed in the 1960s by Kauffman as a

very simple dynamical model of gene expression, in which genes can be either on

or off, and are affected by neighboring genes. Kauffman investigated the properties

of randomly connected Boolean networks, such as the length of cycles within the

network, and drew parallels with cell replication cycles [81]. More sophisticated

mathematical formalism to describe Boolean networks was developed later [82, 83].

Boolean networks can evolve in discrete steps, or be continuously updated, which

has implications for their behavior and the quality of the analogy they make to

real-world systems.

3.1.1 Boolean Networks Implemented in Digital Circuits

While ideal Boolean networks can exhibit complex and emergent behavior,

they obey the well-behaved rules of Boolean algebra. The same networks imple-
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mented in circuitry are subject only to the laws of physics, which can make their

behavior much less Boolean. A digital gate has a finite rise and fall time, a possibly

nonlinear transfer function, and will cause a pulse to incur delay and distortion as

it travels from input to output. If the duration of the pulse is comparable to the

gate’s delay time, the pulse may spend most of its time in the intermediate voltage

range, an ambiguous logical region.

Figure 3.1: Nonidealities of real Boolean logic gates. Physical devices have rise and
fall times, and large but finite amplitude gains. They also have a low-pass filtering
effect, and pulses that are too short will be rejected.

For computer processors to have high reliability and noise immunity, they use

the digital logic abstraction, which discretizes the available voltage range into only

high and low values. A voltage below a certain threshold represents a zero, and

above another threshold represents a one, a and voltage in the “forbidden region”

in between is considered ambiguous. To ensure robustness to variations in delay

times of logical blocks, digital computing usually uses synchronous logic, reading

the outputs of combinational logic blocks upon transitions of a global clock. While

clocking ensures robustness to timing variations and prevents race conditions, it

slows down overall computation.
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3.1.2 Unclocked Recurrent Boolean Circuits for Reservoir Comput-

ing

Because machine learning algorithms are trained from real-world examples

rather than by using explicit rules, these algorithms are good candidates to be

accelerated in hardware in which results are not always repeatable. In machine

learning, training data is often inherently noisy or distorted when it comes from

physical measurements (in fact, a method of preventing overfitting in a machine

learning model is to add noise to its training data). Because they are robust to noise,

machine learning algorithms can take advantage of denser information encoding that

comes from quantizing the available voltage range more finely.

Beyond the dynamics of pure Boolean networks, circuit implementations intro-

duce further useful time delays and nonlinearities. As is shown in figure 3.1, a pulse

traveling through a digital logic gate will incur a time delay which gives the network

some useful memory. The signals may also become distorted, depending upon the

gate’s voltage transfer function and transition times. These effects strongly depend

upon the supply voltage and network topology and sensitivity.

A Boolean logic gate reservoir is made by connecting digital logic devices into

recurrent configurations and letting them run freely. Signals in the reservoir have

frequencies determined by the device delay time, and the voltage spends much of

its time in the intermediate region between 0 and the supply voltage.

Unclocked recurrent digital logic networks are of particular interest for reser-

voir computing because their continuous-time dynamics result in an infinite number
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of available states. Thus, they may exhibit chaos. Clocked recurrent digital logic

networks have only a finite number of available states, and therefore must be either

stationary or periodic.

A chaotic system has a strong dependence upon its initial conditions, meaning

that two slightly different inputs will result in a large difference in the system’s state

as it evolves through time. This can be exploited for machine learning classification

problems, in which the output map applied to the reservoir state (or a subset thereof)

must distinguish between classes.

3.1.3 A Simple Unclocked Boolean Circuit: the Ring Oscillator

The simplest example of a unclocked recurrent digital logic gate circuit is a sin-

gle inverter (logical NOT) with feedback. The input connected to the output results

in a logical contradiction (TRUE cannot equal FALSE), however when implemented

as a circuit, a TRUE value at the input appears as a FALSE value at the output

only after the high-to-low transition time. Likewise, FALSE at the input appears as

TRUE on the output only after a low-to-high transition time. As a result, a single

inverter with feedback creates a ring oscillator whose period is the average of the

two transition times—in the parlance of nonlinear dynamics, this is a limit cycle

attractor. In practice a single inverter with feedback may also get stuck at half the

supply voltage—a fixed point attractor. Chaos has even been exhibited in simple

ring circuits [84]. Boolean network circuits in the chaotic regime have been studied

as sources of random numbers [85, 86]. A ring oscillator may be built out of any
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odd number of inverters; a ring oscillator with three inverters is shown in figure 3.2.

Figure 3.2: A ring oscillator, the simplest unclocked Boolean network, can be made
with a chain of an odd number of inverters..

A ring oscillator exhibits regular periodic behavior, but circuits that are only

slightly more complicated can yield rich dynamical behavior including chaos. Zhang

et al. constructed the circuit in figure 3.3 using just three two-input Boolean logic

gates. Node 1 is an XOR gate taking inputs from nodes 2 and 3. Nodes 2 and

3 are XOR and XNOR, respectively, taking one input from node 1’s output, and

the second input being a feedback connection. The uneven switching times of the

logic elements, and the presence of feedback connections, cause thorough topological

mixing of the circuit states, resulting in chaotic behavior.

As the transfer function and delay times of the gates are dependent on the

power supply voltage, the circuit voltage is a parameter that can be used to vary

circuit behavior.

Figure 3.3: 3-element Boolean chaos circuit. (a) state diagram showing transition
times τij between each node. (b) schematic representation (c) photo of the circuit.
Reproduced from Rosin [87].
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Figure 3.4: Chaotic waveform and broad frequency characteristics that the circuit
in the preceding figure produced. Reproduced from Zhang et al. [88].

Unclocked Boolean networks implemented on FPGAs have been used to study

chaos [89], oscillator synchronization [90], and chimera states (coexistence of syn-

chronized and desynchronized regions) [91]. They have also been used for ultrafast

generation of random numbers [92].

Because the behavior of Boolean networks at the edge of criticality is heav-

ily dependent upon device-specific gains and delays, as well as temperature and

hysteresis, circuit simulation often does not yield an accurate result.

3.1.4 Boolean Networks for Reservoir Computing

The rich dynamics of Boolean networks make them an attractive candidate

for reservoir computing. Boolean networks stand out from other hardware reservoir

implementations because of their potential for seamless integration into existing

manufacturing workflows for digital electronics. Whether the reservoir is a block of

Verilog that’s loaded into an FPGA, a chip placed on a motherboard, or a design

directly on silicon, Boolean networks in CMOS fit naturally into today’s technology,

and have the potential for quick adoption if proven to be successful machine learning

accelerators.
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3.2 Boolean Sensitivity

Boolean sensitivity describes how excitable a Boolean logic gate is by its inputs.

The Boolean sensitivity of a single gate (Sg) is defined as the proportion of 1-bit

transitions in the input that result in a change in the output. This may be most

easily understood by looking at the transition graphs, such as in figures 3.5, 3.6,

and 3.7 for two, three, and four-input gates, respectively.

Taking a look at 2-input gates, for example, the change of inputs from (0,0) to

(0,1) results in the transition of an 2-input OR gate’s output from 0 to 1, while the

transition (0,1) to (1,1) does not result in a change in output state. Two out of four

possible 1-bit changes in 2-bit input states result in a change in output state, and

therefore the 2-input OR gate’s sensitivity is 0.5. Average Boolean sensitivity (S)

is a parameter describing the excitability of a Boolean network, and is the average

of the individual gate sensitivities.
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NAND graph, 2 inputs

In:(0,0),Out:1

In:(1,0),Out:1

In:(0,1),Out:1

In:(1,1),Out:0

XOR graph, 2 inputs

In:(0,0),Out:0

In:(1,0),Out:1

In:(0,1),Out:1

In:(1,1),Out:0

NOR graph, 2 inputs

In:(0,0),Out:1

In:(1,0),Out:0

In:(0,1),Out:0

In:(1,1),Out:0

Figure 3.5: Transition graphs for 2-input gates. The sensitivities of these 2-input
gates are: SNAND = 0.5, SNOR = 0.5, SXOR = 1.
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NAND graph, 3 inputs

In:(0,0,0),Out:1

In:(1,0,0),Out:1

In:(0,1,0),Out:1

In:(1,1,0),Out:1

In:(0,0,1),Out:1

In:(1,0,1),Out:1

In:(0,1,1),Out:1

In:(1,1,1),Out:0

XOR graph, 3 inputs

In:(0,0,0),Out:0

In:(1,0,0),Out:1

In:(0,1,0),Out:1

In:(1,1,0),Out:0

In:(0,0,1),Out:1

In:(1,0,1),Out:0

In:(0,1,1),Out:0

In:(1,1,1),Out:1

NOR graph, 3 inputs

In:(0,0,0),Out:1

In:(1,0,0),Out:0

In:(0,1,0),Out:0

In:(1,1,0),Out:0

In:(0,0,1),Out:0

In:(1,0,1),Out:0

In:(0,1,1),Out:0

In:(1,1,1),Out:0

Figure 3.6: Transition graphs for 3-input gates. The sensitivities of these 3-input
gates are: SNAND = 0.25, SNOR = 0.25, SXOR = 1.
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NAND graph, 4 inputs

