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From the first demonstration of a quantum logic gate in 1995 to the actual-

ization of a “quantum advantage” over classical technology a few years ago, the field

of quantum information has made remarkable progress during my lifetime. Multi-

ple quantum technology platforms have developed to the point that companies and

governments are investing heavily in the industry. A primary focus is the develop-

ment of fault-tolerant error correction, a technology expected to be necessary for

large-scale digital quantum computers. Meanwhile analog quantum simulators, a

subclass of quantum computers that apply unitary evolutions instead of digitized

gates, are at the forefront of controllable quantum system sizes. In place of algo-

rithms, analog quantum simulators are naturally suited to study many-body physics

and model certain materials and transport phenomena. In this thesis I discuss an

analog quantum simulator based on trapped +Yb171 ions and its use for studying

dynamics and thermalizing properties of the non-integrable long-range Ising model

with system sizes near the limit of classical tractability.



In addition to the technical properties of the simulator, I present three se-

lect experiments that I worked on during my PhD. The first is an observation of a

phenomenon in nonequilibrium physics, a dynamical phase transition (DPT). While

equilibrium phase transitions follow robust universal principles, DPTs are challeng-

ing to describe with conventional thermodynamics. We present an experimental

observation and characterization of a DPT with up to 53 qubits.

We also explore the system’s ability to simulate physics beyond its own by

implementing a quasiparticle confinement Hamiltonian. Here we see that the nat-

ural long-range interactions present in the simulator induce an effective confining

potential on pairs of domain-wall quasiparticles, which behave similarly to quarks

bound into mesons. We measure post-quench dynamics to identify how confinement

introduces low-energy bound states and inhibits thermalization.

Lastly, we use the individual-addressing capabilities of our simulator to imple-

ment Stark many-body localization (MBL) with a linear potential gradient. Stark

MBL provides a novel, disorder-free method for localizing a quantum system that

would otherwise thermalize under evolution. We explore how the localized phase

depends on the gradient strength and uncover the presence of correlations using

interferrometric double electron-electron resonance (DEER) measurements.

These experiments show the capability of our experiment to study complex

quantum dynamics in systems near 50 qubits and above.
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1 | Introduction

If nobody reads this thesis, I would prefer the problem to be bad marketing -

not bad presentation. In this short section, I will do my best to introduce the field

of quantum simulation without relying on hard equations and complicated graphs.

If you are here for hard equations and complicated graphs, please skip ahead to

Section 1.2 or Chapter 2.

What is a Quantum Simulator? Many systems in nature are difficult to study.

The difficulty may stem from some missing piece in our current understanding of

the system’s underlying physics, but in many instances the system is just too com-

plicated and it is hard to keep track of all the variables involved. Sometimes it is

easier to build a system, composed of components that we understand and meticu-

lously design to mimic another system, and then study the engineered system. This

may be thought of as a “bottom-up” approach rather than a “top-down” approach.

Difficult-to-study systems that we would like to better understand range from phys-

ical systems like superconductors, atomic nuclei, black holes, and molecules, to

complex synthetic or abstract systems like the global economy, airline maps, and

the internet. Many of the physical systems mentioned are hard to study because

they are quantum-mechanical in nature. Quantum mechanics is an entirely differ-
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ent set of rules than the classical physics most people are used to. It governs very

small objects like atoms and molecules as well as electricity and light1. In order to

learn about very complicated quantum systems, we need to build an easy-to-control

system that behaves according to quantum mechanics.

A quantum simulator is a system of small quantum objects made to behave like

another, more complicated or less understood quantum mechanical system. There

are many small quantum objects of which we have a thorough understanding. Some

of these systems are naturally occurring, like individual atoms. Others are man-

ufactured out of metals, particular crystals, or semiconductors in order to have

certain quantum characteristics. My PhD research has been entirely focused on

atoms. Physicists have spent the last century painstakingly working out most of

the properties of atoms - their composition (i.e. protons, neutrons, and electrons),

what states can they be in (atomic energy levels), and how they interact with light

(atomic spectra and transitions). The research described in this thesis is all about

putting together groups of these atoms (well-understood quantum systems on their

own), making them interact with light, and using them to mimic more complicated

quantum systems.

1.1 Outline

In this thesis I describe my PhD work, performed in collaboration with the

other members of the Warm QSim lab at the Joint Quantum Institute (JQI) at the
1If you are not familiar with quantum mechanics, check out the Quantum Atlas: Getting Started

[1]. They are far better at explaining the basics of quantum than I am!
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University of Maryland. The general outline of the thesis is as follows: Chapter 1

introduces the field of quantum simulation and the Ising model. We also review a few

key aspects of quantum statistical mechanics relevant to later sections. Chapter 2

describes the trapped-ion quantum simulator, its general operating principles, and

topics specific to the 171Yb+ simulator experiment in the Warm QSim lab in the

Monroe group at the JQI. Chapters 3, 4, and 5 present three experiments which

investigate dynamical properties of the transverse-field Ising model [2, 3, 4]. Each of

these chapters is adapted from a published paper to which I significantly contributed

by designing and running experiments, analyzing data, and/or writing manuscripts.

Lastly, Chapter 6 gives a preliminary look at a potential improvement to the Warm

QSim system that would permit individual qubit, mid-evolution detection.

Throughout the thesis I may use “qubit”, “ion”, and “spin” interchangeably.

For the most part they are synonymous in this context. I also try to reserve italics

for introducing important terms, although I sometimes cannot help using them for

emphasis.

1.2 Introduction to quantum simulation

The goal of quantum information research first formed when Richard Feyn-

man gave a talk in 1982 that introduced a new challenge: model nature’s quantum

behavior in a human-engineered, controllable, universal quantum system [5]. This

led to the quantum computing. Here we combine multiple small, well-controlled

quantum information bits - qubits (“quantum” + “bits”) - to create a system capa-
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ble of reproducing quantum-mechanical phenomena in an easily-measurable setting.

Feynman’s grand challenge was rephrased recently by John Preskill as the quest for

quantum supremacy, aka quantum advantage [6, 7]. A quantum information system

will have demonstrated a quantum advantage once it has completed a computational

task better than the best available classical computer2.

An archetypal example of a potential quantum-advantage algorithm is Boson

Sampling [8]. This algorithm involves sampling the output state of a number of

interfering bosons and can be implemented experimentally with individual photons

interfering at beamsplitting interfaces. Although it is one of the few algorithms with

a proven speedup over classical algorithms since it involves calculating permenants

of matrixes3, Boson Sampling as an algorithm is not likely to be useful for solving

general classes of problems.

A slight deviation from the quantum advantage quest is to use quantum com-

puting to produce interesting and useful results that may be difficult to produce

with classical methods. While many universal quantum algorithms like Shor’s Algo-

rithm [9] and Grover Search [10] will certainly be useful in the future, there are many

useful problems that do not require universality and full tunability to solve. To this

end, physicists have developed the analog quantum simulator, a class of quantum

computer based on unitary evolution rather than digitized quantum gates [11]. In-
2My phrasing here is intentionally vague since there is a number of different definitions for

“better” and “best” in this case. Maybe the quantum system solved a problem in NP
⋃

BQP
within a few minutes that a massive supercomputer could not solve in 10,000 years. Or maybe a
quantum system solved some smaller problem that a modest classical system could reproduce in
a similar time frame, but the quantum system used an order of magnitude less electricity and/or
cost less to run. The requirements of quantum advantage depend on the customer.

3The task of calculating matrix permenants is in #P [8] and is generally harder than any
problem in NP.
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stead of running discretized algorithms, these simulators operate by preparing some

known initial state (usually a trivial product state), quenching (suddenly turning

on) a many-body interaction Hamiltonian to drive unitary evolution, and measuring

observables in the final state. Quantum simulators typically realize many-body in-

teracting spin model Hamiltonians with at least a few tunable parameters and show

potential for studying a multitude of condensed-matter and many-body physics phe-

nomena as well as optimization and molecular simulation. Universal digital quantum

computer will certainly change the world, but they will likely require fault-tolerant

error correction and an order-of-magnitude larger qubit number to be fully useful

in tackling classically-intractable problems. Meanwhile, analog quantum simulators

have already demonstrated their capability to produce results that are difficult or

perhaps impossible to model through classical means [2, 12, 13, 14]. In this thesis we

will discuss an analog quantum simulator based on laser cooled, trapped-ion qubits,

as well as several experiments run on the simulator which approach the boundary

of classical tractability.

The notion of “hardness” when discussing computational difficulty has a very

particular meaning. Computational tasks fall into certain categories, called complex-

ity classes, based on how the best known algorithm for solving that problem scales

in complexity with the problem size. The two most famous complexity classes are P

andNP, which stand for Polynomial Time and Non-deterministic Polynomial Time,

respectively. A problem is contained in class P if there exists a classical algorithm

that can solve an instance of that problem of size N in polynomially-scaling time.

A simple example is the task to determine if all the marbles in a box are the color
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blue. If there are N marbles in the box, this problem can clearly be completed in

N steps...you just look at each of the marbles! As the problem size grows (more

marbles), the number of tasks required to solve this problem grows proportionally.

The NP complexity class contains all problems that cannot be solved in poly-

nomial time - they require more computational tasks that may scale exponentially,

like 2N - but can be verified in polynomial time given a solution. These problems

typically require more steps because they involve addressing combinations of items.

An example problem contained inNP is the knapsack problem. Suppose you have an

knapsack that can hold up to weightM before tearing. For a given set of items with

differing weights mi and values pi, which objects maximize the value of the knap-

sack without causing it to tear? While there are plenty of efficient algorithms that

identify approximate solutions to this problem, there is no known algorithm that

is guaranteed to find the optimal solution in polynomial time, and thus the knap-

sack problem is contained in NP. In fact, this problem is NP-Complete4, which

means that it is as hard to solve as any other problem contained in NP. Other NP

or NP-Complete problems include integer factorization, travelling salesman, and

graph partitioning [15].

At this point it is tempting to claim that quantum computers and simulators

will be able to efficiently solve the knapsack problem or the travelling salesman or

otherNP-Complete problems . . . but unfortunately there is no evidence of that! It

is entirely possible that quantum systems may still be able to solve NP-Complete
4It is actually the decision version of this problem (“Is it possible to fill a knapsack above value

P without it tearing?”) that is NP-Complete.
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problems faster than classical computers due to more favorable scaling rules, but that

will likely be a case-by-case situation. There is another complexity class containing

problems that can be efficiently solved at least two-thirds of the time using quantum

computing resources. This is the BQP complexity class, which stands for Bounded-

Error Quantum Polynomial Time [16, 17]. Quantum computers and simulators are

expected to be useful for solving problems that are in both NP and BQP - i.e.

inefficient to solve by classical means but efficient to solve by quantum means. One

well-known problem that is expected to be in NP and proven to be in BQP is

integer factorization, efficiently solvable by Shor’s Algorithm. This application will

certainly be useful one day, but although quantum algorithms scale more favorable

than classical ones, it will likely take decades to crack RSA-2048 encryption with

quantum resources. A more near-term problem known to be both NP and BQP

is simulating quantum many-body unitary evolution. In order to exactly predict

the evolution of an N -qubit quantum system, a classical computer would have to

diagonalize a 2N ×2N matrix. The Hamiltonian for a N = 15 qubit system contains

just over 109 billion matrix elements, while a 50 qubit Hamiltonian contains ∼ 1030.

Clearly a classical computer would have difficulty even storing such a matrix, let

alone identifying its eigenvalues and vectors. Meanwhile, a quantum simulator need

only prepare the desired initial state of qubits, evolve the qubits under a Hamiltonian

for some time, and measure the final system state. While repetitions may be needed

to minimize quantum projection noise, the evolution itself is linear in time and

promises a quantum advantage over exact classical simulations.
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1.2.1 The Ising model

There is a number of interesting and simulatable unitaries studied in quantum

simulators [11, 18]. These models, typically spin models, include the Fermi- and

Bose-Hubbard models (representing particle transport in lattices), the Ising model

(discrete magnets), the Schwinger model (a toy model for QED and other topics),

and more. This thesis addresses the Ising model, as it can be natively implemented

in a chain of interacting trapped-ion qubits.

The one-dimensional Ising model is a simple model of magnetism and one of

the most commonly studied topics in physics. It is relatively easy to write down and

understand, and has been a fundamental topic in statistical physics since it was first

proposed by Ernest Ising in 1925 [19]. While the 1D, nearest-neighbor interacting

model was exactly solved in Ising’s thesis, the model can become quite complex with

a few added elements. Upon adding features like transverse fields or long-range

interactions, the Ising model exhibits some fascinating, complex, and sometimes

unexpected phenomena. Because of this, we treat this system of interacting spins

as a representative example of all sorts of quantum systems. As we will discuss in

the next section, physicists are interested in many quantum mechanical phenomena

that can be observed in a quantum simulator implementing the Ising model.

Before moving on, let us discuss one of the more hopeful applications of Ising

model simulation - a moonshot goal. As discussed above, predicting the exact

dynamics of a quantum Ising system evolving under some quenched Hamiltonian is

itself anNP task that a quantum simulator can clearly complete efficiently by evolv-
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ing said system. Beyond this, it is possible to encode NP-Complete problems into

the evolution of an Ising system. In particular, by arbitrarily tuning the couplings

between all pairs of spins, an Ising system becomes a spin-glass [20]. Spin-glasses

are highly frustrated systems with complex ground states. In fact, identifying the

ground state of a spin-glass is an NP-Complete problem [21]. As we discussed

earlier, any NP-Complete problem is at least as hard as any other NP problem,

and any problem in NP can be efficiently mapped (reduced) to any NP-Complete

problem. The implication is that the solution to any problem in NP can be encoded

in the ground-state of an Ising spin-glass Hamiltonian [20]. Thus, a quantum simula-

tor can solve an NP-Complete problem (like the travelling salesman) by encoding

the problem in the system’s coupling graph and identifying the ground state by some

method [22, 23, 24]. At this point the reader should know that there is no proof that

a quantum system can efficiently identify the ground state of a spin-glass Hamilto-

nian, nor are there any quantum simulators currently capable of implementing such

a complex, bespoke Hamiltonian. Regardless, progress in variational algorithms like

QAOA [25, 26, 24] and in the application of arbitrary interaction graphs [27, 28]

indicate that this path is worth pursuing.

1.2.2 Dynamics, integrability, and thermalization

Because it is hard to exactly calculate the evolution of a many-body quantum

system, it is hard to predict when interesting events may occur during an evolution.

For instance, one might want to know how long after a quench a system reaches a
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particular entropy, or how long it takes for a certain local observable to decay by a

factor of 1/e, etc. For large many-body quantum systems, predicting such events is

analogous to answering the question “Given the initial state of the universe shortly

after the Big Bang, when will the first giraffe be born?”. There are just too many

degrees of freedom and interactions to keep track of to easily answer that question.

This is also the case for predicting quantum many-body evolution.

Regardless, a question that many physicists want to know the answer to is

“Why, when, and how will a given quantum systems ‘forget’ its initial state?”.

Closed quantum systems undergoing unitary evolution (i.e. systems with no dis-

sipative coupling to another system) will never fully lose information. However,

information initially stored in separable, local degrees of freedom (like individual

spin magnitizations) can be hidden away in higher-order observables and multi-

partite entanglement in a process called thermalization. To an observer limited to

projective measurements, a thermalized system will look like a thermal state. The

answer to “why, when, and how a system will thermalize” has important implica-

tions for condensed matter, quantum computing, cosmology, high-energy physics,

and any other field that involves keeping track of the states of quantum systems.

Eigenstate Thermalization Hypothesis. Assuming a thermalizing system ther-

malizes for every initial state (we will see in Chapter 4 that this may not always

hold), one could say that an eigenstate of a thermalizing system must be thermal

since it trivially evolves (and thereby thermalizes) to itself under the Hamiltonian.

This notion gives rise to the Eigenstate Thermalization Hypothesis (ETH), an un-

proven conjecture that defines the current paradigm of nonequillibrium quantum
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statistical mechanics [29, 30, 31, 32, 33, 34].

The ETH states that any many-body closed quantum system complex enough

to thermalize under some Hamiltonian H has eigenstates that are indistinguishable

from thermal states with the same energy when looking only at physical/local ob-

servables [32]. The implications of this hypothesis is that a thermalizing system, no

matter its initial state |ψ0〉, should eventually relax to a certain thermal ensemble

of eigenstates based on the energy of the initial state E0 = 〈ψ0|H|ψ0〉 [33].

The ETH is a powerful tool for predicting and understanding thermalization

in closed quantum systems. However, there are cases where it does not hold. That

is, there exist systems in which not all initial states thermalize while others do, or

there exist complex systems that naively should thermalize but do not. Much of

this thesis describes experiments investigating Ising spin systems that do not quite

obey the ETH. With these important factors introduced, let us discuss how we can

predict if a system should or should not thermalize.

Predicting Thermalization. The exact mechanism of thermalization in closed

quantum systems is not perfectly understood. The general consensus is that parts

of a quantum system, as long as interactions connect these parts, may act as thermal

reservoirs for the other parts. In this language, a quantum system approaches an

effective thermal equilibrium by acting as its own heat bath with a temperature set

by the initial energy of the system [32]. By partitioning the closed quantum system

into these effective sub-systems and sub-baths, one can use more-or-less conventional

quantum statistical mechanics (i.e. partition functions, ensembles, density matrices)

in conjunction with the ETH to predict some thermal behavior.
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This topic is convoluted by the observation that only some systems thermal-

ize! A closed quantum system must have at least one conserved quantity throughout

any unitary evolution: the system’s energy. It has been observed that systems with

extensively many conserved quantities will never thermalize under unitary evolu-

tion [32]. These systems tend to be quite simple or symmetric and their evolution

can typically be solved analytically. As such, these systems are called integrable since

the Schrödinger equation describing their evolution can be integrated exactly to pro-

duce an “equation of motion” through Hilbert space. This definition is quite similar

to a cyclical system in classical dynamics. Such a system can be solved exactly and

has dynamics with some finite period [35]. Extending this analogy, quantum systems

that do thermalize behave quite similarly to chaotic systems. If a quantum system

is sufficiently complex and has few conserved quantities it will evolve in an approx-

imately random (or chaotic) manner through Hilbert space. These systems cannot

be solved analytically and are called non-integrable. While the connection between

non-integrable quantum dynamics and chaotic dynamics has not been formalized,

it has been observed that quantum versions of chaotic classical systems tend to ex-

hibit thermalization [36]. This chaotic thermalization picture also provides a handy

tool for predicting whether or not a system will thermalize based on its eigenstates:

random-matrix theory (RMT). In short, a thermalizing quantum system will exhibit

chaotically-distributed eigenstates due to level-repulsion between these eigenstates.

A Hamiltonian that produces such a chaotic distribution of eigenstates should be

indistiguishable from a Gaussian-orthogonally-distributed random matrix [34]. In

contrast, a generic integrable Hamiltonian does not have this random nature. In
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2007, Oganesyan and Huse [37] developed a consistent and objective measure for

distinguishing these two regimes. The measure is based on the statistics of the ratio

of adjacent energy-level spacings.

Level Statistics. Consider a Hamiltonian describing a system of N interacting

spins. This system will have up to 2N eigenstates with unique energies. For 2N

unique energy levels (here sorted by ascending energy), there are 2N − 1 energy

spacings, En − En−1 where E0 is the ground state. Let us define the ratio of the

energy splittings adjacent to state n as:

rn =
min(En+1 − En, En − En−1)

max(En+1 − En, En − En−1)
(1.1)

We define rn with the smaller of the two spacings in the numerator such that rn ∈

{0, 1}. Oganesyan and Huse found that the distribution of rn for a thermalizing/non-

integrable Hamiltonian has statistics described by a Wigner-Dyson distribution,

which is consistent with the RMT picture of quantum thermalization. In contrast,

a non-thermalizing/integrable Hamiltonian exhibits a Poissonian distribution of rn.

It is a little subjective to just plot a histogram of rn along with the two distribu-

tions to judge which one is a better match (although this is done in Fig. 1.1 as an

example). Luckily this task can be boiled down to calculating the average value of

rn. This average energy-level ratio, 〈r〉, referred to as the level statistics measure

from here on, approaches 0.386 for an ideal Poissonian distribution and 0.5295 for

an ideal Wigner-Dyson distribution [37]. With this, one can predict whether any

modestly-sized quantum system should thermalize by diagonalizing its Hamiltonian
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and calculating 〈r〉. Let us take a look at the level statistics for a number of differ-

ent transverse-field Ising Hamiltonians and try to predict whether or not a system

should thermalize under their evolutions. We will consider two transverse-field Ising

model (TFIM) Hamiltonians, one with nearest-neighbor interactions and one with

long-range interactions and variable σz disorder:

HNN = J

N∑
i

σxi σ
x
i+1 +

N∑
i

σxi +
N∑
i

σzi (1.2)

HLR =
N∑
i,j

Ji,jσ
x
i σ

x
j +

N∑
i

σxi +
N∑
i

σzi +
N∑
i

Rand(−D,D)iσ
z
i . (1.3)

Here the interactions between ions i and j are described by an approximate power-

law decay (see Eq. 2.44) and the term Rand(−D,D)σzi applies individual-spin Z-

fields with random strengths between −D and D.

A nearest-neighbor interacting Ising Hamiltonian, even with global transverse

and longitudinal fields, is integrable. The resulting unitary matrix is not chaotic as

there are at least as many conserved quantities as degrees of freedom (such a model

can be mapped to a free-fermion model via the Jordan-Wigner transformation). We

see that the HNN Hamiltonian level statistics in Fig. 1.1a look rather Poissonian,

with 〈r〉 ≈ 0.42 for N = 15 spins. We should not expect this system to thermalize.

Introducing long-range interactions does generally break the Ising model’s in-

tegrability, but not entirely. For the long-range power-law interactions present in

trapped-ion quantum simulators (see Section 2.3.1) there remain some integrals of
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Figure 1.1: Ising model level statistics Level statistics for Ising model Hamiltoni-
ans of varying integrability. The red and green curves show Poissonian and Wigner-
Dyson probability densities of the energy-level ratio r predicted for integrable and
non-integrable systems. The blue lines are histograms showing the distributions of
r for various transverse-field Ising Hamiltonians. a. Nearest-neighbor interacting
Ising model. b, c, d. Long-range interacting Ising models with zero, low, and high
applied σz disorder. The long-range Hamiltonians use experimental Hamiltonians
generated from lab measurements (see Eq. 2.44). The low disorder amplitude is
D = 0.1J0 and the high disorder amplitude is D = 30J0.

motion, although not an extensive number of them. We will call such a system

near-integrable. In practice this means the system should thermalize according to

ETH, but only at very long times, often beyond the time accessible by any cur-

rent experimental platform [38]. In Fig. 1.1b we see that a long-range Ising model

with transverse and longitudinal fields of about the same amplitude as the average

nearest-neighbor interaction strength J0 has level statistics close to the truly inte-
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grable nearest-neighbor Hamiltonian. We might expect this system to thermalize,

but it would likely be difficult to observe convergence to any thermal ensemble in

an experiment. The number of spins may also influence the thermalizing behavior

of this near-integrable system.

To strongly break the system’s integrability, we can add some weak σz disorder

(the last term in HLR above). This introduces randomness to the Hamiltonian,

which successfully destroys most or all integrals of motion. Upon adding disordered

σz fields at each ion with amplitudes bounded at |D| . 0.1J0, we see level statistics

in Fig. 1.1c that clearly match the Wigner-Dyson distribution corresponding to a

chaotic random matrix with 〈r〉 ≈ 0.52 for N = 15 spins. We should expect this

system to thermalize quickly.

And lastly, we can recover what looks like an integrable system by applying

strong disorder to the Hamiltonian (here bounded at |D| . 30J0). The Poissonian

level statistics in Fig. 1.1d match that of an integrable system because the system

exhibits many-body localization. The disorder revives an extensive set of integrals

of motion, creating emergent integrability in the system. Understanding many-

body localization is an active area of research. It draws intense interest due to

its use in stabilizaing dynamical phases [2, 39] and quantum storage [40] against

thermalization predicted by ETH. A further discussion of many-body localization,

as well as an experimental investigation of a disorder-free analog, Stark many-body

localization, can be found in Chapter 5.

Identifying Thermalization. Numerical indicators like level statistics are useful

for predicting if a system should thermalize or not. However, it is prohibitively diffi-
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cult to experimentally measure all energy level spacings, especially since the number

of eigenstates grows exponentially with system size. Most quantum simulation ex-

periments measure local observables, although some experiments have demonstrated

the ability to directly measure entanglement entropy for small systems [41]. It would

be best to use these local measurements to determine whether a system has ther-

malized. Let us discuss how we might experimentally identify the presence (or lack)

of thermalization in a quantum system.

The initial energy of a system in state |ψ0〉 immediately following a quench

under some Hamiltonian H is E0 ≡ 〈ψ0|H|ψ0〉. As discussed earlier, such a system

will thermalize under the evolution of a non-integrable Hamiltonian according to the

ETH [32]. As such, we consider a system thermalized once it has relaxed to a state

indistinguishable from a thermal ensemble of eigenstates. To determine whether

a system is distinguishable from the thermal ensemble (either experimentally or

numerically), we compare local observables (e.g. individual magnetizations) to their

thermal expectation values. Let us consider two appropriate thermal ensembles:

the microcanonical ensemble and the canonical (Gibbs) ensemble. Note that finite-

size effects may influence these ensembles differently, so we consider both for the

following calculation.

First consider the microcanonical ensemble. The microcanonical thermal ex-

pectation value of an observable Ô is

〈Ô〉MC =
1

Ns

∑
|Es−E0|<∆

〈s|Ô|s〉 (1.4)
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where |s〉 is an eigenstate of Hamiltonian with energy Es, which is found in a window

of width 2∆, containing Ns states5, centered around E0. This method is useful be-

cause it does not necessarily require full diagonalization to identify all 2N eigenstates

- only knowledge of Ns states near E0.

Next, consider thermalization to a canonical (Gibbs) ensemble, represented by

a density matrix

ρT ∝ e−βH (1.5)

where β is the effective inverse temperature of the system. Assuming the Hamilto-

nian is conserved, the system’s energy must remain constant throughout the evolu-

tion. It follows that the initial energy E0 equals the thermal value predicted by the

canonical ensemble

E0 =
Tr(HρT )

Tr(ρT )
=

Tr(He−βH)

Tr(e−βH)
. (1.6)

This relationship fixes the value of β based on the initial state of the system.

For modest system sizes (e.g. ≤ 15 spins), we can easily diagonalize a Hamilto-

nian and calculate the canonical thermal density matrix ρT in Eq. 1.6 corresponding

to the initial state |ψ0〉. With this, we may calculate the canonical thermal expec-

tation values of various local observables

〈Ô〉T = Tr(ÔρT ). (1.7)

5The value of ∆ is somewhat arbitrary here. It should be large enough to encompass a
statistically-relevant number of states Ns, but not so large that too much of the level spectrum is
included. As a rule of thumb, choose ∆ such that Ns/2

N ≈ 0.1.
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This method does require full Hamiltonian diagonization and is therefore limited

to smaller system sizes. Both methods here tend to agree well, at least for all the

system sizes and Ising Hamiltonians considered in this thesis. Thus, to determine

whether a state quenched under some Hamiltonian has thermalized, one need only

compare measured values of some local observable (like magnetization) to the cor-

responding canonical and/or microcanonical thermal expectation values. A detailed

example of this processes is described in the context of non-thermalization due to

quasiparticle confinement in Section 4.3 with data and thermal expectation values

shown in Fig. 4.6.
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2 | Trapped Ion Quantum Simulator

In the 1610’s, Galileo championed Heliocentrism despite the Roman Catholic

Inquisition’s insistence that the Earth is stationary. Throughout the 19th century,

luminiferous aether theories were the focus of hot debate among physicists. And

now, reflective of this strange new millennium, a fresh argument has developed

as the quantum-literate community struggles to answer another esoteric question:

which technology is best-suited for quantum information processing? In the last

few decades scientific entities ranging from universities, Fortune 500 corporations,

national agencies, and start-ups have launched research programs aimed at develop-

ing quantum devices based on: superconducting Josephson junctions, trapped ions,

ultra-cold neutral atoms, ultra-cold molecules, Rydberg atoms, quantum dots, color

centers in crystals (e.g. diamond or SiC), linear optics, CQED, nuclear-magnetic

resonance, and Majorana fermions [42, 18]. While many of these platforms are

demonstrably excellent qubit candidates, I am comfortable claiming expertise in

at most one of the listed technologies and therefore am not qualified to identify

which is best. With that, I will spend the rest of this section introducing trapped

ions as successful qubits before discussing a particular implementation of an analog

quantum simulator using linear chains of 171Yb+ ions in an rf Paul trap.
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2.1 Trapping an ion chain

2.1.1 Introduction to the rf-Paul trap

Earnshaw’s Theorem. Atomic ions, by definition, have a net electric charge.

