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Optoelectronic oscillators are nonlinear closed-loop systems that convert opti-

cal energy into electrical energy. We investigate the nonlinear dynamics of miniature

optoelectronic oscillators (OEOs) based on whispering-gallery mode resonators. In

these systems, the whispering-gallery mode resonator features a quadratic nonlin-

earity and operates as an electrooptical modulator, thereby eliminating the need for

an integrated Mach-Zehnder modulator. The narrow optical resonances eliminate

as well the need for both an optical �ber delay line and an electric bandpass �lter

in the optoelectronic feedback loop. The architecture of miniature OEOs therefore

appears as signi�cantly simpler than the one of their traditional counterparts, and

permits to achieve competitive metrics in terms of size, weight, and power (SWAP).

Our theoretical approach is based on the closed-loop coupling between the optical

intracavity modes and the microwave signal generated via the photodetection of the

output electrooptical comb.



In the �rst part of our investigation, we use a slowly-varying envelope approach

to propose a time-domain model to analyze the dynamical behavior of miniature

OEOs. This model takes into account the interactions among the intracavity modes,

as well as the coupled interactions with the radiofrequency (RF) microstrip. The

stability analysis allows us to determine analytically and optimize the critical value

of the feedback gain needed to trigger self-sustained oscillations. It also allows us

to understand how key parameters of the system such as cavity detuning or cou-

pling e�ciency in�uence the onset of the radiofrequency oscillation. Furthermore,

we determine the threshold laser power needed to trigger oscillations in ampli�er-

less miniature OEOs based on WGM modulators. This latter architecture, while

also improving on the size, weight, performance and cost (SWAP-C) constraints, is

intended to reduce noise in the system.

In the second part of our investigation, we use a Langevin approach to perform

a stochastic analysis of our miniature OEO. We propose a stochastic mathematical

model to describe the system dynamics and analyze the stochastic behavior below

threshold. We also propose a normal form approach for the noise power density and

the phase noise spectrum. Our study is complemented by time-domain simulations

for the microwave and optical signals, which are in excellent agreement with the

analytical predictions.

In the third part of our study, we discuss our preliminary results in the analysis

of the e�ects of dispersion in a microcomb oscillator with optical feedback. For this

purpose, we propose a closed-loop miniature optical oscillator. The output signal is

optically ampli�ed before being coupled back into the cavity using a prism coupling.



Using a Lugiato-Lefever approach, we propose a spatiotemporal nonlinear partial

di�erential equation to describe the dynamics of the total intracavity �eld. We

perform temporal and spatial analysis and derive the bifurcation maps in anomalous

and normal dispersion regimes.
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Chapter 1: General Introduction

1.1 Overview

Optoelectronic oscillators (OEOs) are microwave photonic systems that com-

bine an optical and electronic branch in a closed feedback loop (Fig. 1.1). They are

nonlinear, autonomous and dissipative systems. As long as the system satis�es the

Barkhausen conditon, it is expected to oscillate. The Barkhausen condition states

that in order to sustain steady-state oscillations, the gain of the amplifying element

must outweigh the losses, so that the loop gain inside the feedback loop must be at

least unity.

The concept of combining an electrical path to an optical path found its origin

in the late 1960s, when researchers noted that continuous-wave lasers where out-

puting an oscillatory optical output that needed to be stabilized. In that e�ort,

they realized that converting this output to an electrical signal and feeding it back

to the laser stabilized both the optical and radio-frequency signals [1, 2]. These

early concepts lacked controllability and tunability because the laser was used as

the source of nonlinearity. In 1977, Smith and Turner from Bell Labs proposed to

control the nonlinearity by using a lithium niobate (LiNbO3) crystal placed inside

a Fabry-Perot resonator [3]. The idea was to leverage on the nonlinear refractive
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Figure 1.1: Schematic of an optotelectronic oscillator. The system converts ligth
energy from a laser pump into electrical energy. The system can output signal in
both optical (∼ 50−500 THz) and electrical frequency ranges (∼ 0−100 GHz). The
time-delay corresponds to a round-trip time. The system is nonlinear, dissipative
and autonomous.

index in the LiNbO3 by feeding it back with a fraction of the output light from

the Fabry-Perot resonator. The resulting system showed bistability with respect to

the input laser power. In addition, the Fabry-Perot system requires a low optical

power for operation owing to its resonance. Its main drawbacks, however, are mainly

twofold: �rstly, the switching time is increased because the optical �eld needs time

to build inside the cavity; secondly, the re�ected light from the cavity may couple

back into the laser, and thus the system needs an optical isolator. These inconve-

niences were circumvented in 1978 when Garmire et al. showed that bistable optical

devices (BOD) with an electrical feedback do not require a Fabry-Perot resonator.

They replaced the resonator with a LiNbO3 waveguide modulator, thus opening the

door to multimode bistable optical devices [4, 5]. Okada et al. later showed that

LiNbO3 waveguide-based systems can also achieve multistability [6]. It is notewor-

thy to mention that simultaneously with Garmire et al., Feldman proposed in 1978

a bistable optical device architecture in which the Fabry-Perot resonator was re-
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placed by Pockels cells [7, 8, 9]. Although using LiNbO3 waveguides or Pockels cells

as modulators reduced the size of the system and allowed possible integration into

electronic chips, both systems required high operating voltage (∼ 50−100 V). This

issue was solved in 1979 when Ito et al. and Schnapper et al. introduced a LiNbO3

Mach-Zehnder modulator (MZM) as a low-operating voltage mean to control the

nonlinearity in a laser system with electrical feedback [8, 9]. A MZM typically has

an operating voltage of about ∼ 3− 15 volts.

The modern concept of optoelectronic oscillator can be traced back to 1994

when Yao and Maleki from the NASA Jet Propulsion Laboratory proposed an oscil-

lator where there was a continuous-wave (CW) laser feeding into a MZM [10]. The

optical output traveled through an optical �ber (a few km) before being converted

into an RF signal by a photodetector; this signal was ampli�ed and �ltered before

being fed back into the MZM. Figure 1.2 is the original schematic proposed by Yao

and Maleki. The idea of using an optical �ber and storing optical energy instead of

electrical energy allowed to improve the stability and purity of the microwave signal.

This multimode system exhibited bistable, oscillatory, or chaotic behavior, and was

used for ultrapure microwave generation. This system became subsequently known

as an optoelectronic oscillator (OEO).

Since the work of Yao and Maleki, OEOs have become the focus of many

research activities, and are some of the most studied systems in microwave photonics.

They are used to study the properties of nonlinear time-delayed systems [11]. They

also have technological applications, such as optical chaos communication and radar-

frequency generation, just to name a few [12]. The aim of this chapter is to give
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only free parameter. The solid line in Fig. 2 is achieved with 8 = 
0.75 and shows excellent agreement with the measurements for 
aMz. 

‘MZ 

eter B of an MZ modulator is presented. Theory and experiment 
have shown good agreement. In the example presented, the MZ 
modulator has a chirp of 4 = 0.75, which is reasonable for this 
type of modulator. 
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W experimental results 
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Conclusions: Based on known theory about the a parameter of 
MZ modulators [2] and using the measurement method for it [5], a 
simple and accurate method for the evaluation of the chirp param- 

High frequency optical subcarrier generator 

X.S. Yao and L. Maleki 

Indexing terms: Elertro-optical devices, Oprical modulation 

The authors descnbe an electro-optical oscillator capable of 
generating high stability optical signals at frequencies up to 
70GHz. Signals as high as 9.2GHz were generated with an optical 
wavelength of 1310nm using the oscillator, and a comb of stable 
frequencies was produced by modelocking the oscillator. 

In advanced photonic analogue communication systems, high fre- 
quency optical suhcamer generation is essential for photonic sig- 
nal up and down conversions [I]. In this Letter, we report a novel 
optical subcarrier generator, called an electro-optic (E/O) oscilla- 
tor, that is capable ofgenerating an up to 70GHz (limited by the 
speed of E/O modulator and photoreceiver) high stability optical 
subcarrier. By modelocking the oscillator, a comb of stable high 
frequencies can also be generated. 
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Fig. 1 Construction of electro-optic modulator 

The E/O oscillator [2] is described in Fig. 1. Light from one of 
the output ports of the modulator is detected by the photodetector 
and then is amplified, filtered. and fed hack to the electrical input 
port of the modubator. If the modulator is properly biased and the 
open loop gain of the feedback loop is properly chosen, self-elec- 
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tro-optic oscillation will start. Because both optical and electrical 
processes are involved in the oscillation, both optical and electrical 
signals will be generated simultaneously. 

We built two such E/O oscillators using two different moduba- 
tors. In the first oscillator. the Mach-Zehnder modulator has a 
bandwidth of 8GHz and a half-wave voltage V, of -17V. It has 
an internal bias control circuit that automatically sets the modula- 
tor bias at 50% of the transmission peak. The photoreceiver has a 
bandwidth of 12GHz and a responsivity of -0.35AiW. The ampli- 
fier has a total electrical power gain of 50dB. a bandwidth of 
5GHz centred around 8GH2, and an output IdB compression of 
20dBm. The input and output impedances of all electrical compo- 
nents in the loop are 50R.  The loop length is -9m. 

Studies [3] have shown that depending on the biasing point of 
the modulator, the E/O oscillator may he bistable, oscillatory, or 
chaotic. However, the E/O modulator used above has a fixed bias 
point that cannot be adjusted. To investigate the effect of bias 
point on the EJO oscillator, we built another E/O oscillator with a 
modulator that has an independently controlled bias electrode. 
However, this modulator is slower ( 1  GHz bandwidth) and has a 
half-wave voltage of -10V. 
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Fig. 2 Generated 9.22Hz oscillation observed on an RF spectrum analyser 

With the first E/O oscillator, we demonstrated in the laboratory 
the first high frequency electro-optic oscillator that generated an 
optical subcarrier and the accompanying electric signal up to 
9.2GHz, using a diode pumped YAG laser at 1310nm. The gener- 
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Figure 1.2: First optoelectronic design proposed by Yao and Maleki in 1994 [10].
System consists of optical source that is pumped into a modulator. Optical output
travels through an optical �bre before detection by a photodiode; the electrical out-
put is then ampli�ed and �ltered before being fed back into the modulator through
an RF electrode.

an introduction to the topic of OEOs and lay the foundations to understand the

work presented in the following chapters. Therefore, this chapter is organized as

follows: Section 1.2 will introduce the notion of broadband OEOs, while Sec. 1.3 will

present the narrowband counterparts. Section 1.4 will discuss some technological

applications of OEOs. The motivation for our research will be exposed in Sec. 1.5,

and Sec. 1.6 will present the outline of this thesis.

1.2 Broadband Optoelectronic Oscillators

Broadband OEOs have a broad bandpass that is the result of the overlap

between the MZM bandwidth and the photodiode (PD) and the �lter bandwidths.

The bandwidth range of such systems is typically in the gigahertz (GHz) range.

Broadband OEOs can be used to investigate a wide variety of complex phenomena

ranging from multistability to chaos. In this section we will introduce the theoretical

concepts needed to model time-delay systems and we will present the mathematical

equation governing the delay dynamics of broad bandpass OEOs.
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1.2.1 Modeling Ikeda-like OEOs

Delayed systems are systems in which the dynamics at a given instant t de-

pends on the state of the system at an anterior time t − T , where T is the time

delay. Ikeda-like OEOs feature a nonlinear function, a time-delay, a linear gain and

a linear �lter inside a closed-loop feedback. If we de�ne x(t) as the signal variable,

then the delayed signal is x
T

= x(t − T ), with t ∈ [−T, 0]. Using a signal process-

ing approach in the Fourier domain, we can de�ne the input-output relationship in

Ikeda-like systems as

X(ω) = H(ω)βF
NL

(ω)e−iωT , (1.1)

where X(ω) is the Fourier transform of x(t), β is the linear gain of the ampli�er, F
NL

is the Fourier transform of the nonlinear function f
NL

[(x(t)], and H(ω) is Fourier

transform of the impulse response to the linear �ltering done on the nonlinear input

signal f
NL

[(x(t)] [13]. Applying H−1(ω) to both sides of Eq. (1.1) and taking the

inverse Fourier transform yields the following time-domain equation

Ĥ{x(t)} = βf
NL

[x
T
], (1.2)

where Ĥ{x(t)} is a linear integrodi�erential operator. Equation (1.2) is an Ikeda-like

equation [1].
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1.2.2 Broad Bandpass Filter OEOs

Broad bandpass �lter OEOs are characterized by the fact that the low and

high cut-o� frequencies are very distant one from each other. As such, the broad

bandpass can be viewed as a combination of a high-pass and low-pass �lters with

respective low and high cuto� frequencies fL, and fH. Let τ and θ de�ne respectively

the high and low cuto� response times of the broad bandpass OEO de�ned as

τ =
1

2πf
H

(1.3)

θ =
1

2πf
L

. (1.4)

Broad bandpass OEOs can be modeled as Ikeda-like equations in the form of Eq. (1.2)

as [12, 27]

Ĥ{x(t)} ≡
(

1 +
τ

θ

)
x+ τ ẋ+

1

θ

∫ t

t0
x(s)ds = βf

NL
[x

T
]. (1.5)

Very often, f
L
� f

H
, so that we use the approximation (1 + τ/θ)x ' x. This system

has only one �xed point which is globally stable for small feedback gain but loses

its stability and enters bifurcation as the gain is increased [12, 15].

1.3 Narrowband OEOs

The �ltering process in both the broadband and narrowband OEOs is done in

the RF branch. However, unlike their broadband bandpass counterparts, narrow-
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band OEOs have a very narrow bandwidth, which makes the system highly frequency

selective and suitable for the generation of ultrapure microwave signals. In this sec-

tion, we will discuss the evolution of the narrow-band OEOs' architecture. We will

segment this evolution in three generations, according to the improvement towards

meeting the constraints of size, weight and power (SWAP). We will also introduce

the theoretical framework to describe the deterministic dynamics of narrowband

OEOs.

1.3.1 Early Architectures

Although the idea of optoelectronic oscillator can be traced back as early as the

late 1960s, the most popular architecture of OEO was proposed in 1994 by Yao and

Maleki [10, 16, 17]. This design, presented in Fig.1.2, modeled the �rst generation

of narrowband OEO and consisted of three main components performing each a

particular function: a MZM modulator for the system's nonlinearity; a few km-long

optical �ber for optical energy storage; and a RF �lter for bandwidth selection.

At this date, this system is well understood and mathematical models have been

derived to describe its dynamics, mostly using an Ikeda-like approach [18, 19]. Using

commercial-o�-the-shelf (COTS) components permits to achieve remarkable phase

noise performances, down to a record −163 dBc/Hz at 6 kHz o�set from a 10 GHz

carrier [37]. The main advantage of this �rst generation of narrowband OEO is a

low-phase noise; however, the main drawback is their bulkyness (mainly due to the

length of the optical �ber), their heavyness, and their energy-greed due to many

7



components.

The second-generation of OEOs was then proposed by Volyanskiy et al., in

2010 [44]. It improved on the previous designs by replacing both the delay-lines and

electric bandpass �lters with whispering-gallery mode (WGM) resonators, which

are low-loss dielectric cavities capable of trapping photons for long durations via

total internal re�ection [38, 39, 40, 41, 42, 43]. This is a few millimeter-sized-

radius microcavity capable of performing the lightwave storage and RF �ltering

because of the narrow bandwidth of the resonator modes. Therefore, because they

could perform both photon storage and narrowband �ltering in the linear regime,

millimetric or sub-millimetric WGM resonators have been successfully inserted on

OEO loops, and they have permitted a signi�cant reduction of the oscillators in

terms of size � see for example refs. [44, 45, 46, 47, 48, 49, 50, 51, 52, 53]. In

2013, Coillet et al., proposed a deterministic model to study the dynamics of this

system [47], and Nguimdo et al., proposed a stochastic model to study the phase

noise in 2015 [50]. While the size of this type of narrowband OEO was signi�cantly

reduced from the �rst generation, they still required a modulator for the nonlinearity.

Miniature optoelectronic oscillators based on a whispering gallery-mode mod-

uator are the third generation of OEOs. They were �rst introduced by Matsko et

al., in 2003 [54], and feature a simpler architecture in which the modulator, optical

�ber and RF �lter are all replaced by a WGM resonator with a RF cavity strip.

This system can achieve ultrapure microwave generation owing to the high photon

storage capability of the resonator coupled to its narrow bandwidth. In addition

to having one component perform the nonlinearity, optical storage and RF �lter-

8



ing, this system o�ers the best SWAP performance for OEOs [55]. Despite these

advantages, there is a lack of understanding of the nonlinear interactions inside the

microcavity and in the feedback loop.

1.3.2 Modeling Delayed-based Narrowband OEOs

As mentioned in section 1.3.1, the dynamics of delay-based narrowband OEOs

is well understood today. A deterministic model for the temporal behavior of these

systems has been introduced in 2007 [18]. The particularity of this model is that

it is derived from the Ikeda-like equation of the broadband OEOs in Eq. (1.5) by

rede�ning the characteristic timescale variables τ and θ as

τ =
1

∆Ω
(1.6)

θ =
∆Ω

Ω2
0

, (1.7)

such that the dynamics of narrowband OEO can be described as below:

Ĥ{x} ≡ x+
1

∆Ω
ẋ+

Ω2
0

∆Ω

∫ t

t0
x(s)ds = βf

NL
[x

T
], (1.8)

where Ω0 = 2πF0 is the angular central frequency of the RF �lter and ∆Ω = 2π∆F

is its narrow bandwidth. The variable x(t) varies rapidly and the ratio between the

fastest and slowest timescales is generally high (Ω0/∆Ω ≈ 100). Therefore, Eq. (1.8)

is not suitable to study the dynamics of narrowband OEOs. We can instead de�ne

a slowly-varying complex envelope A(t) for the modulated signal x(t). Only signal
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frequencies that are close to the RF �lter central frequency Ω0 will carry through

the closed-loop because of the �lter narrow bandwidth. Therefore, we can represent

x(t) as a signal of central carrier frequency Ω0 modulated by A(t) as

x(t) =
1

2
A(t)eiΩ0t +

1

2
A∗(t)e−iΩ0t, (1.9)

where A = |A|eiφ is the slowly-varying complex envelope. If the MZM nonlinearity

can be expressed as f
NL
≡ cos2 (x

T
+ ψ), the slowly-varying complex envelope A

obeys

Ȧ = −A− 2µγe−iσJc1[2|A
T
|]A

T
, (1.10)

where µ ≈ ∆Ω/2 is the e�ective half-bandwidth of the RF �lter, σ = Ω0T is

the microwave round-trip phase, γ = β sin 2φ is the e�ective gain of the feedback

loop, and Jc1 = J1(x)/x is the Bessel-cardinal function. A stability analysis of

the delay narrowband OEOs using the slowly-varying complex envelope model of

Eq. (1.10) was done in [19]. The results showed that the microwave signal has a

single �xed point which is globally stable for gain |γ| < 1. Beyond this threhold gain

value, the signal undergoes a primary Hopf bifurcation and oscillates with constant

amplitude; a secondary Hopf bifurcation (Neimark-Sacker bifurcation) occurs as we

further increase the gain, and the signal operates in torus-shape with oscillations

with two constant amplitudes. As we increase even more the loop gain, the system

becomes chaotic.
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1.4 Applications of Optoelectronic Oscillators

Optoelectronic oscillators can output signal in both optical (∼ 50− 500 THz)

and electrical frequency ranges (∼ 0 − 100 GHz), and as such they have found

numerous applications in lightwave and microwave technology. In this section, we

will mainly discuss their application in ultrapure microwave generation. We will also

brie�y discuss other applications such as optical communication, analog computing,

and sensing.