In:(0,0,0,0),Out:1

In:(1,0,0,0),Out:1

In:(0,1,0,0),Out:1

In:(1,1,0,0),Out:1

In:(0,0,1,0),Out:1

In:(1,0,1,0),Out:1

In:(0,1,1,0),Out:1

In:(1,1,1,0),Out:1

In:(0,0,0,1),Out:1

In:(1,0,0,1),Out:1

In:(0,1,0,1),Out:1

In:(1,1,0,1),Out:1

In:(0,0,1,1),Out:1

In:(1,0,1,1),Out:1

In:(0,1,1,1),Out:1

In:(1,1,1,1),Out:0

NOR graph, 4 inputs

In:(0,0,0,0),Out:1

In:(1,0,0,0),Out:0

In:(0,1,0,0),Out:0

In:(1,1,0,0),Out:0

In:(0,0,1,0),Out:0

In:(1,0,1,0),Out:0

In:(0,1,1,0),Out:0

In:(1,1,1,0),Out:0

In:(0,0,0,1),Out:0

In:(1,0,0,1),Out:0

In:(0,1,0,1),Out:0

In:(1,1,0,1),Out:0

In:(0,0,1,1),Out:0

In:(1,0,1,1),Out:0

In:(0,1,1,1),Out:0

In:(1,1,1,1),Out:0

XOR graph, 4 inputs

In:(0,0,0,0),Out:0

In:(1,0,0,0),Out:1

In:(0,1,0,0),Out:1

In:(1,1,0,0),Out:0

In:(0,0,1,0),Out:1

In:(1,0,1,0),Out:0

In:(0,1,1,0),Out:0

In:(1,1,1,0),Out:1

In:(0,0,0,1),Out:1

In:(1,0,0,1),Out:0

In:(0,1,0,1),Out:0

In:(1,1,0,1),Out:1

In:(0,0,1,1),Out:0

In:(1,0,1,1),Out:1

In:(0,1,1,1),Out:1

In:(1,1,1,1),Out:0

Figure 3.7: Transition graphs for 3-input gates. The sensitivities of these 3-input
gates are: SNAND = 0.125, SNOR = 0.125, SXOR = 1.
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Chapter 4: Boolean Reservoir Computing on an FPGA

4.1 Introduction

Field-programmable gate arrays (FPGAs) are flexible, reconfigurable plat-

forms in which digital logic circuits can be implemented using a hardware description

language (HDL). They are often used for applications in which a device needs to

be reconfigured in the field, for production parts in quantities too small to warrant

manufacturing a custom chip, or for prototyping. At the core of the FPGA are

look-up tables (LUTs), which are configurable truth tables whose logical function

can be changed with a setting loaded into an SRAM bank. Between the LUTs

are programmable interconnects. A system on a chip (SoC) contains both a mi-

croprocessor and programmable logic on the same chip and a multiprocessor SoC

(MPSoC) contains more than one processor, to combine the functionality of a ded-

icated processor and the flexibility of FPGA programmable logic. Figure 4.1 shows

a high-level overview of how LUTs and interconnects are used to create a particular

reservoir configuration.

In Chapter 2, we described reservoir computing: the idea of using a recur-

rent neural network with fixed weights and fixed connectivity followed by a simple

trained readout layer. In Chapter 3, we introduced the concept of using recur-
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rent Boolean logic circuits for reservoir computing. In this chapter, we test both

clocked and unclocked recurrent Boolean circuits on an FPGA for machine learning

applications1.

It is worth repeating: our implementation is not a traditional recurrent neu-

ral network, as one would find in a software reservoir, streamlined in the FPGA’s

programmable logic. Rather, we are configuring the digital logic gates to function

as a dynamical system exhibiting complex behavior, and exploiting the dynamics to

perform information processing.

4.2 Prior Art

The collective properties of autonomous (unclocked) Boolean networks on a

field-programmable gate array (FPGA) were studied and applied to time series

classification using machine learning in Shani et al. [22]. We extend that work

with a more detailed examination of the parameter space of similar networks that

are both unclocked and clocked, and their implementation on faster hardware, the

Xilinx Zynq Ultrascale+ MPSoC.

Previous works [22, 80] have both studied autonomous Boolean networks on

FPGAs for reservoir computing, demonstrating RF classification and time series

prediction, respectively. Haynes et al. [79] studied time-delay reservoirs using a

single XOR gate as a node. Other FPGA implementations of reservoirs have fo-

cused on efficiently implementing a traditional software-like reservoir in streamlined

hardware [75].

1Portions of this chapter appear in Komkov et al. [23]
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.

Figure 4.1: LUTs and interconnects in the FPGA implementing a reservoir, with
internal states x, external inputs u, and global reset signal r, reproduced from Shani
et al. [22]

4.3 Experimental Setup

Our experiments were performed on the Xilinx Ultrascale+ MPSoC evaluation

board2 shown in figure 4.2. HDL describing the Boolean network was efficiently

written using Python scripts that took a directed graph description and node type

list as inputs, and generated Verilog as output. The network was then synthesized

in Xilinx Vivado and loaded into the FPGA over an Ethernet connection.

Our application is an unconventional use of FPGAs. Design rules check (DRC)

procedures in Vivado throw errors at the detection of loops and logical contradic-

tions, but this is precisely what is needed to create complex network behavior for

reservoir computing. Synthesis of a network in Vivado takes about an hour on an

average desktop computer and sometimes results in crashes. For this reason, we

2https://www.xilinx.com/products/boards-and-kits/zcu104.html
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Figure 4.2: Xilinx ZCU104 evaluation board containing the Zynq UltraScale+ MP-
SoC.
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designed networks whose functionality is adjustable by loading in a control setting,

rather than reconfiguring the entire logic fabric with new Verilog descriptions for

each configuration under test.

A block diagram of our design is shown in figure 4.3, as well as a detailed

diagram of the internals of a node. We used a fixed-connectivity network with 4096

nodes in all FPGA experiments.

4
control

wn

wx

wy

Im

A

B

1
0

. . .

A
B

reset
Oi

DL

node n

 INPUT RAM
1024 x 1024

OUTPUT RAM

2048 x 1024

CONFIG RAM
 4096 x 128

4096

1024 2048

D Q

clock

RESET RAM
1 x 1024

Figure 4.3: FPGA setup and reservoir node detail. Each network contains 4096
nodes, evolves 1024 inputs for 1024 time steps and returns 2048 outputs for the
same 1024 time steps. Either the delay line or the flip-flop is used at a time.

4.3.1 Data Flow

In our experiment, reservoir inputs, a reset pattern, and the node control

settings are pre-loaded into RAM. Data flow in and out of the FPGA is shown in
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figure 4.4. The input RAM is size 1024 × 1024 bits. Each of the 1024 columns of

1024 bits is presented to the reservoir sequentially, in 5 nanosecond steps. Upon

every timestep, 2048 outputs, which are arbitrarily chosen out of the 4096 reservoir

nodes, are saved to an output RAM, which has size 1024 × 2048. If a time series

is shorter than 1024 bits, multiple series are tiled to fit into the input RAM. In the

example in figure 4.4, a 128-bit time series was binarized and encoded, and then

tiled so that seven series could fit into the input RAM, with a few time steps in

between each new series. Between subsequent inputs, the reset signal is applied.

The reset RAM contains the reset signal pattern, which is loaded in only once for a

particular data series with a consistent pattern.

Figure 4.4: Data flow into the FPGA.
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The complete output RAM is sent back to the host computer for further pro-

cessing, where individual data samples are sliced out of the output RAM block. If

our system is eventually transitioned to a practical implementation, pre-processing

and post-processing functions could be performed on the FPGA itself, as the pe-

ripheral resources around the programmable logic are vastly underutilized in our

experiment. In fact, The Ultrascale+ MPSoC has two ARM processors in addi-

tion to programmable logic, and the evaluation board supports many digital signal

processing (DSP) and input/output (I/O) features that we do not use here.

4.3.2 Node Details

As shown in the lower half of figure 4.3, each node of the network receives two

output lines Wx and Wy from two other nodes. Im and Oi are external inputs and

outputs present at some nodes. The reset line is connected to all nodes in the network

that zeros the node’s output, which is done every time before the introduction of

new data to ensure a consistent network starting state. The 4-bit control word

selects which of 16 logic functions described in table 4.2, is performed by the node

on its inputs Wx and Wy. An optional inverter-based delay line (DL in 4.3), where

each delay is a pair of inverters, can be added to all nodes to delay their output.

The gate transition times on the Ultrascale+ are around 70 picoseconds, faster than

the 200 MHz clock can sample. However, the interconnects between LUTs also add

delay time.
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4.3.3 Network Configuration

While FPGA logic fabric is reconfigurable, the process of synthesizing a Boolean

network from Verilog and transferring it to the FPGA takes too long to efficiently

tests hundreds of configurations. To speed up the testing of hundreds of networks,

the control setting directly on the FPGA stores 128 network configurations that

can be selected with a command. These configurations are stored in the config

RAM, which has size 4096 × 128. The 16 different logical functions that a node

can be configured to perform are described in table 4.2. The strategy for selecting

configurations is described in the next section.

4.4 Adjustable Network Dynamics

We previously discussed the conditions that a physical system needs to meet to

be useful for reservoir computing: high dimensionality, separation of inputs, fading

memory, and nonlinearity. We also discussed the effect of various hyperparameters

on network behavior and showed examples of the evolution of a software reservoir’s

state with no input. Also, there is no well-established theory for which network

configurations perform better than others. For this reason, it is critical to build in

ways to adjust the network to find an optimal configuration.

In chapter 3 we examined the definition of Boolean sensitivity (the fraction

of 1-bit transitions between inputs that results in a change in output state), which

is a way of quantifying the sensitivity of a digital logic gate to its inputs. To be

able to examine network behavior as a function of average Boolean sensitivity of the
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nodes, we use mixtures of the gate types described in table 4.1. CHOICE refers to

a 2-input gate where one of the two inputs is transmitted to the output. Refer to

table 4.2 for greater detail on gate types. In this work, we used all two-input gates,

and we did not systematically explore the influence of the in-degree of gates.

