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Micronutrient malnutrition, also known as hidden hunger, is a public health problem 

in many developing countries. Hidden hunger limits cognitive and physical 

development of children and increases both children’s and adults’ susceptibility to 

infectious diseases. The most common outcome of iron deficiency is anemia and in 

Rwanda, iron micronutrient malnutrition is highly pervasive. Thirty seven percent of 

children under five years of age and nearly 20 percent of women of childbearing age 

suffer from anemia in the country. Since 2012, HarvestPlus and its partners have been 

intensively disseminating iron biofortified common beans (Phaseolus Vulgaris) (IBB) 

varieties to help alleviate iron deficiency in Rwanda.  On one hand, Rwandan farmers 

may be uncertain about the economic returns of this new technology owing to 

insufficient knowledge about the types and costs of inputs needed, the yield 

distribution, expected market prices, and the demand for the produce. On the other 

hand, policy makers and donors cannot observe the outcomes that bean farmers 



  

would experience under all treatments of the IBB program. The counterfactual 

outcomes that a bean farming household would have experienced under other 

treatments are not observable.  In this context, this dissertation uses a multiprong 

analytical framework to: 1) analyze how peer interactions, households and farm 

characteristics, as well as regional factors influence smallholder farming households’ 

decisions to grow IBB varieties, 2) evaluate the impact of the IBB program on 

Rwandan farmer’s livelihoods, focusing on the outcomes of yields and incomes for 

beneficiary households, and 3) estimate the impact of the IBB program on 

smallholder farming households’ technical efficiency.  The spatial econometric 

results indicate spatial interdependence in smallholder farming households' decisions 

to adopt IBB. In addition to the directly targeted beneficiaries, the spatial parameters 

from the econometric analysis suggest that the biofortification program affected non-

beneficiaries as well. This finding indicates that (1) a household is more likely to 

grow IBB if the household is near other early IBB adopters who informed them about 

the nutritional and yield benefits of IBB technology and (2) the propensity of a 

household to grow IBB varies with the characteristics of neighboring farmers. The 

impact evaluation analysis supports the hypothesis that IBB growers had significantly 

higher yields and incomes, as compared to farmers that grew non-biofortified beans, 

whether improved or traditional. In addition, the impact assessment shows that 

farmers who grew iron biofortified varieties were relatively more efficient and 

obtained greater bean production than the control group. 
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Preface 

Chapters 4, 5, and 6 were presented in peer reviewed AAEA and AAG academic 

conferences. Chapter 4 and Chapter 5 are under peer-review process for publication 
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Chapter 1: Introduction 

I. Motivation and Key Topics 

Micronutrient malnutrition, also known as hidden hunger, is a public health 

problem in many developing countries. One-third of the world’s population—about 

2.5 billion people—are at risk of at least one micronutrient deficiency. Further, as 

many as 1.3 billion people are at risk of zinc deficiency, about 200 million are at risk 

of vitamin A deficiency, and 1 billion are at risk of iron deficiency (Saltzman et al., 

2017). Hidden hunger limits cognitive and physical development of children and 

increases children and adults’ susceptibility to infectious diseases. These curtail 

individuals, communities, and countries’ abilities to capitalize on economic 

opportunities—reinforcing the cycle of poverty for generations to come (Alderman, 

Hoddinott, & Kinsey, 2006; Stein, 2010). Common mechanisms to alleviate this 

global health problem include direct mineral and vitamin supplementation in health 

clinics or through outreach programs; food fortification; and most recently, 

biofortification. The latter involves an agricultural intervention based on the breeding 

of staple food crops that have a higher micronutrient content together with improved 

agronomic traits, such as improved yields. Biofortification is considered a cost-

effective (Meenakshi et al., 2012), sustainable and scalable intervention to reach rural 

populations (Saltzman et al., 2013; Bouis, 2017)  vulnerable to micronutrient 

malnutrition.  