1.4.1 Ultrapure Microwave Generation

The main application of narrowband OEOs is ultrapure microwave genera-

tion [1]. Ultrapure microwaves are needed in mobile telecommunications, where

they are used as carriers to be modulated by information-bearing signals. They are

also useful in radar and lightwave technology, where the signal frequency needs to

be of high accuracy. Time-frequency metrology is another area where ultrapure mi-

crowave can be used to measure time and frequency with precision, calibrate systems

for high resolution, or as reference oscillators in clock-driven systems. In microwave

photonics, ultrapure microwave are used to study the intractions between microwave

and optical signals.

1.4.2 Other Applications

Chaos synchronization and communications is one of the othe main applica-

tions of broadband OEOs, which are used to embed a signal in a chaotic optical
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carrier, and retrieve the signal via chaos synchronizaton. Chaotic systems are very

sensitive to initial conditions and are unpredictable in the long term. This prop-

erty can be used to encode information in the physical layer with chaotic laser

light [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30].

Reservoir computing is an emerging �eld at the intersection of microwave

photonics and electronics. It builds on the promise of computing at light speed.

OEOs seem a good candidate to achieve this goal because they combine an optical

and electrical path. Moreover, broadband OEO can process a large amount of

information, and their nonlinearity make them good candidate for machine learning

applications such as neuromorphic photonic computing [31, 32, 33, 34, 35, 36].

Narrowband OEOs are highly frequency-selective, and as such can act as op-

tical sensor. In that con�guration, the modulation of their signal output (temper-

ature, pressure,...) is a result of the detection. OEOs sensors have been used to

detect magnetic �eld and refraction index, load and strain, temperature and pres-

sure; they have also been used for distance, rotation and vibration sensisng, as well

as multiphysics sensing [1].

1.5 Motivation for this Work

Miniature OEOs based on WGM modulators couple a microwave strip cavity

to a WGM resonator with χ(2) nonlinearity, which can then play the role of an elec-

trooptical modulator and eliminate the need for its Mach-Zehnder equivalent [54].

In this case, the three tasks of photon storage, narrowband �ltering and nonlinearity
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can be performed by the WGM resonator.

The main interest of this approach is that it e�ectively leads to the best SWAP

performance for OEOs. However, to the best of our knowledge, there is no theoretical

model available to analyze the nonlinear dynamics and stability of miniature OEOs.

Indeed, understanding the dynamical behavior of miniature OEOs requires an anal-

ysis of the electrooptical conversion phenomena that are taking place in a WGM

cavity pumped by both a resonant laser and coupled to a RF strip cavity pumped

by a microwave signal. These intracavity processes, which involve microwave and

optical photons interacting quantum-mechanically, are the fundamental phenomena

enabling the concepts of electrooptical WGM modulators [61, 62, 63, 64, 65] and

ultra-sensitive microwave photonic receivers [66, 67, 68, 69, 70, 71, 72, 73, 74] .

Most works related to electrooptical WGM resonators are restricted to the

three-modes operation involving the pump, signal and idler modes. A noteworthy

exception is for example the work of Ilchenko et al. in ref. [65], where they analyzed

the intracavity dynamics for an arbitrary number of modes. The multimode analysis

is indispensable for the understanding and characterization of the miniature OEO,

as these cascaded intracavity interactions contribute to the saturation nonlinearity

in the feedback loop, thereby de�ning the amplitude of the stationary microwave

and lightwave oscillations.

Microwave purity is generally de�ned by phase noise. However, there is no

analysis available to understand how the optical and electrical noise sources in the

optoelectronic loop of the miniature OEO are converted into microwave phase noise.

Such an analysis is indispensable to gain a deep understanding of the metrological
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performances of this oscillator. To this e�ect, a Langevin approach has been used

with remarkable success for �ber-based OEOs, where it was shown that it can pro-

vide an excellent agreement with experimental phase noise spectra [50, 93, 95, 99].

The objective of this thesis is therefore to study the deterministic and stochas-

tic behaviors of miniature OEOs based on WGM modulators; in particular, we want

to propose mathematical frameworks accounting for all nonlinear interactions in

miniature OEOs based on electrooptical WGM modulators. We also aim at per-

forming the temporal and spatial stability analyses, and determine the conditions

leading to improve the system stability and microwave purity.

1.6 Thesis Outline

This work is organized as follows: In Chapter 2 we discusss the time-domain

dynamics of the open-loop WGM electrooptical modulators. The analysis of the

open-loop system is a necessary preliminary to the study of its closed-loop coun-

terpart. Chapter 3 introduces the closed-loop feedback and proposes a full-time

deterministic model accounting for the intracavity dynamics. We will also investi-

gate the stability conditions of the closed-loop system as well as its optimization.

In Chapter 4, we use a Langevin approach to derive the stochastic model describ-

ing the noisy dynamics of the miniature OEO with random noise; we investigate

the stochastic behavior below threshold and propose a normal form aproach for

stochastic analysis and phase noise analysis. Chapter 5 introduces a new topic as

we present our preliminary results in the analysis of a closed-loop miniature optical
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oscillator based on whispering-gallery mode resonator. We use a Lugiato-Lefever

approach and then perform the spatiotemporal analysis to determine the conditions

leading to spatial bifurcations. We conclude by sharing some �nal remarks and

future perspectives in Chapter 6.
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Chapter 2: Whispering-Gallery Mode-Based Modulators

2.1 Introduction

In the previous chapter we have discussed traditional optoelectronic oscilla-

tors. These systems have been studied thoroughly and mathematical models have

been derived to describe their dynamics. The main disadvantage of such systems

is their bulkiness, so that a new and smaller system using whispering-gallery mode

resonators as modulators has been proposed. WGM resonators have applications

in modern nonlinear optics, where they create high nonlinear responses to weak

electromagnetic �eld [57].

In this chapter we will propose a time-domain mathematical model to de-

scribe the dynamics of the WGM electrooptic modulator. The chapter is organized

as follows: Section 2.2 will present the Mach-Zehnder modulator whish is the most

common type of modulators used in optoelectronic oscillators. In Sec. 2.3, we will

present the components of the new system. This section will present the whispering-

gallery mode resonator and its main characteristics. Section 2.4 will introduce the

WGM electrooptic modulator system. Section 2.5 will present the quantum equa-

tions for the system while Sec. 2.6 will discuss the classical formalism of the dynam-

ics' equations. In Sec. 2.7, we will analyze the optical and microwave output �eld
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Figure 2.1: Intensity modulation using a Mach-Zehnder interferometer. Source:
ref. [12].

as well as the transmission functions. Section 2.8 will then present some numerical

simulations before concluding in Sec. 2.9.

2.2 Mach-Zehnder Electro-Optic Modulator

The Mach-Zehnder modulator (MZM) is the most known type of electro-optic

modulator. In this section we will describe the system and present some of applica-

tions of Mach-Zehnder interferometers.

2.2.1 System

The Mach-Zehnder modulator is an interferometer made from a material that

features strong electro-optic e�ect (such as LiNbO3) so that an applied electric �eld

causes a change in the refractive index, resulting in intensity modulation [12, 100].

A light beam that goes into the modulator is divided into two equal parts which

are routed into two di�erent optical paths. The �rst optical path applies an electric
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�eld to create a phase modulation of the incoming signal, while the second path

applies an electric �eld to create a phase shift to the light amplitude. The signals

from the two paths are then recombined to yield an intensity-modulated output

signal de�ned as [12]

Pout = P
in

cos2

[
πV (t)

2VπRF

+
πVB

2VπDC

]
, (2.1)

where Pin (Pout) is the input (output) power; VπDC
and VπRF

are the half-wave volt-

ages, VB is the DC bias voltage and V (t) is the input voltage.

2.2.2 Techonological Applications of Mach-Zehnder Interferometers

MZ interferometers have many applications in optical communication [100].

It may be used in optical sensing where the change in output signal is induced by

the measurand; it can also be used in optical communication as an optical add-

drop multiplexer (OADM) for �ber-based optical networks [100, 101]. Another

application in optical communication is as an optical switch for ultrafast signal

processing; this is achieved by creating a phase di�erence while passing the signal

through the two branches of the MZI [100, 103, 104]. Finally, the Mach-Zehnder

interferometer can be used as a modulator (as described in Subsec. 2.2.1) for high-

speed optical communication. As such, they de�ne the bandwidth and minimize

the e�ect of dispersion, thus increasing the performance of high speed �bre-optic

communication systems [1, 100].

Although the MZM is used in most OEOs for electrical to optical conversion
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Figure 2.2: Ray of light propagating inside WGMR through TIR. Here ` = 10 .
Source: ref. [58].

and nonlinearity, it is relatively bulky and only performs one the three main tasks

completed by an OEO (nonlinearity), thus leaving the need for other components

in the system. Therefore there is a need for a new type of modulator that operates

in a di�erent way.

2.3 Components of the WGM-Based Electro-Optic Modulator

The system under study consists of a laser source which emits photons in the

IR light spectrum; the optical photons are then trapped in a whispering-gallery

mode cavity while also �ltering the photon frequency. The output �ux of photon

is then detected by a photodiode, converted into a RF signal and ampli�ed before

being analyzed. In this section, we will present the di�erent components and give

an overview of how they operate.
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2.3.1 Whispering-Gallery Mode Resonator

The term whispering-gallery mode was �rst used by Lord Rayleigh in 1896 [56]

to explain a phenomenon by which one could hear a whisper across the other side of

the dome of St Paul's cathedral in London. Lord Rayleigh used a ray interpretation

to explain the total internal re�ection (TIR) of the acoustic waves across the internal

periphery of the dome. A whispering-gallery mode resonator is a microcavity that

serves the purpose of optical resonator because photons are trapped inside the cavity

by TIR where they complete round trips [57, 58]. Figure 2.2 shows a light ray

trapped inside a WGM cavity with ` = 10. The number of roundtrips is proportional

to the loss property of the material used to manufacture the WGM.

2.3.1.1 Eigenspectrum and Eigenmodes

AWGM is has an eigenspectrum which satis�es the following Helmholtz equa-

tion:

[
∆ +

(
ωµ
c

)2

ε(r)

]
Υµ(r) = 0, (2.2)

where ωµ is the eigenfrequency associated with the eigenmode Υµ(r) and ε(r) is the

spatially dependent permittivity. µ is a quadruplet of eigennumbers {`,m, n, p},

of which ` is the most important and represents the azimuthal eigennumber. It is
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Figure 2.3: (a) Right: 3D representation of a WGMR cavity with l = 30 modes,
n = 1 and l − |m| = 0. Right: 2D representation of the same dielectric cavity.
(b) Examples of 2D transverse �eld distributions for di�erent radial and polar
eigennumbers n and m. Source: ref. [42].

associated with the resonance condition

2πang = `λµ, (2.3)

where a is the radius of the resonant cavity, ng is the group velocity index of the ma-

terial, and λµ is the wavelength associated with the eigenfrequency. Equation (2.3)

imposes that the number of TIR (optical path) in a round trip inside the WGMR

must be an integer multiple of the wavelength. The polar eigennumberm is bounded

as | m |≤ 1 and is such that the condition `−|m|+1determines the number of nodes

in the perpendicular direction relative to the equatorial plane of the resonant cavity.

The radial eigennumber m determines the number of lobes in the radial direction,
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Figure 2.4: WGMR is coupled to the light source through evanescent coupling.
(a) Coupling through prism. (b) Waveguide side coupling. (c) Waveguide tip-
coupling. Source: ref. [90].

while the eigennumber p is the polarization which is either TM or TE. Figure 2.3

shows a WGM cavity with ` = 30 modes. As a convention, a family of modes is

de�ned by a �xed n, m and p, with a varying `. Moreover, a WGM microcavity is

characterized by three main parameters: the loss factor Q, the free spectral range

(FSR) ΩR, and the nonlinearity.

2.3.1.2 Quality Factor

The Q-factor or loss factor of a WGMR is a dimensionless parameter used to

quantify the capacity of that resonator to keep phtons inside it dielectric walls. It

is de�ned by the intracavity loss Qi and the extrinsic (excitation, coupling) loss Qe,

which are de�ned as (refs. [38, 57, 58, 91])

Qi,e =
ω0

2κi,e

, (2.4)

where ω0 is the resonant frequency of the WGMR at mode `0, and κi,e is the intrinsic

(respectively extrinsic) half-linewidth contribution of the resonance. The intrinsic
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loss corresponds to the uncoupled WGMR; it is a fabrication parameter of the

resonator, and is characterized by the intracavity volumic loss (Qvol), the loss due

to surface scattering (Qsurf), and the radiative loss (Qrad). Qi is therfore de�ned as

Q−1
in = Q−1

vol +Q−1
surf +Q−1

rad, (2.5)

We note here that the radiative loss Qrad varies with the eigenmode ` and

is quasi-in�nite for ` � 1; as a result, its contribution to the intracavity loss is

negligible [39, 57, 91]. Qe on the other hand occurs when the resonator is coupled

to the light source. This is achieved through evanescent coupling [Fig. 2.4]. We

therefore de�ne the loaded Q-factor as

Q−1 = Q−1
i +Q−1

e , and (2.6)

Q =
ω0

∆ω
= ω0τph , (2.7)

where ∆ω is the linewidth of the optical resonance around ω0, and τph is the photon

lifetime inside the cavity. The three regimes of coupling are undercoupled (Qe < Qi),

overcoupled (Qe > Qi), and critically coupled (Qe = Qi).

WGM resonators have high quality factors because re�ection loss and photon

absorption can be very low. The linewidth ∆ω is the bandpass frequency of the

output signal. Equation (2.7) shows that as Q increases, ∆ω decreases, leading to

signals of high spectral purity. Q-factors of WGM resonators can be as high as 1010

at 1550 nm with a linewidth of the order of 100 kHz for Q ∼ 109 [47, 57, 58]. The
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choice of the materials and the shape of a microcavity often a�ects its Q-factor.

Table 2.1 shows the Q-factor of some material and resonator shape.

2.3.1.3 Free-Spectral Range

The FSR is the distance in optical frequency between two successive spectral

lines generated in an optical resonator. It is expressed as [57, 58]:

ΩR =
c

ang
=

2π

TR

, (2.8)

where a is the radius of the resonator, ng is the group velocity index of the material,

and TR is the photon round-trip time. We note that the FSR is inversely proportional

to the radius of the resonator and inversely proportional to the photon round-trip

time.

2.3.1.4 Nonlinearity

The nonlinear behavior of whispering-gallery mode dielectric cavities is a re-

sult of the high Q-factor coupled with the high photon density. It is caused by the

Shape of resonator Material Q-factor

Sphere silica 108�109

Torus silica 108

Truncated spheroid CaF2 1011

Truncated spheroid MgF2 108

Truncated spheroid LiNbO3 > 108

Table 2.1: Measured Q-factor for various material and resonator shape. The Q-
factor varies according to the fabrication material and resonator shape. Source:
ref. [58, 59, 60]
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resonant enhancement of the low nonlinear interactions in the resonator. The non-

linearities in the fabrication material arise from various sources such as the thermal

dependence of the index of refraction, or its electric dependence. The work in this

thesis focuses on the latter, so that this subsection will expand only on it.

The electro-optic e�ect is an optical property through which the refraction

index of some material can be modi�ed by applying an electric �eld E [12]. Assuming

a scalar electric �eld, the Taylor expansion of the dependence of the refraction index

n(E) is given as

n(E) = n0 +

[
dn

dE

]
E=0

· E +
1

2

[
d2n

dE2

]
E=0

· E2 +O(E3), (2.9)

Where only the �rst and second terms of the Taylor expansion are written explicitely.

Our work assumes linear nonlinearity, which means the refraction index depends on

the sign of E. This nonlinearity is called the Pockels e�ect [12, 38, 57, 58], and χ(2)

denotes the second-order susceptibility of the material. The work in this chapter

and the subsequent chapters of this thesis characterize the conditions under which

the χ(2) nonlinearity in miniature OEOs may induce second-harmonic generation

and optical oscillations.

2.3.2 Photodiode

A photodiode is an electronic component that converts optical energy into

electrical energy. Upon absorption of the photons, a photocurrent is generated

and provides an output signal. The photodiode is generally characterized by its
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responsivity R in the unit A/W. If we couple the responsivity to a transimpedence

ampli�er with gain g in the unit V/A, we can then characterize the photodiode by

its conversion factor S which determines the electrical power following the equation

Vout(t) = SVin, (2.10)

where Vin is the optical signal to the PD and Vout is the electrical signal. S = Rg is

in the unit volts per watt (V/W).

2.3.3 Radio Frequency Ampli�er

A radio frequency (RF) ampli�er is an electronic component that ampli�es a

low power RF signal. It has some nonlinearity that is often disregarded, and its

main characteristic is the gain G, used to de�ne the output voltage through the

following relationship:

Vout = GVin. (2.11)

The RF gain is futher de�ned as the product of the gains and attenuations

(losses) in the system, so that we may write G = GAGL. The main disadvantage of

an RF ampli�er is that it also ampli�es the noise in the system; therefore, our work

will investigate the conditions to have an ampli�erless OEO.
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Laser
PD

Cin

Ain Aout Popt,out

Figure 2.5: WGM-based electro-optic modulator. Ain and Cin are the optical and
microwave pump �eld. Aout is the output photon �ux; PD: Photodiode.

2.4 WGM-Based Electro-Optic Modulator System

In this section we will introduce the WGM-based electro-optic modulator. We

will also discuss the parameters that were used to analyze the system.

2.4.1 System

The WGM modulator under study is displayed in Fig. 2.5. The WGM res-

onator is a lithium niobate (LN) disk of main radius a, that is used as a resonant

electrooptical modulator. This modulator has an optical input, an RF input, and

an optical output. The optical input is a telecom laser signal at power P
L
with

wavelength λ
L
' 1550 nm, and the corresponding angular frequency is ω

L
= 2πc/λ

L
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with c being the velocity of light in vacuum. The WGM resonator has a free-spectral

range that can be determined as Ω
R

= c/ang = 2π/T
R
, where ng is the group ve-

locity index of the lithum niobate at the pump wavelength, and T
R
is the photon

round-trip time in the optical cavity. The WGM cavity has a loaded quality factor

de�ned as

Q =
ω

L

2κ
, (2.12)

where κ = κi + κe is the loaded half-linewidth of the resonances at telecom wave-

length, while κi = ω
L
/2Qi and κe = ω

L
/2Qe correspond to the intrinsic and extrinsic

(i.e., coupling) contributions, respectively [42].

The WGMs of the resonator that are involved in this process belong to the

same mode family. Therefore, they can be unambiguously labelled by their az-

imuthal order `. Since the pumped mode has an azimuthal order `0, it is useful

to introduce the reduced azimuthal order l = ` − `0 so that the WGMs involved

in the system's dynamics can now be symmetrically labeled as l = 0,±1,±2, · · ·,

with l = 0 being the pumped mode which has a resonant frequency ω0. The pump

frequency ω
L
is very close to the resonant frequency ω0 of the pumped mode, the

detuning factor σ being de�ned as

σ
A

= ω
L
− ω0. (2.13)

It is convenient to introduce the normalized optical detuning α de�ned as

α = −σA

κ
, (2.14)
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which is such that resonant pumping translates to |α| ≤ 1.

The RF strip resonator coupled to the WGM disk has a resonance frequency

that matches the FSR of the optical cavity. It has a loaded quality factor Q
M
de�ned

as

Q
M

=
Ω

R

2µ
, (2.15)

where µ is the half-linewidth of the loaded RF cavity resonance. The microwave

input with power PM has a frequency Ω
M
very close to Ω

R
, with the RF detuning

factor σ de�ned as

σ
C

= Ω
M
− Ω

R
. (2.16)

Here also, we de�ne the normalized RF detuning ξ as

ξ = −σC

µ
, (2.17)

which is within the resonance when |ξ| ≤ 1.