Sg Gate Types

1 XOR, XNOR
0.5 AND, OR, CHOICE
0 YES, NO

Table 4.1: 2-Input Gate Sensitivity

4.4.1 Network Strategy

The proportion of gates in the network with sensitivity Sg is denoted rS. The

overall sensitivity of the network is the sensitivity averaged across all of the gates.

These two constraints can be written:

r1 + r0.5 + r0 = 1 (4.1)

r1 + 0.5 r0.5 = S (4.2)

Two networks with the same sensitivity can have varying dynamics due to the

different composition of gates within them. For example, a sensitivity 0.5 network

can have all Sg = 0.5 gates or half Sg = 1 and half Sg = 0 gates. In our study,

we choose an equal proportion of each gate type for every sensitivity - for example

Sg = 0.5 in the configuration with largest r1 proportion would have ¼ XOR, ¼ XNOR,
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¼ YES gates and ¼ NO gates. A symmetrical distribution of gate types is used to

mitigate network imbalance to either 1 or 0. In the configuration with smallest r1

proportion, AND, OR, NAND, NOR, and CHOICE would be in an equal ratio.

To interrogate the space of available configurations, we parameterize the so-

lution to the equations in terms of r1, sweeping it in 128 even steps within the

allowable range for each sensitivity:

S > r1 > max(0, 2S − 1) (4.3)

Each configuration is then given by:

(r1, r0.5, r0) = (r1, 2(S − r1), r1 − 2S + 1) (4.4)

The variables S and the allowable range of r1 can therefore be varied indepen-

dently. In all subsequent plots, config n refers to the n-th configuration out of 128

that is generated using the routine just described.

As alternative (or in addition to) the use of delay lines, the output state can

also be sampled by a flip-flop operating at the sampling frequency. This solution

quantizes the propagation time of signals between the nodes to the sampling rate and

turns the network in a clocked state machine. We perform tests on networks with

nodes whose outputs are sampled by a flip-flop, and networks with nodes having 20

delays and no flip-flop.
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Figure 4.5: Planes of constraints described in equation 4.4. The range of parameters
to be probed, at an arbitrary operating point, is the red intersection line. Sweeping
S between 0 and 1 moves the relative position of these planes, and traces the red
and blue lines in figure 4.6.

4.5 Network Studies

The realizable parameter space of gate configurations is extremely large (Nstates ≈

O(164096)) due to the 4096 different gates within the FPGA-based reservoir that

can each have 16 different configurations, described in table 4.2. Even in the case of

software reservoirs which have been studied extensively [30], finding reservoir hyper-

parameters that work well for particular tasks remains difficult [93]. The extremely

large parameter space of the Boolean networks in our experiments necessitates an

efficient searching method for potentially useful configurations. For this purpose,
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Figure 4.6: Relationship between gate ratios and average sensitivity. For a particular
sensitivity S, the allowable range of r1 is evenly divided into 128 steps and the other
rs are computed. Each of these is an independent configuration labeled config in
subsequent figures.

we implement tests of network behavior that are dataset-agnostic, measuring self-

activity C and transient time T .

4.5.1 Self-Activity

Research stemming from the study of cellular automata has found that the

maximum capacity of a network for memory and information processing is achieved

in the vicinity of a phase transition—a threshold between regions of highly ordered

and highly disordered network behavior [94, 95]. A Boolean reservoir should there-

fore be near a region of transition between low activity and high activity.
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Self-activity of unclocked networks after reset

Figure 4.7: Behavior of individual reservoir nodes after a network reset. Activity
of 60 of the 2048 output nodes for 50 timesteps at a variety of average network
sensitivities and gate configurations, for unclocked networks. The calculated self-
activity C is shown next to each network snapshot.
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Self-activity of clocked networks after reset

Figure 4.9: Behavior of individual reservoir nodes after a network reset. Activity
of 60 of the 2048 output nodes for 50 timesteps at a variety of average network
sensitivities and gate configurations, for clocked networks. The calculated self-
activity C is shown next to each network snapshot.
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Gate type Proportion

True r0/2
False r0/2

A XOR B r1/4
A OR B r0.5/10

A AND B r0.5/10
A XOR B r0/4
A OR B r0.5/10

A AND B r0.5/10
A XOR B r0/4
A OR B r0.5/10
A AND B r0.5/10
A XOR B r0/4
A OR B r0.5/10
A AND B r0.5/10
CHOOSEA r0.5/10
CHOOSEB r0.5/10

Table 4.2: Gate type details

Network self-activity, C, is a way of quantifying overall network activity with-

out any input, after a reset which forces the output of every node to be zero. As in

[22], it is defined as the fraction of nodes changing state, averaged over the networks

outputs and over timesteps t:

C = 〈|xi(t)− xi(t− 1)|〉i,t (4.5)

where xi(t) is the Boolean state at node i at time t.

It is informative to look directly at the network state to understand what

various self-activities look like. Figure 4.9 shows the state of 60 out of the 2048

output network nodes for 50 timesteps after a reset across various sensitivities and

configurations. Config 0 corresponds to the least amount of r1 in the allowable

range, and config 127 having the most amount of r1 allowable for a given S (see
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equation 4.4).

Both clocked and unclocked networks were tested. A variety of behavior ap-

pears in both responses. As sensitivity is increased, the overall network activity

increases. Clocked networks appear to settle into a fixed state in fewer time steps,

in part due to the fast transition times of the gates and the under-sampling of

the activity due to the limited clock speed within the FPGA. In both cases, some

networks exhibit only transient behavior and settle into a static fixed state. Some

networks settle into limit cycles. Networks with higher excitation do not appear to

settle into any repeatable pattern.

A sweep across sensitivities from S=0.3 to S=0.7 and spanning all gate con-

figurations is shown in figure 4.10. This figure shows results only for a clocked

network, but unclocked network results look very similar. However, unclocked net-

works caused the FPGA to crash at around S=0.68 due to high activity, which

terminated the scan. Furthermore, the sweep was repeated using multiple random

seeds, which determine the placement of gates, and similar results were observed.

As is evident from 4.10, the self-activity (C) dependence on average sensitivity

(S), shows significant structure. As we have kept the node graph topology constant

in these tests, the features likely indicate the presence of dynamical loops in the

directed graph. Evident in that figure are tails below S = 0.5 that are likely limit

cycles (ring oscillators) in the setup that persist among the gradually varying con-

figurations. Above S = 0.5, the cone-shaped structures are suggestive of a joining

of various oscillators present in the FPGA structure that are cooperating in more

complicated dynamics. Higher activity is seen in the lower-numbered configurations,
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Figure 4.10: Self activity C as a function of S and configuration in a clocked
network. Structures in the image indicate the presence of interacting dynamical
loops in the reservoir’s directed graph.
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Response of unclocked network to perturbation

Figure 4.11: Unclocked network

which have a smaller relative fraction of r1 gates.

4.5.2 Transient Time

An important property of a reservoir is fading memory—the ability to retain

past states while weighting the recent ones the most highly. To provide insight

into a network’s memory, we perturb the network with an input of all ones for five

timesteps, and observe the network state afterwards. Activity after a perturbation
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Figure 4.13: Response of individual reservoir nodes to a perturbation. An
input of all ones, 1024 inputs nodes, is introduced between the timesteps of 5 and
20. The corresponding transient time T is annotated in red.
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that decays with time is called transient activity. To quantify the duration of activity

after a perturbation, we calculate an average network value X for 30 timesteps before

an input is presented:

X = 〈X〉i,t∈(0,30). (4.6)

We then calculate the departure away from this calculated average value:

dt = 〈X〉t −X. (4.7)

We define the transient time T as the time it takes for the network to return to

a value close to its pre-perturbation average state: X+0.01. As can be seen from

the network images in 4.9 at higher sensitivities, the concept of a network’s average

value becomes nebulous with networks having a large amount of self-activity, as

there’s no steady state. In fact, some of these highly excited networks never return

to X+0.01, in which case they are discarded from consideration for machine learning

and appear as white pixels in 4.16.

Figure 4.13 shows a scan across the average sensitivities and configurations for

clocked and unclocked networks. The unclocked networks crash the FPGA around

S = 0.68, and as a result the values are all zero above this S in the plot. Here is a

large distinction between clocked and unclocked network versions. This is in large

part due to the effective sampling frequency relative to the network dynamics. The

unclocked networks have each node’s activity slowed down by the delay line, but are
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still under-sampled by the 200MHz clock. Clocked networks only advance upon a

clock pulse, and every state of the network is measured.
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Figure 4.14: Response of unclocked networks to a perturbation. Corresponding
transient time T is annotated in red.

4.5.3 Selection of Desirable Networks

A network suitable for machine learning will satisfy the following properties:

• Quiescent with no input. Activity within the network when there is no
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Figure 4.15: Response of clocked networks to a perturbation. Corresponding
transient time T is annotated in red.
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Figure 4.16: Transient times of unclocked networks.
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Figure 4.17: Transient times of clocked networks.
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input consumes power but does not do useful computation. To satisfy this

requirement we choose only networks with self-activity C < 0.0175, a number

chosen qualitatively. The self-activities of only unclocked networks fitting this

criterion are shown in figure 4.5.3.

• Close to a phase transition. Networks should be close to S=0.5 at which

there is an experimentally observed inflection point in network activity, as

can be seen in 4.10. Networks near the “edge of chaos” have been shown to

outperform networks in other regimes [95, 96, 97].

