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Humans have heterogeneous physical and cognitive capabilities. Engineers 

must cater to this heterogeneity to minimize opportunities for user error and system 

failure. Human factors considerations are typically evaluated late in the design 

process, risking expensive redesign when new human concerns become apparent. 

Evaluating user capability earlier could mitigate this risk. One critical early-stage 

design decision is function allocation – assigning system functions to humans and 

machines. Automating functions can eliminate the need for users to perform risky 

tasks but increases resource requirements. Engineers require guidance to evaluate and 

optimize function allocation that acknowledges the trade-offs between user 

accommodation and system complexity. In this dissertation, a multi-stage design 

methodology is proposed to facilitate the efficient allocation of system functions to 

humans and machines in heterogeneous user populations. The first stage of the 



  

methodology introduces a process to model population user groups to guide product 

customization. User characteristics that drive performance of generalized product 

interaction tasks are identified and corresponding variables from a national population 

database are clustered. In stage two, expert elicitation is proposed as a cost-effective 

means to quantify risk of user error for the user group models. Probabilistic estimates 

of user group performance are elicited from internal medicine physicians for 

generalized product interaction tasks. In the final stage, the data (user groups, 

performance estimations) are integrated into a multi-objective optimization model to 

allocate functions in a product family when considering user accommodation and 

system complexity. The methodology was demonstrated on a design case study 

involving self-management technology use by diabetes patients, a heterogeneous 

population in a safety-critical domain. The population modeling approach produced 

quantitatively and qualitatively validated clusters. For the expert elicitation, experts 

provided internally validated, distinct estimates for each user group-task pair. To 

validate the utility of the proposed method (acquired data, optimization model), 

engineering students (n=16) performed the function allocation task manually. Results 

indicated that participants were unable to allocate functions as efficiently as the 

model despite indicating user capability and cost were priorities. This research 

demonstrated that the proposed methodology can provide engineers valuable 

information regarding user capability and system functionality to drive accessible 

early-stage design decisions. 
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Chapter 1: Introduction 

 Human beings are highly heterogeneous, varying both physically and 

cognitively across many dimensions. Human characteristics can have a significant 

influence on an individual’s functional ability to perform tasks associated with a 

product (Senefeld et al., 2017). Interacting with a product requires users to complete 

tasks in sequence and simultaneously (Pliner et al., 2021). The functional capabilities 

of individual users can significantly influence the likelihood that they will 

successfully perform these tasks.  

An individual’s physical functioning can differ vastly based on characteristics 

such as age, level of physical independence, and disease history (Marques et al., 

2014; Scheuringer et al., 2005; Senefeld et al., 2017). These characteristics can 

influence if a user has the capability to perform physical tasks, such as lifting objects 

or pressing buttons. Similarly, sensory and cognitive functioning are dependent on a 

wide array of human characteristics (Guilera et al., 2020; Meng et al., 2017; Rudman 

et al., 2016). Sensation and perception (e.g., visual, auditory, and tactile 

discrimination) are critical to receive feedback about the state of a system. Cognitive 

functioning allows humans to perform tasks such as recalling operating procedures 

and making decisions based on system feedback.  

It is critical that users can complete all required system tasks, especially in 

safety-critical domains, where task failure could result in dire consequences. 

Examples of user populations who routinely perform safety-critical tasks include 

patients (Knisely, Levine, et al., 2020), medical professionals (Reddy et al., 2020), 
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transportation workers (Dindar et al., 2020), and the military population (Miranda, 

2017). 

 Leveraging automation in human-machine systems presents the opportunity to 

alleviate physical and cognitive burden in human users by eliminating or supporting 

difficult to perform tasks (Bindewald et al., 2014). Automation is increasingly 

assuming roles once allocated to humans in many product domains, including energy 

(Oh et al., 2020), healthcare (L. Morelli et al., 2016; Qayyum et al., 2020), and the 

military (J. K. Proud et al., 2020; Rossiter, 2020). Engineers can customize these 

automated systems based on the capabilities of the intended user population. To be 

successful, engineers must consider the trade-offs inherent to expanding system 

functionality: increasing user accessibility versus decreasing product complexity 

(cost). This is especially important when designing to accommodate human 

variability, where a 1-size-fits-all approach may not be appropriate. Variable user 

capabilities may necessitate additional product offerings, further complicating the 

accessibility-complexity trade-off.  

Despite the need to incorporate heterogeneous user characteristics in design, 

methodologies for evaluating these trade-offs and customizing product offerings to 

support human factors objectives are lacking. Further complicating this 

methodological gap, human factors activities are typically reserved for the late stages 

of the design process (Irshad et al., 2018, 2019). By delaying these activities, 

engineers risk discovering new information about the capabilities of end-users that 

may necessitate expensive and time-consuming product redesign. Performing these 

activities earlier in the design process could mitigate this risk. This dissertation seeks 
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to provide a methodology to support cost-effective, early design stage product 

customization to achieve human factors objectives and accommodate human 

variability.  

1.1 Motivation 

 An inclusive and fair society requires systems that can accommodate the 

spectrum of user needs present in general and specialized populations. Managing 

human variability presents significant challenges for designers. This dissertation 

seeks to address some of these challenges, guided by the motivational factors 

introduced in this section.  

1.1.1 Lack of Formative Human Factors Empirical Methods Applied to 

Heterogeneous Populations 

 Formative human factors design validation includes efforts to validate the 

usability of a system in early product design stages. In practice, these efforts are 

typically performed in-house by individual experts using heuristics or other formal 

human factors guidelines. To be effective, these efforts should address human 

variability. Accommodating human variability is not only critical for designing safe 

and effective systems, it is also required by many regulatory agencies that oversee 

system development activities (e.g., Department of Defense, 2016; Food and Drug 

Administration, 2016; National Aeronautics and Space Administration, 2019). 

 In contrast to formative validation, summative human factors design 

validation (performed after final design and prototyping) is typically much more 

rigorous, including recruitment of human users for observational usability studies. 
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Guidance and best practices are well established for this. There exists little guidance 

for navigating the challenges associated with performing formative human factors 

analysis with heterogeneous users. Recruitment of participants for design validation 

studies can be a significant resource burden from both a cost and time perspective 

(Christensen et al., 2017; Liao et al., 2015). Further, challenges are often encountered 

when recruiting from specific, non-general populations. Patient populations, for 

example, are notoriously difficult to access for lab-based studies (Allsworth, 2015; 

McHenry et al., 2015). Finally, engineers with limited human factors experience may 

find practical implementation of these studies challenging. Methodology to navigate 

these challenges in early design stages is needed.  

1.1.2 Lack of Support for “Downstream Neutrality” 

Conventional approaches to address human variability primarily exist for use 

in late-stage design, after physical components and specific interfaces have been 

designed, contributing to excessive upstream specificity. Upstream specificity, a term 

originated by this research, references design decisions made early in the design 

process that limit or constrain the design solution space before the problem has 

become fully understood.  

 When engineers design a product, they also design (intentionally or otherwise) 

the functions the product user will fulfill. Conventional approaches ignore the 

possibility that these underlying functional requirements may be incompatible with 

user capabilities. Recognizing these incompatibilities in late-stage design, a 

consequence of upstream specificity, is problematic because products are inflexible 

and expensive to change. By identifying these incompatibilities earlier in the design 
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process, designers can customize the functional architecture of a product without the 

cost and burden of redesign. This delayed specification of product elements is coined 

downstream neutrality. The goal of downstream neutrality is to facilitate product 

customization during the conceptual phase of product design, particularly as it relates 

to user capability. There is currently a lack of methodology to support practical 

implementation of downstream neutrality with respect to human factors objectives.  

1.1.3 Lack of a Methodology for Segmenting User Populations 

 Mass customization of products for heterogenous user populations is 

infeasible in most situations. Grouping users into clusters with similar characteristics 

can provide targets for engineers wanting to address the needs of densely represented 

users while remaining viable in terms of the cost associated with additional product 

variety. In engineering and marketing, this is known as market segmentation and 

usually involves grouping users with the goal of maximizing group demand for a 

product (McDonald, 2012). These approaches are typically highly quantitative but 

treat users as consumers external to the system, not as an integral part whose 

characteristics can have a notable effect on system performance. In user-centered 

design, personas are often used to represent archetype or typical user segments (Neate 

et al., 2019). Persona development is more concerned with human interaction, but 

most methods are highly subjective and open to significant designer bias. Defining 

quantitative user segments in early design stages could allow designers to perform 

targeted differentiation of products with minimal bias. This dissertation proposes a 

quantitative, user-centered segmentation strategy to support product customization 

that emphasizes characteristics relevant to product interaction.  
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1.1.4 Lack of Human Performance Data for Heterogeneous and Specialized 

Populations 

 Evaluating and customizing product functionality based on user capability 

(accommodation) requires human performance data for the intended user population. 

Human performance data is sparsely available in existing databases and data that is 

available may not be applicable given the specific design problem. This is especially 

true in the case of specialized user populations, whose characteristics often deviate 

from the general population. Further, human performance data is expensive and 

difficult to collect empirically. Population heterogeneity exacerbates this issue due to 

the costs associated with recruiting representative population samples. This 

dissertation explores expert elicitation as a cost-effective and comprehensive means 

to collect human performance data in heterogeneous and specialized populations to 

address availability gaps while maintaining feasibility for design organizations of all 

sizes. 

1.1.5 Lack of Models for Product Customization in Early Design Stages 

 Engineers lack formal models for customizing products to meet heterogeneous 

user needs in early design stages. In most cases, products can be thought of as a 

hybrid-system of human and machine elements (hardware and software). In these 

systems, humans and machines work together to achieve some goal. Function 

allocation is the process of assigning system functions to humans and machines and 

could serve as a means for product customization in early design stages.  

 A modeling approach that facilitates function allocation could support early 

design stage product customization. Most functional modeling techniques are limited 
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to a product-centric focus. Some recent approaches have adopted a human-machine 

perspective, however few models exist for use in the early design phases. Those that 

do exist do not expressly facilitate allocation of functions between humans and 

machines. In this dissertation, a human-machine system modeling approach is 

introduced that supports product customization through function allocation.  

1.1.6 Lack of Quantitative, User-Centered Tools to Customize Product Families  

 Allocating system functions between humans and machines presents a trade-

off between accessibility and cost. Automating functions decreases workload on the 

human user by eliminating tasks they would need to perform otherwise. This, 

however, increases costs associated with design and manufacture of that system. 

Further, accommodating heterogenous user capabilities requires differentiated 

products. Product family design is the typical approach to provide cost-efficient 

product variety. A product family is a set of related products that share elements to 

attain lifecycle cost benefits while varying other elements to satisfy the needs of 

particular market segments (Simpson et al., 2001). Product families can serve various 

user-centered design goals, however little guidance exists to support early-stage 

product family design activities. The functional architecture of a product could be 

used to define user-centered product families, however, there exists no quantitative or 

systematic methodology to do so. This dissertation proposes a multi-objective product 

family optimization model to configure allocation of system functions to humans and 

machines, including metrics to evaluate user accommodation and system complexity 

associated with system functions.  
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1.2 Overview of Research 

 The goal of this research is to address the aforementioned research gaps by 

developing a multi-stage methodology for product family concept generation to 

support user accessibility. The primary objective of this methodology is to 

accommodate user capabilities on a population-wide scale while acknowledging the 

design and manufacturing costs associated with additional product variety. The 

proposed methodology can be applied to any product that requires human physical 

and cognitive interaction. The methodology relies heavily on knowledge elicitation 

efforts using internal medicine physicians: experts who are well versed in the physical 

and cognitive characteristics of the general population. The method follows this basic 

pipeline: Model user groups → Quantify user group performance for system 

functions → Optimize product family function allocations to maximize 

accessibility. The dissertation is split into three mains stages shown in Figure 1 and 

detailed below along with the stage-specific research contributions:  
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Figure 1: Flow chart demonstrating the relationship between stages of the proposed methodology. 

 

1. Leveraging Physician Expertise and National Population Data to Model 

Heterogeneous Population User Groups – A method for modeling highly 

prevalent user sub-populations to be used in targeted device personalization is 

proposed. First, standardized physical and cognitive tasks are generated that 
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can be applied to any product. They are specifically generated to facilitate 

physician judgment regarding their performance (coined Physical and 

Cognitive (P&C) Physician Judgment Tasks), a prerequisite for the 

subsequent methodological stage. Internal medicine domain-expert input is 

used to identify user characteristics critical to the performance of standardized 

physical and cognitive tasks. Variables from the US National Health and 

Nutrition Examination Survey (NHANES) (Centers for Disease Control and 

Prevention, 2019) dataset are utilized to quantify the user characteristics. The 

data are statistically clustered to identify meaningful, task-specific user 

groups. Task-specific user groups contain users who are expected to perform 

similarly for a single task. The approach is demonstrated on a diabetes 

population case study.  

Research questions include: 

R1. How should designers identify user characteristics critical to product 

interaction in early design stages?  

R2. How can these characteristics be quantified and used to define user 

groups? 

Novel contributions include:  

• Generation of standardized physical and cognitive product interaction 

tasks specifically tailored to facilitate physician judgment regarding 

their performance.  

• A procedure to identify user characteristics critical to the performance 

of P&C Physician Judgment Tasks. 
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• A procedure to map user characteristics to NHANES variables for 

input to statistical clustering. 

2. Quantifying Human Performance for Heterogeneous User Populations 

using Expert Elicitation - An expert-driven approach to quantify risk of user 

error by heterogeneous user populations is proposed. Internal medicine 

physicians are asked to make quantitative task performance estimates for each 

task-specific user group identified in the prior stage. Estimates take the form 

of probability distributions for task success. The approach is demonstrated on 

a diabetes population case study.  

Research questions include: 

R3. How can quantitative estimates for heterogeneous population task 

performance be effectively elicited from domain experts?  

Novel contributions include: 

• Detailed procedures and best practices for using expert elicitation to 

quantify task performance by heterogeneous user populations.  

3. Optimizing Function Allocation for Accommodation of Heterogeneous 

Populations – A modeling approach that facilitates function allocation for 

accessible product families is proposed. Functions from a commonly used 

function taxonomy (Hirtz et al., 2002) are mapped to P&C Physician 

Judgment Tasks. Metrics for accommodation and system complexity given 

allocation of functions are introduced. A multi-objective optimization model 

is proposed, where function allocations for a family of products are optimally 
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selected based on maximizing accommodation and minimizing product 

complexity.  

Research questions include: 

R4. How can user accommodation and product cost be evaluated in early 

design stages? 

R5. How can product family concepts be optimized for user 

accommodation and cost? 

Novel contributions include:  

• An adaptation of a conventional function modeling approach that 

facilitates allocation of product functions.  

• Metrics for evaluating function allocation for user accommodation and 

product complexity.  

• A multi-objective optimization model for allocating functions for a 

family of products.  

In addition to methodological contributions, the methodology is demonstrated 

on a medical device design case study for the diabetes population, producing data that 

can be applied for that specific use-case.  

Research Questions include: 

R6. Can NHANES data be clustered to generate quantitatively and 

qualitatively separated user groups for the diabetes population? 

R7. Can experts produce quantitative task performance estimates for user 

groups that reflect relative user risk given dominant user group 

characteristics? 
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Novel contributions include: 

• Task-specific user groups for the diabetes population.  

• 27 task performance distributions for the diabetes population. 

 

1.3 Structure of Dissertation 

The remainder of this dissertation follows the following format: Chapter 2 

contains a literature review of topics relevant to the proposed methods. Chapter 3 

introduces a design case study that the method will be demonstrated on throughout 

the dissertation. Chapters 4-6 will present the methodology, with each chapter 

corresponding to a stage of the method. At the end of each chapter, the methodology 

will be applied to the design case study. In Chapter 7, concluding remarks are made 

for each chapter and the overall contribution of the methodology is discussed.   
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Chapter 2: Literature Review 
 

This chapter contains a review of literature relevant to this dissertation. 

Chapter 2.1 discusses approaches to segment heterogeneous user populations into 

groups for product personalization. Chapter 2.2 presents literature related to 

quantifying human performance for heterogeneous users. Chapter 2.3 discusses 

approaches to model systems in early design stages, focusing on function modeling 

and function allocation. Chapter 2.4 discusses research on product family design and 

product family design optimization. These topics are linked via the goal of 

developing a multi-phase design methodology for generation of accessible product 

family concepts in early design stages.  

 

2.1 Segmenting User Populations 

 In this section, several topics related to segmenting users into user groups are 

discussed. First, contrasting perspectives from several disciplines on segmenting 

users are discussed. Then, the utility of those approaches is discussed in the context of 

personalized design.  

2.1.1 Perspectives on User Segmentation 

Stratification of individuals into groups is a common practice when designers 

want to customize a product or a system to address varying user wants or needs 

(Pallant et al., 2020; Wedel & Kamakura, 2012). Groups provide targets for product 

variants while not necessitating every product be individualized. For a given 

population, the maximum number of segments that can be defined is equal to the 
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number of distinct users in the population (assuming membership is exclusive). In 

most cases, it is impossible create a completely customized product for this 

theoretical maximum number of groups. Instead, segments are defined based on 

characteristics that represent large numbers of users such to maximize generalizability 

of the segments but minimize the number of segments that must be represented 

(Tipton & Matlen, 2019).  

In typical practice, populations are segmented based on demographic or 

geographic variables. This is primarily due to the ease of collecting this data. This 

may not be sufficient when designing for maximum human performance (Privitera, 

2020). In general, these variables are not directly causally linked to human 

performance. For example, an elderly individual may have difficulty performing a 

mobility task, however, it is not because they are elderly that they struggle. It is 

because as an elderly person, they are more likely to have some disease or under-

lying condition that influences mobility. Grouping users based on characteristics with 

closer links to capability provides more meaningful segments.  

In user-centered design, personas are often used to represent the archetype or 

typical user (Neate et al., 2019). Oftentimes, several personas are defined for a user 

population, and represent the central tendencies of prominent user segments. Personas 

are researcher-based, descriptive models of the typical user(s) of a given system. 

They are used to ensure that assumptions about intended users are explicitly stated 

and understood across a design team (Korsgaard et al., 2020). Personas have been 

used to segment based on user demographics, goals, attitudes, motivations, identity, 

relationships, affiliations, and design preferences (Carey et al., 2019; Warin et al., 
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2018). Persona development is typically a highly subjective process, and often relies 

on qualitative methodology, and therefore may be open to substantial bias. Common 

techniques for generating personas include interviews, fields studies, usability tests, 

and ethnography (Salminen, Santos, et al., 2020), though quantitative and mixed 

methods are becoming more common. Clustering algorithms (e.g., k-means, 

hierarchical, etc.) are popular for identifying personas from unstructured user data 

(Mesgari et al., 2015; Tanenbaum et al., 2018; L. Wang et al., 2018). Other 

techniques popular in quantitative persona development include principal component 

analysis (L. Wang et al., 2018), latent semantic analysis (Miaskiewicz et al., 2008), 

and non-negative matrix factorization (An et al., 2017). Additionally, emphasis has 

been placed on extracting data from web platforms and other sources of “personal big 

data” (Salminen, Guan, et al., 2020).  

In some marketing and engineering contexts, segmentation of users is often 

referred to as market segmentation. Market segmentation and persona development 

are distinct but overlapping strategies. Segmentation in this context generally 

differentiates itself by focusing on attributes that predict purchasing behavior and 

maximizing demand, as opposed to user performance (Sherkat et al., 2016). 

Purchasing behavior and user performance are related but not perfectly correlated 

outcomes (i.e., the design that maximizes product demand may not maximize user 

performance). Quantitative methods are more common in this context, often taking 

advantage of various approaches to statistically clustering users (Bose et al., 2020; 

Ma & Kim, 2016; Ramasubbareddy et al., 2020). Examples of variables used to 

quantitatively segment populations include demographics, preferences, personality, 
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and purchase history (Paço & Raposo, 2010; Pallant et al., 2020; Pomarici et al., 

2017). Segmentation is also achieved using attributes of existing products, for 

example with design attributes for an aerodynamic particle separator (Tucker et al., 

2010) and for a universal electric motor design (Ma & Kim, 2016).  

Some quantitative approaches to identify user groups based on user-product 

interaction have been proposed. For example, math-based performance simulations 

based on user and contextual variables were developed to evaluate design solutions 

for varying user segments (Bekhradi et al., 2015; Yannou et al., 2013). Brolin et al. 

(2016) utilized summary statistics of characteristics related to user capabilities to 

generate and cluster a synthetic population of users to be used as design targets. 

Product usage data has also been used to group individuals based on patterns of 

behavior, examples including clustering of smartphone users (Razavi, 2020; Zhao et 

al., 2020), and classifying user activity based on shoe-embedded sensors (Ghosh et 

al., 2016). Links to task-specific characteristics of the user are limited in these 

methods, making personalization difficult without knowing what led to the variability 

of interaction.  

2.1.2 Personalized Design 

The aforementioned methods for user segmentation have been used widely in 

design personalization. Personas are commonly applied in the design of software 

(Andriella et al., 2018; Anvari et al., 2017), hardware (Alsager Alzayed et al., 2020; 

Stevenson et al., 2018) and service systems (Idoughi et al., 2012). The benefits of 

personas in the context of design are numerous. Miaskiewicz and Kozar (2011) 

identified and had experts rank 21 different ways personas are used in the design 
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process. The top benefits identified were focusing product development on users 

instead of specific technological limitations or opportunities, guiding prioritization of 

product requirements, and prioritization of the needs of the most important 

stakeholders or users. Viana and Robert (2016) described the benefits of using 

personas for user-interface design, including facilitating communication about the 

goals of the product within a design team, challenging organizational assumptions 

about the user, creating empathy towards the user, and as a surrogate in user testing.  

Market segmentation strategies have also been integrated within product 

design in what is known as market-driven design, where the expected demand of a 

product is maximized amongst other engineering constraints (Donndelinger & 

Ferguson, 2017). In this context, product families have been proposed as a cost-

effective means for customizing products to the needs of consumer segments. Product 

families provide additional product variety while taking advantage of economies-of-

scale by standardizing certain product elements across product family members (Otto 

et al., 2016). Core product features are shared across user groups, while other features 

are varied or added to meet specific wants or needs. Researchers have sought to 

provide methods for optimally designing product families to efficiently meet user 

needs (Ma & Kim, 2016; Simpson et al., 2001; Sinha & Suh, 2018; Q. Wang et al., 

2019). While highly quantitative, these methods primary focus on maximizing 

demand, which does not necessarily align with maximizing usability or human 

performance.  

Market segmentation also appears when implementing software and 

multimedia. Breaking users into groups and tailoring software to the needs of the 
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group can improve user satisfaction, and encourage software acceptance (Sherkat et 

al., 2016). Segmentation is important when pricing software to maximize demand 

(August et al., 2019). Segmentation strategies have also been implemented into 

existing software and website platforms to support effective recommendation systems 

for users (Bose et al., 2020).  

Recent work on adaptive design suggests that it may not always be necessary 

to customize individual products to user segments. Adaptive interfaces monitor the 

state of the system and the state of the user to adapt the display and available user 

actions to maximize interaction performance in real-time (Lavie & Meyer, 2010). In 

some cases, these adaptive systems may negate the need for entirely separate products 

if features critical to interaction can be automatically adapted to the needs of the 

specific user. Advanced systems have begun to take advantage of physiological data 

from biosensors, such as eye-trackers, heart-rate sensors, and motion trackers, to 

adapt systems to the needs of the individual (Çığ Karaman & Sezgin, 2018; Georgiou 

& Demiris, 2017; Lin et al., 2017). Other systems have taken advantage of the vast 

amounts of data available from social media platforms to provide customized services 

(Jeon et al., 2020). Adaptive automation has also been utilized to dynamically 

allocate functions between humans and machines (Bindewald et al., 2014). Other 

examples of adaptive design include adaptive cyber-security based on user 

characteristics and behavior (Addae et al., 2019), adaptive interface multimodality for 

interactive devices (Kong et al., 2011), design of an intelligent adaptive interface for 

control of UAVs (Ilbeygi et al., 2019), and user-adapted e-learning platforms for 

students (Santoso, 2021). While most adaptive design focuses on software platforms 
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and interface design, some adaptive design features have been explored in the 

hardware context (Jevtić et al., 2019; Zhou & Liu, 2020).  

 

2.2 Quantifying Heterogeneous User Performance 

 Quantifying human performance for user groups can reveal distinct group 

requirements to drive product customization. This section presents several 

perspectives to quantify human performance for use in design. First, simulated-use 

testing is presented as the go-to human factors approach to quantify human 

performance heterogeneity. Discussed next is design for human variability, a model-

based engineering perspective. Last, expert elicitation is presented as a cost-effective 

alternative to quantify human performance. 

2.2.1 Simulated-use Testing 

Human factors evaluation and simulated-use testing are used to provide 

evidence that a design conforms to the needs of the intended user population 

(Barnum, 2020). Simulated use testing seeks to replicate the conditions of system use, 

providing researchers the opportunity to observe user behavior in a controlled lab 

setting. There are many benefits to this practice. Simulated-use testing allows 

researchers to collect quantitative data on user performance and user error while 

controlling confounding factors (Liao et al., 2015). This user data can be incorporated 

into the design process and support decision-making to mitigate downstream user 

error, thus supporting user safety and preventing potential recalls and litigations 

(Johansen, 2018).  
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A variety of metrics can be used to quantify performance during simulated 

use-testing. Objective measures typically include accuracy, task timing, or error rates 

(Claypoole et al., 2019; F. Morelli et al., 2017; Radwin et al., 2014). 

Neurophysiological data can also be used to supplement these measures, examples 

including heartrate variability (Delliaux et al., 2019) and pupil response (Van Acker 

et al., 2020). While useful, the cost to acquire this data can be high and may require 

specialized equipment. Subjective measures of performance can be used to 

supplement direct observation. Self-reported data is generally less burdensome to 

elicit from participants, however it may be subject to various biases that objective 

metrics are not (Rosenman et al., 2011).  

Regulatory agencies have indicated that human factors evaluation is critical to 

design safe and effective systems across industries. In Table 1, key quotes regarding 

human factors testing and heterogeneous populations have been isolated from 

regulatory standards and guidance. These standards and guidance demonstrate the 

importance of representing heterogeneous users in design validation. The terms 

“intended users,” “representative users” and “user populations” are referenced 

repeatedly among other related terms. Despite the stated need to integrate user 

variability, there is little guidance on how to successfully incorporate these 

requirements into the design process.  
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Table 1: Excerpts from publicly available standards and guidance on representing hetergeneous users 

in design validation. 

Organization Document Key Quotes 

US Food and 

Drug 

Administration 

(FDA) 

Applying Human 

Factors and 

Usability 

Engineering to 

Medical Devices 

(FDA-2011-D-0469) 

(Food and Drug 

Administration, 
2016) 

Section 8: “Human factors validation testing is 

conducted to demonstrate that the device can be used by 

the intended users without serious use errors or 

problems, or the intended uses and under the expected 

use conditions.” 

Section 8.1.1: “The human factors validation test 

participants should be representative of the range of 

characteristics within their user group…”  

 

“…if different user groups will perform different tasks 

or will have different knowledge, experience, or 

expertise that could affect their interactions with 
elements of the user interface and therefore have 

different potential for use error, then these users should 

be separated into distinct user populations.” 

US National 

Aeronautics and 

Space 

Administration 
(NASA) 

NASA Spaceflight 

Human-System 

Standard (NASA-

STD-3001) 

(National 

Aeronautics and 

Space 

Administration, 

2019) 

Section 4: “A systems engineering process that 

adequately considers human performance variability and 

limitations during spacecraft design, development, 

testing, and evaluation is of critical importance to the 

health, safety, and performance of flight crews, as well 

as to the protection of hardware and systems.” 

Section 10.1.1.1: “Usability testing must be part of the 

verification process.” 

Human Integration 
Design Handbook 

(NASA/SP-2010-

3407) (National 

Aeronautics and 

Space 

Administration, 

2014) 

Section 3.3.8.5: “It is imperative to use representative 
users in the simulations and evaluations to ensure that 

results capture the capabilities of the user and are 

relatable to the mission situations.” 

US Nuclear 

Regulatory 

Commission 

(NRC) 

Human Factors 

Engineering 

Program Review 

Model (NUREG-

0711) (OHara et al., 

2012, p. 0711) 

Section 11.4.3.4: For validation testing, “To properly 

account for human variability, the applicant should use a 

sample of participants that reflects the characteristics of 

the population from which it is drawn. Those 

characteristics expected to contribute to variations in 

system performance should be specifically identified…” 

 

 

 

 

 

 

 

 

 

 

 



 

 

23 

 

Table 1 (continued) 

US Department 

of Defense 

(DoD) 

Human Engineering 

Requirements for 

Military Systems, 

Equipment, and 

Facilities (MIL-
STD-46855A) 

(Department of 

Defense, 2016) 

Section 5.3.2: Planned test and evaluation shall include 

“Use of personnel who are representative of the range of 

the intended user populations in terms of aptitudes, 

skills, capabilities, experience, size, and strength; 

wearing suitable clothing and equipment appropriate to 
the tasks (use of personnel from the intended user 

population is preferred)” 

Defense Acquisition 

Guidebook (DAU, 

2020) 

Chapter 5-4.2.2.2: “The PM [Program Manager] 

should use a truly representative sample of the target 

population during Test and Evaluation (T&E) to get an 

accurate measure of system performance. A 

representative sample during T&E helps identify 

aptitude constraints that affect system use.” 

Federal Aviation 

Administration 

(FAA) 

Human Factors 

Design Standard 

(DOT/FAA/HF-

STD-001B) 
(Ahlstrom, 2016) 

Chapter 6.1: “The result of using this document in 

development and acquisitions will be a more usable 

system. However, even systems that are carefully 

designed using this document in conjunction with a 

human factors expert will need to be verified through 
means such as prototyping and testing with 

representative users.” 

National Institute 

of Standards and 

Technology 

(NIST) 

Human Engineering 

Design Criteria 

Standards Part 3: 

Interim Steps (for 

the Department of 

Homeland Security 

(DHS)) (Furman et 

al., 2014) 

Executive Summary: “…systematically adopting and 

applying HIS [Human System Integration] criteria 

within DHS will be a challenge because of the 

department’s large and extremely varied user 

population.” 

 

“DHS needs to conduct some type of user acceptance 

and usability testing of potential new technologies 

before deploying them in the field.” 

 

2.2.2 Design for Human Variability  

Design for Human Variability (DfHV) is a quantitative, model-based design 

for X approach to evaluate human performance. DfHV focuses on quantifiable, 

physical characteristics of the user, most often related to anthropometry (Ferguson et 

al., 2015). Anthropometry is a measurement science that focuses on the human body 

(Heymsfield et al., 2018). DfHV seeks to optimize products and systems for safety, 

fit, and performance for broad populations using statistical modeling and 

ergonomic/human factors tools (Garneau et al., 2014). Accommodation, a measure of 
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the portion of target users able to use an artifact in the desired manner, is usually the 

objective to be optimized (Boyd & Parkinson, 2015).  