The second-order susceptibility χ(2) of the lithium niobate crystal is a nonlin-

earity that mediates the coherent interaction between the microwave photons h̄Ω
M

fed to the RF strip cavity and the optical photons h̄ωl circulating inside the WGM

cavity. At the photon level, the intensity of this nonlinear interaction is weighted by

a normalized coupling parameter g ∝ χ(2), which has the dimension of an angular

frequency [65, 70, 74, 75]. Interestingly, the ratio between the energy of the optical

photons comparatively to their microwave counterparts is approximately equal to

their azimuthal eigenumber ` ' ωl/ΩR
, which would be here of the order of a few
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thousands.

The output optical signal of the WGM resonator is an electrooptical frequency

comb whose intermodal frequency is an RF signal corresponding to the FSR of the

cavity. This comb is sent to a photodetector (with sensitivity S), that retrieves

this beating intermodal frequency and outputs a microwave signal, which may be

subsequently ampli�ed before being analyzed. The two main tasks to undertake are

now (i) to build a time-domain model to describe the dynamics of this oscillator,

and (ii) to determine the optical and microwave transmission functions.

2.4.2 Parameters

Unless otherwise stated, we will consider the following parameters for our

system throughout this chapter, without loss of generality: P
L

= 1 mW; λ
L

=

1550 nm; Ω
R
/2π = 10 GHz; S = 20 V/W; g/2π = 20 Hz; Qi = 5 × 107 and

Qe = 107 (this de�nes all the κ coe�cients); Q
M

= Ω
R
/2µ = 100; and �nally, the

RF line is impedance-matched with the modulator input electrode with Rout = 50 Ω

and µi = µe = µ/2.

2.5 Quantum Formalism

2.5.1 Phenomenology

The interactions inside the WGM generator involve microwave photons of en-

ergy h̄Ω
R
, and and optical photons of energy h̄ωl. As explained in Fig. 2.6, the

second-order susceptibility χ(2) mediates two di�erent processes in the resonator.
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(b) Photon downconversion
Energy

diagram

ℏ𝜔0 + ℏΩR → ℏ𝜔1 ℏ𝜔−1 → ℏ𝜔−2 + ℏΩR
Absorbed

microwave photon

Emitted

microwave photon

Figure 2.6: Frequency-domain representation of photonic up- and down-conversion
in a WGM resonator with χ(2) nonlinearity. These two processes can be leveraged
to translate microwave energy to the optical domain inside the WGM resonator.
When belonging to the same family, the eigenmodes of the resonator with free-
spectral range Ω

R
are quasi-equidistantly spaced as ωl ' ω0 + lΩ

R
, where l = `− `0

is the reduced azimuthal eigenumber, and ω0 is the pumped resonance. (a) Photonic
upconversion (stimulated): An infrared photon annihilates a microwave photon and
is upconverted as h̄ωl + h̄Ω

R
→ h̄ωl+1. (b) Photonic downconversion (stimulated or

spontaneous): An infrared photon emits a microwave photon and is downconverted
as h̄ωl → h̄ωl−1 + h̄Ω

R
.

The �rst one is parametric upconversion following h̄ωl + h̄Ω
R
→ h̄ωl+1. This inter-

action is always stimulated, i. e., it can only occur when the WGMR is RF-pumped.

The second process is parametric downconversion, following h̄ωl → h̄ωl−1 + h̄Ω
R
.

This downconversion can be either stimulated (does only occur in presence of RF

pumping) or spontaneous (does always occur regardless of RF pumping), with both

processes having di�erent microwave photon production rates.

2.5.2 Hamiltonian Equations

The interaction between optical and microwave photons is best decribed from

the quantum-mechanical view point. In that framework, the intracavity �elds are

described by the annihilation operators âl for the optical modes and ĉ for the mi-

crowave �eld, as well as by the corresponding creation operators â†l and ĉ†. All these
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operators commute, except [âl, â
†
l ] = 1 and [ĉ, ĉ†] = 1. The operators n̂

l
= â†l âl and

n̂
C

= ĉ†ĉ stand for the photon numbers in the optical and microwave �elds, respec-

tively. The optical and microwave input signals are treated as quantum coherent

states [76].

The total Hamiltonian of the open-loop system can be explicitly de�ned as

Ĥtot = Ĥint + Ĥfree + Ĥpump (2.18)

where

Ĥint = h̄g
∑
m

{ĉ âmâ†m+1 + ĉ†â†mâm+1} (2.19)

is the interaction Hamiltonian corresponding to the quadratic nonlinearity of the

WGM resonator,

Ĥfree = h̄σ
C
ĉ†ĉ + h̄σ

A

∑
m

â†mâm (2.20)

is the free Hamiltonian corresponding to the cavity frequency detunings, and

Ĥpump = ih̄
√

2κe(Ainâ
†
0 −A∗inâ0) + ih̄

√
2µe(Cinĉ

† − C∗inĉ) , (2.21)

is the Hamiltonian that accounts for the optical and microwave pump �elds Ain and
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Cin, which are de�ned as

Ain =

√
P

L

h̄ω
L

and Cin =

√
P

M

h̄Ω
M

. (2.22)

We can therefore compute the total Hamiltonian in Eq. (2.18) and use it to de-

rive the time-domain equations describing the interactions between the optical and

microwave photons.

2.5.3 Time-Domain Equations

We can now use the total Hamiltonian Ĥtot to obtain the following equations

for the annihilation operators in the Heisenberg picture:

˙̂al =
1

ih̄
[âl, Ĥtot] +

∑
s=i,e

{
− κsâl +

√
2κs V̂s,l

}
= −κ(1 + iα)âl − ig(ĉâl−1 + ĉ†âl+1) + δ(l)

√
2κeAin

+
√

2κi V̂i,l +
√

2κe V̂e,l (2.23)

˙̂c =
1

ih̄
[ĉ, Ĥtot] +

∑
s=i,e

{
− µsĉ +

√
2µs Ŵs

}

= −µ(1 + iξ)ĉ− ig
∑
m

â†mâm+1 +
√

2µe Cin

+
√

2µi Ŵi +
√

2µe Ŵe , (2.24)

where the temporal vacuum �uctuations associated with losses have been explicitly

introduced using the operators V̂i,l (V̂e,l) for the intrinsic (extrinsic) optical losses

for the mode l, and Ŵi (Ŵe) for the intrinsic (extrinsic) microwave losses, respec-

tively. These operators have zero expectation value and obey the commutation rules
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[V̂s,l(t), V̂
†
s′,l′(t

′)] = δs,s′ δl,l′ δ(t − t′) and [Ŵs(t), Ŵ
†
s′(t
′)] = δs,s′ δ(t − t′), with the V̂

and Ŵ operators uniformly commuting as well.

2.6 Semi-Classical Formalism

2.6.1 Motivation

The quantum formalism is required when certain phenomena such as sponta-

neous parametric down conversion need to be investigated in depth. In our system,

we are only interested in the macroscopic and deterministic behavior of these intra-

cavity �elds, and therefore, only the stimulated e�ects are of interest. In that case,

the approach where the �elds are treated semiclassically is appropriate and provides

su�cient accuracy.

2.6.2 Slowly-Varying Envelope Approach

Passing from the quantum to the semiclassical model corresponds to transfor-

mations where the creation and annihilation operators are transformed into complex-

valued, slowly-varying envelopes variables, following âl → Al, â†l → A∗l , ĉ→ C, and

ĉ† → C∗. By analogy to the photon number operators â†l âl and ĉ†ĉ, the real-valued

quantities A∗lAl ≡ |Al|2 correspond to the number of optical photons in the mode l,

while C∗C ≡ |C|2 is the number of microwave photons in the RF strip cavity. Both

these photon number quantities are dimensionless, and so are Al and C. However,

one should note that while Al and C are cavity �elds, the input �elds Ain and Cin

are propagating �elds: They are such that |Ain|2 and |Cin|2 correspond to photon
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�uxes (i. e., number of photons per second) entering the modulator when the optical

and microwave input powers are P
L
and P

M
, respectively. Therefore, the unit of the

input �elds Ain and Cin is s−1/2.

In our analysis, we are only interested in the deterministic dynamics of the in-

tracavity �elds, and therefore we can disregard the quantum �uctuations (along with

any other stochastic in�uence). Consequently, the quantum Eqs. (2.23) and (2.24)

can now be rewritten under the following semiclassical form:

Ȧl = −κ(1 + iα)Al − ig[CAl−1 + C∗Al+1] + δ(l)
√

2κeAin (2.25)

Ċ = −µ(1 + iξ)C − ig
∑
m

A∗mAm+1 +
√

2µe Cin , (2.26)

where the new dynamical variables of the system are the complex-valued cavity �eld

envelopes Al and C, of respective carrier frequencies ωL
+ lΩ

R
and Ω

R
. This equation

ignores the time delay from the detector to the electroptic modulator because it is

negligible in comparison to the cavity photon lifetime τ
ph
.

2.7 Output Fields and Transmission Functions

In this section we have a discussion on the derivation and e�ects of the output

optical and microwave �elds, as well as their transmission functions.
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Figure 2.7: Output optical and microwave power of the �rst harmonic as a function
of the detuning between the laser pump frequency and the WGMR's resonant pump
frequency. (a) As α approaches 0, almost all the emitted light goes into the WGMR
and Popt,out0 approaches 0. (b) A small fraction of the emitted light is detected by
the PD ans converted into RF signal. Fig. 2.7(a) is computed with Eq. (2.29), and
Fig. 2.7(b) is computed with Eq. (2.33).

2.7.1 Output Optical and Microwave Field

The output optical �elds are expressed as

Aout,l = −Ain δ(l) +
√

2κeAl . (2.27)

for each mode l, and the total output �eld is

Aout =
∑
l

Aout,l e
ilΩ

R
t . (2.28)

Note that Aout is a propagating �eld like Ain (and not a cavity �eld like Al), and

consequently, its square modulus |Aout|2 is also a photon �ux with units of s−1. The

corresponding optical output power in units of watts is

Popt,out = h̄ω
L
|Aout|2 (2.29)
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As far as the microwave output power is concerned, we note that an in�nite-

bandwidth photodetector would output a RF signal proportional to the incoming

optical power, and we can write

V
PD

(t) = SPopt,out = h̄ω
L
S|Aout|2 , (2.30)

where V (t) is in volts, while S is the sensitivity of the photodiode in units of V/W.

The generated microwave would be a multi-harmonic signal, and would feature

spectral components of frequency n × Ω
R
, with n = 0, 1, 2, . . . The voltage output

of the photodiode can therefore be Fourier-expanded as

V
PD

(t) =
1

2
M0 +

+∞∑
n=1

[
1

2
Mn exp(inΩ

R
t) + c.c.

]
≡

+∞∑
n=0

V
PD,n(t) , (2.31)

where c.c. stands for the complex conjugate of the preceding terms, and

Mn = 2h̄ω
L
S
∑
m

A∗out,mAout,m+n (2.32)

is the complex slowly-varying envelope corresponding to the microwave spectral

component VPD,n(t) of frequency n × Ω
R
(in volts). The microwave power for the

harmonic of frequency n× Ω
R
can then be evaluated as

Prf,0 =
|M0|2
4Rout

and Prf,n =
|Mn|2
2Rout

for n ≥ 1 , (2.33)

where Rout is the characteristic load resistance in the RF branch.
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Figure 2.8: Optical power transmission of the �rst three harmonics. The maximum
power of the �rst harmonic approaches 1. The transmission power is computed with
Eq. (2.34).

The optical and microwave output power give us a pro�le of the input laser

power that goes inside the WGMR cavity as a function of the alignment between

the laser pump frequency and the WGMR's resonant frequency of the pumped

mode. We note that when the laser frequency is perfectly aligned with the resonant

frequency mode of the WGMR (i.e α = 0), almost all the pumped photons go inside

the WGMR cavity. As a result, the output optical �ux drops sharply [Fig(2.7)(a)]

and only a small fraction of the emitted photons is photodetected and converted

into RF signal, causing a decrease in Prf1 [Fig(2.7)(b)].

2.7.2 Optical and Microwave Transmission Function

The optical and microwave power transmission give us a pro�le of dependance

of the optical harmonics and output microwave powers on the input microwave pump

power.
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Figure 2.9: Normalized microwave power transmission versus input microwave power
P

M
. Higher transmission is achieved at lower input cavity �eld . The transmission

output power is computed with Eq. (2.35).

The optical power transmission coe�cient of the modulator is de�ned as

|Topt|2 =
Popt,out

Pin

= h̄ω
L

|Aout|2
P

L

(2.34)

We note that |Topt|2 ∈ [0, 1]. In comparison, the transmission coe�cient for

a typical Mach-Zehnder electrooptical modulator is de�ned instead as |Topt|2 =

Pout/Pin = cos2[x + φ] ∈ [0, 1], where x and φ are the suitably normalized RF and

bias voltages.

In this work, we only computed the optical power transmission of the �rst

3 harmonics [Fig. 2.34]. The normalized maximum power of the �rst harmonic

approaches unity. The microwave power transmission coe�cient of the modulator

is de�ned as

|Trf |2 =
Prf1,out

Pin

=
|M1|2

2RoutPM

(2.35)

We note that higher transmsission of the Prf,out signal is achieved at lower micowave
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Figure 2.10: Demodulated microwave power versus input microwave power P
M
. The

absolute value of the demodulated RF signal is about 20 dB less than the input
microwave power. The demodulated power is computed with Eq. (2.33).

input �eld [Fig. 2.35]. The normalized maximum power of the �rst harmonic is less

than unity.

Finally, we see from Fig., 2.10, that the absolute value of the demodulated RF

signal is about 25 dB less than the input microwave power.

2.8 Numerical Simulations

In this section we will present the time-domain simulations of the intracavity

number of photons as well as the voltage inside the microwave RF strip. All simu-

lations were performed using a fourth-order Runge-Kutta algorithm on Eqs. (2.25)

and (2.26). We used a �xed time-step that is proportional to the smallest time-scale

of the system. For the purpose of the simulations presented in this chapter, the

�xed step is κe/60.
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Figure 2.11: Number of photons inside the cavities of a WGMR. Simulations were
made for N = 3 modes and few photons initially. As time increases, more photons
are found in the sidemode cavities, with an equal distribution between modes l =| l |.
| A−1 |2 is overshadowed by | A1 |2. This graph is computed from Eqs. (2.25) and
(2.26).

2.8.1 Optical Modes Temporal Dynamics

Simuations of Eq. (2.26) shows that when the system is excited with an input

photon �ux Ain and microwave photon �ux Cin, the sidemodes also get excited so

that the number of photons in modes l = −1, 1 becomes higher than that of the

central mode; furthermore, the photons are equally distributed between the modes

| l | of the optical cavity [Fig. 2.11].

2.8.2 RF Cavity Temporal Dynamics

We may also gain a better insight into the open-loop dynamics of the mi-

crowave by looking at the voltage in the resonator strip Vcav instead of the microwave

�eld C. This voltage is calculated as:

Vcav =

√
2Routh̄ΩM

TR

| C | . (2.36)
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Figure 2.12: Voltage inside the resonator strip. Simulation was carried for N = 3
modes and few photons initially. As time increases, the microwave volatge increases
to a steady value determined by Eq. (2.36).

Because the microwave and optical �leds dynamics are coupled, the �nal value

of Vcav depends on both the optical (Ain) and microwave (Cin) pump �elds [Fig. 2.12].

We also note from Eq. (2.36) that the microwave voltage is inversely proportional

to the square root of the photon round-trip TR.

2.9 Conclusions

In this chapter we have introduced the fundamental concepts needed to un-

derstand our model. We have presented the whispering-gallery mode resonator and

the WGM-based elctro-optic modulator system. We have proposed a deterministic

model that allows us to understand the dynamics of the system. In particular, we

presented a quantum approach followed by its semi-classical formalism. We also de-

rived the output optical and microwave �elds and transmission functions. Finally,

we presented some numerical simulations to validate our model.

The next chapter will focus on the closed-loop dynamics of such system that

corresponds to the situation where the microwave output signal is fed back into

the WGMR. The resulting system is a miniature optoelectronic oscillator based on
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whispering-gallery mode modulator. We will focus on determining and optimizing

the parameters that lead to the sustained oscillations of this type of OEO.
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Chapter 3: Miniature Optoelectronic Oscillators

3.1 Introduction

In the previous chapter we derived a deterministic model to describe the dy-

namics of a whispering-gallery mode-based electro-optical modulator. We started

with the quantum formalism and derived the semi-classical equivalent. In this chap-

ter, we will study the closed-loop system that results when the microwave output

signal is fed back into the whispering-gallery mode modulator; such system is a

miniature optoelectronic oscillator based on the WGM modulator. The objective

of this chapter is therefore to propose a full time-domain model accounting for all

nonlinear interactions in miniature OEOs based on electrooptical WGM modula-

tors. We also aim at performing an analytical stability study that will permit the

determination of the threshold value of the feedback gain beyond which self-starting

oscillations are triggered.

This chapter is organized as follows. Section 3.2 is devoted to the description

of the miniature OEO under study. The time-domain equations governing the dy-

namics of the miniature OEO are derived in Sec. 3.3. Section 3.4 presents some

numerical simulations of the temporal dynamics of the system. The stability anal-

ysis to determine the threshold gain for the self-oscillations is presented in Sec. 3.5
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Figure 3.1: Comparison between the architectures of conventional and miniature
OEOs. The optical paths are in red, and the electric paths in black. Polariza-
tion controllers between the lasers and the modulators are generally necessary, but
have been omitted here for the sake of simplicity. (a) Conventional OEO. MZM:
Mach-Zehnder modulator; DL: Delay line; PD: Photodiode; PS: Phase shifter; BPF:
Narrowband bandpass �lter; Amp: RF ampli�er. (b) Miniature OEO. WGMR:
Whispering-gallery mode resonator; The other acronyms are the same as in (a).
Note that in the miniature OEO, the WGMR is a single component that replaces
the MZM, the DL and the BPF in the conventional OEO.

and the optimization analysis is led in Sec. 3.6. Section 3.7 analyzes the important

case of ampli�erless miniature OEOs. The last section concludes the chapter.

3.2 System

While the most common type of OEOs feature a time-delayed feedback, we

will present and analyze a miniature OEO based on WGM modulator.

3.2.1 Conventional OEO

The �rst generation of OEO is displayed in Fig. 3.1(a). It features a light

source, a modulator to enhance the optical nonlinearity, an optic �ber for optical

energy storage, and a �lter for spectral purity. The length of the optic �ber incurs
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a time delay and is inversely proportional to the FSR.

Recalling Sec. 1.3 of Chapter 1, the dynamics of the microwave oscillations in

a time-delayed OEO may be investigated with Eq. (1.9). Using the assumption that

the ratio between the fastest and slowest time-scale of narrowband OEOs is too big

(Q
RF
≈ 100), we can also describe the microwave dynamics with Eq. (1.10). This

latter equation is known as the slowly-varying complex envelope dynamics.

The analysis of time-delayed OEOs is computationally intensive and requires

delay-based algoritghm. Moerover, such systems are very bulky because of the

long delay line and additional electronic components. Therefore, there is a need to

investigate other technologies that may bypass the time-delay and be of smaller size.

One such technology is the miniature OEO based on a WGM modulator.

3.2.2 Miniature OEO based on WGM modulator

The miniature OEO under study is displayed in Fig. 3.1(b). The WGM res-

onator is a lithium niobate (LN) disk of main radius a, that is used as a resonant

electrooptical modulator. This modulator has an optical input, an RF input, and

an optical output. The optical input is a telecom laser signal at power P
L
with

wavelength λ
L
' 1550 nm, and the corresponding angular frequency is ω

L
= 2πc/λ

L

with c being the velocity of light in vacuum. The WGM resonator has a free-spectral

range that can be determined as Ω
R

= c/ang = 2π/T
R
, where ng is the group ve-

locity index of the lithum niobate at the pump wavelength, and T
R
is the photon

round-trip time in the optical cavity.
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As a reminder from Subsec. 2.4.1 in Chapter 2, we consider the reduced az-

imuthal order l = `− `0 so that the WGMs involved in the system's dynamics can

now be symmetrically labeled as l = 0,±1,±2, · · ·, with l = 0 being the pumped

mode which has a resonant frequency ω0. The pump frequency ω
L
is very close

to the resonant frequency ω0 of the pumped mode, the normalized detuning being

equal to α = −(ω
L
− ω0)/κ (Eqs. 2.13 and 2.14).