• Fading memory. For this we select transient times greater than 3 timesteps.

The transient times of only those networks meeting all criteria are shown in fig-

ure 4.5.3. The resulting configurations in the parameter space of S and configuration

number is a band below S=0.5 containing between 1000 and 3000 configurations,

depending upon the network type and random seed. Of these, 100 were randomly

chosen for application to a machine learning classification test.

4.5.4 Output Distributions and Entropy

Looking at the frequency at which reservoir nodes are on or off, given a uniform

input, may provide insight into the networks’ expressive power. Distributions with

the greatest entropy may have the greatest expressive power, as entropy is a measure

of information content. Due to the presence of Sg = 0 gates in many configurations,

as well as the random connectivity within the networks, not all of the reservoir

outputs contribute usefully to the result. The Sg = 0 gates have fixed high or low
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outputs. Other gates may get two inputs from fixed-output nodes, thereby shutting

off that gate. Other gates simply rarely change their state due to the particular

network configuration. These scenarios are not checked before network synthesis.

100 random uniformly distributed input vectors were introduced to the net-

work, with each bit in the input having equal probability of being on or off: P (Xi =

1) = P (Xi = 0) = 0.5. The average value of each output bit was then computed:

P (Xi) =
∑100
k=0Xi,k. If the average value was below 0.1 or greater than 0.9, meaning

that it changed less than 10% of the time, the bit was discarded, as large tails at 0

and 1 skewed the distributions.

Histogram of these distributions across various average sensitivites and con-

figurations is shown in figure 4.5.4. From each of these histograms, the Shannon

entropy was computed:

H(X) = −
1024∑
i=0

P (Xi)log2(Xi) (4.8)

Each configuration had a different number of output gates after being trimmed.

Configurations with fewer r1 gates have broader output distributions, and more

nodes remaining after the trimming procedure, than distributions with more r1

gates.

From left to right in figure 4.5.4, the proportion of Sg = 0 YES and NO gates

increases, which are gates that shut off the output from a node completely. It can be

seen that after pruning inactive outputs, there are fewer nodes left in the networks

with higher r0 proportion. As for the remaining distribution, the networks with
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higher r0 proportion have a sharper peak around P = 0.5, while networks on the

left-hand side, with more varied gate types, have a broader distribution. How to use

these distributions to predict information processing utility of a Boolean network

remains an area of research.

4.6 Radio Frequency (RF) Classification

To benchmark the machine learning performance of various network configu-

rations, the FPGA-based reservoir was used for classification of the DeepSig 2016

dataset [98]. This dataset contains 1000 example waveforms per signal-to-noise ra-

tio (SNR) for each of 11 various radiofrequency modulation types across SNRs from

−20 : 2 : 18. As the overall amount of data is very large after processing by the

reservoir, we use only SNR 18 to efficiently test many configurations. 65% of the

samples were used for training, 15% for validation, and 20% for testing.

4.6.1 Preprocessing

Each sample in the dataset contains 128 timesteps of in-phase (I) and quadra-

ture (Q) waveforms. Recall that the raw (I) and (Q) data may be modeled as a

complex number z = I + j Q = rejθ where j is
√
−1. Eight distinct different data

from these raw (I) and (Q) waveform have been computed, see 4.21:

• raw I

• raw Q

• Modulus of signal: |z|
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• Modulus difference ratio: zr = |zi+1zi|

• Modulus forward difference: ∆z = |zi+1| − |zi|

• Phase of signal: θi (θi = arg(z))

• Phase forward difference: ∆θ = arg (zi+1zi)

• Phase difference ratio: θr = arg(zi+1)arg(zi)

Each of these waveforms was then thermometrically encoded. Each signal was

mapped to [i·128, (i+1)128] bit inputs for i ∈ (0, 7) for the 8 different encodings. The

amplitude encodings, the first five, were scaled by sample minimum and maximum so

that [sample minimum, sample maximum] mapped to [i ·128, (i+1)128]. The phase

encodings were mapped from [−π, π]. This encoding is necessary for the reservoir as

it accepts 1024 binary inputs. The inputs are then “tiled” so that they fit into the

1024-bit input RAM, with 10-timestep pauses between them, and a network reset

right before the introduction of a new input.

4.6.2 Subsampling in Time

To improve regression speed, we sub-sample the outputs into 16 samples,

spaced apart by 8 timesteps. This was tested to only reduce machine learning ac-

curacy by a few percent while greatly reducing the number of trainable parameters

and improving regression speed.
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4.6.3 Machine Learning Training Procedure

While a typical attraction of reservoir computing is rapidly evaluating the

output with a closed-form solution of linear regression, logistic regression is more

suitable for a classification problem which maps the data to multiple discrete classes.

While for the purposes of this experiment, the reservoir state is transmitted to

a supervisory computer for post-processing and training, these functions can be

implemented directly on the FPGA for high speed in the future.

The size of the DeepSig 2016 dataset and the amount of data generated by the

FPGA-based reservoir necessitates an iterative approach to training. In pytorch,

we use a single neural network with linear neurons, and use stochastic gradient de-

scent to minimize cross-entropy loss. To optimize the learning rate and L2 penalty,

Hyperopt was used with trials scheduled and early stopping implemented using the

asynchronous hyperband optimizer in Ray Tune [99]. Each input into the regres-

sor was allowed 20 Bayesian optimization trials optimizing learning rate within the

range (1e-5, 1e-1) and L2 penalty within the range (1e-9,1e-1), and could train up

to 50 epochs. Convergence was observed with nearly all trials. While Bayesian

optimization is not necessary for only two parameters to optimize, we developed

this infrastructure using Ray Tune to wrap reservoir hyperparameters into the op-

timization loop in the future. Additionally, Ray Tune can distribute a task among

multiple CPUs or GPUs for faster processing. All reservoir configurations were

evaluated with the validation set. Test set results were consistently a few percent

lower.

79



Variation Preprocessing Trainable
Parame-
ters

Accuracy

0 Eight time series variations 11,176 14%
1 I and Q series 2,816 22%
2 (1) thermometrically encoded 1,441,792 44%
3 (5) sub-sampled to 16 timesteps 180,224 66%
3 Convolutional neural network [98] 2,214,475 76%
4 (5) passed through best clocked RPU

configuration and sub-sampled
259,952 76%

5 (0) thermometrically encoded 1,430,528 78%
6 (5) passed through best unclocked RPU

configuration and sub-sampled
161,744 82%

Table 4.3: DeepSig 2016 SNR 18 time series classification results using
logistic regression, with various preprocessing methods.

4.6.4 Machine Learning Results

Accuracy results of logistic regression applied to raw data, preprocessed data,

encoded data, and Boolean reservoir-processed data are shown in 4.3. While pre-

processing by itself degrades classification accuracy, after thermometric encoding it

provides a surprising boost to the results. The encoded time series then processed

by the reservoir show a further improvement in accuracy: even when sub-sampled

to 16 timesteps, the accuracy is competitive with that of the state-of-the-art convo-

lutional neural network with less than one-tenth of the trainable parameters. The

corresponding confusion matrix applied to the test set on variation (6) from 4.3 is

in 4.25.

Machine learning accuracy on unclocked network-processed data on the same

axes as the prior figures of S and config is shown in 4.25. We found no discernible

dependence of accuracy on C or T within the region selected by the criteria described
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in a prior section. A similar scatter plot was generated for clocked networks and

overall accuracy was a few percent lower.

4.7 Conclusion

We explored the dynamics of Boolean networks for reservoir computing, nar-

rowing down the extremely large parameter space of configurations using dataset-

agnostic methods to identify networks that would function well as reservoirs for

reservoir computing. We validated these chosen networks on the DeepSig 2016

dataset, achieving state-of-the-art accuracy with less than one-tenth of the train-

able parameters with an unclocked network on a Xilinx Ultrascale+ MPSoC. We

also tested clocked networks which yielded slightly lower accuracy.

A notable observation is that pre-processing the RF time series by computing

ratios and first differences of the complex modulus and angle of the I and Q signals,

and thermometrically encoding this data, yields comparable accuracy with simple

logistic regression to a convolutional neural network. Even with taking only one-

eighth of the thermometrically encoded data by slicing in time to reduce the number

of trainable parameters, the accuracy remains high.
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Figure 4.18: Selected configurations based on self-activity C, of unclocked networks.
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Figure 4.20: Output frequency distributions with a uniform random input. Nodes
that are on or off more than 90% of the time are discarded for this computation.
The number of remaining nodes, and the entropy of the distribution, is noted in red.
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Figure 4.21: All time series variations of a single example from the DeepSig
2016 dataset. Raw I and Q signals, and all applied preprocessing methods.
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Figure 4.23: ML accuracy on DeepSig 2018 SNR 18 data processed using
an unclocked network. Color represents validation accuracy, which was up to
82%.
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uration.
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Figure 4.25: Confusion Matrix for the convolutional neural network on a
different randomly selected subset of the dataset.
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Chapter 5: Boolean Reservoir Computing Using Discrete Digital Logic

Gates on a Printed Circuit Board

5.1 Introduction

In this chapter1 we describe the design and test of a printed circuit board for

reservoir computing, using discrete logic chips to implement a randomly connected

Boolean network. If use of these networks is adopted for practical machine learning

problems, then lessons learned from tests of these networks on a PCB can be applied

to a miniaturized version implemented in more modern technology such as on an

ASIC.

5.2 CMOS Reservoir Circuit Design

5.2.1 Why Discrete Digital Logic Chips?

In this experiment we designed a 64-node reservoir on a printed circuit board

using 4000-series digital logic chips. One might very reasonably ask why we would

use a decades old technology when there are more modern tools at our disposal.