Cleverly created electric (and sometimes magnetic) fields can trap these ions, usu-

ally positively charged, in space. An important caveat is described by Earnshaw’s

Theorem, which states that point charges cannot be trapped by static electric fields

alone. While the proper proof is quite complicated, we can reach a similar conclu-

sion from Gauss’s law with far less work. The differential form of Gauss’s law in

free space, ~∇ · ~E = 0, tells us that the divergence of an electric field is zero in the

absence of charges. In other words, for any point in free space, the magnitude of

electric field directed toward the point equals the magnitude away from the point.

It follows that any ion1 trapped by a static field along one axis must be equally

anti-trapped in another direction. The best we can do with static E-fields is create

a saddle potential, which will be described shortly. There are two popular options

for circumventing Earnshaw’s theorem. The Penning trap combines static electric

and magnetic fields to confine ions into a 2D “pancake”, which rotates about the

strong magnetic field. These traps excel at confining large crystals of ions at the

expense of individual-addressibility, with multiple research groups using Penning

traps for large-scale quantum simulators [43, 44]. The work in this thesis was per-

formed with another genus of ion trap, the radio-frequency (rf) Paul trap. Such a
1This is true for any charged particle. For macroscopic electric fields, an ion behaves like an

ideal point charge.
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trap utilizes quickly-oscillating electric fields to confine ions in space. In this section

we will derive some properties of a linear rf Paul trap, then focus on some physical

realizations.

Rf Paul Trap. A general, 3D quadrupole potential φ has the form

φ =
V0

2r2
0

(1 + λx2 + σy2 + γz2) (2.1)

where V0 is the electical potential applied to some configuration of electrodes; λ, σ,

and γ are real constants; and r0 is a characteristic length scale that depends on the

system. In free space, this potential must satisfy Laplace’s Equation,

∇2φ =
V0

2r2
0

(2λ+ 2σ + 2γ) = 0, (2.2)

which requires that λ+σ+γ = 0. For now, let us ignore one dimension by assuming

the potential is invariant along z. With this, we are considering the special case of

the linear rf Paul trap. Once we have the ion trapped in a 2D plane, we can simply

apply constant voltages to endcap electrodes to create a harmonic trapping potential

along z. Upon restricting the potential to the x−y plane (γ = 0), Laplace’s Equation

mandates that λ = −σ, and we can rewrite Eq. 2.1 as

φ =
V0

2r2
0

(1 + x2 − y2). (2.3)

This potential has a saddle-shape, with the potential rising from the center along

x and falling along y. Here we see that a time-independent quadrupole potential
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may trap a positively-charged ion along one Cartesian direction (x in this case),

but simultaneously anti-traps along the other direction (y). The trick of an rf Paul

trap is to quickly change the overall sign of the quadrupole potential such that the

time-averaged force felt by an ion is similar to that of a 2D harmonic potential well.

A set of hyperbolic electrodes can create the potential in Eq. 2.3 when two opposite

electrodes (separated by d = 2r0) are grounded and the other two electrodes are held

at a voltage V0. If the 2D electrode configuration is extruded in the z-direction, our

assumption that the potential is constant along z holds true. By setting the voltage

to V0 cos(ΩT t), the time-dependent potential becomes

φ =
V0 cos(ΩT t)

2r2
0

(1 + x2 − y2). (2.4)

For a trap driving frequency ΩT faster than the time scale of the ion’s motion, the

potential will switch from trapping to anti-trapping along each direction before the

ion is ejected from the trap. Time-averaged over multiple periods of ΩT , an ion with

mass m and charge e experiences a pseudopotential with a corresponding equation

of motion (EoM) for x

ẍ = − e2V 2
0

2m2Ω2
T r

4
0

x. (2.5)

Given that the EoM for a standard harmonic oscillator potential with frequency ω

is ẍ = −ω2x, we can identify the pseudopotential as an approximately harmonic
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potential well with a secular frequency

ωx =
eV0√

2mΩT r2
0

. (2.6)

This also applies to the y-direction2. The pseudopotential approximation holds

as long as the ion remains close to the center of the trapping potential. If the ion

strays too far from the center, its motion becomes significantly modulated by electric

fields oscillating at the trap driving frequency. To understand this effect, called

micromotion, we must consider a more complete description of the ion’s motion in

the oscillating quadrupole potential.

Mathieu Equation. Let us find the equations of motion for an ion subject to

the 2D quadrupole potential. For now we will continue ignoring motion in the z-

direction, instead focusing on restricting an ion’s motion in the x−y plane. Consider

the electric field produced by the potential in Eq. 2.3, but now including a constant-

voltage offset of U0 on the driven electrodes:

~E(x, y, t) = −~∇φ = −U0 + V0 cos(ΩT t)

r2
0

(xx̂− yŷ). (2.7)

This field exerts a force on an ion with mass m and charge e equal to

~F (x, y, t) = m(ẍx̂+ ÿŷ) = e ~E(x, y, t)

= −eU0 + V0 cos(ΩT t)

r2
0

(xx̂− yŷ).

(2.8)

2The depth of this potential well, equal to the kinetic energy needed for an ion of charge e and
mass m to escape the trap from the center, is D = (e2V 2

0 )/(4πmr2
0Ω2

t ). For typical parameters,
this depth can range from 1− 15 eV.
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This yields two EoMs, one for x and y:

ẍ+
e

mr2
0

[U0 + V0 cos(ΩT t)]x =0 (2.9)

ÿ − e

mr2
0

[U0 + V0 cos(ΩT t)]y =0. (2.10)

A notable feature of these EoMs is that the x and y equations are uncoupled, which

allows us to treat motion in the x and y dimensions independently. This would not

be true for higher-order multipole potentials [45]. Each equation bears resemblance

to the Mathieu Equation [46, 47, 48], which has a canonical form of

d2u

dζ2
+ [au + 2qu cos(2ζ)]u = 0. (2.11)

We can transform Eq. 2.9 into this form with the following substitutions3

ζ =
ΩT t

2
; ax =

4eU0

mr2
0Ω2

T

; qx =
2eV0

mr2
0Ω2

T

. (2.12)

Note that ax = −ay and qx = −qy. Applying the Floquet Theorem provides a

solution in the form of a linear combination of sines and cosines [47, 48, 49]. For

ax,y = 0 (no constant offset on rf electrodes), the first-order solution to Eqs. 2.11

3After the initial ΩT t
2 = ζ substitution, we use the chain rule to find that

d

dt
=

d

dζ

dζ

dt
=

d

dζ

d

dt

(
ΩT t

2

)
=

ΩT

2

d

dζ
;

d2

dt2
=

Ω2
T

4

d2

dζ2
.
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and 2.12 is

x(t) = A0 cos(ωxt)
[
1 +

qx
2

cos(ΩT t)
]

(2.13)

for some amplitude A0 and secular frequency ωx from Eq. 2.6. We see that, for small

values of qx (often called “little q” in an ion-trapping lab), the Mathieu Equation

result is identical to the pseudopotential approximation. Except for the trivial case

where V0 = 0, qx is always nonzero and so the ion’s motion is modulated at ΩT with

amplitude qx/2 =
√

2ωx/ΩT . Furthermore, stray fields often push the ion from the

trap center (often called the micromotion null), which causes additional micromo-

tion. To address this, many trap configurations include additional constant-voltage

electrodes to counteract these stray fields, pushing the ion back to the micromotion

null. The severity of this micromotion strongly depends on the trap geometry. In

short, ion micromotion applies effective sidebands onto atomic transition lines (due

to a first-order Doppler shift), reduces laser cooling efficiency, and causes AC Stark

shifts detrimental to precision measurements [50]. The amplitude of the inherent

micromotion in Eq. 2.13 can be minimized by maintaining qx � 1. This is accom-

plished by driving the trap at a large frequency ΩT , using an electrode configuration

with large spacing (large r0), or by using a relatively heavy ion (large m). These

quantities often have multiple physical constraints, however.

Physical Trap Considerations. We will later find that the strength of interac-

tions between ion qubits is proproportional to the secular frequency of the pseu-

dopotential, ωx. Consequently any entangling operation (2-qubit gate, many-body

interacting unitary, etc.) can be completed faster for larger ωx, making large secu-
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lar frequencies desirable. Thus, a large component of the ion trapping challenge is

designing a usable trap which maximizes the secular frequency will maintaining the

qx � 1 condition.

Perhaps the first knob one would think of turning here is the amplitude of V0,

the applied rf voltage. A strict upper-limit for this value is set by the breakdown

voltage of any dielectric material separating high-voltage rf electrodes and grounded

electrodes 4. Any discharge can cause damage to trap components, especially since

trap-rf-driving electronics typically are not designed to supply much current. When

designing a trap, it is good to have a decent estimate of this maximum safe voltage

and how it changes with vacuum pressure and electrode distance so V0 can be kept

well below.

While not a conveniently-adjustable “knob”, decreasing the distanced between

rf electrodes will increase the secular frequency (for constant V0). This also has the

obvious effect of decreasing the overall size of the trap, which could reduce optical

access for imaging and laser-addressing. Furthermore, the ion-electrode distance ap-

pears to have a significant impact on the heating rate of a trap. Small imperfections

in the electrode surface can cause small time-dependent fluctuations in the electric

field, which will induce additional motion (i.e. increase the ion temperature). Ions

trapped closer to an electrode usually experience higher heating rates [51, 52, 53].

The final “knob” is ΩT , the trap driving frequency. Notably, the secular fre-

quency scales linearly with the driving frequency (ωx ∝ 1/ΩT ), while the Mathieu qx
4The breakdown voltage of a gas decreases with pressure. It is unlikely an electric current will

arc between electrodes through a gas at ultra-high vacuum pressures. Very sharp electrodes may
discharge at high voltages, as they accumulate charge at the sharp time similar to a lighting rod.
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parameter scales quadratically (qx ∝ 1/Ω2
T ). As a result, you win by increasing ΩT

as it dramatically reduces the influence of micromotion while increasing the secular

frequency. A few physical factors limit the reasonable range of ΩT . One which we

have neglected thus far is the stability, or mass-selectivity, of rf Paul traps. In short,

ions with certain mass-to-charge ratios m/e will only be stably trapped in the x− y

plane for certain values of au and qu5. For more information about this refer to the

book “Ion Traps” by Ghosh [47] or Douglas et al. [45].

For most popular ion species, the optimal trap driving frequency is on the order

of 10’s or 100’s of MHz with values of V0 ranging from 10’s of Volts to kV’s depending

on the electrode distances. An elegant solution for applying such large-amplitude rf

voltages to the electrodes is the helical quarter-wave resonator [54]. This resonator,

often called an rf “can”, acts as a compact step-up voltage transformer, narrow-

band frequency filter, and high-voltage impedence-matching component. A quarter-

wave resonator is simply a transmission line, with total length equal to a quarter-

wavelength of the desired resonant frequency, enclosed in a conducting shield. For

compactness, the transmission line is often coiled into a helix and inductively coupled

to an antenna in direct electrical contact with the trap’s rf electrodes [55, 56, 57, 58].

When connected to a trap (usually modelled as a ∼ 10 picoFarad capacitive load),

the resonator-trap system forms an RLC circuit. TheQ factor of the complete circuit

determines the resonator’s transmission linewidth, resonant frequency, as well as the

voltage step-up multiplier.
5It is this principle that makes the rf Paul trap (in the form of a quadrupole mass analyzer) an

invaluable tool in modern mass spectrometry.
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Real rf Paul Traps. So far we have discussed an rf Paul trap consisting of ideal

hyperbolic electrodes. While they make the math work out nicely, hyperbolic elec-

trodes are inconvenient for quantum information experiments because they severly

limit optical access to the trapping region. A variety of AMO-lab-friendly electrode

configurations have been developed with new architectures being designed every

year [59]. These all produce oscillating, nearly-quadrupole potentials6, similar to

the ideal hyperbolic case near the trap’s center, while allowing high-NA optical ac-

cess sufficient to resolve individual ions. These different trap geometries provide

flexibility in different ways. The Monroe group currently uses four different linear

rf Paul trap geometries for different applications:

1. Four rod trap. One of the easiest traps to design/assemble is the four rod

trap. As the name suggests, this trap consists of four parallel, rod-shaped

electrodes arranged with a rectangular cross section. Two diagonally-opposite

rods are grouned, while the other rods are driven by an rf voltage source. Two

additional end-cap electrodes are placed along the axis of the trap to provide

confinement along a third direction. Advantages include ease of assembly and

ease of operation. Disadvantages include few degrees of freedom for moving

a trapped ion’s position via DC bias fields and poor optical access along the

trap’s symmetry axis. A typical four rod trap designed to trap Ytterbium-171

(m = 171 amu) is described in Reference [49] (Sections 3.1-3.2). Here a trap

with parameters r0 = 0.46 mm, ΩT = (2π)38 MHz, and V0 = 1 kV produces a
6Every rf Paul trap must necessarily produce an approximate quadrupole potential to trap

an ion in 2D. For non-hyperbolic electrodes, one should numerically calculate electric fields and
trapping potentials using finite-element analysis software like COMSOL or CPO.
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trapping potential with ωx ≈ (2π)1.3 MHz and qx ≈ 0.1.

2. Blade trap. A more advanced riff on the four rod trap is the four blade trap.

Here the four rods are replaced with thin blades pointing towards the trap axis.

The sharp edges of these blades allow for better optical access compared to

four rod traps. Furthermore, the blades can be micro-machined or laser-etched

to include multiple constant-voltage electrodes for applying DC bias fields or

for use as endcaps. These versatile traps feature in numerous experiments

ranging from quantum simulation to networking testbeds [60, 61, 62] and have

been used to confine over 100 individually-resolvable ions [63]. Advantages

include excellent optical access along all directions and decent control over

DC bias fields. The only disadvantage I can think of is that blade traps are

very sensitive to the alignment of the blades. These traps are often hand-

assembled, and slight misalignment will inevitably cause excess micromotion.

A typical blade trap designed to trap Yttebium-171 is described in Reference

[64] (Sections 2.3 and 2.5.3). Here a trap with parameters r0 = 0.25 mm,

ΩT = (2π)23.83 MHz, and V0 ≈ 400 V produces a trapping potential with

ωx ≈ 2.7 MHz and qx ≈ 0.32.

3. Microfabricated trap. The most technologically advanced trap, and also the

rf Paul trap species with the most diversity, is the microfabricated trap. Also

called a “chip trap”, this name refers to any rf Paul trap designed and manu-

factured using the microfabrication techniques historically used in integrated

circuit manufacturing. These traps can be designed to include extremely small,
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micron-scale structures involving dozens or hundreds of individually control-

lable rf and constant-voltage electrodes. I find these traps the most diffi-

cult to describe because they are not defined by simple geometric structures.

Therefore, I recommend referring to these References [59, 65, 66, 67] for more

information. In addition to growing academic use, industrial research actors

including IonQ and Honeywell have based their trapped-ion quantum comput-

ing platforms on chip traps of various designs. Advantages include inherent

scalability due to modular design philosophies and repeatable manufactur-

ing techniques, low rf voltage requirements due to short length scales, and

unparalleled control of ions’ positions with DC bias fields. Disadvantages in-

clude middling optical access and issues stemming from surface imperfections7,

which are emphasized by small ion-electrode distances. The High Optical Ac-

cess Trap 2.0 (HOA2.0), a popular trap designed and sold by Sandia National

Laboratory, exemplifies the state of the art. See Reference [67] for details on

that trap.

The fourth geometry used in the Monroe group is a somewhat specialized trap:

the 3-layer Paul trap.

2.1.2 3-layer rf-Paul trap

The 3-layer rf Paul trap used in the Warm QSim experiment exhibits a hy-

brid trap geometry, borrowing design elements from blade traps and chip traps
7I am not a real condensed-matter physicist, I only play one in the lab. Thus, I am scared of

surface physics and tend to categorize it as black magic. You will read more about black magic
later in this thesis.
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(Figure 2.1). The central rf layer provides the pseudopotential confinement in the

xy-plane, while the outer two layers, each containing 6 electrodes, provide the static

axial (z) confinement and electric field compensation. The primary benefit of this

geometry is the ability to rotate the trap’s principle axes and to null micromotion

independently [68, 69, 70]. Furthermore, this geometry can be extended to com-

plicated trap designs, including traps with junctions and separate trapping regions

[71, 72]. The main downside is the lack of optical access. While the flat design

gives a numerical aperture of > 0.4 NA in the x-direction, this trap does not permit

optical access directly along the y or z-directions. Most of the lasers used in this

experiment pass through the trapping region at a 45 degree angle between x and z

in Fig. 2.1. For instance, the single Doppler cooling beam propagates along this 45

degree angle with an additional shallow projection on the z-axis. I chalk the reduced

optical access up to an “annoyance” rather than a “flaw” since this geometry still

permits individual qubit addressing (Section 2.3.3), high-NA imaging of long chains,

and good micromotion-nulling capabilities.

Controlling the Trap. This trap, shown in Figure 2.1, features 12 DC electrodes 8.

We have 6 of these electrodes grounded, while the voltage of the other 6 are actively

controlled and monitored by an Iseg HV card (EHS-80-05XK3) that is managed by

a WEIRNER MPod MiniCrate. The MiniCrate allows us to control the voltages of

these electrodes in LabView via a net-SNMP internet protocol. While we have the

option to manually set electrode voltages, it is more convenient to specify heuristic
8Actually “constant voltage” instead of “direct voltage” since there is little-to-no current drawn

by the electrodes.
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Figure 2.1: 3-layer trap. The trap used for the majority of the quantum simulation
experiments discussed in this thesis. Left: Photograph of the 3-layer trap clamped
in its alumina spacer during chamber construction (credit to an anonymous, former
Monroe Group member). Right: Diagram of electrodes. The trap features gold-
plated alumina electrodes. The DC layer electrodes are 250 µm thick and the rf
electrodes are 125 µm thick.

parameters that corresponds to setting multiple voltages according to a predeter-

mined function. These heuristic parameters make it easier to apply common actions

to the trapping potentials, such as translating the ion along the z-axis (ZPush) or

adjusting the axial trap frequency (End Average). The commonly used heuristic

voltage controls and their corresponding electrode functions are:

1. ZPush: VZPush =
(V1 + V5)− (V2 + V6)

2

2. End Average: VEndAvg =
V2 + V2 + V5 + V6

4

3. Central Average: VCentAvg =
V3 + V4

2

4. End-Near Vertical Difference: VENVD =
(V1 + V2)− (V5 + V6)

2

5. Central Difference: VCentDiff = V3 − V4
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Figure 2.2: 3-layer trap electric fields. Electric field lines along the x− y-plane
throughout the rf cycle. Near the trap center (purple dot) the electrodes produce
a quadrupole potential similar to an ideal hyperbolic geometry. Blue (red) repre-
sents when the rf voltage swings positive (negative) relative to the DC electrodes.
The fields away from the trap center switch directions every half-period, causing
micromotion along the axis of displacement.

ZPush translates the ion(s) along the trap’s z-axis of symmetry. This is typically

set to 0V during experiments, although it is often useful to move ions around the

trap for calibration purposes. The combination of VEndAvg and VCentAvg determines

the overall axial trapping strength. Typical operating values range from 1 V ≤

VEndAvg ≤ 15 V and 0.1 V ≤ VCentAvg ≤ 1.5 V, corresponding to max axial trap

frequencies for linear chains of 55 ≥ N ≥ 10 ions respectively. Because electrodes

3 and 4 are in different layers, adjusting the ratio of VEndAvg and VCentAvg rotates

the principle axes of the trap. We adjust this ratio such that the momentum kick

from the Raman laser beatnote acts only on the x-motional modes with negligible

projection along the y-axis. The optimal ratio tends to be VEndAvg/VCentAvg ≈ 12−20

depending on the alignment of the beams relative to the trap. The combination of
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VENVD and VCentDiff sets the ion’s position along the x-axis. This control is needed

to null x-axis micromotion.

Micromotion. Unlike four rod traps, deviations in an ion’s position from the micro-

motion null in the 3-layer trap results in micromotion along the axis of displacement9

(see Figure 2.2). Given the set of constraints and degrees of control in this trap, we

are able to fully null micromotion in the x-direction by displacing the ion along that

principle axis. We are not able to independently displace the ion along y though,

meaning that we are unable to null micromotion along that axis. We bypass this is-

sue by rotating the principle axes of the trap (by adjusting VEndAvg/VCentAvg) so the

Raman laser beatnote (Section 2.3) couples only to the ions’ x-modes with minimal

projection on the y-axis. Once we are confident the y-mode coupling is nulled, we

can measure the x-axis micromotion by directly driving the micromotion sideband

(ωCarrier±ΩT , see Section 2.3 for details on sideband transitions). The Raman AOM

has a poor diffraction efficiency at this drive frequency (typically about 263.5 MHz,

while the AOM center frequency is 210 MHz), but it is sufficient to Rabi flop on

this sideband transition with a few kHz frequency. We minimize the micromotion

sideband Rabi frequency by the adjusting the VENVD and VCentDiff controls in the

same direction until the micromotion sideband Rabi frequency is less than 1 kHz.

Vacuum Chamber. Ion traps are housed in ultra-high vacuum chambers to min-

imize the frequency of collisions between the trapped ions and background gas par-

ticles. The vacuum chamber used in this experiment is rather . . . historic . . . dating

back to before 2006 when it was used for trapping Cadmium ions at the University
9Four rod traps exhibit micromotion perpndicular to the axis of displacement.
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of Michigan. The preparation and chamber design (or similar design) has been dis-

cussed in a number of theses, including those of Patricia Lee [73], Martin Madsen

[69], Daniel Stick [71], Kathy-Anne Brickman [74], Rajibul Islam [75], and Crystal

Senko [76]. Around 2008, vacuum was broken to swap the Cadmium ovens with two

Ytterbium ovens (one isotopically enriched for Yb-171 and the other with natural

abundance). To ensure a vacuum pressure low enough for long-chain experiments,

the Titanium sublimation (Ti-sub) pump was run aggressively following this refur-

bishment. To the best of my knowledge, the Ti-sub has not been run at least since

2015. Meanwhile the vacuum pressure has been maintained at or below 10−10 mbar

≈ 7.5 × 10−11 torr (the lowest pressure measurable by the Varian MidiVac 929 ion

pump controller - we suspect the pressure is ≤ 1 × 10−11 torr) by the chamber’s

original Varian StarCell ion pump (20 L/s).

There have been some notable failures in the MidiVac ion pump controller over

the course of my PhD. Seemingly unprompted, the controller has occasionally throw

a “generic HV fault”, indicating some glitch in the 7 kV circuit that drives the strong

electric field within the ion pump. In these cases the vacuum pressure spiked above

10−10 torr. These glitches were typically obvious since a chain of ions would start

twinkling like Christmas lights10 under Doppler cooling light, presumably due to a

higher frequency of low-energy collisions with the 10x-higher-pressure background

gas. In all but one case, the issue was fixed by simply restarting the MidiVac’s

HV circuit with the pressure quickly returning to 10−11 torr after a few minutes.
10Twinkly Christmas light ions can also be caused by failures in the electronics driving the

sideband on the 935.2 nm repump laser.
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Once during my PhD, however, this “generic HV fault” involved a large capacitor

in the controller burning out, resulting in a horrendous smell, a loud pop, and the

instant death of that MidiVac controller. Luckily we had a spare and were able to

get the pump running again within a matter of minutes. While this sort of failure

is uncommon, the ion pump is one of the most critical pieces of equipment in a

trapped-ion system. I highly recommend always having a spare ion pump controller

on hand in case of a catastrophic failure.

The rf electrodes of this 3-layer trap are driven at 38.8 MHz. The drive fre-

quency is generated by an HP 8640B, amplified to Pin = +25 dBm (about 300

mW), and sent into a helical quarter-wave resonator. I have not disconnected the

resonator from the trap-driving electronics recently for fear of changing the coupling

characteristics, but we can estimate many of the trap’s and resonator’s character-

istics from measured quantities. For instance, we frequently perform spectroscopy

on the pseudopotential secular frequency using the ions (see Eq. 2.25). Typically

the secular frequency is ωx ≈ 4.7 MHz. The characteristic length of the 3-layer trap

is r0 = 100 µm, as shown in Fig. 2.1. With these values we can use Eq. 2.6 to

estimate that the voltage at the rf electrodes is V0 = 180 V. We can then use the

approximate formula for the resonator step-up multiplier [49, 57], V0 = 20
√
PinQ, to

estimate that the resonator’s Q-factor is roughly 280. This is consistent with previ-

ous measurements/estimates [76]. Such a Q-factor gives this resonator-trap circuit

a frequency bandpass FWHM of ∆fpass = ΩT/Q ≈ 140 kHz, which is also consistent

with previously measured values. Finally, assuming V0 = 180 V, we estimate that

the trap depth is about 4.9 eV, which corresponds to an escape temperature of more

37



than 55000 K. While this is orders of magnitude above room temperature, we still

observe ion loss due to micromotion heating when the ions deviate far from the trap

center. This rarely occurs for a single ion, which may be trapped for many days,

even without Doppler cooling. See Section 3.3 for information about trapping (and

losing) longer ion chains.

2.2 +Yb171 resonant laser processes

Perhaps the biggest selling point of cold atoms as a quantum information

platform is that atoms are natural, stable quantum systems from the get-go. No en-

gineering required to make the qubit - just to control it. Trapped-ions in particular

provide easily isolated, controllable quantum systems. In principle any net-positively

charged ion with a nuclear half-life longer than a few years and with an atomic struc-

ture simple enough to permit a cycling transition at a realizable wavelength can be

used as a quantum bit. Technical factors, including ground state transition wave-

lengths and hyperfine structure, play important roles which make certain elements

more appropriate, convenient, or effective as qubits. 171Yb+ has a number of charac-

teristics that make it a mostly “good” qubit for quantum information experiments,

including a relatively simple atomic structure with a closed-cycling transition in-

volving only two lasers and atomic transitions at wavelengths about >350 nm. The

171 isotope has a nuclear spin of I = 1/2, which causes the |2S1/2,mF = 0〉 ground

state level to split into a nice magnetic-field insensitive, two-level qubit manifold.

In this section I will discuss how we produce Yb-171 ions and use 369.5 nm light
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to cool, prepare, and detect qubit states with near unitary fidelities. All levels and

wavelengths in this section are based on the NIST Atomic Spectra Database [77].

See Figure A.1 for relevant energy levels, frequencies, linewidths, and lifetimes.

2.2.1 Photoionization

The vacuum chamber contains two resistively-heated atomic flux ovens: a

natural abundance oven (∼ 14% Yb-171) and an isotopically enriched oven (∼ 90%

Yb-171). We produce neutral Ytterbium atoms in the trapping region by running

2.5 amps through the enriched 171 oven. After about 45 seconds of heating, the

oven ejects a continuous plume of Yb atoms. The total ionization energy from

the 1S0 ground state is 6.254 eV, equal to a 198.24 nm photon. This is a difficult

wavelength to work with, and directly ionizing the atom would not provide much

isotopic selectivity.

Instead we use a two-step photoionization process to produce Yb-171 ions in

the trapping region. An extended-cavity diode laser (ECDL) tuned to 398.9 nm

excites atoms from the ground state to the 1P1 state. The isotope shift between

Yb-171 and Yb-174, the most naturally abundant isotope, is about 300 MHz for

this transition. This shift allows us to preferentially load Yb-171 ions, although we

accidentally load a 174 atom with roughly 1% probability. The ionization continuum

is 393.14 nm above 1P1. We use 355 nm light to ionize the atoms from this state. By

manually pulsing ∼ 600 mW of this light on and off with an AOM, we can typically

load 1− 2 ions per pulse (see Section 3.3 for tips on loading multiple ions).
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Figure 2.3: Neutral Yb-171 Photoionization Scheme. This two-step photoion-
ization process uses 398.8 nm light and either 369.5 nm Doppler cooling or 355 nm
Raman light to preferencially produce Yb-171 ions.

2.2.2 2S1/2 ↔ 2P1/2 transition

The main cycling transition in Yb+ is the 2S1/2 ↔ 2P1/2 dipole transition.

We resonantly or near-resonantly drive this transition for Doppler cooling, optical

pumping for state preparation, and detection via state-dependent fluorescence [78].