Using conventional plant breeding techniques, iron-biofortified beans were 

developed to contain almost twice as much iron as common varieties. These IBB 
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varieties have high iron concentration as well as a good fractional absorption. IBB 

varieties were developed to reach children < 5 years of age and women of 

reproductive age who are most vulnerable to iron deficiency in rural populations. The 

most common outcome of iron deficiency is anemia. Studies have shown that IBB are 

an efficacious source of iron and regular consumption of iron biofortified beans can 

not only address iron deficiency (Haas et al., 2016) but also improve cognitive 

(Murray-Kolb et al., 2017) and physical (Luna, Lung’ago, Gahutu, & Haas, 2015) 

performance among target populations. Moreover, farmer feedback studies on IBB 

varieties conducted following early delivery efforts have shown that farmers are 

willing to expand their production of these beans as well as to share the planting 

material with others (A Murekezi, Birol, Asare-Marfo, & Ktasvairo, 2013). Consumer 

acceptance studies found that consumers prefer the IBB varieties over most of local 

varieties (Oparinde et al., 2016; Abdoul Murekezi, Oparinde, & Birol, 2017). Since 

2012, HarvestPlus and its partners have been intensively disseminating IBB varieties 

to help alleviate iron deficiency in Rwanda.  

In Rwanda, micronutrient malnutrition is highly pervasive and adoption rates of 

improved varieties of staple crops tend to be low (see e.g., (Walker & Alwang, 

2015)). Thirty seven percent of children under five years of age and nearly 20 percent 

of women of childbearing age suffer from anemia (NISR, 2015) in the country. 

Furthermore, about 25 percent of children and 37 percent of women have iron 

deficiencies (Petry et al., 2016). At the same time, Rwandans have one of the highest 

per capita bean consumption rates in the world, with rural households consuming 

beans on average six days in a given week (Asare-Marfo et al., 2016), and in 
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significant quantities. In terms of bean production, bean farmers in Rwanda have low 

productivity (FAO, 2020), which translates into low food availability. With less food 

available, vulnerable populations face an increased risk of malnutrition. To satisfy 

growing food demand, there are three broad options: 1) increase land under 

production, 2) boost crop productivity, or 3) food imports. Crop productivity can 

increase through the adoption of higher yielding varieties and more efficient 

production techniques. 

Following several years of collaborative research between HarvestPlus, the 

Rwanda Agriculture Board (RAB), and the International Center for Tropical 

Agriculture (CIAT), four iron biofortified bean (IBB) varieties were officially 

released for planting in Rwanda in 2010. Another six were released in 2012. Of these, 

two were bush and eight were climbing types. Climbing beans grow tall, requiring a 

stake for support, and have a yield potential of 4,000 kilograms per hectare, while 

bush beans grow between 2 and 3 feet tall, so do not require support. Bush-type IBBs 

have a yield potential of 3,000 kilograms per hectare.  

IBB is a relatively new technology in Rwanda. Since the rollout of the 

biofortification program, two questions have been raised. The first question relates to 

the risk a smallholder bean farming household may face in adopting a new 

agricultural technology. Initially, farmers may be risk-averse to a new technology as 

they lack information pertaining to the likelihood of possible outcomes (e.g., yield, 

costs, profitability). As such, a risk-averse attitude would exert a detrimental impact 

on adoption. In this context, social learning and social interaction often complement 

and/or act as substitutes in delivering information and facilitating the technology 
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diffusion process. Sources of social influence in the adoption of technology include: 

(1) endogenous effects, (2) exogenous effects, and (3) correlated effects. In this study, 

I analyze smallholder farming households' decisions to adopt these newly-released 

IBB varieties by specifically examining the influence of demand-side factors and the 

role of peers. To do so, I draw upon several theories from studies on the adoption of 

agricultural technology, social behavior, and utility maximization to test three 

hypotheses.   

• For the first hypothesis, I test how the adoption behavior of smallholder 

farming households would be influenced by their neighbor’s adoption 

outcomes, as a result of peer learning about the profitability or the 

appropriate use of IBB. This phenomenon is known as endogenous effect, 

which is described as imitation, contagion, bandwagons and social norms.  

• For the second hypothesis, I model the effect of contextual factors, 

wherein the propensity of an IBB grower to behave is correlated with the 

exogenous characteristics of his/her neighbors.  