Typically, DfHV starts by identifying the user population, determining the 

variables that may influence user-artifact interaction, and quantifying the relevant 

human variability. Variability is quantified using existing data or with model 

estimations (Garneau et al., 2014). Databases, such as the US Army Anthropometric 

Survey (Gordon et al., 1989), contain anthropometric measures collected from a 

population of interest and can serve to represent variability of human form.  

Surveying the desired user population is also an option, however, it can be 

expensive and is limited by participants available for recruitment. A third option, 

which is an active area of research, is to estimate population characteristics using 

statistical models. Parkinson & Reed (2010) introduced a technique to synthesize 

virtual user populations from databases for assessment of accommodation, utilizing 

principle component analysis and linear regression. Similarly, Brolin, Högberg, 

Hanson, & Örtengren (2017) introduced an adaptive regression-based methodology to 

synthesize population data. Examples where synthesized populations have been used 

to inform artifact design include multi-user workstations (Mahoney et al., 2015), 

prosthetic heart valves (Aycock et al., 2015), and cockpit seat design (Poirson & 

Parkinson, 2014).  

Designing for variability is typically accomplished by specifying adjustability 

or sizing artifacts appropriately (Garneau et al., 2014). A virtual fitting trial is used to 

assess the fit between an individual and an artifact using synthesized population 

measures or using digital human models that perform the fitting trial in a virtual 
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graphical environment (Garneau & Parkinson, 2011; Godwin et al., 2007; Mahoney et 

al., 2015). Boundary manikins, individuals representing the extremes of the 

population, are usually sufficient for assessing accommodation (Boyd & Parkinson, 

2015).  

While highly objective and relatively easy to apply, DfHV has several 

limitations. DfHV methods utilize synthesized populations for assessing product fit.  

These synthetic populations often rely on databases that are out of date, do not 

sufficiently represent the population at large, or may not contain the desired measures 

(Nadadur et al., 2016). For example, the oft relied on 1988 US Army Anthropometric 

Survey (Gordon et al., 1989) does not adequately represent the shifting demographics 

and form of the US population at large, or even the current US army population 

(Garneau et al., 2014). Described by de Vries & Parkinson (2014), disproportionate 

disaccommodation refers to a design that does not proportionally accommodate the 

needs of certain sub-groups, and is both an ethical and performance concern. This is 

especially a concern to demographic minorities, whose needs may unintentionally go 

overlooked in conventional design settings. In addition, DfHV methods typically only 

consider physical variability. These methods neglect to address the variations in user 

cognitive and functional capabilities that can also have an impact on user-product 

interaction. 

2.2.3 Expert Elicitation 

One way to overcome challenges associated with recruiting heterogeneous 

users is to supplement recruitment-based studies with other approaches. Expert 

elicitation is the process of eliciting judgments regarding the value of unknown 
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quantities, often in the form of a probability distribution, from individuals who have 

been judged to be experts (Brownstein et al., 2019). Expert elicitation has previously 

been proposed as a means to quantify human performance (P. Liu et al., 2020; Pandya 

et al., 2020). In one of the most popular implementations, the Cooke protocol, several 

experts are asked to individually estimate quantities of interest as well as their 

uncertainty of the estimate (typically as percentiles). Estimates are performance 

weighted and pooled to achieve a robust consensus (Colson & Cooke, 2018; Cooke, 

1991). Other protocols require experts to collaborate on estimations, such as with the 

IDEA protocol. The advantage of having experts convene is that it can help clarify 

linguistic ambiguity and promote critical thinking. The disadvantage is that requiring 

experts to convene can be logistically difficult and expensive (Hemming et al., 2018). 

There are other available protocols (e.g., Delphi method (Skulmoski et al., 2007), 

SHELF (Gosling, 2018)) in literature and selecting the correct one will depend on the 

resources available and the availability of domain experts. 

The advantage of expert elicitation over other approaches discussed is the low 

resource burden and the flexibility (Hanea & Nane, 2019). When quantifying 

heterogeneous human performance, expert elicitation minimizes the need to recruit 

users. Further, there are no constraints on what quantities can be elicited. This said, 

the limitations of expert elicitation are significant (Morgan, 2014). Ultimately, 

without additional validation efforts, there is no way to guarantee estimations are 

sound even when procedures are followed meticulously. This is a highly subjective 

process, subject to various cognitive biases (“anchoring”, “range-frequency”, and 

overconfidence for example), but significant prior research has been performed to 
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provide guidance to make the process as objective and scientific as possible 

(O’Hagan, 2019). Ultimately, expert elicitation provides a subjective but cost-

effective means to elicit unknown quantities when other options are infeasible 

(Hemming et al., 2018). 

 

2.3 Modeling Product Function 

Customizing a product in early design stages requires an abstraction, or a 

model of the product. This chapter discusses function modeling, a process that seeks 

to represent a system as solution-neutral elements that describe what the system does 

without describing physical product elements. Attempts to incorporate human factors 

into models of function are discussed as well.  

2.3.1 Function Modeling 

 Function modeling is a analytical early-design stage process to explore the 

design solution space for potential concepts (Patel et al., 2020). Function models seek 

to provide a solution-neutral (i.e. with no physical embodiment) representation of an 

artifact or system that represent what that system does, it’s purpose and it’s behavior 

(Tomiyama et al., 2013). It is a way to formalize the understanding of a system, to 

support the generation of new product concepts, and to support the analysis and 

improvement of existing products and systems (Mokhtarian et al., 2017). Function 

modeling is useful because it helps to represent the purpose of the artifact, explain 

behavior or structure, capture functional customer requirements, and illustrate an 

overview of the artifact (Tomiyama et al., 2013) 
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Some of the most common approaches to modeling function are based on the 

flow-based thinking sometimes referred to as function structure (Pahl et al., 2007). 

These approaches represent material, energy, and information flows and the 

transformations they undergo through a system (Yildirim et al., 2017). Function 

structures are typically represented as a flow chart with functions represented as 

blocks and flows represented as arrows connecting functions. Other well-known 

approaches include the function-behavior-structure model (Umeda et al., 1996) and 

the structure-behavior-function model (Goel et al., 2009), which link the function, the 

behavior, and the structure of the system in a single representation.  

Language plays an important role in appropriately conveying function, and in 

creating effective models. Function often appears in engineering as natural language 

or in subject-verb-noun triplets (Tomiyama et al., 2013). The functional basis (Hirtz 

et al., 2002), a common language for describing product and system functions, is one 

of the most popular function taxonomies and is used to reduce ambiguity and 

facilitate communication between modelers (Stone & Wood, 2000). 

2.3.2 User-Centered Perspectives 

 There have been several attempts to incorporate human factors considerations 

into models of function (Sun et al., 2018). Ramachandran, Caldwell, & Mocko (2011) 

proposed the function interaction model, which includes an abstracted representation 

of the user and user activities. It was demonstrated to be a more effective tool for 

concept generation than standard function modeling. Sangelkar et al. (2012) 

introduced the action function diagram, a variation on the function structure diagram 

that links user activities to product functions. It highlights the differences between 
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universal products and typical products and can be used to reveal heuristic rules for 

universal design. This model took advantage of the World Health Organization 

International Classification of Functioning, Disability, and Health (WHO ICF) 

(World Health Organization, 2001) formal classification language for describing 

interaction. Similarly, Soria Zurita et al. (2020) linked modes of human failure with 

functions.  

Affordance-based methods have also been used to link the user to product 

functions. In the context of engineering design, an affordance is a relational benefit 

that an artifact offers an individual and is an emergent property of the user-artifact 

system (Cormier et al., 2014; Galvao & Sato, 2005). While not completely agreed 

upon, Maier & Fadel (2009) stated that affordances have the following properties: 1) 

Complementary – affordances cannot exist in either subsystem or in isolation; 2) 

Polarity – affordances can be positive or negative; 3) Multiplicity – a system can have 

multiple affordances; 4) Quality – affordances can have varying quality; 5) Form 

dependence – affordances depend on the artifacts physical structure.  

Affordances have been shown to be a useful construct for capturing and 

modeling user needs in early design and redesign phases, aiding in producing more 

usable and desirable products. Galvao & Sato (2005) were one of the first to 

demonstrate this idea by linking product functions to user tasks in a matrix form and 

using this to generate design solutions based on corresponding functional affordances. 

Maier & Fadel (2009) introduced the Affordance Structure Matrix, another 

architecture-matrix representation, which links affordances to physical product 

components. Further efforts to incorporate affordances into product development 
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include the development of an affordance basis (Cormier, Olewnik, & Lewis, 2014), 

reconciling function and affordance representations (Ciavola et al., 2015), and 

connecting affordance to design for environmentally conscious behavior (Srivastava 

& Schumann, 2013). 

While the previous efforts are useful for identifying where human interaction 

is necessary during product use and the nature of the interaction involved, they do 

little to identify the specific elements of the human involved in the interaction. 

Similar to functional representations of artifacts, a human interaction can also be 

abstracted to a functional classification. Cage (2017) proposed a standardized 

approach for mapping musculoskeletal interfaces to product components and 

functionally classifying the interaction from one of several generic interactions. This 

approach is used to identify physical human parameters important for accommodating 

musculoskeletal variability as well as identifying the human functions critical for 

successful product use.  

2.3.3 Function Allocation 

A product and a human product user form a human-machine system, where 

the product and the human perform various functions to achieve an overall goal. 

Function allocation, the process of distributing functions or tasks within these 

systems, is often discussed in human factors research but typically less represented in 

engineering design methodology (de Winter & Dodou, 2014). It seeks to answer the 

question “Who does what in this system?” and typically takes place in the conceptual 

design phase, and serves as a basis for the machine logic of the system (Feigh & 

Pritchett, 2014). Developed in the 1950s, the Fitts Lists was one of the first attempts 
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to formalize allocation of functions to humans and machines. The Fitts list, as well as 

the many lists it inspired, was a static list of strengths and weaknesses of both human 

and automation to be used as a basis for allocating functions (de Winter & Hancock, 

2015). Similar lists contained “levels of automation”, which specify degrees to which 

control of a task is given to a human or machine (Endsley & Kaber, 1999; R. W. 

Proud et al., 2003). Though it was foundational work, the Fitts list and other “MABA-

MABA” (Men Are Better At, Machines Are Better At) works have been met with 

significant criticism for being static, impractical, and for having 1-dimensional 

criteria for automation (Fuld, 2000; Hancock & Scallen, 1996; Sheridan, 2000). 

Critics have also pointed out that 1-to-1 substitution of human with machine functions 

is flawed because automation often results in emergent properties due to human-

machine interaction (Dekker & Woods, 2002).  

Due to automations increasing presence in most domains, function allocation 

has received renewed interest in recent years and many researchers have attempted to 

reconcile prior criticisms. Feigh & Pritchett (2014) outlined key criteria for effective 

function allocation, including: 1) Each agent must be allocated functions it is capable 

of performing; 2) Each agent must be capable of performing its collective functions; 

3) The function allocation must be met with reasonable teamwork; 4) The function 

allocation must support the dynamics of work; and 5) The function allocation should 

be a result of deliberate design decisions. These requirements then went on to inform 

accompanying modeling (Pritchett et al., 2014b) and measurement (Pritchett et al., 

2014a) frameworks for allocation of functions.  
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Adaptive and contextual allocation of functions has also become a subject of 

interest. Adaptive automation refers to systems in which the allocation of certain 

functions change with time (Sheridan, 2011). Though often considered impractical, 

advancements in sensing and methods for exploiting sensor data has made adaptive 

automation increasingly feasible (Feigh et al., 2012; Mannaru et al., 2016). Attempts 

have been made to model and apply dynamic function allocation. Bindewald, Miller, 

& Peterson (2014) demonstrated a modeling framework that supports the dynamic 

allocation of tasks in a computational work setting. Kidwell, Calhoun, Ruff, 

Parasuraman, & Mason (2012) successfully applied adaptive automation to the 

control of multiple autonomous vehicles simulation. 

Several authors have suggested the need to address mismatches in 

responsibility, ability, and authority in function allocation (Kaber, 2018; Pritchett et 

al., 2014b). A machine agent may be given the authority to execute a certain function, 

but a human agent often still has the implicit responsibility over the outcome of said 

function. Another example of this type of mismatch is when humans are given 

authority and responsibility over functions that they do not have the ability to 

perform. Put simply, responsibility should not exceed ability, and should not exceed 

authority (Flemisch et al., 2012). Responsibility that exceeds either of these can result 

in deficiencies in human performance, prevent effective cooperation, and potentially 

erode at the trust between human and machine agents.  

In heterogenous populations, customizing the allocation of functions for 

distinct user groups could mitigate the risk of detrimental mismatches between user 
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capability and user responsibility. Product family design could provide a cost-

effective means to achieve this. 

 

2.4 Product Family Design 

In this section, an overview of product family design methodology is 

discussed. Then, attempts to formalize product family design as an optimization 

problem are presented.  

2.4.1 Product Family Design Overview 

A product family is defined as a group of related products that share features, 

components, or subsystems to attain lifecycle cost benefits while varying other 

elements to satisfy particular market niches (Simpson et al., 2001). The product 

family refers to the set of products that share elements. The product platform refers to 

the elements that are shared between products from which product variants can be 

derived (Gauss et al., 2021). Variety is the diversity of products within a product line 

(Jiao et al., 2007). Typically, variety is achieved in two ways: 1) scaling of elements; 

or 2) swapping/adding functional elements. Scale-based platforms derive variety by 

changing the element parameters with the same functional capacity. Functional-based 

platforms derive variety by configuring function-based modules. The process of 

creating this variety to match the target population is product positioning (Jiao et al., 

2007). 

While there are many benefits to product family design, the two core 

advantages are related to engineering effort and manufacturing complexity (Gauss et 

al., 2021). By encouraging a modular product design, engineers can reuse technical 
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solutions, reducing design resources and eliminating redundancy in design solutions. 

Further, product family strategy can reduce the number of manufacturing lines 

required, eliminating upfront costs (Fiorineschi et al., 2014).  

Product family design often focuses on physical product architecture in the 

mid- to late-stages of design, however, there some examples of product family 

strategy being implemented at the functional stage. Function structure heuristics 

refers to a set of clustering rules to be applied to a functional representation of a 

product or system. Typically, the system of interest is represented as a function 

structure, a diagrammatic representation of material, energy, and signal flows and the 

functional transformations they undergo to achieve a goal (Fiorineschi et al., 2014).  

2.4.2 Product Family Optimization 

After a product family architecture has been defined, inclusion/exclusion and 

scaling parameters of product elements can be optimized. Product family 

optimization has been a popular area of research for some time. There are many 

variables and objectives to consider in these problems, however Pirmoradi, Wang, & 

Simpson (2014) identified 3 common classes of problem: 1) The platform 

configuration is known and the optimum design variables for that configuration is the 

objective (Michalek et al., 2005; Wäppling et al., 2011); 2) The optimum 

configuration of products (number of family members, configuration of modules, 

etc.) is the objective (Akai et al., 2010; Fujita et al., 2013); and 3) Simultaneous 

consideration of both (Ma & Kim, 2016; Pirmoradi et al., 2015).    

Multi-objective optimization is a class of optimization problem where 

multiple competing objectives are considered simultaneously. It is a popular approach 
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to product family optimization. Multi-objective optimization approaches can integrate 

engineering design, customer values, production cost, and other product family 

objectives into a single problem (Unal et al., 2017). These methods identify ranges of 

product family designs that are determined to be non-dominant, or pareto-efficient, 

based on the chosen criteria (Simpson et al., 2012). Akai et al. (2010) considered 

deployment of product family modules, optimizing based on maximizing profits and 

minimizing consumption of engineering resources. Sinha & Suh (2018) developed a 

model for minimizing structural complexity of a given design and maximizing the 

degree of modularity. Non-financial and engineering objectives are often considered 

as well, for example, when examining trade-offs between environmental impacts and 

product costs (Kim & Moon, 2017; Q. Wang et al., 2019).  
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Chapter 3: Case Study Description – Diabetes Self-Management 
Technology 
 

 

 The methodology proposed in this dissertation will be demonstrated on a 

design case study. The design case study was selected based on its appropriateness for 

the method, which is dependent on the characteristics of the target user population. 

The two criteria for judging appropriateness are listed below. The first criterion is a 

hard requirement. The second criterion is not required, but the potential benefits 

provide additional justification for using the method. The criteria are:  

1. Heterogeneous Users – The population is heterogeneous with respect to 

characteristics that influence product interaction. The assumption is that 

heterogeneity of these characteristics will result in heterogeneous functional 

design requirements. Heterogeneity is relative and will need to be judged 

based on prior knowledge about the characteristics of the population as well as 

the frequency and variability of usage-related issues experienced by the 

population (therefore requiring varied design requirements).  

Heterogeneous populations can be associated with consumer goods, 

where the user population is the general population, and includes products 

such as cell phones and laptops. Heterogeneous populations also appear for 

specialized products. This includes untrained populations, such as medical 

device users, whose characteristics can be widely varied. It can also include 

trained populations, such as occupation-based populations who require 

specialized tools. These populations will typically be relatively less 
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heterogeneous as there are often barriers-to-entry that will limit the variance 

of the population.  

2. Safety-critical or highly regulated domain – The health and well-being of a 

system stakeholder is dependent on the ability of the population to 

appropriately interact with the product, or the product domain is highly 

regulated with respect to meeting the usability needs of the intended user 

population. In most cases, this requirement and the prior requirement will 

coincide, as safety-critical domains (e.g., transportation, energy, defense, 

healthcare) require comprehensive regulation. Since this method will add 

time/resources to the design process, there should be additional regulatory 

motivation for its inclusion. 

The case study selected for this dissertation revolves around designing 

disease self-management technology for the diabetes population. Diabetes is 

becoming an increasingly prevalent chronic disease, with an estimated 415 

million individuals diagnosed worldwide (Harding et al., 2019). Diabetes is 

responsible for substantial healthcare-related expenses in the United States, 

costing an estimated $245 billion in treatment and loss of productivity in 2012 

(Menke et al., 2015). Non-adherence to diabetes disease self-management is a 

significant contributor to these costs and a serious problem in treating patients 

(Asche et al., 2011). Self-management of diabetes is highly dependent on 

supportive technology, for example glucometers and personal health record 

systems (Knisely & Vaughn-Cooke, 2020b). Therefore, methods for improving 

self-management of this disease are in high demand. 
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3.1 Background 

 This section presents additional background on patient-facing medical device 

use, and the challenges associated with engaging patient populations.  

3.1.1 Patient-facing Medical Devices and User Error 

Patient-facing medical devices and self-management technology have been 

shown to improve patient health outcomes, improve adherence to self-management, 

and decrease use of medical services (Asche et al., 2011; Greenwood et al., 2017; 

Pérez-Jover et al., 2019). Self-management technology is considered one the of best 

options for long-term patient care by helping patients take responsibility of their own 

health (Alessa et al., 2019). Despite these benefits, user error and issues with 

acceptance are common (Kannry et al., 2012; Silva et al., 2019). Commonly cited 

barriers to appropriate use include poor technological competence (Lyles et al., 2012; 

Pritchard & Nicholls, 2014), the ability of a patient to interact with novel technology, 

and poor health literacy (Mayberry et al., 2011; Shan et al., 2019), the ability of the 

patient to understand and apply information regarding their health. Specific types of 

user error experienced by patients range from difficulties following intended 

operating procedures, issues receiving device feedback, and difficulties performing 

physical interaction with the device (Knisely, Levine, et al., 2020). 

There are many examples of usability issues occurring with marketed patient-

facing products. One study evaluated three blood pressure monitors and found several 

issues related to equitable use (Cifter, 2017). Fung et al. (2015) discovered that 

individuals with physical or sensory impairments may experience interaction 

difficulties with positive airway pressure devices for treatment of sleep apnea. 
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Agnisarman et al. (2017) evaluated several home-based telemedicine software 

platforms and discovered significant differences in usability, user errors, and 

cognitive workload in participants interacting with the software.  

Though these concerns remain common, patients have little influence on the 

design and evaluation of medical devices (Czaja et al., 2015; Ng et al., 2016). 

Incorporating feedback from patients during the medical device design process can 

help to mitigate downstream usability issues, consequences to patient safety, and 

prevent expensive recalls and litigations (Johansen, 2018). The US Food and Drug 

Administration requires that medical device manufacturers minimize unsafe device 

use by performing extensive human factors testing. While performing formative 

design validation, designers should evaluate device use with participants who are 

“representative of the range of characteristics within their user group,” where each 

group should “perform different tasks or will have different knowledge, experience or 

expertise that could affect their interactions with elements of the user interface” (Food 

and Drug Administration, 2016). Given this, medical device manufacturers should 

strive to include patient populations in the design process, however, they face many 

challenges when engaging with these populations.  

3.1.2 Engaging Patient Populations 

Engaging with patients during the design process is often avoided due to 

perceived costs and delays in product development. The medical device industry is 

rapidly changing, and some manufacturers perceive formal methods of user 

engagement as detrimental to maintaining a competitive pace (Liao et al., 2015; 

Roma & de Vilhena Garcia, 2020). Organizational culture can prohibit engagement 
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with users by observing preconceptions and discouraging the practice all together. 

Additionally, design teams may not have access to the user population. Further, when 

design teams do have access to the intended user population, they often lack the 

human factors experience and tools required for effective user engagement and device 

customization (Ozcelik et al., 2011).  

Patient populations deviate significantly from the general population 

regarding design usability requirements (Czaja et al., 2015). This makes it even more 

important to specifically target patients when evaluating device design. In addition, 

the uniqueness of the patient population introduces new recruitment challenges. The 

majority of patient-facing medical device users have at least one chronic disease and 

are disproportionally represented as vulnerable and minority populations. This may 

include the disabled, racial and ethnic minorities, low socio-economic status, the 

elderly, and those who live in rural areas (UyBico et al., 2007). These populations 

come with unique recruitment challenges (McLaughlin et al., 2020). The elderly 

population, for example, has been reported as having general mistrust in institutions, 

transportation limitations, physical and cognitive impairment, apathy towards 

research participation, and medical and health related fears, all of which make access 

difficult (McHenry et al., 2015). 

 

3.2 Objectives 

The diabetes population is a safety-critical population, motivating the need for 

analysis of end-user capability in early-stage design (upstream neutrality) to identify 

necessary design requirements to mitigate user error. Further, this population is 



 

 

41 

 

heterogeneous. Individuals with diabetes have varied cognitive skills required for 

device interaction (e.g., health literacy, technological competency), and have a high 

incidence of comorbidities (e.g., arthritis, glaucoma, neuropathy) that can influence 

product use (Showell, 2017; Trief et al., 2013; Weppner et al., 2010). This population 

is also non-general, motivating the need for currently non-existent human 

performance data. In each of the following chapters, a piece of the dissertation 

methodology will be introduced generally. Guidance will be provided for applying 

the method to any heterogeneous population. Then, the method piece will be 

demonstrated specifically for the diabetes population, with the goal to improve the 

design of diabetes self-management technology.   
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Chapter 4: Leveraging Physician Expertise and National 
Population Data to Model Heterogeneous Population User 
Groups 
 

4.1 Introduction 

In this chapter, a process for defining task-specific, performance-driven user 

groups utilizing expert input is proposed. Throughout this dissertation, experts are 

considered individuals who have significant experience or education with respect to 

human performance of routine human activities. It is proposed that internal medicine 

physicians satisfy these criteria. This medical specialty was targeted because they 

observe humans of all capabilities interacting with products (e.g., using medical 

devices) routinely and, as generalists, care for patients with diseases common among 

all the task domains included. They routinely assess and attempt to predict a patients’ 

ability to perform tasks. Internal medicine physician expertise is not isolated to a 

specific sub-system of the human body and they therefore evaluate a broad range of 

task performance characteristics.  

Figure 2 summarizes the process introduced in this chapter. First, an existing 

taxonomy of physical and cognitive tasks is translated into standardized tasks 

optimized for physician judgment (P&C Physician Judgment Tasks). Next, a process 

for using input from domain experts (physicians) to identify human characteristics 

relevant to the performance of these tasks is introduced. Then, a novel approach for 

mapping user characteristics to existing population data to be used as input for a 

cluster analysis is demonstrated. National population data was acquired from the 

National Health and Nutrition Examination Survey (NHANES) dataset (Centers for 
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Disease Control and Prevention, 2019). This data serves as input to statistical 

clustering to define user groups. This process can be replicated for any user 

population but is demonstrated on the diabetes population case study.  

  
Figure 2: Summary of Chapter 4. 

 

4.2 Methodology 

This section describes the process for defining task-specific user groups. The 

steps for this methodology are summarized as follows:  

1. Generate standardized physical and cognitive interaction tasks optimized for 

physician judgment (P&C Physician Judgment Tasks). E.g., Fine motor 

movement 

2. Map tasks to relevant user characteristics. E.g., Disease history 

3. Map user characteristics to NHANES variables. E.g., Presence of arthritis 

4. Statistically cluster NHANES subjects to generate product user groups. 
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4.2.1 Generating Tasks for Physician Judgment 

Human performance is highly dependent on the given context, which makes 

reusing human performance data across products difficult. In this work, standardized 

tasks required for product interaction were defined such that human performance data 

could be collected and applied across products for a given population. While making 

tasks general does create some uncertainty regarding accuracy, it extends the 

usefulness of collected data and facilitates future validation. Further, these tasks were 

defined to facilitate physician judgment on task performance, referred to as P&C 

Physician Judgment Tasks.  

P&C Physician Judgment Tasks were derived from two existing taxonomies, 

including Bloom’s taxonomy of the cognitive domain (Bloom, 1956) and Harrow’s 

taxonomy of the psychomotor domain (Harrow, 1972). While originally intended for 

and most commonly applied to evaluating educational objectives (Crompton et al., 

2019; Verenna et al., 2018), Bloom’s and Harrow’s taxonomies were repurposed to 

describe product interaction from a human factors perspective. Both taxonomies have 

been subject to validating efforts as tools for classifying the complexity of human 

activities (Hamid et al., 2012; Knisely, Joyner, et al., 2020; Lalwani & Agrawal, 

2018; Phillips et al., 2013; Roberts, 1976; Soozandehfar & Adeli, 2016). Tables 2-3 

contains Bloom’s and Harrow’s Taxonomy, tasks ordered by increasing complexity.  

Table 2: Bloom's Taxonomy listed in order of increasing cognitive complexity. 

Taxonomy Level Description 

Knowledge Recall of specific facts or ideas. 

Comprehension Understanding and interpreting facts and ideas. 

Application The use of prior knowledge in novel situations. 

Analysis Decomposing a system into its composite parts and examining those 

parts. 

Synthesis Combining independent elements to form a new system. 

Evaluation Judging the value of a system based on evidence and certain criteria. 
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Table 3: Harrow's Taxonomy listed in order of increasing psychomotor complexity. 

Taxonomy Level  Description  

Reflexive Movements  Involuntary movements evoked in response to some stimuli. 

Fundamental Movements Basic movement patterns which build on reflexive movements and 

include acts such as reaching, grasping, and walking. 

Perceptual Abilities  Ability to receive information about oneself and the world via one 

of several sensory systems (vision, hearing, etc.). 

Physical Abilities  The functional characteristics of the body which govern the 

efficiency of skills in the psychomotor domain. 

Skilled Movements Complex movement skills that require learning. 

Non-Discursive Movements Learned movements used for communication. 

 

The researchers used their combined expertise in human factors and physician 

judgment to decompose and translate levels of Bloom’s and Harrow’s taxonomy into 

tasks that were: a) typical of product interaction and b) conformed with physician 

understanding of what constitutes a distinct task. The objective was to provide a 

model for describing product interaction such that physicians could make quantitative 

judgments on task performance. The granularity of tasks was evaluated based on 

trade-offs between how specific they could be applied verses the complexity of the 

resulting analysis. More specific tasks can be used to describe device interaction more 

precisely, but would create a larger decomposition, and increase the number tasks to 

be analyzed in subsequent steps. Refining these tasks further for specific applications 

may be required, as not all tasks may be relevant for every product. Table 4 

demonstrates this methodological development.  
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Table 4: Methodological development (left to right) for translating taxonomy tasks into tasks tailored 

for physician judgment with specific examples.  

  P&C Taxonomy 

Tasks 

P&C Physician 

Judgment Tasks 

Examples 

Intended 

Use 

Scope 

(Generalizability) 
Product interaction 

Product 

interaction 
- 

User Population All All - 

Terminology 

tailored for: 
Human factors 

Physician 

judgment 
- 

Harrow’s Taxonomy 

Reflexive Movement - - 

Fundamental 

Movement or 

Physical Abilities* 

Gross Upper-body 

Movement 

Pushing, pulling, 

holding 

Gross Lower-body 

Movement 

Kicking, stomping, 

squatting  

Locomotor 

Movement 

Walking, running, 

crawling 

Fine Motor 

Movement 

Pressing, twisting, 

grasping 

Speech Production Talking 

Perceptual Abilities 

Visual 

Discrimination 

Seeing 

Auditory 

Discrimination 

Hearing  

Tactile 

Discrimination 

Feeling 

Skilled Movements - - 

Non-discursive 

Communication 
-  

Blooms Taxonomy 

Knowledge 

Applying Existing 
Knowledge 

Recalling 

knowledge, 

classifying 
knowledge, 

executing 

procedures 

Comprehension 

Application 

Analysis 

Problem-solving 

and Decision-

making 

Comparing, 

contrasting, 

assembling, 

integrating, judging, 

critiquing 

Synthesis  

Evaluation 

*Physical Abilities is typically listed below perceptual abilities, however several physician judgment 

tasks could conceivably be group as Fundamental Movement or Physical Abilities, so they were 

grouped.  

 

Tasks listed under Harrow’s taxonomy are psychomotor, requiring motor and 

neuromuscular control (Harrow, 1972). Note that while Physical Abilities appears 

below Perceptual Abilities in Harrow’s taxonomy, Fundamental Movements and 

Physical Abilities were grouped in Table 4 because several of the generated P&C 
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Physician Judgment Tasks could conceivably belong to either. Only visual, auditory, 

and tactile discrimination were included for Perceptual Abilities because they 

represent the typical sensory modalities needed for product interaction. No generated 

tasks fell under Reflexive Movement, Skilled Movements, or Non-discursive 

Movements. Reflexive Movement were determined to be too fundamental to be 

useful to describe a complete product interaction. Skilled Movements are product 

specific by their very nature and can therefore not be generalized for typical product 

interaction. Non-discursive communication describes movements used for 

communication with another human. While gesturing is used for communication with 

some autonomous systems, it was determined to be an edge case and was not 

considered.  

Tasks listed under Bloom’s taxonomy are those that require mental 

processing. The tasks included were primarily unobservable actions. Tasks in 

Bloom’s taxonomy are presented in order of increasing amounts of conscious control 

required for execution. The individual levels of Bloom’s taxonomy were identified as 

too granular to facilitate physician judgment and were categorized into two groups. 

These categories include Applying Existing Knowledge and Problem-solving and 

Decision-making. Applying Existing Knowledge requires using existing knowledge 

in a routine way. Problem-solving and Decision-making tasks require the creation of 

new knowledge or applying old knowledge to a new situation (Krathwohl, 2002), 

which is considered a more cognitively complex activity. The main distinction 

between these cognitive tasks is that an existing rule (conditional statement) is used to 
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apply previously acquired knowledge for Applying Existing Knowledge, whereas a 

new rule must be created to perform Problem-solving and Decision-making tasks.   