The 2P1/2 level (τ = 8.12 ns, γ = 19.6 MHz) has a 99.5% chance to decay back to the

S-manifold and a 0.5% chance to decay to the long-lived 2D3/2 states (τ = 52.7 ms,

γ = 3.02 Hz). While this level can be useful for qubit shelving (Chapter 6), its 52.7
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ms lifetime halts the S ↔ P cycle. To restore the cycle, we apply a 935.2 nm laser,

resonant with the 2D3/2 ↔ 3[3/2]1/2 transition, during any 369.5 nm operation. The

3[3/2]1/2 state (τ = 37.7 ns, γ = 4.2 MHZ) quickly decays back to the S-manifold

with high probability while retaining the qubit state.

Optimal doppler cooling occurs for a detuning near γ/2 ≈ 10 MHz from the

resonant transition. We want to Doppler cool ions in all 2S1/2 states (F = 0 or

F = 1), so a sideband at 14.74 GHz (actually the second-order sideband of an

EOM driven at 7.47 GHz) is applied11. This creates two beams, each about 10

MHz red-detuned from the |2S1/2, F = 0〉 ↔ |2P1/2, F = 1〉 and |2S1/2, F = 1〉 ↔

|2P1/2, F = 0〉 transitions. Note that the |2S1/2, F = 0〉 ↔ |2P1/2, F = 0〉 transition

is forbidden, which comes in handy for optically pumping to the |2S1/2, F = 0〉 state.

The goal of the optical pumping protocol is to dissipatively drive the ion to

the “down” qubit state |↓〉z ≡ |2S1/2, F = 0〉. This is done by driving the S ↔ P

transition with certain frequencies and polarizations such that |↓〉z is a dark state. In

particular, we resonantly drive |2S1/2, F = 1〉 ↔ |2P1/2, F = 1〉 with σ+, σ−, and π

polarized 369.5 nm light. Once pumped to |2P1/2, F = 1〉 the ion will decay back to

|2S1/2, F = 1〉 (and be pumped back up to |2P1/2, F = 1〉) or to |2S1/2, F = 0〉, where

it will likely remain since the light is detuned by 14.74 GHz. Doppler cooling and

optical pumping precede any quantum information experiment.

Following an experiment, we also use 369.5 nm light to projectively measure

the state of the qubit. Light resonant with the |2P1/2, F = 1〉 ↔ |2P1/2, F = 0〉
11We also apply a sideband further red-detuned to cool ions modulated by the trap driving

frequency - see Section 3.3.
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transition causes the ion to scatter photons if it is projected to the “up” qubit state

|↑〉z ≡ |2S1/2, F = 1,mF = 0〉. An ion projected to |↓〉z will only scatter via off-

resonant excitation suppressed by the 14.74 GHz detuning.

2.2.3 739→ 369 nm optics

The Warm QSim lab historically used a Coherent MBR Ti:sapphire laser to

generate a few watts of 739 nm light [76]. At the beginning of my PhD I learned

to love and hate this laser. When it worked, it worked miraculously; ≥ 2 Watts of

power, narrow linewidth, high-stability, etc. Unfortunately this laser rarely behaved,

often requiring hours of meticulous cleaning and alignment every week to maintain

operation. Ultimately a portion of the locking electronics died at the end of 2018.

Because we had exhausted our spare parts and Coherent had recently retired the

MBR laser from their support network, we were forced to explore alternatives.

Since January 2019, we have used a Toptica TA100 ECDL with tapered-

amplifier to produce 739 nm light (Fig. 2.4). We stabilize the frequency of this

laser to a molecular iodine line by first locking the ECDL frequency to a confocal

scanning invar cavity via a Pound-Drever-Hall (PDH) lock [80], followed by locking

the cavity’s length to a Doppler-free saturated absoprtion spectroscopy (SAS) signal

from an Iodine cell. See References [49, 78, 79] for details on the Iodine SAS and

similar PDH locks.

We frequency double the locked 739 nm light with aWaveTrain second-harmonic

generation system from Spectra-Physics (Fig. 2.4). This system typically produces
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Figure 2.4: 739 nm to 369.5 nm optics. The TA100 produces roughly 450 mW
of 739 nm light. A small amount of power is immediately picked off and sent to a
HighFinesse wavemeter. The majority of this light (∼ 400 mW is fed into a Spectra-
Physics WaveTrain and frequency-doubled by a LBO crystal. When moderately-well
aligned, this WaveTrain produces ∼ 10 mW of 369.5 nm light. The other ∼ 50 mW
of 739 nm light are used to lock the laser’s frequency. About 15 mW are modulated
at 20 MHz by a Thorlabs resonant EO phase modulator (EO-PM-R-20-C1) in order
to lock the frequency to a 15 cm invar cavity via a Pound-Drever-Hall (PDH) lock.
The remaining ∼ 35 mW are fiber-coupled and sent to a molecular Iodine SAS
setup [79]. The resulting Doppler-free Iodine signal is used to stabilize the invar
cavity against thermal drifts. The combination of these PID systems stabilizes the
739 nm (and thereby the 369.5 nm) frequency against fast (≤ 2 MHz) and slow (Hz
- kHz) noise.
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∼ 10 mW of 369.5 nm light with∼ 450 mW of 739 nm light out of the TA. This power

output is competitive with direct-diode 369.5 nm lasers while having a somewhat

easier locking mechanism (can directly lock to Iodine, no transfer cavity needed).

The 10 mW of 369.5 nm light is then split into separate Doppler cooling, optical

pumping, and detections beams, each controlled by an AOM and sent via optical

fiber to the vacuum chamber [75].

2.3 Coherent manipulation with 355 nm laser

The “wires” that connect qubits and create entanglement in a trapped-ion

quantum information experiment are actually lasers. Nearly every coherent oper-

ation from state preparation to generating interactions are accomplished through

some interaction with a mode-locked 355 nm laser (Coherent Paladin Compact 355-

4000). We use this 355 laser to manipulate the Yb qubits in a few ways: Raman

transitions resonant with qubit and motional sideband transitions (for spin rotations

and sideband cooling), Raman transitions off-resonant with global motional mode

sidebands (for generating interactions), and four-photon Stark shifts for individual

qubit manipulations (initial product state preparation and individually-resolved po-

tentials/disorder). In this section I will discuss how certain useful Hamiltonians are

derived from the laser-ion interactions as well as the physical optical system.
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2.3.1 Laser-ion interactions

Here we will consider a 2-level ion with mass M and frequency splitting ωHf ,

confined in the x-direction by a 1D harmonic oscillator potential with frequency ωx,

subject to a laser field of frequency ωL. In reality 171Yb+ contains many relevant

levels (Section 2.2 and Figure A.1). However, to retain our sanity, let us assume we

can directly couple the two hyperfine qubit states |↑〉 and |↓〉 with a single laser,

ignoring all other states. The result will conveniently generalize to the true experi-

mental setup based on stimulated Raman transition driven by two beatnote-locked

frequency combs. The Hamiltonian describing the subsequent laser-ion interaction

is

H =
Ω

2

[
σ+ei(∆k·r−µt+φ) + σ−e−i(∆k·r−µt+φ)

]
(2.14)

where Ω is a Rabi frequency (the form of which depends on the laser setup), ∆k is

the difference between the laser wavevector(s) projected along x, and µ = ωHf −ωL

is the laser’s detuning from the hyperfine transition. Following Reference [48], we

may rewrite the spatial part of the exponent as

ei∆k·r = exp
[
iη
(
ae−iωxt + a†eiωxt

)]
. (2.15)

I will now introduce a few of the Ion Trapper’s favorite tools: the harmonic oscillator
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raising and lowering operators a and a†, and the Lamb-Dicke parameter η:

a =

√
Mωx

2

(
x̂+

i

Mωx
p̂

)
(2.16)

a† =

√
Mωx

2

(
x̂− i

Mωx
p̂

)
(2.17)

η =∆kx0 = ∆k

√
1

2Mωx
. (2.18)

The ladder operators a and a† are based on the usual phase-space operators, x̂

(position) and p̂ (momentum), and should be familiar to the practicing quantum

mechanic. The Lamb-Dicke parameter is a rather specialized value used in the ion-

trapping community to evaluate how an ion’s spatial wavefunction compares to the

wavelength of an applied laser field. In general, we wish for the this Lamb-Dicke

parameter to be much smaller than unity. This, plus the assumption that the ion

is sufficiently near its motional ground state, constitutes the Lamb-Dicke Regime,

which allows us to make a handful of extremely useful approximations12. Namely,

when η � 1, we can truncate a Maclaurin expansion13 of Eq. 2.15 to write

exp
[
iη
(
ae−iωxt + a†eiωxt

)]
= 1 + iη

(
ae−iωxt + a†eiωxt

)
+O(η2) + ...

≈ 1 + iη
(
ae−iωxt + a†eiωxt

)
.

(2.20)

12The Lamb-Dicke Regime applies when η2(2n̄+ 1)� 1, where n̄ is the motional quanta expec-
tation value. In this limit the RMS size of the ion wavefunction (along x) is much less than the
wavelength of the applied laser.

13Maclaurin expansion of an exponential is

ex =

∞∑
n=0

xn

n!
. (2.19)
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A typical value of the Lamb-Dicke parameter is η . 0.1, so we can safely ignore

higher-order terms. With Eq. 2.15 and Eq. 2.20, we may rewrite Eq. 2.14 as

H =
Ω

2
σ+
(
1 + iη

[
ae−iωxt + a†e+iωxt

])
e−iµt+iφ + h.c. (2.21)

Resonant Transition Hamiltonians. Let us consider a few important cases of

Eq. 2.21. Suppose we tune the laser frequency wL to be resonant with the ωHf

transition such that µ = 0 and e−iµt = 1. Now the two motional terms in Eq. 2.21

oscillate much faster than other terms and can be neglected with a rotating-wave

approximation (RWA). The resulting Hamiltonian describes a carrier transition:

HCarrier =
Ω

2

(
σ+eiφ + σ−e−iφ

)
=

Ω

2
σx,y (2.22)

If we rewrite the carrier transition Hamiltonian using qubit state kets,

HCarrier =
Ω

2

(
|↑〉 〈↓| eiφ + |↓〉 〈↑| e−iφ

)
(2.23)

it becomes clear that this operation coherently flips the ion’s internal qubit state

without changing its motional state. In the context of spins, this Hamiltonian is

identical to that of a constant magnetic field (B-field) in the x−y plane of the Bloch

sphere. The Bloch sphere axis of rotation is controlled by the optical phase φ.

Next consider the case where µ = ±ωx such that the laser is on resonance

with a motional sideband transition in the harmonic oscillator psuedopotential. If

47



µ = −ωx, Eq. 2.21 can be written as a red sideband (RSB) Hamiltonian:

HRSB =
Ω

2
σ+
(
1 + iη

[
ae−iωxt + a†eiωxt

])
eiωxt+iφ + h.c.

=
Ω

2
σ+
(
eiωxt+iφ + iη

[
aeiφ + a†e2iωxt+iφ

])
+ h.c.

=
Ω

2
σ+eiφ

(
eiωxt + iη

[
a+ a†e2iωxt

])
+ h.c.

(2.24)

Now we can apply a RWA to eliminate terms oscillating at ωx or 2ωx

HRSB =
Ω

2
σ+eiφ(iηa) + h.c.

=
Ω

2
η
(
σ+aeiφ+π/2 + σ−a†e−(iφ+π/2)

)
.

(2.25)

We see that the RSB operation, which is suppressed by η compared to the carrier

transition, flips the qubit state while adding or subtracting one motional phonon.

This constitutes a spin-dependent force, which will form the basis of all trapped-ion

entangling operations. Similarly, if µ = +ωx, Eq. 2.21 becomes a blue sideband

(BSB) operation:

HBSB =
Ω

2
η
(
σ+a†eiφ+π/2 + σ−ae−(iφ+π/2)

)
. (2.26)

Mølmer-Sørensen Scheme. Many trapped-ion experiments use the Mølmer-

Sørensen (MS) scheme [81] to entangle the spin states of multiple ions through

their shared motional modes. The MS scheme involves applying near-resonant RSB

and BSB Hamiltonians simultaneously, symmetrically detuned from the motional

transition with µRSB = −µBSB. Each sideband is applied by a separate laser beam,
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each with its own optical phase φRSB and φBSB. We will assume each laser has the

same Rabi frequency Ω. The MS Hamiltonian is the sum of HRSB and HBSB:

HMS =

[
Ω

2
σ+
(
1 + iη

[
ae−iωxt + a†eiωxt

]
e−iµt+φRSB

)
+ h.c.

]
+

[
Ω

2
σ+
(
1 + iη

[
ae−iωxt + a†eiωxt

]
eiµt+φBSB

)
+ h.c.

]
.

(2.27)

Following some algebraic acrobatics (References [48, 76, 81]), we may write the MS

Hamiltonian as

HMS = ηΩ cos(µt+ φm)σφs
(
ae−ωxt + a†eiωxt

)
. (2.28)

Here we have defined two new phases

φs =
φRSB + φBSB + π

2
φm =

φRSB − φBSB
2

. (2.29)

Later we will see that φs describes the phase of any internal spin state rotations,

while φm sets the phase of any motional state evolution.

This is a good point to generalize the MS Hamiltonian, which so far has con-

sidered only one ion and one motional mode, to N ions and N motional modes

(remember the lasers only couple to the x-axis in this treatment). The MS Hamil-

tonian for N ions and N modes is

HMS =
N∑
m=1

N∑
j=1

ηj,mΩj cos(µt+ φm)σφsj
(
ame

−iωmt + a†me
iωmt
)

(2.30)
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where Ωj is the Rabi frequency for ion j, σφsj is the pauli matrix which rotates ion

j about angle φs in the x− y-plane, ωm is the frequency of the m-th normal mode

of the N -ion chain in the pseudopotential (where ωm=1 = ωCOM = ωx is the center-

of-mass mode frequency), am and a†m are raising/lowering operators for the m-th

normal mode, and ηj,m is the Lamb-Dicke parameter of ion j with respect to mode

m:

ηj,m = bj,m∆kxm = bj,m∆k

√
1

2Mwm
, bj,m ∈ [−1, 1]. (2.31)

Here bj,m is the j-th component of the m-th normal mode eigenvector. Perhaps

more intuitively, it is the amplitude of the j-th ion’s participation in the m-th

normal mode.

The Hamiltonian in Eq. 2.30 is time-dependent, so the typical time-evolution

unitary operator found by solving the Schrödinger equation does not apply. We can

approximate an evolution operator under this Hamiltonian by applying the Magnus

Expansion [82, 83, 84, 85] :

U(t) = T [e−i
∫ t
0 dt1H(t1)] = eΩ̄1+Ω̄2+Ω̄3+... (2.32)

The operator T denotes time-ordering of the exponential. Each term of the expan-
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sion includes increasingly-complicated nested commutators and time-integrals:

Ω̄1 = −i
∫ t

0

dt1H(t1)

Ω̄2 = −1

2

∫ t

0

dt1

∫ t1

0

[
H(t1), H(t2)

]
Ω̄3 = − i

6

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3 +
([
H(t1),

[
H(t2), H(t3)

]]
+
[
H(t3),

[
H(t2), H(t1)

]])
(2.33)

The first term Ω̄1 is a relatively simple integral over the evolution duration t.

The second term involves a commutator that reduces to
[
a, a†

]
, which is conve-

niently equal to unity. All higher-order terms involve nested comutators of the form[
H,
[
a, a†

]]
=
[
H, 1

]
= 0. Thus, for the parameters discussed so far, the Magnus

expansion of Eq. 2.31 exactly terminates after two terms14.

The math to evaluate Ω̄1 and Ω̄2 has been shown by, among others, Rajibul

Islam and Crystal Senko in their theses (References [75, 76]). I will kindly ask that

you refer to those works for details. The time-evolution unitary is

U(t) = eΩ̄1+Ω̄2

= exp

[
N∑
j,m

σφsj
(
α∗j,m(t)am + αj,m(t)a†m

)
︸ ︷︷ ︸

spin-motion

+

spin-spin︷ ︸︸ ︷
N∑
i,j

χi,j(t)σ
φs
i σ

φs
i

] (2.34)

We could rewrite the first term by introducing the phase-space displacement oper-
14Queue roaring applause.
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ator

Dj,m(t) = α∗j,m(t)am + αj,ma
† (2.35)

αj,m(τ) = −iηj,mΩj

∫ τ

0

sin(µt− φm)ei(ωm−µ)tdt. (2.36)

This term describes a coupling between the ions’ internal spins states and their

shared motional normal modes. The pauli matrix σφsj rotates ion j’s spin state about

angle φs while the displacement operator Dj,m(t) displaces ion j, within the m-th

normal mode, by a distance αj,m in phase-space (α denotes the resulting coherent

state |α〉). Here we also see the phase of this motional excitation is set by φm while

all spin phases are set by φs. With that in mind, let us set φm = π/2 and φs = π

such that σφs → σx. With Eq. 2.36, the time-evolution unitary is written as:

U(t) = exp

[
N∑
j,m

σxjDj,m(t) +
N∑
i,j

χi,j(t)σ
x
i σ

x
i

]
. (2.37)

The phase-space displacement can now be simplified [85] as

αj,m(t) =
iηj,mΩj

µ2 − ω2
m

[
µ− eiωmt

(
µ cos(µt)− iωm sin(µt)

)]
. (2.38)

The second term in Eq. 2.34 describes a pure spin-spin interaction between

ions i and j. The strength of this interaction is

χi,j = ΩiΩj

N∑
m

=
iηi,mηj,m

2(µ2 − ω2
m)

(
ωm sin(2µt)

2µ
+
µ sin(µt− ωmt)

µ− ωm
− µ sin(µt+ ωmt)

µ+ ωm
− ωmt

)
.

(2.39)
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For large times t the last term, −ωmt, dominates, leaving the spin-spin interaction

strength as:

χi,j(t� 0) = −
N∑
m

iηi,mηj,mΩiΩj

2(µ2 − ω2
m)

ωmt. (2.40)

Operating Regimes. We have been careful to distinguish between the two types

of quantum information register present in trapped-ion experiments: the individual,

internal spin degree of freedom and the shared motional degree of freedom. While an

ion’s spin state is a “good qubit” (see Section 2.2), the motional state is not because

there is no efficient detection scheme15. At the end of an experiment, the ions’

motional state is traced out when the spin state is detected. This is a significant

decoherence channel that can be modelled as a source of random bit-flip errors [87].

To minimize these errors, it is necessary to suppress the spin-motion-entangling term

in Eqs. 2.34 and 2.37. There are two common operating regimes that accomplish

this: the fast-gate regime and the slow-gate regime.

The fast-gate regime is used in universal quantum computing experiments

which feature many degrees of control. In this regime, Rabi frequencies Ωj(t) and

laser detunings ωL(t) are calibrated and/or varied over some operation time τ such

that αj,m(τ) = 0 (indicating zero displacement in phase-space) and χi,j(τ) equals

some nonzero factor for all modes m and ions i and j. This corresponds to co-

herently exciting and de-exciting motion while simultaneously generating spin-spin

entanglement. If αj,m = 0 and χi,j(τ) = π/4, the unitary U(τ) = XX implements a
15Although there is progress on this front [86].
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maximally-entangling XX gate between the qubits encoded in ions i and j:

XX |↓↓〉z =
1√
2

(|↓↓〉z − i |↑↑〉z) . (2.41)

This XX gate is the native entangling operation for most digital, trapped-ion quan-

tum computers currently under development. As the name suggests, the fast-gate

regime allows for fast, high-fidelity entangling operations between arbitrary pairs

of ions. However, implementing this regime requires individual control of N Rabi

frequencies and N beatnotes frequencies, which effectively necessitates individually

controlled lasers for each trapped ion.

The slow-gate regime, on the other hand, can be implemented with global

lasers beams that illuminate the entire ion chain. This scheme involves detuning

a single pair of beatnote frequencies, ±µ, far from the motional mode frequencies

ωm such that δ ≡ min(|µ− ωm|) � ηj,mΩj. In this far-detuned regime phase-space

displacement is bounded throughout the evolution: |αj,m| � 1. A large detuning

δ also corresponds to a relatively slow spin-spin interaction, in which case it makes

sense to only consider χi,j(t) at large times. With the spin-motion term neglected

and χi,j(t) replaced by Eq. 2.40, the laser-ion interaction unitary in the slow-gate

regime is

U(t) = exp

[
−i

N∑
i,j,m

ηi,mηj,mΩiΩj

µ2 − ω2
m

ωmσ
x
i σ

x
j t

]

= exp

[
−

N∑
i,j,m

Ji,jσ
x
i σ

x
j t

]
.

(2.42)
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Ising Hamiltonian. The unitary above time-evolves a system under the effective

Hamiltonian

HIsing =
N∑
i<j

Ji,jσ
x
i σ

x
j (2.43)

which equals the antiferromagnetic Ising interaction. The N × N matrix Ji,j de-

scribes couplings between spins i and j:

Ji,j = ΩiΩj

N∑
m

ηi,mηj,m
µ2 − ω2

m

ωm = ΩiΩjνR

N∑
m

bi,mbj,m
µ2 − ω2

m

≈ J0

rαi,j
(2.44)

where νR = ∆k2/(2M) is the recoil frequency, M is the mass of a single ion, ωm is

the frequency of the m-th motional mode, bi,m is the eigenvector matrix element of

the i-th ion’s participation in them-th motional mode (
∑

i |bi,m|2 =
∑

m |bi,m|2 = 1),

and ri,j = |i − j| is the distance between ions i and j. My hopefully-intuitive un-

derstanding of this matrix is that each element, Ji,j, is a number that represents

how strongly ion i talks to ion j. The larger the number, the stronger their com-

munication channel and the faster they can share information/become entangled.

The range and “shape” of the Ji,j matrix depends on how strongly the MS beatnotes

couple to certain normal modes relative to others.

It is often convenient to express a Hamiltonian in some analytical form in-

stead of a full N × N matrix. This is useful for theorists to make general claims

about classes of systems with certain interaction charactersitics, e.g. regarding

the existence of or lack of certain phase transitions for a certain power-law ex-

ponent α (like the Mermin-Wagner theorem) or the speed of information propa-
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Figure 2.5: Typical Ji,j Interaction matrix shape. Interaction matrix showing
couplings between all pairs of ions, assuming that Rabi frequencies Ωi are uniform
across the chain. We calculate this matrix by evaluating Eq. 2.44 using measured
values of ωCOM = ωx, the transverse trap frequency ωz (from which we calculate
normal mode vectors bi,m), and ηCOMΩ.

gation (like Leib-Robinson bounds). Furthermore, some classical simulation algo-

rithms, including matrix product state (MPS) methods like DMRG [88], require

analytical/translationally-invariant Hamiltonians. In the far-detuned limit, when

the MS beatnotes are detuned outside of the motional mode spectrum such that

δCOM = µ−ωCOM > 0, the interactions profile in Eq. 2.44 has historically been ap-

proximated as a power-law function with characteristic power-law exponent α (See

Fig. 2.6). This exponent α is found by fitting the function J0/r
α to the vector of

average experimentally-determined couplings for all pairs of ions spaced by distance
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r = |i− j|:

JAvgExp(r) =


1

N − 1

N−1∑
i=1

Ji,i+1︸ ︷︷ ︸
r=1

,
1

N − 2

N−2∑
i=1

Ji,i+2︸ ︷︷ ︸
r=2

, ...,
1∑
i=1

Ji,i+N−1︸ ︷︷ ︸
r=N−1

 . (2.45)

The approximate power law exponent, α, theoretically can be tuned within

the range 0 < α < 3 by changing the MS beatnote detuning δCOM . For δCOM → 0,

the interaction profile approaches a mean-field coupling with α = 0. However, this

regime invalidates the effective Hamiltonian because it corresponds to resonantly

driving one of the motional mode transitions, which generates many phonons in that

mode. For δCOM →∞, the interactions converge to pure dipole-dipole coupling with

α = 3. The infinite detuning also results in vanishingly small interaction strengths,

which invalidates this regime as well. In between these limits it is reasonable to

guess the interaction range would also resemble some power law. In practice, the

experiment is restricted to around 0.5 < α < 2.0, with intermediate detunings

3ηΩ ≤ δ . 10ηΩ, to avoid motional decoherence and to maintain sufficiently large

interaction strengths.

This power-law representation is fairly accurate for shorter chains. However, as

the length of the ion chain increases, the exact average couplings JAvgExp(r) diverge

from the power-law function due to increasingly inhomogeneous ion spacings in a

harmonic trapping potential [89]. We find that the couplings tend to fall between

a power-law and exponential function at large r. To more accurately capture the

couplings, we developed a compound function that is a product of a power-law and
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Figure 2.6: Functional fits to interaction ranges. Red points represent the
average Ising couplings between spins separated by distance r, calculated from ex-
perimental parameters using Eq. 2.44. The closest power-law fit (blue dashed curve)
fails to match the couplings for larger spin separations, as does an exponential fit
(green dashed curve). The compound fit (Eq. 2.46) better matches the couplings
for all spin separations. Power-law fit parameters {J0, α} for N = 12, 25, and 50 are
{0.692, 0.986}, {0.445, 0.974}, and {0.510, 1.04} respectively. The fitted parameters
{J0, α

′, β′} are {0.662, 0.338, 0.246}, {0.414, 0.339, 0.188}, and {0.471, 0.362, 0.194}
respectively.

exponential, parameterized by J0, α′, and β′:

Ji,j ≈ JComp(r) =
J0

rα′ e
−β′(r−1). (2.46)

As seen in Figu. 2.6, this functional form fits the exact Ising couplings very well

for a chain of 25 ions and decently well for 50 ions, while the power-law function

diverges significantly.

Transverse-Field Ising Model. As we discussed in Chapter 1, the long-range

Ising model is near-integrable and not terribly interesting. We use two methods to

add global transverse fields to the Ising Hamiltonian in Eq. 2.43, which substantially

increases the complexity of the system’s dynamics and phase behavior.
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The first method is to apply a third beatnote, along with the RSB and BSB

Mølmer-Sørensen beatnotes, that is resonant with the carrier transition (Eq. 2.22).

This will add a B
∑N

i σ
φ
i term to the Hamiltonian, where the beatnote phase φ sets

the rotation axis in the x− y plane.

The second method involves shifting the MS beatnote detunings µ up or down

in frequency by ±2Bz so, instead of being symmetrically detuned from the car-

rier transition, the beatnote detunings are µRSB = −ωx − δ ± 2Bz and µBSB =

+ωx + δ ± 2Bz. This creates a mismatch between the rotating frames of the qubits

(oscillating at ωHf ) and the MS beatnotes (oscillating, on average, at ωHf ± 2Bz).

The mismatch manifests itself as an effective magnetic field along the z-direction

and adds a ∓Bz

∑N
i σ

z
i term to the Hamiltonian.

The application of these transverse fields has a notable caveat. In the pure

MS scheme, the Magnus expansion (Eq. 2.32) terminated after the second term.

However, while these transverse fields are applied (individually or together) the ex-

pansion does not terminate. In both cases, the condition to neglect terms beyond the

second term is B � ηΩ, where B is the magnetic field strength in the Hamiltonian

and ηΩ is the familiar resonant sideband Rabi frequency [90]. For the experiments

presented later in this thesis, typical sideband Rabi frequencies are 25 − 30 kHz,

and typical transverse B-field strengths are 0.5 − 12 kHz. For these parameters,

higher-order terms do not substantially effect the system’s evolution. Thus, the

trapped-ion quantum simulator natively implements the TFIM Hamiltonian with
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the form

HTFIM =
N∑
i<j

Ji,jσ
x
i σ

x
j +Bφ

N∑
i

σφx +Bz

N∑
i

σzi . (2.47)

Individual addressing with Stark shifts. The final ingredient in our TFIM

recipe is a site-resolved Stark shift that adds a transverse z-field term
∑N

i Diσ
z
i to

the Hamiltonian. As we saw in Section 1.2.2, such a term can be used to apply disor-

der for many-body localization, among other uses. This Stark shift is created by the

same frequency comb laser that applies the Raman operations and off-resonantly

couples the S-level qubit states to the 2P1/2 and 2P3/2 levels, which have a fine-

structure splitting of ωFS ≈ 100 THz. The comb has a center frequency detuned by

∆ ≈ 33 THz from the 2S1/2 ↔2 P1/2 and ωFS−∆ ≈ 67 THz from the 2S1/2 ↔2 P3/2.

In general a single beam would apply a 2-photon Stark shift (the usual lowest-order

non-vanishing Stark shift) to the qubit transition. However, by a happy coincidence

(and careful planning), the equal-but-opposite 2-photon Stark shifts on the 171Yb+

qubit from the 355 nm beam coupling to both P -levels almost exactly cancel out.