The RF strip resonator coupled to the WGM disk has a resonance frequency

that matches the FSR of the optical cavity. It has a loaded quality factor Q
M
de�ned

in Eq. 2.15. The microwave input with power PM has a frequency Ω
M
very close to

Ω
R
, with normalized RF detuning factor ξ = −(Ω

M
− Ω

R
)/µ (Eqs. 2.16 and 3.7).

The two main tasks to undertake are now (i) to build a time-domain model

to describe the dynamics of this oscillator, and (ii) to perform the stability analysis

of this model in order to determine the threshold gain leading to the self-oscillatory

behavior.

Unless otherwise stated, the parameters of our system are the same as in

Chapter 2 and are, without loss of generality: P
L

= 1 mW; λ
L

= 1550 nm; Ω
R
/2π =

10 GHz; S = 20 V/W; g/2π = 20 Hz; Qi = 5×107 and Qe = 107 (this de�nes all the

κ coe�cients); Q
M

= Ω
R
/2µ = 100; and �nally, the RF line is impedance-matched

with the modulator input electrode with Rout = 50 Ω and µi = µe = µ/2.
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3.3 Model

In this section we will build on the open-loop model described in Chapter 2 to

derive the full-time domain model describing the deterministic dynamics of minia-

ture OEO based on WGM modulators. We use a slowly-varying envelope approach.

3.3.1 Open-Loop Semi-Classical Model

Recalling Eqs. (2.25) and (2.26) from Chapter 2 and using semi-classical for-

malism, the open-loop model of our system can be written as

Ȧl = −κ(1 + iα)Al − ig[CAl−1 + C∗Al+1] + δ(l)
√

2κeAin (3.1)

Ċ = −µ(1 + iξ)C − ig
∑
m

A∗mAm+1 +
√

2µe Cin , (3.2)

where the dynamical variables of the system are the complex-valued cavity �eld

envelopes Al and C, of respective carrier frequencies ωL
+ lΩ

R
and Ω

R
. The variables

Ain =
√
PL/h̄ωL and Cin =

√
PM/h̄ΩM are respectively the optical and microwave

pump �elds.

3.3.2 Closed-Loop Model

The miniature OEO corresponds to the closed-loop system where the output

microwave signal of the photodetector is used to feed the RF electrode of the WGM

electrooptical modulator. In order to mathematically describe this physical proce-

dure, we assume that only the fundamental toneM1 [see Eq. (2.32)] with frequency
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Ω
R
of the photodetected optical signal is fed back to the RF electrode of the mod-

ulator, while the DC and higher-harmonic tones are �ltered out. In order to close

the oscillation loop, the corresponding voltage signal is subsequently ampli�ed and

phase-shifted before being injected in the RF electrode of the electrooptical mod-

ulator. The envelope of the normalized microwave signal at the input port of the

WGM modulator is now de�ned as

Cin,OEO = ΓeiΦ[2Rout h̄Ω
R
]−

1
2M1 , (3.3)

where Γ ≥ 0 is the real-valued dimensionless feedback gain, which is controlled by

an RF ampli�er just after the photodiode. All the loop losses are lumped into the

feedback term Γ as well (including the portion of the RF signal that is outcoupled

for technological utilization, but excluding the strip and WGM resonator losses).

We can therefore express the gain as

Γ = GAGL , (3.4)

where GA (≥ 1) is the RF ampli�er gain, while GL (≤ 1) is the loss factor of the

electric branch. The parameter Φ stands for the microwave rountrip phase shift,

that can be adjusted to any value (modulo 2π) using the in-loop RF phase shifter.

By replacing Cin by Cin,OEO in Eq. (3.2), we obtain the closed-loop model for
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the miniature OEO as

Ȧl = −κ(1 + iα)Al − ig[CAl−1 + C∗Al+1] + δ(l)
√

2κeAin (3.5)

Ċ = −µ(1 + iξ)C − ig
∑
m

A∗mAm+1

+ΓeiΦ η
{

2κe

∑
m

A∗mAm+1 − Ain

√
2κe(A∗−1 +A1)

}
, (3.6)

where the dimensionless constant

η = 2h̄ω
L
S

√
1

2Rout

2µe

h̄Ω
R

(3.7)

is a characteristic optoelectronic parameter of the oscillator (' 3.5 × 10−3 in our

case). Obviously, this e�ciency coe�cient η is larger when the photodetector sen-

sitivity S is increased; it increases as well when Ω
R
is decreased, that is, when

the resonator is enlarged. This is due to the fact that the electrical energy yields

more microwave photons when their individual energy quantum is lower. This phe-

nomenology indicates that high-Q mm-size WGM resonators, which are character-

ized by GHz-range FSRs, are the most suitable form that perspective.

The reader can note that the overall electrical gain of the feedback loop is in

fact the parameter β de�ned as

β = ηΓeiΦ. (3.8)

This parameter weights the e�ciency of the process that retrieves microwave en-

ergy from the output electrooptical comb generated by the WGM modulator via

photodetection, and feeds it back as an electrical signal inside the RF strip cavity
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Figure 3.2: Amplitude of the closed-loop microwave signal at α = 0.5, with Vcav

being the voltage inside the RF resonator strip. The results were simulated using
Eqs. (3.5) and (3.6). (a) Γ = 10. (b) Γ = 12.

of the modulator. Also note that since our input optical �eld Ain is real-valued,

we can drop the calligraphic notation and simply write it as Ain: it means that we

have arbitrarily set its phase to 0, and as a consequence, the optical phase to all the

intracavity �elds Al is determined with regard to the pump laser �eld.

3.4 Numerical Simulation of the Temporal Dynamics

Unless otherwise stated, all simulations of Eqs. (3.5) and (3.6) presented in

this chapter were performed using a fourth-order Runge-Kutta algorithm with a

�xed time-step that is κe/20.

3.4.1 Voltage inside the RF Resonator Strip

Equations (3.5) and (3.6) govern the dynamics of the miniature OEO, and

permit to undertake a complete theoretical analysis of that closed-loop system. In

particular, they allow us to achieve a deep understanding of the system's temporal

dynamics via numerical simulation as the gain Γ is varied. Figure 3.9 displays
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numerical simulations performed with the fourth-order Runge-Kutta algorithm, and

we have considered a total of 41 modes (l = −20, . . . , 20). The initial conditions

are set such that there are a few photons in the optical modes and in the RF cavity

(|Al(0)|2 ∼ |C(0)|2 ∼ 1), and the �eld variables have random phases. The laser

detuning is set at α = 0.5, and the loop phase shift is Φ = 0. Figure 3.9(a) shows

a low microwave signal when the gain Γ = 10; this signal eventually decays to 0.

On the other hand, Figure 3.9(b) shows a growing microwave signal at Γ = 12; such

signal eventually settles to a non-zero equilibrium value. We note here that the

change of behavior we observe is an evidence of the existence of a critical gain Γcr,

beyond which our system oscillates at a constant amplitude.

3.4.2 Optical and Microwave Output Power

Analogously to Eq. (2.22), we can determine that the microwave photon �ux

after the photodetector is Prf,1/h̄Ω
R
, where Prf,1 is the power of the fundamental

tone as de�ned in Eq. (2.33).

From the technological perspective, it is useful to note that the output optical

signal (electrooptical comb) of the miniature OEO is proportional to Aout, while the

microwave output signal is proportional toM1. In the later case, the RF power at

the output of the photodiode is Prf,1, while the microwave power of the signal after

the ampli�er is

Prf,out = h̄Ω
R
|Cin,OEO|2 = Γ2 |M1|2

2Rout

= Γ2Prf,1 , (3.9)
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and it corresponds to the maximal RF power generated in the miniature OEO

feedback loop.

Figure 3.3 displays numerical simulations performed with the fourth-order

Runge-Kutta algorithm, and we have considered a total of 41 modes (l = −20, . . . , 20).

The parameters are the same as in Subsec. 2.4.2, and the initial conditions are the

same as in Subsec. 2.8 The top row displays the time-domain dynamics of some

output optical modes Popt,out,l, described by the equation below:

Popt,out,l = h̄ω
L
|Aout,l|2, (3.10)

where Aout,l is de�ned in Eq. (2.27). We have numerically observed, as expected,

that the dynamics of a given mode l is of the same order of magnitude (but not

identical) to the one of its mirror mode −l: for that reason, we have only plotted

the modes l ≥ 0 in order to avoid crowding the �gures with redundant plots. The

bottom row displays the temporal dynamics of the RF signal at the output of the

ampli�er, i. e. Prf,out as de�ned in Eq. (3.9).

For the chosen parameters, numerical simulations asymptotically yield a non-

null value for the pumped mode l = 0, but a null amplitude for the sidemodes l 6= 0

when Γ < 10.97, leading to a null RF output as well. Once the feedback gain Γ is set

to a value higher than 10.97, the sidemodes dynamics eventually leads to constant

non-zero amplitudes, and an RF signal is generated. We have not observed here

metastable (unusually long) transient behavior as it can sometimes be the case in

conventional OEOs (see ref. [77]).
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When Γ = 12, Fig. 3.3(a) shows that the pumped mode becomes depleted and

exchanges energy with the modes l = ±1, which subsequently settle to a non-null

constant value. The dynamics of the other sidemodes (|l| ≥ 2) is still negligible at

this point. As shown in Fig. 3.3(d), this process generates a RF signal at the same

timescale, with Prf,out ' 0.04 mW. When the gain is increased to Γ = 20 [Fig. 3.3(b)],

the energy exchange from the pump to the sidemodes is more pronounced, and

eventually leads to the situation where the output power in the sidemodes l = ±1

is higher than the one in the pumped mode l = 0 (note however that these are

output �elds, and not intracavity �elds). The sidemode pair l = ±2 starts to have a

noticeable amplitude as well. The RF signal dynamics displays a transient behavior

qualitatively similar to the one of the optical modes, before settling to a steady-

state value Prf,out ' 0.3 mW [Fig. 3.3(e)]. As shown in Fig. 3.3(c), further increase

of the gain to Γ = 40 leads to higher complexity in the pump-to-sidemode power

conversion, so that the sidemode pair l = ±3 starts to display sizable oscillations

as well. Accordingly, the RF signal settles to a higher value with Prf,out ' 0.9 mW

[Fig. 3.3(f)].

Several trends can be outlined in the OEO dynamics as the feedback gain Γ is

increased. We can �rst observe that the output optical modes always have a power

that is of the order of the laser pump (here, P
L

= 1 mW), and that the bene�t of

increasing the feedback gain is to improve the conversion e�ciency from the pump

to the sidemodes (up to a certain extent). The top row consistently shows the exci-

tation of additional pairs of sidemodes as the gain is increased, thereby con�rming

that the WGM resonator plays the role of a dynamical frequency converter. The
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Figure 3.3: Time domain dynamics for the optical and microwave power, obtained
via the numerical simulation the model presented in Eqs. (3.5) and Eqs. (3.6) for
α = 0.5 and Φ = 0. The di�erent columns correspond to di�erent values of the
feedback gain. The top row displays the temporal dynamics of some output optical
modes Popt,out,l = h̄ω

L
|Aout,l|2, while the bottom row displays the temporal dynamics

of the microwave signal Prf,out = Γ2|M1|2/2Rout at the output of the RF ampli�er.
The critical value of the gain below which there is asymptotically no sidemode and
RF oscillation is Γcr ' 10.97.

second observation is that while the optical power is only redistributed amongst the

side modes, the RF power steadily increases with the gain. The third observation

is that when the gain becomes larger, the transient dynamics is shortened while re-

maining in the µs timescale (set by the κ photon loss rates). However, this shortened

transient dynamics induces pronounced, sharply peaked relaxation oscillations. In

the next sub-section, we will investigate the stability properties of our time-domain

model and de�ne the conditions under which self-starting oscillations are triggered

in the miniature OEO.
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3.5 Stability Analysis and Threshold Gain

When Γ is very low, conventional wisdom from self-oscillators theory (con-

�rmed by our numerical simulations in Subsection 3.4.1) suggests that none of the

sidemodes with l 6= 0 is excited. However, as the gain is increased, there should

be a critical value Γcr beyond which self-sustained oscillations are obtained, with

asymptotic values C 6= 0 and Al 6= 0. The objective of this section if to �nd Γcr

analytically.

3.5.1 Trivial Equilibrium Points

When the gain parameter Γ is null, the system receives no RF excitation and

the steady state solution of Eqs. (3.5) and (3.6) can be straightforwardly derived as

C = 0 and Al =


√

2κe
κ(1+iα)

Ain if l = 0

0 if l 6= 0

. (3.11)

This solution is the trivial equilibrium of our oscillator, and it corresponds to

a situation where only the central mode l = 0 is excited. Our objective is to study

the stability of this trivial equilibrium.

3.5.2 Pertubation Analysis

In order to determine the linear stability of the trivial �xed point of Eq. (3.11),

we need to �nd the Jacobian of the �ow corresponding to Eqs. (3.5) and (3.6). We
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achieve this by applying a pertubation Al + δAl and Cl + δC to our system. If

we consider an electrooptical comb with 2N + 1 sidemodes, the variables of the

perturbation �ow are δAl with l = −N, · · · , N and δC, such that the dimensionality

of the resulting �ow is 2N+2 and the Jacobian around the trivial solution is an (2N+

2)× (2N +2) complex-valued matrix. However, one can note that the perturbations

δAl with |l| ≥ 2 are of second order and do not in�uence the eigenvalue spectrum

of this Jacobian. This is due to the fact that the �rst sidemodes to be excited in

electrooptical combs are necessarily the ones adjacent to the pumped mode, with

l = ±1, and from there the comb sequentially grows �outwards� in the frequency

domain. In other words, the sidemodes l = ±2,±3,±4, · · · are excited through

a cascaded mechanism that require the modes l = ±1,±2,±3, · · · to be excited

beforehand. This phenomenology is similar to the one observed in WGM OEOs with

Mach-Zehnder modulators (see ref. [47]), but quite di�erent from the one observed in

Kerr comb formation where the �rst modes to be excited via modulational instability

are not necessarily adjacent to the pumped mode [42, 78].

Along with the perturbations δAl with |l| ≥ 2, the perturbation δA0 of the

pumped mode is also irrelevant for the stability analysis, because it is a neutrally

stable with a null eigenvalue. Therefore, stability analysis is drastically reduced

from 2N + 2 to 3 perturbation variables, namely δA−1, δA1 and δC, which obey the

linearized autonomous �ow

δȦ∗−1 = −κ (1− iα) δA∗−1 + igA∗0δC (3.12)

δȦ1 = −κ (1 + iα) δA1 − igA0δC (3.13)
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δĊ = −µ (1 + iξ) δC +
[
(2κeβ − ig)A0 − β

√
2κeAin

]
δA∗−1

+
[
(2κeβ − ig)A∗0 − β

√
2κeAin

]
δA1 , (3.14)

where A0 is explicitly de�ned via Eq. (3.11), while β = ηΓeiΦ is the overall gain

parameter in the electrical branch. The Barkhausen phase condition for autonomous

oscillators imposes that β should be real-valued, i.e. the phase shifter should be set

such that Φ = 0 or π (modulo 2π) � as we will see later on, the appropriate sign for

β will actually depend on the sign of α.

3.5.3 Reduced Jacobian Matrix

The complex-valued �ow in Eq. (3.14) can be rewritten under the matrix form

as δẊ = J ·δX, where δX = [δA∗−1, δA1, δC]T is the perturbation vector and J is the

3× 3 Jacobian whose eigenvalues will decide the stability of the trivial �xed point.

This Jacobian is given as

J =



−κ(1− iα) 0 igA∗0

0 −κ(1 + iα) −igA0

(2κeβ − ig)A0 − β
√

2κeAin (2κeβ − ig)A∗0 − β
√

2κeAin −µ(1 + iξ)


(3.15)

From the analytical point of view, it is mathematically di�cult investigate the

spectral stability of a three-dimensional Jacobian when it is complex-valued. How-

ever, this task is mathematically more tractable for real-valued Jacobian matrices.

For this reason, we transform the complex-valued �ow of Eqs. (3.12) through (3.14)
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into a real-valued one by decomposing the perturbation vector and the Jacobian into

their real and imaginary parts, following δX = δXr+iδXi, and J = Jr+iJi. As a con-

sequence, by plugging these decompositions into the autonomous �ow δẊ = J · δX,

we �nd that Eq. (3.14) can now be rewritten under the form of a six-dimensional

real-valued �ow following

 δẊr

δẊi

 = Jri =

 δXr

δXi

 with Jri =

 Jr −Ji

Ji Jr

 (3.16)

being the expanded Jacobian, while the sub-matrices Jr and Ji are explicitly de�ned

as

Jr =



−κ 0 pg

0 −κ pg

(p
β

+ pg) (p
β
− pg) −µ


(3.17)

and

Ji =



κα 0 qg

0 −κα −qg

−(qg − qβ) −(qg + q
β
) −µξ


(3.18)

with qg = g<(A0), pg = g=(A0), p
β

= β[2κe<(A0)−√2κeAin], and qβ = 2κeβ=(A0).

Without loss of generality, we will simplify the calculations in the remainder of the

article by considering that the microwave signal fed back to the RF strip resonator
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Figure 3.4: Evolution of the particular determinants ∆i as a function of the gain
Γ. Routh-Hurwitz condition for stability requires ∆i > 0 for all i. ∆3 and ∆4

become negative at Γ = 11.97. The plots were computed from the ∆i, i = 1, · · · , 6
in Eq. (3.27).

is resonant, i.e. ξ = 0.

3.5.4 Routh-Hurwitz Analysis and Critical Gain

The trivial �xed point of Eq. (3.11) is linearly stable (i.e., the OEO does not

oscillate) when the real parts of all the eigenvalues of the Jacobian matrix Jri are

strictly negative. These eigenvalues are solution of the 6-th order characteristic

polynomial

det[Jri − λI6] =
6∑

k=0

m6−kλ
k = 0 , (3.19)
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where the real-valued polynomial coe�cients are explicitly de�ned as

m0 = 1 (3.20)

m1 = 2 (2κ+ µ) (3.21)

m2 = −4pgpβ + 4qgqβ + 2
(
3 + α2

)
κ2 + 8κµ+ µ2 (3.22)

m3 = 4
{
qgpβακ+ pgqβακ+

(
1 + α2

)
κ3 +

(
3 + α2

)
κ2µ

+κµ2 − pgpβ (3κ+ µ) + qgqβ (3κ+ µ)
}

(3.23)

m4 = 4p2
gp

2
β + 4q2

gq
2
β + κ2

[(
1 + α2α

)2
κ2 + 8

(
1 + α2

)
κµ

+2
(
3 + α2

)
µ2
]

+ 4qgκ
[
qβ
(
3 + α2

)
κ+ 3qβµ

+pβα (2κ+ µ)]− 4pg [2qgpβqβ

+κ
(
pβ
(
3 + α2

)
κ+ 3pβµ− qβα (2κ+ µ)

)]
(3.24)

m5 = 2κ
[
2qg (qβ + pβα)− 2pg (pβ − qβα) +

(
1 + α2

)
κµ
]

×
[
−2pgpβ + 2qgqβ + κ

(
κ+ α2κ+ 2µ

)]
(3.25)

m6 = κ2
{

4q4
gα

2 + 4p4
gα

2 + 4q2
g (qβ + pβα)2

+4p2
g

[
p2
β − 2 ∗ pβqβα +

(
2q2
g + q2

β

)
α2
]

+4qg (qβ + pβα)
(
1 + α2

)
κµ+

(
1 + α2

)2
κ2µ2

−4 ∗ pg (pβ − qβα)
[
2qg (qβ + pβα) +

(
1 + α2

)
κµ
] }

(3.26)

The Routh-Hurwitz theorem states a necessary and su�cient condition for

all the eigenvalues of the characteristic polynomial of Eq. (3.19) to have strictly
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negative real parts is to ful�ll the inequalities

∆i =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m1 m0 0 0 0 · · · 0 0

m3 m2 m1 m0 0 · · · · · · · · ·

m5 m4 m3 m2 m1 · · · · · · · · ·

m7 m6 m5 m4 m3 · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · mi−1 mi−2

· · · · · · · · · · · · · · · · · · mi+1 mi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> 0 for i = 1, · · · , 6 . (3.27)

The numerical computation of the determinants ∆i as Γ is varied shows that the

lowest-order critical determinant that fails to ful�ll this inequality is ∆3 (see Fig 3.4).