The reasons are:

1Portions of this chapter reproduced from Komkov et al. [24].
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• In our application, slow speed is beneficial, as we want to study the dynamics

of free-running networks and sample the waveforms with high density. Being

one of the oldest digital logic families, 4000-series CMOS is relatively slow. In

fact, we would have preferred to use a logic family with completely unbuffered

outputs for transfer functions with the smallest gains, but to keep the compo-

nent count reasonable we used a buffered version as not all Boolean functions

(namely, XOR) are available as discrete chips in an unbuffered series.

• We are interested in probing the effect of finer voltage quantization than digital

tools allow. How much more information can be extracted out of an analog

signal versus a digital one in reservoir computing is an open research ques-

tion. In Komkov et al. [23], similar Boolean networks were studied as the

ones presented here. However, on an FPGA, the inputs and output are bina-

rized by design. Digitization can unnecessarily add processing time in some

applications when analog inputs and/or outputs are desired.

• Our networks of interest are cumbersome to simulate using Spice tools. They

are large and have lots of switching activity. The presence of interacting loops

in the circuit makes high time resolution necessary. As it’s not clear a priori

what circuit topology will make the best reservoir, we want to efficiently test

many configurations, which can be impractical if every simulation is slow.

• Finally, the components and assembly are economical. Each chip retails for

around $0.50 USD in small quantities, and assembly was done by hand in

under four hours.

91



5.2.2 Circuit Details

The printed circuit board is shown in 5.1. The circuit consists of 64 blocks

whose design is shown in 5.2. In the middle of the node is a three-input XOR,

comprised of two XORs with two inputs each (only two-input XORs are available

in the logic family used, see 5.1 for part numbers). The XOR was chosen because

it is equivalently sensitive to changes of ones and zeros in its input. The inputs to

the XOR can selectively be shut off by the three NAND gates, controlled by control

bits C1, C2, and C3. The output of the XORs is AND’ed with a RESET, which is

a global control line that forces the output of every block to be low, which is used

to ensure the network has a consistent starting point.

Logic gate Part number
XOR MC14070B

NAND MC14011B
AND MC14081B

Shift register MC14094B
Level shifter MC14504B

Table 5.1: Part numbers with hyperlinked datasheets.

There are 192 total control bits C, which are stored in a shift register. The

shift register is loaded with a control word serially, prior to the testing of any network

configuration. The board’s power supply voltage (Vdd) can be varied to probe the

dynamics of the reservoir at various voltages. A Teensy2 3.2 is used for a serial

interface with a control PC to set the digital RESET and shift register lines on the

board. The Teensy’s 3.3V outputs are converted to the board’s voltage using a level

shifter. Three external analog inputs each fan out to three reservoir nodes. MMCX

2https://www.pjrc.com/teensy/
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Figure 5.1: Printed circuit board reservoir using discrete logic gates.

coaxial connectors, chosen for their small footprint, were connected to every node.

Figure 5.2: Design of a single node in the reservoir.

To design the board, first the randomly populated adjacency matrix describing

the network configuration was generated in MATLAB and was checked for no loops

of length one. The code generated a simplified net list description that was used to
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design the circuit schematic by hand in KiCAD3, open-source EDA software which

was chosen as it supports Python scripting if we would ever want to generate more

circuit layouts in an automated manner. Components were placed in a printed circuit

board layout by hand in a grid pattern, and the circuit was then auto-routed using

the software FreeRouting4. The printed circuit board is 6 layers with alternating

ground and signal layers.

5.2.3 Waveforms

Waveforms of nodes in the reservoir circuit exhibit a variety of behaviors,

including DC steady states, periodic oscillations, and turbulent behavior, any of

which may be transient or persistent. The behavior of the node is highly dependent

upon the network configuration, supply voltage, and input signal. Figure 5.3 shows

four arbitrarily selected channels in a network configuration that is very excitable.

In the frequency domain, these waveforms exhibit broadband frequency behavior

without any amplitude peaks, an indication of turbulence. While the most frequent

voltages are 0 or Vdd, these waveforms also contain many incomplete transitions and

intermediate voltage values.

The 4000-series chips are rated for operation with a supply voltage in the

range 3V-18V. The internal frequencies in the network are highly dependent upon

the supply voltage, particularly in the lower part of the voltage range. Dependence

of gate transition times—which influence the internal frequencies—on supply voltage

3https://www.kicad.org/
4https://freerouting.org/
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Figure 5.3: Node waveforms in an undriven network configuration with high self-
activity.

can be found in the component datasheets. Except where otherwise noted, all tests

were performed at 3.3V.

5.2.4 Network activity with no external input

We used circuit current draw as a simple measure of overall network activity.

Figure 5.4 shows the current readout from the power supply for 100 network con-

figurations at each of 64 steps of S between 0 and 1. For each value of S, random

seeds 1 through 100 were used to randomize the placement of ones in the 192-bit

control word. The RESET signal was applied prior to letting the network run freely
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to ensure a consistent starting condition.

The resulting characteristic S-shape is consistent with prior FPGA-based mea-

surements of Boolean network activity as a function of average sensitivity [22, 23]. If

the behavior of this circuit is similar to FPGA-based Boolean networks, the optimal

machine learning performance can be expected in configurations at the base of the

curve, at the threshold between low and high excitation.
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Figure 5.4: Current draw as a function of network Boolean sensitivity.

Current draw as a function of supply voltage Vdd is a quadratic curve whose

magnitude is proportional to the network’s sensitivity. Figure 5.5 shows relationship

of steady-state current draw and supply voltage Vdd, for 64 self-excited networks

with S evenly spaced from 0 to 1, with a single random seed. Intermittent excited

behavior can be seen at some very low values of S, where the current jumps from
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close to zero to a higher value following the quadratic curve.
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Figure 5.5: Circuit current draw at 64 values of S at varying power supply voltages
Vdd.

5.2.5 Pulse to Pulse Variation

As we are limited to only sixteen high resolution analog channels that are

available on our lab’s test equipment, all tests were only on outputs 1 through 61,

in intervals of 4. The network can be sensitive to the capacitance of a cable, so the

connections were not moved. In all measurements, 1000 data points were captured

in 100ns increments.

A condition for reservoir computing is that a network’s behavior must be

repeatable. For that reason we want to identify networks whose response varies

between repetitions of the same stimulus. We apply one period of a 100kHz sine
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pulse, whose minimum and maximum are 0 and Vdd. To quantify the repeatability,

we compute a pulse to pulse variation of the network response to five repetitions of an

input stimulus, using the voltage V (t, c, p) which is a function of time t, oscilloscope

channel c and time t. The pulse to pulse variation is the standard deviation of a

signal between pulses, averaged over time and between channels: 〈σp(V (t, c, p) )〉t,c.

We focus on the middle of the sensitivity range as we expect that very inactive

and very active networks will be of minimal utility for information processing. The

pulse to pulse variation follows the general same trend as the current draw, with

an inflection point around S = 0.3, see figure 5.6. Networks that pass this critical

point amplify noise, which pushes them into divergent states, thereby making the

network response to a stimulus not repeatable.
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Figure 5.6: Pulse to pulse variation as a function of sensitivity.
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5.2.6 Transient Times

Quantifying the amount of time that a network departs from a steady state

value after a perturbation can give insight into the amount of memory the network

has. To compute the average transient time of the network before it settles into a

quiescent steady state, we initially compute the first difference of each waveform in

the data to make steady state DC values equivalent. Then we take the absolute

value, to equalize the influence of rising and falling edges. Finally we compute a

moving average with a window of 10 microseconds to smooth out the signal. We

define the transient time as the time it takes for the signal to pass an arbitrarily

defined threshold of 0.1. The shortcoming of this method is that periodic steady

states would appear no different from chaotic activity.

Networks around the critical point exhibit the longest transient times. At low

S, networks lack sufficient connection density for information to propagate far, and

many outputs never change their state. At high S, networks are so excited that

they never reach a steady state (for the purpose of this plot those states are shown

as having zero transient time rather than infinite).

5.3 Machine Learning Tests

We test the performance of the reservoir circuit using a time series classification

task. As inputs, we use 50 each of sine, triangle, and square pulse waveforms with

added noise. The signal amplitude is 2.1V peak to peak, centered at Vdd/2, and the

noise peak to peak amplitudes are varied from 0.3 to 5.5V. The voltage ratios in all
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Figure 5.7: Transient times as a function of sensitivity.

plots are all peak to peak voltages. Figure 5.8 shows a sample noisy sine waveform,

where one sine pulse is present from 0-10µs, and the noise persists after that. The

state of 15 reservoir nodes (outputs 4 through 60 in even steps) are also recorded

with a resolution of 0.1µs; these are also shown on the same axes in the figure.

We use scikit-learn’s LogisticRegressionCV5, a logistic classifier with cross

validation, to compute the reservoir output layer on a supervisory computer. First

we compute the accuracy of classification using only the raw input waveform, which

we call the baseline accuracy. Then we compare it to the classification accuracy

using both the raw input waveform, and 15 reservoir outputs combined, as input

to the classifier. There is a 50% train/test split, and 200 samples per waveform are

5https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.

LogisticRegressionCV.html
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Figure 5.8: Noisy sine wave pulse input, and 15 reservoir outputs on the same axes.

used.

Based upon the results in the prior section, we selected two networks at S =

0.36 with different random seeds that are repeatable, with a small pulse to pulse

variation (0.025 and 0.02) and a reasonable transient time (3µs and 5µs). Machine

learning results from these two network are shown in figure 5.9. The reservoir

improves classification accuracy significantly at high noise levels, an improvement

of up to nearly 40% above classification done on the input alone. The accuracy

improvement increases at higher noise levels only because the baseline classifier

performs so well at lower noise levels.