4.2.2 Identifying Relevant User Characteristics via Expert Input 

The next step in the methodology is to identify performance-driving user 

characteristics for each P&C Physician Judgment Task in Table 4. To help identify 

these variables, a survey was devised for domain experts to rank the importance of 

certain characteristics to the performance of the tasks. Internal medicine physicians 

from the University of Maryland Medical Center were targeted for recruitment.  

Three high-level tasks were included in the survey: physical, sensory and 

perception, and cognition. For each, experts were given a list of user characteristics 

and asked to rank them based on the order they would consider them when evaluating 

the ability of an individual to perform the task. Experts were required to rank at least 

one user characteristic per task. The survey was developed and administered using 

Qualtrics. All internal medicine physicians affiliated with the University of Maryland 

Medical Center were eligible to participate. The questions were presented as follows:  

 

1. If asked to predict the ability of a population to perform tasks requiring 

physical effort, what information would you consider? In what order would 

you consider it? 

2. If asked to predict the ability of a population to perform tasks requiring 

sensation and perception, what information would you consider? In what 

order would you consider it? 
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3. If asked to predict the ability of a population to perform tasks requiring 

problem-solving and decision-making (cognition), what information would 

you consider? In what order would you consider it? 

 

The survey was administered to expert physicians with no direct incentives. 

Therefore, it was critical to limit the number of questions and survey time to ensure 

adequate recruitment levels and participation. The subject of each question (physical 

effort, sensation and perception, problem-solving and decision-making) were 

identified as the lowest level of specificity that could be presented to physicians and 

still elicit meaningful judgments, while not compromising the data collection goals.  

User characteristics to be included were generated via an iterative process of 

requirements elicitation and refinement. Existing literature, and the co-authors 

expertise in medicine and product interaction, were used to create a preliminary list. 

The focus of inclusion was user characteristics with a direct potential influence on the 

performance of tasks. The characteristics and justification for inclusion are shown in 

Table 5.   

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

50 

 

Table 5: User characteristics included in the medical expert survey. 

Patient Characteristic Justification for Inclusion 

Age 

Age is associated with decline of physical 
(Seidler et al., 2010; Senefeld et al., 2017), 

sensory (Rudman et al., 2016; P. Wu et al., 

2020), and cognitive abilities (Meng et al., 

2017). 

Socioeconomic Status 

Socioeconomic status has been shown to be 

associated with various health outcomes 

(Blackwell et al., 2014; Präg et al., 2016). 

Physical Independence 

Level of physical independence has been shown 

to be associated with physical activity (Marques 

et al., 2014) and cognitive task performance 

(Sobol et al., 2016).  

Decision-making Decision-making, attention, and memory skills 

are integral elements of cognition (Guilera et al., 

2020).  
Attention 

Memory 

Substance Abuse 

Substance abuse has been linked to impairment 

of physical, sensory, and cognitive abilities 

(Barnes, 2014; Harvey et al., 2018; Toplak et al., 
2010). 

Exercise 
Exercise has been linked to physical activity 

(Liubicich et al., 2012; Rejeski et al., 2010). 

Psychiatric Disorder 
Psychiatric disorders have been linked to 

impaired cognition (Toplak et al., 2010).  

Disease History Many chronic diseases have been associated 

with poor human performance (Fung et al., 

2015; Showell, 2017). 
Disease Severity 

Details of Task 
Individual as well as contextual factors 

determine task performance.   

Health Literacy 

User health literacy has been associated with 

perceived medical device usability (Chaniaud et 

al., 2020). 

Other (please elaborate in text box): -  

 

Each participant was asked to rank the characteristics that would be 

considered to predict outcomes for the aforementioned tasks, along with the order that 

they would consider this information. Rankings were evaluated using the Borda count 

(Emerson, 2013), where characteristics ranked 1 received n points, characteristics 

ranked 2 received n – 1, and so on, where n is the total number of options. User 

characteristics with the highest counts summed across experts are used in next stages 

to identify relevant user data.   
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4.2.3 Mapping Tasks and User Data 

Following identification of task-relevant user characteristics, user 

characteristics can be quantified for a given population by mapping them to variables 

in existing data. Several publicly available databases exist with data on human health, 

capabilities, etc. Examples include NHANES (Centers for Disease Control and 

Prevention, 2019), the National Health Interview Survey (Centers for Disease Control 

and Prevention, 2018), and the US Army Anthropometric Survey (ANSUR) (Gordon 

et al., 1989). In this work, NHANES variables are linked to user characteristics. 

NHANES is a longitudinal survey used to monitor the health and wellbeing of United 

States citizens. Demographic, socioeconomic, dietary, and health-related questions 

are included. This data is well suited to define user groups because of the many 

physical and cognitive health characteristics included and its coverage of the specific 

characteristics identified in the physician survey. 

In the previous section, a process to identify user characteristics relevant to 

task performance was described. Following this, corresponding NHANES variables 

are mapped to each user characteristic. These variables can be used to cluster subjects 

into task-specific user groups. Using NHANES data ensures that the composition of 

user groups reflects the actual population and eliminates the risk of customizing a 

product for users who are not well represented. NHANES is released in yearly 

installments, and not all variables are consistent from year to year. In this work, 

NHANES 2017-2018 is used. 

For each variable, justification was sought in literature for the mapping. 

Specific diseases were justified using the WHO ICF core sets. ICF core sets link 
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standardized terminology for human functioning and health to specific disease 

categories (Selb et al., 2015). If a standard term analogous to the task being assessed 

was present in an ICF disease core set, then it was assumed the corresponding 

NHANES disease variable is relevant to the task. The steps of this justification 

process are summarized as follows:  

 

1. Find an NHANES variable for a specific disease. (e.g., Arthritis) 

2. Hypothesize link between NHANES variable and cognitive or psychomotor 

task. (e.g., NHANES Variable: Arthritis → Task: Fine Motor Movement) 

3. Search ICF for standard terminology for human functioning analogous to the 

task. (e.g., Task: Fine Motor Movement → ICF Term: Fine Hand Use) 

4. Find corresponding ICF core set for disease and locate ICF core set term (e.g. 

ICF course set: post-acute musculoskeletal disease (Scheuringer et al., 2005) 

→ ICF Term: Fine Hand Use ) 

 

Following selection and justification of NHANES variables, data can be 

retrieved from the NHANES website. The data is split into multiple subject specific 

files that must be retrieved separately. Participants are labeled with a unique 

“Respondent Sequence Number” that can be used to link data together. If a specific 

chronic disease population is of interest, and the appropriate NHANES variable 

exists, participants can be filtered based on having the chronic disease.  
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4.2.4 Clustering User Data 

To define user groups, the data is statistically clustered. It is common for 

several clustering algorithms to be benchmarked against one another when clustering 

data. Three clustering algorithms were selected for this work, including gaussian 

mixture models (GMM), partitioning around medoids (PAM), and hierarchical 

clustering (HC). This selection of clustering algorithms represents three of the 

common classes of clustering algorithms used for mixed-data types – model-based 

(GMM), partitional (PAM), and hierarchal (HC) (Ahmad & Khan, 2019). Using 

multiple clustering algorithms can help illuminate general cluster-based trends in the 

data and can produce a larger variety of candidate solutions to evaluate.  

GMMs are a model-based clustering algorithm that assume data exist as 

several sub-populations that follow gaussian distributions (Ahmad & Khan, 2019). 

Distribution means and variances are fit to the data using the expectation-

maximization algorithm, allowing the probability of membership for each cluster to 

be calculated for each data point. Thus, data points are given mixed or “soft” 

assignments to clusters. Further, because the data was mixed (continuous, ordinal, 

and binary), the R package clustMD is used because it is formulated to accept mixed-

data types (McParland & Gormley, 2015). While GMM clustering does have a 

relatively higher time complexity than simpler clustering algorithms (D. Xu & Tian, 

2015), the soft group assignment used with GMMs fits with the logic for user group 

membership. The variables used to define clusters explain a portion of the variance in 

task performance that would be observed in practice. Certainly, there are other user 

characteristics not included in NHANES that could provide additional information, as 
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well as other variables regarding the context of the task being performed that are 

unknowable. With GMM, this uncertainty is incorporated into the clusters by 

assigning probabilities for group membership. 

PAM is a more robust version of the k-means algorithm and is better suited 

for mixed-data type clustering. While k-means fits clusters using Euclidean distance 

and identifies cluster centers using cluster means (centroid), PAM accepts arbitrary 

distance metrics and restricts cluster centers to be actual members of the data 

(referred to as a medoid) (Schubert & Rousseeuw, 2019). HC is a flexible clustering 

method that assigns each data point to a unique cluster, and iteratively merges clusters 

based on proximity given a selected distance metric (Murtagh & Contreras, 2017). 

For both algorithms, the Gower distance is utilized. Gower distance accepts 

continuous, ordinal, and categorical variables and produces an aggregate distance 

measure (Podani, 1999). Both PAM and HC are less complex clustering algorithms 

than GMM and serve as model benchmarks.  

To evaluate the clustering algorithms and the number of clusters, a mixed 

internal and external validation approach is taken. The advantage of using both 

internal and external validation is that it utilizes both prior knowledge about the 

subject matter and new information intrinsic to the data. This prevents overreliance 

on preconceptions about the structure of the data but also ensures that generated 

clusters are meaningful (Gajawada & Toshniwal, 2012). For internal validation, 

several commonly used metrics were identified. The metrics selected include the 

silhouette index, Calinski-Harabasz (CH) index, connectivity, and Bayesian 

Information Criterion (BIC). Silhouette index and CH index both measure cluster 
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compactness, a measure of intra-cluster variance, along with cluster separation (Brock 

et al., 2008; Caliński & Harabasz, 1974). While these metrics measure similar 

qualities, they demonstrate different performance given various properties of the data 

(e.g., noisy data, cluster skewedness) (Y. Liu et al., 2010). Both should be 

maximized. Connectivity is a measure of the connectedness between clusters and 

should be minimized (Handl et al., 2005). BIC selects the number of clusters that 

maximizes model likelihood (goodness of fit) while penalizing model complexity 

(number of parameters in each model) (McParland & Gormley, 2015). BIC relies on 

model likelihood estimations and is therefore only available for GMM. Clustering 

algorithms fit clusters by optimizing different objective functions and may be biased 

towards certain validation metrics. Therefore, internal validation metrics are only 

used to evaluate the number of clusters within algorithms, not across.   

For external validation, dominant cluster characteristics are extracted, 

summarized, and evaluated subjectively by the researchers. Each cluster are 

qualitatively assigned a relative risk category, where the highest and lowest risk 

clusters corresponding to the highest and lowest risk categories. Clusters can then be 

evaluated based on qualitative separation, conformity with researcher expectations 

given their medical backgrounds, and for anticipated usefulness for product 

personalization. Clusters that are qualitatively separated are desirable for the 

customization task because it helps to justify specifically tailored design solutions. 

Quantitative cluster performance in isolation does not guarantee meaningfully distinct 

clusters in practice.  
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4.3 Case Study Application 

 The above methodology was applied to the diabetes self-management case 

study. This section discusses how the methodology was specifically tailored for this 

application.  

4.3.1 Case Study Tasks 

Tasks were evaluated for inclusion based on minimizing the tasks required to 

characterize the population, which will become critical when expert elicitation is used 

to quantify task performance (Chap. 5) and recruitment efforts could be hampered by 

a lengthy process. This required elimination of tasks that were not directly relevant to 

diabetes self-management. The final list of tasks to be included are summarized in 

Table 6. The physical tasks not included were determined to be irrelevant for most 

medical device interaction related to diabetes. Finally, while relevant, tactile 

discrimination and speech production were eliminated for this particular case study 

due to the limited relevant data in the NHANES database. The included tasks were 

used to drive the identification of relevant user characteristics by experts, which 

drove data acquisition and clustering. 
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Table 6: Methodological development (left to right) for translating taxonomy tasks into diabetes case 

study tasks.  

  P&C Taxonomy 

Tasks 

P&C Physician 

Judgment Tasks 

P&C Case Study 

Tasks 

Intended 

Use 

Scope Product interaction Product interaction 
Medical device 

interaction 

User 

Population 
All All Diabetes population 

Terminology 

tailored for: 
Human factors  Physician judgment Physician judgment 

Harrow’s Taxonomy 

Reflexive Movement - - 

Fundamental 

Movement or Physical 

Abilities 

Gross Upper-body 

Movement 

Gross Upper-body 

Movement 

Gross Lower-body 

Movement 
† 

Locomotor 

Movement 

† 

Fine Motor 

Movement 

Fine Motor 

Movement 

Speech Production * 

Perceptual Abilities 

Visual 

Discrimination 

Visual 

Discrimination 

Auditory 

Discrimination 

Auditory 

Discrimination 

Tactile 

Discrimination 
* 

Skilled Movements - - 

Non-discursive 

Communication 
- - 

Blooms Taxonomy 

Knowledge 
Applying Existing 

Knowledge 

Applying Existing 

Knowledge 
Comprehension 

Application 

Analysis Problem-solving 

and Decision-

making 

Problem-solving 

and Decision-

making 

Synthesis  

Evaluation 

* Removed due to lack of data, † Removed due to lack of relevance. 

4.3.2 User Clustering 

Data Preparation: Data retrieved from NHANES was filtered by subjects who 

reported having diabetes. Only participants who responded to all the questions for 

each task were kept in each dataset. Therefore, the samples per task was dependent on 

the NHANES variables included. Further, individuals younger there 18 were not 

included in the analysis. Sample sizes for cluster analyses ranged from 616 to 720. 

Exact sample sizes for each cluster analysis are presented in the results. Continuous 
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variables were scaled by subtracting the mean and dividing by the standard deviation. 

Dichotomous variables were translated into binary values, where 1 indicated the 

presence of that variable (e.g., 0 = No arthritis, 1 = Has arthritis). Ordinal variables 

were translated into integers corresponding to the number of levels. For clustering 

algorithms not explicitly designed to handle mixed data (PAM, HC), the pairwise 

distance matrix was calculated for all datapoints using Gower distance prior to 

clustering. 

Clustering Details: Cluster numbers and clustering algorithms were evaluated 

internally and externally as detailed in Chapter 4.2.4. Cluster quantity was limited to 

4 to provide a feasible range of user groups for the subsequent expert elicitation. 

ClustMD includes several covariance structure models that can be used that allow 

varying degrees of GMM complexity in terms of cluster volume and orientation 

(McParland & Gormley, 2015). Parameters that control cluster shape and orientation 

are either set as the identity matrix, constrained across clusters, or totally 

unconstrained. All six covariance models were tested for 2, 3, and 4 clusters. The 

models with the best performance (BIC) for each cluster count were selected and 

subjected to internal and external validation. 

 

4.4 Results 

Discussed in this section are the results from the survey to identify relevant 

user characteristics for task performance, the results of the user characteristic – 

NHANES variable mapping, and results of the cluster analysis.  
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4.4.1 Expert Identified User Characteristics Survey 

 Figure 3 displays the Borda counts for the three survey questions on user 

characteristics and task performance.  

 

Figure 3: Borda count for each user characteristic for the three high-level tasks included. 
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For each survey task, the top 6 characteristics were selected for use in 

identifying relevant variables from the NHANES database. The task-characteristic 

mappings are as follows:  

 

• Gross Upper-body Movement (Physical Effort): Physical Independence, 

Disease Severity, Exercise, Age, Details of Task, Disease History 

• Fine Motor Movement (Physical Effort): Physical Independence, Disease 

Severity, Exercise, Age, Details of Task, Disease History 

• Visual Discrimination (Sensory and Perception): Details of Task, Disease 

History, Age 

• Auditory Discrimination (Sensory and Perception): Details of Task, 

Disease History, Age 

• Applying Existing Knowledge (Cognitive): Memory, Attention, Decision-

making, Details of Task, Psychiatric Disorder, Age 

• Problem-solving and Decision-making (Cognitive): Memory, Attention, 

Decision-making, Details of Task, Psychiatric Disorder, Age 

 

For visual and auditory discrimination, only the top 3 characteristics were 

selected as directly relevant to sensory and perception. Characteristics 4-6 were 

considered but determined to be ultimately not relevant enough for inclusion. 

4.4.2 User Characteristic – NHANES Variable Mapping 

The NHANES database was reviewed for variables relevant to each user 

characteristic. Table 7 contains the NHANES variables mapped to characteristics for 
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“gross upper-body movement”. Tables for the other tasks can be seen in Appendix A. 

The format of the NHANES variable and justification for inclusion are also included. 

“Details of task”, while determined to be important, was not included because it was 

not represented in NHANES as it is a contextual characteristic as opposed to a patient 

characteristic. In some cases, where disease severity was available, disease history 

and disease severity were converted into a single, ordinal variable.  

 
Table 7: User characteristic - NHANES variable mapping for "gross upper-body movement." 

Expert Survey 

Characteristic  

NHANES Variable Format  Justification 

Age Age Continuous  

Age and decreased 

muscular strength are 

associated (Senefeld et 

al., 2017). 

Physical 

Independence 

Reported difficulty dressing 

or bathing 
Binary – Yes or No 

Activity is a specific case 

of “gross upper-body 
movement.” 

Physical 

Independence 

Reported difficulty reaching 

up 

Ordinal – No 

difficulty, Some 

difficulty, Much 

difficulty, Unable to 

do, Does not do 

Activity is a specific case 

of “gross upper-body 

movement.” 

Physical 

Independence 

Reported difficulty moving 

large objects 

Ordinal – No 

difficulty, Some 

difficulty, Much 

difficulty, Unable to 

do, Does not do 

Activity is a specific case 

of “gross upper-body 

movement.” 

Disease History 

Reported having: 

- Arthritis 

- Gout 

- Bone/joint injury 

- Neck and back 

problems 

Binary – Yes or No 

“Hand and arm use” 

linked with post-acute 

musculoskeletal disease 

ICF core set 

(Scheuringer et al., 

2005).  

Disease History 

Reported having: 

- Congestive heart 

failure 

- Angina/angina 

pectoris 

Binary – Yes or No 

“Hand and arm use” 
linked with 

cardiopulmonary post-

acute ICF core set 

(Wildner et al., 2005). 

Disease History 
Reported having coronary 

heart disease 
Binary – Yes or No 

“Lifting and carrying 

objects” linked with 

ischaemic heart disease 

ICF core set (Cieza et al., 

2004). 
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Table 7 (continued) 

Disease History 

Reported having: 

- Asthma  

- Emphysema 

- Chronic Bronchitis 

- COPD  

Binary – Yes or No 

“Lifting and carrying 

objects” linked with 

obstructive pulmonary 

disease ICF core set 

(Stucki, Stoll, et al., 
2004). 

Disease History Reported having obesity Binary – Yes or No 

“Lifting and carrying 

objects” linked with 

obesity ICF core set 

(Stucki, Daansen, et al., 

2004). 

Disease History Reported having a stroke Binary – Yes or No 

“Hand and arm use” 

linked with stroke ICF 

core set (Geyh et al., 

2004). 

Exercise 
Reported physical activity 

at work  

Ordinal – None, 

Moderate, Vigorous 

Physical activity is 

associated with upper-

body mobility (Rejeski et 

al., 2010). 

Exercise 
Reported physical activity 

recreationally 

Ordinal – None, 

Moderate, Vigorous 

Physical activity is 
associated with upper-

body mobility (Rejeski et 

al., 2010). 

 

4.4.3 User Group Cluster Analysis 

Using the prior variables, data was statistically clustered using each clustering 

algorithm. Cognitive task cluster results (“applying existing knowledge” and 

“problem-solving and decision-making”) were evaluated together because the 

NHANES variables identified for both were identical, and therefore clusters were not 

differentiated. GMM BIC values per cluster per task are shown in Appendix B. Note 

that in the R packages used, BIC is formulated such that the maximum value is 

sought, while in many other cases it is formulated such that the minimum is sought.  

Tables 8-10 contain cluster internal validation metrics and subjective risk 

level categories for “gross upper-body movement”, “fine motor movement”, and 

cognitive tasks. Summaries of dominant characteristics for each cluster solution that 

were translated into subjective risk-levels are displayed in Appendix C.  
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Table 8: Internal and external validation criteria for “gross upper-body movement” clusters. 

Clustering 

Algorithm 
PAM HC GMM 

Cluster Count 2 3 4 2 3 4 2 3† 4 

Silhouette 

Index 
0.184* 0.135 0.141 0.173 0.198* 0.163 0.167* 0.124 0.110 

Connectivity 127.7* 310.2 254.8 178.2* 232.1 254.0 341.3* 469.1 607.9 

CH Index 161.1* 123.5 117.2 71.3 76.2* 69.3 126.2* 104.6 85.9 

BIC (× 104) - - - - - - -1.65 -1.64* -1.65 

C1 RL ML L L M ML ML ML L ML 

C2 RL MH ML ML MH MH M MH M ML 

C3 RL - MH M - MH MH - H ML 

C4 RL - - MH - - MH - - H 

C# = Cluster #, RL = Risk-level, L = Low, ML = Moderately Low, M = Moderate, MH = Moderately 

High, H = High, *Highest scoring cluster count for each metric and each algorithm, †Selected cluster 

solution.   

 
Table 9: Internal and external validation criteria for “fine motor movement” clusters. 

Clustering 

Algorithm 
PAM HC GMM 

Cluster Count 2 3 4 2 3 4 2† 3 4 

Silhouette Index 0.314* 0.287 0.291 0.158 0.144 0.194* 0.235* 0.104 0.138 

Connectivity 14.5* 116 146 48.0* 49.5 68.5 224* 315 357 

CH Index 298* 209 194 74.7 40.0 85.6* 127.3* 71.0 79.6 

BIC (× 103) - - - - - - -9.82* -9.85 -9.88 

C1 RL ML ML ML ML ML ML M ML ML 

C2 RL M ML ML M M M MH M M 

C3 RL - ML M - H MH - H MH 

C4 RL - - MH - - H - - MH 

C# = Cluster #, RL = Risk-level, L = Low, ML = Moderately Low, M = Moderate, MH = Moderately 

High, H = High, *Highest scoring cluster count for each metric and each algorithm, †Selected cluster 

solution.   

 
Table 10: Internal and external validation criteria for cognitive task clusters. 

Clustering 

Algorithm 
PAM HC GMM 

Cluster Count 2 3 4 2 3 4 2 3† 4 

Silhouette Index 0.355* 0.313 0.265 0.309 0.217 0.319* 0.295 0.303* 0.301 

Connectivity 136 95.2* 182 49.1* 67.6 79.9 40.8* 106 133 

CH Index 362* 357 294 93.5 71.5 173* 300 316* 280 

BIC (× 104) - - - - - - -1.23 -1.15* -1.19 

C1 RL ML L L M ML ML L L L 

C2 RL MH M M M M ML M M M 

C3 RL - MH M - M M - H MH 

C4 RL - - MH - - MH - - H 

C# = Cluster #, RL = Risk-level, L = Low, ML = Moderately Low, M = Moderate, MH = Moderately 

High, H = High, *Highest scoring cluster count for each metric and each algorithm, †Selected cluster 

solution.  
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For “gross upper-body movement” and cognitive tasks, the 3-cluster solutions 

with GMM had at least one internal validation metric that was optimal and produced 

the most qualitatively demarcated clusters and were thus selected as optimal. For fine 

motor movement, HC with 4 clusters produced the best qualitative separation, 

however cluster 4 only contained one individual, so these results were eliminated 

from contention. Remaining options with optimal validation metrics were 2-cluster 

options. While equally qualitatively separated, GMM was selected over PAM or HC 

because the model produced higher risk groups. The researchers determined that 

taking a more conservative approach to represent risk was preferable from a 

perspective of maximizing safety via personalization.  

For visual and auditory discrimination, only age and one additional variable 

were identified in NHANES for inclusion. For both, the additional variable was 

subject self-reported ability to see and hear. Initial attempts to cluster these variables 

produced clusters that could not be practically differentiated for the purposes of 

device customization. As such, statistical clustering was abandoned for these tasks in 

favor of subjective clustering. Clusters were manually formed by grouping the self-

reported task performance variables. For visual discrimination, this was a binary 

variable, and therefore two clusters resulted. For auditory discrimination, the variable 

contained six levels of hearing quality. Given the imposed 2-4 cluster constraint, the 

authors determined grouping the levels into twos (i.e., three clusters) produced the 

most meaningful clusters for differentiating patients by performance. “Wears a 

hearing device” is presented with the auditory discrimination clusters. This was not 
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used in the clustering and was only included to verify “reported hearing quality 

without correction” was representative of day-to-day hearing for the individual.  

Cluster results for the selected cluster solutions are shown in Tables 11-20. As 

referenced in Appendix A, NHANES variables are mostly binary or ordinal. For those 

identified as ordinal, reported levels are provided in the results tables. In addition to 

the data on individual cardio-pulmonary conditions, the aggregate number of cardio-

pulmonary conditions per patient for gross upper-body movements is presented. 

Aggregate cardio-pulmonary conditions were calculated by summing the number of 

cardio-pulmonary diseases an individual had, including congestive heart failure, 

angina/angina pectoris, coronary heart disease, asthma, emphysema, chronic 

bronchitis, and COPD. 

Highlighted values in the cluster results indicate majority and consideration of 

those factors as dominant for the cluster. For ordinal variables where a single level 

did not dominate (all levels contain <50% of individuals), a value is highlighted such 

that the majority of individuals in the cluster reported that level or worse. To support 

visualization, the dominant variables are highlighted based on their putative 

relationship with performance outcomes, with green indicating a positive relationship, 

red indicating a strong negative relationship, and orange indicating a moderate 

negative relationship.  

 
Table 11: Individuals in clusters (n) and proportion of population for "gross upper-body movement." 

 

 

 

 Cluster 1 Cluster 2 Cluster 3 

n (%) 300 (41.7) 256 (35.6) 164 (22.8) 
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Table 12: GMM clusters for "gross upper-body movement" task. Values correspond to the variable in 

first column. Excluding age, this is the proportion of individuals in the cluster who reported that 

characteristic. 

 

 

 

 

 

 

NHANES Variable Level Cluster 1 Cluster 2 Cluster 3 

Median Age - 68 65 70 

Physical Independence 

Difficulty dressing and bathing (%) - 0.333 25.8 33.5 

Difficulty reaching up (%) 

No difficulty 98.0 41.8 37.8 

Some difficulty 2.0 39.8 43.3 

Much difficulty 0 14.5 9.15 

Unable to do 0 3.13 7.32 

Does not do 0 0.780 2.44 

Difficulty moving large objects (%) 

No difficulty 83.7 14.8 8.54 

Some difficulty 15.0 41.4 29.9 

Much difficulty 1.33 19.5 24.4 

Unable to do 0 17.6 24.4 

Does not do 0 6.64 12.8 

Disease History 

Arthritis (%) - 39.3 68.4 81.7 

Gout (%) - 17.0 9.77 22.0 

Bone/joint injury (%) - 4.33 29.3 17.1 

Neck and Back Problem (%) - 7.30 64.5 53.7 

Stroke (%) - 6.67 14.1 24.4 

Obesity (%) - 50.0 63.7 70.7 

Congestive heart failure (%) - 6.67 0 48.2 

Angina/angina pectoris (%) - 7.00 1.56 29.2 

Coronary heart disease (%) - 10.7 1.17 45.7 

Asthma (%) - 6.67 19.5 37.2 

Emphysema (%) - 1.33 0.40 15.9 

Chronic bronchitis (%) - 3.33 10.2 40.9 

COPD (%) - 4.67 0.781 46.3 

Total cardio-pulmonary conditions (%) 

0 71.3 70.3 0 

1 19.3 25.8 22.0 

2 7.30 3.90 25.6 

3 1.70 0 28.0 

4+ 0.300 0 24.4 

Exercise 

Physical work activities (%) 

None 61.7 64.1 65.9 

Moderate 21.3 20.7 19.5 

Vigorous 17.0 15.2 14.6 

Physical recreational activities (%) 

None 59.3 74.2 84.8 

Moderate 31.7 21.1 13.4 

Vigorous 9.00 4.70 1.80 
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Table 13: Individuals in clusters (n) and proportion of population for "fine motor movement" task. 

 

 

 

 
Table 14: GMM clusters for "fine motor movement" task. Values correspond to the variable in first 

column. Excluding age, this is the proportion of individuals in the cluster who reported that 

characteristic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 Cluster 1 Cluster 2 

n (%) 536 (74.4) 184 (25.6) 

NHANES Variable Level Cluster 1 Cluster 2 

Median Age - 66 72 

Physical Independence    

Difficulty using fork, knife, cup (%) 

No difficulty 100 69.3 

Some difficulty 0 30.6 

Much difficulty 0 4.89 

Unable to do 0 0.543 

Does not do 0 0.543 

Difficulty grasp/holding small objects (%) 

No difficulty 89.1 26.9 

Some difficulty 10.9 73.5 

Much difficulty 0.373 19.0 

Unable to do 0 4.35 

Does not do 0 0 

Disease History 

Arthritis (%) - 50.4 85.3 

Gout (%) - 15.5 15.8 

Bone/joint injury (%) - 12.5 26.6 

Stroke (%) - 6.72 32.6 

Congestive heart failure (%) - 5.60 37.5 

Angina/angina pectoris (%) - 5.60 23.4 

Exercise 

Physical work activities (%) 

None 59.0 76.6 

Moderate 22.0 16.8 

Vigorous 19.0 6.52 

Physical recreational activities (%) 

None 65.9 83.7 

Moderate 26.9 14.7 

Vigorous 7.28 1.63 
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Table 15: Individuals in clusters (n) and proportion of population for "applying existing knowledge" 

and "problem-solving and decision-making." 

 

 

 

 
Table 16: GMM clusters for "applying existing knowledge" and "problem-solving and decision-

making". Values correspond to the variable in first column. Excluding age, this is the proportion of 

individuals in the cluster who reported that characteristic. 

 Cluster 1 Cluster 2 Cluster 3 

n (%) 270 (43.8) 247 (40.1) 99 (36.7) 

NHANES Variable Level Cluster 

1 

Cluster 

2 

Cluster 

3 

Median Age - 69 67 62 

Memory, Attention, and Decision-making Skills 

Problems managing money (%) 

No difficulty 91.1 84.6 57.6 

Some 

difficulty 

3.70 10.2 31.3 

Much 
difficulty 

1.11 1.21 5.05 

Unable to do 0.740 0.810 2.02 

Does not do 3.33 3.24 4.04 

Frequency feeling tired or low energy over a two-

week period (%) 

Not at all 70.0 36.8 12.1 

Several days 19.2 42.5 27.3 

More than 

half 

5.56 10.1 18.2 

Nearly every 

day 

5.19 10.5 42.4 

Reports confusion/memory problems (%) - 8.90 15.4 55.6 

Reports serious difficulty concentrating, 

remembering, or making decisions (%) 
- 7.04 14.2 61.6 

Disease History 

Stroke (%) - 8.52 14.7 20.2 

Psychiatric Disorder 

Anxiety frequency (%) 

Never 53.0 9.31 0 

Few times a 

year 

35.9 
43.3 

1.01 

Monthly 8.52 20.7 5.05 

Weekly 1.11 17.4 19.2 

Daily 1.48 9.31 74.7 

Anxiety severity (if reported) (%) 

Mild 65.6 46.0 8.08 

Moderate 25.0 45.1 50.5 

Severe 9.40 8.90 41.4 

Depression frequency (%) 

Never 100 1.63 0 

Few times a 

year 

0 
75.1 

5.05 

Monthly 0 16.7 6.06 

Weekly 0 5.31 39.4 

Daily 0 1.22 49.5 

Depression severity (if reported) (%) 

Mild 0 54.3 12.1 

Moderate 0 37.9 41.4 

Severe 0 7.80 46.5 
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Table 17: Individuals in clusters (n) and proportion of population for "visual discrimination." 