• For the third hypothesis, I ran a set of regressions with fixed and random 

effects. The model treats observations from a given village as a cluster and 

assumes a random effect for each village. In this way, I expect the random 

effect will produce a weaker spatial relationship. If so, this will confirm 

the hypothesis that closer neighbors matter more than those farther away.  

These analyses all together yield prevalence rates estimates of IBB adoption by 

district. 
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The second question I aim to answer is what was the economic impact of the 

biofortification program on Rwandan smallholder farming households’ yields and 

incomes? From this broader analytical perspective, the impact evaluation investigates 

the economic impact of the adoption of conventionally-bred IBBs by smallholder 

farming households. In this analysis, I test the null hypothesis of IBB adoption having 

absolutely no effect on yields and incomes for any smallholder farming household. 

Adoption of IBB is expected to improve yields, which may translate into improved 

iron intake, higher levels of market sales, and subsequent income gains. I also study 

the heterogeneity of outcome variables as a function of the propensity score (PS) and 

baseline covariates, key analyses from the perspective of program targeting. The 

technical efficiency of production analysis, discuss next, is part of the second research 

question.  

In Rwanda, limited access to agricultural technology, such as seed of improved 

bean varieties, and other complementary inputs, like fertilizers or staking material for 

climbing beans, can explain low crop productivity in the country. The technical 

efficiency of production analysis that I undertake investigates the impact of IBB 

planting material in bringing small farmers closer to their technological frontier for 

bean production. The analysis provides estimates of a national technological frontier 

for all bean farmers, a frontier for farmers that grow other improved bean varieties, 

and a frontier for IBB growers. This analysis provides insights into the IBB 

program’s impact on the production efficiency of bean farming in Rwanda.  
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II. Background 

Common bean (Phaseolus vulgaris) is the main grain legume for direct human 

consumption for the poorer population of Africa and Latin America. Evidence 

indicates Mesoamerica as the origin of common bean (Bitocchi et al., 2012). On a 

global scale, this staple crop is an example of a spillover resulting from a beneficial 

technology developed in one geographic area—in this case, Latin America—being 

transferred to another geographic area. An applied example includes the introduced of 

improved bean varieties in Rwanda, which were developed in collaboration between 

the International Centre for Tropical Agriculture (CIAT) and the Rwanda Agriculture 

Board. By 1998, improved bean varieties that originated from CIAT covered about 15 

percent of Rwanda’s bean area (Larochelle, Alwang, Norton, Katungi, & Labarta, 

2014). These new varieties registered an annual incremental production increase of 

almost 30,000 metric ton with a gross annual value of 8.7 million US dollars (Walker 

& Alwang, 2015).  

Agriculture is an important sector in Rwanda’s economy. It accounts for 39 

percent of gross domestic product (GDP) and 80 percent of employment (World 

Bank, 2013). Bean is the most important legume and one of the most vital sources of 

protein for Rwandan families. Beans are a staple food in Rwanda and as a result, the 

country ranks first out of 81 countries suitable for investing in iron biofortified beans 

(IBB) (Asare-Marfo, Gonzalez, Perez, Schwarz, & Zeller, 2013). Rwandans have one 

of the highest per capita bean consumption rates in the world, with rural households 

consuming significant quantities of beans on average six days a week (Asare-Marfo et 

al., 2016; Berti et al., 2012).  Beans have the highest share of crop-harvested area in 
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Rwanda, although there are significant productivity challenges due to limited access 

to modern agricultural technology.  Therefore, there are significant yield gains to be 

made from the introduction and scaling up of seeds of improved varieties of beans.  

Iron biofortified beans (IBB) can help improve yields, incomes, nutrition (Haas et al., 

2016), and health outcomes (e.g., cognitive and physical functions) (Murray-Kolb et 

al., 2017) of consuming populations (Luna et al., 2015).  

In 2010, the National Agricultural Research System of Rwanda, in collaboration 

with the CIAT and HarvestPlus, released the first IBB varieties to farmers in Rwanda. 