The direct numerical computation of the eigenvalue spectrum for both J and Jri

con�rms that at least one eigenvalue transversely crosses the imaginary axis when

∆3 = 0. The critical gain value Γcr needed to trigger the oscillations is therefore a

root of the algebraic equation

∆3 = m1m2m3 −m2
1m4 −m0m

2
3 +m0m1m5 = a[ΓeiΦ]2 + b[ΓeiΦ] + c = 0 (3.28)

with

a = 128η2α2κ2
eg

2A4
in

(κ− κe) (µ+ 2κe)

κ2 (1 + α2)2 (3.29)

b = −16ηαgA2
in

κe

κ (1 + α2)

{
4
(
1 + α2

)
κ4 + µ3 (µ+ 2κe)
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+2κµ2 (3µ+ 4κe) + 2κ3
[
8µ− 2κe

(
−3 + α2

)]
+κ2µ

[(
17 + α2

)
µ+ 2κe

(
9 + α2

)] }
(3.30)

c = 8κ
[
8
(
1 + α2

)
κ5 +

(
29 + 14α2 + α4

)
κ4µ

+8
(
5 + α2

)
κ3µ2 + 2

(
13 + α2

)
κ2µ3 + 8κµ4 + µ5

]
. (3.31)

The solution to the quadratic Eq. (3.28) is

Γcr±e
iΦ = −K1

A2
in

[
1

α
K2 ±

1

|α|K3

]
(3.32)

where

K1 =
− (1 + α2)κ

16ηgκe(κ− κe)(µ+ 2κe)
(3.33)

K2 = 4κ4
(
1 + α2

)
+ µ3 (µ+ 2κe) + 2κµ2 (3µ+ 4κe)

+2κ3
[
8µ− 2κe(α

2 − 3)
]

+ κ2µ
[
µ
(
17 + α2

)
+ 2κe

(
9 + α2

)]
(3.34)

K3 = (2κ+ µ)
{
− 2κ3

(
1 + α2

)
+ µ2 (µ+ 2κe) + 2κµ (2µ+ 6κe)

+κ2
[
µ
(
1 + α2

)
+ 2κe

(
5 + α2

)] }
(3.35)

Equation (3.32) involves two branches of solutions, the �rst one of the equations

being −K1 (K2 −K3) /(αA2
in) and the second one being −K1 (K2 +K3) /(αA2

in).

However, the second branch yields solutions that are about two orders of magnitude

larger than the �rst one in absolute value: these solutions are unphysical and can

be discarded in our current con�guration.
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Figure 3.5: Variation of the critical feedback strength Γcr as a function of α. The
symbols are obtained via the numerical simulation of the time-domain OEO model
presented in Eqs. (3.5) and (3.6), while the solid line corresponds to the analytical
solution provided in Eq. (3.36). It can be seen that the stability analysis permits to
determine the threshold gain needed to trigger microwave oscillations with exacti-
tude. It also appears that minimum gain is achieved for α ' ±1.

Therefore, we �nally obtain the following formula for the critical feedback gain

Γcr = − K1

A2
inαe

iΦ
(K2 −K3) > 0 with


Φ = 0 if α > 0

Φ = π if α < 0

. (3.36)

The miniature OEO is expected to oscillate when the feedback gain is such that

Γ > Γcr, and we observe that the feedback phase Φ has to be adjusted di�erently

depending on the sign of α, i.e., depending on the direction of the detuning from

resonance in the pumped mode.

Although general to all miniature OEOs, Eq. (3.36) that gives us the analytical

formula of the critical gain is mathematically involved because of the computations

of K1 through K3. Hence, we will de�ne an approximation of this formula in the

coming sections.
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Figure 3.5 displays the variations of Γcr as a function of the optical detuning

α. One can observe that the curve is symmetric with regard to axis of symmetry

at α = 0. Moreover, Γcr diverges when α → 0 and when α → ±∞. This can be

understood in �rst aproximation via the variations of the output �eld Aout,0 given

below:

Aout,0 = Ain

[
2κe

κ (1 + iα)
− 1

]
. (3.37)

On the one hand, when α → 0, the pump is resonant and accordingly Aout,0 is

weak, so that the comb photodetection voltage is low � thus requiring a high gain

Γ to o�set this power de�cit. On the other hand, when α → ±∞, the coupling

is weak and so is A0, so that the electrooptical comb generation is poor and the

photodetection signal is low as well. Therefore, it appears that optimal operation

of the miniature OEO (i.e., low threshold feedback gain Γcr) requires to detune the

pump laser in between these two asymptotic cases.

Figure 3.6 shows the bifurcation diagrams for the optical output signals Popt,out,l,

for the microwave power Prf,1, and for the RF power Prf,out generated at the out-

put of the RF ampli�er as the gain Γ is varied. The �rst salient feature is that

the optical power in paired modes ±l 6= 0 displays a switching behavior, with

Popt,out,l 6= Popt,out,−l: However, the power in the pumped mode l = 0 and in the RF

signals varies smoothly with the gain. Decreasing the algorithm time-step will lead

to a sharper switching behavior between modes ±l. This behavior is quite di�erent

from the one observed in Kerr optical frequency combs, for example, where paired
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Figure 3.6: Bifurcation diagrams for the optical output signals Popt,out,l, for the
microwave power Prf,1 generated by the photodiode (before the RF ampli�er), and
for the RF power Prf,out generated at the output of the RF ampli�er. The parameters
of the system are the same as those of Fig. 3.3, with α = 0.5 and Φ = 0. The critical
value of the gain below which there is no OEO oscillation is Γcr ' 10.97, in agreement
with Fig. 3.5. Note that as the gain Γ is increased, there are optical mode power
switches within a given sidemode pair ±l 6= 0, while the pumped optical mode l = 0
and the RF signals are varying smoothly.

modes typically have the same power [40, 41, 42]. The second observation that can

be made is that quantitatively, Prf,1 � Prf,out, with a ratio that can grow up to four

orders of magnitude in our simulations. The third note is that qualitatively, the

RF power Prf,1 at the output of the photodiode does not increase steadily, while the
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power Prf,out after the ampli�er always does.

3.6 Optimization: System Parameters Leading to the Smallest Thresh-

old Gain

In this section, we determine the optimal conditions leading to the smallest

value of the critical gain Γcr for the feedback gain.

3.6.1 Optimal Laser Detuning from Resonance

We �rst need to �nd the optimal detuning αopt for which the gain becomes

minimal. We look for the roots of the algebraic equation d(Γcr)/dα = 0 for α > 0,

and we are led to the equation:

(
−1 + 2α2 + 3α4

)
κ4 + 2

(
−1 + α2

)
κµ+

(
−1 + α2

)
µ2 = 0 , (3.38)

which is bi-quadratic in α. There are two roots α2
opt,±; The solution α

2
opt,− has to be

discarded for being negative (and thus, unphysical), while the other solution yields

the desired results as

αopt,+ ≡ αopt = ± 1√
6κ

√
−
[
κ2 + (κ+ µ)2

]
+

√[
κ2 + (κ+ µ)2

]2
+ 12κ2 (κ+ µ)2

(3.39)

The formula above can be simpli�ed: indeed, the miniature OEO is generally con�g-

ured in a way that the loaded optical resonance linewidth 2κ is much smaller than
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the loaded RF resonance linewidth. If we write this condition as |κ/µ| � 1 and

using this ratio as a smallness parameter, a Taylor expansion of Eq. (3.39) yields

the following expression for the optimal detuning:

αopt ' ±
1− 1

2

(
κ

µ

)2
 ' ±1 when

κ

µ
→ 0 . (3.40)

It therefore appears that the laser driving miniature OEO should ideally be detuned

to the edge of the optical resonance, since α = ±1 translates to σ
A

= ±κ. This is

con�rmed in Fig. 3.5 where it can be seen that the critical gain Γcr is minimal (' 9)

around α = ±1. We note that here, despite the fact that we have a relatively high

ratio κ/µ (' 0.23), the approximation αopt = ±1 already appears to be very good,

since the exact value given by Eq. (3.39) is 0.94. As noted above, the precision of

this approximation αopt = ±1 is expected to increase as κ/µ → 0, i. e., when the

optical resonance becomes increasingly narrower than the microwave one. From a

technological perspective, it is interesting to note that this requirement is fortunately

not stringent, as the minimum appears to be relatively �at: in other words, a

deviation of ±5% with regard to αopt still yields a close-to-minimum critical gain

value.

3.6.2 Resonator Coupling Coe�cient

The objective here is to de�ne a tunable parameter for the optimization of

the system. One should keep in mind that the intrinsic coupling coe�cient κi is

a property of the resonator and cannot be tuned. However, κe can be viewed as
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Figure 3.7: αopt as a function of ρ = κe/κ. We see that αopt ' 1 for almost all
coupling regime. This �gure is simulalted from Eq. (3.39) and using the relationships
of Eqs. (3.42) and (3.43)

a coupling e�ciency parameter that is indeed tunable, for example by varying the

distance (a few λ
L
) between the prism and the resonator in Fig. 3.1. It results that

the loaded linewidth 2κ can be varied by the same token.

The critical gain de�ned in Eq. (3.36) is written as a function of κ and κe, which

in inconvenient in the present case because both parameters are coupling dependent.

We therefore need to rewrite that equation in a way that a single parameter becomes

responsible for the variations in coupling strength. For that purpose, it is convenient

to introduce the parameter

ρ =
κe

κ
∈ [0, 1], (3.41)

which is the ratio between outcoupling and total losses in the resonator. The res-

onator is in the regime of undercoupling when 0 < ρ < 1
2
(most losses are intrinsic),

overcoupling when 1
2
< ρ < 1 (most losses are extrinsic), and critical coupling when

ρ = 1
2
. The limit case ρ = 0 corresponds to the situation where the resonator is

uncoupled (all losses are intrinsic), while the limit case ρ = 1 corresponds to the

situation where the intrinsic losses are null (the intrinsic Q-factor is in�nite and

69



all losses are coupling-induced). The critical gain de�ned in Eq. (3.36) can now be

rewritten as a function of the intrinsic loss parameter κi, and the coupling ratio

ρ whose variations from 0 to 1 scan all the possible coupling con�gurations. It is

noteworthy that this coe�cient ρ plays a major role in the quantum applications of

WGM resonators [79]. From Eq. (3.41), we can express κe and κ as functions of ρ

and κi as

κe =
ρκi

1− ρ ∈ [0,∞[, and (3.42)

κ =
κi

1− ρ ∈ [κi,∞[, (3.43)

The formulations of Eqs. (3.42) and (3.43) are particularly interesting because they

allow us to describe the critical gain as a function of κi which is a fabrication

parameter of the microresonator. The critical gain of Eq. (3.36) can therefore be

expressed as a function of ρ where the coe�cients K1, K2 and K3 in Eqs. (3.33�3.35)

are also de�ned as functions of ρ. Figure (3.8) is a simulation of Eq. (3.36) with the

parameters de�ned in Eqs. (3.33�3.35) and α = 0.5. It shows that the optimal gain

is achieved around critical coupling (ρ = 0.5).

3.6.3 Explicit Analytical Approximation of Critical Gain

In OEO systems in general, we observe that the optical resonances are much

narrower than the microwave ones; that is, the loaded half-linewidth of the optical

resonance is much smaller than the half-linewidth of the loaded RF cavity resonance.
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Figure 3.8: Γcr as a function of ρ = κe/κ. The optimal Γcr is achieved in critical
coupling (ρ = 0.5). This result is simulated from Eqs. (3.36), (3.42) and (3.43)
where we express K1, K2 and K3 as a function of ρ.

We can therefore consider the following assumption:

κ

µ
� 1 (3.44)

Using the assumption of Eq. (3.44) to simplify Eq. (3.36) yields a much simpler and

explicit formula for Γcr

Γcr '
1

ρ(1− ρ)

1 + α2

2|α|
µκi

gηA2
in

. (3.45)

Equation (3.45) indicates that Γcr is grows unboundedly as α becomes small, and

null optical detuning should be avoided as it leads to prohibitively large critical gain

values.

3.6.4 Optimal Resonator Coupling Coe�cient

The objective here is to �nd the optimal value κe,opt for the resonator coupling

coe�cient ρ. In order to �nd the theoretical value of the optimal ρopt (or equiva-
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lently, the optimal κe,opt), one has to insert Eq. (3.39) into Eq. (3.36), and obtain the

optimal value as the solution of the algebraic equation dΓcr/dρ = 0. However, this

procedure would be cumbersome because the equations involved are algebraically

long and complicated. Nevertheless, these calculations can be signi�cantly simpli-

�ed if we straightforwardly consider the approximation |κ/µ| � 1, thus considering

Eq. (3.45), along with αopt ' ±1. This gives accurate results as shown in Sec. 3.6.1

dealing with the optimal laser detuning. In that case, the formula for the critical

gain can be approximated as

Γcr '
µκi

ρ(1− ρ)gηA2
in

when
κ

µ
→ 0 . (3.46)

The formula above yields Γcr ' 8 with our parameters, a value that approximates

quite well the minimum that is obtained in Fig. 3.5. Equation (3.46) also clearly

indicates that the critical gain needed to trigger the microwave oscillations in the

miniature OEO increases when the resonator becomes too undercoupled (ρ → 0)

or too overcoupled (ρ → 1). The optimal value ρopt leading to a minimum critical

gain is readily found by solving the algebraic equation dΓcr/dρ = 0, which therefore

leads to the approximation:

ρopt '
1

2
, (3.47)

corresponding to critical coupling (κi ' κe and Qi ' Qe). Numerical simulations

indicate that the critical coupling condition is not stringent, and a deviation of ±5%
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Figure 3.9: Ampli�erless miniature OEO.

with regard to ρopt still yields a close-to-minimum critical gain value. This optimal

value permits to �nd the absolute minimum for the critical gain as

Γmin '
4µκi

gηA2
in

=
ω

L
Ω

R

gSP
L
Qi

√
h̄Rout

Q
M

∝ 1

gSP
L
Qi

√
Q

M

. (3.48)

For our parameters, we obtain Γmin ' 4.4, which is then the absolute minimum gain

needed to trigger oscillations in our miniature OEO. The formula from Eq. (3.48)

indicates that the threshold gain can be lowered by increasing the nonlinearity,

photodetector sensitivity, and optical power, which was expected; but more impor-

tantly, it indicates that increasing the intrinsic Q-factor of the WGM resonator is

more e�ective than increasing the Q-factor of the microwave strip cavity.

3.7 Threshold Laser Power in the Ampli�erless Miniature OEO

In the preceding sections, we have analyzed an architecture of miniature OEO

where an ampli�er is inserted in the electrical branch, and the role of the stability
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analysis was to �nd the feedback strength Γcr needed to self-start the microwave

oscillation. We had implicitly assumed that the ampli�er had a tunable gain, while

the optical power was �xed.

However, it is possible to have instead an ampli�er with �xed gain, while the

pump laser is power-tunable. The question in this case is to �nd the critical laser

power PL,cr that is needed to trigger RF oscillations.

3.7.1 Input Laser Power and Critical Gain

We can use the results from Subsec. 3.5.4 to �nd an analytical formula for

the critical laser power leading to RF oscillations in ampli�erless miniature OEOs.

In this case, we need to express the input laser power as a function of the critical

gain. Hence, considering the relationships A2
in = P

L
/h̄ω

L
and Γ = GAGL, we can

use Eq. (3.36) to express the critical gain Γcr as a function of the input laser power

PL as

Γcr = −K1h̄ωL
PLαeiΦ

(K2 −K3) (3.49)

We can derive the critical laser power from Eq (3.49) as

PL,cr =
Υ(α, ρ)

GAGL

with Υ(α, ρ) ≡ −h̄ω
L

K1

αeiΦ
(K2 −K3) > 0 (3.50)

where K1, K2, K3, and Φ are the same as in Eq. (3.36).

Once again we are able to derive a simpler approximation of P
L
by using
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Eq. (3.45)

P
L
' 1

ρ(1− ρ)

1 + α2

2|α|
µκi

gηΓcr

h̄ω
L
, (3.51)

It results that high gain ampli�cation allows for lower laser powers, and vice

versa. For example, Ilchenko et al. have reported in ref. [80] a miniature OEO where

the laser power was around 70 µW while the ampli�er had a gain of 45 dB (i. e.,

GA ∼ 180). However, on the other hand, higher laser power permits to use ampli�ers

with lower gain: In fact, if the optical power is high enough, it is even possible to get

rid of the ampli�er, thereby leading to an ampli�erless miniature OEO. The reader

can note that ampli�erless OEOs have already been demonstrated with conventional

�ber-based architectures (see for example ref. [81]).

3.7.2 Critical Laser Power in Ampli�erless Miniature OEO

In our system, eliminating the ampli�er mathematically corresponds to set

GA = 1 in Eq. (3.50). As a consequence, the OEO architecture of the miniature OEO

presented in Fig. 3.1 is signi�cantly simpli�ed. The critical laser power needed to

trigger RF oscillations in the ampli�erless miniature OEO can be exactly calculated

as

PL,cr =
Υ(α, ρ)

GL

. (3.52)

From this analysis, we can now de�ne the absolute minimal optical power that

is needed to trigger microwave oscillations in an ampli�erless OEO. The procedure
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for doing so is to consider negligible electrical losses (GL,opt = 1), optimal laser

detuning (α = αopt) and optimal coupling (ρ = ρopt), so that this absolute minimal

laser power can be calculated as

PL,min =
Υ(αopt, ρopt)

GL,opt

' Υ
(
±1,

1

2

)

' h̄ω
L

4µκi

gη
' ω

L
Ω

R

gSQi

√
h̄Rout

Q
M

. (3.53)

For our parameters, this value is corresponds to 4.4 mW. The reader can also note

that the last approximations in Eq. (3.53) can be readily obtained from the the

numerical approximation Eq. (3.51) by setting the gain Γcr = 1. It should be

noted that if ampli�erless miniature OEOs have the great advantage to simplify the

architecture of the system, they require a careful management of the thermal e�ects

induced in the WGM resonator by the higher laser power [82, 83, 84].

3.8 Conclusion

In this chapter, we have proposed a mathematical framework to study the time-

domain nonlinear dynamics of miniature OEOs based on nonlinear WGM resonators.