This cancellation also occurs for the Raman beams for purely linear polarization,

which means that we typically do not worry about 2-photon Stark shifts from in-

dividual Raman beams. Instead we care about the next lowest-order non-vanishing

Stark shift: the 4-photon Stark shift. During Raman operations like spin rota-

tions and MS Ising interactions we strive to completely eliminate these 4-photon

Stark shifts as they are one of our primary sources of evolution error (see Antonis

Kyprianidis’s thesis for an excellent discussion [91]).

The individual addressing beam, however, uses this 4-photon Stark shift for
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good! Here the 4-photon Stark shift occurs when two comb teeth (within the same

beam) incident on an ion have a beatnote that is near-detuned from the qubit

hyperfine transition by δ � ∆. The resulting shift of the qubit frequency is

δω(4) =
|Ω|2

2δ
(2.48)

where Ω is the 2-photon stimulated Rabi frequency of a comb tooth. The true Stark

shift involves a sum over all possible comb-tooth combinations and transitions in

171Yb+ [92]. However, this simple equation provides the necessary understanding

of how this 4-photon Stark shift scales with intensity (∝ I2) and detuning and

is sufficient for this thesis. We will discuss the physical implementation of this

individual addressing beam and the Raman beams in the next section.

The final form of the long-range TFIM Hamiltonian used in this thesis, includ-

ing the XX Ising interaction, global transverse fields, and programmable individual

fields is

H =
N∑
i<j

Ji,jσ
x
i σ

x
j︸ ︷︷ ︸

Ising interactions

+Bφ

N∑
i

σφx +Bz

N∑
i

σzi︸ ︷︷ ︸
Global transverse fields

+
N∑
i

Diσ
z
i︸ ︷︷ ︸

Individual fields

. (2.49)

2.3.2 Raman lasers

In this section I will present how we physically implement the Hamiltonians

discussed in Section 2.3.1. The hyperfine levels that make up the 2-level qubit

system in +Yb171 are split by about 12.6 GHz. This is a microwave frequency rather

than an optical frequency, so we can’t easily use a single laser to drive transistions
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and generate the Ising Hamiltonian16. Instead of using a single laser, we use a

pair (split from the same laser head) of mode-locked frequency combs centered

near 355 nm. By overlapping these beams at the ions in a counter-propagating

orientation and locking the beat note frequency between them to the ions’ hyperfine

qubit frequency (see Ref. [93] for details on this beat note stabilization method),

we can create the Hamiltonians discussed in Section 2.3.1. The general form of

the equations, including Eqs. 2.22, 2.25, 2.26, and 2.44 stay the same, although

the Rabi frequencies Ωi depend on the nature of the driving lasers. In fact all of

the derivations above generalize to apply for these frequency combs fairly well, as

each comb tooth can be treated as a separate laser and summed over. Please see

Jonathan Mizrahi’s thesis (Ref. [94]) for a complete treatment of driving 2-photon

Raman transitions with the Coherent Paladin laser.

This experiment requires a number of optical systems and subsystems in order

to properly manipulate the Gaussian profile and frequency of the 355 nm laser beam

from the Paladin into two focused, elliptical, beatnote-locked beams incident on the

ion chain. In 2018 we redesigned the optics for the Raman lasers. This redesign was

motivated by a few goals: improve the passive stability of the system, minimize the

interferometric area between the two Raman beam arms, simplify construction and

adjustments in the system, and include an active beam-pointing stabilization servo.

We also tried to source the highest quality optics. The high power 355 nm laser

damages optics quickly (possibly by catalyzing photochemistry at optical interfaces),
16Microwaves can address this transition directly to coherently flip the qubit state. However,

microwave photons have much lower momenta than optical 355 nm photons, so they can’t strongly
drive motional transitions. Furthermore the wavelength of 12.6 GHz radiation is about 1 inch,
which makes it difficult to individually address ions spaced by micrometers.
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Figure 2.7: 355 laser optics before Raman AOMs. Diagram lengths not to
scale. The optics before the Raman AOM’s manipulate the size and focus of the
beam from the Coherent Paladin laser, pick off light for stabilizing the intensity
and transverse beam position at the AOMs, pick off light for the poke beam, and
split the laser into two near-identical “Raman arms”. All transmissive optics are UV
fused silca. All optics downstream of the Noise Eater AOM are enclosed in a box of
80/20 composite aluminium panels (not shown).

and we find that optics with higher quality surfaces and coatings last longer before

requiring a replacement17. Most of the 355 nm lenses (all UV fused silica) and

mirrors are from CVI Laser Optics and Lambda Research Optics (some are from

Thorlabs). Most polarizing beam-splitters (PBS) are from CVI Laser Optics or

Altechna, and all waveplates are from Thorlabs or Altechna. Every optic is coated

with some flavor of high-energy UV coating.

The Paladin outputs a slightly elliptical, collimated18, vertically polarized
17I don’t mean to point fingers, but we usually have to replace high-power PBS’s from Thorlabs

monthly while high power PBS’s from CVI or Altechna last 6+ months before noticeable damage.
18If I learned anything in my PhD, it is that collimation is a cruel myth. Any real beam is
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beam with Gaussian waists of about 430 µm by 370 µm (H × V ) located 85 cm

from the laser aperture. About 1% of the light is immediately picked off by a flat

window, which is sent to a test area containing a fast Alphalas photodetector for the

beat-note stabilization circuit [93]. A half-wave plate and high-energy PBS act as a

controllable attenuator. We expand the beam waists by a factor of 1.33 with a simple

telescope (Fig. 2.7). Another half-wave plate and PBS pair pick off 100−200 mW for

the individual addressing beam (Section 2.3.3). A 412 mm plano-convex lens19 (CVI

PLXC-25.4-206.0-UV) slowly focuses the beam, which is split into two beams by a

PBS, through a pair of Brimrose AOM’s (QZF-210-40-355). The Guassian waists

at the center of the AOM crystals are roughly 100× 100 µm. A few 10’s of mW are

picked off before the split and is also focused by the 412 mm lens onto a quadrant

photodiode (lab-built based on OSI QD-50 photodiode). This photodiode is placed

the same focal-distance from the 412 mm lens as the AOM’s, which is critical for

the beam pointing lock (based on LIGO’s pointing stabilization system [95]). This

pointing lock configuration uses a piezo-actuated mirror in the collimated section of

the beam path to stabilize angular pointing noise out of the laser. It is important to

minimize this noise as it is transformed by the optics into transverse pointing noise

at the Raman AOM and eventually at the ion plane, which translates into intensity

fluctuations due to the Gaussian intensity profile of the beams. This beam pointing

converging or diverging at all points except the Gaussian waist. A “collimated” beam with a waist
of less than 100 µm will diverge significantly over a few cm. I suggest always knowing where your
beam’s waist is at all times.

19This lens actually has a focal length of around 430 mm for 355 nm light. Most optics manufac-
tures specify focal lengths at some design wavelength (Thorlabs typically designs spherical lenses
at 587.6 nm). The index of refraction depends on wavelength though, so you will have to calculate
the true focal length for your wavelength on your own.
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lock will be further discussed in a future thesis. We use a few mW that leak through

a mirror in the Raman 1 arm as a signal for an intensity noise eater servo.
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Figure 2.8: Intensity noise eater lock diagram. The intensity noise eater lock
stabilizes the 355 nm laser power just before the Raman AOMs. This should stabilize
against fluctuations out of the laser head and in the high-power optics region.

Intensity Lock Before the 412 mm lens the beam passes through an AOM (In-

traAction ASM-1502B32), which is used to stabilize the overall intensity of the

beams near the Raman AOMs (as measured the photodiode shown in Fig. 2.7).

This “noise eater” lock operates by pulling power from the zeroth-order AOM beam

(which continues to the experiment) and into a first-order diffracted beam, which

is dumped. The absolute fractional power fluctuations in the unlocked beam (in

the DC-100 kHz range) is about 2 − 3% of the average power P . We set the lock
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Figure 2.9: Intensity noise and stabilization performance. 355 nm laser in-
tensity noise. Panels show measured noise power spectra over different sampling
bandwidths with the photodiode blocked (blue), intensity-unlocked light (yellow),
and intensity-locked light (green). The bottom right panel instead shows intensity-
locked signals at different sampling bandwidths overlayed distinguish between real
peaks, with fixed frequencies independent of bandwidth (like the broad features near
1.5 kHz), and fake aliasing peaks that change frequency for different bandwidths (like
the sharp features near 3.5, 7, and 10.5 kHz).

point of this servo to transmit roughly 0.95P into the zeroth order. The intensity

signal from the photodiode is mixed into the AOM drive rf such that the noise eater

AOM diffracts about 0.02P to 0.08P% into the first-order (see Fig. 2.8). As shown

in Fig. 2.9, the noise eater servo reduces intensity noise below 100 kHz, with noise

below 100 Hz reduced by 20 dB. The lock appears to add a small amount of noise

near 200 kHz. This relatively simple system essentially sacrifices a small fraction of

the beam’s maximum power in order to stabilize intensity, which results in steadier

Rabi frequencies (and thus more stable spin rotation operations) and lower Stark

shift noise at the ions.
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4f relays. The second half of Raman optics is based on several 4f optical relays.

The simplest 4f lens system is made up of two identical convex lenses with focal

length f seperated by distance 2f (Fig. 2.10). These lenses exactly map the object

plane f away from the first lens to an image plane f from the second lens. Notably,

if a point source (or Gaussian focus) is placed at the object plane, light will be

collimated between the lenses. This system also ensures that all rays from a point

source (or Gaussian focus) at the object plane, no matter their divergences from

the source, will overlap at a single point/focus at the image plane 4f downstream.

These features are crucial for ensuring that each tone from the Raman AOM, which

exit the AOM from the same source point but at different angles, overlap back at

the ions. This mapping from the AOM plane to the ion plane is also crucial to

locking the beams’ transverse pointing at the ion plane. Let us discuss the details

of this setup.

The optics in each Raman arm are largely the same, except for a few mirrors

including the delay stage in Raman 1. A pair of quarter and half-wave plates after

the AOMs ensure that the beams are horizontally polarized to satisfy the “lin-perp-

lin” requirement [94]. The spherical 250 mm lens just after the waveplates is placed

250 mm from the beam focus inside the AOM and thus collimates the beam while

also deflecting the different AOM tones (the RSB and BSB tones, for instance) to all

propagate parallel with one another. After the zeroth-order is dumped, two plano-

convex cylindrical lenses V1 and V2 expand the beam in the vertical direction (along

z in Fig. 2.11). The larger waist along the vertical direction will allow a final lens

to focus the beam onto the ions with a smaller waist. From there two cylindrical
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Figure 2.10: Simple 4f lens relay. The simplest 4f lense configuration is the one-
to-one relay. This system consists of two identical convex focusing lenses with focal
length f designed to map an object (or a Gaussian beam shape) to the image plane
a distance 4f away. The first lens is positioned distance f from the object and colli-
mates any diverging light from that point. The second lens is 2f from the first and
focuses the collimated light to a focal plane a distance f away. This configuration
ensures that light from the object point, no matter the rays’s divergences from that
point or the point’s distance from the optical axis, is mapped back to a single point
at the image plane.

lenses focus the beam separately along the horizontal and vertical directions such

that the beam focuses into an ellipse with transverse waists of about 120 µm × 10

µm at the ion plane (Figure 2.12).

During most operations, the Raman 1 AOM is driven at full power (about 2

W of rf near 195 MHz) by the beat-note stabilization circuit [93, 76]. The Raman

2 AOM rf is generated by one channel of an Agilent M8109A arbitrary waveform
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Figure 2.11: 355 laser optics after Raman AOMs. Diagram lengths not to
scale. The optics after the Raman AOMs manipulate the size and shape of the
beam. The two beams are overlapped at the ion plane at a right angle. Momentum
kicks from the beams are along the x-axis.

generator (AWG), which we use to program coherent operations in an experiment

sequence. The Raman 2 AOM produces at least two first-order beams while driving

the Mølmer-Sørensen Hamiltonian - the red sideband and the blue sideband tones are

separated by 2ωx ≈ 9.4 MHz, which corresponds to a difference in deflection angle

of a few degrees in the plane parallel with the table surface (x-z plane w.r.t the trap

axes). It is critical that these beams overlap at the ion plane to minimize unwanted

Stark shift gradients across the ion chain axis (see below for further discussion). The

250 mm spherical lens and 250 mm horizontal cylindrical lens in the Raman path

are separated by 500 mm and constitute a 4f configuration. By carefully adjusting
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BA

C D

Figure 2.12: Measured Raman beam profiles. Some Raman beam intensity
profiles measured on a Guppy CCD camera. Image acquisition and Gaussian fits
are performed with a lab-built LabView program. Blue numbers in the lower left, Rx
and Ry, denote beam waists of the intensity profile (1/e2) taken from the fits. (A)

Gaussian beam waist of the nominally collimated 355 nm beam picked off directly
out of the Coherent Paladin aperture, 85 cm from the laser head. (B) Waist of the
beam at the focal plane of the Raman AOM’s (focus of 412 mm lens, see Fig. 2.7).
(C) Nominally collimated beam picked-off just after the Raman 1 vertical expansion
telescope. This profile is measured roughly 21 cm from the V2 lens (Fig. 2.11). (D)

Final Raman 1 beam waist at the ion plane. This beam was picked off just after
the final vertical cylindrical lens V3 before entering the vacuum chamber.

the position of the cylindrical horizontal 250 mm lens along the optical axis, we

move the sidebands’ overlap point onto the ion plane.

Both Mølmer-Sørensen sidebands are detuned from the hyperfine qubit carrier

transition with detunings of opposite signs. The four-photon Stark shift applied to
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Figure 2.13: Stark shift gradient from non-overlapped sidebands. RSB and
BSB Stark shift the hyperfine qubit splitting with opposite signs. Left: When the
sidebands’ point of overlap falls in front of or behind the ion plane, the Gaussian
Stark shift profiles sum to a shape that is a nearly linear gradient within half a beam
waist from the ions. Right. When the sidebands are perfectly overlapped at the
ion planes the equal-but-opposite Stark shift profiles cancel out.

the qubit transition by these Raman beams, δω(4) is proportional to |Ω|2/2δ ∼ I2/2δ.

Because δ is opposite for the RSB and BSB, the Stark shifts created by each beam

(assuming equal intensities) are opposite: δω(4)
RSB = −δω(4)

RSB. In principle we can

cancel these unwanted Stark shifts by exactly overlapping the beams’ intensity pro-

files. The 4f configuration ensures they will overlap completely since they originate

from the same point in the AOM, at the object plane of the 4f system. However,

the beams may not overlap at the ion plane if the final horizontal cylindrical lens

71



(labelled H: +250mm in Fig. 2.11) is positioned such that the beams converge in

front of or behind the ions. In these cases the sidebands’ intensity and Stark shift

profiles will be offset along the ion chain axis. Figure 2.13 shows how these offset,

Gaussian Stark shift profiles add together to create an inhomogeneous Stark shift

profile across the chain. Because these beams are wide along the horizontal direction

the ion chain will only sample the near-linear center region of this profile.

2.3.3 Individual addressing beam

The individual addressing beam, lovingly called the poke beam in the lab,

starts as a few hundreds of mW’s picked off partway between the 412 mm lens and

the Raman AOMs. This beam is collimated just after its focus by a 150 mm lens

before being expanded by a factor of five by a Thorlabs BE05-355 beam expanding

telescope. The larger beam waist here will make a smaller waist at the ion plane

possible. The beam is diffracted by a 3-phase, high-bandwidth, large-aperture AOM

built by Harris Corporation (now L3Harris). Unlike the small-aperture Brimrose

Raman AOMs, the beam is collimated through this crystal. This AOM is driven

by the second channel of the Agilent AWG. Both channels share the same clock

reference, so we can use the poke beam in conjunction with the Raman beams while

maintaining timing accuracy.

The zeroth-order is dumped while the first order beam (or beams - there may

be multiple first orders if we are driving the AOM with multiple tones to poke

multiple ions) passes through a series of optics that fix the polarization and further
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Figure 2.14: Individual addressing optics. Diagram lengths not to scale. These
optics shape and direct the individual addressing beam backwards through the imag-
ing objective and onto the ion chain. Also shown is the overlapped optical pumping
light used to initially align the poke beam

focus the beam. The antepenultimate optical element, a ∼ 100 mm lens, focuses the

poke beam to an intermediate focus indicated in Fig. 2.14. The beam waist at this

point is roughly 15×15µm. By placing a camera sensor at this plane (Fig. 2.15), we

can clearly see that the Harris AOM driving frequency directly maps to a location

along the ion chain’s axial z-direction (along the dotted line in Fig. 2.14). The beam

continues into the detection optics where it is reflected through the objective by a

LPD01-355-RU-25 dichroic which reflects 355 nm light and transmits 369 nm light

from the ions. The 0.4 NA finite-conjugate imaging objective maps the intermediate
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focus to the ion plane with a magnification of about ×14. This results in a beam

waist of just over one micrometer at the ion plane.20 The ∼ 100 MHz bandwidth of

the Harris AOM maps to a span of ∼ 55 µm along the chain’s axis. For typical trap

configurations, this allows us to apply Stark shifts up to 100’s of kHz to individual

qubits in a chain of 25 ions with low crosstalk errors [92] on the order of 2− 3%.

140 MHz 230 MHz

186 MHz

Figure 2.15: Individual addressing beam profiles at intermediate focus.

Guppy intensity profiles of the poke beam at the intermediate focus (see Fig. 2.14) for
various AOM drive frequencies. The useful frequency bandwidth of the Harris AOM
is roughly 140 - 235 MHz. A custom-designed 0.4 NA finite-conjugate objective
maps the profiles to the ion plane with a ×14 de-magnification. Note that the
y-direction Gaussian fits failed for each of these profiles, so ignore the Ry values
here. The 15 µm fitted Rx waists are correct and correspond to approximate waists
of 1.1−1.3 µm at the ion plane. Note that the “x position” values in the screenshots
may not be consistent with each other.

20Note that this waist refers to the 1/e2 radius of the intensity profile. The 4-photon Stark shift
goes as ∝ Ω2 ∝ I2, so the effective waist of the Stark shift profile will be narrower.
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2.3.3.1 Initial alignment advice

Aligning the poke beam, a tightly focused beam that only applies a fourth-

order Stark shift to the qubit, can be a tedious, arduous, difficult, miserable, and

altogether terrible experience if unprepared. Luckily my labmates and I have made

enough mistakes with this over the years to identify a set of best practices for locating

the poke beam on the ion chain. For context, it took weeks of continuous searching

to find the poke beam the first time we did this back in 2016. The last time we had

to realign the beam from scratch, it took a few days thanks to a few handy tricks.

Follow these steps to align the poke beam (or any other similarly small beam) on

your ions:

1. Center the beam on all optics. The poke beam is nearly diffraction-limited

at the ion plane. Any coma due to decentering will severely distort the final

beam profile. Carefully position lenses so the beam passes exactly through

their center. At the same time, roughly align the poke beam to pass through

the objective lens into the vacuum chamber.

2. Set up an optical pumping reference beam. You will use an overlapped

369.5 nm beam to drive the optical pumping (OP) process, which will make

ions go dark during Doppler cooling while observing on a camera in real-time.

Pick off ∼ 20 µW of OP light and overlap it with the poke beam AOM’s center

frequency first-order beam as well as possible using some upstream mirrors (see

Fig. 2.14 for our configuration). Check the overlap at multiple locations. We
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Figure 2.16: OP and poke beam overlap. Optical pumping and poke beam
profiles at the intermediate focal plane. The optical pumping beam (∼ 30 µm waist)
and poke beam (∼ 13 µm waist) profiles appear well overlapped on the Guppy CCD.

find that overlap by eye is not good enough - place a CCD camera (like the

Guppy camera) at the intermediate focus plane and zoom in on the profiles

(Fig. 2.16). Also try picking off both beams and sending them a few meters

away. The long lever arm will increase your accuracy. I can’t emphasize the

importance of this step enough. Spend a day or two just on this. Take your

time and do a good job. It will pay dividends later on.

3. Locate OP on the ions. Load a cloud of ions, leaving the rf amplitude

low to extend lifetimes. Now you will watch the brightness of the ions on

the camera sensor. Steer the OP beam around the trapping region using a

downstream mirror shared by the poke and OP beams. Look for the ions to
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Figure 2.17: Finding the poke beam with optical pumping light. Images of
ion clouds from the Andor iXon 897 EMCCD with and without “alignment optical
pumping” light. Top. With the intermediate 100 mm lens removed, the optical
pumping beam has a larger waist at the ion plane and can be found slightly easier.
It is more difficult, however, to exactly align the beam to the chain’s center. Below.
The optical pumping beam has a waist of a few µm at the ion plane with the
intermediate lens in place. The beam is aligned to the center of the ion chain,
nominally placing the overlapped poke beam at the same location.

darken a bit (see Fig. 2.17). Align the OP beam to darken the center ions in

the chain. Set the trap rf amplitude to regular operating levels and check that

the beam is still centered.

Optional Step: Remove intermediate lens. If you are having trouble

finding the OP beam on the ions, you can try removing the intermediate lens.
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This will make the OP beam profile a few times larger at the ion plane. You

may have to increase the power in the beam to maintain a similar intensity.

Once you find this larger beam, center it on the ions. Carefully replace the

intermediate lens so the beam passes exactly through its center. If you are

careful the beam will not deflect and the focused OP beam will be centered

on the ions.

4. Look for the poke beam Stark shift. The poke beam applies a Stark shift

z-rotation, so the signal must be measured via a Ramsey experiment. Load a

small chain of ions. Prep along |↓〉z, then apply a π/2 pulse. Drive the poke

beam AOM at its center frequency at max amplitude for 1 ms or so (the initial

signal will probably be ≤ 1 kHz). Do an analysis π/2 pulse such that a Stark

shift during the interrogation time would rotate a bright qubit to dark (a dip

rather than a peak) - this will help distinguish a null signal from ion loss.

If you don’t see a signal right away (and you checked that the beam is actually

on) try searching around with a downstream mirror. If you still can’t find the

beam after an hour or so, double check OP overlap and ensure OP is centered

on the ions. If you followed steps 1-3 properly you should find it soon.

Once you have a signal from the poke beam, everything should proceed somewhat

easily. Carefully focus optical elements (mostly the intermediate lens) to minimize

the width of the beam at the ion plane and maximize the Stark shift. Walk the

beam to minimize coma and other aberrations from the objective.
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3 | Dynamical Phase Transitions

This chapter was adapted from ‘Observation of a many-body dynamical phase tran-

sition with a 53-qubit quantum simulator’ [2].

Massive effort has gone into understanding the nature of phase transitions over

the past century. As a result, everyone from scientists to air conditioning techni-

cians utilize phase transitions so often that we typically don’t think about them.

From boiling water for pasta to cooling superconducting magnet coils in MRI ma-

chines, phase transitions are completely ubiquitous. Even the sudden formation

of a traffic jam can be modelled as a type of phase transition - although it dif-

fers from most in an important way. Most classical and quantum phase transitions

we think about are considered equilibrium phase transitions. After centuries of in-

tense study, we now have complex formalisms for classical and quantum first and

second-order equilibrium phase transitions based on non-analytical observables, crit-

ical exponents, symmetry-breaking arguments, scale-divergence, and other universal

properties which are independent of the microscopic details of the system [96, 97].

While this framework has proven useful for predicting the behaviors of equilibrated

systems (that is, systems that behave as if they are in thermal equilibrium with some

fixed-temperature bath), it remains unclear if these powerful universal descriptions
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will apply to non-equilibrium systems, or systems in motion like cars on the highway,

undergoing phase transitions.

3.1 Motivation: equilibrium vs. non-equilibrium phase transitions

What is a dynamical phase transition? A non-equilibrium system is a system

that is not in thermal equilibrium. In the case of a closed quantum system, this

means that the system’s behavior (indicated by measurable observables like energies,

magnetizations, and correlations) is non-stationary and cannot be described by a

canonical or microcanonical thermal distribution of eigenstates. In a trapped-ion

quantum simulation lab we can easily drive a spin system out of equilibrium by

applying a Hamiltonian to a non-eigenstate. If the Hamiltonian is non-integrable

the system will eventually thermalize to some equilibrium according to ETH. Until

then, however, the state of the system will display dynamics and evolve over time.

In recent years, there has been a push toward understanding phase transi-

tions in non-equilibrium systems, also called a dynamical phase transition (DPT)

[98, 99, 100]. In parallel with equilibrium phase transitions, a DPT occurs when

a system exhibits some non-analytic dynamical behavior as a system parameter

(evolution time, a field strength, etc.) is smoothly tuned. These out-of-equilibrium

systems often don’t follow conventional thermodynamics, so it can be difficult to pre-

dict when and why these non-analytic features arise. Can we generalize the notion

of universality to DPTs even though they are not based on properties of deriva-

tives of free energy like conventional, equilibrium phase transitions? The answer to
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this question remains unclear, but there has been some progress toward identifying

universal DPT behavior.

Recently, Zunkovic et al. [99] identified two classes of dynamical quantum

phase transitions1 that can exist in a transverse-field Ising Hamiltonian. Each

class of DPT separates two phases with distinct dynamical properties, although the

two classes have notably different characteristic observables. The first type, called

“DQPT-LO” in Ref. [99], manifests itself as non-analytic behavior in the evolution

of a certain observable called the Loschmidth echo:

L(t) = 〈ψ0|e−iHt|ψ0〉 (3.1)

where |ψ0〉 is the initial state of the system quenched under Hamiltonian H. This

observable describes the probability for the system to return to its initial state during

an evolution. The Loschmidt echo fills the role of an equilibrium partition function

for DPTs, so a non-analytic feature in L is analogous to a kink or jump in the free

energy of an equilibrium system - the smoking gun of a phase transition. Real-time

non-analytic behavior of this observable was measured by Jurcevic et al. [101] in a

10 ion quantum simulator, constituting the first direct observation of a dynamical

phase transition.

The second DPT class that Zunkovic et al. identified, called “DQPT-OP”,

is characterized by non-analytic behavior in late-time observables. Here the phase
1The remainder of this chapter is about quantum phase transitions of the dynamical variety, or

DQPT. For consistence with Reference [2] I will leave out the Q and continue using the abbreviation
DPT.

81



transition can be probed by measuring the late-time dynamic behavior of the system

for smoothly-varying Hamiltonian parameters. In the remainder of this chapter, we

will discuss the experimental observation of this type of DPT in a trapped-ion

quantum simulator. We will see how choosing different late-time observables and

increasing system size can sharpen the signatures of such a DPT, culminating in

clear non-analytic behavior measured in a system of 53 qubits.

3.2 Dynamical phase transitions in an Ising spin chain

In this experiment, we employ a quantum quench–a sudden change in the

system Hamiltonian – to bring a collection of interacting trapped ion qubits out

of equilibrium [38, 101, 102, 103]. The theoretical description of the dynamics is

made difficult by the population of exponentially many excited states of the many-

body spectrum, typically accompanied by massive entanglement between the qubits.

Given the long-range interactions between the qubits, the entanglement growth is

generally much faster [104] than in locally connected systems [105, 106], making the

classical simulation of the quench dynamics even more challenging at large system

sizes. The nature of the long-range Ising interaction also leads to unique dynamical

features and an emergent higher dimensionality of the system [99, 107, 108].

We experimentally implement the quantummany-body Hamiltonian, described

in Section 2.3, with long-range Ising interactions and flexible tuning parameters [85,

109]. As outlined in Fig. 3.1, we initialize the qubits (effective spin-1/2 systems) in

a product state all polarized along the x-direction of the Bloch sphere, and suddenly
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turn on the TFIM Hamiltonian given by (h = 1)

H =
∑
i<j

Jijσ
x
i σ

x
j +Bz

∑
i

σzi . (3.2)

Here σγi (γ = x, y, z) is the Pauli matrix acting on the ith spin along the γ direction of

the Bloch sphere, Jij is the Ising coupling between spins i and j, and Bz denotes the

transverse magnetic field, which acts as the control parameter for crossing dynamical

criticality in this DPT.

The right panel of Fig. 3.1 shows a simplified, semi-classical Bloch-sphere

representation of the expected dynamics on either side of the DPT critical point.

For Bz/J0 � 1, the magnetic field drives the system most-strongly. Here the spins

quickly evolve from the longitudinally polarized initial state and proceed to precess

about the large transverse magnetic field (green curves in Fig. 3.1). For Bz/J0 �

1, we expect the spins to stay pinned near the initial conditions (blue curves in

Fig. 3.1). The dynamics near the DPT critical point are harder to predict, although

a reasonable guess in this semi-classical picture is that the system’s magnetization

will sweep directly from the x-axis to the z-axis with oscillations critically damped-

out.