We probed the effect of S on classification accuracy as well. The accuracy

improvement at several noise to signal ratios over a range of S from 0 to 1 is
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Figure 5.9: Classification accuracy improvement from the reservoir, at various noise
levels.

shown in figure 5.10. Networks throughout the whole sensitivity range show strong

accuracy improvement. Networks with low excitation contribute appreciably to

machine learning accuracy, while overexcited networks seem to help less.

5.4 Conclusion

Using discrete logic chips on a printed circuit board, we implemented a free-

running Boolean logic gate network for reservoir computing. We explore the param-

eter space of configurations using a control setting that selectively shuts off the the

inputs to a node in the reservoir, and probe the overall network dynamics that result.

Using the reservoir circuit, we demonstrate significant improvement in accuracy in

waveform classification, when compared with using the input waveform on its own.
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Figure 5.10: Machine learning accuracy improvement over baseline as a function of
overall network sensitivity.

While the benchmark task that we used is simplistic, the results are a promising

demonstration of the time series processing capabilities of random Boolean networks.

How to quantify the information processing capability of a reservoir remains

a challenge. In future work we hope to achieve a better understanding of the added

information content from a reservoir within analog waveforms, compared to the

information encoded temporally in the timing of digital pulses.
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Chapter 6: Design of a 180nm ASIC for Reservoir Computing

6.1 Overview

An application-specific integrated circuit (ASIC) is a microchip designed to

implement a specific electronic design and application. We designed seven ASICs

for reservoir computing in 180nm CMOS, with the aim to demonstrate rapid ma-

chine learning using Boolean logic gate networks. The chip, shown in 6.1, has been

manufactured and now awaits post-processing and testing after this dissertation is

complete. Designs are based on the designs in the patent application by Lathrop,

Restelli and Komkov [25].

6.2 Process Details

The wafer was manufactured using the SilTerra C18G 180nm CMOS process1,

which has a 1.8V core voltage, 3.3V pad voltage, and up to six metal layers. Our

design was sized to fit one-sixth of a multi-project reticle2. We were provided a

standard cell library from the foundry, as well as an ARM I/O pad library. All of the

standard cells and I/O pad designs, timing specifications, and power specifications

1https://www.silterra.com/c18g-180nm-cmos-logic-1-8v-3-3v
2We were generously provided wafer space at no cost by Advait Madhavan and Jabez McClelland

from the National Institute of Standards and Technology (NIST).
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Figure 6.1: Our group of seven reservoir ASICs is shown in the middle of this
multi-project wafer.

are proprietary, so any details discussed this chapter are intentionally left without

proprietary details.

6.3 Design Overview

We chose to use the provided standard cell library, despite its proprietary

nature not in line with the spirit of open research, because it would allow us to

immediately use automation tools in Cadence to aid in the layout and routing of

the cells. The standard cells contain the designs of various logic blocks down to the

silicon level.

The original intention was to create large networks with thousands of nodes,

but upon further discussion it was decided to instead create relatively small, 64-node
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reservoirs so that every node state could be probed. Probing only a subset of the

nodes would unevenly load the reservoir, as routing a connection from the chip core

to outside test equipment adds significant capacitance which slows down that node.

Additional digital buffering is antithetical to the aim of using the analog dynamics

of the circuit for computation.

To connect the chip’s core, in which the standard cells are laid out, to the

outside world, input/output (I/O) pads are used. The I/O pads are rectangular

elements with a standard size that contain a connection to the core one side, and

a metal pad on the other side, to which a wire bond is made. The two categories

of I/O pads available are analog and digital. The digital pads are buffered, while

the analog pads are straight-through pads with a few hundred ohms of resistance

between the core and the metal pad. Each analog pad has about 2pF of capacitance.

As a result of reading out each of the 64 nodes, the design is pad-limited, having a

large pad ring but very low utilization within the core.

Reservoir performance can be highly dependent up the graph connectivity in

ways that are not fully understood. To mitigate the risk of any one particular design

not working well, seven separate 64-node reservoir chips were designed with various

combinations of adjacency matrices, logic gate mixtures, and I/O configurations

were manufactured across the seven chips. We call each of the chips a chiplet. The

chiplets can later be diced apart, or they can be wire-bonded together directly on the

wafer to implement one of the multi-reservoir configurations described in Chapter

2.

The mixture of configurable logic blocks in each of the seven chiplets is in table
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6.1. Each chiplet has a mixture of blocks that allow a range of sensitivities to be

interrogated. Four different randomly generated adjacency matrices were used.

6.4 Node Designs

The configurable node designs used are shown in figure 6.2 and are described

below. Each chiplet was designed with a combination of gates to fully sweep the

parameter space between S = 0 to S = 1.

• Figure 6.2(a) shows a 3-input NAND block with a control bit (thereby

using a 4 input gate). The control input C has the ability to effectively turn

off the node by forcing the output high when C=0. When C=1, the output is

equivalent to a 3-input NAND with X1, X2, X3 as inputs. When C=0, S=0.

When C=1, S=0.25.

• Figure 6.2(b) shows a 3-input NOR block with a control bit (thereby using

a 4 input gate). Like in the NAND case, C has the ability to turn off the gate

by forcing the output low when C=1. When C=0, the NOR acts like a 3-input

NOR with X1, X2 and X3 inputs. When C=1, OUT=0 and S=0. When C=0,

OUT=NOR(X1,X2,X3), S=0.25. Graphs of 3-input NAND, NOR and XOR

are shown in figure 3.6.

• Figure 6.2(c) shows a 2-NAND-3XOR block. When C=1, the inputs X1

and X2 are inverted and passed on to the 3-input XOR. When C=0, the

inputs X1 and X2 are blocked, and the three-input XOR effectively only has

one input. When C=0, S=0.33. When C=1, S=1.
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• Figure 6.2(c) shows a 2-NAND-3XOR block. When C=1, the inputs X1

and X2 are inverted and passed on to the 3-input XOR. When C=0, the

inputs X1 and X2 are blocked, and the three-input XOR effectively only has

one input. When C=0, S=0.33. When C=1, S=1. The graph when C=0 is

shown in figure 6.4.

• Figure 6.2(d) shows a 3-NAND-3-XOR. The NANDs selectively turn off the

inputs to a 3-input XOR gate. When C’s are 0, S=0. When one C=1 and two

are 0, S=0.33, When two C’s are 1 and the other is 0, S=0.66. When all C’s

are 1, S=1. Graphs with various control settings are shown in figure 6.3.

Figure 6.2: Configurable node designs.

6.5 Chip Control

Figure 6.5 shows two reservoir blocks along with the supporting circuitry. We

will discuss the elements of the diagram from left to right.

108



3-NAND-3XOR,C=100 graph, 3 inputs

In:(0,0,0),Out:0

In:(1,0,0),Out:0

In:(0,1,0),Out:0

In:(1,1,0),Out:0

In:(0,0,1),Out:1

In:(1,0,1),Out:1

In:(0,1,1),Out:1

In:(1,1,1),Out:1

3-NAND-3XOR,C=110 graph, 3 inputs

In:(0,0,0),Out:0

In:(1,0,0),Out:0

In:(0,1,0),Out:1

In:(1,1,0),Out:1

In:(0,0,1),Out:1

In:(1,0,1),Out:1

In:(0,1,1),Out:0

In:(1,1,1),Out:0

Figure 6.3: Graphs of configurable XOR gates with various control settings.

Control shift register: SR C CLK and SR C DATA are clock and data lines

that feed a shift register containing the 64-bit control word, C, which determines

node configurations. The control vector needs to be loaded in serially before the

reservoir is run. Reservoir blocks: Blocks have three data inputs (X1, X2, X3)

which are either recurrent connections from other blocks, or external inputs. In

each chiplet, there are a total of 18 external inputs to blocks, from three analog

pads that connect to 6 blocks each.

Reset line: To ensure that the reservoir always has a repeatable starting

condition before evolving autonomously, the RESET line is AND’ed with the output

from each block. When RESET is zero, the output from every block is zero.

Multiplexer select line: MUX SEL selects whether recurrent connections to

the back to the reservoir blocks are selected from before or after the output buffer

(BUF). The buffer helps to drive the pad capacitance, but it introduces on the

order of 1ns more delay. If the feedback connection before the buffer is selected, the
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Figure 6.4: Graph of the 2-NAND-3XOR gate with C=0.

reservoir will run faster than if the feedback connection is selected after the buffer.

However, output pads may not be able to transmit the full range of the reservoir’s

activity if its constituent frequencies are too fast due to their own slew rates. Details

will vary by chip, which use different output pads. More information is in table 6.1.

6.6 Speed and Power Estimates

While details are left somewhat vague by necessity due to the proprietary

nature of the standard cell designs and speeds, chiplets with analog pads (Andy,

Billy and Denny) will exhibit frequencies of about 150MHz, while those with digital

pads (Charlie) will exhibit about 3GHz frequencies, depending upon the configu-

ration. Exact timing and power consumption information of the standard cells is

proprietary. Therefore these numbers below are gross estimates.
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Figure 6.5: Reservoir block diagram.