 

 

 
Table 18: Subjective clusters for "visual discrimination". Values correspond to the variable in first 

column. Excluding age, this is the proportion of individuals in the cluster who reported that 

characteristic. 

 

 

 

 
Table 19: Individuals in clusters (n) and proportion of population for "auditory discrimination." 

 

 

Table 20: Subjective clusters for "auditory discrimination". Values correspond to the variable in first 

column. Excluding age, this is the proportion of individuals in the cluster who reported that 

characteristic. 

 

4.5 Discussion 

In this section, the implications and limitations of this work are discussed.  

4.5.1 Patient Characteristic Survey Outcomes 

A survey was distributed to internal medicine physicians at the University of 

Maryland Medical Center to extract expert perceptions regarding the relationships 

between user characteristics and P&C case study task performance. For three high-

 Cluster 1 Cluster 2 

n (%) 745 (84.9) 132 (15.1) 

NHANES Variable Cluster 1 Cluster 2 

Median Age 65 66 

Reports difficulty seeing (%) 0 100 

 Cluster 1 Cluster 2 Cluster 3 

n (%) 534 (60.8) 279 (31.8) 65 (7.4) 

NHANES Variable Level Cluster 1 Cluster 2 Cluster 3 

Median Age - 62 68 76 

Hearing quality without correction (%) 

Excellent 61.4 0 0 

Good 38.6 0 0 

A little trouble 0 59.1 0 

Moderate trouble 0 40.9 0 

A lot of trouble 0 0 90.8 

Deaf 0 0 9.2 

Wears a hearing device (%) - 0.183 12.9 46.2 
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level tasks, the physicians ranked characteristics based on the order they would 

consider them when evaluating expected patient task performance.  

For tasks requiring physical effort, the characteristic that received the highest 

rating was “physical independence”. This seems logical, given that it summates a 

range of abilities that implicate independence in performing the expected task itself. 

Other highly rated characteristics include “disease severity”, “exercise”, “age”, 

“details of task”, and “disease history”. It is interesting that disease severity ranked 

higher than disease history. This is likely because well-controlled diseases, which are 

considered among a patient’s history, may not impact functionality, while those more 

clinically advanced diseases may contribute to debility.  

For tasks requiring sensation and perception, “details of task” ranked highest. 

It is likely that internists envisioned a wide range of tasks that require sensation and 

perception while answering this question, so they responded that more specific 

characterization of the task would be required to predict success.  Similarly, “details 

of task” was also highly rated for physical and cognitive tasks, however not as highly 

rated as for sensation and perception. Sensory modalities are fairly distinct, therefore 

it may have been more productive to ask about specific sensory pathways such as 

hearing or vision. Other highly rated tasks for sensation and perception were “disease 

history”, “age”, “attention”, “physical independence”, and “memory”. Disease history 

was likely rated highly due to the large range of impact disease may have on 

sensation and perception across various diseases. Similarly, prevalence of those 

conditions increases with age, which explains why internists would consider age as an 

important factor for these tasks. Surprisingly, physical independence was rated high 
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for this task. While the nature of “a task requiring sensation and perception” may 

have been perceived as too vague, it is likely the experts consider “physical 

independence” to be influenced by sensory or perceptual deficits and had in mind 

diseases that affect physical and sensory systems together. Future iterations of this 

method will seek to refine the sensory task to elicit expert opinion more effectively. 

For cognitive tasks, “memory”, “attention”, and “decision-making” were 

ranked the highest, as they are all integral elements of cognition. The next three 

highest ranked were “details of task”, “age”, and “psychiatric disorder”. Expert 

consensus was strongest for cognitive tasks, with the Borda count distribution 

appearing more skewed towards the top characteristics than for the physical and 

sensory/perception tasks. 

There were some notable commonalities across tasks in the results. “Details of 

task” was rated highly for all three tasks included. This may indicate that experts 

would prefer more contextual detail when identifying important user characteristics. 

Other common characteristics to be included across tasks were “age” and “disease 

history” or “psychiatric disorder”, treating the latter two as equivalents. This points to 

the fundamental understanding of age being tied to human ability. The stated goal of 

this study was to include variables with direct links to task performance. While age 

itself does not change task performance, it is a strong predictor of other factors that 

may influence performance (Baker & Rogers, 2010; Fauth et al., 2017; Zimmer et al., 

2015). Age is an easy variable to obtain and can provide substantial predictive power 

when data is unavailable for other performance-driving variables.   
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These results demonstrate a simple and efficient way to develop an 

understanding of domain-specific relationships between tasks and user characteristics. 

Medical professionals, in this case physicians, have extensive knowledge and 

experience that can be distilled into useful information with well-coordinated 

elicitation efforts. There are many challenges that make applying human factors 

principles difficult in medical device design (Saidi et al., 2019), but collaboration 

across disciplines could alleviate some of these challenges.  

4.5.2 Patient Characteristics – NHANES Variable Mapping Results 

 For each task and each patient characteristics identified prior, variables were 

identified from NHANES to serve as metrics for the characteristic. For both physical 

tasks (gross upper-body movement, fine motor movement) NHANES contained many 

useful variables (Table 7; Appendix A, Table 56). Each characteristic was represented 

by at least one NHANES variable, and in most cases several more. Several variables 

were included that asked participants to rate their ability to perform certain tasks that 

represent specific cases of the generic task performance. Combined with more 

objective variables such as age and disease history, this data provides a rich picture of 

the capabilities of individual users.  

Limitations were encountered with respect to sensory and perceptual 

characteristics. Only two NHANES variables were included for visual and auditory 

discrimination, age and reported ability (Appendix A, Tables 57-58). Because self-

reported hearing quality was reported without correction from a hearing device, the 

variable “wears a hearing device” was included as well to verify that it was 

representative of typical hearing conditions. NHANES does contain data regarding 
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audiometry, however these variables were additional self-reported hearing quality 

questions, which were judged to not provide enough additional information to justify 

incorporation. In past years, NHANES included auditory examination data, however 

it was determined that this would be difficult data to meaningfully interpret without 

specialized knowledge. Variables that NHANES did not include that would have been 

useful are the presence of common diseases for each sensory system (cataracts, 

glaucoma, etc.). 

Cognitive user characteristics were also well represented in NHANES, with 

each characteristic being represented by at least one variable (Appendix A, Table 59). 

Psychiatric disorders were particularly well represented, including both the frequency 

and the severity of two disorders. Only one self-reported performance question was 

identified in “problems managing money”. While this task does encompass both low 

and high-level cognitive tasks, additional synonymous task performance questions 

would have been beneficial for further characterizing the self-assessed capabilities of 

the population.   

4.5.3 Patient User Group Cluster Results 

Data for each variable was acquired from the NHANES database for 2017-

2018 and filtered to only include results for participants who reported diabetes. For 

physical and cognitive tasks, clusters were determined algorithmically. For sensory 

and perceptual tasks, clusters were determined subjectively.  

Gross Upper-Body Movement: For “gross upper-body movement”, three 

dominant clusters were identified as shown in Tables 11 and 12. Common features 

across all three groups included age and exercise. In this work, individuals 65+ years 
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are referred to as older adults, and those who are 18-65 as adults (Centers for Disease 

Control and Prevention, 2020b). The median age for all three clusters was older adult, 

and all three contained a majority of users who reported a sedentary lifestyle. The 

first and most predominant cluster primarily included users who do not report any 

physically inhibiting diseases and do not report difficulty performing tasks using the 

upper body. The second group reported some difficulty performing tasks with the 

upper-body. Further, arthritis, neck and back problems, and obesity were common for 

this group. Group three reported some difficulty performing multiple upper-body 

tasks and, like group two, commonly reported arthritis, neck and back problems, and 

obesity. Additionally, the majority of the individuals in this group reported three or 

more cardio-pulmonary conditions. It is suspected that group one would be the top 

task performer, group three would be the bottom, and group two would sit in-

between.  

Fine Motor Movement: For “fine motor movement”, two dominant clusters 

emerged as shown in Tables 13 and 14. When examining the composition of these 

groups, several similarities could be observed. Both groups consisted of older adults. 

For both groups, the only disease to be represented in the majority was arthritis. Both 

groups reported a sedentary lifestyle. In fact, when considering majority 

characteristics, the only real difference between these groups was that group two 

indicated some trouble grasping and holding small objects. This is a relatively 

important task for medical device usage, though, so it is expected that group two 

would exhibit poorer performance than group one.  
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Cognitive Tasks: For “applying existing knowledge” and “problem-solving 

and decision-making”, variables were identical, and results were presented together. 

Three clusters emerged for the cognitive tasks as shown in Tables 15 and 16. Groups 

were relatively diverse. The predominant trait across groups was reporting no 

difficulty managing money. Group one included primarily older adults and were not 

characterized by fatigue, confusion, memory, or decision-making. Further, this group 

did not exhibit psychiatric disorders. Group two was comprised of older adults and 

was not characterized by confusion, attention, memory, or decision-making. This 

group did, however, indicate some reoccurring fatigue. Additionally, the majority of 

this group reported anxiety and depression at least a few times a year. Severity of 

anxiety for most individuals was at least moderate, while for depression the severity 

was mild. For the final group, the median age was adult. The group reported 

significant fatigue, and problems with confusion, attention, memory, or decision-

making. This group reported moderate, daily anxiety and reported at least moderate, 

weekly depression. It is suspected that group one would be the top task performer, 

group three would be the bottom performer, and group two would sit somewhere in-

between. 

Visual and Auditory Discrimination: Cluster variables for visual and auditory 

discrimination were only age and self-reported difficulty, therefore clusters were 

identified by grouping participants based on the self-reported variable. For visual 

discrimination, two clusters were created, with cluster one reporting no difficulty 

seeing and cluster two reporting difficulty (Tables 17 and 18). The median age for 

both groups was older adult. For auditory discrimination (Tables 19 and 20), the self-
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reporting variable consisted of 6-levels. Group one contained individuals who 

responded “excellent” or “good”. Group two stated that they had “a little trouble” or 

“moderate trouble”. Group three had either “a lot of trouble” or were deaf. Group one 

consisted primarily of adults, while group two and group three were primarily older 

adults. A minority of individuals for each group reported that they wear a hearing 

device, validating the assumption that self-reported quality of uncorrected hearing 

represented typical conditions for most group members. 

4.5.4 Task-Specific Guidance 

This section discusses specific guidance relevant to each task. For products 

requiring gross-upper body movements, efforts should be made to cater to the 

strength and mobility capabilities of dominant clusters. Specific gross upper-body 

movements may include lifting and holding components for repeated and extended 

periods of time. Products should be designed to minimize the time required for these 

movements, and the number of times they must be repeated (Marras, 2012).  

Most patient-facing medical devices will require some fine motor movement, 

for example pressing buttons, touching a screen, twisting or pinching components, 

etc. Efforts should be made to ease device use for users who have difficulties with 

these types of movements. For example, for devices with screens that require 

scrolling, key content should condensed as much as possible to reduce the amount of 

scrolling required (L. C. Li et al., 2013). As another example, unique and repetitive 

finger manipulations should be minimized. Individuals with arthritis and those with 

limited hand dexterity have indicated that minimum or no-button device designs are 

preferable (Domańska et al., 2017).  
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Perception of visual and auditory information is also very important in 

medical device interaction. A common strategy to accommodate deficiency in either 

category is to map the device output modality to the opposite or a different output 

modality (Dascalu et al., 2017; Niazi et al., 2016). For visual discrimination, the at-

risk group identified encompasses a broad swath of visual capabilities. The 

differentiating variable only identified subjects who “had difficulty seeing”. This 

includes subjects with mild visual disability to subjects with blindness. The strategy 

to accommodate this range may vary (Siebra et al., 2015). To ensure complete 

coverage of user needs, the need for visual discrimination can be eliminated entirely, 

for example with the inclusion of text-to-speech features (Tomlinson, 2016). A more 

conservative approach, that might risk disaccommodating certain portions of the 

group, could include ensuring all screens and text are large and highly contrasted. The 

device itself should be large and locations where the device are held should be made 

obvious (Heinemann et al., 2016).   

For auditory discrimination, the trade-offs to accommodate different types of 

deficiencies can be more precisely examined. Because there were two groups with 

two levels of hearing impairments (mild-moderate, severe-deaf) identified, the 

consequence of not including certain features can be quantified. For the mild-

moderate group, it may only be necessary to tailor auditory output to their specific 

needs. This could include increasing the minimum device volume or minimizing 

voice output. Non-speech sounds may be preferrable because they convey 

information quicker and simpler than speech sounds (Shoaib et al., 2020). For deaf 

individuals, auditory output should be mapped entirely to other modalities, primarily 



 

 

78 

 

visual or tactile. Captions and sign language transcriptions can be leveraged when 

possible (Siebra et al., 2017). This type of intervention becomes more complicated 

when there is impairment of multiple sensory channels, however this was not 

considered in this work.  

Numerous cognitive tasks are required for medical device usage. Cognitive 

tasks can range from recalling the meaning of an alert, to following procedures for 

device use, to evaluating and acting on diagnostic output. For the groups identified in 

this analysis, different interfaces could be offered. For groups 2 and 3, device output 

should be simplified, and aid provided for decisions with potential health-related 

consequences. It may be beneficial, however, to provide the highest performing group 

greater perceived control over the output of the device, as this has been shown to 

increase willingness to use medical devices in some cases (Princi & Krämer, 2020). 

Further, cluttered and complex interfaces can create difficulties for certain users, 

particularly those identified in risk group 3 (Wildenbos et al., 2018). Device operation 

procedures and interface navigation should be made as simple as possible without 

inhibiting device functionality (Roman et al., 2017). Patients with compromised 

cognition may also have difficulty with tasks whose performance is traditionally 

linked to health literacy levels. Efforts should be made to minimize the demand on 

literacy by providing clearly stated content with accessible language (Czaja et al., 

2015).    

Across all tasks, features to accommodate high-risk user groups can be 

informed by existing guidelines. Recent clinical guidelines have suggested the 

inclusion of several features across diabetes self-management technology (Chomutare 
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et al., 2011). Examples include education and personalized feedback, weight 

management, psychosocial care, and medication management. Many of these 

guidelines apply beyond the diabetes context to other medical devices as well. 

Designers should consider how these features can be incorporated into patient-facing 

medical devices, and how the features can be personalized or prioritized given the 

characteristics of the user group. For example, psychosocial care features could be 

prioritized and expanded for individuals in groups at high-risk for cognitive errors.  

4.5.5 Proposed Use 

The purpose of identifying task-specific user groups was to provide a basis for 

targeted human factors evaluations and subsequent design personalization where 

optimizing human performance is the goal. Identifying groups based on 

characteristics linked to task performance can aid in ensuring prominent, 

homogeneously performing users are represented in the design process. The groups 

identified should represent clusters of individuals who are expected to perform tasks 

similarly. Utilizing existing data to define user groups is more efficient than 

surveying or engaging with new participants to model performance groups. This 

makes this approach especially useful for medical device manufacturers, who are 

typically operating with constrained resources.  

After performing the presented methodology, the next step should be to 

quantify task performance for each task-specific user group generated. Task 

performance can then be used to justify inclusion/exclusion of features for product 

variants. In Chapter 5 of this dissertation, performance for P&C Physician Judgment 
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Tasks will be quantified for each user group utilizing expert elicitation. In Chapter 6, 

user group task performance quantities will drive product concept differentiation.  

While expert elicitation is the suggested means to quantify performance in this 

dissertation, there are other means outside of this scope. If empirical testing is 

possible, formative and summative usability analyses should be performed. Clustered 

groups can serve to guide targeted recruitment of dominant user strata. Recruitment 

stratification goals can be set using the cluster proportions identified. By monitoring 

the progress of these goals, recruitment strategies can be adjusted during a study to 

ensure representation. These groups could also be used post-study to evaluate the 

adequacy of recruitment and determine if a study extension is required.  

Output user groups could also be used outside of the design context. Risk 

analysts, systems engineers, and technical specialists in the medical context could use 

this approach to develop models for use-cases and to model certain risk scenarios. 

Health advocates and public health professionals could use this approach to develop 

targets for public health initiatives.  

4.5.6 Limitations 

This work had several limitations. The proposed approach requires access to 

domain experts for input to identify relevant tasks and user characteristics, otherwise 

the researchers must have the domain expertise themselves. There were several 

limitations with respect to how sensory and perceptual tasks were framed in the user 

characteristic survey that potentially could have been avoided with more care. 

Additionally, utilizing existing data limits the user characteristics that can be included 

in the clustering. For some applications, there may be critical characteristics that are 



 

 

81 

 

not available in a database like NHANES. In this paper, NHANES had limited data 

for visual and auditory task characteristics. A further limitation is that the 

characteristics available for clustering will not be able to explain all likely variance in 

task performance. The actual range of performance that would be observed for a 

given user group would likely be wide, though hopefully with the expert-driven steps 

taken prior, performance will be clustered as homogenously as possible. Finally, this 

approach does not account for correlation between patient group membership. It is 

possible that there may be patterns to patient group membership across tasks.  
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Chapter 5: Quantifying Human Performance for Heterogeneous 
Population User Groups using Expert Elicitation 

 

5.1 Introduction 

In this chapter, an expert-driven approach for quantifying human performance 

(risk of user error) in heterogeneous user populations is proposed. The approach uses 

input from Chapter 4 (P&C Physician Judgment Tasks and task-specific user groups) 

and outputs probability distributions for task success for each task-specific user group 

(Figure 4). The purpose of this approach is to supplement traditional in-person human 

factors testing with heterogeneous user populations to mitigate some of associated 

resource burden. The output will also serve as input to the optimization model 

proposed in Chapter 6. The approach is first introduced in a generalized form that is 

intended to be applicable to any domain. Then, the method is demonstrated on the 

diabetes patient self-management device case study.  

 
Figure 4: Summary of Chapter 5. 
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5.2 Methodology 

The approach to be used in this chapter is expert elicitation, where desired 

variables are estimated by experts as probability distributions and aggregated as a 

combined “decision-maker” (Colson & Cooke, 2018). In this approach, internal 

medicine physicians are targeted as domain experts for participation (see Chapter 4.1 

for justification).  

5.2.1 Elicitation Protocol 

To conduct the expert elicitation, there are several decisions that must be 

made regarding the format of the elicitation and the design of questions. For this 

methodology, the Cooke protocol is used (Cooke, 1991). It is critical that physician 

participants can provide input at their convenience because medical providers have 

very busy schedules. If not, participation may suffer, especially if no direct incentives 

are offered (as was the case in this work). The Cooke protocol is ideal because it does 

not require participants to convene and can be completed at any time.  

In the Cooke protocol, prior to estimating quantities of interest, experts are 

asked to make judgments on domain-relevant “calibration questions” with known 

values. Experts are evaluated on these calibration questions, and their performance is 

used to weight and aggregate responses for the quantities of interest. For this 

methodology, judgments for all questions are elicited as a 5th percentile, a 50th 

percentile, and a 95th percentile. This provides a distribution that the expert is 90% 

confident the true value is contained. 

Calibration questions are questions with known values, in the same format as 

the elicitation questions (Colson & Cooke, 2017). Elicitation questions and 
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calibration questions should be thematically linked with the domain, such that all 

target experts are roughly equally qualified to answer them. These questions should 

not test the expert’s domain-expertise, rather they should test how well an expert can 

express a judgment translated to a probability distribution (Dias et al., 2018). If the 

researcher has prior data, these questions could be derived from this data. These 

questions could also be domain relevant statistics obtained from reports or literature. 

5.2.1.1 Evaluating Experts 

Calibration questions can be evaluated using two different metrics – 

calibration and information. Calibration measures the statistical accuracy of the 

judgments, and information measures the confidence of the judgments (Colson & 

Cooke, 2018). A high performing expert will have high accuracy and high confidence 

(i.e., smaller confidence intervals).  

Calibration Score: Calibration score compares the distribution of true values 

within the intervals provided with the expected distribution of values. For a perfectly 

calibrated expert, it is expected that 5% of true values will fall below the 5th 

percentiles of the provided intervals, 45% will fall between the 5th and 50th 

percentiles, 45% will fall between the 50th and 95th percentiles, and 5% will fall above 

the 95th percentiles. For example, if 20 calibration questions were given, perfect 

calibration would be achieved if the true values were distributed as [1,9,9,1], 

following the order of intervals described.  

Given this, calibration can be measured using Kullback-Leibler (KL) 

divergence (aka relative entropy), a metric grounded in information theory and used 

to measure the difference between a probability distribution and a reference 
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distribution. In this case, the reference probability distribution is p = 

[0.05,0.45,0.45,0.05]. KL divergence is formatted as follows in Equation 1 (Dias et 

al., 2018):  

 

 

𝐼 (𝑠, 𝑝) =  ∑ 𝑠𝑖ln (
𝑠𝑖

𝑝𝑖
)  

𝑛

𝑖=1

 (1) 

 

where si is the observed proportion of values in interval i, pi is the expected reference 

proportion of values in interval i, and n is the number of intervals.  

 In Cooke’s protocol, an expert is scored given a statistical hypothesis, where 

the null hypothesis is that the inter-quartile intervals containing the true values for 

calibration questions is drawn from the reference probability distribution. The 

divergence metric can be formulated such that it is approximated as the chi-square 

distribution as in Equation 2 (Dias et al., 2018), therefore allowing a p-value to be 

obtained from a chi-square goodness-of-fit test. 

 

 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 = Pr{2𝑞𝐼(𝑠, 𝑝) ≤ 𝑥} →  1 − 𝜒𝑛−1
2 (𝑥) , 𝑎𝑠 𝑞 →  ∞  (2) 

 

where q is the number of calibration questions given and 𝜒𝑛−1
2  is the cumulative 

distribution function of the chi-square distribution. Calibration score can then be 

interpreted as the probability of seeing a more extreme divergence metric given the 

provided and reference distributions. Scores range between 0 to 1, with 1 being the 

best possible score.  



 

 

86 

 

Information Score: Information score compares the provided confidence 

intervals to the background range of values intrinsic to the question. Information 

score is necessary because, hypothetically, an expert could achieve perfect calibration 

without providing a useful or informative judgment by specifying large confidence 

intervals. In typical practice, the intrinsic range for each questions is determined by 

taking the min and max values on either end of the range across experts and adding a 

small “overshoot” equal to 5-10% of the min and max values (Dias et al., 2018). 5% 

was used in this work. An informative response will encompass a relatively small 

proportion of the intrinsic range. Again, KL divergence is leveraged to compare the 

distribution of the inter-quartile intervals provided against a uniform distribution 

across the entire intrinsic range. When 3 percentiles are elicited (i.e. 4 intervals), it 

can be calculated as shown in Equation 3 (Dias et al., 2018).  

 

 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 = 0.05 ln (
0.05

𝑥𝑖1− 𝑥𝑖0
𝑥𝑖4− 𝑥𝑖0

⁄
) +

 0.45 ln (
0.45

𝑥𝑖2− 𝑥𝑖1
𝑥𝑖4− 𝑥𝑖0

⁄
) +  0.45 ln (

0.45
𝑥𝑖3− 𝑥𝑖2

𝑥𝑖4− 𝑥𝑖0
⁄

) +

 0.05 ln (
0.05

𝑥𝑖4− 𝑥𝑖3
𝑥𝑖4− 𝑥𝑖0

⁄
)  

(3) 

 

where xi0 and xi4 are the lower and upper bounds for the intrinsic range of calibration 

question i. xi1, xi2, and xi3 are the expert provided 5th, 50th, and 95th percentile for 

calibration question i. 
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Given information score and calibration score, a final score for each expert is 

calculated as shown in Equation 4. An expert with a higher score is determined to be 

a “better” expert for making domain relevant judgments.  

 

 
𝑆𝑐𝑜𝑟𝑒 =  

∑ 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑖
𝑞

𝑖=1

𝑞
∗ 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒  

(4) 

 

It is worth noting that unlike calibration score, information score can be 

evaluated without knowing the true value of the question. Therefore, expert 

confidence can be examined using information score for the elicitation questions that 

do not have known values.  

5.2.1.2 Combining Expert Judgments 

To utilize the elicited values practically, a method for combining the estimates 

into a single decision-maker is required. Theoretically, this combination should 

provide a best guess estimate for the unknown quantities. In practice, there are 

typically three ways to determine the combined decision-maker, as summarized in 

Table 21 (Dias et al., 2018). In this work, all three combinations are presented and 

compared.  
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Table 21: Methods for combining estimates into a final decision-maker. 

Equal Weighted Elicited values are aggregated across all experts.  

Performance 

Weighted 

A weighted aggregation is performed for all elicited values, where the 

weight for each expert is their score (Eq. 4) normalized across all experts.  

Optimized Weighted 

Weighted aggregations are calculated where experts are eliminated from 

the weighted aggregation if their calibration score falls below a cutoff 
value α. Starting at the lowest calibration score in the analysis, α is 

incremented and a weighted aggregation is calculated each time an expert 

is removed. Each combined aggregation is re-tested on the calibration 

questions, and the combination of experts with the highest score (eq. 4) is 

determined to be optimized.  

 

While equal weighted considers each expert as equivalent, performance 

weighted gives more weight to predictions of more reliable experts (higher calibration 

score). The optimized weighted approach is an extension of performance weighted 

that removes the least calibrated expert one-by-one in an iterative manner to 

determine the optimal combination of experts that maximizes expected performance. 

While Cooke’s protocol suggests aggregating estimates by weighting and combining 

fitted cumulative distribution functions is the best option, aggregation in this work is 

performed by simply averaging elicited quantiles. The methodology in this work is 

intended for engineers to reproduce without specialized statistical knowledge and 

experience. Aggregation of estimates by averaging quantiles is a computationally 

simple approach that can be reproduced by engineers without prior experience 

performing expert elicitation (Lichtendahl et al., 2013).  

5.2.2 Generating Elicitation Questions 

To define the variables to be quantified in the expert elicitation, three 

elements should be defined: 1) Product Tasks; 2) Contextual Task Details; and 3) 

Task-Specific User Groups.  
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Product Tasks: For the proposed method, it is suggested that generalized 

physical and cognitive tasks are defined for the system. Modeling tasks as general 

allows results to be used in future design validations and new system designs for the 

same population of users. It also facilitates continued model validation. Tasks that are 

too specific may limit their generalizability and therefore future designs may require 

additional elicitation efforts, thus requiring additional resources. In this 

methodology, P&C Physician Judgment Tasks identified in Section 4.3.1 are 

used.  

Contextual Tasks Details: While keeping tasks general does promote reuse, it 

does limit how precisely they can be applied to specific situations. As such, it may be 

necessary to create sub-variables for tasks given contextual information. For example, 

the performance of auditory discrimination may depend on the entity being 

discriminated and may be too broad for experts to make precise estimates. Instead, 

experts could be asked to estimate performance for discriminating speech as well as 

non-speech sounds. It is important to consider what contexts may be encountered for 

the specific application. For example, in certain systems, speech sounds may be 

irrelevant, and this variable could be eliminated.  

Task-Specific User Groups: For experts to make estimates about task 

performance, they will require information about the population of individuals 

performing the task. For heterogeneous populations, these characteristics are highly 

varied and, therefore, users must be grouped and their task-relevant user 

characteristics specified for each task prediction. This process of identifying task-

relevant user characteristics will produce more homogenous groups in terms of task 
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performance, and thus experts can make more confident estimations (Privitera, 2020). 

This also ensures that performance heterogeneity is captured for all tasks, and that a 

single task associated with particularly heterogeneous user characteristics does not 

overshadow other, less heterogeneous tasks. In this work, the task-specific user 

groups identified in Section 4.4.3 are used. 

Practical Considerations: As the elicitation question elements (P&C Physician 

Judgment Tasks, Contextual Task Details, Task-Specific User Groups) and 

calibration questions are being defined, it is important to consider how they will 

affect the elicitation length. If resources are limited or incentives for participants are 

not available, it is critical to minimize survey length to ensure adequate participation. 

The number of values that must be elicited can be calculated as shown in Equation 5.  

 

 

𝑛 = 𝑎 (∑ 𝑐𝑖𝑚𝑖

𝑇

𝑖=1

+ 𝑞)  (5) 

 

where a is the number percentiles elicited for each variable, T is total number of tasks 

for the elicitation, c is the number of contexts for task i, m is the number of user 

groups for task i, and q is the number of calibration questions.  

Question Design: The format of the questions and design of the question 

dissemination medium are key considerations for question design. The format of the 

questions and how they are presented should conform with the expert’s mental model 

of the population and the tasks being investigated. A formal or informal requirements 

elicitation prior to eliciting judgments can facilitate development of the elicitation 
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material. There are several questions that should be answered during this process. 

When eliciting risk estimates, the quantity can be elicited as either a probability or a 

proportion. For example, a question could be worded as “what is the probability an 

individual will fail to perform task x” or “out of [10, 100, 1000] individuals, how 

many would you expect to fail to perform task x”. Further, the expert pool may have 

linguistic preferences regarding the names of tasks. The terminology used to describe 

a task may connote unintentional meaning in certain social or professional contexts. 

 

5.3 Case Study Application 

This section describes the application of the proposed approach to the diabetes 

population case study. The expert elicitation method was used to quantify risk for 

diabetes patients for several generic tasks that are integral to medical device 

interaction. The demonstration did not focus on a specific product or group of 

devices, instead providing generalized predictions for interactive device use by 

diabetes patients. However, the most relevant and useful application of these 

predictions are in medical device use. 

Experts were recruited from the University of Maryland Medical Center 

(UMMC) located in Baltimore, Maryland. Eligibility criteria included UMMC 

employment as an internal medicine physician. 6-12 experts were sought as guidance 

suggests that this will provide study robustness while avoiding diminishing returns 

(Knol et al., 2010). IRB approval was sought, and the study was exempted from IRB 

review (IRB Package # 1559401-1). 
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5.3.1 Elicitation Question Generation 

To determine the format of the quantities to be elicited, an informal 

requirements elicitation was conducted with a sample of physicians. Several 

important preferences were discovered. First, experts indicated that they consider 

patient performance as the likelihood of success. Therefore, questions were formatted 

to ask for the probability of task success instead of failure. Next, experts were polled 

on their preferred response format. The following options were provided:  

 

a. A patient in population X performs some task. What is the probability they 

will successfully perform this task? 

b. 100 patients who belong to population X perform a task. How many 

patients will successfully perform this task? 

c. 10 patients who belong to population X perform a task. How many 

patients will successfully perform this task? 