To implement the quantum Hamiltonian, each spin in the chain is encoded in

the 2S1/2 |F = 0,mF = 0〉 ≡ |↓〉z and |F = 1,mF = 0〉 ≡ |↑〉z hyperfine “clock” states

of a 171Yb+ ion and separated by a frequency of ν0 = 12.642821 GHz. We store a

chain of up to N = 53 ions in a linear rf Paul trap [85] and initialize the qubits in

the product state |↓↓ · · · ↓〉x, where |↓〉x ≡ (|↓〉z + |↑〉z)/
√

2. Spin-spin interactions
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are generated by spin-dependent optical dipole forces from an applied laser field,

which give rise to tunable long-range Ising couplings that fall off approximately

algebraically as Jij ≈ J0/|i − j|α [85, 109, 110]. The power-law exponent α is

set between 0.8 − 1.0 in this experiment, and the maximum interaction strengths

are J0 =(0.82, 0.56, 0.38, 0.65) kHz, for (8, 12, 16, and 53) spins, respectively.

The transverse field Bz is generated by a controllable Stark shift of the spin qubit

splitting created by detuning the Raman sideband beatnotes by 2Bz.

At the end of an evolution, we measure the magnetization of each spin 〈σxi 〉

along x. We rotate all the spins by an angle of π/2 about the y-axis of the Bloch

sphere (exchanging σxi ↔ σzi ) and then illuminate the ions with resonant 369.5nm

radiation and collect the scattered σzi -dependent fluorescence on a camera with site-

resolved imaging. We estimate a spin detection efficiency of ∼ 99% for each qubit in

this experiment. A unique feature of trapped-ion systems is the ability to measure

N -body correlated observables in a single shot - a feature instrumental to this work.

Kac renormalization. For α ≤ 1, the system energy diverges with system size

due to the non-extensive energy of the long-range interactions. As a result, there

is no well-defined thermodynamic limit corresponding to Eq. 3.2. In order to study

the finite-size scaling of this DPT without such unphysical characteristics, we must

renormalize the Hamiltonian. A standard method is Kac renormalization [111, 112].

Here we normalize the interaction energy to J̃ij = Jij/N using the Kac normalization

constant

N =
1

N − 1

∑
i,j

Jij
J0

. (3.3)

84



Camera

Tim
e

Tim
e

Initialize spins

Quantum quench

Measurement

X Magnetization
(a) (b)

x

z

Figure 3.1: Illustration of the DPT from a quantum quench. We subject a
system of interacting spins to a sudden change of the Hamiltonian and study the
resulting quantum dynamics. (a) An isolated spin system is prepared in a product
state, and an Ising spin-spin interaction is suddenly turned on, along with a tunable
transverse magnetic field (see text for details). At the end of the evolution, we
measure the spin magnetizations along the initial spin orientation direction. (b) A
Bloch-sphere representation of the average spin magnetization. Spins are initially
fully polarized along the longitudinal x direction of the Bloch sphere, and evolve
with Ising interactions along x competing with the transverse field along z, resulting
in oscillations and relaxations. Blue curves illustrate the quench dynamics with a
low transverse field; green curves indicate the dynamics with a large transverse field
across criticality.

where the sum is over all N − 1 unique couplings between ions i and j. Since

all observables in this experiment are a function of the ratio Bz/J0, we instead

renormalize the magnetic field using B̃z = NBz and retain the original form of the

Ising coupling2. We present data as a function of this scaled ratio, allowing for direct

comparisons between systems of varying sizes, ideally up to the thermodynamic

limit.

The simplest observable of quench dynamics, after evolving the system under

Hamiltonian Eq. 3.2 for time t, is the average magnetization of the spins along x,
2This is equivalent to multiplying the Kac-renormalized Hamiltonian by N/N .
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〈σx(t)〉 =
∑

i〈σxi (t)〉/N . Figure 3.2 shows the measured average magnetization for

N = 16 spins throughout the evolution up to 2πJ0t = 4.8, for different values of

the renormalized transverse field B̃z. This allows a fair comparison of the DPT for

different numbers of spins in the chain.

The evolution of the time-dependent magnetization separates into two dis-

tinctive regimes: one that breaks the Z2 symmetry (σx,yi → −σx,yi ) of the Ising

Hamiltonian (Fig. 3.2a), as was explicitly set by preparing the initial state along

−x; and one that restores this symmetry (Fig. 3.2c), where the intermediate time

dynamics oscillates around and relaxes to zero average magnetization. In between

these two regimes we observe a relaxation to a non-zero steady value (Fig. 3.2b).

Cumulative time-averages 〈σx〉(t) =
∫ t

0
〈σx(τ)〉 dτ/t (insets in Fig. 3.2) clearly reveal

the long-time magnetization plateaus.

The DPT is expected to occur between the small and large transverse field

regimes, where the spin alignment changes abruptly from ferromagnetic to para-

magnetic in the long time limit as shown in Fig. 3.1. This phase transition is

well-established3 for α = 0 (mean-field interaction) [2]. Strong numerical evidence

shows that such a transition will survive [99, 113] for the small values of α chosen in

our experiments, but not for α =∞ where interactions are nearest-neighbor only.

Further signatures of the DPT can be observed by measuring the spatially

averaged two-spin correlations C2 =
∑N

i,j 〈σxi σxj 〉 /N2. We can predict how this

observable will behave in the extremes of each dynamical phase from the behavior
3A tidy derivation of this phase transition for can be found in the Methods section of Reference

[2]. I played little or no part in that calculation, so I chose not to include it here.
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Figure 3.2: Real-time spin dynamics after a quantum quench of 16 spins in

an Ising chain. (a) Polarized spins evolve under the long-range Ising Hamiltonian
with a small transverse field (B̃z/J0 = 0.6). The broken symmetry given by the ini-
tial polarized state is preserved during the evolution as the system retains memory
of its initial state. (b) When the transverse field is increased (B̃z/J0 = 0.8), the
dynamics shows a faster initial relaxation, before settling to a non-zero plateau. (c)
Under larger transverse fields (B̃z/J0 = 1.6), the Larmor precession takes over, and
the spins oscillate and relax to zero average magnetization. The dashed lines are
exact numerical predictions from solving the Schrödinger equation. Insets: cumula-
tive time-averages of the spin magnetization, smoothing out temporal fluctuations
and showing the plateaus. Each point is the average of 200 experimental repetitions.
Error bars are statistical and represent ±1 s.d.

of the magnetizations described above. We expect that C2 → 1 for small B̃z/J0

since all the spins will remain at or near their x-polarized configurations. For large

B̃z/J0 we expect that C2 → 1/2 at long times since the collective spin precesses

around the z axis with C2 quickly oscillating between one and zero. Figure 3.3

shows the cumulative time-averaged correlations for all 21 measured time steps for

N = {8, 12, 16, 53} spins. Recall that we expect the spins to quickly snap to

the z axis of the Bloch sphere at the critical B̃z/J0 value. Thus, near the critical

point, we expect the correlator C2 to decrease. In accordance with this prediction,

we observe the emergence of a dip in C2 (Fig. 3.3) near the critical value of B̃z.

Such a feature, particularly one that sharpens with system size, is a direct signature
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Figure 3.3: Two-body correlations and finite-size scaling. Long-time averaged
values of the two-body correlations C2 over all pairs of spins, for different numbers
of spins in the chain. Statistical error bars are ±1 s.d. from measurements covering
21 time steps. Solid lines in (a-c) are exact numerical solutions to the Schrödinger
equation, and the shaded regions take into account uncertainties from experimental
Stark shift calibration errors. Dashed lines in (a) and (b) are calculations using an
appropriate canonical ensemble (see Section 1.2.2). For N = 53 spins in (d), the
correlations are uniformly degraded from a residual Stark shift gradient across the
ion chain (see Section 2.3), so in this case we normalize to the maximum correlation
at small field. Exact diagonalization for N = 53 spins is beyond our classical
computing resources, so we instead fit the experimental data to a Lorentzian function
with linear background, shown by the dashed line, as a guide to the eye.
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of the DPT. The sharpening of the dip at larger system sizes is not strong here.

However, this may be due to a logarithmic finite-size scaling which would match the

finite-size scaling of the corresponding α = 0 DPT discussed in the Methods section

of Reference [2].

For a non-integrable system such as the long-range TFIM studied here, it

might be conjectured that the spins eventually reach a distribution indistinguish-

able from a thermal ensemble according to ETH [114] (see Section 1.2.2). However,

we find that this is only true for small B̃z. In fact, we observe that the thermal val-

ues of the correlator C2 do not exhibit a dip or show signatures of a phase transition

with varying B̃z/J0 for system sizes that we are able to model numerically. Ther-

mal values of C2, predicted by a canonical ensemble with an effective temperature

corresponding to the initial energy density, are shown by dotted lines in Fig. 3.3a-

b. Interestingly, thermalization appears to break down in this quenched system,

which we suspect is a consequence of the inherent long-range nature of the Ising

interactions [115]. It is also possible that the growing separation of energy scales

between interactions and the transverse field causes the system to prethermalize to

some transient value. In any case, we find that this quenched system does not obey

ETH up to experimentally-realizable timescales.

We further explore many-body dynamical properties of this system by investi-

gating higher-order correlations, which are even harder to calculate classically [88].

Through high-efficiency single-shot state detection of all of the spins, we directly

measure higher-order correlation observables. Single-shot images for N = 53 spins

are shown in Fig. 3.4a and are reconstructed from binary thresholding and image

89



(a) (b) Transverse field

0.0 0.5 1.0 1.5 2.0

12

14

16

18

20

m
ea

n
of

la
rg

es
td

om
ai

n 
si

ze

 Bz /J0

~

0 10 20 30 40 50
1

10

100

104

Domain Sizes

O
cc

ur
re

nc
es

0 10 20 30 40 50
1

10

100

104

Domain Sizes
0 10 20 30 40 50

1

10

100

104

Domain Sizes

103 103 103  Bz /J0 = 1.6~
 Bz /J0 = 1.0~

 Bz /J0 = 0.1~

Figure 3.4: Domain statistics and reconstructed single shot images of 53

spins. (a) Top and bottom: reconstructed images based on binary detection of
spin state. The top image shows a chain of 53 ions in bright spin states. The
other three images show 53 ions in combinations of bright and dark spin states.
Center: statistics of the sizes of domains, or blocks with spins pointing along the
same direction. Histograms are plotted on a logarithmic scale, to visualize the rare
regions with large domains. Dashed lines are fits to exponential functions, which
could be expected for infinite-temperature thermal state. Long tails of deviations
are clearly visible, and varies depending on B̃z/J0. (b) Mean of the largest domain
sizes in each single experimental shot. Error bars are the standard deviation of
the mean. Dashed lines represent a piecewise linear fit, from which we extract the
transition point (see text). The green, yellow, and red data points correspond to
the transverse fields shown in the domain statistics data on the left.

convolution of the ion chain fluorescence distribution. Note that single-shot data

images are not as high-contrast as the images shown here. The analysis of these

binary strings gives direct information of correlations up to arbitrary order.

The occurrence of long domains of correlated spins in the state |↑〉x (fluorescing

spins) signifies the fully polarized initial state, where the correlations in the initial

state are largely preserved by the interactions. With an increasing transverse field,

the absence of spin-ordering is reflected by exponentially small probabilities for

observing long strings. We plot the domain length statistics in Fig. 3.4a at late

times, for three example transverse field strengths, B̃z/J0 = (0.1, 1.0, 1.6). The raw
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domain statistics are analyzed from the binary tally of bright and dark ions, and

sorting them into domains with consecutive spins up (bright) or down (dark). The

collection of all 200 experimental repetitions for the last 5 time steps (out of 21 time

steps in total) are treated equally. Dashed lines in Fig. 3.4a are fits to exponentials

on the histogram of domain sizes. The rare occurrence of especially large domains

(e.g. the colored boxes in Fig. 3.4a) shows the existence of many-body high-order

correlations, where the order is given by the length of the domain. These domain

sizes are directly related to ‘formation probabilities’, which have recently been used

to theoretically characterize dynamical behavior in Reference [116].

To analyze the large domains, or the outliers of the distributions in Fig. 3.4a,

we find the largest domain in each single shot, and plot the statistical distribution in

Fig. 3.5. We plot the mean of these largest domain size distribution in Fig. 3.4b, as

a function of the normalized transverse field strength. The average longest domain

size ranges from 12 to 20, and shows a sharp transition across the critical point

of the DPT. We fit this observable to a piecewise linear function, and extract the

critical point to be B̃z/J0 = 0.89(7). Using the mean and standard error of the

mean to extract the data and error bars presented in Fig. 3.4b utilizes an underlying

assumption that the central-limit theorem holds for our largest domain size statistics.

We further analyze the distribution in the actual data, and fit the histogram to

a two parameter Gamma distribution, shown as the dashed lines in Fig. 3.5. From

the fit parameters we can extract the mean, taking the skewness of the distribu-

tion into account, without assuming the distributions are perfectly Gaussian. This

systematically shifts the largest domain size by about 1 for all the datasets, and a
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Figure 3.5: Distributions of the largest domain size. Statistics of the largest
domain size in each experimental shot (200 experiments for each of the last 5 time
steps). Considering only the largest domains of each shot eliminates undesirable
biasing toward small domain sizes present in Fig. 3.4a. Domain sizes are related to
many-body correlators, where a domain size of N corresponds to an N-body corre-
lator. Dashed lines are fits to a two parameter Gamma distribution proportional to
e−x/βxα−1, with shape parameter α and scale parameter β.

piecewise linear fit similar to that described above yields the critical point B̃z/J0 =

0.92(7) from this alternative data analysis method, in good agreement with that

obtained earlier.

We do not expect that the high-order correlators nor the N = 53 spin critical

point can be easily calculated using exact diagonalization or even matrix product

state methods since the evolved states are high in entropy [104]. However, this

problem – identifying the critical point of this DPT with a given accuracy – is not

rigorously known to be classically difficult to solve. For this reason we cannot assume

this simulation has provided any speedup over classical resources, and therefore it

would be unreasonable to claim a rigorous quantum advantage for this quantum

simulation.

Despite this, the DPT studied here was at the time, to the best of my knowl-

edge, the largest published quantum simulation ever performed with high-efficiency,
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single shot, individual qubit measurements.4 This invaluable feature gives access to

the arbitrary many-body correlators that carry information that is difficult to model

classically.

3.3 Working with long ion chains

In this section I will discuss some of the difficulties of working with long linear

ion chains and how we have learned to overcome some of them. This DPT exper-

iment represents one of the largest trapped-ion quantum evolutions published in

the literature. As one may expect, there is a number of system characteristics that

introduce troubles only when scaling up the length of an ion chain5.

One issue is the increasingly inhomogenious ion spacing across the chain [89].

While more complex ion trap configurations can mitigate this with quadratic axial-

trapping potential terms, the three-layer trap used in this experiment is limited to

a near-ideal harmonic axial trap potential. In this case, long chain lengths result in

very tightly-packed ions near the chain center. While it was not a limitation to this

experiment, at some point these small inter-ion spacings will introducing limits to

detection fidelity due to camera sensors with finite size and resolution.

Another issue is the sheer length of the chain. To keep the chain linear, we must

relax the axial trapping potential. This makes the 53 ion chain rather large, meaning

the ions broadly sample the Gaussian intensity distributions of global laser beams
4This record has since been surpassed by Jian-Wei Pan’s group [117], Antoine Browaeys’s

group [13], and by a Harvard/MIT collaboration [14].
5In fact, these are the very reasons we ran the experiment with 53 qubits instead of 63 or 100

qubits.
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used to drive rotations and generate interactions. Inhomogenetities in the Rabi

frequency during rotations can be mitigated using BB1 composite pulses [118, 91],

but unfortunately we do not currently know of a way to dynamically decouple the

inhomogeneities in the Ising interaction unitary.

3.3.1 Loading and keeping long chains.

Repeatedly loading a chain of 30 or more ions is a surprisingly daunting task

without a few tricks up one’s sleeve. When we load ions into our trap, we lower

the trap driving rf power by 13 dBm, reducing the trap depth to about 0.25 eV.

Multiple ions form an elongated, cigar-shaped 3D crystal with these trap param-

eters (see Fig. 2.17 for an example image). As a new ion is loaded into the trap

(see Section 2.2.1 for loading procedure), the crystal suddenly melts from the new

ion’s kinetic energy. For fewer than about 15 ions this is not a problem - the ion

cloud is cooled by the Doppler cooling beam and recrystalizes after a fraction of a

second. But beyond 15 ions, sometimes the cloud never recrystalizes. We predict

that, beyond 15 or so ions, the trajectories are chaotic enough and the inter-ion

Coulomb repulsions are strong enough that the ions deviate very far from the trap’s

center. Micromotion amplitude increases further from the trap center, meaning that

these ions are strongly modulated by the 38.8 MHz trap driving frequency. Given

that the Doppler cooling laser is red-detuned from the 2P1/2 levels by 14 MHz, the

micromotion can create an effective sideband blue-detuned from the cooling transi-

tion by 24.4 MHz that may further heat the ions. So beyond 15 or so ions, various
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heating sources may overcome the Doppler cooling rate. To overcome this, we add

an additional tone to the cooling AOM that is red-detuned from the transition by 42

MHz. This additional tone, which we call deep cooling, is red-detuned of the micro-

motion sideband by a few MHz - enough to recrystalize large clouds of ions. With

deep cooling on, the largest crystal I recall loading in the 3-layer trap contained 77

ions. Without deep cooling we are sometimes able to load many 10’s of ions. The

additional cooling tone makes the loading process more consistent day to day.

Another issue with long chains is quickly reloading the same number of ions

after a dropout event. For 10 or 15 ions it does not take long to simply count the ions

on the camera. Quickly counting 30 or more ions can be difficult however, especially

since the 3D crystal may switch between a few nearly-degenerate configurations

while trying to count. The 3D nature of the chain makes it difficult for an automated

program to count in real time since ions may be obscuring others. If a chain only

lasts for 2 or 3 minutes it is highly beneficial to reload as fast as possible. The

30-60 seconds needed to accurately count each ion can lower the experimental duty

cycle quite a bit, potentially adding hours to a data-taking session. My personal

advice for this issue is not to count the ions at all. Human brains are strangely good

at recognizing patterns. Instead of counting ions, I recommend carefully loading

the desired number of ions N and memorizing the visual pattern of the Coulomb

crystal. I have also had great success slightly adjusting the electrode voltages until

a recognizable phase transition in the crystal structure occurs between N−1 and N

ions. For instance, one could adjust voltages so that 24 ions fall into two rows with a

particular zig-zag pattern, but 25 ions fall into a configuration with a distinct third
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row. With this in place, you can simply watch for your carefully-calibrated crystal

feature while loading instead of stopping multiple times to count the glowing blobs.

With a little practice, one can easily load a chain of exactly 53 (or 25 or 47) ions in

10’s of seconds.

Perhaps the most glaring and frustrating issue for the physicists running this

project is the higher frequency at long chain lengths of catastrophic loss due to col-

lisions with background gas. A detailed discussion of background gas collisions with

trapped-ion chains can be found in Reference [63]. We have found that typical chain

lifetimes vary over the course of months and years. While we have not identified

exactly what experimental conditions correspond to better lifetimes, we have found

that a few adjustments can sometimes improve lifetimes.

It is expected that a lower vacuum pressure will increase chain lifetimes by

reducing the density of background gas particles. While the background pressure is

typically not an adjustable parameter (it is limited by pumping efficiencies and the

preparation of the vacuum chamber itself), there was one notable event during my

PhD that highlighted this relationship. During the spring of 2020, the University

of Maryland (and the majority of global society) shut down due to the COVID-19

pandemic. Many of the labs in the building, including the Warm QSim lab, were

put into a state of hibernation for 3 months while we attempted to work from home.

When we returned to the lab that summer we were surprised to find that lifetimes

had dramatically improved! In January 2020 a 20 ion chain had an average lifetime

of about 6 minutes. In June 2020 one data set showed the average 20 ion lifetime was

13 minutes, averaged over 8 instances. The longest lifetime of this data set exceeded
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25 minutes. Upon confirming that laser powers and frequencies were roughly the

same, we concluded that the 3 month break from running atomic flux ovens every

day must have improved the vacuum pressure. This is consistent with the observed

decline in long-chain lifetimes to usual values over the following months.

A literal knob we sometimes turn in the hope of improving lifetimes is the

alignment of the Doppler/deep cooling beam. Due to the geometry of our 3-layer

trap (see Fig. 2.1) the cooling beams have only a slight projection along the trap’s

y-principle axis. As in all AMO labs, this beam occasionally drifts. If we find that

lifetimes are suddenly bad, we will often adjust the alignment of this beam. It is

prohibitively slow to measure the mean lifetime with a statistically-relevant set of

loading instances after each adjustment of a mirror knob. Instead we use two inter-

mediate optimization metrics to guide our hands; first we align the beam to optimize

the brightness of a small chain of Doppler-cooled ions on the camera, making sure

that the chain is well-cooled when the trap rf is at high and low amplitude. As a

further check, we often turn on the Detection AOM. The Detection light is resonant

with the S → P transition and weakly heats the ions. If the beam is too-weakly

projected along the trap’s y-axis, we will see the ions “streak out” along this direc-

tion on the camera as they develop noticeable oscillation along that axis. If the ions

don’t streak out under detection light we assume the ions are well-cooled along that

axis. The second metric is checking how long it takes a short chain to recrystalize

under regular Doppler cooling after a single ion is loaded. When the Doppler cool-

ing beam is very well aligned the crystal will reform almost instantly, with the ion

suddenly appearing in the Coulomb crystal. If it takes more than a second for a
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crystal of 8 or 10 ions to reform, we assume cooling is not optimally aligned. When

often find that satisfying these conditions correspond to improved chain lifetimes.

Luckily many of the issues discussed in this section have been addressed

through the development of a new cryogenically cooled trapped-ion quantum simula-

tor in the Monroe Group. In this system, larger beam sizes, an order-of-magnitidue

lower background gas pressure and heating rate, EIT cooling, and other technologi-

cal improvements make quantum simulations with ∼ 50 qubits manageable without

relying on luck, trial-and-error adjustments, or “black magic” in the lab [63].
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4 | Domain Wall Confinement

This chapter was adapted from ‘Domain-wall confinement and dynamics in a quan-

tum simulator’ [3].

4.1 Motivation: quark confinement and slow thermalization

Quantum simulators allow the study of out-of-equilibrium physics of quantum

many-body systems in a well-controlled environment [11]. An emerging applica-

tion of these simulators is the study of problems motivated by high-energy physics

and gauge theories [18, 119, 120]. The dream is to use laboratory-scale quantum

simulators to study exotic particle physics in lieu of massive, expensive particle

collider experiments. While current quantum simulators are nowhere close to ac-

curately and completely reproducing phenomena relevant to the Standard model, a

number of proof-of-principle experiments have demonstrated that fundamental com-

ponents of high-energy physics theories can be simulated in quantum information

systems [121, 122, 123, 124, 125, 126, 127].

Fundamental constituents of matter, such as quarks, cannot be observed in

isolation, because they are permanently confined into bound states of mesons or

baryons. Although the existence of confinement in particle physics is well estab-
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lished, quantitative understanding of the connection between theoretical prediction

and experimental observation remains an active area of research [128, 129]. Sim-

ilar phenomena can occur in low-energy quantum many-body systems, which can

provide insight for understanding confinement from a microscopic perspective. The

static and equilibrium properties of such confined systems have been well character-

ized in previous theoretical [130, 131, 132] as well as experimental works [133, 134].

However, recent theoretical studies have demonstrated that confinement can also

have dramatic consequences for the out-of-equilibrium dynamics of quantum many-

body systems, such as suppression of information spreading and slow thermalization.

[135, 136, 137, 138, 139, 140, 141, 142]. In this chapter, I will discuss a recent exper-

iment, motivated by these theoretical predictions, aimed at observing slow thermal-

ization due to confinement between quark-like magnetic quasiparticles in an Ising

spin chain. In addition to furthering our understanding of closed-system thermaliza-

tion, these observations are a first step toward studying quasiparticle confinement,

particle creation and annihilation, string breaking, composite particle collisions, and

other exotic phenomena in quantum simulators.

4.2 Confinement in the Ising model

Short-range Ising confinement. Confinement in many-body systems occurs in

one of the classic models of statistical mechanics: the Ising spin chain with both

transverse and longitudinal magnetic fields. In this many-body spin system frame-

work, domain walls (interfaces between domains of contiguously-aligned spins) be-
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have like travelling quasiparticles (with effective mass and velocity) when quenched

under the Ising Hamiltonian with a transverse field. The transverse field causes

domain walls to travel linearly through the chain, bounded by some light cone.

In 2017, Kormos et al. theoretically showed that a non-zero longitudinal field

confines pairs of originally freely-propagating domain wall quasiparticles of oppo-

site ‘color’ into meson-like bound states when quenched under the following Ising

Hamiltonian [136, 138, 140]:

H = J
∞∑

j=−∞

σxj σ
x
j+1 + hzσ

z
j + hxσ

x
j . (4.1)

As a consequence of confinement, the low-energy spectrum of such an Ising system

can feature meson-like, bound, domain wall quasiparticle states, similar to con-

finement in quantum chromodynamics (QCD) in which quarks and antiquarks are

confined into hadrons due to strong interactions. QCD exhibits an SU(3) symmetry

(the color group symmetry) [129], while the Ising model exhibits a Z2 symmetry.

The Ising system permits two ‘colors’ of domain-wall quasiparticles, each the other’s

anti-particle (Fig. 4.1).

Long-range Ising confinement Recent theoretical efforts [137, 139] have demon-

strated that long-range Ising interactions, instead of an additional longitudinal field,

can naturally induce a confining potential between pairs of domain walls (Fig. 1a).

This Hamiltonian is

H = −
N∑
i<j

J

rαi,j
σxi σ

x
j −Bz

N∑
i

σxi . (4.2)
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V(x)

Ising Model QCD
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≈

Figure 4.1: Spin model quasiparticles. Magnetic domain walls in Ising spin
chains behave like quasiparticles following a quench under a transverse field Ising
Hamiltonian. For a confining potential, two domain walls separated by distance x
experience an attractive potential V (x) which increases with distance. This phe-
nomenon are analogous to the strong nuclear force, which binds quarks into hadronic
particles like mesons and baryons. In accordance with this analogy, the two domain
walls are oppositely colored.

which is the long-range, transverse field Ising model discussed throughout this the-

sis. In this case, the longer-than-nearest-neighbor interactions act like single-body

longitudinal fields at each spin site leading to confinement for certain low-energy

states (see Appendix B).

Two-kink model Previous experimental and theoretical studies [134, 139] have

found that the low-energy excitations of confinement Hamiltonians, such as Eq. 4.7,

largely consist of states containing zero or two domain walls. By restricting the
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Hilbert space to include only these states, we can build a relatively simple phe-

nomenological model that mimics the low-energy behaviour of the system. Liu et

al. describe such a two-kink model for a ferromagnetic long-range transverse field

Ising chain with closed boundary conditions and B < J0 in Reference [139], which

we will summarize here. This model also generalizes to a short-range interacting

system following Eq. 4.1, but we will discuss it in the context of Eq. 4.2 here.

The Hilbert space of this model contains states with two down-aligned domains

surrounding an up-aligned domain of length l. These domains are separated by two

domain walls: one between spin positions j−1 and j and another between positions

j + l − 1 and j + l. Such a state |j, l〉 has the form

|j, l〉 = |↓1 ... ↓↓j−1↑j↑ ... ↑↑j+l−1↓j+l↓ ... ↓〉 . (4.3)

The Hamiltonian for this set of basis states is given by Eq. 2 in [139]. For a

translational invariant system, it is useful to transform to a set of quasimomentum

basis states |k, l〉 = (1/L)
∑L

j=1exp(−ikj − ikl/2) |j, l〉. We now write the Hamilto-

nian as

H =
∑
k,l

V (l) |k, l〉 〈k, l| − 2Bcos
(
k

2

)
|k, l〉 〈k, l + 1|

− 2Bcos
(
k

2

)
|k, l〉 〈k, l − 1| .

(4.4)

Both terms involving the transverse field B describe the effective kinetic energy

of the domain walls with quasimomentum k. The potential V (l) depends on the
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Figure 4.2: 2-kink model confining potential. Effective confining potentials
between quasiparticles, separated by distance x, for different values of the power-
law exponent α. These potentials were calculated from Eq. 4.5. The experiment
described in this chapter operates with 0.8 ≤ α ≤ 1.1 (right panel).

structure of interactions in the system. For the ideal power-law in Eq. 4.2, this

potential has the form

V (l) = 4J

(
l∑

i=1

N∑
r=i

1

rα

)
(4.5)

for a given system size N and power-law exponent α. For α ≤ 2, this potential never

flattens out at any distance l, meaning that any pair of domain wall quasiparticles

will be confined. See Fig. 4.2 for plots of this potential for various values of α.