Our model uses time-domain equations to track the dynamics of the complex-valued

envelopes of the optical and microwave �elds. We have performed a stability analysis

that permitted to calculate analytically the threshold value of the feedback gain that

is needed to self-start the microwave oscillations. An optimization analysis has also

been performed, and led us to the conclusion that the system should ideally be
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operated at the edge of the optical resonance and close to critical coupling. Further

investigation has shown that beyond a certain laser power, RF ampli�cation is not

needed anymore and the miniature OEO can become ampli�erless. A next step to

consider in the study of the technology related to miniature OEOs is the e�ect of

noise on the dynamics of this system.
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Chapter 4: Stochastic Analysis of Miniature Optoelectronic Oscillators

4.1 Introduction

In Chapter 3 we proposed a full-time deterministic model to describe the dy-

namics of the miniature optoelectronic oscillator based on whispering-gallery mode

modulators. We pertubed the system from its trivial equilibrium and derived a

reduced Jacobian. We then performed the stability analysis of the Jacobian and

derived the analytical formula for the critical gain leading to oscillations in the

system. Finally, we optimized the critical gain and derived the critical laser input

power for oscillations in an ampli�erless miniature OEO. The interest in studying

the ampli�erless case rests in the fact that it decreases the noise in the system.

Indeed, the stochatic dynamics of miniature OEO is linked to their spectral purity

and therefore it is important to have a full model that accounts for the e�ects noise.

However, there is no analysis available to understand how the optical and electrical

noise sources in the optoelectronic loop are converted into microwave phase noise.

The objective of this chapter is therefore to propose a stochastic model accounting

for the optical and electronic noise in miniature OEOs based on whispering-gallery

mode modulators. We will use the Langevin approach to add random noise to the

deterministic model and then perform a dynamical analysis of the stochastic system.
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This approach has already been used with remarkable success for �ber-based OEOs,

where it was shown that it can provide an excellent agreement with experimental

phase noise spectra [50, 93, 95, 99].

This chapter is organized as follows. In Sec. 4.2 we present the various sources

of noise in the miniature OEO. In Sec. 4.3 we describe the miniature OEO under

study, as well as the deterministic model that rules its nonlinear temporal dynamics.

We also explain the phenomenology that occurs once we add stochastic noise to our

system. Section 4.4 is devoted to the derivation of the stochastic model, with an

emphasis on sources of noise originating from the resonant WGM/RF cavities and

from the active electronic elements (photodiode and ampli�er). The dynamics of

the system under threshold is investigated in Sec. 4.5, while Sec. 4.6 presents the

numerical simulation of the temporal dynamics. Section 4.7 presents a stochastic

normal form approach that allows us to analyze the e�ect of noise below and above

threshold. The last section concludes the article.

4.2 Noise in Miniature OEOs

The object of this section is to explain the causes of noise in the oscillator,

and their e�ects on the model's parameters.

4.2.1 Sources and E�ects

Noise in miniature optoelectronic oscillators arise both in the optical and elec-

tronic components. It may be due to thermal �uctuations, in addition to electrical
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or optical sources. The optical noise in the whispering-gallery mode modulator is

due to the laser �uctuations, as well as the intracavity �eld �uctuations; on the

other hand, the electrical noise in the photodiode is called shot noise and is caused

by the random �uctuations of the electric current due to the discrete nature of the

electrons; shot noise can be modeled as a Poisson process [99]. Finally, the electrical

noise in the ampli�er is mainly electronic circuitry noise, although we can have other

noises such as �icker and resistance e�ects. We should also note that as the noisy

signal travels through the closed-loop, it is ampli�ed by the ampli�er, inducing a

multiplicative noise element.

Noise a�ects the system's parameters in a such a way that the optical loss

κ is replaced by κ + δκ(t); the PD sensitivity S becomes S + δS(t), and the gain

Γ becomes Γ + δΓ(t). These noises are converted into microwave phase noise and

as they increase, the signal quality decrease. In addition, noise set a limit to the

smaller signal power that can be recovered. In our treatment of the noisy system in

this chapter, we will neglect the noise from the PD and the gain, which are assumed

to be smaller than the others. In addition, we will use the Langevin approach and

use white Gaussian noise to characterize the optical and RF noises.

4.3 System

In this section we brie�y revisit the dynamics of the system in the absence

of noise; in particular, we will look into the microwave modal �eld and RF output

power, and review the dependance of the system's behavior on the gain. We will
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Figure 4.1: Miniature OEO based on WGMR modulator. The optical and electronic
components are assumed to be noiseless. PD: photodiode; Amp: ampli�er; PS:
phase shiftter.

then introduce the random noise and derive the stochastic di�erential equations

ruling the system dynamics. We will also investigate the stochastic behavior under

threshold and propose a normal form theoretical formula to compute the phase noise

spectrum.

4.3.1 Noiseless System

4.3.1.1 Deterministic Model

Let us recall Eqs. (3.5) and (3.6) from Chapter 3 describing the time domain

dynamics of the miniature optoelectronic oscillators based on whispering-gallery
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mode modulator:

Ȧl = −κ(1 + iα)Al − ig[CAl−1 + C∗Al+1] + δ(l)
√

2κeAin (4.1)

Ċ = −µ(1 + iϑ)C − ig
∑
m

A∗mAm+1

+ΓeiΦ η
{

2κe

∑
m

A∗mAm+1 − Ain

√
2κe(A∗−1 +A1)

}
, (4.2)

where the dimensionless constant η = 2h̄ω
L
S
√
µe/Routh̄Ω

R
is a characteristic op-

toelectronic parameter of the oscillator, Φ is the microwave rountrip phase shift,

α = −(ω
L
− ω0)/κ is the normalized optical detuning between the laser and the

pumped mode resonance, and ϑ = −(Ω
M
− Ω

R
)/µ, is the normalized detuning

between the RF signal and the strip cavity resonance (set to 0 in this study).

A key parameter of the oscillator is the real-valued dimensionless feedback gain

Γ = GAGL ≥ 0 where where GA (> 1) is the RF ampli�er gain while GL (< 1)

is the overall loss factor of the electric branch. The laser pump �eld of the WGM

resonator is Ain =
√
P

L
/h̄ω

L
: It is a real-valued envelope (null phase), and for that

reason it plays the role of reference for all the intracavity �elds Al.

4.3.1.2 Microwave Modal Field and Ouput RF Power

The overall optical �eld exiting the WGM resonator is Aout =
∑
lAout,l e

ilΩ
R
t,

with Aout,l = −Ain δ(l) +
√

2κeAl being the modal output �elds [Note that they are

propagating �eld like Ain and their square modulus is therefore also a photon �ux

in units of s−1].

The microwave signal of interest is the output of the RF ampli�er, which is
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de�ned by an envelope

Mout = ΓM1 = 2Γh̄ω
L
S
∑
m

A∗out,mAout,m+1 (4.3)

and power

Prf,out = Γ2 |M1|2
2Rout

, (4.4)

where Rout is the characteristic load resistance in the RF branch, and M1 =

2h̄ω
L
S
∑
mA∗out,mAout,m+1 is the complex-valued envelopes of the microwave har-

monics of frequency Ω
R
[Eq. (2.32) in Chapter 2].

4.3.1.3 Dependence on the Gain

In Subsection 3.5.4 of Chapter 3 we established the dependence of the dynamics

of the system described by Eqs. (4.1) and (4.2) on the feedback gain parameter Γ > 0.

When the feedback gain is below a given critical Γcr, only the pumped mode A0 is

excited (by the pump laser) and no microwave is generated. However, when Γ > Γcr,

a cascaded process leads to the excitation of the sidemodes Al with l 6= 0, thereby

leading to the formation of an optical frequency comb that generates a self-sustained

microwave oscillation in the electric branch. The analytical value of Γcr could be

determined exactly analytically, but in Subsection 3.6.3 of Chapter 3 we used the

approximation κ/µ� 1 to express explicitly the critical gain as

Γcr '
1

ρ(1− ρ)

1 + α2

2|α|
µκi

gηP
L

h̄ω
L
, (4.5)
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Figure 4.2: Miniature OEO based on WGMR modulator. Noise sources are optical
and electronic. The optical source noise arise at each mode l of the resonator; the
electronic noise arise at the PD and the microwave RF strip. The noises become
additive as we go around the closed-loop. We negelct the e�ect of the multiplicative
noise. PD: photodiode; Amp: ampli�er; PS: phase shiftter.

where ρ = κe/κ ∈ [0, 1] is the coupling ratio between extrinsic and total losses in

the resonator. Γcr is minimized by critical coupling (ρ = 1
2
) and edge-of-resonance

detuning (α = ±1), respectively. In addition, the roundtrip Φ phase shift has to be

set to 0 when α > 0, and to π when α < 0.

4.3.2 Noisy System

The output signal of a noiseless miniature OEO system is a sinusoid with fre-

quency around ΩR and a constant phase Ψ. However, as we take into consideration

the noise generated in the intramodal cavities of the WGMR and that induced in

the RF microstrip cavity, the phase no longer remains constant. Rather, it becomes
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a function of time Ψ(t). As Ψ(t) varies, it may cause a frequency shift in the output

signal in the time-domain, which is translated into a phase drift in the frequency

domain.

Unless otherwise stated, we will consider the following parameters for our sys-

tem throughout this article, without loss of generality: P
L

= 1 mW; λ
L

= 1550 nm;

Ω
R
/2π = 10 GHz; S = 20 V/W; g/2π = 20 Hz; Qi = 5 × 107 and Qe = 107

(this de�nes all the κ coe�cients); Q
M

= Ω
R
/2µ = 100; and �nally, the RF line

is impedance-matched with the modulator input electrode with Rout = 50 Ω and

µi = µe = µ/2.

4.4 Stochastic Model

The object of this section is to identify the most relevant sources of noise in

the oscillator, and de�ne how they should be accounted for in the stochastic model.

These random noise terms either have an additive of multiplicative e�ect on the

system's dynamics.

4.4.1 Stochastic Noise

In this work, we will only focus on the additive noise source terms, which in

our context are dominant. Moreover, for the sake of simplicity, these random noise

signals will be assumed to be Gaussian and white. Therefore, depending on their

real- or complex-valued nature, these random signals will always be proportional to

either a real-valued Gaussian white noise ξ(t) with 〈ξ(t)ξ(t′)〉 = δ(t − t′), or to a
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complex-valued Gaussian white noise ζ(t) with 〈ζ(t)ζ∗(t′)〉 = δ(t− t′).

The miniature OEO has two cavities (optical WGM resonator and RF strip

resonator), which are driven by external optical and radiofrequency signals, respec-

tively. Indeed, the oscillator is unavoidably submitted to the in�uence of various

random noise sources, which end up driving the stochastic �uctuations of the intra-

cavity �elds. The optical �elds Al(t) are driven by a modal random �eld normalized

as

za,l(t) = Λa

√
2κ ζa,l(t), (4.6)

which has to be added in the right-hand side of Eq. (4.1). One should note that the

noise term za,l(t) will create Λ2
a optical photons on average in the mode l [79, 97].

Analogously, The intracavity microwave �eld C(t) is driven by a random signal

normalized as

zc(t) = Λc

√
2µ ζc(t) (4.7)

to be added in the right-hand side of Eq. (4.2), that will generate Λ2
c microwave

photons on average inside the RF strip cavity.

4.4.2 Model

The sources of noise in the miniature OEO can now be added to the core

deterministic Eqs. (4.1) and (4.2) to obtain the following stochastic model:

Ȧl = −κ(1 + iα)Al − ig[CAl−1 + C∗Al+1] + δ(l)
√

2κeAin

+Λa

√
2κ ζa,l(t) (4.8)
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Ċ = −µ(1 + iϑ)C − ig
∑
m

A∗mAm+1 +

ΓeiΦη
{

2κe

∑
m

A∗mAm+1 − Ain

√
2κe(A∗−1 +A1)

}
+Λc

√
2µ ζc(t) , (4.9)

with the noise correlations

〈ζa,l(t)ζ
∗
a,l′(t

′)〉 = δl,l′δ(t− t′) and (4.10)

〈ζc(t)ζ
∗
c (t′)〉 = δ(t− t′). (4.11)

The noisy output microwave signal is stillMout(t) = ΓeiΦM1(t) and the out-

put RF power is still determined by Prf,out = |Mout|2/2Rout = Γ2|M1|2/2Rout. One

can note that when the sources of noise are discarded, the stochastic Eqs. (4.8)

and (4.9) degenerate into the deterministic Eqs. (4.1) and (4.2). In this work, the

stochastic di�erential Eqs. (4.8) and (4.9) will be numerically simulated using the

Milstein algorithm (see ref. [92]).
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4.4.3 Equilibrium Points

4.4.3.1 Trivial Equilibrium Points

As we recall from Subsection 3.5.1 in Chapter 3, the trivial equilibrium of

Eqs. (4.1) and (4.2) can be straightforwardly derived as

C = 0 and Al =


√

2κe
κ(1+iα)

Ain if l = 0

0 if l 6= 0

. (4.12)

This solution corresponds to a situation where only the central mode l = 0 is excited.

4.4.3.2 Non-Trivial equilibrium Points

On the other hand, the nontrivial equilibrium of Eqs. (4.1) and (4.2) corre-

sponds to

κ(1 + iα)Al + ig[CAl−1C∗Al+1] = δ(l)
√

2κeAin , and (4.13)

µ(1 + iϑ)C + ig
∑
m

A∗mAm+1 = ΓeiΦ η
{

2κe

∑
m

A∗mAm+1

−Ain

√
2κe(A∗−1 +A1) (4.14)

This solution corresponds to a situation where all the modes are excited and enter

a stationary state characterized by oscillations of �xed amplitude.
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4.5 Stochastic Analysis Under Threshold

In this section, we aim at calculating the microwave power generated under

threshold, that is, when Γ < Γcr. The sub-threshold dynamics is generally over-

looked in the literature, however, previous studies have shown that the sub-threshold

stochastic dynamics is important for the characterization of the various sources of

noise in the system (see for example ref. [93]).

4.5.1 Pertubation Analysis and Reduced Flow Dynamics

In the case of the miniature OEO under threshold, it is possible to develop an

analytical method to compute the noise power density. The starting point is to note

that the stochastic model displayed in Eqs. (4.8) and (4.9) can be simpli�ed using

two assumptions. The �rst one is that stochastic e�ects in the intracavity �elds Al

and C can be accounted for via the output microwave �eld M1. The second one

is that below threshold, there is no self-sustained microwave oscillation and as a

consequence, only the mode l = 0 is excited with A0 =
√

2κeAin/κ(1 + iα). The

intracavity �elds A±1 and C are of �rst order of smallness and can be linearized

around zero, while the �elds Al with |l| > 1 can be outright neglected for being of

higher order of smallness.

Using these two simplifying assumptions, the stochastic Eqs. (4.8) and (4.9)

are now reduced to

δȦ∗−1 = −κ(1− iα)δA∗−1 + igA∗0δC + Λa

√
2κ ζa,−1(t) (4.15)

89



δȦ0 = −κ(1 + iα)δA0 +
√

2κeAin + Λa

√
2κ ζa,0(t) (4.16)

δȦ1 = −κ(1 + iα)δA1 − igA0δC + Λa

√
2κ ζa,1(t) (4.17)

δĊ = −µ(1 + iϑ)δC − ig[A0δA∗−1 +A∗0δA1]

+β
{

2κe[A0δA∗−1 +A∗0δA1]−
√

2κeAin(δA∗−1 + δA1)
}

+Λc

√
2µ ζc(t) (4.18)

where β = ηΓeiΦ is the overall electrical gain of the OEO.

4.5.2 Fourier Transform and Jacobian

The perturbation δA0 is independent of the other ones and is irrelevant in the

subsequent analysis for being permanently dominated by the non-null amplitude

A0. Therefore, we can ignore the corresponding equation and rewrite the remaining

three linear equations in the Fourier domain to obtain



δÃ∗−1(ω)

δÃ1(ω)

δC̃(ω)


=

[
iωI3 − J

]−1



Λa

√
2κ Z̃∗a,−1(ω)

Λa

√
2κ Z̃a,1(ω)

Λc

√
2µ Z̃c(ω)


, (4.19)

where I3 is the three-dimensional identity matrix and

J =



−κ(1− iα) 0 igA∗0

0 −κ(1 + iα) −igA0

√
2κeβAout,0 − igA0

√
2κeβA∗out,0 − igA∗0 −µ(1 + iϑ)


(4.20)
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is the Jacobian of the linear �ow, with the variables Z̃(ω) being the Fourier transform

of their stochastic counterparts ζ(t). In the Fourier domain, Eq. (4.19) permits to

determine explicitly the three stochastic variables of interest as a linear combination

of the intracavity noise terms Z̃a,c(ω). In principle, the time-domain solutions could

be recovered via an inverse Fourier transform. The analytical formulation of the

inverse matrix is:

[
iωI3 − J

]−1

=



a11 a12 a13

a21 a22 a23

a31 a32 a33


, where (4.21)

∆ = 1/{ (1 + iα) (i+ α)κ [(1− iα)κ+ iω] [(1 + iα)κ+ iω]

× [(µ(−1 + ϑ) + ω)] + 2gκe [−βκ (4ακ+ 2iαω)]

+ (κ− iκα + iω) (pg − iqg) (pg − pβ + i (qg + qβ))
}

(4.22)

a11 = ∆× { ((1 + iα)κ+ iω) (µ+ iϑµ+ iω) + (pg − iqg)

(pg − pβ + i (qg + qβ)) } (4.23)

a12 = ∆× { − (pg + iqg) (pg − pβ + i (qg + qβ)) } (4.24)

a13 = ∆× { − ((1 + iα)κ+ iω) (−pg − iqg) } (4.25)

a21 = ∆× { (pg − iqg) (pg + pβ − i (qg − qβ)) } (4.26)

a22 = ∆× { ((i (1) + α)κ− ω) ((−i+ ϑ)µ+ ω)

− (pg + iqg) (pg + pβ − i (qg − qβ)) } (4.27)

a23 = ∆× { − ((1− iα)κ+ iω) (−pg + iqg) } (4.28)
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a31 = ∆× { − ((1 + iα)κ+ iω) (−pg − pβ + i (qg − qβ)) } (4.29)

a12 = ∆× { − (pg + iqg) (pg − pβ + i (qg + qβ)) } (4.30)

a32 = ∆× { − ((1− iα)κ+ iω) (pg − pβ + i (qg + qβ)) } (4.31)

a33 = ∆× { ((1 + iα)κ+ iω) (((1− iα)κ+ iω) } (4.32)

Equation (4.19) allows us to solve for δÃ∗−1(ω), δÃ1(ω) and δC̃(ω) to which we

can apply the inverse Fourier transform to obtain the time-domain corresponding

signals.

4.5.3 Microwave Output RF Power

The microwave power generated under threshold can be obtained via the nu-

merical simulation of Eqs. (4.8) and (4.9), whose output can be suitably averaged

to give

Prf,out =
1

2Rout

〈|Mout(t)|2〉 =
Γ2

2Rout

〈|M1(t)|2〉 . (4.33)

However, these numerical simulations do not give any theoretical insight into why

the subthreshold noise increases the way it does with the gain.

Using Eq. (2.32) of Chapter 2, which gives the formula for the microwave modal

�eld of the �rst harmonic, it appears that the output microwave signalM1(t) is now

a linear combination of δA1(t) and δA∗−1(t). This linearity can be translated in the
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Fourier domain following

M̃1(ω) = 2h̄ωLS
√

2κe
{
Aout,0δÃ∗−1(ω) +A∗out,0δÃ1(ω)

}
, (4.34)

where Aout,0 is the output optical �eld at the central mode and is computed from

Eq. (3.37) in Chapter 3. Equation (4.34) implies that M̃1(ω) is also a linear com-

bination of the intracavity noise terms Z̃a,c(ω).