 

Results of the poll indicated that response format b was the preferred format 

and was selected for the elicitation. If this approach is applied to a different user 

population, this same poll can be used, where “patient” is replaced to reflect the use 

case (e.g., “operator”).  

5.3.1.1 Calibration Questions 

Five calibration questions were generated for the elicitation. Questions were 

derived from statistics in the Centers for Disease Control (CDC) 2020 National 

Diabetes Statistics Report (Centers for Disease Control and Prevention, 2020a). 
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Percentages were rounded to whole numbers to reflect the “Out of 100 patients” 

question format. Questions and their values are shown in Table 22. 

 
Table 22: Calibration questions, abbreviations, and correct values. 

# Calibration Question Abbreviation Value 

1 
Out of 100 patients, how many US adults with diagnosed diabetes 

would you expect to have a BMI greater than 25 kg/m^2? 

BMI 
89 

2 

Out of 100 patients, how many US adults with diagnosed diabetes 

would you expect to do at least 150 minutes of physical activity per 

week? 

Exercise 

16 

3 
Out of 100 patients, how many US adults with diagnosed diabetes 

would you expect to have a non-HDL level of 130 mg/dL or higher? 

NonHDL 
44 

4 
Out of 100 patients, how many US adults with diagnosed diabetes 

would you expect to have an A1C value of greater than 9.0%? 

A1C 
15 

5 
Out of 100 patients, how many US adults with diagnosed diabetes 

would you expect to also have chronic kidney disease (at any stage)? 

Kidney 

Disease 
37 

5.3.1.2 Task Performance Questions 

As mentioned prior, there were three components required for each question: 

the task, details of the task, and task-specific user groups. This section details the 

generation of each for the demonstration.  

Tasks used were those generated in Chapter 4. Tasks are listed in column 1 of 

Table 23. Lack of contextual information for each task creates additional uncertainty 

regarding how it will be performed. For each task, contextual details were specified 

such that experts would be able to make more confident estimations. Details were 

specifically tailored for the medical device use context. For each question, specific 

examples were identified to be presented to participants to demonstrate the context. 

Task details for each task are summarized in Table 23.  
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Table 23: Tasks, task details, and examples presented to participants. 

P&C Case 

Study Task 

Task-

Type 

Detail of 

Task 

Examples Provided to Experts 

Gross Upper-

body Movement 

Physical 

Requires 

low 

exertion 

• Lifting or carrying a small object or device 

• Raising the arms above the head 

• Pulling a door open 

Fine Motor 

Movement 

Requires 

low 

exertion 

• Pressing a button 

• Twisting a component into place 

• Grasping a device 

Visual 

Discrimination  
Sensory 

Simple  
• Detecting a flashing light 

• Discriminating between colors 

Complex  
• Identifying details on a phone screen  

• Reading small print 

Auditory 

Discrimination 

Non-speech • Detecting beeps or alarms from a device 

Speech • Discriminating speech from a device 

Applying 

Existing 

Knowledge 

Cognitive 

Simple 
• Recalling instructions 

• Recalling values 

Complex 
• Performing a set of procedures 

• Enacting instructions for device operation 

Problem-

solving and 

Decision-

making 

Simple 

• Determining if a diagnostic reading is 

within a pre-defined normal range 

• Determining if food meets pre-defined 

dietary guidelines 

Complex 

• Determining a course of action given a new 

device warning message 

• Determining a course of action given a new 

health symptom 

   

Task-specific user groups were taken from Chapter 4. For each patient user 

group, statistics were translated into plain-word descriptions to be presented during 

the elicitation. Groups and descriptions are displayed in Table 24. Group number 

corresponds to increasing subjective patient risk. 
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Table 24: Task-specific patient user groups and their plain-word description. 

Task Group 

# 

Dominant User Group Characteristics 

Gross Upper-

body Movement 

1 Older adult; Physically independent; Sedentary lifestyle 

2 
Older adult; Partially physically dependent; Sedentary lifestyle; 

Arthritis; Neck and back problems; Obesity 

3 

Older adult; Partially physically dependent; Sedentary lifestyle; 

Arthritis; Neck and back problems; Obesity; At least 3 

cardiopulmonary conditions 

Fine Motor 

Movement 

1 Older adult; Physically independent; Arthritis; Sedentary lifestyle 

2 
Older adult; Partially physically dependent; Arthritis; Sedentary 

lifestyle 

Visual 

Discrimination  

1 
Older adult; With best-corrected vision, does not report difficulty 

seeing 

2 Older adult; With best-corrected vision, reports some difficulty seeing 

Auditory 

Discrimination 

1 
Adult; Does not report difficulty hearing; Does not use hearing aid or 

other listening devices 

2 
Older adult; Reports some/moderate difficulty hearing; Does not use 

hearing aid or other listening devices 

3 
Older adult; Deaf or reports significant difficulty hearing; Does not 

use hearing aid or other listening devices 

Applying 

Existing 
Knowledge 

1 
Older adult; Reports normal energy levels; Reports normal attention, 

memory, and decision-making 

2 

Older adult; Reports low energy sometimes; Reports normal attention, 

memory, and decision-making; Experiences moderate anxiety and/or 
depression symptoms intermittently 

3 

Adult; Reports low energy constantly; Reports impaired attention, 

memory, and decision-making; Experiences severe anxiety and/or 

depression symptoms constantly 

Problem-

solving and 

Decision-

making 

1 
Older adult; Reports normal energy levels; Reports normal attention, 

memory, and decision-making 

2 

Older adult; Reports low energy sometimes; Reports normal attention, 

memory, and decision-making; Experiences moderate anxiety and/or 

depression symptoms intermittently 

3 

Adult; Reports low energy constantly; Reports impaired attention, 

memory, and decision-making; Experiences severe anxiety and/or 

depression symptoms constantly  

 

To summarize, when all three elements are combined, the result is 1-2 task 

details per task, and 2-3 task-specific user groups performing each task. This resulted 

in 27 task estimations plus five calibration questions for each physician participant.  

5.3.1.3 Background Questions 

Finally, in addition to the task estimations and calibration questions, several 

background questions were developed for the experts, with the intent of modeling 
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expert performance with professional background to facilitate future recruiting 

efforts. In addition, the influence of expert bias (experience, patient risk level) was 

assessed using this information. 

These questions included:  

1. How many years of experience do you have as a practicing physician? 

2. Considering your entire career, please estimate the following regarding the 

patients you have provided care for: 

• % of patients with Medicare or Medicaid 

• % of patients who were uninsured 

3. Considering your entire career, have you spent more time providing 

inpatient or outpatient care? 

5.3.2 Elicitation Survey Development 

Given the question components identified prior, survey questions were 

developed. The questions were implemented in Qualtrics (Qualtrics XM, 2020). 

Several rounds of testing and refinement were conducted with the survey by the 

researchers. Questions were presented to participants as sliders, constrained to whole 

numbers from 0 to 100. For each question, responses were requested ordered as 5th 

percentile, 50th percentile, and 95th percentile. The following instructions were 

provided for interpreting the requested values:  
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“For each quantity, you will be asked to estimate: 

  

1. 5th Percentile - a value such that there is only a 5% chance the true 

value is smaller. 

2. The Expected Quantity - the value with the highest probability of 

being true. 

3. 95th Percentile - a value such that there is only a 5% chance the true 

value is larger. 

  

The 5th and 95th percentile will define a range that you are 90% confident the 

true value is contained. These values should not overlap with the expected 

value.” 

 

For each task and task detail, examples from Table 23 were presented. For 

each question, the details for the patient user group were presented. Each question 

was presented with the following format: “100 patients from Patient Group ## 

perform a [TASK]. The task requires [DETAIL OF TASK]. How many will succeed 

at this task?” An example question presentation is shown in Figure 5.  
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Figure 5: Example question presentation from elicitation survey. 

 

For each task, questions were ordered based on increasing subjective user 

group risk-level as evaluated by the researchers (corresponding to the order in Table 

24). In this context, risk-level refers to increasing likelihood of failure for the 

corresponding task. While randomization is commonly used to remove ordered bias 

in surveys, it was not done in this work. Rather, questions were ordered to support 

physician decision-making regarding patient risk. Evidence shows that, when 

estimating relative magnitudes in the medical context, presenting the information in 

an ordered manner can make judgments regarding those magnitudes easier (Reyna, 

2008).   

Restrictions were implemented to prevent participants from specifying any of 

the values as equal, and to require the 5th percentile < expected value < 95th 

percentile. Further, participants were not allowed to advance through the survey 

without adjusting each slider at least once.  
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5.3.3 Analysis 

Several statistical analyses were performed to explain the results. Linear 

mixed-models with random intercepts were fit to examine relationships between 

background questions and performance outcomes. Background questions were 

included as independent variables and were modeled with elicited expected values for 

all task predictions, information score for all task predictions, and the combined 

scores for all calibration questions. For all analyses, participant ID and task-task 

detail pairs were treated as random effects.  

Further, expected values, ignoring the elicited 5th and 95th percentiles, and 

information scores were compared for various groupings of the task estimates to 

better understand how experts approached the estimation task. Expected values and 

information scores were compared across risk groups, where groups were coded as 1-

3 based on their order shown in Table 24. For tasks with only two associated groups, 

group 2 was coded as risk-level 3. For these analyses, risk-level was the independent 

variable and expected values and information score were dependent variables. 

Participant ID and task-task detail pairs were treated as random effects. Following 

this, post hoc multiple comparisons was performed using Tukey’s method. 

Finally, to identify fundamental differences in decision-making regarding type 

of task, expected values and information scores were examined with tasks grouped at 

their highest-level – physical, sensory, and cognitive. Again, participant ID was 

treated as a random effect. Post hoc multiple comparisons were performed using 

Tukey’s method. 
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5.4 Results 

The following section contains the following results: 1) Summary Statistics; 

2) Calibration Question Results; 3) Task Estimation Results; 4) Risk-Level Analysis; 

and 5) Task-Type Analysis.  

5.4.1 Summary Statistics 

Twelve internal medicine physicians voluntarily completed the elicitation 

questionnaire. Table 25 summarizes the background question responses for all 

participants. Experts had a wide range of years of experience, with most serving high-

risk patients in an inpatient setting.  

 
Table 25: Summary of background question responses for experts. 

Expert # 
Years of 

Experience 

Est. % Patients 

with Medicaid or 

Medicare 

Est. % Patients 

Uninsured 

Majority Inpatient vs. 

Outpatient 

1 3 30 15 Outpatient 

2 14 60 20 Inpatient 

3 38 50 19 Outpatient 

4 15 50 10 Outpatient 

5 9 65 30 Inpatient 

6 16 85 20 Inpatient 

7 11 40 10 Outpatient 

8 1 61 41 Inpatient 

9 4 71 20 Inpatient 

10 15 66 47 Inpatient 

11 6 51 10 Inpatient 

12 3 66 17 Inpatient 

Mean 

(SD) 
11.25 (9.58) 57.92 (14.1) 21.58 (11.5) - 

5.4.2 Calibration Question Performance 

Figure 6 displays expert responses to calibration questions, with the correct 

value indicated with a vertical blue line. Full question text is shown in Table 22.  
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Figure 6: Elicitation results for calibration questions. Correct value indicated by vertical blue line. 

Full question text is in Table 22. 

 

Table 26 displays expert performance for the calibration questions. Weight is 

the normalized score across all experts to be used in the “Performance Weighted” 

combinations described in Table 21. Optimized weight is the weight determined 

following the optimization procedure discussed in Table 21. A zero in this column 

indicates this expert was eliminated. The final alpha value used was 0.608. Experts 7, 

10, 11, and 12 were the highest performing experts.  
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Table 26: Expert calibration question performance. 

Expert 

# 

Mean Information 

Score 

Calibration 

Score 
Score Weight 

Optimized 

Weight 

1 0.357 0.411 0.147 0.141 0 

2 0.359 0.064 0.023 0.022 0 

3 0.458 0.046 0.021 0.020 0 

4 0.932 0.002 0.002 0.002 0 

5 1.015 0.014 0.014 0.014 0 

6 0.318 0.101 0.032 0.031 0 

7 0.223 0.740 0.165 0.159 0.211 

8 1.136 0.014 0.016 0.015 0 

9 0.662 0.0001 0.0001 0.0001 0 

10 0.180 0.608 0.110 0.106 0.140 

11 0.745 0.608 0.453 0.436 0.578 

12 0.076 0.740 0.056 0.054 0.072 

 

Table 27 contains the calibration question performance for the equally 

weighted, performance weighted, and optimized weighted “decision-maker.” The 

optimized weighted decision-maker achieved the highest score, with performance 

weighted close behind.  

 

Table 27: Calibration question performance for combined decision-makers. 

Decision-maker 
Mean Information 

Score 
Calibration Score Score 

Equally Weighted 0.363 0.411 0.149 

Performance Weighted 0.348 0.740 0.257 

Optimized Weighted 0.358 0.740 0.265 

  

Table 28 summarizes the performance on each calibration question. 

“Frequency correct” refers to the number of times the correct answer fell within the 

elicited confidence intervals.  

 
Table 28: Average performance by calibration question. 

Question Abbreviation Frequency Correct Mean Information (SD) 

BMI 8 0.528 (0.336) 

Exercise  9 0.514 (0.502) 

NonHDL 9 0.593 (0.340) 

A1C 6 0.475 (0.345) 

Kidney Disease 7 0.423 (0.492) 

Full question text shown in Table 22. 
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Question performance was similar, with “How many US adults with 

diagnosed diabetes would you expect to have an A1C value of greater than 9.0%” 

falling within the specified intervals the least. There were no significant differences 

between the specified information per question provided.  

5.4.3 Task Elicitation Results 

The results of the task performance elicitations are shown below. Figure 7 

displays results for gross upper-body movement and fine motor movement.  When 

looking at combined values, quantites for task success followed a logical pattern for 

both tasks, decreasing with subjective risk-level. Gross upper-body movements were 

percieved as a higher risk task.  
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Figure 7: Elicitation results for gross upper-body movement and fine motor movement tasks. 

 

Figure 8 displays results for visual discrimination. As expected, task success 

decreased with increasing user group risk. Experts also specified increasing risk with 

increasing task complexity.  
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Figure 8: Elicitation results for visual tasks. 

   

Figure 9 contains results for auditory task performance. As before, the 

combined decision-makers followed a logical pattern, with increasing risked being 

elicited with increasing risk-level and task complexity. Detecting and perceiving 

speech sounds for group 3 was perceived to be the highest risk task-user group 

combination.  
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Figure 9: Elicitation results for auditory tasks. 

 

Figure 10 contains results for applying existing knowledge tasks. For these 

tasks and user groups, risk increased with user group risk-level, however differences 

between task complexity within risk-levels were less pronounced. 
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Figure 10: Elicitation results for applying existing knowledge tasks. 

 

Figure 11 contains results for the problem-solving and decision-making tasks. 

Once again, similar trends can be observed for increasing risk and increasing user 

group risk-level. Task complexity was only noticeably different between groups 1 and 

2, however. User group 3 elicited similar perceived risk across task complexity. 

Comparing Figures 10 and 11, it can be observed that elicited risk across task 

complexities were not dramatically different either.  
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Figure 11: Elicitation results for problem-solving and decision-making tasks. 

 

5.4.4 Model Results 

Background Questions: Linear mixed-models were fit to examine the 

relationships for expected values and information scores for all tasks with background 

question responses, treating expert ID as a random effect. This was also performed 

for calibration question scores and background question responses. In all cases, there 

were no significant associations detected between the elicitation outcomes and the 

background questions.  
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Risk-Levels: Expert elicited expected values for task performance were 

modeled with task risk-level. Model fixed effects are reported in Table 29. Sample 

size was n = 324. Conditional r2 was 0.557 and marginal r2 was 0.232. Random effect 

standard deviation was 9.79 for Expert ID and 5.25 for task-type. Risk-level 1 is the 

reference level. Multiple comparisons results using Tukey’s method are shown in 

Table 30. Expect values followed a logical pattern, where increasing risk-level 

corresponded with decreased likelihood of task success.  

 
Table 29: Linear mixed-model fixed effects for risk-level expected value analysis. 

Fixed Effect Estimate 
Std. 

Error 
df t-value p-value 

Intercept 73.3 3.48 18.7 21.04 <.001 

Risk-Level 2 -9.65 1.91 308 -5.05 <.001 

Risk-Level 3 -21.8 1.68 300 -12.9 <.001 

 

 

Table 30: Multiple comparisons results for expected value by risk-level analysis using Tukey's method. 

P-value in parentheses. Difference is row – column. 

 Risk-Level 2 Risk-Level 3 

Risk-Level 1 9.65 (<0.001) 21.783 (<.001) 

Risk-Level 2 - 12.133 (<.001) 

 

Information scores were also modeled with task risk-level. Model fixed 

effects are reported in Table 31. Sample size was n = 324. Conditional r2 was 0.502 

and marginal r2 was 0.014. Random effect standard deviation was 0.365 for expert ID 

and <0.001 for task type. Risk-level 1 was the reference level. Multiple comparisons 

results using Tukey’s method are shown in Table 32. Experts seemed to be the least 

confident for the second risk level, with only a significant difference in information 

between risk-level 1 and 2.  
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Table 31: Linear mixed-model fixed effects for risk-level information score analysis. 

Fixed Effect Estimate Std. Error df t-value p-value 

Intercept 0.786 0.111 12.6 7.07 <.001 

Risk-Level 2 -0.155 0.053 296 -2.92 0.004 

Risk-Level 3 -0.094 0.048 297 -1.97 0.049 

 

Table 32: Multiple comparisons results for information score by risk-level analysis using Tukey's 

method. P-value in parentheses. Difference is row – column. 

 Risk-Level 2 Risk-Level 3 

Risk-Level 1 0.1547 (0.009) 0.0939 (0.121) 

Risk-Level 2 - -0.0608 (0.485) 

 

Task-type: Expected values were modeled based on their highest-level task 

grouping (physical, sensory, cognitive). Model fixed effects are reported in Table 33. 

Sample size was n = 324. Conditional r2 was 0.282 and marginal r2 was 0.037. 

Random effect standard deviation was 9.59 for expert ID. Cognitive task was the 

reference level. Multiple comparisons results using Tukey’s method are shown in 

Table 34. Experts elicited larger values for physical tasks than both sensory and 

cognitive tasks. Information score by task-type was also examined, however no 

significant associations were identified.  

 
Table 33: Linear mixed-model fixed effects for task-type expected value analysis. 

Fixed Effect Estimate Std. Error df t-value p-value 

Intercept 58.9 3.09 13.8 19.1 <.001 

Physical 8.86 2.52 309 3.52 <.001 

Sensory 1.84 2.37 309 0.778 0.437 

 

Table 34: Multiple comparisons results for expected value by task-type analysis using Tukey's method. 

P-value in parentheses. Difference is row – column.  

 Sensory Cognitive 

Physical 7.02 (0.038) 8.86 (0.001) 

Sensory - 1.84 (0.715) 
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5.5 Discussion 

In this section, the results are interpreted and discussed in the context of 

reliability and design validation. 

5.5.1 Calibration Question Performance 

Prior to eliciting values for the unknown quantities, experts were asked to 

estimate values for five calibrations questions with known values. These questions 

were related to recent statistics about the diabetes population. Expert performance is 

summarized in Table 26.  

There was a relatively wide distribution of information scores, with some 

experts opting to provide small confidence intervals while others expressing less 

confidence. The maximum information score achievable given the range of available 

answers (0-100) was 3.337, corresponding to percentiles (0,1,2) and (98,99,100). We 

can see that mean information scores ranged from 2.3% to 34% of this maximum. It 

is difficult to make a value judgment on the information score alone. Ideally, a larger 

score is preferable, however, poor information may reflect the nature of the question 

being asked. Experts were asked to make judgments about very general tasks with 

few details on the context. It should be expected that there is a high degree of 

variability in risk per individual even within user groups. Further, several of the 

experts with high information scores had very poor calibration. This shows that 

overconfidence can adversely impact statistical accuracy. 

Given that there were only five calibration questions, the theoretical 

maximum calibration score of 1 was impossible to achieve. Five questions cannot be 

evenly disturbed into elicited intervals as the expected reference proportions: 
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[0.05,0.45,0.45,0.05]. The maximum calibration score that could be achieved was 

0.740, which corresponds to calibration question answers being distributed into the 

specified intervals as [0,2,3,0] or [0,3,2,0]. There were two experts who received this 

calibration score, 7 and 12. Both experts were included in the optimized combination 

of experts. The highest scoring (calibration * information scores) expert was expert 

11. In the weighted combination of experts, their estimates were weighted at 43%, 

approximately 5x their contribution under equal weighting. Expert 11 provided the 

most balance between information and calibration, demonstrating the importance of 

balancing confidence with precision when making judgments.  

Little difference in performance was observed between calibration questions. 

Of the five, experts seemed to have the most difficulty with “How many US adults 

with diagnosed diabetes would you expect to have an A1C value of greater than 

9.0%”, with only 50% of experts being “correct”. This may be because of variation in 

clinicians’ personal experiences with patient care rather than reliance on national 

aggregate estimates. 

Background questions regarding years of experience and experience with at-

risk patient populations had no significant association with calibration question 

performance. This is not a negative, as this provides evidence that physicians of most 

backgrounds are suitable candidates for this type of elicitation. Future work should 

seek to validate this finding.  

5.5.2 Task Elicitation Results 

Elicited values and the combination decision-makers are displayed in Figures 

6-11. The optimized weighted decision-maker produced the best results on calibration 
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questions (Table 27). The assumption is, therefore, that this combination of experts 

should be used in practical application and will be the primary focus of this 

discussion. On visual inspection, for physical and sensory tasks, risk follows a logical 

trend. As risk-level and task complexity increases, patient likelihood of success 

decreases. For cognitive tasks, however, these differences are not as pronounced, 

especially when looking at similar risk levels across tasks. It may be that the abstract 

and unobservable nature of cognition makes it difficult to discriminate between 

various levels of cognitive difficulty.  

Comparing the tasks with two patient groups (fine motor movement, visual 

discrimination) with the three patient group tasks, a potential confounding influence 

given the ordered presentation of patient risk-levels can be seen. The 2nd group in 

each of the 2-group tasks seems to resemble the 2nd group in the 3-group tasks, 

whereas one might expect the 2nd group in the 2-group tasks to be lower, falling 

somewhere between the level-2 and level-3 risk categories, or potentially lower. It is 

possible that when participants were taking the survey, they anticipated a 3rd, higher-

risk group to be presented and left “space” on the lower end of the scale. This bias 

may have been mitigated with randomization of questions. Another explanation is 

that the performance distributions elicited truly represent the predominant risk-levels 

associated with the diabetes population, and that physicians see less risk involved 

with visual discrimination and fine motor movements than the other tasks presented.  

Statistical modeling was used to further examine the influence of risk-level on 

estimations (Tables 29-32). For this analysis, the lowest group in each task was coded 

as risk-level 3, an assumption that may have been incorrect given the previous 
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insights. Regardless, a logical trend was observed, where each risk-level elicited a 

decreasing expectancy of patient success. Examining the information scores by risk-

level, risk-level 1 elicited more confidence from experts than risk-levels 2 or 3. This 

is likely because higher risk patients present more complicated and heterogeneous use 

cases, therefore making it more difficult to predict how any one individual will 

perform a task.   

Based on modeling efforts to examine differences between tasks at a high-

level (Tables 33-34), physical tasks were perceived as less risk-inducing than sensory 

and cognitive tasks for the included patient user groups. There was no significant 

difference between sensory and cognitive tasks. It is possible that the difference 

between physical and cognitive performance is exaggerated because all cognitive 

tasks contained a “3rd risk-level”, however this does not explain the difference 

between physical and sensory tasks, which both have one task with only two user 

groups. It is possible that physicians truly perceive physical tasks to be less risk-

inducing within the context of medical device use.  

5.5.3 Proposed Use 

The goal of this elicitation was to produce values for human performance to 

support design validation and product customization for products used by highly 

heterogeneous user populations, where direct measurement is difficult or infeasible. 

The values elicited in the demonstration were proportions, however this can be easily 

translated into probabilities. These probability values can be used to predict where 

user failure is likely to occur during formative human factors design analysis and can 

be used to justify inclusion of functionality for certain user sub-populations. For 
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example, user groups with high probability of failing to perform visual discrimination 

tasks may need design features than translate output stimuli to an auditory modality, 

or vice versa in user populations with high risk of failing to discriminate auditory 

stimuli (Dascalu et al., 2017; Niazi et al., 2016). Using the user group proportions 

identified in Chapter 4 (Tables 11,13,15,17, and 19), the magnitude of risk and 

potential cost to the firm designing the system can be estimated. If cost models were 

developed for design solutions associated with different tasks, these models could be 

integrated into an optimization model with the elicited statistics to support cost-

effective design decision-making. A process to accomplish this is proposed and 

demonstrated in Chapter 6.  

Another advantage of these statistics is that they can be used in early stages of 

design. Methods for incorporating human factors considerations in early design stages 

has been identified as a research need (Ozcelik et al., 2011; Sun et al., 2018), 

particularly for patient populations (Nelson et al., 2016). In early design stages, 

design choices can be made that may inadvertently disadvantage certain users, yet 

with no physical product design, specific user interactions have yet to specified. 

Further, not considering human performance until the late design stages can lead to 

costly redesign requirements, or certain user’s needs being ignored (Leonard et al., 

2006). By eliciting performance for generalized tasks, probable interactions can be 

inferred for a system at early design stages and performance for those interactions can 

be estimated. While these estimations likely will not be as accurate without knowing 

the specific interaction, they can be used prior to time consuming and expensive 

prototyping.  
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These values could also be used as prior knowledge to support more targeted 

applications. In Bayesian statistics, Bayes’ theorem is used to update probability 

distributions given new data or information. From this perspective, if some limited 

performance data was available or was collected to model performance for a specific 

use case, the values elicited in this study could be used as an informative prior in a 

Bayesian analysis of the data and be tailored to that specific application (Albert et al., 

2012). This provides cost-benefit balance, by providing more confidence in models 

derived from sparse experimental data. It is not uncommon to use expert elicitation in 

conjunction with Bayesian inference (N. Wang et al., 2018; Zhang & Thai, 2016). 

There were several observed limitations associated with this approach. There 

was some evidence, discussed previously, that the ordered nature of the questions 

may have influenced the values elicited from physicians. Future work should examine 

the extent to which this effect is present for physician expert populations. Another 

limitation was the decomposition of cognitive tasks. Having now observed that 

experts were unable to discriminate between cognitive tasks, it may have been better 

to merge these tasks in favor of adding a wider variety of additional tasks, such as 

tactile discrimination. Alternatively, additional calibration questions could have been 

elicited to produce more robust estimations of expert performance.  
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Chapter 6: Optimizing Function Allocation for Accommodation 
of Heterogeneous Populations 

 

6.1 Introduction 

This chapter introduces a functional modeling approach to facilitate allocation 

of product functions to humans and machines. This modeling approach is integrated 

into a multi-objective optimization model to support automated decision-making and 

to illustrate trade-offs between accessibility and cost. The optimization model 

automates function allocation for a family of products, where product family 

members correspond to user groups with varied functional requirements. The tasks 

generated in Chapter 4 are mapped to functions to facilitate evaluation of function 

allocations. User groups task performance distributions from Chapter 5 are used to 

evaluate user accommodation for assigned human functions and are used as input to 

the optimization model (Figure 12). The output of the methodology are pareto 

optimal solutions for function allocation.  
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Figure 12: Summary of Chapter 6. 

 

To validate the functional modeling approach and the optimization model, 

senior mechanical engineering students were recruited to perform three design 

exercises. The goal of the first two exercises was to compare concepts generated 

using conventional functional modeling approaches vs. the proposed approach. The 

goal of the third exercise was to validate the utility of the optimization model.  

 

6.2 Methodology 

This section describes the methodology. First, a human-machine system 

functional modeling approach is proposed, where human and machine functions are 

represented simultaneously and can be used to facilitate allocation of functions. Next, 

metrics for evaluation of functional product family concepts are proposed. This 

includes a theoretical framework for mapping system functions to human tasks to 

support evaluation of accessibility. Finally, the modeling approach and metrics are 
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integrated into an optimization framework that can produce pareto-efficient design 

alternatives. The methodology is then demonstrated on the diabetes self-management 

device case study.  

6.2.1 Human-Machine Function Modeling 

In this section, a human-machine system perspective to function modeling is 

introduced. The focus of the modeling approach in this work is to facilitate the 

allocation of functions. Some of the detail typically included in function structures are 

not necessary for this task and may be unknowable at the early stages of the design 

process. Thus, a simplified version of function structure is utilized. Table 35 

highlights the differences between the traditional and proposed modeling approaches.  

 
Table 35: Highlighted difference between function structure and proposed model. 

Property Function 

Structure 

Human-

Machine 

Function 

Model 

Justification for Difference 

Intended Use 

Early (Concept 
Generation), Mid-

Late (Analysis, 

Redesign) 

Early (Concept 

Generation) 

Designers must allocate functions as 

early as possible to minimize risk of 
redesign due to discovered 

incompatibilities between users and 

functions.  

Product 

Functions 
x x - 

Human Functions  x 
Facilitates function allocation 

between humans and machines. 

Flow 

Directionality 
x  

Flow directionality provides an 

unnecessary level of detail for 

function allocation. 

Model 

Representation 
Flowchart Table 

The flowchart is unnecessary without 

flow directionality. 

“Material” and 

“Signal” as flows 
x x - 

“Energy” as a 

flow 
x  

All human functions require energy 

and is redundant to state. 

Level of Detail 

Primary and 

Secondary 
Functions  

Primary 
Functions 

Secondary functions provide an 

unnecessary level of detail for 
function allocation and may be 

unknowable at this early stage. 
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Modeling Intent: The product of this method, which are a set of functions and 

their allocation status (human or machine), should be thought of as a precursor to a 

more detailed function structure where identified product functions are decomposed 

further. Functions that should be included are those critical to the primary functioning 

of the system and should be functions that could be conceivably performed by a 

human or a machine. The distinction between primary and secondary functioning is 

subjective, and the level of detail to include is ultimately up to the individual 

performing the method. Primary functions should include functions that the stated 

problem could not be solved without, and for which there are few or no alternatives. 

Secondary functions are supportive or accessory in nature. Examples of secondary 

functioning could include functions required to supply energy to a primary function, 

functions to facilitate interface between human and product, or functions to describe 

communication between the system and an entity external to the system (Y. Xu & 

Huijun, 2007).  

Modeling Steps: The first step in most functional modeling approaches and in 

this modeling approach is to create a black box diagram (Nagel et al., 2015). The 

black box diagram should state the purpose of the system, as well as key inputs and 

outputs. Next, the black box should be decomposed into its constituent functions 

using language from the functional basis, a taxonomy of functions for engineering 

design (Hirtz et al., 2002). Inputs that each function act upon should be identified as 

well. The final step is to assign functions to human or machine. 