For interactions described by a Ji,j matrix (e.g. Eq. 2.44), the potential V (l)

is

V (l) = −
N∑
i<j

Ji,jsi(S)sj(S) (4.6)

where si(S) = ±1 is the value of the spin at site i corresponding to the configuration

S with domain of length l. With this, Hamiltonian 4.4 can be diagonalized to reveal

the presence of energy bands in the low-energy spectrum. These bands represent
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domain wall states bounded by the potential V (l). These low-energy, two-kink

bound states constitute our spin-model equivalent of mesons.

In both the Ising and QCD cases, confining potentials increase asymptotically

with particle separation, although with differing power-law forms. Similarly to QCD,

the domain wall confinement in the long-range Ising model studied here includes a

discrete spectrum of bound states, string breaking [142] (or particle/antiparticle

creation), and a confinement-deconfinement crossover as a function of energy den-

sity [129, 143]. While this model does not include other aspects of QCD, such as

gauge fields or chiral symmetry breaking, the similarity of the confinement mecha-

nisms allows us to draw broadly applicable conclusions about this effect.

For the remainder of this chapter, we will discuss the use of trapped-ion quan-

tum simulators [2, 101, 109, 144] to directly observe real-time domain wall con-

finement dynamics in a spin chain following a quantum quench a long-range Ising

Hamiltonian (Fig. 4.3). We show that confinement can slow thermalization and

suppress the spreading of correlations even in the absence of disorder, and that

quench dynamics can be used to characterize the excitation energies of confined

bound states. Additionally, we measure the number of domain walls generated by a

global quench, in and out of the confinement regime. Finally, we demonstrate that

the number of domain walls can be an effective probe of the transition between two

distinct dynamical regimes [99, 145].
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FIG. 4.3: Effective confining potential and experiment sequence. (a) Mag-
netic domain walls in Ising spin chains can experience an effective confining potential
that increases with distance analogously to the strong nuclear force. This potential
results in meson-like domain wall bound states (labeled E1 to E3) that can dra-
matically influence the dynamics of the system. (b) This experiment begins by
initializing a chain of trapped-ion spins in a product state. We introduce pairs of
domain walls by flipping the initial states of chosen spins. The spins evolve accord-
ing to the quenched Hamiltonian for some time, after which we measure various
observables, such as magnetizations of each individual spin along a desired axis.

4.3 Experimental observations of domain-wall confinement

We use a trapped-ion quantum simulator to investigate confinement in a many-

body spin system governed by the Hamiltonian (~ = 1)

H = −
N∑
i<j

Ji,jσ
x
i σ

x
j −B

N∑
i

σzi . (4.7)
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Here, σγi (γ = x, y, z) is the Pauli operator acting on the ith spin, Ji,j ≈ J0/|i −

j|α is the power-law decaying Ising coupling between spins i and j with tunable

exponent α, J0 > 0, B is the effective transverse field, and L is the number of

spins [63, 85]. As usual, we encode each spin in the ground-state hyperfine levels,

|↑〉z ≡ |F = 1,mF = 0〉 and |↓〉z ≡ |F = 0,mF = 0〉, of the 2S1/2 manifold of a

171Yb+ ion. Fitting the Ji,j matrices to a power-law identifies α ranging from 0.8 to

1.1 and J0/2π ranging from 0.23 kHz to 0.66 kHz1.

To study the real-time dynamics of the spin chain, we use a quantum quench

to bring the system out of equilibrium (Fig. 1b). We first initialize the spins in a

product state, polarized either along the x or z-directions of the Bloch sphere. Using

the individual addressing laser [92], we prepare domain walls in various initial state

configurations (Fig. 2c, f, i). After preparing the desired initial state, we perform a

sudden quench of the Hamiltonian (Eq. 4.7). For B/J0 ≈ 0.75, the quench optimally

drives the system out of equilibrium while remaining in the confinement regime.

Numerics indicate that larger values of B/J0 may increase the initial contrast of

oscillations between bound meson states at the expense of faster thermalization. As

we will see, B/J0 ≈ 0.75 is a happy medium of slow thermalization and sufficiently

high quench energy for driving dynamics with amplitudes above the noise floor.

Following the time evolution of the system, we use spin-dependent fluorescence to

measure the state of each spin. From this data, we calculate the time-evolution of
1Note that the trapped-ion quantum simulator natively realize an antiferromagnetic Ising model.

However, all measurable observables O(t) evolving under this Hamiltonian are real and symmetric
under time-reversal. This implies the observables evolution under Hamiltonians H and -H are the
same. For this reason, we can simulate the dynamics of a ferromagnetic system with an inherently
anti-ferromagnetic Hamiltonian [146]
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magnetizations, 〈σxi (t)〉 or 〈σzi (t)〉, and connected correlations

Cx
i,j(t) = 〈σxi (t)σxj (t)〉 − 〈σxi (t)〉 〈σxj (t)〉 . (4.8)

No post-processing or state preparation and measurement (SPAM) correction has

been applied to any of the data reported in this chapter.

Confined Correlations. To understand the effect of confinement on information

spreading, we measure |Cx
i,6(t)|, the absolute value of connected correlations with

respect to the center spin j = 6 along x, the Ising direction (Fig. 4.4). In a typical

nearest-neighbor interacting system, correlations are expected to spread throughout

the system with a constant velocity v0 = 4B [136, 139]. This can be thought of as

a speed limit for information/correlations/domain walls. Following this speed limit,

correlations will create a linear light cone enclosing an area of spins in space-time

that can may share information [32, 147, 148]. The speed limit for long-range inter-

acting systems is more complicated, however, and correlations are allowed to travel

faster-than-linearly [102]. As shown in Fig. 4.4, both behaviors collapse in a system

exhibiting confinement. When the initial state contains a small number of domain

walls (Fig. 4.4a, b, d, and e), correlations spread with a considerably smaller veloc-

ity than the velocity in a corresponding nearest-neighbor interacting system [136]

(shown by dotted white lines in Fig. 4.4). While correlation functions typically

exhibit a light cone behavior following a quantum quench, we observe strongly sup-

pressed spreading and localized correlations throughout the evolution [135, 138].

This indicates that confinement, induced by long-range interactions, localizes pairs
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FIG. 4.4: Confinement dynamics at B/J0 ≈ 0.75,N = 11. The top row
shows the absolute value of experimental center-connected correlations |Cx

i,6(t)| av-
eraged over 2000 experiments. The middle row shows |Cx

i,6(t)| calculated by solv-
ing the Schrödinger equation. Dashed white lines show correlation propagation
bounds (light cones) in the limit α →∞ (nearest-neighbor interactions). The bot-
tom row shows measured individual-spin magnetizations along their initialization
axes, 〈σx,zi (t)〉, averaged over 2000 experiments (400 experiments for (i)). Sym-
bols represent magnetization data and solid colored curves represent theoretical
magnetizations calculated by solving the Schrödinger equation. All magnetization
error bars, ±1s.d., are smaller than their plot symbols and are not shown. Purple
(green) dashed lines represent thermal expectation values calculated from a canon-
ical (microcanonical) ensemble averaged over the three displayed spins. (a-c) show
a low-energy initial state containing zero domain walls. Individual magnetizations
are 〈σxi (t)〉. (d-f) show a low-energy initial state containing two domain walls, with
a center domain of two spins. Individual magnetizations are 〈σxi (t)〉. We attribute
the discrepancy between the experimental magnetization data and numerics to im-
perfect state initialization. (g-i) show a high-energy initial state containing many
domain walls. Individual magnetizations are 〈σzi (t)〉.

of domain walls at their initial conditions (see below for more details).

In stark contrast, we find that correlations exhibit faster-than-linear spread-

ing, despite quenching under the same Hamiltonian, in the case of the initial state
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polarized in the transverse direction z (Fig. 4.4g, h). In this case, the initial state

is a linear superposition of all possible spin configurations in the x-direction, and

thus contains a large number of domain walls. Unlike the previous initial states,

this initial state has an energy density relatively far from the bottom of the many-

body spectrum. The long-range interactions among these domain walls lead to fast

relaxation and quantum information spreading. These results imply that this con-

finement effect has a significant impact only on the low-energy excitations of the

system, which is consistent with recent theoretical studies [136, 137, 138, 139, 140].

DomainWall Localization. To emphasize that these effects on correlation spread-

ing are caused by domain wall confinement withing the two-kink model’s regime,

we can reanalyze the data from Fig. 4.4 to instead measure the average number of

domain walls at each available position of an the N = 11 spins chain after a quench.

The average number of domain walls 〈Nj(t)〉 at site j ∈ {1, N −1} at time t is given

by

〈Nj(t)〉 =
〈1− σxj (t)σxj+1(t)〉

2
. (4.9)

Fig. 4.5 shows both experimental measurements and numerics of the evolution of

〈Nj(t)〉 for six initial states. The first three rows correspond to data shown in

Figs. 4.4 and 4.7a-e and represent states within the two-kink model. In these cases,

pairs of domain walls are strongly localized near their initial positions, showing

excellent agreement with numerics. The bottom two rows show higher-energy initial

states outside of the two-domain-wall regime. The Néel (staggered) state along x

is initialized with domain walls at every position, while each site in the z-polarized
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state is initialized with, on average, one half of a domain wall. These high-energy

density states are not expected to show domain wall confinement. This is consistent

with the unrestricted correlation spreading shown in Fig. 4.4g and h.

Slow vs. Fast Thermalization. To observe the effect of confinement on the ther-

malization of local observables, we measure the relaxation of magnetizations for the

above initial states [149] (third row of Fig. 4.4). We see that, for the two-kink states,

local magnetizations retain long memories of their initial configuration and exhibit

slow relaxation (Fig. 4.4c, f) to their corresponding thermal values. Conversely,

for the high-energy initial state, local magnetizations quickly relax to their thermal

expectation values (Fig. 4.4i,). This is consistent with the observation that correla-

tions quickly distribute across the entire system (Fig. 4.4h). We emphasize that the

observed slow thermalization is a consequence of confinement, distinct from many-

body localization with quenched disorder [33, 150, 151]. Calculated microcanonical

thermal expectation values (Eq. 1.4) of individual magnetizations for the initial

states |↓↓↓↓↓↓↓↓↓↓↓〉x, |↓↓↓↓↑↑↓↓↓↓↓〉x, and |↓↓↓↓↓↓↓↓↓↓↓〉z are shown in Fig. 4.4c,

f, and i respectively. Additionally, Fig. 4.6 shows the experimental evolution of some

individual magnetizations overlayed with their microcanonical thermal expectation

values. The microcanonical thermal values of individual x-magnetizations 〈σxi 〉MC

of the confined states |↓↓↓↓↓↓↓↓↓↓↓〉x and |↓↓↓↓↑↑↓↓↓↓↓〉x are zero for all spins. The

microcanonical thermal values of individual z-magnetizations 〈σzi 〉MC for spins 1, 6,

and 11 evolving from state |↓↓↓↓↓↓↓↓↓↓↓〉z are {−0.049,−0.057,−0.049}.

We also compare local magnetizations to an appropriate canonical ensem-

ble (Eq. 1.7). Following the prescriptions outlined in Section 1.2.2, we find ef-
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FIG. 4.5: Domain wall localized at initial sites. Evolution of the average
number of domain walls 〈Nj(t)〉 (Eq. 4.9) for six N = 11 initial states, each fol-
lowing a quench of the confinement Hamiltonian (Eq. 4.2) with B/J0 ≈ 0.75. The
left column shows experimental data averaged over 2000 experiments and the right
column shows numerics calculated by solving the Schrödinger equation. Domain
wall pairs are prepared by flipping the initial polarization of a central domain of
spins. The Néel state is prepared by flipping the initial magnetization of spins at
even-numbered positions.

fective inverse temperatures (scaled by J0) of J0β = {0.666, 0.214, 0.233} for ini-

tial states |↓↓↓↓↓↓↓↓↓↓↓〉x, |↓↓↓↓↑↑↓↓↓↓↓〉x, and |↓↓↓↓↓↓↓↓↓↓↓〉z. Fig. 4.6 shows
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FIG. 4.6: Magnetization relaxation compared with thermal values. Evolu-
tion of individual magnetizations of spins 1, 6, and 11 overlayed with corresponding
thermal expectation values calculated from (a) a microcanonical ensemble and (b)

a canonical ensemble. Dashed lines indicate the thermal expectation value of each
spin, calculated from a thermal ensemble. Left: Initial state is polarized along
the x-axis of the Bloch sphere. Thermal expectation values are zero for all spins.
Center: Initial state is polarized along the x-axis of the Bloch sphere with center
domain of two spins. Thermal expectation values are zero for all spins. Right: Ini-
tial state is polarized along the z-axis of the Bloch sphere. Microcanonical thermal
expectation values for spins 1, 6, and 11 are {−0.049,−0.057,−0.049}. Canonical
thermal expectation values for spins 1, 6, and 11 are {−0.164,−0.154,−0.164}. All
data points are averaged over 400 experiments. Statistical error bars, ±1s.d., are
smaller than their plot markers and are not shown.

the experimental evolution of some individual magnetizations overlayed with their

canonical thermal expectation values. The canonical thermal values of individual x-
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magnetizations 〈σxi 〉T of the confined states |↓↓↓↓↓↓↓↓↓↓↓〉x and |↓↓↓↓↑↑↓↓↓↓↓〉x are

zero for all spins. The canonical thermal values of individual z-magnetizations 〈σzi 〉T

for spins 1, 6, and 11 evolving from state |↓↓↓↓↓↓↓↓↓↓↓〉z are {−0.164,−0.154,−0.164}.

Both thermal ensemble calculations yield consistent results for this system size

(L = 11). It is clear that the experimental magnetizations of the confined initial

states (Fig. 4.4c and f) remain distinct from their canonical and microcanonical

thermal values throughout the evolution. On the other hand, for the unconfined

initial state (Fig. 4.4i), each spin relaxes to or begins oscillating about its thermal

expectation value by J0t ∼ 1, after which the system is indistinguishable from either

thermal ensemble. From these observations, we claim that the two confined states

exhibit slow thermalization compared to the unconfined state’s fast thermalization.

Extracting Bound State Energies From Dynamics. In order to quantitatively

probe excitation energies of bound domain wall states, we prepare initial states

polarized along the x-direction and vary the number of spins separating the two

initial domain walls (insets of Fig. 4.7a-c). Then, we quench the system under the

Hamiltonian (4.7) and measure the time-evolution of local magnetizations along the

transverse direction, 〈σzi (t)〉. Let us quickly review how we expect an observable to

evolve under such a quench.

The state |ψ(t)〉 can be written as a superposition of post-quench eigenstates

|s〉 as such:

|ψ(t)〉 =
∑
s

cs |s〉 e−iEst (4.10)

where cs is the overlap of |s〉 with |ψ(t)〉. We expect an observable M(t) to evolve
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with frequencies proportional to the energy differences between the prepared state

and states |s〉:

〈M(t)〉 = 〈s′|cs′(eiEs′ t)M(e−iEst)cs|s〉 (4.11)

=
∑
s,s′

cnsc
∗
ns′e

−i(Es−E′
s) 〈s′|M |s〉 (4.12)

where Es is the energy of state |s〉. Therefore, 〈M(t)〉 exhibits oscillation frequencies

corresponding to multiple bound-state energy differences, ∆Es,s′ = Es − Es′ , with

different amplitudes depending on the initial state.

In the confinement regime, the prepared initial states predominantly overlaps

with low-energy eigenstates of the confinement Hamiltonian [139]. All local observ-

ables should exhibit oscillations with frequencies proportional to the energy gap

between these bound states before thermalizing (Eq. 4.12) [136, 139]. Here, we

choose to measure single-body spin observables, 〈σzi (t)〉, at the outer boundaries

of the initially-prepared domain walls. This corresponds to the center spin of the

chain (for 0 initial domain walls) or two spins at the outer boundaries of the initial

domain (for 2 initial domain walls). We make this particular choice in order to min-

imize edge effects from the finite spin chain as well as to maximize the amplitude of

frequency components between the prepared state and the adjacent higher-energy

bound state (Fig. 4.3a) by maximize the matrix elements 〈s′|M |s〉 corresponding

to that splitting. As a result, the magnetization dynamics should be dominated by

oscillations with a frequency corresponding to energy difference ∆Ei,i+1 between the

prepared state i and the next-highest two-kink domain wall bound state i+ 1.
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FIG. 4.7: Low-energy bound states. a-c show the magnetizations of the boxed
spins on the edges of the center domain at B/J0 ≈ 0.75. These magnetization oscilla-
tion frequencies correspond to the normalized energy gap, ∆Ei,i+1/J0. Solid colored
lines represent theoretical calculations of dynamics by solving the Schrödinger equa-
tion. The error bars, ±1s.d., are smaller than their plot markers and are not shown
in (a-c). (a) Zero initial domain size: ∆E0,1/J0 is given by the frequency of the 6th
spin. (b) Initial domain size of one: ∆E1,2/J0 is given by the frequency of the 5th
and 7th spins. (c) Initial domain size of two: ∆E2,3/J0 is given by the frequency of
the 4th and 7th spins. (d) ∆Ei,i+1/J0 for i ≤ 2 are measured with three different ini-
tial domain size spin configurations at B/J0 ≈ 0.75. The first three energy gaps are
extracted from the magnetization oscillation frequencies shown in the top row (see
Fig. C.1). (e) We construct the bound state energy levels at quasimomentum k ≈ 0

using experimental data in (d) where E0/J0 is set to zero. Inset: Theoretical bound
state energy bands with different quasimomentum, k, within the two-kink model.
(f) Scaling of ∆E0,1/J0 with system size at B/J0 ≈ 1. See Fig. C.2 for raw data.
The blue shaded region shows the two-kink model predictions of ∆E0,1/J0, with a
confidence band considering ±10 % fluctuations in the Ising interaction strength J0.

Following this prescription, we extract oscillation frequencies using single-

frequency sinusoidal fits of 〈σzi (t)〉 to obtain the energy gap between each initialized

state and the neighboring excited state (Fig. 3a-c). Ideally we would Fourier trans-

form the measured magnetization dynamics to resolve all of the energy differences.

Due to the limited coherence time of the system, however, we cannot evolve long
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enough to fully resolve the Fourier spectra, especially for ∆E2,3, to extract the

bound-state energy differences. For the initial states considered in this experiment,

magnetization oscillations are dominated by a single frequency difference, and so

single-frequency fits accurately extract the energy differences. See Fig. C.1 for a

comparison between these methods.

We compare these extracted energies to values predicted by numerical simula-

tion. We find excellent agreement between the measured energies and the energies

predicted numerically (Fig. 3D). Using these experimentally measured energy gaps,

we can systematically construct the low-energy excitation spectrum of the many-

body system for quasimomentum k ≈ 0 2. In general, quasiparticles with arbitrary

quasimomenta can be excited by a quantum quench. However, since the confining

potential is steep, excited quasiparticles remain localized and their quasimomenta

are close to zero. Furthermore, leveraging the scalability of trapped-ion systems,

we perform this experiment with up to 38 spins. This system size is too large for

us to conveniently model with exact numerics (without access to supercomputer

time, that is). In order to numerically investigate these large system sizes, we use

the phenomenological two-kink model [139] discussed earlier. With this model, by

restricting the full Hilbert space to a subspace of states containing only zero or

two domain walls, we calculate the bound quasiparticle spectrum of Hamiltonian

(Eq. 4.7) for system sizes that would be challenging to exactly simulate with classi-

cal resources (Fig. 4.7f). We find reasonable agreement in the first excitation energy
2The quasimomenta k of the domain wall quasiparticles generated in this experiment are ap-

proximately zero due to the very steep confining potential (Fig. 4.2). It is also clear from the inset
of Fig. 4.7e that, because the energy bands are quite flat, dispersion of the confined domain wall
pairs is low. Thus, we assume each ‘meson’ particle is pinned in place.
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gap, ∆E0,1, between the experimental data and numerical predictions for all system

sizes (Fig. 4.7f). We attribute the systematic discrepancy in larger systems to vari-

ations in J0 during the time evolution. These results, taken together, suggest that

quench dynamics are dominated by the confinement effect between two domain wall

quasiparticles.

Quenches Outside the Confinement Model. We now go beyond the confine-

ment regime to study the number of domain walls generated by the quantum quench

for a wide range of transverse B-field strengths. Although we still prepare an initial

state polarized along |↓〉x, for large B the strong quench can excite a large number

of domain walls which are no longer bounded. We thus expect that the out-of-

equilibrium dynamics are no longer captured by the 2-kink confinement picture for

these parameters. To explore this regime, we measure the cumulative time average

of the total number of domain walls,

〈N〉 =
1

t2 − t1

∫ t2

t1

L−1∑
i=1

〈1− σxi (t)σxi+1(t)〉
2

dt. (4.13)

This observable is the same as Eq. 4.9, summed over the chain, and integrated

between time t1 and t2 which encloses a window where 〈N (t)〉 converges to a stable

value. All data is integrated within the time interval J0t1 ≈ 0.34 and J0t2 ≈ 0.73 (see

Fig. C.4). We measure 〈N〉 as a function of B for different system sizes (Fig. 4.8a-e).

We observe that, for small B fields, Ising interactions dominate the dynamics and

the global quench can only excite a small number of domain walls. However, for

a large enough transverse field, the number of generated domain walls saturates to
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a value that scales nearly linearly with system size (Fig. 4.8f). Here, we observe

a transition between these two dynamical regimes at intermediate values of B for

different system sizes. This behavior is analogous to the confinement-deconfinement

crossover conjectured in QCD, in which increasing energy density (controlled by

B in this experiment) causes hadronic matter to form a quark-gluon plasma or

other exotic phase [129]. In both models, beyond a critical energy density, weaker

interactions allow particles to freely move with negligible energy penalty.

We observe good agreement between experiment and numerical predictions for

small and intermediate system sizes. Theoretical lines for system sizes L = 31 and

L = 38 are absent because we could not compute the evolution numerically for the

experimental parameters. One notable difference between experimental data and

the expected result is the nonzero number of domain walls at B/J0 = 0. Here the

x-polarized initial state is an eigenstate of the Hamiltonian and should not evolve.

Thus, we would expect the late-time domain wall number to remain at 〈N〉 = 0,

as shown by the theory curves in Fig. 4.8. We attribute this discrepancy primarily

to bit-flip errors in the form of state preparation errors, state detection infidelity

(Section 2.2), and residual spin-motion entanglement at the end of the evolution

(Section 2.3). While these errors affect the magnetization observables by reducing

oscillation contrast during an evolution, bit-flip errors are particularly impactful on

the domain wall observable since a single erroneously-flipped spin directly introduces

two domain walls to the chain. These errors are independent and therefore their

infidelities add in quadrature. By including bit-flip errors in a numerical simulation

of the domain wall evolution for L = 11, we find that an error of about 2.5%

119



a

0

2

4 b

4

6 c

d

e

f

R
e

fe
re

n
ce

 I
m

a
g

e

g

N
u

m
b

e
r 

o
f 
d

o
m

a
in

 w
a

lls
〈
N
〉

Transverse magnetic field strength B/J0 

0

1

2

3

0 2 4 6 8 10 12

8

12

0

4

0

2

8

4

0

11 spins

16 spins

21 spins

31 spins

38 spins

System size L
10 15 20 25 30 35

0.6

0.4

0.2

0.0

B
/J

0
 =

 1
.1

6

B
/J

0
  
=

 4
.6

0

B
/J

0
  
=

 1
0

.0

Numerics
Experiment

〈n〉T
〈n〉B≫J0
〈n〉B≈J0

〈n
〉

FIG. 4.8: Domain wall population in two dynamical regimes. (a-c)

Crossover between dynamical regimes in different system sizes. Circular dots in-
dicate experimental data. Horizontal lines show theoretical predictions of 〈N〉 =
0.25(N − 1) at B � J0. Colored solid lines represent exact numerical predictions
from solving the Schrödinger equation. Vertical dashed lines indicate the experi-
mental maxima of 〈N〉. (f) Dashed purple line shows the predicted domain wall
density at B � J0 of 〈n〉B�J0

= 0.25. The purple dots indicate experimental data
at B ≈ 10J0. The dashed red line at 〈n〉T = 0.5 shows the predicted density of
domain walls at infinite temperature. (g) Reconstructed images based on binary
detection of spin states. The leftmost image is a reference image of a 38 ion chain in
a ‘bright’ state (|↑〉x). At the beginning of the experiment, the spins are initialized
in the ‘dark’ state (|↓〉x). The three right images show experimental data of a com-
bination of ‘bright’ and ‘dark’ states, marked in blue and white circles respectively,
for three different B/J0 values within the integrated time window. The occurrences
of domain walls are highlighted with orange horizontal dashed lines. The error bars
are ±1 s.d.

120



reproduces the experimental behavior (see Fig. C.5). This error rate is consistent

with our estimates of bit-flip errors in the trapped-ion system.

To illustrate the population of domain walls in different regimes, we show typi-

cal single-shot images of the quenched state of 38 ions for different transverse B-fields

in Fig. 4.8g. We indeed see that a small (large) number of domain walls is generated

by the quench with small (large) B field. Although we are unable to compute the

dynamics for system size L = 31 and beyond with general-purpose computers, we

can intuitively understand the distinguishing behaviors with the following argument.

Let us write the vector orientation of the ith spin’s magnetization in the Bloch

sphere using polar coordinates θ and φ: |ψi(t)〉 = cos θ(t)/2 |0〉+eiφ sin θ(t)/2 |1〉. At

high transverse B-field, global, synchronized Larmor precession about the transverse

direction dominates dynamics driven by the Ising interaction term in (4.7). The ex-

pectation value of the nearest-neighbor two-body correlator along x is 〈σxi (t)σxi+1(t)〉 =

1− sin2(θ(t)). Inserting 〈σxi (t)σxi+1(t)〉 into Eq. (4.13) gives

〈N〉 =
1

t2 − t1

∫ t2

t1

N−1∑
i

sin2(θ(t))

2
dt. (4.14)

Summing over N−1 domain-wall sites reveals that 〈N〉 = 0.25(N−1) when B � J0.

Thus, when we increase B to values significantly larger than J0, all spins

undergo Larmor precession around the z-axis of the Bloch sphere, which allows

us to predict that 〈N〉 saturates to 0.25(N − 1) when B → ∞ [152]. We note

that, for B � J0, the experiment operates in the prethermal region in which a

transient Hamiltonian is approximately conserved for an exponentially long time
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[113, 153, 154, 155]. Therefore, we expect the number of domain walls to approach

the canonical infinite-temperature thermal value, 〈n〉T = 0.5, only after an expo-

nentially long time, beyond the reach of this experiment’s coherence time.

In summary, we have presented a real-time observation of domain wall confine-

ment caused by long-range interactions in trapped-ion spin systems. By measuring

oscillating magnetizations, we were able to construct the spectrum of low-energy

domain wall bound states. We find that the presence of these bound states substan-

tially alters correlation spreading and thermalizing properties of the non-integrable

transverse-field Ising Hamiltonian. Furthermore, we observed a transition between

distinct dynamical behaviors using the number of domain walls generated by the

global quench. This work demonstrates that confinement, naturally induced by

long-range interactions, may provide a novel mechanism for protecting quantum in-

formation without engineering disorder. Such a feature may be applied in future

studies to use long-range interactions to stabilize non-equilibrium phases of matter.

All together, this work establishes the utility of trapped-ion quantum simulators for

precisely studying real-time dynamics of many-body systems, potentially extending

to exotic phenomena such as quark collision and string breaking [142].
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5 | Stark many-body localization

This chapter was adapted from ‘Observation of Stark many-body localization with-

out disorder’ [4].

5.1 Motivation: conventional MBL vs. Stark MBL

Many-body localization, a phenomenon where an interacting many-body sys-

tem fails to thermalize, was first formulated as a generalization of the non-interacting

Anderson localization phase [156, 157, 158, 159]. The idea of localization was de-

veloped by Philip Anderson to explain why electron transport halts in a conducting

material containing many defects/imperfections. In this case, an electron’s spatial

wavefunction along different paths interfere with itself and annihilate, leaving the

wavefunction nonzero near a single point. An analogous phenomenon occurs in a

disordered many-body system. With disorder, quantum particles can experience

destructive interference through multiple scattering paths, resulting in exponen-

tially localized wavepackets. In recent years, intense study into MBL has revealed

a framework that largely matches numerical and experimental evidence [160, 161].

In this description, the MBL regime has extensively many local, conserved quan-

tities that fulfill similar roles as the particle occupancies in Anderson localization.
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However, interactions result in additional slow spreading of correlations via entangle-

ment. Strikingly, MBL creates a phase of matter that is non-ergodic, despite system

Hamiltonians that appear complicated enough for thermalization. For a continuous

range of system parameters, many-body localization preserves local features of the

initial state for all times, preventing thermalization [162].