These biofortified varieties are micronutrient enriched and demonstrate better yield 

performance than unimproved bean varieties common in Rwanda. They also tolerate 

growth-reducing factors, like pests and diseases, and growth-limiting factors, such as 

droughts. However, little is known about key factors of adoption on the demand side 

and the role of peer influence. Understanding the factors that drive IBB adoption 

among bean farmers is critical to help better design policies to increase adoption of 

improved agricultural technologies to boost food crop productivity in Rwanda. 

III. Research objectives 

Biofortification has emerged as a cost-effective strategy (Meenakshi et al., 2012) 

to address micronutrient malnutrition. Since the IBB program rollout in Rwanda in 

2012, this agricultural strategy raises two key questions. First, what are the driving 

factors affecting the adoption of IBB varieties among smallholder farming 

households? Second, what was the impact of the biofortification program on 

smallholder farming households’ livelihoods? Thus, the objectives of this dissertation 

are:  
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• Objective 1: To analyze smallholder farming households’ decisions to adopt 

IBB in Rwanda, using theories on social interactions and choice behavior.  

• Objective 2: To estimate the impact of IBB on smallholder farming 

households’ yields and incomes in Rwanda 

• Objective 3: To estimate the impact of IBB on smallholder farming 

households’ technical efficiency in bean production in Rwanda.  

IV. Significance of this research 

It is expected that this empirical research will contribute to the literature in three 

ways. First, it will provide insight as to what factors drive IBB adoption and what role 

peer influence plays. Understanding bean farmers’ behavior is critical to design better 

policies to increase food crop productivity and decrease micronutrient deficiency in 

Rwanda. This analysis will also provide national and sub-national statistics on 

adoption rates and on the intensity of adoption of IBB by bean type. With the 

assistance of spatial econometrics techniques and theories of social interaction and 

choice behavior, this dissertation will examine how households and farm 

characteristics, as well as regional factors, influence smallholder farmers' decisions to 

grow IBB. The dissertation will also assess how important of a role social interaction, 

proxied by geographic distancing, plays in understanding the interdependence of 

farmers' decisions to adopt IBB. The robustness of our results will be tested using a 

simple model of social groups where smallholder farmers are nested within villages. 

This multilevel mixed model with random effects (village) is expected to produce 

weaker spatial relationships across villages. This would confirm our hypothesis that 
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for agricultural technology adoption closer neighbors matter more than those farther 

away. 

The second expected contribution to the literature relates to the assessment of the 

economic impact of improved and biofortified crop varieties on smallholder farming 

households’ outcomes. Notably, I will examine the impact of IBB varieties on 

Rwandan smallholding farming households’ livelihoods, focusing on the yields and 

incomes of beneficiary households. The findings of this study are expected to support 

the hypothesis that iron biofortified bean growers had significantly higher yields and 

potential incomes compared to farmers that grew non-biofortified beans, whether 

traditional or improved. The empirical analysis will demonstrate the need to control 

for spatial spillovers, providing evidence that a smallholder farmer’s probability of 

adoption of iron biofortified beans increases if adopting households are located 

nearby. 

The third expected contribution of this research to the literature relates to the 

estimation of smallholder farming households’ unbiased efficiency scores. I estimate 

a national technological frontier for all bean farmers, a frontier for iron biofortified 

bean growers (treatment), and a frontier for farmers that grow other improved bean 

varieties (control). Clustering analysis aims to reveal evidence on where and how this 

new technology has been effective, thereby providing valuable input into targeting 

strategies and resource allocation for scaling up of such interventions. 

V. Overview of the dissertation 

The reminder of this dissertation is organized into six chapters.  
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Chapter 2 provides a review of the theoretical frameworks commonly used for the 

analyses presented in chapters 4, 5, and 6. The first part introduces formal definitions 

of adoption and diffusion of an agricultural innovation, synthetizes commonly cited 

characteristics and constraints that affect the adoption of such technology, and 

provides a short summary of the most used theoretical frameworks on agricultural 

innovation. Economic studies have commonly distinguished between models of 

technology adoption and models of technology diffusion (path of aggregate demand). 