Model Assumptions: There are several assumptions associated with this 

approach. Allocations are assumed to be static, as opposed to dynamic. While 
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dynamic function allocation is often seen as superior to static because it is more 

robust to unpredictable conditions, it is outside the scope of this work. The primary 

goal of this modeling approach is to facilitate accessible design by identifying 

functions that users cannot reliably perform under any circumstance. This modeling 

approach also does not consider emergent functions.  A one-to-one substitution of 

human with machine functions can often results in emergent system properties 

(Dekker & Woods, 2002). For example, if a product is assigned a sensing function 

then it must also be assumed that a function to communicate sensed information to 

the user is necessary. A thermometer must sense and indicate temperature to be 

useful. Emergent functions can be identified individually by designers. 

6.2.2 Evaluating Function Allocation 

The previous section introduced a descriptive model of function and function 

allocation. In this section, two objective metrics are introduced for evaluating the 

configuration of allocations across a product family. These metrics are 

accommodation, or the ability of the user population to perform required functions, 

and complexity, an approximate measure of cost associated with the design and 

manufacture of the product family.  

6.2.2.1 Accommodation 

Accommodation is the ability of a user to perform the tasks associated with a 

system function. Like a hardware or software element that embodies a product 

function, a task can embody a human function. Unlike product functions, for which 

there are theoretically unlimited design solutions, there are limited human tasks that 
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can fulfill a function. Quantifying user accommodation for these tasks can facilitate 

evaluation of function allocations.  

Function-Task Mapping: To help designers identify tasks relevant to 

performance of a given function, a function-task matrix was developed. This matrix 

provides theoretical guidance to select tasks required to perform a function. This 

concept was informed by previous work where authors connected functions to 

primarily physical tasks (Soria Zurita et al., 2020). In this work, the tasks included 

were expanded to cover a wider breadth of human activity including elements of 

sensation (e.g., vision, auditory) and cognition (e.g., decision making). The rows of 

this matrix contain functions from the functional basis, which is organized in three 

tiers. A sample of functions from the secondary and tertiary tiers were selected for 

inclusion. Formal definitions for functions can be found in (Hirtz et al., 2002). 

The columns of the matrix are labeled categories of human activity taken from 

two well validated taxonomies introduced in Chapter 4: Bloom’s taxonomy of the 

cognitive domain (Bloom, 1956) and Harrow’s taxonomy of the psychomotor domain 

(Harrow, 1972). The use of these taxonomies provides a theoretical baseline to 

identify function-task links for those wishing to reproduce these methods, as well as 

providing continuity with the methods proposed in Chapter 4 of this dissertation. The 

matrix can be thought of as a continuation of Table 6 in Chapter 4, providing a direct 

path from function to P&C Physician Judgment Tasks.  

To link the taxonomy levels and the functions, a requirements elicitation using 

nominal group technique was performed with three engineering Ph.D. students with 

formal training in cognitive taxonomies and engineering methodology. Participants 



 

 

123 

 

were all students at the University of Maryland and members of the Hybrid Systems 

Integration and Simulation Lab. Nominal group technique typically follows a 

sequence of independent idea generation, round-robin presentation of ideas, group 

consensus discussion, and voting (Manera et al., 2019). For each function (row), 

participants were asked to consider the human actions that could fulfill each function. 

Then, participants identified the taxonomy categories for each action in the matrix. 

While typically these taxonomies are thought of as nested (e.g. fundamental 

movements cannot be performed without reflexive movements), experts were 

instructed to mark the highest applicable level for each taxonomy. This assumes that 

to quantify performance for any taxonomy level, the influence of lower levels is 

inherent and cannot be separated from that action and therefore does not need to be 

explicitly stated. This nested assumption does not apply to Perceptual Abilities and 

Non-discursive Communication, which are not considered “nested”. If the expert 

believed two levels could be relevant in different situations, they were instructed to 

mark both. They could also leave the row blank if there was no analogous human 

activity. This was performed separately for material and signal inputs. Energy was not 

included (see Table 35).  

Following this, the participants convened to discuss results. For each row, 

participants were randomly selected to defend their selection. A discussion ensued, 

and if consensus was met, discussion moved to the next row. If not, vote by majority 

was used. The final function-task matrix can be seen in Tables 36 and 37 for 

Harrow’s and Bloom’s taxonomy, respectively. 
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Table 36: Function-task mapping for Harrow's taxonomy. 

 
Reflexive 

Movements 

Fundamental 

Movements 

Perceptual 

Abilities 

Physical 

Abilities 

Skilled 

Movements 

Non-

Discursive 

Movements 

Separate    M   

Distribute    M   

Transfer    M M  

Translate    M   

Rotate    M   

Couple    M   

Mix    M   

Actuate    M, S   

Regulate    M S  

Change    M, S   

Stop    M, S   

Store    M   

Supply    M   

Sense   M, S    

Indicate  M    M, S 

Process     M  

Support    M   

M = material, S = signal 

 

Table 37: Function-task mapping for Bloom’s taxonomy. 

 

 Knowledge Comprehension Application Analysis Synthesis Evaluation 

Separate   M S   

Distribute   M, S    

Transfer   M    

Translate   M    

Rotate   M    

Couple   M  S  

Mix   M  M, S  

Actuate    M, S   

Regulate      M, S 

Change    M, S   

Stop    M, S   

Store S  M    

Supply S  M    

Sense       

Indicate       

Process S S M, S S S S 

Support   M    

M = material, S = signal 

 

These matrices can be used to determine relevant human tasks given the 

functions and inputs being evaluated. These should be tasks whose performance can 
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be quantified and used to evaluate accommodation. The exact tasks must be identified 

by the designer based on the application. This will vary based on assumptions made 

about the design context, the availability of data, and the desired specificity of the 

task. For example, “Perceptual Abilities” could be decomposed into visual and 

auditory discrimination. Even further, visual discrimination of specific stimuli, such 

as text, can be specified if it is expected to be particularly relevant and to influence 

performance significantly. In this work, taxonomy tasks were already mapped to 

quantifiable tasks (P&C Physician Judgment Tasks) in Chapter 4, Table 6.  

Quantifying Task Performance: After relevant tasks have been identified 

using the function-task matrix, performance for those tasks can be quantified. 

Accommodation for a single function is formulated as the probability that a user will 

successfully perform the tasks required for that function. Quantifying this for a 

population could be accomplished in several ways and selecting the best way for the 

given use case is outside the scope of this methodology. Options include recruiting 

and studying live participants, surveying users, soliciting expert judgments (as 

performed in Chapter 5), or utilizing existing data. What must be accomplished, 

however, is that users must be assigned a probability of success for every task 

identified given the modeled functions. A user can be represented as a vector of 

success probabilities where each entry is associated with a specific task.  

Modeling a population of users as such can be accomplished in several ways. 

To illustrate this, two options are presented. Option #1: Stratified Population – The 

user population is stratified into user groups based on similar task performance. Each 

user group is assigned a unique probability vector, as well as the proportion of users it 
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represents. Option #2: Unique Users – A model population of users is produced, and 

each user is represented as a vector of probabilities. These probabilities represent the 

individual’s likelihood of succeeding at each task. This is a more realistic option but 

requires a more complex model.   

Accommodation Metric Definition: Given a model user population with 

accompanying task performance values, accommodation can be evaluated. 

Accommodation for a product family configuration is measured as the average 

probability of successfully performing all required functions for all users in the 

population. For this model, functions exist as independent nodes that can be statically 

allocated as human or machine. The assumption of independence means that the 

human performance of one function does influence the subsequent function. Further, 

the effect of functions performed simultaneously (implying multi-tasking) is not 

modeled.  

Each product in a product family can be represented as a vector of n binary 

values where 1 corresponds to a machine function and 0 corresponds to a human 

function. A product family x is therefore represented as a m x n matrix, with m 

product family members. Thus, accommodation for a single individual can be 

evaluated as follows, where p = (p1, …, pk=n ) with entries corresponding to function-

task success probabilities, and xjk corresponding to the kth function of the jth product 

family member in the product family (Eq. 6):  

 

 𝑎𝑗 = (𝑎1, … , 𝑎𝑘)𝑗 = (𝑝1 ∗ [𝑥𝑗1 = 0], … , 𝑝𝑘 ∗ [𝑥𝑗𝑘 = 0])      

𝑓𝑜𝑟 𝑗 = 1, … , 𝑚, 𝑘 = 1, … , 𝑛 

(6) 



 

 

127 

 

 

where square brackets with a conditional statement are the Iverson bracket, evaluated 

as (Eq. 7):   

 

 [𝑍] =  {
1     𝑖𝑓 𝑍 𝑖𝑠 𝑡𝑟𝑢𝑒;
0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7) 

 

Following this, the product of non-zero elements for each product family 

member j in a is taken. It is assumed that a user will prefer the product family 

member that results in the highest likelihood of success for them. The individual is 

“assigned” to a product in the family by taking the maximum value in the resulting 

vector (Eq. 8):  

 

 𝐴 = max
𝑗∈𝐽

 (𝐴1, … , 𝐴𝑗) = max
𝑗∈𝐽

∏ 𝑎𝑗𝑘

{𝑘: 𝑎𝑗𝑘≠0}

 (8) 

 

The index of the maximum value is retained to allow determination of the 

distribution of product family member selection in the population.  

Example: To demonstrate, suppose two products in a product family have four 

functions and a user has corresponding success probabilities of p = (0.65, 0.75 0.89 

0.98). The product family and function allocations are (Eq. 9):  

 

𝑥 = [
0 1 1 0
0 1 0 0

] (9) 
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where each row corresponds to a product family member. Accommodation is 

calculated as follows (Eq. 10-11)  

 

𝑎 =  [0.65 ∗ 1 0.75 ∗ 0 0.89 ∗ 0 0.98 ∗ 1
0.65 ∗ 1 0.75 ∗ 0 0.89 ∗ 1 0.98 ∗ 1

] = [
0.65 0 0 0.98
0.65 0 0.89 0.98

] (10) 

 

𝐴 = max ([ 0.65 ∗ 0.98
0.65 ∗ 0.89 ∗ 0.98

]) = max ([
0.637
0.567

]) =  0.637 (11) 

 

Thus, the user was assigned to product family member 1. For a population of 

users 𝑖 ∈ 𝐼, accommodation is determined as (Eq. 12):   

 

𝐴𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = �̅�𝑖 
(12) 

6.2.2.2 Complexity 

Measuring cost at this stage of design is difficult because a significant number 

of design decisions are yet to be made. Yet, with a few assumptions, an 

approximation of cost can be made that permits comparison between product family 

configurations. This metric is loosely based on the work in (Gill et al., 2017), where 

machine learning was demonstrated as useful in some cases for predicting product 

price from function structures.  

Complexity is split into two sub-metrics: Machine Function Cost (MFC) and 

Unique Function Cost (UFC). MFC seeks to approximate the production cost 

associated with each non-human function produced. UFC seeks to approximate the 



 

 

129 

 

upfront design and manufacturing costs associated with producing each unique 

function.  

MFC Metric Definition: MFC is evaluated as the average number of machine 

functions per individual in the population. This is calculated as follows (Eq. 13):  

 

𝐶𝑀𝐹𝐶 =  
∑ ∑ 𝑥𝑗𝑘

𝑛
𝑘=1

𝑚
𝑗=1 ∗ 𝑢𝑗

𝑈
 

(13) 

 

where uj is the number of users assigned to product family member j, and U is the 

number of users in the population.  

UFC Metric Definition: UFC attempts to approximate the costs associated 

with design and manufacturing of unique functions. The metric is evaluated as the 

number of unique automated functions across all product family members (Eq. 14).  

 

𝐶𝑈𝐹𝐶 =  ∑ [∑ 𝑥𝑗𝑘 ≥ 1

𝑚

𝑗=1

]

𝑛

𝑘=1

 (14) 

 

Each column corresponding to a function in the product family matrix is 

summed, and if the value is greater than 1, then a cost of 1 is incurred. Thus, holding 

all other objectives constant, the cost metric will prioritize solutions that minimize the 

total number of unique machine functions and will promote sharing across product 

family members. Total complexity is formulated as (Eq. 15): 
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𝐶𝑡𝑜𝑡 =  𝛼 ∗ 𝐶𝑀𝐹𝐶 + (1 − 𝛼) ∗ 𝐶𝑈𝐹𝐶  (15) 

 

where alpha is a weight parameter (0-1) that can be tuned given the relative 

importance of each metric.  

Example: Using the same product family configuration as in the prior 

example, the complexity metric is demonstrated. A population of 100 users is 

assumed, with 25 assigned to product family member 1 and 75 to number 2. Equal 

weighting is assumed (α = 0.5).  

 

𝐶𝑀𝐹𝐶 =  
(2 ∗ 25) + (1 ∗ 75)

100
 = 1.25 

(16) 

𝐶𝑈𝐹𝐶 =  0 + 1 + 1 + 0 = 2 (17) 

𝐶𝑡𝑜𝑡 =  0.5 ∗ 1.25 +  0.5 ∗ 2 = 1.625 (18) 

6.2.3 Optimization Model 

Given the objective metrics for accommodation and complexity, a trade-off 

emerges. To accommodate the needs of more users, more functions must be 

automated. Some of these costs can be minimized through product family design. A 

multi-objective optimization model, using the previous metrics as objectives, was 

formulated to aid designers in navigating these trade-offs (Eq. 19).  
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min
𝑥

𝐹(𝑥) = {−𝑓1, 𝑓2} 

𝑓1(𝑥) = 𝐴𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  

𝑓2(𝑥) = 𝐶𝑡𝑜𝑡 

𝑠. 𝑡.  𝑥𝑖 ∈ {0,1}, 𝑖 = 1, … , 𝑚 ∗ 𝑛 

(19) 

The decision-variable x is constrained to whole values of 0 or 1, with the 

number of variables determined by the number of functions in each product and the 

maximum number of product family members included. The first objective function 

is made to be negative so that it can be minimized instead of maximized to conform 

with typical notation.  

Solver Selection: The resulting optimizing problem is discontinuous, non-

convex, and non-linear, which is difficult to solve using gradient-based approaches. 

As such, a genetic algorithm (GA) is used. GAs are a heuristic approach to 

optimization problems that don’t rely on gradients and are therefore well suited for 

this problem (Q. Wang et al., 2019). GA’s perform a semi-random search in the 

objective space. Candidate solutions are represented as chromosomes, where genes 

belonging to chromosomes represent each decision-variable. Chromosomes are 

randomly generated and evaluated on a fitness function (comprised of the objective 

functions). Chromosomes are ranked based on fitness and a proportion of the 

chromosomes with the highest fitness are kept. These chromosomes (parents) 

undergo two mechanisms (cross-over, mutation) to generate children chromosomes, 

which are then in turn evaluated in the objective space (Alizadeh et al., 2019). This 

continues until some cut-off criteria is satisfied. A disadvantage of this type of solver 

is that there is no guarantee the identified solutions are global optimum, which may 
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not be a problem if local optima are satisfactory (J. Wu & Azarm, 2000). If the 

function model is particularly large, and solver run time becomes intractable, it may 

be desirable to use a surrogate model to simplify the problem (Chatterjee et al., 2019). 

Unlike single objective optimization, in multi-objective optimization problems 

a single solution is typically not obtained. Instead, a set of solutions is obtained that 

are, ideally, pareto efficient. Pareto efficient refers to a solution that cannot be 

improved in one objective without worsening another. The set of solutions that are 

pareto efficient is referred to as a pareto front (M. Li et al., 2020). This solution-set is 

the final output of this optimization model. Providing this solution set allows 

stakeholders to examine how design decisions influence objective function trade-offs 

and can facilitate selection of a solution based on stakeholder values.   

 

6.3 Experimental Validation  

To demonstrate the proposed function modeling approach and validate the 

utility of the optimization model, senior mechanical engineering capstone design 

students at the University of Maryland were recruited (n=16) to perform three design 

exercises. These students were all enrolled in the course ENME 472: Integrated 

Product and Process Development. The first two exercises were developed to 

demonstrate the proposed human-machine function modeling approach (exercise 2) in 

comparison to the conventional approach (exercise 1). In these exercises, the 

modeling approaches were applied to a mobility assist device design case study. The 

third exercise was developed to validate the utility of the optimization model. 

Participants were required to allocate pre-selected functions for the diabetes self-
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management device case study. The tasks and purpose for each student exercise are 

summarized in Table 38 and discussed further in the following sections.   

Table 38: Summary of student exercises. 

 Human-Machine Function Modeling Validation Optimization Model 

Validation 

Title 
Conventional Modeling 

Approach (Exercise 1) 

Proposed Modeling 

Approach (Exercise 2) 

Manual Function 

Allocation (Exercise 3) 

Summary 

Participants perform 

conventional modeling 

approach on design case 

study 

Participants perform 

proposed modeling 

approach on design case 

study 

Participants allocate 

functions to humans and 

machines for a design case 

study 

Select 

functions? 
X X  

Allocate 

functions? 
 X X 

Applied 

to… 

Mobility assist device 

case study 

Mobility assist device 

case study 

Diabetes self-management 

device case study 

Compared 

to… 
Exercise 2 Exercise 1 Optimization model output 

 

Due to the COVID-19 pandemic, which occurred during the time of this data 

collection, exercises were performed remotely. The exercises were implemented 

using Qualtrics and went through several rounds of internal piloting before 

dissemination to participants. Dissemination occurred in Spring 2020. The students 

were incentivized with 2 points of extra credit towards their final homework grade 

(0.05% points on the final grade). This project received IRB approval after an 

expedited review as a minimal risk project (IRB Package # 1559396-2). 

6.3.1 Human-Machine Function Modeling Validation 

The goal of the first two exercises was to investigate the influence of the 

proposed function modeling approach on concept development compared to 

conventional, product-centric approaches. Prior to the exercises, participants were 

presented with a design case study (unrelated to the diabetes self-management device 
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case study) where they were asked to generate a concept for a family of mobility 

assist devices. A different case study was generated to prevent learning effects on the 

subsequent Exercise 3, which was applied to the diabetes self-management device 

case study. The mobility-impaired population was selected for this case study because 

it is a broad population with a variety of additional usability needs. Further, mobility 

devices are primarily physical and are therefore well suited for undergraduate 

mechanical engineering students. Lastly, statistics were readily available for this 

population in NHANES.  

Participants were given case study material that contained a problem 

description, as well as summary statistics generated for the population using 2017-

2018 NHANES data. The problem description was as follows:  

 

“The most common disabilities in the United States are mobility 

related. Many devices exist to aid mobility, however due to the highly varied 

characteristics and needs of mobility impaired individuals, not one size fits 

all. For this task, you will identify functions for a product to aid mobility in 

individuals with serious difficulty walking. This device should be for usable in, 

but not limited to, the home and outside on paved surfaces. You will complete 

two different exercises concerning this design problem. You should try to 

balance product accessibility with product complexity. Summary statistics for 

the mobility-impaired population have been provided to help you perform this 

task.” 
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Statistics were generated from NHANES participants who reported “serious 

difficulty walking or climbing stairs.” Variables that were summarized were those 

included in the Chapter 4, as these were identified as important characteristics for 

product interaction. The objective of these materials was to provide participants with 

information they could easily access independently without the use of the 

methodology proposed in this dissertation. Case study materials as given to 

participants are contained in Appendix D.1. At the beginning of the Qualtrics survey, 

participants were also given a brief background on modeling function, product 

families, and accessible design. To ensure participants read the material, questions 

pertaining to the material were periodically presented throughout the study. 

Participants were unable to advance without a correct response to the questions.   

Conventional Modeling Approach Exercise: The conventional modeling 

approach exercise was derived from methods taught in the undergraduate course 

participants were recruited from. The methods in this course generally adopt a 

product-centric perspective to modeling product function. Students identify the 

functions a product performs and the flows (material, energy, signal) they act on. 

Typically, they will then organize these functions as a block diagram “function 

structure”. Function allocation is not a concept that is introduced in this course.  

For the exercise, participants were presented with several tables that contained 

two drop-down boxes. Drop-down boxes in column one contained functions and 

drop-down boxes in column two contained generic inputs to the functions (human 

body, status signal, control signal, object, liquid, gas). Functions were structured as a 

statement and included the functions from Tables 36-37. Each table corresponded to a 
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different product family member. Participants were instructed to select functions and 

inputs for a family of products to satisfy the needs of the user population given the 

provided case study. Participants were required to include at least two product family 

members with at least two functions, with a maximum of five product family 

members. Participants were also instructed that products must all be different. Figure 

13 shows an example of the function selection tables in this exercise.   

 

Figure 13: Function selection table example for the conventional approach exercise. 

 

Following this, participants were presented with several open-ended 

questions. These questions asked participants to generate and describe a product 

family concept given the selected functions. Participants were able to review their 

previous selections while answering questions. Questions included the following:  

 

1. Describe the core ideas of the concept at a high-level. You should describe 

the common features between products and the features that vary for each 

product (3 or more sentences): 
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2. Describe the intended user population for each product family member. 

This should include the characteristics that drove the need for that unique 

product. 

i. Product family member 1 (1-3 sentences): 

ii. Product family member 2 (1-3 sentences): 

iii. … 

3. How useful did you find the case study summary statistics in identifying 

product family user populations? 

i. Not useful 

ii. Somewhat useful 

iii. Very useful 

4. Why did you find these statistics useful or not useful? (1-3 sentences): 

 

Proposed Modeling Approach Exercise: On completion of these questions, the 

second exercise was presented corresponding to the proposed (human-machine) 

function modeling approach. The proposed modeling exercise was similar to the 

conventional modeling exercise, with the additional task of allocating functions to 

human or machine. Further, this exercise introduced three required functions 

corresponding to human information processing that occurs in all human-machine 

systems where the human receives sensory feedback from the system, processes this 

feedback in the working memory, and stores this information either temporarily or in 

long-term memory. The functions were stated as:  
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1. FUNCTION: Sense the state of system functions. INPUT: Function Status 

Signal 

2. FUNCTION: Process sensory information. INPUT: Sensory information 

3. FUNCTION: Store sensory information. INPUT: Processed sensory 

information 

 

Sensing and processing information about the state of a system is a critical 

task for all products with a human component. These functions were included 

automatically because it was assumed that the participant population (undergraduate 

mechanical engineering students) would have little experience in human factors, 

human-computer interaction, cognitive science, or related disciplines. While this does 

introduce some bias in the research design, it is unlikely that student participants 

would naturally incorporate these critical functions in their responses otherwise.   

Participants were instructed that they would perform a similar task for the 

same case study, but this time they would be selecting who (human, machine) 

performs each function in the system, in addition to selecting what functions the 

system performs. Participants were presented with background on function allocation 

as well as the information processing functions concept. Again, participants were 

required to define at least two product family members with at least two functions (in 

addition to the information processing functions), with a maximum of five product 

family members. Participants were instructed that all product family members must 

be different, and that selections did not need to mirror those in the prior exercise. 

Figure 14 shows an example of the function selection tables in this exercise.  
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Figure 14: Function selection table example for proposed approach exercise. 

 

Participants were then presented with the same questions as in the first 

exercise to facilitate comparison. Table 39 provides a comparison of the conventional 

and proposed exercises. 

Table 39: Comparison of convention model approach exercise and proposed model approach exercise. 

 Conventional Modeling 

Approach Exercise 

Proposed Modeling 

Approach Exercise 

Participant selects functions. x x 

Participant selects inputs. x x 

Participant allocates functions.  x 

Includes information processing 
functions. 

 x 

Participant defines up to 5 product 

family members. 
x x 

Participant generates a text-based 

concept. 
x x 

 

Analyzing Free Response Questions: To evaluate free response questions for 

the conventional and proposed modeling exercises, qualitative coding was utilized. 

Qualitative coding is the process of assigning categories to passages of text based on 

prevalent themes to infer trends (Castleberry & Nolen, 2018). Coding was performed 

inductively, where codes were generated while examining the text, as opposed to 
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forming codes prior to reading the text (deductive) (Kalpokaite & Radivojevic, 2019). 

Coding was performed by two researchers at the Hybrid-Systems Integration and 

Simulation Laboratory at the University of Maryland. The process began with 

researchers independently reading through the text and generating a broad list of 

potential thematic codes. To guide the code generation process, categories were 

generated prior. The categories corresponded to the subject matter of the questions 

introduced in Chapter 6.3.1 and were generated during a brainstorming session 

including both researchers. These included: Concept Features, User Population 

Description, Accessibility Requirements, and Use of Statistics. Next, the 

researchers convened and compiled codes into a final code list where redundant and 

conflicting codes were removed or combined. Next, researchers returned to the text 

and applied codes to each question independently. Questions could have more than 

one code applied if necessary. This included all questions for each exercise. Finally, 

the researchers reconvened and compared coding results. The researchers discussed 

any question where there was discrepancy in the applied codes and determined a final 

coding.  

To analyze the codes, codes were collapsed by participant and by exercise. 

For each participant-exercise pair (n=32), each code was designated as 1 if it was 

applied at least once, and 0 otherwise. Code and function frequencies were tallied and 

compared across exercises.  

Further, to investigate if participants were using the selected functions to 

inform their concepts, several research questions were generated regarding function-

code co-occurrence for concept feature codes. These research questions were based 
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on logical functions that should have been included given the resulting generated 

codes. For each participant, a co-occurrence was tabulated if the participant had a 

code applied to them and they used the function at least once. This was repeated for 

both exercises (n=32). The same was repeated each time a function was not used at 

least once. Then, these values were turned into probabilities for each function-code 

pair – Pr(Function = Yes | Code = Yes) and Pr(Function = No | Code = Yes). Finally, 

these probabilities were used to calculate the odds of a code being applied when a 

certain function was used. In cases where either of these probabilities was 0, the 

Haldane correction was applied, where 0.5 is added to the numerator and 

denominator. Note that, due to the very small sample size, these were only summary 

statistics and are not useful for hypothesis testing. These values should not be treated 

as statistically valid and should only be used for hypothesis generating. Further, the 

large quantity of statistical tests required to hypothesis test function – code co-

occurrences would render statistical power negligible. 

6.3.2 Optimization Model Validation 

To validate the optimization model, participants performed a third design 

exercise where they were asked to manually allocate functions for a family of 

products for the diabetes self-management device case study. Participants were tasked 

with performing the same task as the optimization model by selecting values for the 

same decision-variables. This enabled direct comparison between human judgment 

and model performance on the allocation task. Unlike the prior exercises, participants 

were constrained to a pre-selected set of functions. Otherwise, direct comparison with 
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the optimization model would be difficult as the model only evaluates the allocation 

of functions, not the selection of functions to include.  

First, the application of the optimization model is detailed. Sub-sections 

follow the order of the methodology discussed in Chapter 6.2, applied to the diabetes 

self-management device case study referenced throughout the dissertation. This 

includes discussion on generating a human-machine function model, mapping of 

those functions to physical and cognitive tasks, quantifying performance for those 

tasks using values from Chapter 5, developing a model population of users for input 

into the model, and details on execution of the model. Then, the details of the student 

manual allocation optimization exercise are discussed.  

Case Study Function Model: In most cases, blood glucose monitoring systems 

work by extracting some glucose carrying medium from the body. This medium is 

most often blood but can also be urine or saliva. The medium undergoes some change 

(e.g., a chemical reaction), and from that reaction the concentration of glucose can be 

derived. This value can then be used to determine if the user is in a healthy state. 

Table 40 contains functions and function inputs identified for the diabetes blood 

glucose monitoring system. The first three functions correspond to monitoring of the 

system by the user, the following seven describe the core functionality of the system. 

Note that while “condition” and “detect” are not included in Tables 36-37, they are 

cited synonyms (Hirtz et al., 2002) of “change” and “sense”, respectively, adapted for 

the specific case.  
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Table 40: Function model for diabetes blood glucose monitoring system. 

Function Input Class 

Sense State of system 

functions 

Signal 

Process Sensory information Material 

Store Sensory information Material 

Extract Blood glucose from 

body 

Material 

Transfer Blood glucose Material 

Store Blood glucose Material 

Condition Blood glucose Material 

Indicate Glucose levels Signal 

Detect Glucose levels Signal 

Process Glucose levels Signal 

 

Function-Task Mapping: The next step was to map functions to tasks for 

which performance has been quantified. The mapping was facilitated using Tables 

36-37. The specific tasks to be used for the optimization model were the case study 

tasks identified in Chapter 4, Table 6 and further refined in Chapter 5, Table 23. 

Table 41 contains the Function – Task mappings. 

Table 41: Case study function-task mapping. 

Function P&C Taxonomy Task P&C Case Study Task 

Sense Signal Perceptual Ability Visual Discrimination - Simple 

Process Signal Synthesis Problem-Solving and Decision-Making - 

Complex 

Store Signal Knowledge Applying Existing Knowledge - Simple 

Extract Material Physical Ability, Application Fine Motor Movement, Applying Existing 

Knowledge - Complex 

Transfer Material Physical Ability, Application  Gross Upper-body Movement, Applying 

Existing Knowledge - Complex 

Store Material Physical Ability, Application Gross Upper-body Movement, Applying 

Existing Knowledge - Complex 

Condition Material None None 

Indicate Signal None None 

Detect Signal Perceptual Ability Visual Discrimination – Complex OR 

Auditory Discrimination – Speech 

Process Signal Evaluation Problem-Solving and Decision-Making - 

Complex 
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It was determined that conditioning of blood glucose and indication of blood 

glucose levels would not be feasible actions for a human to perform. For “Sense 

Signal”, where the user is monitoring the state of each system function, it was 

determined that this would practically require visual discrimination. Whereas “Detect 

Signal”, where the user is detecting output blood glucose levels, could practically be 

visual or auditory discrimination depending on how the indicate function was 

fulfilled. Automating this detect function would indicate the need for some alternative 

means for delivering information to the user.   

Task Performance Quantities: Expert estimates from Chapter 5 were used as 

input to the optimization model. Optimized weighted estimates were used and are 

displayed in Table 42 with group # corresponding to increasing patient risk.  

 
Table 42: Expert elicited task performance values. 

P&C Case Study Task 
Group 

# 

5th 

Percentile 

(%) 

50th 

Percentile 

(%) 

95th 

Percentile 

(%) 

Gross Upper-body Movement 

1 60.15 85.06 95.66 

2 47.04 75.17 87.09 

3 45.14 64.79 84.41 

Fine Motor Movement 
1 51.62 87.01 95.26 

2 56.57 80.69 92.94 

Visual Discrimination – Simple 
1 68.01 87.34 95.87 

2 55.51 80.19 91.59 

Visual Discrimination – Complex 
1 45.82 72.33 89.14 

2 31.52 59.83 82.17 

Auditory Discrimination – Speech 

1 53.51 78.41 93.38 

2 26.03 54.69 77.72 

3 21.11 39.40 71.69 

Applying Existing Knowledge – 

Simple 

1 41.74 78.43 93.65 

2 33.28 63.06 85.41 

3 21.33 48.39 72.96 

Applying Existing Knowledge – 

Complex 

1 42.37 77.34 92.22 

2 35.46 65.45 86.62 

3 20.20 52.16 77.23 

Problem-solving and Decision – 

Complex 

1 44.16 74.97 90.49 

2 32.89 68.79 84.25 

3 20.76 49.50 71.23 
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Population Model: To model the population for input into Equation 6, 

NHANES participants clustered in Chapter 4 were assigned success probability 

values from Table 42 based on cluster membership. 50th percentile values were used. 