In considering MBL, it is natural to ask whether random disorder is a require-

ment. A partial answer has long been known: MBL is possible with quasiperiodic

potentials, e.g. multiple sinusoidal potentials with frequencies that do not divide

into one-another [163]. However, the question of whether an MBL phase might

exist which preserves translational symmetry, for instance in a system with gauge

invariance [125] or multiple particle species [164, 165], has continued to generate

extensive discussion [166]. Recently, this problem has been approached from a

different starting point: the Bloch oscillations and Wannier-Stark localization of

non-interacting particles in a uniformly tilted lattice [167]. From this, it has been

predicted that interacting systems with a strong linear tilt can also display MBL-like

behavior [168, 169]. Here local conserved quantities find themselves exponentially

localized with the degree of localization depending on the tilted potential’s slope.

This effect, sometimes called Stark MBL, has attracted considerable theoretical and

experimental interest [170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180]. Among

other difficulties, clear experimental realization of Stark MBL has been complicated

by exact degeneracies between states that occur in systems with short-range in-

teractions [168, 169, 179]. These degeneracies allow local degrees of freedom to

move throughout a system, breaking localization. The natural long-range spin-spin
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couplings in trapped-ion quantum simulators overcome this complication.

5.2 Experimental realization of disorderless Stark MBL

Investigation of many-body localization has been driven in part by the de-

velopment of isolated quantum simulator platforms with site-resolved control and

detection [181, 182, 183, 184]. Our experimental apparatus (Fig. 5.1a) exemplifies

these capabilities. The experimental Hamiltonian has two ingredients. The first is

an overall spin-spin interaction, mediated by global laser beams coupling spin and

motion using the Mølmer-Sørensen scheme (Section 2.3). The second, a tightly-

focused beam creating a programmable effective Bz magnetic field at each ion using

the AC Stark effect (Section 2.3.3). A key feature of this platform is its high de-

gree of controllability. In addition to turning on or off either Hamiltonian term, we

use the tightly-focused beam to initialize spins in any desired product state, and

we measure arbitrary local observables with state-dependent fluorescence collected

onto a charge-coupled device (CCD) camera.

Combining the global spin-spin couplings with a programmable local field set

to a linear gradient results in the tilted long-range Ising Hamiltonian (~ = 1):

H =
∑
i<j

Ji,jσ
x
i σ

x
j +

N∑
j=1

(Bz0 + (j − 1)g)σzj . (5.1)

Here we have the long-range spin-spin couplings Ji,j, approximately following a

power-law: Ji,j ≈ J0/|i − j|α, with J0 the nearest-neighbor coupling and α = 1.3.

Bz0 is an overall bias field, and g the gradient strength, with {J0, Bz0, g} > 0.
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FIG. 5.1: Stark MBL experimental setup. a, Global lasers mediate a long-
range spin-spin coupling (red), parameterized by the nearest-neighbor rate J0, be-
tween trapped-ion spins. A tightly-focused beam (Section 2.3.3) provides a site-
resolved effective Bz magnetic field (blue) that is used to engineer a field gradi-
ent with slope g (shown for N = 7). b, The level statistics measure 〈r〉 for the
N = 15 experimental Hamiltonian shows a progression from statistics near the
Wigner-Dyson limit (〈r〉WD, red dotted line) at low g/J0, characteristic of a generic
ergodic, thermalizing system, to Poisson statistics (〈r〉P , blue dotted line) at high
g/J0, characteristic of a localized, non-thermalizing system. c, We probe the system
using a quench from a non-equilibrium initial state, such as the Néel state shown
here. At low g/J0, an initial spin pattern will quickly relax to a uniform average mag-
netization, while at high g/J0 the initial pattern persists. The former is consistent
with a thermal state, in which uniformity is combined with entanglement reaching
across the entire chain, while the latter is consistent with many-body localization,
in which the magnetization remains non-uniform and entanglement spreads slowly.

In practice, we apply the terms in this Hamiltonian sequentially in time, using a

Trotterization scheme that reduces decoherence while still resulting in evolution
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closely following the Hamiltonian in Eq. 5.1 (see Appendix D and Fig. D.1). The

bias field Bz0 is set to be large (Bz0/J0 > 5), so that the total magnetization
∑

i 〈σzi 〉

is approximately conserved. With this constraint, and neglecting edge effects, Ji,j =

J|i−j| and this Hamiltonian is translationally invariant: the operation j → j + n

for integer n is equivalent to a shift in Bz0, which has no effect in the bulk. For

an initial state of definite total magnetization, this model can then be mapped to

a chain of hard-core bosons with long-range hopping in a tilted lattice, indicating

that it has similar ingredients to models previously shown to realize Stark MBL

[168, 169]. This system has also been used previously to study MBL in a disordered

field [181].

A useful numeric diagnostic of whether a model exhibits an MBL regime can

be found in the level statistics, which feature similar behavior in regular MBL [37]

and Stark MBL [168, 169]. In Section 1.2.2 we discussed how a generic thermalizing

ergodic system has level statistics following the Wigner-Dyson distribution, while

an integrable or non-thermalizing MBL system has a Poissonian level statistics [37].

By calculating the level statistics measure 〈r〉, we can identify the range of g/J0

values that induces Stark MBL.

Diagonalizing the Hamiltonian (Eq. 5.1) for N = 15, we find that 〈r〉 varies

from 0.50 to 0.39 as the gradient g/J0 is increased, indicating that the system is

transitions from generally thermalizing to localized as the gradient strength increases

(Fig. 5.1b). While Fig. 5.1b shows the exact experimental Hamiltonian, including

deviations from uniform couplings near the edges of the chain, this behavior persists

for the ideal power-law Hamiltonian (see Fig. D.2).
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5.2.1 Non-thermalization from Stark MBL

To measure the degree of localization in this system, we apply a quench shown

schematically in Fig. 5.1c. We first prepare an anti-ferromagnetic Néel state. This

state is highly excited with respect to the quenched Hamiltonian Eq. 5.1. The high

initial energy of this state means that the system, should it thermalize, will relax to

a high-temperature equililibrium with nearly homogeneous local observables (recall

Eqs. 1.6 and 1.7). In this case, the final state would have no memory of the original

up-down spin configuration. Conversely, should the system exhibit localization, the

final state will break ergodicity by retaining memory of the initial spin configuration.

Performing the quench experiment, we see the expected signature of localiza-

tion: a low gradient results in quick equilibration towards uniform magnetizations as

the system thermalizes (Fig. 5.2a), while under a strong gradient all magnetizations

remain near their initial values throughout the experimental timeframe (Fig. 5.2b).

The experimental data follow closely exact numerics for the system evolution.

It is useful to define an order parameter that encodes the amount of initial

state memory retained in a state. Such a measurement can help us objectively

compare the localization of various states. We choose a generalized imbalance, I(t),

which reflects the preservation of the local magnetizations of the initial state. This

observable is similar to other previously used measures of initial state memory,

such as the imbalance [150] or the Hamming distance [181], but is advantageous

for comparing different initial states. For an initial state with M spins up and

N − M spins down, I is equal to the subsequent difference between the average
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FIG. 5.2: Non-thermalization from Stark MBL. a, Ion-resolved dynamics for
an initial Néel state (N = 15) at g/J0 = 0.24, and b, at g/J0 = 2.4, corresponding to
the red and blue points on Fig. 5.1b. The top row shows experimental data averaged
over 200 repetitions and the bottom row shows numerics including modeled noise. c,
Memory of the initial state, here a Néel state (N = 15), quantified by the generalized
imbalance I (Eq.5.2). For an ideal Néel state, I = 2, and for complete relaxation to
a uniform state, I = 0. Light to dark colors indicate the imbalance under lower to
higher values of g/J0 = at {0.24, 1.2, 1.8}, with statistical error bars smaller than
the symbol size. Solid lines are exact numerics using the experimental Hamiltonian.
d, Late-time imbalance Ī for various initial states, shown at top. Data point colors
correspond to different states. e, Dependence of Ī on system size, using an initial
Néel state with N = 15 (a subset of the data in panel d) and N = 25. The overall
increase of late-time imbalance with gradient is robust to the system size increase.
The pronounced dip in I near g/J0 = 1.0 may be partly due to a finite-time feature
that appears near this value (see Extended Data Fig. D.3). Error bars throughout
represent statistical uncertainty of the mean value (±1 s.d.).
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magnetizations of the two groups:

I(t) =

∑M
i 〈σzi (t)〉
M

−
∑N−M

j 〈σzj (t)〉
N −M

(5.2)

where the sums are respectively over the spins initially up and initially down. In

general, |I(t)| reaches a maximum value of 2 for perfect memory of an initial state

with up and down spins, and is zero for a uniform state as at thermal equilibrium.

The imbalance shows a clear trend as we increase the gradient (Fig. 5.2c). At

lower gradient strengths, I quickly relaxes to a decaying oscillation centered about

zero, indicating quick thermalization. However, as the gradient is increased, the

imbalance instead settles to a progressively higher value away from the expected

high-temperature thermal value. Compared to exact numerics, decoherence causes

a slow decay of I over time, which is attributed primarily to residual coupling to ion-

chain motion from the Mølmer-Sørensen beams. However, the separation between

this decoherence time and the fast relaxation dynamics allows us to characterize the

late-time imbalance.

To study initial-state memory for different gradients, we average I(t) over

a time window tJ0 from 5 to 7. This window is chosen to be late enough that

transient oscillations have largely decayed, while early enough that decoherence is

limited. This late-time imbalance, Ī, captures the amount of initial-state memory

after fast relaxation has subsided, and thus the approximate degree of localization

(Fig. 5.2d). Ī is consistent with zero at the lowest gradient: averaging over the

initial states shown in Fig. 5.2d we have Ī = 0.017 ± 0.027, with the standard de-
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viation as the uncertainty. With a larger gradient, Ī becomes clearly distinct from

zero and progressively increases, reflecting an increasing memory of the initial state.

Crucially, this memory does not show strong dependence on the specific initial state

chosen: for states with different numbers of initial spin flips and different symmetry

properties, similar behavior is observed. The initial state insensitivity observed here

is consistent with many-body localization, which can have some energy dependence

in the presence of a mobility edge [172], but is a robust mechanism for breaking

ergodicity that can span the entire spectrum. This insensitivity distinguishes our

observations from other effects that cause thermalization to have a strong depen-

dence on the initial state, such as quantum many-body scars [106] and the domain

wall confinement discussed in Chapter 4.3.

A key further test of the stability of Stark MBL is to characterize the depen-

dence of the observed behavior on increasing system size. This is especially relevant

to localization in systems with long-range terms, where finite-size effects may be

particularly important [181, 185]. Increasing the spin chain length to N = 25, we

see a rise in the imbalance at low g/J0 that is similar to the N = 15 case (Fig. 5.2e).

While we are unable to reach the deeply localized regime for N = 25, due to the scal-

ing of the experimentally achievable maximum gradient with N (see Appendix D),

the small nonzero value of I that we observe indicates the persistence of a Stark

MBL regime.
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FIG. 5.3: DEER Protocol. a, In the spin-echo procedure (dark green operations),
a single probe spin undergoes a spin-echo sequence, while the rest of the spins
experience normal evolution under H for total time t. In the DEER procedure (dark
and light green operations) there are additional perturbing π/2 pulses on a region,
here fixed at a size of three spins, that is R spins away (here R = 2). The difference
in the probe magnetization following these procedures reflects the ability of the
DEER region to influence the dynamics at the probe spin. We study this protocol
using an initial Néel state (N = 15). b, At intermediate times, before the spin-echo
signal approaches zero due to decoherence, a difference develops between the spin-
echo (dark green) and DEER (light green) signals. We quantify this by taking the
average difference (DEER-spin echo) between tJ0 = 2 and 4 (shaded region) after
imbalance dynamics have stabilized. These data are for R = 1 and g/J0 = 0.71

, and are averaged over 2000 repetitions. c, As R is increased (at g/J0 = 0.71),
the difference signal drops to zero, reflecting the incomplete spread of correlations
through the system at finite time. d, As g is increased (at R = 2), the difference
signal also decreases with increasing gradient, consistent with the expectation that
within the Stark MBL phase, increasing localization leads to progressively slower
development of correlations. Points in c. and d. are the experimental data, and
solid lines are exact numerics incorporating experimental noise.

132



5.2.2 Revealing the correlated Stark MBL state

Probes of the local magnetization, as in Fig. 5.2, can identify whether or not a

system thermalizes over experimental timeframes. However, they do not reveal the

non-local correlations that distinguish a localized phase from a trivial equilibrium

phase. The structure of the regular MBL phase is understood as being defined

by emergent local conserved quantities [160, 161]. These conservation laws result

in localization, but the localized regions still have interactions with one another,

resulting in slow spreading of correlations via entanglement after a quench from

a product state (typically logarithmic spreading in time, but potentially faster for

long-range systems [186, 187]). While the existence of similar conserved quantities

in Stark MBL is debated [175, 176], there are indications that it can display similar

entanglement dynamics [169, 170].

Some observables have been established to directly probe this correlation

spreading, such as quantum Fisher information [181, 180] or techniques to mea-

sure subsystem entanglement entropy [183, 184]. Here we instead adopt a local

interferometric scheme, the double electron-electron resonance (DEER) protocol, to

reveal the spread of correlations controlled by the structure of the localized state

[170, 182, 188]. This protocol, shown in Fig. 5.3a, compares two experimental se-

quences: one that is a standard spin-echo sequence on a probe spin within a system

of interest, and one that combines this with a set of π/2-pulse perturbations on a

separate subregion, the ‘DEER region’. The spin-echo sequence cancels out static

influences on the probe spin, either from global external fields or from fixed con-
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figurations of the surrounding spins. If this cancellation is perfect, the probe spin

will return to its initial magnetization. The DEER sequence, by contrast, removes

this cancellation for the DEER spins acting on the probe spin. As a result, a dif-

ference in the return to the initial probe magnetization between the two sequences

reflects correlations between the probe and DEER region generated by the dynam-

ics. At sufficiently long times, a difference between these signals will develop in an

MBL phase, but not in a non-interacting localized phase. In addition, this differ-

ential measurement setup naturally makes the signal robust against common-mode

non-idealities, including experimental noise.

In Fig. 5.3b-d, we demonstrate the DEER protocol and show its use in charac-

terizing the Stark MBL regime. As time evolves, a difference accumulates between

the probe magnetization in the two procedures, reflecting the spread of correlations

(Fig. 5.3b). These correlations continue to move through the system after imbalance

dynamics have stabilized, indicating that they are not solely due to the transient

imbalance evolution. Picking a time range after these transient dynamics, tJ0 =2

to 4, we characterize the structure of these spreading correlations by taking the

average difference between the signals over this time, ∆〈σz1〉. This time window is

slightly earlier than the window used for the steady-state imbalance, as the DEER

signal is more sensitive to fluctuations in the local effective Bz fields, which are the

dominant source of experimental noise in this experiment. Varying the DEER spin

distance, R, we see that this difference signal drops as the DEER spins move progres-

sively farther from the probe, reflecting the local nature of correlation propagation

(Fig. 5.3c). Similarly, by sitting at a fixed separation and increasing the gradient,
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we observe the reduction of the difference signal at a given time, confirming that

the correlation spread is controlled by the degree of localization (Fig. 5.3d). The

dependences of the difference signal on both R and g/J0 track exact numerics, with

an overall scaling difference due to decoherence reducing the experimental signal.

Taken together, these probes identify the Stark MBL regime as one in which cor-

relations spread slowly through the system despite persisting memory of the initial

state. These correlations capture the role that interactions play in Stark many-body

localization, distinguishing it from non-interacting localization.

5.2.3 Disorder-free MBL beyond a linear field

If many-body localized effects are possible in the simple setting of a linearly

increasing field, might they also appear in a more general class of smoothly varying

fields? Utilizing the high degree of tunability of this simulator, we investigate a

natural generalization: a quadratic, rather than linear, potential. We parameterize

the Hamiltonian as:

H =
∑
i<j

Jijσ
x
i σ

x
j +

N∑
j=1

(
Bz0 +

γJ0(j − N+1
2

)2

N − 1

)
σzj . (5.3)

Eq. 5.3 describes a quadratic effective Bz field with a minimum in the center of the

system and a maximum slope of ±γ at the ends of the chain. Similar models have

been predicted to feature a persistent spatial separation into an ergodic core near

the center and many-body localized edges [173].

We summarize the results in Fig. 5.4. Taking an initial Néel state (N = 15),
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FIG. 5.4: Relaxation in a quadratic field. a, We reconfigure the site-resolved
field from a linear gradient to a quadratic, characterized by the maximum slope γ.
For clarity, we show N = 7. b, Dynamics are split into a thermalizing region near
the center of the system and localized regions near the edges, with the approximate
boundaries indicated by the dashed lines. As the maximum gradient is increased,
the fraction of the system in the thermalizing regime shrinks. c, Ion-resolved traces
of the dynamics for max g/J0 = 1.8, showing separation of the spins into localizing
regions (bright hues with round points) and thermalizing regions (faded hues with
square points). Colors reflect the local field strength at each ion. Data are averaged
over 200 repetitions. Statistical error bars are ±1 s.d.

we observe a separation of the spins into thermalizing and localized regions, which

appear to evolve largely independently. We determine an approximate dividing line

between these regions by the innermost spins that are clearly distinct from the

thermalizing region. For a range of slowly-varying gradients γ < 3.6, this occurs at

a local slope of approximately g/J0 ≈ 0.5, comparable to observations in Fig. 5.2.

The quadratic field is also an intriguing venue to explore the stability of
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disorder-free many-body localization in proximity to an thermalizing region. In reg-

ular MBL, it is believed that a thermal inclusion can induce many-body avalanches

that destabilize the MBL region over long times [189, 190]. The extension of this

effect to disorder-free MBL, which does not feature any resonances between sites,

is unclear, although there are some indications that it may be more resilient than

regular MBL in general [174]. The observation of a localized region in a quadratic

field is also directly relevant to longstanding questions about the state of correlated

ultracold atoms in an optical lattice with harmonic confinement [191].

5.2.4 Discussion

We have seen the signatures of many-body localization in a system without

disorder, suggesting that the concept of MBL may be relevant in settings well be-

yond the original considerations [158, 159]. For all types of MBL, questions about

the conditions for asymptotic stability of localization remain, particularly in systems

with long-range terms or more than one dimension [189, 192, 168]. To this end, fu-

ture experimental and theoretical work could study the dependence on the coupling

range α. This plays a key role in the stability of disordered MBL, by determining

whether rare resonant regions can cause delocalization [187], while a disorder-free

system is expected to avoid this source of relaxation [174]. A natural step in this

direction would be to characterize the low-gradient regime of incomplete localization

in more detail, whose hydrodynamic behavior could be examined in a larger system

[193].
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Beyond these conceptual questions, from the perspective of near-term quantum

devices, our results suggest that Stark MBL retains key aspects of the disordered

MBL phase while offering certain advantages, such as not requiring a fine-grained

field and being free of rare-region effects or the need for disorder averaging of ob-

servables. We summarize some aspects of the comparison in Table 5.1. Stark MBL

may be a useful resource for such devices, serving as a tool to stabilize driven non-

equilibrium phases [171, 194], or as a means of making a quantum memory [33] with

each site spectroscopically resolved.

Disordered
MBL

Stark MBL

Ergodicity breaking Yes [162] Yes [168, 169]
Ergodic for weak potential Yes [162] May be non-

generic or
non-ergodic
[175, 193]

Slow entanglement growth Yes [162] Yes [169]
Max. potential O(J0) O(NJ0)
Requires site-resolved field Yes No
Rare-region effects Yes [189, 192] No [168]

Table 5.1: Comparison of disordered MBL and Stark MBL requirements,

focusing on applications with near-term quantum devices. Quasi-periodic MBL
occupies an intermediate position from this perspective, with some of the advantages
of both disordered and disorder-free localization.
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6 | Future directions: increased controls in quantum simula-

tors

The “next generation” of quantum simulators will include additional degrees

of control over a systems scalable beyond 50 qubits. Experiments like the trapped-

ion simulator described in this thesis, which features some individual addressing

capabilities and is capable of simulating more than 50 spins, will continue to provide

useful insight for quantum information, condensed matter, high-energy physics, and

gauge theory problems [11, 39, 119, 120]. However, these systems are still severely

limited to simulating certain classes of problems. Additional degrees of control

could make it possible for quantum simulators to study topological materials, solve

spin-glass Hamiltonians (which can encode any NP-Complete problem within an

arbitrary interaction graph [20]), and probe entanglement in systems (which might

be useful for learning about error-correction).

In this section I will go over a project I worked on during the spring of 2020

while the labs at UMD were closed due to the COVID-19 pandemic. My goal was

to determine the feasibility of using the individual addressing beam in conjunction

with a global 435.5 nm laser to programmaticaly detect the state of an arbitrary

subset of ion qubits (or a single qubit) during an evolution without altering the state
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of the rest of the chain. It turns out this is a rather difficult task for an experiment

without ion shuttling [195] or dual-species [196, 197] capabilities. Regardless, this

“qubit hiding” scheme appears feasible for modest system sizes. Unfortunately we

found that inherent atomic physics errors scale very poorly with system size and

detection duration.

6.1 Individual detection

We are interested in engineering a scheme to detect an arbitrary subset of ions

without disturbing the states of other ions in the chain. Furthermore, we would like

to continue evolving the system after this partial detection operation with detected

qubits restarted in their projectively-measured states. Among other applications,

this operation would be useful for observing measurement-induced phase transitions

- phenomena where the amount of entanglement generated in a system following

a quench sharply changes with the rate of local measurements made during the

evolution. Such an experiment requires random individual projective measurements

made throughout some entangling operation [198, 199, 200].

The development of this scheme presents a handful of challenges. First, in or-

der to extract the state from these measurements, many thousands of photons must

be scattered to provide sufficient statistics for state discrimination due to photon

collection efficiencies of <1% [78, 201, 202]. Even with a hypothetical individual

detection beam incident on a single ion, it is very likely that a scattered photon

will be absorbed by a neighboring ion. This would project that ion’s state without
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providing enough statistics for its state to accurately measured1. A separate issue is

that ions projected to the bright state |↑〉z will occupy all three |2S1/2, F = 1,mF 〉

states by the end of the detection operation. In order for these ions to participate

in the subsequent evolution, one must move population from these S-level Zeeman

states back to the bright qubit state. Lastly, one will likely perform this operation

multiple times on different sets of ions throughout a single experiment, so any errors

in the process will build up quickly. Without the ability to shuttle ions in our 3-layer

blade trap, a new solution is needed to satisfy all constrains.

6.1.1 The D3/2-level “qubit hiding” scheme

435 nm

Poke Beam

935 nm

Detection

Time

Hide Qubits Detection

No 3.0695 GHz Sideband

Un-Hide Qubits
Modified 
Optical 

Pumping

All Polarizations Only σ+ and σ-

FIG. 6.1: Qubit hiding scheme. Laser pulse diagram for the individual detec-
tion/hiding scheme. The 435.5 nm, 935 nm, and 369.5 nm detection beams are all
global. The tightly-focused poke beam is applied to certain ions at a time. Note
that the 3.0695 GHz sideband must be turned off during detection and modified
optical pumping, otherwise hidden population will be resonantly pumped back to
the S-qubit manifold. After the scheme, all ions should return back to the qubit
manifold (baring unintended dissipation events).

1Only one of the thousands of photons has to hit the neighboring ion to project its state.
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An option is to use a global 435.5 nm laser to transfer population in |↑〉z ≡

|2S1/2, F = 1,mF = 0〉 to a metastable state |2D3/2, F = 2,mF = ±2〉. The complete

individual detection scheme is as follows:

1. Hide qubits. Apply an individual addressing beam (poke beam) to ions

that must be detected. This will Stark shift the ions from resonance with the

narrow 435.5 nm transition. While those ions are Stark shifted, apply the 435.5

nm laser, resonant with |2S1/2, F = 1,mF = 0〉 ↔ |2D3/2, F = 2,mF = ±2〉, to

transfer population either by Rabi flopping or rapid adiabatic passage.

2. Detect qubits. Turn off the 435.5 nm beam and poke beam, then detect

the ions remaining in the qubit-manifold by turning on regular detection

light (369.5 nm laser resonant with |2S1/2, F = 1,mF = 0〉 ↔ |2P1/2, F = 0〉)

and the repump carrier tone (935 nm laser resonant with |2D3/2, F = 1〉 ↔

|3[3/2]1/2, F = 0〉). Collect enough photons for sufficient statistics, but be

wary of spontaneous decay from the D-state (Fig. 6.3).

3. Modified optical pumping. After collecting enough photons to discriminate

the detected qubits, apply a modified optical pumping laser (see below) to

pump all bright-projected qubits into the |↑〉z state.

4. Un-hide qubits. Repeat the first step: apply the poke beam to measured

qubits, apply the 435.5 nm laser to transfer D-level population back to |↑〉z,

and then turn both lasers off. All qubits should be back in the main qubit

manifold now.
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See Fig. 6.1 for a laser timing cartoon of this scheme.

6.1.2 Quadrupole transitions and other details

Quadrupole transition. The 2D3/2 level has a remarkably long lifetime because

the S ↔ D transition is dipole-forbidden. To drive this transition, a laser’s electric

field gradient must couple to the atom’s electric-quadrupole moment [203]. These

quadrupole transitions are weaker than dipole transitions by a factor of ka0, the

resonant laser wavevector times the Bohr radius, which is about equal to the fine-

structure constant α ≈ 1/137. The interaction Hamiltonian of this process is

H = −Q̂∇E(t) (6.1)

for electric-quadrupole moment Q̂. Let us write the resonant single-photon Rabi

frequency between 2S1/2 and 2D3/2 levels as

ΩQ =

∣∣∣∣eE0

4~
〈

2S1/2, F,mF

∣∣ (ε · r)(k · r)
∣∣ 2D3/2, F

′,m′F
〉∣∣∣∣ . (6.2)

Here E0 is the electric field amplitude, ε is the polarization vector, r is the vector

position of the valence electron w.r.t. the nucleus, and k is the resonant laser

wavevector: k = (ωL/c)n. Quantum numbers of the excited state are primed (e.g.

m′F ).

From Wigner-Eckhart (and from D.F.V. James in Ref. [89]), the Rabi fre-
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quency can be rewritten with reduced matrix elements

ΩQ = C̃

∣∣∣∣eE0ωL
4~c

〈
2S1/2, F,mF

∥∥∥ r2T(2)
∥∥∥ 2D3/2, F

′,m′F

〉∣∣∣∣ (6.3)

where T(2) is the 2nd-rank spherical tensor. Selection rules and polarization de-

pendencies are encoded in the “Super Clebsch-Gordan” coefficient C̃, here defined

as

C̃ ≡ |Cg(q)| =

∣∣∣∣∣∣∣∣
√

(2J ′ + 1)(2F ′ + 1)(2F + 1)


J J ′ 2

F ′ F I


q∑

q=−2

 F 2 F ′

mF q −m′F

 g(q)

∣∣∣∣∣∣∣∣ .
(6.4)

I define C as the familiar Clebsch-Gordan coefficient. See Table 6.1 for relevant

values of C . The term in round brackets is a Wigner 3-j symbol (for adding two

angular momenta) and the term in curly brackets is a 6-j symbol (for adding three

angular momenta), both with k = 2 for the 2nd-order transition. I is the nuclear

spin (I = 1/2 for 171Yb+). The sum is over possible values of q = ∆mF , which are

allowed to be 0,±1, or ± 2 in a quadrupole transition depending on geometry. All

geometric dependencies (polarization, quantization axis, wavevector) are contained

in the g(q) geometric coupling factor

g(q) = c
(q)
i,j εinj. (6.5)

Elements of the 2nd-rank tensor c(q)
i,j are given in Refs. [89] and [204]. εi and nj are

Cartesian components of ε and n. The values of g(q) are evaluated by C. Roos in

[205]. With the laser wavevector at an angle φ to the quantization axis B-field and
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2S1/2
2D3/2 C

F mF F ′ m′
F

0 0

1
−1 0
0 0

+1 0

2

−2 +2/5
−1 −2/5
0 +2/5

+1 −2/5
+2 +2/5

1

-1

1
−1 +1/10
0 −3/10

+1 +3/5

2
−2 −1/5
−1 +3/10
0 −3/10

+1 +1/5

0

1
−1 −3/10
0 +2/5

+1 −3/10

2

−2 +2/5
−1 −1/10
0 0

+1 +1/10
+2 −2/5

+1

1
−1 +3/5
0 −3/10

+1 +1/10

2
−1 −1/5
0 +3/10

+1 −3/10
+2 +1/5

Table 6.1: Clebsch-Gordan coefficients (C in Eq. 6.4) for the 2S1/2 ↔2 D3/2 transi-
tion. Values do not include geometry factors g(q). Must include a square-root over
every value (e.g. −3/10→ −

√
3/10).

the laser polarization at an angle γ to the B-field, the possible geometric factors g(q)

are

g(0) =
1

2
|cos γ sin 2φ| (6.6)

g(±1) =
1√
6
|cos γ cos 2φ+ i sin γ cosφ| (6.7)

g(±2) =
1√
6

∣∣∣∣12 cos γ sin 2φ+ i sin γ sinφ

∣∣∣∣ . (6.8)
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FIG. 6.2: Quadrupole transition geometry factors. Geometric coupling fac-
tors g(q) (Eq. 6.5) for transitions of different ∆mf for various laser and polarization
orientations. Green dot shows {γ, φ} = π/2, π/2 values that optimize ∆mF = ±2

transitions and suppress ∆mF = 0,±1 transitions.