The frequency-domain integral of the microwave output spectral energy is

given as

∫ ∞
−∞
|M̃1(ω)|2 =

[
2h̄ωLS

√
2κe

]2 { | Aout,0 |2 (2Λ2
aκ
∫ ∞
−∞

[a11a
∗
11

+ a12a
∗
12

+ a21a
∗
21

+ a22a
∗
22

]dω + 2Λ2
cµ
∫ ∞
−∞

[a13a
∗
13

+ a23a
∗
23

]dω)

+ (Aout,0)2(2Λ2
aκ
∫ ∞
−∞

[a11a
∗
21

+ a12a
∗
22

]dω

+ 2Λ2
cµ
∫ ∞
−∞

[a13a
∗
23

]dω) + (A∗out,0)2(2Λ2
aκ
∫ ∞
−∞

[a∗
11
a21

+ a∗
12
a22 ]dω + 2Λ2

cµ
∫ ∞
−∞

[a∗
13
a23 ]dω

}
, (4.35)

We can now de�ne the sub-threshold microwave output power after the RF

ampli�er as

Prf,out =
Γ2

2Rout

{
1

2π

∫ +∞

−∞
|M̃1(ω)|2 dω

}
, (4.36)

where we are using Parseval's theorem since we explicitly know M̃1(ω) via Eq. (4.34).
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Figure 4.3: Variation of the optical power Poptout,l under threshold gain Γcr for
the noisy miniature OEO. In noiseless system Poptout,l = 0, ∀ l 6= 0. However, in
noisy system, Poptout,l �uctuates randomly according to the noise. The results were
obtained by simulating the dynamics of Eqs. (4.8) and (4.9) with Λa = Λc = 1 and
computing the microwave output signal with Eq. (2.29) of Chapter 2. The value of
Γ is 6, and is about half the threshold gain Γcr.

4.6 Numerical Simulation of the Stochastic Dynamics

In this section we present the results of the temporal simuations of the noisy

miniature OEO. We �rst look at the optical output �elds and then the microwave

modal �eld output; �nally, we look at the ouptut RF power evolution under thresh-

old.

4.6.1 Optical and Microwave Temporal Dynamics

In the absence of noise and below the threshold gain for oscillations, only the

central mode l is excited. As a result, the optical output power Poptout,l is zero at all

modes except mode l = 0. When we account for the optical and microwave cavity

noises below threshold, we notice that the side modes have a random photon �ux,

which yields to a nonzero �uctuating number of output photons and optical output

power. This power is very small in magnitude compared to the optical output power
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Figure 4.4: Variation of the microwave power Prf1 under threshold gain Γcr for
the noisy miniature OEO. In noiseless system Prf1 = 0, ∀ l 6= 0. However, in noisy
system, Prf1 �uctuates randomly according to the noise. The results were obtained
by simulating the dynamics of Eqs. (4.8) and (4.9) with Λa = Λc = 1 and computing
the microwave output signal with Eq. (2.33) of Chapter 2. The value of Γ is 6, and
is about half the threshold gain Γcr.

at mode l = 0 (∼ 6 orders of magnitude smaller). As we see in Fig. 4.3, it is in the

order of nanowatts (nW). These results were obtained by simulating the dynamics

of Eqs. (4.8) and (4.9) with Λa = Λc = 1 and computing the microwave output

signal with Eq. (2.29) of Chapter 2.

Although |Aout,0| � |Aout,l| for all l 6= 0, the sum of beatings between the

successive output cavity �elds below threshold gain becomes noisy random �uctu-

ation so that the ouptut RF power PRF1 is a noise. Figure 4.4 shows the optical

output power around half the threshold gain (Γ = 6). The result is obtained by sim-

ulating the dynamics of Eqs. (4.8) and (4.9) with Λa = Λc = 1 and computing the

microwave output signal with Eq. (2.33) of Chapter 2. We note that the microwave

output power is in the picowatts (pW).
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Figure 4.5: Variation of the noise power Prf,out = |Mout|2/2Rout, when the nor-
malized gain γ ≡ Γ/Γcr is increased under threshold. We have γ < 1, so that the
gain in dB is 20 log γ, and is negative. The plots from left to right correspond to
noise amplitudes Λa,c = 1, 10, and 100 respectively. The blue dot symbols stand
for the numerical results obtained using Eq. (4.33), via the time-domain simulation
of the stochastic di�erential Eqs. (4.8) and (4.9). The continuous black lines stand
for analytical results obtained via Eq. (4.36). The dashed red lines stand for the
scaling behavior as predicted by the normal form theory in Eq. (4.40). The dotted
gray lines indicate the microwave noise power corresponding to a gain of −4.18 dB,
which directly gives the amplitude of the driving Gaussian white noise power in the
normal form model (from left to right, pout = m2/2Rout = −71, −51, and −31 dBm,
respectively). One can note the excellent agreement between numerical simulations
and analytical predictions.

4.6.2 Noise Power Density Below Threshold

Figure 4.5 displays the comparison between the analytical formula of Eq. (4.36)

and the numerical simulations using Eq. (4.33) via the time-domain stochastic dif-

ferential Eqs. (4.8) and (4.9). The normalized gain γ ≡ Γ/Γcr is increased under

threshold (γ < 1) and the variation of the noise power Prf,out = |Mout|2/2Rout

is determined for various values of the noise amplitudes Λa,c. One can note that

the analytical formula predicts accurately the growth of noise power as the gain

increased.
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4.7 Normal Form Approach for Stochastic Analysis and Phase Noise

The deterministic dynamics of the miniature OEO as described in Eqs. (4.1)

and (4.2) is high-dimensional and non-trivial. For example, it was shown in ref. [97]

that above threshold, symmetric modes with eigenumbers ±l do not have the same

amplitude, and are therefore beyond any tractable analytical approximation. How-

ever, the microwave signal is only two-dimensional (complex-valued envelope car-

rying information about amplitude and phase), and certainly more amenable to

mathematical analysis across a gain range covering the regimes below and above

threshold. Moreover, having a di�erential equation for the microwave variable would

enable us to investigate analytically its phase noise properties.

4.7.1 Normal Form Approach for Stochastic Analysis

One could try to obtain an exact equation for Ṁ1 through the time derivation

of Eq. (2.32) in Chapter 2. This operation would result in expressing Ṁ1 as a

nonlinear expansion of terms Ȧ∗lAl+1 and A∗l Ȧl+1, but would not yield a closed-

form di�erential equation that only depends onM1. However, from the nonlinear

dynamics systems point of view, the onset of the microwave oscillation can be viewed

as the result of a Hopf bifurcation. As a consequence, normal form theory states

that there is a closed-form equation for the microwave valid at least close to the

vicinity of the bifurcation, with arbitrarily high precision. The bifurcation will be

characterized by a linear parameter a, and a nonlinear parameter b.

In general, a large (but �nite) sequence of involved mathematical operations
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are needed to determine the parameters a and b, even for low-dimensional systems

(see for example ref. [96]). In our case, the minimum number of optical modes

considered above threshold is 11 (with l varying from −5 to 5), so that Eqs. (3.5)

and (3.6) are at least 24-dimensional: Under these conditions, following the standard

mathematical protocol to derive the normal form coe�cients is practically di�cult

to carry out. However, we will show that in the stochastic regime, using the nor-

mal form approach will provide the scaling behaviors of interest below and above

threshold.

In this study, we will write the stochastic normal form equation for the mi-

crowave as

Ṁ = −aM+ γ[aM+m
√

2a ζm(t)]− ab|M|2M , (4.37)

whereM = |M|eiψ ∝Mout is the complex-valued microwave envelope of interest (in

V), a stands for the linear damping of the microwave (in rad/s), b stands for the

nonlinear saturation (in V−2), m stands for the root-mean-square amplitude (in V)

of the driving Gaussian white noise, which is delta-correlated as 〈ζm(t)ζ∗m(t′)〉 =

δ(t − t′). The parameter γ ≡ Γ/Γcr > 0 is the normalized feedback gain, which is

here a�ecting both the microwave and the random noise.

In its deterministic version (m = 0), the normal form in Eq. (4.37) yields the
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following solution:

|M| =


0 when γ < 1√

(γ − 1)/b ≡Mb

√
γ − 1 when γ > 1

, (4.38)

where Mb = 1/
√
b can be interpreted as the characteristic amplitude ofM (in V).

In other words, the trivial solution is stable when γ < 1, while the nontrivial (i.e.

oscillatory) solution is stable when γ > 1. However, when noise is accounted for,

the stochastic behavior deviates substantially from the deterministic one.

In the stochastic sub-threshold case (m 6= 0 and γ < 1), the linear terms are of

�rst order of smallness, while the nonlinear term is of third order of smallness and can

then be neglected. Equation (4.37) is therefore reduced to the well-known Ornstein-

Uhlenbeck process, whose stationary properties can be obtained analytically. We

�rst rewrite Eq. (4.37) in the Fourier domain as

M̃(ω) =
γm
√

2a

(1− γ)a+ iω
Z̃m(ω) (4.39)

from which we calculate the corresponding power using again Parseval's theorem,

leading to

Prf,out =
1

2Rout

〈|M(t)|2〉 =
1

2Rout

{
1

2π

∫ +∞

−∞
|M̃(ω)|2 dω

}
=

γ2

1− γ
m2

2Rout

. (4.40)

It appears that the microwave power under threshold should distinctively scale as

γ2/(1−γ), and the coe�cient of proportionality is the noise power pout = m2/2Rout.
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Interestingly, Prf,out = pout (i.e., the power of the output signal and input noise are

equal) when γ2 = 1 − γ, that is, when γ = (
√

5 − 1)/2 ' 0.618 (or −4.18 dB).

This property is useful in order to retrieve the parameter m via pout from the sub-

threshold power variation as a function of gain. Figure 4.5 displays the comparison

between the numerical simulations using Eq. (4.33) and the scaling law predicted by

the normal form theory in Eq. (4.40). The excellent agreement con�rms the validity

of the scaling behavior predicted by the normal form theory.

4.7.2 Normal Form Approach for Phase Noise

4.7.2.1 Wiener Process Dynamics

The Wiener process, also called Brownian motion, is a real-valued continuous-

time stochastic dynamics used to model the time-evolution of random Gaussian

white noise. It is de�ned as

Φ̇(t) = Dξ(t), (4.41)

where ξ(t) is the real-valued Gaussian white noise and D2 is the variance of the

noise. The signal described by Eq. (4.41) has a phase noise which can be analytically

determined by the following equation:

|Ψ(ω)|2 =
D2

ω2
, (4.42)
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where ω = 2πf is the frequency o�set. The main advantage to describe a system

with a Wiener process is that it allows for a straight-forward analytical computation

of the phase noise using Eq. (4.42).

4.7.2.2 Analytical Formula for Phase Noise

The stochastic dynamics above threshold corresponds to m 6= 0 and γ > 1. In

this case, it is customary to neglect amplitude noise in comparison to phase noise

[∂t|M| ' 0], so that the amplitude of the microwave is still considered constant and

given by Eq. (4.38). As a consequence, the stochastic Eq. (4.37) is reduced to

Ṁ = [∂t|M|+ iψ̇|M|] eiψ ' iψ̇|M| eiψ

' γm
√

2a ζm(t) . (4.43)

from which we straightforwardly derive the phase noise spectrum as

|Ψ̃(ω)|2 =
1

ω2

[
aγ2m2

|M|2
]
' γ2

γ − 1

abm2

ω2
(4.44)

in units of rad2/Hz. This phase noise spectrum displays the usual f−2 dependence

for oscillators driven by white noise, and the normal form analysis provides two key

elements for phase noise optimization. The �rst one is that the di�usion coe�cient of

the phase noise isD = abm2: In other words, it depends on the three parameters that

characterize the stochastic normal form Eq. (4.37). From the physical viewpoint,

we �nd as expected that the phase noise is reduced by lower cavity losses (a → 0)
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Figure 4.6: Variation of the microwave power Prf,out = |Mout|2/2Rout, when the
normalized gain γ ≡ Γ/Γcr is increased above threshold (γ > 1). The blue dot
symbols stand for the numerical results obtained using the time-domain simulation
of the stochastic di�erential Eqs. (4.8) and (4.9). The dashed red lines stand for
the scaling behavior as predicted by the normal form theory in Eq. (4.38). The
microwave power has been normalized to an arbitrary reference power P

REF
in or-

der to evidence the scaling ∝ γ − 1 above threshold predicted by Eq. (4.38) for
Prf,out ∝ |M|2. One can note the good agreement between numerical simulations
and analytical predictions. The linear scaling of the power with the gain above
threshold is expected to break down when γ � 1 because of the higher-order non-
linear terms neglected in the normal form approach are then becoming dominant.

and lower driving noise (m2 → 0). The intuition that larger microwave signals

improve the phase noise performance is recovered from the condition b → 0, which

corresponds to a large characteristic voltage for the oscillator. The second one is

that since phase noise scales as γ2/(γ−1), increasing the gain leads to a deterioration

of the phase noise performance by a factor ∼ γ when γ � 1. Therefore, increasing

the microwave signal to decrease phase noise via a larger γ will not be successful for

miniature OEOs � instead, as indicated above, large signals should be obtained by

design with the lowest b possible (i.e., the highest characteristic voltageMb possible)

.
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4.8 Conclusion

In this chapter, we have investigated the stochastic dynamics of an architec-

ture of miniature OEO. We have �rst introduced the stochastic di�erential equations

ruling the dynamics of the system when driven by white noise sources, and provided

an analytical framework to determine the power of the generated microwave. We

have also proposed a stochastic normal form approach to extract the scaling be-

havior of the microwave power as the gain is increased below and above threshold.

The analytical results were found to be in excellent agreement with the numerical

simulations.
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Chapter 5: Miniature Optical Oscillator Based on Whispering-Gallery

Mode Resonator

5.1 Introduction

In previous chapters of this thesis we studied the miniature optoelectronic

oscillator based on a whispering-gallery mode modulator. This system consists of an

optical branch an an electrical branch. We derived the deterministic and stochastic

dynamics of both the open and closed-loop system, and did the stability analysis on

both models and determined the critical values leading to system's optimization as

well as the parameters a�ecting its performance.

In this chapter we present our preliminary results on the analysis of a miniature

optical oscillator based on a whispering-gallery mode resonators. The key di�erence

between an optical oscillator and an OEO is that the former only has optical input

and output, while the latter has both an optical and electrical output. The aim of

this work is to determine a spatiotemporal model for the closed-loop optical oscil-

lator, and derive the critical conditions leading self-starting oscillations. Therefore,

this chapter is organized as follows: in Section 5.2 we wll give a brief overview of

dispersion analysis; in Section 5.3 we will �rst present the Lugiato-Lefever formal-
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ism for the open-loop system with dispersion. This model fully is well explained in

Godey et al.,in ref. [105]. Next, we will design a feedback scheme and derive the

equations governing the dynamics of the system. Section 5.4 presents a temporal

analysis of the system while Sec. 5.5 studies the conditions leading to bifurcation.

Finally, Sec. 5.6 presents our preliminary results in the analysis of Kerr-comb gen-

eration.

Although this work is still an ongoing e�ort, our main contributions presented

in this chapter are: (1) The derivation of a spatiotemporal model to describe the

closed-loop dynamics. (2) The temporal and spatial analysis of the system and

derivation of the conditions for stability.

5.2 Dispersion

Let us consider that the pumped mode of a WGMR is `0. Each mode `

represents a family of eigenmodes and is characterized by an eigenfrequency and

a modal linewidth ∆ω. A photon sees a di�erent eigenfrequency at each mode,

therefore ` also represents the number of internal re�ections that a photon does in

that mode during a rountrip. Dispersion occurs when the refraction index depends

on the frequency. In a WGMR without dispersion, the modes are equidistant,

whereas in the presence of dispersion, the distance between the modes grows as we

are getting away from the pumped mode `0 (Fig. 5.1). Dispersion can be anomalous

or normal. In an anomalous dispersion regime, the eigenmodes ` are shifted to the

right, while they are shifted to the left in a normal dispersion regime.
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Figure 5.1: Eigenmodes of WGMR. The real location of the eigenfrequencies with
anomalous or normal dispersion is represented by solid lines, while the dashed lines
represent the location of the eigenfrequencies with normal or anomalous dispersion
if the dispersion were null (perfect equidistance). The enlarged �gure shows the
relationship between the laser frequency Ω0 (ωL in our work), the frequnecy of the
pumped mode 0 ω`0 , the detuning frequency σ and the loaded linewidth ∆ωtot (∆ω
in our work) [105].

In this chapter, the dispersion parameter is characterized by β. A dispersion

is characterized normal GVD when β > 0; otherwise (β < 0), it is an anomalous

GVD dispersion.

5.3 Miniature Optical Oscillator based on WGM Modulator

In this section we will start with the Lugiato-Lefever formalism for the open-

loop system. We will then derive the closed-loop dynamics and analyze the spa-
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Figure 5.2: Open-loop con�guration for the optical oscillator.

tiotemporal stability to derive the bifurcation maps in anomalous and normal dis-

persion regime.

5.3.1 Open-Loop Model

The system under study is shown in Fig. 5.2. It consists of a laser pump

that emits photons that are trapped in a WGMR though evanescent coupling. In

Subsec. 2.3.1 of Chapter 2, we introduced the notion of intrinsic and extrinsic Q-

factor of a WGMR. In a similar way to Eq. (2.7), we de�ne the intrinsic and extrinsic

linewidths, respectively ∆ωi and ∆ωe, as

∆ωi =
ω0

Qi

, (5.1)

∆ωe =
ω0

Qe

(5.2)
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where Qi and Qe are respectively the intrinsic and extrinsic (coupled) Q-factor of

the WGMR, and ω0 is the resonant frequency of the WGMR; it is the frequency of

the pumped mode `0. The total linewidth of the WGMR ∆ω is de�ned as

∆ω = ∆ωi + ∆ωe, (5.3)

The modal linewidth ∆ω can be seen as a measure of the total cavity loss

in the resonator, to which it is inversely proportional. Indeed, the average photon

lifetime τph is

τ
ph

=
1

∆ωtot

(5.4)

If we consider that Al(t) is the slowly-varying envelope equation of the cavity

�eld at mode `, then we can normalize Al such that |Al|2 is the number of photons

inside the mode `. Furthermore, we can de�ne the total intracavity �eld A as the

sum of the modal �elds Al, that is

A =
∑
l

Aleilθ, (5.5)

where θ ∈ [−π, π] is the azimuthal angle along the circumference of the microres-

onator. Using Eqs. (2.7) and (2.12), we have a relationship between the cavity

linewidth and the total loss

∆ω = 2κ (5.6)
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Let's consider the normalized optical detuning factor α de�ned in Eq. (2.14). With

Eq. (5.6), we can express α as a function of ∆ω as

α = −2σ
A

∆ω
, (5.7)

where σ
A

= ω
L
− ω0 and ωL is the laser frequency. The interest in expressing

α as in Eq. (5.7) is that it shows the dependence of the frequency detuning on the

loaded linewidth of the central cavity mode. Let's assume a moving frame so that we

can de�ne ψ(t) as the total intracavity �eld dynamics in the moving frame. We use

a spatiotemporal LLE to describe the dynamics of the normalized total intracavity

�eld as

∂ψ

∂τ
= −(1 + iα)ψ + i|ψ|2ψ − iβ

2

∂2ψ

∂θ2
+ ψ

in
, (5.8)

where ψ
in
is the dimensionless input cavity pump, Ψ(θ, τ) is the complex envelope of

the total intracavity �eld, θ ∈ [−π, π] is the azimuthal angle along the circumference

of the resonator, and τ = t/(2τph) is the dimensionless time, where τph is de�ned in

Eq. (5.4), and β is the overall dispersion parameter de�ned as

β = − 2ζ2

∆ω
, (5.9)

where ζ2 is the second order dispersion. We note that Eq. (5.8) has periodic bound-

ary conditions
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Amp

Ain

Aout

Figure 5.3: Closed-loop con�guration for the optical oscillator. The ouptut optical
signal is ampli�ed and fedback into WGMR. Amp: optical ampli�er. WGMR:
Whispering-gallery mode resonator.

5.3.2 Closed-Loop Model

The closed-loop con�guration of the system under study is shown in �g. 5.3.