Chiplet
name

Adjacency
matrix

Gate mixture Output pads

Andy A 25% NAND,25% NOR,
50% 2-NAND-3XOR

64 PANALOG

Billy A 100% 3-NAND-3-XOR 64 Analog
Charlie A 100% 3-NAND-3-XOR 19 digital output pads

(highest slew rate, high-
noise pad) 45 digital out-
put pads (slowest slew
rate, low-noise pad)

Denny B 25% NAND,25% NOR,
50% 2-NAND-3XOR

64 Analog

Ernie
(infer-
ence)

A 100% 3-NAND-3-XOR slowest slew rate, low-
noise digital pads, 16-bit
binary output

Freddy
(infer-
ence)

C 100% 3-NAND-3-XOR slowest slew rate, low-
noise digital pads, 16-bit
binary output

Gary
(infer-
ence)

D 100% 3-NAND-3-XOR slowest slew rate, low-
noise digital pads, 16-bit
binary output

Table 6.1: Chiplet details.
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Figure 6.6: The multiplexer selects the source of the recurrent connections to other
reservoir blocks. Recurrent connections from before the buffer result in a faster
configuration, but the slew rate of the output pad may be too large to keep up,
resulting in significant signal degradation. Recurrent connections from after the
buffer will be significantly slower in speed due to the load capacitance.

1pF loading 10pF loading
Analog I/O pads 150MHz,

0.57mW
45MHz,
0.15mW

Digital I/O pads 3GHz, 11.5mW 3GHz, 11.5mW

Table 6.2: Slow configuration estimated frequency and maximum steady-state power
draw.

1pF loading 10pF loading
Analog I/O pads 3GHz, 10mW 3GHz, 10mW
Digital I/O pads 3GHz, 11.5mW 3GHz, 11.5mW

Table 6.3: Slow configuration estimated frequency and maximum steady-state power
draw.

6.7 Inference chip details

While output layers for four chips (Andy, Billy Charlie and Denny) must

be computed externally to the chip, three chips (Ernie, Freddie and Gary) are

capable of multiplying the 64 Boolean reservoir states by 10-bit weights, performing

output calculations. While this scheme does not take advantage of the analog nature

of the reservoir, it performs full inference once trained, avoiding the latency of
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communicating with an external controller.

Figure 6.7 shows a block diagram of the inference chips. Each of the blocks

are separate Verilog modules which were tested independently for correct digital

functionality. The chip was then synthesized entirely from Verilog. Figure 27 shows

a picture of Ernie, a much more crowded layout than the reservoir chips. The

majority of the utilization in the chip is taken up by the shift registers that store

the weights (the only memory type available for this project), and the adder that

sums all the weights.

Control shift register: SR rescontrol is the shift register storing the reservoir

control word (two of the constituent D-flip flops are visible in Figure 23). It has

one readout for debugging purposes, SR C191. Reservoir: As before, the 64-node

reservoir has three analog inputs fanning out to 6 internal blocks each. The reservoir

has a reset signal. In all of the inference chips, the reservoir will have a frequency

of about 4 GHz, as it is not loaded down by output pins.

Reservoir buffer: Upon the rising edge of RB clk, the reservoir state is

copied to a PIPO buffer.

Reservoir buffer readout: Using a collection of 4 to 1 multiplexers, the

four buffer select lines, Buf sel[0:3], can be used to read out the reservoir buffer four

states at a time. This is necessary to compute the weights outside of the chip.

Weight shift register: 64 weights of 10 bits each can be serially fed in using

SR W data and SR W clk lines. The last D-flip flop at the end of the shift register

has a readout, SR W639, for debugging.

Mixed precision multiplier: The 64 one-bit states of the reservoir are mul-
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tiplied by the 10-bit weights. One-bit multiplication is performed quite simply by

an AND gate.

Adder: The 64 outputs from the multiplier are then summed to produce a

16-bit binary output which goes to 16 pins on the chip.

Figure 6.7: Block diagram of the inference chips (Ernie, Freddie, and Gary). Each
box is a separately tested module. All of the logic was placed automatically using
Cadence tools, which made layout easy.

6.8 Automated Design Workflow

The design flow starts in Matlab, where a 64× 64 binary adjacency matrix is

randomly populated, describing how logic blocks inside of the reservoir connect to

each other. A simplified 3-block example is shown in figure 20. The configuration

in the matrix shown in figure 6.8 (a) is used to auto-generate Verilog code 6.8 (c)

describing the network 6.8 (b).

114



Figure 6.8: Network synthesis steps. (a) Is a randomly populated adjacency ma-
trix. (b) is a diagram representing the same information as in matrix A. (c) is the
equivalent Verilog code.

Cadence Genus was used for logic synthesis, translating the structural Ver-

ilog into synthesized Verilog describing the configuration using available standard

cells. As network configurations like this are very different from the synchronous

logic designs that these tools are typically used for, care was taken so that no log-

ical simplification would happen in this process (for example, synthesis tools may

simplify three inverters in a ring oscillator to only one inverter, as they are logi-

cally equivalent). Cadence Innovus was used for floorplanning the chip, placing and

routing the cells. Finally, the design was loaded into Cadence Virtuoso for manual

error-checking and DRC. Screenshots from Innovus and Virtuoso, respectively, are

shown in figure 6.9.

6.9 Current Progress

ASIC samples were received in late 2020. Due to the needs of other groups

with designs on the wafer, the top layer manufactured was a layer of vias which
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Figure 6.9: (a) Cadence Innovus takes synthesized Verilog files, auto-places standard
cells and auto-routes tracks between them. (b) The final design is imported into
Cadence Virtuoso for DRC.

are intended to connect the fifth and sixth metal layers. The sixth metal layer

was not manufactured. For this reason, post-processing of the wafer in the UMD

NanoCenter was necessary to deposit metal over the vias to create pads for wire

bonding. Effort in early 2021 to metallize the chips was only partially successful.

Several iterations of photomasks were made to expose only the pad areas; the final

photomask that allowed for easy alignment was made using iron oxide which is

transparent in the visible part of the spectrum but opaque to ultraviolet light. A

50nm titanium adhesion layer and 100nm of gold was deposited using the e-beam

evaporator. However, the deposited metal lifted off the chip easily during an attempt

at wire bonding, likely due to the presence of organic contaminants on the surface

of the wafer which was not adequately removed. The existing metal will need to be

etched off and the process attempted anew.

A printed circuit board for testing the chip, shown in figure 6.10, was designed

and manufactured. Each chip will be placed into a pin grid array (PGA) package
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which will be inserted into a zero insertion force (ZIF) socket. The test board,

shown in figure 6.10, routes each chip output to a coaxial connector. The chip’s

digital controls will come from a Teensy3 microcontroller, which will be inserted

into a socket directly on the board. A similar workflow that was developed for the

PCB described in Chapter 5 will be applied to testing the ASIC.

A group of chiplets positioned in a PGA package in the wire bonder is shown

in figure 6.11, and the same group of chiplets viewed through the wire bonder’s

microscope is shown in figure 6.12.

6.10 Looking Ahead

For future work, it would be advantageous to use an open standard cell library,

or even to design custom standard cells at the transistor level, so that waveforms

will be measurable and publishable without concern. At this stage of research, an

older process node and slower speed chips would only be advantageous, to allow for

higher-density sampling of waveforms and/or using less specialized lab equipment.

See Appendix A for all chip images, pinouts, and suggested connectivity in a

PGA package.

6.11 Conclusion

We designed and manufactured seven 180nm ASIC designs of reservoirs, which

await testing. Three of the seven can perform inference, while the other four are

3https://www.pjrc.com/teensy
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Figure 6.10: Printed circuit board for testing the ASIC.

only reservoirs with direct readouts from every node. While reservoir topology in

the ASIC is fixed, using control settings to change the logical function of each node

in the reservoir allows for some amount of reconfigurability. To mitigate the risk

of any one particular design not working well, a variety of designs with different

adjacency matrices, logic gate mixtures, and I/O configurations were manufactured

across the seven chips.

A highly efficient workflow was developed in MATLAB and Cadence tools to
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Figure 6.11: Chip inside of a PGA package situated in the wirebonder.

generate a complete chip layout from an adjacency matrix. If initial tests with

these chips are promising, many more chip configurations could be laid out in a

mostly-automated manner for further testing.
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Figure 6.12: A view of the chip through the microscope of the wirebonder in the
UMD Nano Center.
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Chapter 7: Reservoir Computing Applied to Particle Accelerator Beam

Trajectory Prediction

7.1 Overview

As part of this dissertation, we considered applications in which rapid time

series processing hardware could be used1. While tasks such as realtime phoneme

recognition may only require processing at the rate of human speech, other appli-

cations such as active control of dynamical systems need much higher prediction

rates.

Particle accelerators are used in a wide variety of research applications as well

as in industry and medicine. A challenge common to all accelerators is tracking

and measuring beam parameters as the beam evolves from its source, through a

long distance of beam pipe, to its final target. Diagnostics along this path are

only present in a limited number of fixed locations. Machine learning techniques

are gaining popularity to perform inference tasks such as ”virtual diagnostics,” or

estimation of what instruments would read in locations where they cannot be placed

[100].

In a particle accelerator, a particle bunch is confined in the beam pipe by a

1Portions of this chapter reproduced from Komkov et al. [27]
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periodic focusing system with linear restoring forces. However, nonlinearities arise

from a number of sources, including nonlinear magnets, nonidealities of physical

components, beam-beam effects, and Coulomb repulsion between the particles (an

effect known as space charge). These effects on the particle beam combine to create

a dynamical system for which no complete explicit model exists. Prediction of the

evolution of a particle beam can therefore be a challenge. In this chapter we use

a software-based reservoir computer to predict the transverse beam evolution of an

electron beam in the University of Maryland Electron Ring.