Although values of these geometric factors are shown in [205], they are reproduced

in Fig. 6.2 for convenience. These plots help us choose laser and polarization

geometries to optimize coupling between certain mF levels. For instance, transitions

with ∆mF = 0 are strongest when γ = 0 and φ = π/4. Here ∆mF = ±1 transitions

are minimized, but levels with ∆mF = ±2 are weakly coupled (with 2/5 relative

amplitude).

The best combination for this scheme is the γ = π/2 and φ = π/2 con-

figuration where the wavevector, polarization, and B-field are mutually orthog-

onal, as it maximized transitions with ∆mF = ±2 and completely suppresses

∆mF = 0,±1 transitions. This permits transitions between |2S1/2, F = 1,mF = 0〉

and |2D3/2, F = 2,mF = ±2〉 while couplings to other D-level states are suppressed

by both Zeeman splittings and geometry selection rules.

Again following James [89], one can relate the reduced matrix element in Eq.

6.3 to the Einstein A coefficient, aka the spontaneous decay rate of the excited state,
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as

AD3/2
=
cαk5

15

∣∣∣〈2S1/2||r2T(2)||2D3/2〉
∣∣∣2 (6.9)

where α is the fine-structure constant. With Eq. 6.9 defined, Eq. 6.3 can be

rewritten (skipping some algebra) as

ΩQ = C̃
eE0

8~

√
15λ3AD3/2

2cαπ3
. (6.10)

Let us now plug in our “Super Clebsch-Gordan” to write the single photon resonant

Rabi frequency between the |2S1/2, F = 1,mF = 0〉 and |2D3/2, F = 2,mF = ±2〉 lev-

els as:

ΩQ =
eEo
8~

√
λ3AD3/2

2cαπ3
. (6.11)

Now lets write E0 in terms of intensity: E0 =
√

2I/εoc. With that, and given that

the fine-structue constant can be written as α = e2/4πcε0~, one can cancel some

constants and finally write the Rabi frequency as

ΩQ =

√
Iλ3AD3/2

2cπ2~
. (6.12)

An ECDL (like a Toptica DL Pro with # LD-0445-0500-1 diode) is specified to pro-

duce between 10 and 15 mW centered at 435.5 nm, 5 mW of which could reasonably

be focused into the vacuum chamber. With cylindrical lenses focusing the beam to

20µm× 150µm waists at the ion chain, one can expect a Rabi frequency of roughly

250 kHz. Note that this Rabi frequency assumes that the 435.5 nm laser linewidth
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is much smaller than the transition linewidth. While this is often a reasonable es-

timation for typical atomic transitions, the un-power-broadened linewidth of 2D3/2

is only 3 Hz. While it is possible to lock a laser to an ultra-stable, high-finesse

cavity (like a Stable Laser Systems cavity) to reduce its linewidth, perhaps a more

reasonable solution is to intentionally power-broaden the transition to 100s of kHz.

Individual Addressing Beam The Warm QSim experiment features a 355 nm

individual addressing beam, the poke beam, focused to a waist of . 1 µm that

can be programatically applied to any subset of ions to Stark shift the qubit states

(Sections 2.3.1 and 2.3.3).

The amplitude of this fourth-order AC Stark shift scales quadratically with

intensity (∝ I2). If the maximum Stark shift applied on a single ion is δω(4)
max, then

the maximum achievable shift simultaneously applied to N ions is δω(4)
max/N2. The

value of δω(4)
max changes depending on experimental parameters of the week. Recently

δω
(4)
max ∼ 1 MHz with ∼ 300 mW of 355 nm light diverted into the poke beam path.

In this particular scheme, the important shift is the Stark shift on the |↑〉z

state only, not the differential AC Stark shift. The differential Stark shift, which

maps to an effective σz field in the spin-spin Hamiltonian, is larger since the |↑〉z

and |↓〉z states are equally shifted in opposite directions.

Qubit detection. A 369.5 nm laser resonant with |2S1/2, F = 1〉 ↔ |2P1/2, F = 0〉

(linewidth γP/2π ≈ 19.6 MHz) causes photons to scatter off an ion if the qubit is

projected to the |↑〉z state. Ions projected to the |↓〉z qubit state scatter a negligible

number of photons because the laser is detuned from resonance by the 2S1/2 hyperfine

splitting (∼ 14.75 GHz). Scattered photons are imaged on an Andor iXon 897
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EMCCD camera and integrated for some hundreds of microseconds, typically ∼

500 − 3000 µs. Shorter detection times are expected to minimize errors in the

individual detection scheme caused to spontaneous decay from population hidden

in 2D3/2 level (See Section 6.1.3 for detail).

Modified optical pumping After detection, ions projected to the bright state

will occupy all three |2S1/2, F = 1〉 states. To continue an evolution (such as in the

measurement-induced phase transition experiment [198, 199, 200]), one must pump

these ions back to the |↑〉z state in the qubit manifold. A potential method is to

apply detection light with only σ+ and σ− light and no π light. This light should

excite only from the two Zeeman levels and trap population in the |↑〉z state after

many cycles. This operation is expected to require a duration similar to conventional

optical pumping to |↓〉z, at most tens of microseconds.

935 nm repump laser Typically two tones of the 935 nm repump laser are ap-

plied during any 369.5 nm operation (doppler cooling, optical pumping, and detec-

tion). The carrier frequency is resonant with |2D3/2, F = 1〉 ↔ |3[3/2]1/2, F = 0〉. An

EOSpace EOM creates 3.0695 GHz sidebands to drive |2D3/2, F = 2〉 ↔ |3[3/2]1/2, F = 1〉.

In order to avoid resonantly pumping back to the S-manifold, these sidebands must

be turned off while population is hidden in the D-level. Luckily these sidebands can

be quickly turned on and off with an rf switch like a Mini Circuits ZASWA.
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FIG. 6.3: D-level spontaneous decay rate. Probability PN(t) of a single spon-
taneous decay event from the 2D3/2 level over time for number of hidden ions N .

6.1.3 Error sources

Most of the following errors can be reduced through pulse shaping, lowering

laser powers, or shortening detection times. A recent paper from Honeywell discusses

a few similar error sources [206].

1. Spontaneous emission from 2D3/2 during the detection operation. Decay

from the D-level could lead to mixing between the 2S1/2 states. Furthermore,

if the ion happens to decays back to |↑〉z, it will be swapped back up to the

D-level during the de-hiding operation, and then would be outside the qubit

manifold during the following evolution.

The probability that one of N ions decays from an excited state at time t

is PN(t) = e−tN/τ , where τ is the natural lifetime of the excited state. See

Fig. 6.3 for 2D3/2 decay probabilities for various chain lengths and times. For
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N = 10 and a detection time of 500 µs, there is a 91% chance that no decay

will occur, and for N = 20 that probability drops to 83%. These fidelity limits

are fundamental and will likely be the largest source of error for this scheme.

2. Off-resonant coupling of 435.5 nm light (to |2D3/2, F = 1〉) or 935 nm

light (to 3[3/2]1/2 levels). The 435.5 nm light is detuned from the unwanted

|2s1/2, F = 1〉 ↔ |2D3/2, F = 1〉 transition by δ/2π = 0.86 GHz. If transferring

population via Rabi flopping with Rabi frequency of ΩQ, the error per cycle

is (ΩQ/δ)
2. This error should be around 10−7 per cycle for ΩQ ≈ 250 kHz.

The 935 nm |2D3/2, F = 2,mF = ±2〉 ↔ |3[3/2]1/2, F = 0〉 transition is forbid-

den by selection rules. The |2D3/2, F = 2,mF = ±2〉 ↔ |3[3/2]1/2, F = 1,mF = 0,±1〉

transition is dipole-allowed, but is off-resonant with the 935 nm carrier tone

by 3.0695 GHz. The scattering rate of 5 mW of 935 nm light focused to

30µm×200µm waists, detuned from |3[3/2]1/2, F = 0〉 by 3.0695 GHz, is about

76 kHz. This could be a problem, as it would almost certainly repump D-level

population during a ∼ 500 µs detection window. One may need to consider

significantly decreasing 935 nm power during mid-evolution detection.

3. Polarization errors allowing ∆mF = 0,±1 quadrupole transitions. The

landscapes of geometric factors in Fig. 6.2 are locally flat at γ = π/2 and

φ = π/2, so fidelities are insensitive to deviations of γ. Also the 435.5 nm

laser will be off-resonant with those transitions by the ∼ 4.2 × (mF ) MHz

Zeeman splittings, further suppressing this error.
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6.1.4 To-do list

A short list of tasks one should complete and questions one should answer

before shopping for a new 435.5 nm laser includes:

Optical bloch simulation. It would be useful to run some Optical Bloch equation

simulations [207, 208] to determine how driving fields and dissipation change the

atomic state populations over time. A full simulation including each laser tone and

all 20 Zeeman states of the S1/2, P1/2, D3/2, and [3/2]1/2 levels would of course

provide a complete picture, though such a simulation is daunting. A simplified

simulation could be sufficient though, since the most important factor is how hidden

population might evolve from the D3/2 state due to 935 nm and 435.5 nm light. Such

a simulation could include a few S1/2 states, D3/2, F = 0, 1 levels, one or two [3/2]1/2

states, and a single P1/2 level, while including only resonant and nearly-resonant

driving fields. This would hopeful reveal sources of fidelity loss from D3/2 decay,

off-resonant driving from 935 nm light, and/or pumping to undesired states.

How low can the 935 nm power go? As mentioned in Section 6.1.3, the sus-

pected major source of error would be off-resonant driving of the hidden population

by the 935 nm repump laser during a detection operation. In principle this error

can be minimized by reducing the intensity of the repump laser. In turn this would

surely reduce detection fidelity as the 0.005 × γP decay rate from |P1/2, F = 0〉 to

|D3/2, F = 1〉 competes with the repump Rabi rate. While a simulation could be

useful here, a series of simple tests in the lab could indicate how much the 935 nm

power could be decreased while retaining acceptable detection fidelities.
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How large should the Stark shift be? Adiabatic rapid passage would transfer

population between |↑〉z and D3/2 more slowly than Rabi flopping, but would likely

result in a higher-fidelity transfer. The hiding scheme relies on applying a sufficiently

large Stark shift to shift certain ions away from resonance with the 435.5 nm light.

One should calculate how the transferred population depends on the Stark shift

to determine a minimum acceptable value for the individual addressing operation.

This will impose constraints on poke beam intensity and system size.

How to lock the 435.5 nm laser? A transfer cavity [209] locked to a rubidium-

referenced 780 nm laser would do the trick, but it would be more convenient to

directly lock the 435.5 nm laser frequency to a reference cell (similar to the 739 nm

Iodine lock). A quick look through the NIST Atomic Spectra Database [77] did not

reveal any obvious candidates.

6.1.5 Outlook

We find that this scheme should perform well for a relatively small system size,

with roughly 1% inherent error for 10 ions and a 100 µs detection time (Fig. 6.3).

Unfortunately, due to natural state decay, this process would suffer from substantial

errors for larger system sizes and/or longer detection durations. Despite this, it could

be a promising and useful tool to add to the quantum simulation apparatus described

in this thesis that does not require dual-species [196, 197] or ion shuttling [195]. To

that end, the goal of high-fidelity, individual-qubit detection could be achieved by

working with multiple ion species or by engineering a separate long-lived qubit
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state within Ytterbium, which has recently been demonstrated by Yang et al. [210].

While these options may allow for lower errors, they would at least require additional

laser systems, as well as cross-species entangling operations in the dual-species case.

The “qubit hiding” technique described here requires only one additional laser and

slightly modified detection and optical pumping protocols. Furthermore, the natural

D-state decay error can be reduced by shortening detection time. Given the relative

simplicity of implementing this scheme, it is a promising option for adding a useful,

unique tool to the Ytterbium trapped-ion quantum simulator.

154



A | Yb-171 level diagram

FIG. A.1: 171Yb+ levels Here are the 171Yb+ energy levels relevant to the experi-
ments (and more) described in this thesis.
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B | Effective longitudinal field from long-range interactions

Here I will present a hand-wavy explanation of how long-range Ising inter-

actions can replace a longitudinal field for implementing a confining Hamiltonian

(Chapter 4).

In the special case of α = 0 (mean field interactions), confinement from long-

range interactions is somewhat intuitively related to confinement from a longitudinal

field [211]. Consider the long-range confinement Hamiltonian from Eq. 4.7. In the

mean field case, we can replace the σ operators with magnetization operators X,Z

which are either −1 or +1. Now the Hamiltonian is

H =
∑
i

Ji,i+1XiXi+1 +
∑
i

∑
j 6=i,i+1

Ji,jXiXj +Bz
∑
i

Zi (B.1)

where the nearest-neighbor-interacting terms have been separated from the long-

range terms.

Now let us rewrite the long-range term with Bx
i =

∑
j 6=i,i+1 Ji,jXj such that

∑
i

∑
j 6=i,i+1

Ji,jXiXj =
∑
i

Bx
i Xi. (B.2)

Now the Hamiltonian has the form of a nearest-neighbor Ising Hamiltonian with the
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requisite longitudinal and transverse fields:

H =
∑
i

Ji,i+1XiXi+1 +
∑
i

Bx
i Xi +Bz

∑
i

Zi. (B.3)

Assuming a similar equivalence holds for arbitrary α values, the dependence of

Bx
i on the nature/structure of the long-range interactions means that the resulting

effective confining potential differs from the pure nearest-neighbor case. Regardless,

the qualitative effects remain the same.

C | Confinement additional data

In this section I present some additional and raw data relevant to the con-

finement experiment discussed in Chapter 4. Fig C.1 shows additional data ex-

ploring frequency-extraction methods for the various N = 11 initial states shown

in Fig. 4.7a-e. Figs. C.2 and Fig. C.3 show a comparison of frequency-extraction

methods for the system-size scaling data shown in Fig. 4.7f. Fig. C.4 shows some

raw data for the evolution of the total number of domain walls at a large B-field for

different systems sizes (Fig. 4.8). Finally, Fig. C.5 shows how bit-flip errors due to

residual spin-motion entanglement and/or SPAM errors influence the domain wall

observable in Fig. 4.8.
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FIG. C.1: Additional data for Fig. 4.7: Fourier-transform vs. single-

frequency fit performance for some N = 11 initial states. The top row
indicates initial states before the quench. Each panel corresponds to a state shown
in Fig. 4.7a-c. Dots represent the Fourier transform of the experimentally measured
magnetization 〈σzi (t)〉 corresponding to the boxed spin. The black vertical lines show
the bound-state energy splittings predicted by the two-kink model (Eq. 4.4). The
magenta bands show the bound-state energies extracted from the single-frequency
sine fit of the data including errors of the fit (this is the method used for published
results). The green bands show the bound-state energies from Lorentzian fits of the
Fourier-transformed experimental data including the errors of the fits. The solid
orange and yellow lines are the Fourier transform of exact theoretical dynamics
found by solving the Schrödinger equation. We see that the experimental Fourier-
transformed spectrum is far too broad to resolve the individual features in (b) and
(c). The single-frequency sine fits capture the correct frequencies for each initial
state measured here.
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FIG. C.2: Additional data for Fig. 4.7f: Ground-state splittings ∆E0,1/J0

for various system sizes, B/J0 ≈ 1. Circular dots indicate experimental data.
a shows the evolution of the center spin’s magnetization in a zero-domain-size ini-
tial state of various system sizes N , measured in the y-basis. The solid blue line
represents exact theoretical dynamics, calculated by solving the Schrödinger equa-
tion for the center spin of the N = 11 spin chain. Dashed colored lines show best
fit curves of an exponentially-decaying sine function for N = 16 through N = 38.
The oscillation frequencies are extracted from thees fits and are normalized to each
respective J0 to obtain ∆E0,1/J0 for each system size. The error bars, ±1s.d., are
calculated from the standard deviation of the mean with at least 150 experiments
per point. Extracted frequencies are shown in Fig. 4.7f. (b) Spectra showing the
Fourier-transformed experimental data from (a). Here each ∆E0,1/J0 value is ex-
tracted using a Lorentzian fit (dashed lines). The data extracted with this method
is shown in Fig. C.3.
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FIG. C.3: Additional data for Fig. 4.7f: Ground-state splittings ∆E0,1/J0

for various system sizes, extracted from Lorentzian fit to Fourier spec-

trum. Diamond markers show ∆E0,1/J0 for each system size with errors bars from
the fit (See Fig. C.2). The blue band shows the two-kink model numerical prediction
of ∆E0,1/J0, with a confidence band considering ±10 % fluctuations in the Ising in-
teraction strength J0 (same as in Fig. 4.7f). We see that both frequency-extraction
methods agree with theoretical predictions.
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FIG. C.4: Real-time evolution of domain wall population at high B/J0.

Example experimental data of the evolution of the total domain wall population 〈N〉
following a quench of Hamiltonian (4.7) with B/J0 ≈ 10 for multiple system sizes
N . The shaded area indicates the time window when 〈N〉 converges to a steady
state and before qubit dephasing occurs. The numbers of domain walls, averaged
over these windows, are plotted in Fig. 4.8a-e at B/J0 = 10.
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FIG. C.5: Effects of bit-flip errors on domain wall evolution. Red dots show
the L = 11 data displayed in Fig. 4.8a. The blue line illustrates the predicted late-
time value of 〈N〉 with increasing B-field, taking bit-flip errors into account. We
found that including a bit-flip error per ion of 2.47 % in the calculation reproduced
the experimental behavior. The most notable effect of bit-flip errors is an increase
in the number of domain walls at B/J0 = 0 (see Fig. 4.8a for zero bit-flip error
numerics).
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D | Stark MBL technical details and additional data

This section will discuss some technical details regarding the Stark MBL ex-

periment described in Chapter 5 and present some additional data to support the

chapter’s conclusions.

For this experiment, we generate two types of Hamiltonian terms. The first is

the Mølmer-Sørensen (MS) Hamiltonian in the resolved sideband and Lamb-Dicke

limits, created with a pair of detuned bichromatic beatnotes, and discussed in Sec-

tion 2.3.1. The second Hamiltonian term is the local field generated by the individual

addressing beam, briefly discussed at the end of Section 2.3.1. In this implementa-

tion the beam addresses one ion at a time, and is rastered across the chain to create

an overall field landscape. A single cycle of this term can be written as:

H2(t) =
N∑
j

Bz
jσ

z
jΘ(t− (j − 1)tpulse)Θ(jtpulse − t), (D.1)

with Θ(t) as the Heaviside theta and tpulse the time for a pulse of the beam on one

ion, which we experimentally fix at tpulse = 0.5 µs.

When these terms are applied simultaneously, in the limit δ ≡ min(|µ(RSB,BSB)−
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ωm|)� ηmΩ� Bz
i , the transverse Ising Hamiltonian is approximately realized:

HTFIM =
∑
i,j

Ji,jσ
x
i σ

x
j +

∑
j

Bz
j

N
σzj . (D.2)

However, the validity of this Hamiltonian is limited to small Bz
j . Therefore, when

realizing a linear field gradient, Bz
j = gj, this results in the constraint gN2 � ηmΩ,

which prevents the simultaneous attainment of long chains and large linear field

gradients. For example, for typical experimental parameters of N = 15, ηΩ = 2π ·30

kHz, and J0 = 2π· 250 Hz, this would require that g/J0 � 0.5. When this is

not satisfied, additional phonon terms are present in the Hamiltonian that result

in undesired spin-motion entanglement, or effective decoherence of the dynamics

when measuring only spin. These additional phonon contributions likely cause the

undesired decoherence shown in Fig. D.1.

We can reduce these constraints by applying a Trotterized Hamiltonian [212,

213]. The evolution under this time-varying Hamiltonian can be analyzed using

the Magnus expansion (Section 2.3.1), to find the dominant contributions to time-

averaged dynamics [39]. Within this framework, the undesired effects arise from the

commutator [H1(t), H2(t)] in Eq. 2.33. Intuitively, when these terms are no longer

applied simultaneously the effect of this commutator is reduced.

Consider unitary evolution of a single Trotter cycle, using the lowest-order
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FIG. D.1: Stark MBL Trotterization scheme. Left top, Numerics compar-
ison of the imbalance dynamics for the averaged Hamiltonian of Eq. D.7 (solid
blue line) with the full Trotter evolution (dashed orange), for the case of an initial
Néel state (N = 15) and parameters corresponding to the strongest experimental
field gradient. Left bottom, difference (averaged - Trotter), showing the the error
over experimental timescales is on the order of one percent. Right, experimental
examples (top row) of continuous and Trotterized evolution, both at g/J0 = 1.5,
compared to simulations (bottom row) using the (slightly different) parameters of
the individual experimental realizations. Although the Trotterized evolution lasts
nearly twice as much time in absolute units, since the averaged J0 is roughly half as
strength, it nonetheless shows a substantial reduction in decoherence and improve-
ment in fidelity to the desired Hamiltonian. An initial state with one spin flip is
chosen for this comparison, as it makes the effect of decoherence due to phonons
more pronounced compared with a state near zero net magnetization.

symmetrized sequence:

U = e−i
∫ ∆t2/2
0 H2(t)dt

× e−i
∫ ∆t1+∆t2/2

∆t2/2
H1(t)dt

e
−i

∫ ∆t1+∆t2
∆t1+∆t2/2

H2(t)dt (D.3)
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The Hamiltonians governing each part of the unitary evolution may be approxi-

mately replaced by their time-averaged values, simplifying both. For H2 we have

∫ ∆t2/2

0

H2(t)dt =∫ ∆t2/2

0

∑
j

Bz
jσ

z
jΘ(t− (j − 1)tpulse)Θ(jtpulse − t)dt

=
∆t2
2N

∑
j

Bz
jσ

z
j , (D.4)

an exact identity since each of the terms in H2(t) commute with one another. For

H1(t) we have

∫ ∆t1

0

dt
∑
j,ν

σ+
j

[−iΩηνbνj
2

(aνe
−iωνt + a†νe

iωνt)

(e−iδBt − e−iδRt)
]

+ h.c. (D.5)

However, this is just the usual MS Hamiltonian in the slow-gate regime. When

the RSB and BSB detunings are equal-and-opposite this results in the pure σxσx

interaction. When instead a small rotating frame transformation is applied we

generate the Ising Hamiltonian with a small overall transverse field [39]:

∫ ∆t1

0

dtH1(t) ≈ ∆t1

(∑
j,j′

Jjj′σ
x
j σ

x
j′ +Bz0

∑
j

σzj

)
. (D.6)

The combined evolution of the full Trotter cycle is then, to lowest order, de-
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scribed by the Hamiltonian

H =
∆t1

∆t1 + ∆t2

∑
j,j′

Jjj′σ
x
j σ

x
j′

+
∑
j

σzj

(
Bz0 +

∆t2
∆t1 + ∆t2

Bz
j

N

)
+O(∆t3). (D.7)

We program Bz
j to the desired functional form and absorb the factors with ∆t1 and

∆t2 into re-definitions of J0 and Bz
j , leading to Eqs. 5.1 and 5.3 above. The constant

term Bz0 does not depend on these times, because it is created by moving into a

rotating frame that is applied to the entire time evolution. This approximation

requires that δ∆t1 � 1 (for Eq. D.6), which is satisfied in the experiment: δ =

2π · 200 kHz and ∆t1 ≥ 18 µs, whose product is 22.6. Additionally, ∆t1 and

∆t2 must not be so long that the Trotter approximation (Eq. D.7) breaks down.

However, the low energy scale of J0 and the use of the symmetrized Trotter form

make this limit less constraining than the limit for continuous evolution, allowing

us to reach g/J0 = 2.5 (1.5) for 15 (25) spins. Because the Trotter error consists of

undesired spin terms, rather than spin-phonon terms, it can also be easily simulated

numerically. Extended Data Fig. D.1 shows comparisons of the Trotterized and

ideal evolution in the case of the strongest gradient, showing that the Trotter error

is negligible over the experimental timescale and that the Trotterization results in

a significant improvement in the simulation fidelity.

In addition to reducing phonon errors, this scheme has the advantage of al-

lowing us to tune the average Hamiltonian (Eq. D.7) simply by varying ∆t1 and
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∆t2, because [g/J0]avg = (∆t2/∆t1)g/J0. This capability allows us to scan over a

range of gradient values with a single calibration, and it makes any errors on the

gradient calibration common to all these scans. In the data presented here, we fix

the instantaneous values of g and J0 and vary ∆t1 (see below). In addition, we ramp

the spin-spin interactions up and down over 9 µs with a shaped Tukey profile to

reduce adiabatic creation of phonons [91, 214, 215].

This implementation of Trotterized Stark MBL dynamics would be difficult

to extend to more than tens of spins, as the maximum instantaneous shift required

on the edge ion scales as N2, leading to the requirement of an increasingly fast

drive. However, given the unbounded nature of a linear gradient, any large- scale

simulation of Stark MBL is likely to be challenged by the required field difference

between the two ends.

Throughout this discussion, we have taken the perspective of a Trotterized

quantum simulation of a desired Hamiltonian. We could also understand this ex-

periment in terms of Floquet theory. From this perspective, this driven system

is described stroboscopically by a Floquet Hamiltonian, which to lowest order is

the Hamiltonian (D.7), and the steady-state equilibration that we see represents

prethermal evolution under this effective Hamiltonian that is expected be altered

at long times by Floquet heating arising from the higher-order terms. While this

picture offers a complementary way to understand these results, and interesting

connections to studies of driven localization [216], for simplicity we focus on the

Trotterized perspective.

For imbalance measurements at N = 15, we calibrate to g/J0 of 2.5 for ∆t1 =
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∆t2. To scan the gradient strength, ∆t2 is fixed at 18 µs and ∆t1 is varied from 18

µs to 180 µs. In addition, there is an extra 9 µs of effective dead time per Trotter

step associated with the Tukey pulse shaping. We fix Bz0 at 2π· 1.25 kHz. For data

in a quadratic field, we set γ = 2.0 for ∆t1 = ∆t2, and vary ∆t2 from 10 µs to 180

µs, with all other settings kept the same as in the linear gradient.

For N = 25, we instead set g/J0 to 1.25 for ∆t1 = ∆t2. ∆t1 is fixed at 30 µs,

and ∆t2 is varied between 25 µs and 190 µs, again with an extra 9 µs of effective

dead time per cycle due to pulse shaping. Bz0 is again fixed at 2π· 1.25 kHz.

For DEER measurements, we calibrate to g/J0 of 2.0. ∆t2 is fixed at 18 µs and

∆t1 is varied from 18 µs to 180 µs, plus an extra 9 µs of dead time associated with

Tukey pulse shaping. We fix Bz0 at values varying for different datasets between

2π· 0.9 kHz and 2π· 1.25 kHz.
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FIG. D.2: 〈r〉 phase diagram of ideal power-law Hamiltonian. Dependence
of 〈r〉 on power-law range α and g/J0 (N=13, Bz0/J0 = 5). In the experiments
presented in the main text α ≈ 1.3.
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FIG. D.3: Scaling of I with system size. Numerics (left panels) for N ={9,
15, 23} (light to dark) are compared to experimental data from Fig. 5.2 (right
panel). Top left, As the system increases from N = 9 to N = 23, the largest
change is in a sharpening dip-like feature near g/J0 = 1. Top right, while we
cannot solve for I for N = 25, experimentally we see a similar dip. Bottom left,

expanded view of I, showing similar localization beyond g/J0 = 1. Bottom right,

comparison of I (N = 15) for the experimental time and for an extended time of
100 tJ0 (dashed). While at low gradient the finite-time effects on the imbalance
are significant, including the dip feature in the left plots, a steady state is largely
achieved in the experimental window for gradients g/J0 > 1.
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