We feed back the ampli�ed optical output into the WGMR cavity. Therefore, we

de�ne the input cavity �eld as

ψ
in

= ΓeiΦψ, (5.10)

where Γ ≥ 0 is the real-valued dimensionless feedback gain; it is controlled by an

optical ampli�er; all the losses are lumped into the feedback term Γ. The parameter

Φ stands for the optical round trip phase shift and can be adjusted to any value.

Therefore, the equation describing the dynamics of the closed-loop optical oscillator

based on WGMR is

∂ψ

∂τ
=
[
−(1 + iα) + ΓeiΦ

]
ψ + i|ψ|2ψ − iβ

2

∂2ψ

∂θ2
, (5.11)
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where ΓeiΦ is always positive as de�ned below:


Γ > 0 if Φ = 0

Γ < 0 if Φ = π

. (5.12)

Although it can be adjusted to any value (modulo 2π), without any loss of

generality, we will only consider Φ = 0 (modulo 2π) in our subsequent analysis, so

that ΓeiΦ = Γ > 0.

5.4 Temporal Stability Analysis

In this section we will derive the equilibrium points of the system and analyze

their temporal and spatial stability. We will also derive the bifurcation map.

5.4.1 Equilibrium Points

The equilibria of system described in Eq. (5.11) obey the relationship

[−(1 + iα) + Γ]ψ + i|ψ|2ψ − iβ
2

∂2ψ

∂θ2
= 0, (5.13)

so that we have a trivial and nontrivial equilibria given as

ψe = 0 (5.14)

Γ2 = 1 +
(
α− |ψe |2

)2
(5.15)
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5.4.2 Critical Point

Let |ψe|2 = ρ, such that ρ is non-negative. We can rewrite the nontrivial

stability condition of Eq. (5.15) as a quadratic equation with two possible solutions

G(α, ρ) ≡ ρ2 − 2αρ+ α2 − Γ2 + 1 = 0, (5.16)

so that the nontrivial equilibrium is achieved for ρ± , which are the solutions to

Eq. (5.16) and given by

ρ± = α±
√

Γ2 − 1 (5.17)

Equation (5.16) has only one critical point which is computed by taking the deriva-

tive of G(α, ρ) with respect to ρ, yielding the condition

ρcr = α, (5.18)

As such, the minimum nontrivial equilibrium point G(α) is achieved when

Γ = ±1 (5.19)

For all other values of Γ, there exists two distinct nontrivial equilibria points ρ− and

ρ+ .

112



Figure 5.4: Evolution of the number of nontrivial equilibria. The critical equilibrium
is equal to the the detuning frequency α and is achieved when Γ = 1. This �gure is
an illustration of Eqs. (5.16) and (5.18).

5.4.3 Temporal Behavior

From the analysis in the preceding subsection, we see that the critical equilib-

rium ρcr = α is achieved when the gain Γ = ±1. Above that gain, we always have

two equilibria determined by Eq. (5.17); these equilibria are such that ρ− < ρcr < ρ+ .

We can prove that only one equilibrium is stable while the other is not. Figure 5.4

shows the evolution of the number of equilibria satisfying eq. (5.16).

5.5 Spatial Analysis

In order to study the spatial stability of the system, we set the temporal

derivative ∂ψ/∂τ = 0 so that the resulting spatial equilibria obey Eq. (5.13).
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5.5.1 Jacobian

Let's decompose ψ into its real and imaginary component, following ψ =

ψr + iψi; the second order partial derivative of ψ with respect to θ is therefore

∂2ψ

∂θ2
=
∂2ψr
∂θ2

+ i
∂2ψi
∂θ2

. (5.20)

By plugging this decomposition in Eq. (5.13) we obtain a two-dimensional real-

valued �ow as

∂2ψr
∂θ2

=
2

β

[
(ψ2 + ψ2

i − α)ψr − ψi(1− Γ)
]

(5.21)

∂2ψi
∂θ2

=
2

β

[
(ψ2 + ψ2

i − α)ψi + ψr(1− Γ)
]

(5.22)

We cannot derive the Jacobian of the 2-D �ow described by Eqs. (5.25) because

the it cannot be written in matrix form. In order to circumvent this issue, we de�ne

an intermediate variable Xr,i as

Xr,i =
∂ψr,i

∂θ
, (5.23)

so that Eqs. (5.25) can be transformed into a 4-D real-valued nonlinear �ow which

state space representation is

Xr =
∂ψr

∂θ
(5.24)

∂Xr

∂θ
=

∂2ψr

∂θ2
=

2

β

[
(ψ2 + ψ2

i − α)ψr − ψi(1− Γ)
]

(5.25)
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Xi =
∂ψi

∂θ
(5.26)

∂Xi

∂θ
=

∂2ψi

∂θ2
=

2

β

[
(ψ2 + ψ2

i − α)ψi + ψr(1− Γ)
]

(5.27)

The equilbria of this system, ψe = ψe,r + iψe,i, still obeys Eq. (5.13), so that the

linearized 4-D �ow around ψe can be written under the matrix form as

∂

∂θ

 A

∂A
∂θ

 = J

 A

∂A
∂θ

 , (5.28)

where the state space vector is two-dimensional and exprssed as A = [ψr, ψi]
T and

the Jacobian J is

J =



0 0 1 0

0 0 0 1

2
β
[3ψ2

e,r + ψ2
,e,i − α] 2

β
[ψe,rψ,e,i − (1− Γ)] 0 0

2
β
[ψe,rψ,e,i + (1− Γ)] 2

β
[3ψ2

e,r + ψ2
,e,i − α] 0 0


(5.29)

5.5.2 Spatial Bifurcations

The eigenvalues λ of the Jacobian described in Eq. (5.29) obey the 4th-order

characteristic equation

λ4 − 4

β
(2ρ− α)λ2 +

4

β2

[
3ρ2 − 4αρ+ α2 + (Γ− 1)

]
= 0 (5.30)

We note that Eq. (5.30) is bi-quadratic, thus it will always have four eigenval-
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ues which are pairwise opposite (when real), or pairwaise conjugated. The paired

solutions obey

λ2
± =

4
β
(2ρ− α)±

√
∆

2
, (5.31)

where ∆ is the discriminant and is de�ned as

∆ =
16

β2

[
ρ2 − (Γ− 1)2

]
(5.32)

The solutions described by Eq. (5.31) will fall into one the two following cases:


∆ ≥ 0 =⇒ λ2

± are pairwise opposite

∆ < 0 =⇒ λ2
± are pairwise conjugate

(5.33)

We note that the pair of eigenvalues (λ2
− , λ

2
+

) is real when ∆ ≥ 0 and complex

otherwise. This in turn may lead to a variety of behaviors for the eigenvalues

(λ1,2 , λ3,4) = (±λ− ,±λ+).

5.5.2.1 First Case: ∆ > 0

The eigenvalues are real, pairwise opposite and are de�ned by Eq. (5.31). The

product of paired solutions is

λ2
+
λ2
− =

4

β2

[
3ρ2 − 4αρ+ α2 + (Γ− 1)2

]
≡ F(α, ρ) (5.34)

Subcase a: F(α, ρ) > 0. Both eigenvalues have the same sign. We can rewrite
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the characteristic polynomial of Eq. (5.30) as

λ4 − 4

β
(2ρ− α)λ2 + F (α, ρ) = 0 (5.35)

(1) β < 0. If 2ρ − α < 0, the characteristic polynomial is of the form

(λ2 − a2)(λ2 − b2) = 0, so that the eigenvalues can be written as

(λ1,2 ;λ3,4) = (±a;±b) (5.36)

If 2ρ−α > 0, the characteristic polynomial is of the form (λ2+a2)(λ2+b2) = 0,

so that the eigenvalues can be written as

(λ1,2 ;λ3,4) = (±ia;±ib) (5.37)

(2) β > 0. If 2ρ − α < 0, the characteristic polynomial is of the form

(λ2 +a2)(λ2 + b2) = 0, so that the eigenvalues is of the form (λ1,2 ;λ3,4) = (±ia;±ib).

If 2ρ−α > 0, the characteristic polynomial is of the form (λ2−a2)(λ2−b2) = 0,

so that the eigenvalues can be written as (λ1,2 ;λ3,4) = (±a;±b).

Subcase b: F(α, ρ) = 0. One of the eigenvalues is null, and the other one is ei-

ther positive or negative. We can rewrite the characteristic polynomial of Eq. (5.30)

as

λ2

[
λ2 − 4

β
(2ρ− α)

]
= 0 (5.38)
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(1) β < 0. If 2ρ− α < 0, the eigenvalues can be written as

(λ1,2 ;λ3,4) = (±a; 0) (5.39)

If 2ρ− α > 0, the eigenvalues can be written as

(λ1,2 ;λ3,4) = (0;±ib) (5.40)

(2) β > 0. If 2ρ−α < 0, the eigenvalues is of the form (λ1,2 ;λ3,4) = (0;±ib).

If 2ρ− α > 0, the eigenvalues can be written as (λ1,2 ;λ3,4) = (±a; 0).

Subcase c: F(α, ρ) < 0. The two eignevalues have opposite signs. Regardless

of the sign of β, the eigenvalues can be written as

(λ1,2 ;λ3,4) = (±a;±ib) (5.41)

5.5.2.2 Second Case: ∆ = 0

Equation (5.31) has a double root given by

λ2
± =

2

β
(2ρ− α) (5.42)

(1) β < 0. If 2ρ− α < 0, the eigenvalues can be written as

(λ1,2 ;λ3,4) = (±a;±a) (5.43)
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If 2ρ− α > 0, the eigenvalues can be written as

(λ1,2 ;λ3,4) = (±ia;±ia) (5.44)

If α = 2ρ, the eigenvalues can be written as

(λ1,2 ;λ3,4) = (0; 0) (5.45)

(2) β > 0. If 2ρ − α < 0, the eigenvalues is of the form (λ1,2 ;λ3,4) =

(±ia;±ia).

If 2ρ− α > 0, the eigenvalues can be written as (λ1,2 ;λ3,4) = (±a;±a).

If α = 2ρ, the eigenvalues can be written as (λ1,2 ;λ3,4) = (0; 0).

5.5.2.3 Third Case: ∆ < 0

This leads to ρ < Γ−1. Equation (5.31) has two complex and conjugate roots

given by

λ2
± =

2

|β|
[
(2ρ− α)± i

√
(Γ− 1)2 − ρ2

]
(5.46)

Regardless of the sign of β, the eigenvalues can be written as

(λ1,2 ;λ3,4) = (a± ib; c± id) (5.47)
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Figure 5.5: Eigenvalue bifurcation diagram (not to scale) for the case of anomalous
dispersion (β < 0). The areas are labeled using Roman numerals (I, II, and III),
and area II is subdivided into two subareas (II1 and II2). The lines are labeled using
capital letters, with line A standing for the limit ρ2 = (Γ − 1)2 (dashed red line in
the �gure); B stands for the critical line Γ2 = 1, and is also subdivided into two rays
B1 and B2. Finally, the points are labaled into lower case letters. We only have one
point a which is the critical point at which ρ = α and β2 = 1.The system has three
equilibria in area I, II1 and II2; it has two equilibria along the lines B1 and B2, and
only one equilibrium in area III. The eigenvalue pictogram are in black when they
lead to a bifurcation and in grey otherwise.

5.5.3 Bifurcation Maps

The stability analysis that performed in the previous subsection can be sum-

marized into two bifurcation maps. The �rst one presented in Fig. 5.5 considers the

case of anomalous dispersion, while Fig. 5.6 shows the bifurcation map in the case

of normal dispersion.

We note that the bifurcation map for the normal dispersion is a symmetry

along the y-axis of that in the anomalous dispersion. A summary of the type of

eigenvalues encountered is presented in Table 5.1 below. The table presents the
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Figure 5.6: Eigenvalue bifurcation diagram (not to scale) for the case of anomalous
dispersion (β < 0). The areas are labeled using Roman numerals (I, II, and III),
and area II is subdivided into two subareas (II1 and II2). The lines are labeled using
capital letters, with line A standing for the limit ρ2 = (Γ − 1)2 (dashed red line in
the �gure); B stands for the critical line Γ2 = 1, and is also subdivided into two rays
B1 and B2. Finally, the points are labaled into lower case letters. We only have one
point a which is the critical point at which ρ = α and β2 = 1. The system has three
equilibria in area I, II1 and II2; it has two equilibria along the lines B1 and B2, and
only one equilibrium in area III. The eigenvalue pictogram are in black when they
lead to a bifurcation and in grey otherwise.

physicist and the mathematician nomenclatures.

Figure 5.7 shows the pictogram of of the eigenvalues leading to a bifurcation,

as well as the location of the bifurcation in the di�erent maps.

5.6 Ongoing Work

5.6.1 Supercritical and Subcritical Turing Patterns

The main di�erence between a super- and a subcritical pitchfork depends on

how the comb emerges around the limit ρ2 = (Γ − 1)2. Thus by plugging this
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Pictogram

Bifurcation

Location in Fig. 5.5

Location in Fig. 5.6

Figure 5.7: This �gure shows the pictogram of the eigenvalues leading to bifurcation,
as well as the location of the bifurcations in Fig. 5.5 and 5.6. The lines are labeled
using capital letters, with line A standing for the limit ρ2 = (Γ− 1)2. Point a is the
critical point at which ρ = α and β2 = 1 .

condition into Eq. (5.16) while recalling that ρ > 0 yields

Γth =
α2

2(α + 1)
+ 1 (5.48)

5.6.2 Number of Rolls in Turing Patterns in Anomalous Dispersion

Regime

W e are interested in the number of rolls in the Turing pattern arising from the

(iω)2 bifurcation at ρ = Γ−1. Recalling Eq. (5.11) that models the dynamics of the

closed-loop system, a pertbation δψ(θ, τ) of the equilibrium ψe obeys the linearized

Type Nomenclature Eigenvalues (λ1,2;λ3,4) Bifurcation

1 (±a,±b)
2 Quadruple-zero (0;0) 04

3 (±ia;±ib)
4 Takens-Bogdanov (±a;0) 02

5 Takens-Bogdanov-Hopf (0; ±ib) 02(iω)
6 (±a;±ib)
7 Hamiltonian-Hopf (±ia;±ia) (iω)2

8 (±a;±a)
9 (a± ib;c± id)

Table 5.1: Eigenvalues and spatial bifurcations in the Lugiato-Lefever model
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equation

∂

∂τ
[δψ] = [−(1 + iα) + Γ] δψ + 2i|ψe |2δψ + iψ2

e
δψ∗ − iβ

2

∂2

∂θ2
[δψ] (5.49)

We recall that ψ is the total intracavity �eld and modulated sum of the modal

cavity �eld ψ
l
, where l ≡ `− `0 corresponds to the eigennumber of the WGMs with

respect to the eigenmode `0. In a similar way, we de�ne the ansatz

δψ(θ, τ) =
∑
l

δΨl(τ)eilθ, (5.50)

and insert it into Eq. (5.49) so that we obtain the expansion. To project the ex-

pansion unto a given mode l′, we multiply that equation by eil
′θ and integrate the

product with respect to θ from −π to π. The results of the projection on mode l

and −l are

∂

∂τ
[δΨl] =

[
−(1 + iα) + Γ + 2i|ψe|2 − i

β

2
l2
]

[δΨ
l
] + iψ2

e
[δΨ∗

−l
] (5.51)

∂

∂τ

[
δΨ∗

−l

]
=

[
−(1− iα) + Γ− 2i|ψe |2 − i

β

2
l2
]

[δΨ∗
−l

]− iψ2
e
[δΨ

l
] (5.52)

Equations (5.51) and (5.52) represents the two-dimensional complex �ow de-

scribing the dynamics of the modes pertubation from equilibrium. It can be written

in matrix form as

∂

∂τ

 δΨ
l

δΨ∗
−l

 =

 M N

N ∗ M∗


 δΨ

l

δΨ∗
−l

 , (5.53)
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whereM and N are given as

M = −(1 + iα) + Γ + 2i|ψe |2 + i
β

2
l2 (5.54)

N = iψ2
e

(5.55)

The stability analysis of the four-dimensional Jacobian of Eq. (5.53) shows

that the real-part of the leading eigenvalue is

G(l) = Re

{
− 1 + Γ +

√
ρ2 −

(
α− 2ρ− 1

2
βl2
)}

(5.56)

where ρ = |ψe |. G(l) represents the excitation gain of the mode following the

pertubation from equilibrium. At the threshold, there is no gain (G(l) = 0), while

know that ρ = Γ − 1. Solving equation Eq. (5.56) for the threshold mode l
th
, we

�nd

l
th

=

√
2

β
[α− 2(Γ− 1)] (5.57)

5.7 Conclusions

In this chapter we have presented our investigations of a closed-loop optical

oscillator based on a whispering-gallery mode modulator. Starting with a Lugiato

Lefever model for the open-loop sytem, we designed a feedback and derived a spa-

tiotemporal model describing the dynamics of the total intracavity �eld in the minia-

ture closed-loop optical oscillator. We then performed a temporal stability analysis

and a spatial analysis, and derived the bifurcaion maps in normal and anomalous
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dipersion regime. On-going e�orts are aiming at characterizing the Kerr-comb gen-

eration in both dispersion regimes.
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Chapter 6: Conclusions and Outlook

The work presented in this thesis has focused on the investigation of the non-

linear dynamics in miniature optoelectronic oscillators based on whispering-gallery

mode modulators. We studied the time-domain nonlinear dynamics and introduced

the stochastic di�erential equations ruling the dynamics of the system when driven

by white noise sources. In the �rst part of our work, we have proposed a full time-

domain deterministic model to describe the nonlinear dynamics of the complex-

valued envelopes of the optical and microwave �elds. This model takes into account

the intracavity �eld interactions inside the whispering-gallery mode resonator. We

have performed a stability analysis to determine the stability conditions and have

derived an analytical formula for the threshold gain leading to oscillatons (primary

Hopf bifurcation) in the system. We also performed an optimization analysis and

concluded that the system operates in optimal regime when the laser frequency is

at the edge of the optical resonance and around the critical resonator coupling.

We then investigated the idea of an ampli�erless miniature OEO based on WGM

modulator; this idea may be an additional step toward meeting the constraints of

SWAP-C, in addition to improving the phase noise performance. We optimize the

system and determined a theoretical formula for the threshold laser power leading
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to oscillations in the ampli�erless miniature oscillators. This threshold power is

higher than the power needed for the ampli�ed miniature OEO. After proposing the

deterministic model, we used the Langevin approach to derive the full time-domain

stochastic model describing the dynamics of miniature OEOs with random noise.

We provided an analytical framework to determine the power of the generated mi-

crowave. We have also proposed a stochastic normal form approach to extract the

scaling behavior of the microwave power as the gain is increased below and above

threshold. The analytical results were found to be in excellent agreement with the

numerical simulations.

The last chapter of this thesis investigated the nonlinear dynamics of miniature

optical oscillators based on whispering-gallery mode modulator. In our preliminary

e�orts presented here, we have proposed a Lugiato-Lefever model to study the e�ects

of dispersion and proposed bifurcation maps in the case of anomalous and normal

dispersion.

There are still several areas of investigation with regard to technology related

to miniature OEOs. Starting from the normal form presented in Chapter 4, we

have yet to extract the scaling factors that will lead to an analytical formula of the

power density spectrum. There is also a need to develop a more complete stochastic

model that will account for other nonlinear e�ects in the resonators or optoelectronic

components of the feedback loop. We also have yet to understand the detrimental

role played by dispersion, parasitic nonlinearities and thermal e�ects inside the

WGM resonator [42, 57]. The full investigation of the closed-loop model presented

in Chapter 5 may serve as an initial step toward that goal. Finally, modi�cations of
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the fundamental architecture of miniature OEOs based on WGM modulators can

also be considered in order to achieve higher operating frequencies, such as multiple-

FSR microwave pumping or frequency multiplication, for example. Finally, these

miniature OEOs could also emerge as a technological platform of choice to explore

several applications in quantum photonics [75, 85, 86, 87, 88, 106].
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