NHANES participants are not required to answer every question in the NHANES 

survey. Therefore, not all NHANES participants were included in all task clusters due 

to lack of responses for task-specific variables. For example, as shown in Chapter 4, 

the sample size for gross upper-body movement clusters was 720, while for cognitive 

task clusters it was 616. Only participants that responded to all NHANES variables 

across all tasks were included in the population model (n = 616) to ensure that 

accommodation could be evaluated for all individuals. Task success probabilities 

were then extracted based on the function-task mappings in Table 41, resulting in a 

vector of 8 probability values per population member. The max value for auditory or 

visual discrimination was extracted for “Detect Signal”. Functions with more than 

one associated task received the joint probability of success for tasks.  

Optimization Model Implementation: A multi-objective optimization model 

with a genetic algorithm was implemented in MATLAB using the global optimization 

toolbox (MATLAB Ver. R2020b, 2020). The model was formulated as in Equation 19 

with the goal of optimizing function allocations for functions in Table 40. “Condition 

blood glucose” and “Indicate glucose levels” were determined to be mandatory 

machine functions and were removed from the optimization problem. The number of 

product family members was limited to five, due to practical design feasibility 

constraints. The decision-variable was therefore a 5x8 matrix of values constrained to 

0 or 1. The genetic algorithm population size was evaluated in increasing increments 
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of 500 from 500 to 8000, with hyper-area difference (HD) (J. Wu & Azarm, 2000) 

between the dominated space and the objective space, the number of unique solutions 

(NS), and solution spread (SS) being used as selection criteria. Spread as described in 

(Deb, 2009) is utilized, where a lower value indicates solutions are more evenly 

distributed in the objective space. Maximum generation was set to 300. The algorithm 

was also set to terminate if the spread of pareto optimal solutions did not improve 

over 50 generations with a tolerance of 0.0001. The default crossover fraction of 0.8 

was used.  

Student Manual Allocation Optimization Exercise: In this exercise, 

participants were asked to manually perform the same task as the optimization model 

– allocating functions for a family of products. This exercise was also implemented in 

Qualtrics. Participants were first presented with a brief description of the diabetes 

self-management case study and population summary statistics for the diabetes 

population generated from the NHANES data. Again, the objective of these materials 

was to provide participants with information they could easily access independently 

without the use of this methodology, thus validating the steps taken in the 

methodology to produce new information about the population. Participants were 

expected to use this information to estimate dominant user group characteristics and 

evaluate their ability to perform product functions. Case study material presented to 

participants can be found in Appendix D.2.  

After reviewing the material, participants were presented with the functions 

from Table 40. They were requested to select the number of products to include in 

their product family (up to five) and the allocation of functions for each product with 
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the goal of maximizing accessibility and minimizing cost. Participants were also 

asked a free response question: “What logic did you use when selecting human or 

machine assignments for each function?”. Responses were coded as described in 

Chapter 6.3.1.  

Participant and Optimization Model Comparison: Participant manual 

allocations were evaluated using the optimization model metrics for accommodation 

and complexity introduced in Chapter 6.2.2. Participant responses could then be 

compared to the output of the optimization model directly. Responses were plotted 

together and visually compared. A participant was said to outperform the model if 

they produced a response that was more pareto efficient than at least one model 

solution.  

 

6.5 Results 

 This section summarizes the optimization model output and the student 

exercises. First, the conventional vs. proposed function modeling exercise results are 

presented. Then, a descriptive summary of the population model used in the 

optimization model is presented. Last, the optimization model is demonstrated and 

compared to the results of manual allocation optimization exercise. 

6.5.1 Conventional vs. Proposed Function Modeling Results 

 This section presents a comparison of the qualitative coding results for the 

conventional and proposed functional modeling exercises. A separate table will be 

presented for each category of code. 16 participants completed both exercises. Table 

43 contains codes for Concept Features.  
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Table 43: Concept features qualitative coding results for the conventional (CN) and proposed (PR) 

function modeling exercises. 

Code Description 
CN 

Count 

CN 

% 

PR 

Count 

PR 

% 

Mobility Support 
Directly serves to move the 

user or support movement. 
15 0.938 14 0.875 

Auxiliary Support 

Provides supportive 

functioning that does not 

directly aid in moving the 

user. 

5 0.313 3 0.188 

Fully Manual 
Product is manually powered 

by the user. 
4 0.250 2 0.125 

Physical Actuation of 

Movement 

Product requires the user to 

actuate electronic or other 

powered components. 

4 0.250 7 0.438 

Autonomous Movement 

Product has features that 

provide some amount of 

autonomous control. 

1 0.063 2 0.125 

Provides 

Visual/Auditory/Tactile 
Feedback 

Product provides feedback for 
some sensory modality. 

2 0.125 0 0 

Wearable/Exoskeleton 
Product is wearable or 

described as an exoskeleton. 
3 0.188 2 0.125 

Motorized Vehicle 
Product is any vehicle that is 

motorized. 
2 0.125 2 0.125 

Wheelchair 
Product is a wheelchair 

(motorized or not). 
1 0.063 2 0.125 

Supportive Object 

Product described provides 

static support to the user (e.g. 

a cane). 

5 0.313 2 0.125 

Computer 
Product contains a 

computational element. 
3 0.188 4 0.250 

Sensor 
Product utilizes sensors (for 

the user or the environment). 
7 0.438 8 0.500 

Feature for Comorbidity 

Management 

Product contains a feature 

specifically for management 

of comorbidities. 

4 0.250 3 0.188 

Storage Features 
Product contains a feature for 

storage of user belongings. 
1 0.063 0 0 

Safety/Protective Features 
Product provides fail-safe or 
protective features. 

3 0.188 1 0.063 

 

 Coding revealed few differences between the exercises, with the largest being 

observed for “Physical Actuation of Movement” and “Supportive Object”. Table 44 

contains codes for User Population Description.  
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Table 44: User population description qualitative coding results for the conventional (CN) and 

proposed (PR) function modeling exercises. 

Code Description 
CN 

Count 

CN 

% 

PR 

Count 

PR 

% 

Physical 

Functioning 

User described in terms of physical 

actions they have difficulty performing.  
12 0.750 10 0.625 

Sensory 

Functioning 

User described in terms of 

sensory/perceptual actions they have 

difficulty performing 

2 0.125 2 0.125 

Disease or 

Medical 

Condition 

User described by disease or medical 

conditions they have.  
5 0.313 8 0.500 

Need, Desire, or 

Preference 

User described by expressed needs, 

desires, or preferences.  
3 0.188 0 0 

Weight User described by weight.  1 0.063 1 0.063 

Age User described by age.  4 0.250 3 0.188 

Injury 
User described in terms of an injury they 

suffered.  
1 0.063 1 0.063 

Activity 
User described in terms of their typical 

activity levels (sedentary vs. active) 
1 0.063 1 0.063 

Financial Status 
User described in terms of financial 

status/wealth.  
1 0.063 0 0 

Occupation User described by their occupation.  2 0.125 1 0.063 

  

The most common way to describe the end-user population was in terms of 

physical tasks they could not perform or have difficulty performing. Once again, most 

codes trended similarly for each exercise. Table 45 contains codes for Accessibility 

Requirements.  

Table 45: Accessibility requirements qualitative coding results for the conventional (CN) and proposed 

(PR) function modeling exercises. 

Code Description 
CN 

Count 

CN 

% 

PR 

Count 

PR 

% 

Physical  

Concept includes at least 1 feature that caters to 

the physical needs of the intender user 

population. 

15 0.938 15 0.938 

Sensory  

Concept includes at least 1 feature that caters to 

the sensory/perceptual needs of the intender user 

population. 

3 0.188 3 0.188 

Cognitive 

Concept includes at least 1 feature that caters to 

the cognitive needs of the intender user 
population. 

3 0.188 3 0.188 
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 Physical accessibility was the most common accessibility requirement to be 

addressed. There was no difference in frequencies of codes between exercises. Table 

46 contains codes for Use of Statistics.  

Table 46: Use of statistics qualitative coding results for the conventional (CN) and proposed (PR) 

function modeling exercises. 

Code Description 
CN 

Count 
CN % 

PR 

Count 

PR 

% 

Negative      

Statistics too Broad 
Statistics are too broad to be useful 

for the specific application. 
1 0.0625 1 0.063 

Too Much 

Information 

Case studies provided an 

overwhelming amount of information.  
2 0.125 0 0 

No Relationships 

between Variables 

Statistics are difficult to use in 

isolations. Correlation or co-

occurrence between variables is 

needed.  

2 0.125 1 0.063 

No Link to Design 

Decisions 

Isolated statistics aren't helpful 

without knowing how they influence 

user performance/interaction.  
3 0.1875 1 0.063 

Positive      

Magnitude of Risk 
Statistics helped to clarify the 

magnitude of the users risks.  
4 0.25 1 0.063 

Size of Market 
Statistics helped to clarify the size of 

the market for the product. 
2 0.125 0 0 

Problem 
Comprehension 

Statistics helped to generally clarify 
the problem.  

2 0.125 1 0.063 

Design Feature 

Generation 

Statistics helped to inspire or generate 

design solutions.  
4 0.25 3 0.188 

Population 

Needs/Struggles 

Statistics helped to clarify the specific 

needs of the user population.  
10 0.625 10 0.625 

Interesting Statistics were interesting.  0 0 2 0.125 

 

 Participants most commonly cited the statistics as being useful for generally 

understanding the needs of the user population. On the negative end, several 

participants said that the statistics were not useful without knowing how they should 

influence their design decision-making.  

Function Frequency: Table 47 contains frequency of function use by 

participants by exercise. Functions were counted once for each participant. Functions 
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did not differ much between exercises. Transfer was one of the most commonly used 

functions, along with actuate, sense, and process.  

Table 47: Function usage frequency for the conventional (CN) and proposed (PR) function modeling 

exercises. 

Function CN Count PR Count 

Separate 5 6 

Distribute 6 5 

Transfer 16 9 

Translate 10 8 

Rotate 10 8 

Couple 9 8 

Actuate 11 14 

Regulate 7 9 

Change 7 7 

Stop 6 8 

Store 9 6 

Supply 6 5 

Sense 13 14 

Indicate 6 7 

Process 10 11 

Support 9 9 

 

 Code-Function Co-occurrence: To investigate if participants were using the 

selected functions to inform their concepts, several research questions were generated 

regarding function-code co-occurrence for concept feature codes. These research 

questions were based on logical functions that should have been included given a 

certain code. Hypotheses generated were: 

1. Were codes related to movement (Mobility Support, Fully Manual, 

Physical Actuation of Movement, Autonomous Movement) more likely to 

be applied when functions related to movement (Transfer, Translate, 

Rotate) were used? 
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2. Was the “Sensor” code more likely to be applied when the sense function 

was used? 

3. Was the “Supportive Object” code more likely to be applied when the 

support function was used? 

4. Was the “Computer” code more likely to be applied when the process 

function was used? 

5. Was the “Physical Actuation” code more likely to be applied when 

functions related to control (Activate, Regulate, Change, Stop) were used? 

6. Was the “Provides Visual/Auditory/Tactile Feedback” code more likely to 

be applied when the indicate function was used? 

 

Table 48 addresses research question 1.  

Table 48: Co-occurrence odds for movement-related functions with movement-related codes. 

 
Mobility 

Support (n=8) 

Fully Manual 

(n=6) 

Physical Actuation of 

Movement (n=11) 

Autonomous 

Movement (n=3) 

Transfer 

(n=25) 
3.83 3.00 2.67 2.00 

Translate 

(n=18) 
1.07 0.50 2.67 0.33 

Rotate 

(n=18) 
1.07 1.00 1.20 0.50 

 

 Values can be interpreted as the odds of a code being applied when each 

function was used. There was not a consistent trend for these Function-Code pairs. 

For research question 2, seeing “Sensor” applied when sense was used was 3x as 

likely as when sense was not used. It should be noted that “Sensor” was applied 15 

times and all 15 times the sense function was used. The 3x estimate is a product of the 

Haldane correction. Sense was used a total of 27 times.  
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 For research question 3, seeing “Supportive Object” applied when support 

was used was 2.5x less likely as when support was not used. “Supportive Object” was 

only applied seven times, and five of those times support was not used. Support was 

used a total of 18 times.  

 For research question 4, seeing “Computer” applied when process was used 

was 2.5x as likely as when process was not used. “Computer” was applied 7 times, 

and five of those times process was used. Process was used a total of 21 times.  

 Research question 5 is addressed in Table 49. 

Table 49: Co-occurrence odds for control-related functions with “Physical Actuation of Movement.” 

 Physical Actuation of Movement (n=11) 

Actuate (n=25) 10.00 

Regulate (n=16) 1.20 

Change (n=14) 1.75 

Stop (n=14) 0.57 

 

 Actuate was strongly associated with physical actuation of movement. For 

research question 6, seeing “Provides Visual/Auditory/Tactile Feedback” when 

indicate was used was equally as likely when indicate was not used. This code was 

only applied twice.  

6.5.2 Model Population Summary 

Table 50 shows the distribution of group membership for the model 

population. Each cell corresponds to the number of individuals assigned to each 
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group during clustering. Cognitive tasks refer to membership for both “Applying 

Existing Knowledge” and “Problem-solving and Decision-making.” 

 
Table 50: Model population group membership by task. 

Group 

# 

Gross Upper-

body 

Movement 

Fine Motor 

Movement 

Visual 

Discrimination 

Auditory 

Discrimination 
Cognitive 

Tasks 

1 264 471 518 336 270 

2 217 145 98 226 246 

3 135 - - 53 99 

 

Group membership was predominately distributed to the lower risk groups. 

Spearman’s rank order correlation coefficient was used to examine correlation 

between group membership (Table 51). A value of 1 indicates perfect positive 

correlation between low and high-risk group membership. All cluster memberships 

demonstrated a significant, but weak – moderate association.  

 
Table 51: Spearman's rank order correlation coefficient (p-value) for group membership. 

 Gross Upper-

body Movement 

Fine Motor 

Movement 

Visual 

Discrimination 

Auditory 

Discrimination 

Fine Motor 

Movement 
0.425 (<.001) 1   

Visual 

Discrimination 
0.284 (<.001) 0.104 (.009) 1  

Auditory 

Discrimination 
0.140 (<.001) 0.246 (<.001) 0.158 (<.001) 1 

Cognitive Tasks 0.202 (<.001) 0.213 (<.001) 0.198 (<.001) 0.189 (<.001) 

 

6.5.3 Optimization Results 

The optimization model was first run with α = 0.5. HD and SS varied 

insignificantly across population sizes. NS, however, increased and plateaued over 

sizes. The smallest population size with the largest NS in the plateau region was 

selected. Figure 15 displays the pareto front alongside student solutions. 
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`  
Figure 15: Pareto front for alpha = 0.5 plotted against student responses. 

 

The optimization model produced solutions with better trade-offs in all cases. 

Table 52 contains a summary of coded participant responses to the question “What 

logic did you use when selecting human or machine assignments for each function?” 

Product cost and user capability was the most citied justification for allocation 

decision-making. 

 
Table 52: Coded responses for manual function allocation optimization exercise question, n (%). 

Production 

Cost 

User 

Capability 

Feasibility 

of Design 

Convenience 

to User 

Reliability 

of System 

7 (44%) 7 (44%) 4 (25%) 3 (19%) 3 (19%) 

 

Sensitivity Analysis: To evaluate the influence of alpha on results, the model 

was run with alpha varying between 0 and 1. NS, HD, and SS were used as evaluation 

criteria. If NS did not coverage at 8,000 population size, larger sizes were evaluated 

in increments of 500. Table 53 summarizes the output at different alpha levels. As 

alpha increased, the number of viable solutions dramatically increased. 
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Table 53: Sensitivity analysis results for alpha parameter. 

Alpha Pop 

Size 

NS HD SS Product Family 

Member Quantity 

Distribution 

1 2 3 4 5 

0.1 4500 21 0.339 0.032 3 17 1 0 0 

0.25 5500 21 0.340 0.030 4 15 2 0 0 

0.5 7000 22 0.343 0.029 5 16 1 0 0 

0.75 7500 62 0.344 0.017 7 46 9 0 0 

0.9 7500 104 0.35 0.014 2 80 19 3 0 

NS = # unique solutions, HD = hyper-area difference, SS = solution spread 

 

Figure 16 displays the pareto fronts for alpha values of 0.1 and 0.9. There was 

as significant amount of overlap between these two pareto sets. Both alpha levels 

seemed to form discontinuous, micro-pareto fronts. 

 

Figure 16: Pareto fronts for alpha = 0.1 and alpha = 0.9. 

6.5.4 Optimization Model Sample Solutions 

Two output solutions corresponding to high complexity, high accommodation 

and low complexity, low accommodation are shown. Solutions from alpha = 0.9 were 

used because it provided a large amount of solution variety.  

Example #1: Shown in Table 54 are the allocations for a solution that 

provided 0.705 accommodation at 6.69 complexity. Figure 17 displays average user 
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performance values for tasks by product family member. Tasks are abbreviated as 

follows: GUBM = Gross upper-body movement, FMM = Fine motor movement, VIS 

= Visual discrimination, AUD = Auditory discrimination, KNW = Applying Existing 

Knowledge, and DM = Problem-solving and decision-making. This solution set 

produced two product family members. Product #1 included additional sensing 

functions, while product #2 included machine storage of information.  

 
Table 54: Example solution #1 human (H)-machine (M) allocations. 

 Product Family Member (User 

Count) 

Function 1 (n = 337) 2 (n = 279) 

Sense Signal M H 

Process Signal M M 

Store Signal H M 

Extract 

Material 
M M 

Transfer 

Material 
M M 

Store Material M M 

Detect Signal M H 

Process Signal M M 

 

 
Figure 17: Population mean task performance for example #1. PFM = product family member.  

 

Example #2: Shown in Table 55 are the allocations for a solution that 

provided 0.317 accommodation at 4.47 complexity. Figure 18 displays average user 
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performance values for tasks by product family member. This solution produced four 

product family members, with the largest differences being between functions 

associated with sensory and cognitive tasks.  

 
Table 55: Example solution #2 human (H)-machine (M) allocations. 

 Product Family Member (User Count) 

Function 1 (n=253) 2 (n=243) 3 (n=5) 4 (n=115) 

Sense Signal H H H M 

Process 

Signal 
H H H H 

Store Signal H M M M 

Extract 

Material 
M M H H 

Transfer 

Material 
M M M M 

Store 

Material 
M M M M 

Detect Signal H H M H 

Process 

Signal 
M H H M 

 

 
Figure 18: Population mean task performance for example #2. PFM = product family member. 

 

6.6 Discussion 

 The results of the modeling and optimization approach are discussed in this 

section.  
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6.6.1 Human-Machine Function Modeling Validation Outcomes 

 The results of first two participant exercises revealed few differences in 

outcomes between the conventional function modeling perspective and the human-

machine modeling perspective, and none that demonstrated significant differences. 

Ultimately, these exercises did not demonstrate what was hypothesized, that the 

proposed approach would promote accessible design thinking in concept generation. 

There were several issues that were encountered that may have contributed to this. 

This study was in the final stages of development when the COVID-19 virus first 

surged in the United States, and universities were forced to transition student 

activities to online. This presented the following challenges: 1) The study was forced 

to transition from laboratory to online format; 2) Recruitment was negatively 

impacted; and 3) Challenges related to participant anonymity and effort were 

encountered.  

Online Format: The first issue was forcing the study to transition to an online 

format when it was originally intended to be performed in a laboratory setting. This 

necessitated significant simplification of modeling procedures to conform with the 

capabilities of the online survey platform used (Qualtrics). Further, participants were 

unable to seek clarification on the task if they encountered difficulties, as would be 

possible in a supervised setting.  

 University Shutdown and Recruitment: Next, it is believed that the university 

shutdown had a significant impact on recruitment. Ideally, each participant would 

only perform the conventional approach or the proposed approach so that outcomes 

could be observed independently. However, when it was determined that recruitment 
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was likely to be sparse, it was decided that participants should perform each exercise 

in sequence to ensure both were represented. This created an anchoring bias, where 

participant responses deviated very little in the proposed approach compared to those 

in the conventional approach. The order of the exercises could have been randomized, 

however it was unknown at the time whether ordering effects could be detected given 

anticipated recruitment. 

Participant Anonymity: Finally, it is believed that the anonymous (to course 

instructors) and online nature of the exercises may have led to complacency in 

responses by participants due to lack of accountability (often referred to as 

Insufficient Effort Responding - IER). This is consistent with past research (Camus, 

2015; Meade & Craig, 2012). Many responses by participants demonstrated lacking 

effort. In some cases, responses were nonsensical or repeated verbatim. Several 

participants data (n=2) were removed from the analysis because the quality of 

responses made them unusable. It is suspected that if the study were performed in a 

lab setting as intended then the responses would have been of higher quality and 

effort.   

 Lessons Learned: There were several lessons learned from this work regarding 

implementation of design studies in online formats. First - when anonymous 

participants have a choice in a design exercise, they will likely make the choice that 

requires the least effort (e.g., # of product family members). Choices of these nature 

must be limited. Next – when implementing a design study online, the limitations of 

the participant population should be considered. Undergraduate students (typically) 

only have experience applying design methodology in academic settings. This means 
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that activity requirements must be specific and not overly complicated. This study 

could have been modified by removing any feature that did not directly contribute to 

testing the core hypothesis. For example – the “information processing functions” 

may have been an unnecessary feature. The purpose of these mandatory functions 

was to supplement engineering student understanding of human cognition, however it 

may have contributed to overloading students with information. Further, this 

population has concentrated priorities on academic achievement. It should be 

considered whether this priority can override the desire to provide thoughtful 

responses, and instead encourage responses that maximize the efficiency of incentives 

by minimizing time allocated to the task. One option could be to increase the amount 

of extra credit given. 0.5% on the final grade would create a more tangible impact for 

students. Another option could be to make the assignment a required homework. 

Integrating the exercise into the course could motivate students to increase effort.   

6.6.2 Population Model 

Using NHANES data to model the population and expert elicitation to 

quantify population task performance was a useful exercise to understand the 

heterogeneous capabilities of the user population. Each task-specific user group was 

well represented in the population (Table 50), indicating that this population is indeed 

heterogeneous. Further, weak-moderate correlation between risk-levels was observed 

(Table 51), indicating that individuals who perform poorly on one type of task may be 

more likely to perform poorly on another. The strongest association was observed 

between gross upper-body movements and fine motor movements. This is not 

surprising as these tasks shared several of the same clustering variables and require 
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overlapping motor skills. These associations create a complicated landscape of 

potential design requirements that is difficult to comprehend. Thus, an automated 

decision-aid for configuring human-task requirements, such as an optimization 

model, seems justified.  

6.6.3 Optimization Model 

The optimization model successfully produced a variety of potential function 

allocation solutions. Figure 15 shows the pareto front for alpha = 0.5 (i.e., MFC and 

UFC are equal). The front is well distributed in the objective space, with candidate 

solutions spanning the max and min value for each metric. The shape of the pareto 

front contained discontinuous groups of solutions. This can be attributed to the 

discrete performance values assigned to population individuals. Individual task 

performance was assigned based on the 50th percentile for groups across all 

individuals, resulting in a discrete set of potential total accommodation values. Task 

performance could have also been modeled as a random variable, where individual 

performance was drawn from a beta distribution based on the expert provided 

confidence intervals. It is suspected that this would produce a more continuous pareto 

front. Solutions in close, local proximity do not necessarily represent similar design 

solutions. For example, the two solutions at ~0.6 accommodation in Figure 16 are 

quite different, with one including three product family members and the other only 

including one.  

Participant Performance: The optimization model produced better results than 

participants in all cases. Participants produced results ranging in accommodation but 

were unable to do so with the same efficiency as the model, despite indicating that 
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cost and user capability were top priorities when allocating functions (Table 52). This 

demonstrated that, without the tools demonstrated in the paper, individuals manually 

allocating functions are unlikely to be efficient with respect to accommodation and 

product complexity. The only materials participants were provided with was 

summary statistics on the population of interest. The model had information that was 

not provided to participants. This information would not be easily accessible or 

digested without computational tools. The participants did not have information on 

function-task mappings, population task performance values, and exact metrics for 

evaluation, which was input to the optimization model. It is possible that with this 

information participants may have performed differently, however this would not 

reflect the typical scenario in practice. Collectively processing these model inputs and 

determining how they relate to function allocation is a complicated task that seems to 

warrant algorithmic solutions.  

Sensitivity Analysis: The sensitivity analysis demonstrated that the weighting 

of complexity metrics can have a significant influence on model output (Table 53). 

Across all alphas, HD and SS changed only marginally. As alpha increased past 0.5 

(MFC > UFC), however, the number of viable solutions increased dramatically. It 

also encouraged larger product families. When MFC (the “cost of each unit”) 

becomes more important, the efficiency of tailoring additional products to individuals 

increases. When alpha was decreased below 0.5, the number of unique solutions did 

not change significantly. Comparing alpha = 0.1 (Figure 16) to alpha = 0.5 (Figure 

15), the spread between solution pairs is different. It seems that as alpha decreases, 

this spread increases, indicating that small, “local” increases in accommodation 
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became more costly. This is likely due to this increased cost of introducing a 

previously unused function.   

Example Solutions: The example solutions presented demonstrate that a 

variety of solutions are possible, and that product families can be leveraged to 

produce efficient allocations. The product family strategy metric successfully 

encouraged the use of platforming in solutions. In example #1, a platform emerged 

spanning five of the eight functions, with only minor alterations for individual 

products. In example #2, a smaller platform emerged across all products, containing 

only two functions.  

6.6.4 Proposed Use 

The intended use of the methodology is for early-design decision-making for 

function allocation. Intentional or otherwise, required human functioning is a design 

decision. This methodology can be reproduced to navigate the trade-offs between 

accessibility and cost resulting from these decisions. The output of the optimization 

model produces varied solutions that can be independently evaluated and selected 

based on stakeholder values. This solution can be used to drive concept development. 

This approach could be used for nearly any system, however it is most useful for 

highly heterogeneous populations where manually evaluating population task 

performance becomes complicated because of the wide array of potential use cases. 

Also, this approach is especially important for safety-critical systems, where human 

functional failure could result in injury or death.  

This modeling approach should be used during concept development, prior to 

any physical product design. Further, it should be used as a precursor to detailed 
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functional modeling. As discussed before, not all human functions have a machine 

function that serves as a 1-to-1 replacement (Dekker & Woods, 2002). In practice, a 

product may require supportive or auxiliary functionality. When a human performs a 

task, they have the entire body at their disposal, which implicitly contains some of 

these supportive functions (e.g., the body generates, stores, and supplies energy). 

Designers should use the output of this modeling approach as baseline to build on.    
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Chapter 7:  Conclusions 
 

7.1 Summary of Contributions 

7.1.1 Leveraging Physician Expertise and National Population Data to Model 

Heterogeneous Population User Groups 

In this chapter, a combined expert and data-driven approach for modeling 

product user groups was proposed. The approach was specifically developed to guide 

product personalization. A taxonomy of tasks for describing product interaction was 

introduced, and the taxonomy was translated into tasks using language to facilitate 

judgment from physicians regarding task performance (P&C Physician Judgment 

Tasks). These tasks then guided identification of performance-driving characteristics 

and acquisition of data for user group clustering. The approach was demonstrated on 

the diabetes population case study, where task-specific user groups were identified for 

six generic tasks required for medical device interaction. Data was retrieved from the 

NHANES database, guided by input from internal medicine physicians. The output of 

this approach was task-specific patient user groups that can be used to guide the 

customization of medical devices. Understanding the needs of product users in safety-

critical domains and incorporating these needs into the design process is critical for 

safe and effective products. This work provides designers a novel and cost-effective 

means to characterize user sub-populations as a basis for targeted personalization.  
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7.1.2 Quantifying Human Performance for Heterogeneous Population User Groups 

using Expert Elicitation 

Studying heterogeneous user populations for product design is difficult 

because of the wide array of use cases that may present themselves, thus placing a 

high bar on recruitment and experimental efforts. In this work, a general process to 

quantify human performance in heterogeneous user populations was proposed. The 

process suggests that expert elicitation can reduce the burden of quantifying 

performance by reducing the need for recruiting users. This approach was 

demonstrated on the diabetes population case study, focusing on tasks required for 

medical device interaction. Results demonstrated that experts could discriminate user 

performance across task risk-levels, and for similar tasks under different conditions. 

The needs of vulnerable users in heterogeneous populations have gone inadequately 

addressed in the past, with system designers relying on 1-size-fits-all approaches or 

minimally differentiated products. This work demonstrated a cost-effective approach 

to quantify human performance and risk that can be used to guide safe and accessible 

design.  

7.1.3 Optimizing Function Allocation for Accommodation of Heterogeneous 

Populations 

A function allocation optimization model for early design stages was 

proposed. This model relied on an adaptation of traditional functional modeling 

approaches, where functions could be allocated to humans or machines. Two metrics 

to evaluate allocations were introduced (accommodation, complexity) and formulated 

into a multi-objective optimization model. The model was demonstrated on the 
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diabetes population case study, where functioning for a diabetes self-management 

device was optimally allocated. Student participants were recruited to perform several 

exercises. The first two exercises served to validate the function modeling 

framework, and the third exercise sought to validate the optimization model. The 

function modeling validation exercises did not effectively demonstrate differences in 

performance between the conventional and proposed modeling approaches. This was 

primarily attributed to switching from an in-person study to an online study, as 

necessitated by the COVID-19 virus outbreak. While this part of the study did not 

demonstrate the anticipated effects, several lessons-learned regarding online study 

design for engineering design studies were obtained and discussed. For the third 

exercise, participants were unable to perform better than the optimization model in all 

cases, demonstrating the utility of the optimization model compared to uninformed 

allocation of functions. This approach can be replicated for virtually any system but is 

particularly suited for systems with heterogeneous user populations. The output of the 

model can serve as a baseline for more detailed function modeling, or to facilitate 

general concept ideation. Evaluating the capabilities of the intended user population 

in early design stages is critical to mitigate costly redesign given new information in 

later stages, and critical to minimize error by end users. The proposed modeling 

approach facilitates these considerations.  

 

7.2 Overarching Implications 

 The case study data produced in this dissertation can be applied to patient-

facing medical devices used by diabetes patients, but the methodology can be 
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replicated for user populations and products in other domains. For all cases, internal 

medicine physicians should still be relied on as experts capable of making judgments 

regardless of the domain.  

The ease of replicating this approach for other populations primarily depends 

on the data available in NHANES. For other chronic disease populations, this process 

can easily be replicated by filtering NHANES participants who reported the disease. 