7.2 Accelerator Description and Simulation Setup

The University of Maryland Electron Ring (UMER) is a 10 keV storage ring

designed for the study of physics of high-current electron beams. UMER consists of

18 nearly identical sections 32 cm in length, each containing the same arrangement

of steering and focusing magnets as shown in figure 7.1. Each section consists of

dipole magnets, which steer the beam, and quadrupole magnets, which confine the

beam within the pipe. Diagnostics include imaging screens at regular locations

around the ring. The electron bunch current can be varied from 150µA to 80 mA,

with larger currents corresponding to stronger nonlinear forces due to space charge.

While imaging screens placed in the beam’s path are a destructive diagnostic,

they provide a wealth of information about the beam’s transverse characteristics.

UMER has 11 phosphor screens which can be inserted into the ring to intercept the

beam on its first turn. In 3 locations, an electrostatic deflector can kick the beam
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into a screen located to the side, allowing any turn to be visualized. More details

about UMER can be found in Kishek et al. [101] and Dovlatyan et al. [102].

The size of the electron beam is governed by the envelope equations:

x′′(s) + k2x(s)− 2Ksp

[x(s) + y(s)]
− ε2x
x3(s)

= 0 (7.1)

y′′(s) + k2y(s)− 2Ksp

[x(s) + y(s)]
−

ε2y
y3(s)

= 0 (7.2)

where k is the linear restoring force provided by quadrupoles, Ksp is the beam

perveance (space charge) parameter, and ε2x,y is the emittance, a pressure-like term

[103]. These are all constants set by the initial conditions of the beam and the

settings of magnets in the accelerator lattice.

The beam perveance, a dimensionless parameter proportional to the beam

current, determines the amount of the nonlinear Coulomb repulsion force in the

system, where Ksp = 0 is a purely linear system. For the simulations in this paper

a 0.6 mA beam with Ksp = 9.029× 10−6 is used.

The results here are from a physics-based simulation of UMER made in WARP,

a 3D particle-in-cell code for modeling plasmas and high current particle beams

[104]. Simulations are initialized with 10, 000 particles in a semi-Gaussian initial

beam distribution, and are checked to converge with increasing particle number.

Images of the transverse particle distribution at 288 evenly spaced locations

around the ring are extracted from WARP. While WARP tracks every particle indi-
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vidually, the images are purposely downsampled to 15x15 pixels as shown in figure

7.1 (b) for the sake of the reservoir speed. Each pixel represents a physical size of

about 400 microns. Pixel values are normalized to be between 0 and 1. Images are

generated at a close enough spacing to resolve centroid and envelope oscillations

around the ring.

Dipoles

Quadrupoles

Imaging Screens

Electron gun

Pipe Flange

Figure 7.1: A diagram of the University of Maryland Electron Ring (UMER).

In some accelerators, only the first turn can be visualized with a phosphor

screen. For that reason, we use only the first turn for training. A 4000-node reservoir

in MATLAB is trained on the first 288 images, which is the full first turn around

the ring, and generates predicted images with equal spacing in the next two turns,
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High Resolution (2048x2048) Downsized Resolution (64x64)

Figure 7.2: (left) A high resolution simulated beam profile from WARP image.
(right) A downsampled image used for predictions.

as shown in figure 7.2. To prevent overfitting, 2% noise is added to training data.

Results are generally observed to degrade with fewer nodes and not to improve

with more nodes. The value of each pixel is presented to a subset of nodes in the

reservoir determined by randomly initialized matrix Win. For each image in the

series, the output of the reservoir is trained to match the subsequent image to learn

the dynamics of the particle beam. The reservoir is then allowed to run freely for

prediction. The output layer is trained using least squares optimization.

The reservoir is sensitive to a variety of hyperparameters, including input

strength (the magnitude of values in Win), spectral radius (the size of the largest

eigenvalue of A), α (the memory parameter), regularization parameter (a parameter

that determines the amount of error allowed during training), reservoir size, and the

particular choice of adjacency matrix A. Reservoir size must be large in comparison

to dimensionality of input data, but there is no known way to optimize A other than

through trial and error. After A is fixed, the other hyperparameters are manually
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Figure 7.3: Training is done on the first turn, and the subsequent two turns are
predicted.

tuned until a satisfactory result is obtained. The reservoir is generated and the

result is computed in under a minute on a PC.

To flatten data from the image series, four parameters are extracted from

the predicted images: the centroid motion and beam size in both vertical and

horizontal planes. These are the first and second central moments of the images,

(µ01, µ10, µ20, µ02), and are calculated using the following equation:

µpq =
∑
x

∑
y

(x− x̄)p(y − ȳ)qI(x, y) (7.3)

where I(x, y) is the pixel intensity, x, y are the pixel locations, and p, q are the 2D

moment orders.

Centroid motion evolves in a semi-periodic fashion dictated by the magnetic

focusing lattice. The beam envelope, which evolves according to the envelope equa-

tions, is subject to substantial nonlinearities, and is aperiodic. Cross moments such

as µ11 can appear if there are rotational offsets in magnets, which cause x and y

motion to couple, but for these initial studies there is no skew in the magnets.
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Error Turn 1 Turn 2
µ10 1.6% 5.0%
µ01 5.4% 14.3%
µ20 21.1% 37.7%
µ02 37.5% 45.0%

Table 7.1: Average errors calculated between moments from simulations and mo-
ments from reservoir predictions, in the first and second predicted turns.

7.3 Results

The results, summarized in figure 7.4, show good agreement between predic-

tion and experiment, particularly in tracking the relatively regular centroid motion.

The beam envelope is subject to more nonlinear forces, and the reservoir’s error is

relatively higher, yet the general character of the time series is captured, with the

prediction closely matching the periodicity of the data from simulation. Error per-

centages for each turn are summarized in table 7.3. We plan to use measured data

as the initial conditions in a reservoir computer trained with simulated data and

compare the reservoir computer’s forecast to real measurements at available beam

imaging locations.

7.4 Conclusion

We have shown promising initial results for prediction of transverse electron

beam parameters using a reservoir computer in MATLAB, allowing beam properties

to be inferred in locations where they cannot be physically measured. Time series

forecasting using reservoir computing could be utilized in active control scenarios,
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in particle accelerators or other systems.
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Chapter 8: Conclusion

8.1 Summary

Reservoir computing in hardware leverages the computational properties of

dynamical systems at the edge of criticality for computation. A CMOS implemen-

tation is of interest because it has potential for seamless integration into modern

electronics manufacturing. In this thesis, we have explored Boolean network circuits

for reservoir computing using various hardware platforms, and we designed an ASIC

that awaits testing.

Using an FPGA-based Boolean reservoir described in Chapter 4, we demon-

strated RF waveform classification accuracy competitive with a state of the art con-

volutional neural network with an order of magnitude fewer trainable parameters.

We extensively probed the parameter space of network configurations using a con-

trol word to set node functions, and developed dataset-agnostic methods for rapidly

discarding unsuitable network configurations. This work is based upon designs in

[21] and published in [23].

In Chapter 5, we showed the design of a printed circuit board reservoir made

with discrete logic chips. While compared to the 2048 outputs of the FPGA there

were many fewer channels that could be simultaneously measured, we were able

130



to sample the analog waveforms with high density and measure a machine learning

improvement in a waveform classification task. Across Boolean network implementa-

tions in different platforms, we found consistent measurements of network behavior

including self-activity and transient time as a function of Boolean sensitivity. This

experiment awaits publication in [24].

The design of a reservoir computing ASIC is shown in Chapter 6, based on the

designs in patent application [25]. An efficient workflow for rapid chip layout using

Cadence tools was developed, and seven different chip designs await post-processing

and testing.

Finally, we showed a potential application of reservoir computing in doing

rapid time series prediction using data from the University of Maryland Electron

Ring. Training on time series from a simulation of a high-current electron beam

subject to nonlinear forces, we predicted the shape and trajectory of this beam as it

traveled around the storage ring, an experiment published in [27]. While this was a

software study, trajectory prediction is an example of an application that could be

accelerated in hardware with a Boolean network co-processor.

8.2 Future Vision

A free-running, unclocked Boolean circuit reservoir circuit can, within a time

scale on the order of a few transition times of the logic gates, perform massively

parallel recurrent neural network computations that would take a conventional CPU

or GPU substantially longer. There is potential to accelerate time series regression
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or classification tasks considerably.

However, an unclocked Boolean circuit reservoir would not be a general-purpose

neural network accelerator, nor would it be able to implement pre-trained models.

Due to the high sensitivity to device variations of these edge-of-chaos circuits, each

circuit would have to be separately trained.

On the other hand, use cases where rapid re-training is necessary are precisely

the niche that unclocked Boolean circuits fulfill. These applications include rapid

time series prediction, in which the reservoir computer must quickly train on the

first portion of a time series, and then perform a free-running prediction. Another

application is time series classification, including in rapidly changing environments.

Finally, the reservoir’s high speed and parallelism can also be used for static appli-

cations, although this does not fully take advantage of their temporal capabilities.

A specific example of a potential use case is the active control of tokamaks and

particle accelerators, both of which which need to abort their operation in advance

of destructive instabilities to avoid machine damage.

While we have demonstrated a few variants of unclocked Boolean circuits for

reservoir computing, reservoir optimization is still an active area of research—both

in hardware and in software. In the Boolean reservoir case, quantifying how much

information can be extracted from pulse timing versus analog voltages is open ques-

tion. Overall, the work done in this thesis is an encouraging step towards obtaining

more processing power from limited chip resources in a reservoir co-processor.
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Appendix A: ASIC Details
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Figure A.8: Overall placement of the chiplets on the wafer.
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