For example, prior work demonstrated the clustering procedure on the hypertensive 

population (Knisely & Vaughn-Cooke, 2020a). For the general consumer population, 

all NHANES participants can be used. For occupation-specific products with entry 

requirements (e.g., provider-facing medical devices, mining equipment, aviation 

equipment), NHANES data can be filtered by occupation. Note, however, that not all 

years of NHANES include detailed survey questions on occupation. Additionally, for 

occupations with few workers relative to the general population, participants may be 

too sparse in the dataset to allow clustering. For example, NHANES 2013-2014 

contains 519 participants who reported working in healthcare, however only 18 who 

reported working in mining. For cases such as the latter, the general population can be 

assumed, or creative sampling based on industry demographics can be used as 

demographic data is plentiful in NHANES. Otherwise, alternative means to define 

task-specific user groups should be identified. The other elements of the methodology 

can be replicated regardless of the product domain.  

Designers should use this methodology in the conceptual phase of design to 

establish the baseline differentiation of product functionality for products in a product 

family. This could be thought of as the first “layer” of differentiation, where each 
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functional variant can go on to drive additional differentiation for each user group 

identified. The first step should be to take the output product functions from this 

methodology and build out a more detailed function structure. Next, these function 

structures can guide product embodiment, where physical design solutions are 

generated to fulfill system functions. To establish a product platform, design solutions 

may be shared across product family members that share functionality. As design 

embodiment becomes more detailed, and product design parameters are established, 

additional differentiation can occur based on scaling parameters to meet sub-user 

group population needs. Figure 19 demonstrates this progression.  
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Figure 19: Proposed use of methodology output. 

 

 The case study data produced from this dissertation also has utility. The 

output of each chapter can be used by engineers and designers targeting the diabetes 

population. The user groups and performance values can be used for any product 

where the core users are individuals with diabetes. This would primarily include other 
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medical devices, such as insulin pumps or health information technology systems. 

Designers would need to identify the core tasks relevant for the given product and use 

this to identify relevant task-specific user groups. Designers could then follow the 

modeling process detailed in Chapter 6 to create a function model for their case and 

replicate the optimization procedures to output candidate function allocations. A more 

detailed discussion on the proposed use of each chapter’s output can be seen in the 

Proposed Use sections of Chapters 4-6.  

 

7.3 Methodological Validity 

 This section provides a brief discussion of the efforts taken to validate this 

methodology as well as areas that lack validation and should be subject to future 

work. Total method validation is important to address for several reasons. First, 

validation can provide confidence that the method is beneficial with respect to the 

established objectives, and that the observed benefits can be repeatedly obtained in 

practice. Second, total method validation must be specifically addressed, as validation 

of individual method elements does not guarantee validity of the entire process.  

Validity will be discussed in the context of the Validation Square, a 

framework proposed to facilitate structured validation of design methodology 

(Seepersad et al., 2006). The Validation Square seeks to address the challenges 

associated with validating design methodology in a research context, primarily being 

the difficulty of following a proposed design solution through the complete product 

life cycle. The Validation Square provides a process to facilitate structural validation 

(method provides solutions correctly) and performance validation (method provides 
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the correct solutions). The process suggests the following tasks to ensure method 

validity:  

1. Domain-Independent Structural Validity – The method is determined to be 

logical, internally consistent, and mathematically correct. This includes the 

internal consistency of “parent” constructs that are considered influential to 

the method, as well as the internal consistency of the method itself.  

2. Domain-Specific Structural Validity – An example problem is identified 

and justified as appropriate given the context of the method.  

3. Domain-Specific Performance Validity – The method provides useful 

results with respect to the stated purpose. This includes applying the method 

to the example problem, defining and applying metrics of usefulness to the 

example problem, and demonstrating that the usefulness is directly a result of 

applying the method.  

4. Domain-Independent Performance Validity – The method is reasoned to be 

useful beyond the example problem.  

The proposed method will now be discussed in the context of each of these 

steps, identifying where each step was addressed and highlighting elements that are 

missing. The primary focus will be on the validity of the methodology as a whole. 

The validity of the individual constructs will be discussed as well, broadly 

corresponding to modeling user groups (Chapter 4), quantifying user group task 

performance (Chapter 5), the human-machine functional modeling approach (Chapter 

6), and function allocation optimization (Chapter 6).  
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 Domain-Independent Structural Validation – The first step for this element of 

validation is to identify the requirements and need for the design method. Chapter 1 

of this dissertation provided details on the purpose and requirements for the overall 

method. Further, for each primary construct that make up the method, a review of the 

relevant “parent” constructs was provided in Chapter 2. This includes highlighting the 

limitations of these constructs, therefore justifying the need for each individual 

proposed construct. Next, the internal consistency of the method is established in 

Chapter 1.2. Each step of the method is explained in the context of the greater method 

goals, including sub-steps, inputs, and outputs within and between constructs. 

Further, a flowchart is used to demonstrate the logical flow of each method construct 

(Figure 1).  

 Domain-Specific Structural Validation – Chapter 3 of this dissertation 

introduces a case study (example problem) along with the justification of its 

appropriateness for the domain. As this method revolves around addressing the needs 

of specific user populations, the appropriateness of the example problem depends 

mostly on the characteristics of the target population. The inclusion criteria for 

example problems are listed at the beginning of Chapter 3.  

 Domain-Specific Performance Validation – The method was applied to the 

diabetes self-management device case study proposed in Chapter 3 to demonstrate its 

performance. The Validation Square process suggests identifying metrics for 

usefulness to measure if the method satisfies its intended purpose, as well as 

evaluating if the demonstrated usefulness is linked to applying the method. This is 

discussed for each of the primary method constructs.   
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 Modeling User Groups – To validate the clusters produced by this process, 

four quantitative metrics (silhouette index, CH index, connectivity, BIC) were used to 

evaluate cluster quality. Additionally, clusters were subjectively evaluated for 

qualitative separation based on the researchers prior understanding of user risk. The 

usefulness of these clusters relies on the assumption that the expert-driven process for 

selecting meaningful NHANES variables was successful, and that the diabetes 

patients sampled by NHANES reflect the true diabetes population. While we can be 

relatively confident about the latter, future work should seek to address the validity of 

the former.  

 Quantifying User Group Task Performance – The validity of the expert 

elicitation relies on the previous efforts to validate the elicitation protocol used 

(Cooke protocol) and the quantitative metrics used for expert evaluation (calibration 

score, information score) (Colson & Cooke, 2017). Acknowledging the limitations 

discussed in Chapter 5.5, this provides confidence that the elicited values should be 

better than a layman estimate, though future efforts should be taken to validate the 

elicited values in the true population, discussed further in the 7.4 Future Work. The 

result of the elicitation also provides additional confidence that the subjective 

evaluation of cluster separation was meaningful, as expert elicited values for user 

groups corresponded with the stated qualitative risk-levels by the researchers.  

 Human-Machine Function Modeling – The proposed modeling approach was 

based off prior modeling approaches and adjusted given the objective of function 

allocation. The purpose of the modeling approach was to facilitate function allocation 

in the early-stage product design context, and to improve student concept generation 
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with respect to product accessibility. While efforts were taken to validate this 

hypothesis (student exercises 1&2, Chapter 6), these efforts did not ultimately 

produce different outcomes. As discussed in Chapter 6, we do not believe these 

outcomes are representative due to several limitations resulting from the COVID-19 

pandemic and University shutdown. Future work should seek to perform this study 

again under better conditions, discussed further in Chapter 7.4.  

 Function Allocation Optimization – The quality of the optimization model 

output was evaluated using several quantitative metrics (hyper-area difference, 

solution spread, unique solutions). These metrics only measure the quality of the 

multi-objective output based on theory surrounding pareto optimality with respect to 

the defined objective functions. This does not necessarily mean produced solutions 

will be useful in real-world applications. The usefulness of solutions relies on the 

validity of the objective functions used, which were generated uniquely for this 

dissertation. The validity of the accommodation metric primarily relies on the validity 

of the methodological steps taken prior (performance data, function model produced), 

while the complexity metric is solely based on prior literature (Gill et al., 2017) and 

logical reasoning given the properties of product families. Future validating work is 

required to develop confidence in the usefulness of these complexity metrics. For 

example, these metrics could be applied to real-world products, and the resulting 

values could be compared to the cost of the product.   

Further, the necessity of the optimization model in isolation should be 

investigated. In the third student design exercise, students completed the function 

allocation task with only information that would be available to them in typical 
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engineering practice. Therefore, they did not have access to the information produced 

by this method (user groups, user group task performance estimates) that was used as 

input to the optimization model. This allowed us to compare participant performance 

against the method in entirety, but not to the model in isolation. To determine if the 

optimization model is necessary for selecting optimal design solutions in isolation, 

participants would need to complete the same task given the same information that 

was input to the model, including data produced in the prior sections and as well as 

the nature of the objective functions. This would validate that a computational 

solution was warranted for generating and evaluating design solutions with respect to 

the objective functions.  

 Complete Method - The method in its entirely was quantitatively validated 

during the third student design exercise where students were asked to perform a 

manual function allocation task. This exercise demonstrated that the data and tools 

produced in this dissertation can produce outcomes that are more efficient with 

respect to the defined objectives than student engineers. Once again, this relies on the 

validity of these objective metrics, which must be tested in practice. This does not 

guarantee that the functional requirements produced will actually produce a product 

that is highly usable and cost-effective. However, based on the observed results and 

the discussed validity, it can be reasoned that these efforts would produce better 

outcomes than if the methods had not been used at all for this design case study. 

 Domain-Independent Performance Validation – Given the previous 

discussions, generalizability of observed outcomes is assumed for design problems 

with similar characteristics. The chosen design problem was deliberately selected 
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given that it exhibits the properties discussed in Chapter 3 (heterogeneous population, 

safety-critical domain). Steps were taken to ensure the method was applied to the 

design case study in an internally consistent manner, with efforts taken to validate the 

usefulness of the method in practice. It is therefore reasonable that, while not 

explicitly tested, the observed benefits are expected to transfer to design problems 

with similar properties.  

  

7.4 Future Work 

 There are several opportunities for future work that could stem from this 

dissertation. In all engineering design problems, there are degrees of uncertainty that 

can influence expected system performance in practice and should be accounted for 

(Cuneo et al., 2017; Kota & Chakrabarti, 2010). In design methods, it is important to 

quantify the uncertainty associated with each methodological stage because this 

uncertainty can propagate throughout the method, which can lead to overconfidence 

in the intermediate and final results. This design methodology consists of several 

stages that are linked via inputs/outputs. Future work should seek to address 

uncertainty associated with method outputs that have not already been addressed and 

should seek to formally evaluate how that uncertainty propagates to the output of the 

optimization model. Of particularly note is the uncertainty estimates obtained in the 

expert elicitation. It should be investigated how elicited uncertainty can be integrated 

into a robust version of the multi-objective optimization problem (He et al., 2019).  

Further, while internal validation was well covered, there was a lack of 

external validation for the proposed methodology, as discussed in the prior section. 
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Efforts should be taken to validate the performance values generated for each task-

specific user group. Participants could be recruited using the user group 

characteristics and proportions identified as benchmarks. These benchmarks can be 

monitored during the recruitment process and recruitment strategies can be updated to 

target segments that are not well represented. Targeting users based on these 

characteristics would be more challenging than typical efforts that rely on 

demographics and could be an area of future research itself.  

Recruited participants could then perform controlled laboratory versions of 

each task. Performance quantities could be experimentally measured and compared to 

the values output during the expert elicitation. If values were close and correlated, 

this would provide confidence that physicians were able to make reasonable 

estimations for task performance, and that the process in Chapter 4 produced 

characteristics that are reasonable predictors of task performance. 

 Efforts should also be taken to re-validate the human-machine function 

modeling procedure developed for Chapter 6. Due to the limitations discussed 

previously, it is currently unclear if the proposed function modeling procedure was 

useful for promoting accessible design decision-making. Conducting a similar study 

in a laboratory setting could overcome the limitations encountered with the remote 

study design.  

 Other work could expand on and demonstrate how the output of the 

optimization model could be used. An accompanying methodology that takes the 

output functions as input and translates them into a physically realized product family 

(akin to Figure 19) would help turn the proposed approaches into a complete design 
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methodology. Testing these products in the intended user population and measuring 

performance could be used to validate that the utility of design-decisions made early 

in the design process persist into later design stages. Further, it would provide 

evidence that these early design tools have practical utility in contributing to a 

complete design methodology.   
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Appendices 
 

Appendix A: Patient Characteristic – NHANES Variable 
Mapping 
 
Table 56: User characteristic - NHANES variable mapping for "fine motor movement" (adapted from 

(Knisely & Vaughn-Cooke, 2020a)). 

Expert Survey 

Characteristic 

NHANES Variable Format  Justification 

Age Age Continuous  

Age and decreased 

hand mobility are 

associated (Seidler et 

al., 2010). 

Physical 

Independence 

Reported difficulty using fork, 

knife, or cup 

Ordinal – No 

difficulty, Some 
difficulty, Much 

difficulty, Unable 

to do, Does not do 

Activity is a specific 
case of “fine hand 

manipulation”  

Physical 

Independence 

Reported difficulty 

grasping/holding small objects 

Ordinal – No 

difficulty, Some 

difficulty, Much 

difficulty, Unable 

to do, Does not do 

Activity is a specific 

case of “fine hand 

manipulation” 

Disease History 

Reported having: 

- Arthritis 

- Gout 

- Bone/joint injury 

- Neck and Back Problem 

Binary – Yes or 

No 

“Find hand use” linked 

with post-acute 

musculoskeletal 

disease ICF core set 

(Scheuringer et al., 
2005).  

Disease History 

Reported having: 

- Congestive heart failure 

- Angina/angina pectoris 

Binary – Yes or 

No 

“Fine hand use” linked 

with cardiopulmonary 

post-acute ICF core set 

(Wildner et al., 2005). 

Disease History Reported having a stroke 
Binary – Yes or 

No 

“Fine hand use” linked 

with stroke ICF core 

set (Geyh et al., 2004). 

Exercise 
Reported physical activity at 

work  

Ordinal – None, 

Moderate, 

Vigorous 

Physical activity is 

associated with fine 

motor skill (Liubicich 

et al., 2012; Miyake et 

al., 2013). 

Exercise 
Reported physical activity 
recreationally 

Ordinal – None, 
Moderate, 

Vigorous 

Physical activity is 

associated with fine 
motor skill (Liubicich 

et al., 2012; Miyake et 

al., 2013). 
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Table 57: User characteristic - NHANES variable mapping for "visual discrimination." 

Expert Survey 

Characteristic 

NHANES Variable Format  Justification 

Age Age Continuous  

Age and decreased 

vision are associated 

(Rudman et al., 2016). 

Disease History 
Reported difficulty seeing with 

or without correction 
Binary – Yes or No 

Activity describes the 

task. 

 

 

Table 58: User characteristic - NHANES variable mapping for "auditory discrimination." 

Expert Survey 

Characteristic 

NHANES Variable Format  Justification 

Age Age Continuous  

Age and decreased 

hearing are associated 
(P. Wu et al., 2020). 

Disease 

History/Severity 

Reported hearing quality 

without correction 
Binary – Yes or No 

Activity describes the 

task.  

Disease History 
Wears a hearing device (aid, 

amplifier, or implant) 
Binary – Yes or No 

Included to 

compliment prior 

characteristic. 

 

 

Table 59: User characteristic - NHANES variable mapping for "applying existing knowledge" and 

"problem-solving and decision-making." 

Expert Survey 

Characteristic 

NHANES Variable Format  Justification 

Age Age Continuous  

Age is associated with 

cognitive decline 

(Meng et al., 2017). 

Memory, 

Attention, and 

Decision-

making Skills 

Problems managing money 

Ordinal – No 

difficulty, Some 

difficulty, Much 

difficulty, Unable 

to do, Does not do 

Activity is a specific 

case of “applying 

existing knowledge” 

and “problem-solving 

and decision-making”. 

Memory, 

Attention, and 

Decision-

making Skills 

Reports experiencing 

confusion/memory problems 

Binary – Yes or 

No 

Memory is an integral 

part of “apply existing 
knowledge” and is 

associated with 

“problem-solving and 

decision-making” 

(Del Missier et al., 

2015). 

Memory, 

Attention, and 

Decision-

making Skills 

Reports having serious difficulty 

concentrating, remembering, or 

making decisions 

Binary – Yes or 

No 

Variable describes the 

task. 
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Table 59 (continued) 

Memory, 

Attention, and 

Decision-

making Skills 

Reported feeling tired or having 

low energy over the last two 

weeks 

Ordinal – Not at 

all, Several days, 

More than half, 

Every day 

Low energy is 

associated with poor 

memory and decision 

making (McCoy & 

Strecker, 2011; 
Whitney et al., 2015). 

Disease History Reported having a stroke 
Binary – Yes or 

No 

“Focusing attention” 

and “Solving 

problems” linked with 

stroke ICF core set 

(Geyh et al., 2004). 

Psychiatric 

Disorder  

Reported frequency of feeling 

worried or anxious 

Ordinal – Never, 

Few times a year, 

Monthly, Weekly, 

Daily 

“Solving problems”, 

“decision-making”, 

“attention function”, 

and “memory 

function” all linked 

with mental disorder 

ICF core set (Guilera 

et al., 2020). 

Psychiatric 

Disorder 
Reported severity of anxiety 

Ordinal – A little 

(mild), A lot 

(severe), or 

somewhere in-

between 

(moderate) 

“Solving problems”, 

“decision-making”, 

“attention function”, 

and “memory 

function” all linked 

with mental disorder 

ICF core set (Guilera 

et al., 2020). 

Psychiatric 

Disorder 

Reported frequency of feeling 

depressed 

Ordinal – Never, 

Few times a year, 

Monthly, Weekly, 
Daily 

“Solving problems”, 

“decision-making”, 

“attention function”, 

and “memory 

function” all linked 
with mental disorder 

ICF core set (Guilera 

et al., 2020). 

Psychiatric 

Disorder 
Reported severity of depression 

Ordinal – A little 

(mild), A lot 

(severe), or 

somewhere in-

between 

(moderate) 

“Solving problems”, 

“decision-making”, 

“attention function”, 

and “memory 

function” all linked 

with mental disorder 

ICF core set (Guilera 

et al., 2020). 
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Appendix B: GMM Model Performance Comparison 

Cluster BIC values for “gross-upper body movement”, “fine motor 

movement”, and cognitive tasks are shown in Figures 20-22. For some model and 

cluster count combinations, there was issues with convergence. Results for these 

cases are not shown. For more detail on models (EEI, EII, EVI, VEI, VII, VVI), see 

(McParland & Gormley, 2015). Note that in this package, BIC is formulated such that 

the maximum value is sought, while in many other cases it is formulated such that the 

minimum is sought.  

 

 
Figure 20: GMM BIC values for gross-upper body movement clusters. Star indicates highest value. 
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Figure 21: GMM BIC values for fine motor movement clusters. Star indicates highest value. 

 

 
Figure 22: GMM BIC values for cognitive tasks’ clusters. Star indicates highest value.  
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Appendix C: Cluster Dominant Characteristic Summary 

Tables 60-62 display summaries of dominant cluster characteristics for each 

cluster solution. Characteristics are considered dominant for a cluster if the majority 

of individuals in the cluster had that characteristic. For ordinal variables where a 

single level does not dominate (all levels contain <50% of individuals), the dominant 

characteristic is the level for which the majority of individuals in the cluster reported 

that level or worse. Only characteristics that differed for at least one cluster are 

shown. A blank cell indicates that the characteristic does not apply to the cluster.  

  



 

 

187 

 

Table 60: Dominant characteristics for gross upper-body movement clusters. 

Cluster # User Characteristic 
PAM HC GMM 

2 3 4 2 3 4 2 3 4 

1 

Age OA OA OA OA OA OA OA OA OA 

Physical Dependence    PD      

Physical Activity SD SD SD SD SD SD SD SD SD 

Has Arthritis X   X      

Has Neck/Back Problems          

Has Obesity    X X X X  X 

# Cardio-pulmonary Conditions          

2 

Age OA OA OA OA OA OA OA OA OA 

Physical Dependence PD   PD PD PD PD PD PD 

Physical Activity SD SA SD SD SD SD SD SD SD 

Has Arthritis X X   X X X X X X 

Has Neck/Back Problems X    X X X X X  

Has Obesity X X X X X X X X  

# Cardio-pulmonary Conditions 1+   1+ 1+ 1+ 1+   

3 

Age  OA OA  OA OA  OA A 

Physical Dependence  PD PD  PD PD  PD PD 

Physical Activity  SD SD  SD SD  SD SA 

Has Arthritis  X X  X X  X X 

Has Neck/Back Problems  X    X X  X X 

Has Obesity  X X  X X  X X 

# Cardio-pulmonary Conditions  2+ 1+  2+ 2+  3+  

4 

Age   OA   OA   OA 

Physical Dependence   PD   PD   PD 

Physical Activity   SD   SD   SD 

Has Arthritis   X   X   X 

Has Neck/Back Problems   X       X 

Has Obesity   X   X   X 

# Cardio-pulmonary Conditions   1+   3+   3+ 

A = Adult, OA = Older Adult, PD = Partial Dependence, SA = Semi-active, SD = Sedentary, X 

indicates presence of condition.  
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Table 61: Dominant characteristics for fine motor movement clusters. 

Cluster # User Characteristic 
PAM HC GMM 

2 3 4 2 3* 4* 2 3 4 

1 

Age OA OA OA OA OA OA OA A A 

Physical Dependence          

Physical Activity SD SD SD SD SD SD SD SD SD 

Has Arthritis       X X X 

Has Bone/Joint Injury          

# Cardio-pulmonary Conditions          

2 

Age OA OA OA OA OA OA OA OA OA 

Physical Dependence       PD   

Physical Activity SD A A SD SD SD SD SD SD 

Has Arthritis X X X X X X X X X 

Has Bone/Joint Injury          

# Cardio-pulmonary Conditions          

3 

Age  OA OA  A OA  OA OA 

Physical Dependence     CD PD  PD  

Physical Activity  SD SD  SD SD  SD SA 

Has Arthritis  X X  X X  X X 

Has Bone/Joint Injury          

# Cardio-pulmonary Conditions     1+   1+ 1+ 

4 

Age   OA   OA   OA 

Physical Dependence      CD   PD 

Physical Activity   SD   SD   SD 

Has Arthritis   X   X   X 

Has Bone/Joint Injury   X       

# Cardio-pulmonary Conditions      1+    

A = Adult, OA = Older Adult, PD = Partial Dependence, CD = Complete Dependence, SA = Semi-

active, SD = Sedentary, X indicates presence of condition. *Clustering includes a 1-individual cluster 

and was eliminated from consideration.   
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Table 62: Dominant characteristics for cognitive task clusters. 

Cluster 

# 

User 

Characteristic 

PAM HC GMM 

2 3 4 2 3 4 2 3 4 

1 

Age OA OA OA OA OA OA OA OA OA 

Low Energy*     SVD SVD     

Cognitive 

Function 
         

Anxiety 

Frequency 
R   R R R    

Anxiety 

Severity 
MLD   MDR MDR MLD    

Depression 

Frequency 
   R R     

Depression 
Severity 

   MDR MDR     

2 

Age OA OA OA OA OA OA OA OA OA 

Low Energy* SVD SVD SVD SVD SVD SVD SVD SVD SVD 

Cognitive 

Function 
   I      

Anxiety 
Frequency 

W M R R W W M R R 

Anxiety 

Severity 
MDR MDR MLD MDR MDR MDR MDR MDR MLD 

Depression 

Frequency 
W R R R M M R R R 

Depression 

Severity 
MDR MDR MLD MLD MDR MDR MDR MLD MLD 

3 

Age  A A  OA OA  A OA 

Low Energy*   MTH SVD     MTH SVD 

Cognitive 

Function 
 I   I I  I I 

Anxiety 

Frequency 
 D W  R R  D M 

Anxiety 

Severity 
 MDR MDR  MLD MLD  MDR MDR 

Depression 

Frequency 
 W M     D R 

Depression 

Severity 
 MDR MDR     MDR MDR 

4 

Age   A   A   A 

Low Energy*    MTH   MTH   MTH 

Cognitive 

Function 
  I   I   I 

Anxiety 

Frequency 
  D   D   D 

Anxiety 

Severity 
  MDR   MDR   MDR 

Depression 

Frequency 
  W   W   D 

Depression 

Severity 
   MDR    MDR    SVR 
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Table 62 (continued) 

A = Adult, OA = Older Adult, SVD = Several days, MTH = More than half, R = Rarely, M = Monthly, 

W = Weekly, D = Daily, MLD = Mild, MDR = Moderate, SVR = Severe, I = Impaired. *Reported as 

frequency over a period of two weeks.   
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Appendix D: Student Exercise Case Study Materials 

D.1 Case Study 1 Material: Mobility Device 

Problem Statement: The most common disabilities in the United States are 

mobility related. Many devices exist to aid mobility, however due to the highly varied 

characteristics and needs of mobility impaired individuals, not one size fits all.  

For this task, you will identify functions for a product to aid mobility in 

individuals with serious difficulty walking. This device should be for usable in, but 

not limited to, the home and outside on paved surfaces. You will complete two 

different exercises concerning this design problem. You should try to balance product 

accessibility with product complexity. Summary statistics for the mobility-impaired 

population have been provided to help you perform this task. 

Mobility-impaired* Population Summary Statistics:  

*Defined as individuals who report serious difficulty walking or climbing stairs 

• Median Age: 65.0 

• Gender: 55.9% Male, 44.1% Female 

• Education:  

o Less than high school: 30.0% 

o High school: 26.8% 

o Some college or associate degree: 29.7% 

o College degree: 12.8% 

• Uses equipment to walk: 63.1% 

• Difficulty walking for a quarter mile 
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o At least some difficulty: 73.2% 

o Significant difficulty or cannot do: 30.9% 

• Reports difficulty dressing and bathing, reaching up, or moving large objects:  

o At least some difficulty: 89.0% 

o Significant difficulty or cannot do: 58.2% 

• Reports difficulty using silverware or grasping/moving small objects: 

o At least some difficulty: 47.9% 

o Significant difficulty or cannot do: 14.2% 

• Recreational or work activity (weekly):  

o Neither: 54.0% 

o Moderate: 25.2% 

o Vigorous: 20.8% 

• Has arthritis, gout, bone/joint injury, or back/neck problem: 

o 1 or more conditions: 84.8%  

o 2 or more conditions: 54.0% 

o 3 or more conditions: 16.3% 

• Cardiovascular conditions (e.g. congestive heart failure, coronary heart disease): 

o 1 or more conditions: 23.0%  

o 2 or more conditions: 7.9% 

o 3 or more conditions: 1.3% 

• Pulmonary conditions (e.g. asthma, emphysema):   

o 1 or more conditions: 37.6%  

o 2 or more conditions: 16.4% 
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o 3 or more conditions: 7.4% 

• Obesity: 51.8% 

• Stroke: 13.9% 

• Difficulty hearing: 23.9% 

• Difficulty seeing: 20.5% 

• Reports difficulty managing money:  

o At least some difficulty: 33.1% 

o Significant difficulty or cannot do: 15.7% 

• Reports confusion/memory problems or difficulty concentrating and making 

decisions: 40.4% 

• Reports low energy levels:  

o Several days a week or more: 69.6% 

o Nearly every day: 21.8% 

• Anxiety (frequency):  

o Monthly or more: 53.2% 

o Weekly or more: 41.4% 

o Daily: 27.1% 

• Anxiety (severity): 

o Mild: 36.5% 

o Moderate: 43.1% 

o Severe: 20.2% 

• Depression (frequency) 

o Monthly or more: 38.7% 
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o Weekly or more: 27.6% 

o Daily: 14.6% 

• Depression (severity) 

o Mild: 36.7% 

o Moderate: 38.5% 

o Severe: 24.4% 

 

D.2 Case Study 2 Material: Glucose Monitoring Device  

Problem Statement: For individuals with type 1 and type 2 diabetes, 

monitoring blood glucose levels is critical for successfully managing their disease. 

Many diagnostic devices exist for the purpose, typically in the form of a handheld 

device. Despite the availability of these devices, successful self-monitoring of blood 

glucose levels remains low.  

For this task, a set of system functions to satisfy this problem has been 

provided. You are asked to develop a family of blood glucose monitoring devices that 

caters to the capabilities of the diabetes population. To do so, you will assign the 

given functions to human or machine for several product family members. You 

should try to balance product accessibility with product complexity. Summary 

statistics for the diabetes population have been provided to help you perform this task.  

In most cases, these systems work by extracting some glucose carrying 

medium from the body. This medium is most often blood but can also be urine or 

saliva. The medium undergoes some change (e.g. a chemical reaction), and from that 
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reaction the concentration of glucose can be derived. This value can then be used to 

determine if the user is in a healthy state.  

Now knowing the basic processes that must happen to satisfy this task, the 

following are baseline functions for the case study:  

1. Sense the state of system functions  

2. Process the sensory information 

3. Store the sensory information  

4. Extract blood glucose from the body 

5. Transfer blood glucose 

6. Store blood glucose  

7. Condition blood glucose  

8. Indicate glucose levels 

9. Detect glucose levels 

10. Process glucose levels 

Diabetes Population Summary Statistics:  

• Median Age: 65.0 

• Gender: 54.2% Male, 45.8% Female 

• Education:  

o Less than high school: 27.0% 

o High school: 22.6% 

o Some college or associate degree: 29.9% 

o College degree: 18.4% 
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• Reports difficulty dressing and bathing, reaching up, or moving large 

objects:  

o At least some difficulty: 62.2% 

o Significant difficulty or cannot do: 33.6% 

• Reports difficulty using silverware or grasping/moving small objects: 

o At least some difficulty: 30.3% 

o Significant difficulty or cannot do: 6.9% 

• Recreational or work activity (weekly):  

o Neither: 45.7% 

o Moderate: 30.8% 

o Vigorous: 23.5% 

• Has arthritis, gout, bone/joint injury, or back/neck problem: 

o 1 or more conditions: 65.4%  

o 2 or more conditions: 34.7% 

o 3 or more conditions: 9.1% 

• Cardiovascular conditions (e.g. congestive heart failure, coronary heart 

disease): 

o 1 or more conditions: 22.0%  

o 2 or more conditions: 8.7% 

o 3 or more conditions: 2.3% 

• Pulmonary conditions (e.g. asthma, emphysema):   

o 1 or more conditions: 29.5%  

o 2 or more conditions: 10.3% 
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o 3 or more conditions: 3.8% 

• Obesity: 59.0% 

• Had a stroke: 10.9% 

• Difficulty hearing: 19.5% 

• Difficulty seeing: 14.9% 

• Reports difficulty managing money:  

o At least some difficulty: 21.4% 

o Significant difficulty or cannot do: 10.0% 

• Reports confusion/memory problems or difficulty concentrating and 

making decisions: 23.7% 

• Reports low energy levels:  

o Several days a week or more: 52.5% 

o Nearly every day: 11.8% 

• Anxiety (frequency):  

o Monthly or more: 38.1% 

o Weekly or more: 26.0% 

o Daily: 15.2% 

• Anxiety (severity): 

o Mild: 45.9% 

o Moderate: 39.3% 

o Severe: 14.8% 

• Depression (frequency) 

o Monthly or more: 23.4% 
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o Weekly or more: 16.1% 

o Daily: 7.8% 

• Depression (severity) 

o Mild: 42.5% 

o Moderate: 38.2% 

o Severe: 19.2% 
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