The most accepted theoretical frameworks for investigating adoption of technology 

include (1) economic constraints, (2) adopter perceptions (probit model), (3) 

innovation-diffusion (epidemic models), and (4) spatial diffusion through social 

network (spatial econometric models). The fourth framework is employed in chapter 

3 to model the role of peer effects on the adoption and diffusion of iron biofortified 

beans. The second section of this chapter provides a review of the literature related to 

the evaluation of treatment effects. This section presents a brief review of the studies 

on the productivity of improved beans in Rwanda, the basis of the framework on 

potential outcomes, theory on observational studies, and a short discussion on 

propensity score (PS) matching estimators. This framework is used in chapter 4 for 

the analysis on impact of IBB on yields and farmer’s incomes. The third section of 

the chapter introduces the total factor productivity (TFP) framework. This framework 

is used in chapter 5 to model technical efficiency of smallholder farming households.  

Chapter 3 presents three conceptual frameworks for use in the analyses that 

follow. The discussion of each conceptual framework provides a formal definition for 

each variable and mathematical equations. I use these equations to test the hypotheses 
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presented in Chapter 1. The first conceptual framework introduces two econometric 

tools: the probit model and the spatial probit model. I used these tools to model latent 

levels of utility. The second conceptual framework introduces a multivariate 

matching algorithm to implement Rubin’s causal model. The Rubin’s causal model 

tests the null hypothesis of no treatment effect. The third conceptual framework 

introduces the stochastic frontier analysis (SFA) and stochastic spatial frontier 

analysis (SSFA) that are applied to estimate bean farmers’ technical efficiency.  

Chapter 4 presents the analysis of smallholder farming households' adoption of 

IBB varieties by specifically examining the influence of demand-side factors and the 

role of peers. I draw upon several theories from studies on the adoption of agricultural 

technology, social behavior, and spatial econometric methods to build the analytical 

models. I test for the presence of spatial association among economic agents 

(farmers), estimate prevalence rates of IBB adoption by district, and examine any 

potential interactions with contextual factors. I present a disaggregate analysis for 

climbing and bush bean type. Climbing beans grow tall and need a stake for support 

with a yield potential of 4,000 kilograms per hectare, while bush beans grow about 2-

3 feet tall and do not require support with a yield potential of 3,000 kilograms per 

hectare. In addition, climbing bean type is mostly grown in the Western and Northern 

(one spatial regime) regions while bush bean type is mostly grown in the Eastern and 

Southern regions (second spatial regime). This spatial pattern of adoption suggests a 

form of heterogeneity that relates to the spatial variability of the parameters that 

provides evidence for separate analysis. To assess the significance of the two spatial 
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regimes, regions where climbing beans are grown and regions where bush beans are 

grown, I run a Chow test.  

Chapter 5 assesses the economic benefits of IBB delivery efforts in Rwanda. In 

doing so, I present an analysis of the heterogeneity of outcome variables as a function 

of PS and baseline covariates. To create the conditions of a natural experiment, this 

analysis combines quasi-experimental methods and spatial probit methods to address 

the problem of self-selection bias and spatial spillovers, respectively. 

Chapter 6 estimates smallholder bean farming households’ efficiency levels. It 

estimates a national technological frontier for all bean farmers, a frontier for iron 

biofortified bean growers (treatment group) and a frontier for farmers that grow other 

improved bean varieties (control group).  

Chapter 7 provides an overall conclusion. It provides the outcomes achieved from 

each objective, as well as research insights and policy implications.  
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Chapter 2: Literature Review 

I. Adoption of Agricultural Technology 

This section introduces formal definitions of adoption and diffusion of an 

agricultural innovation, synthetizes commonly cited characteristics and constraints 

that affect the adoption of such technology, and provides a short summary of the most 

used theoretical frameworks on the adoption and diffusion of agricultural innovation. 

i. Definitions of Adoption and Diffusion of Agricultural Technology 

Technology adoption is defined here as the choice of an individual farmer to 

acquire and use an agricultural innovation. Many empirical studies measure adoption 

of an innovation by using one of the two variables: a discrete choice as to whether or 

not to utilize an innovation, or a continuous variable, such as on the timing or extent 

of new technology utilization by individual farmers (Sunding & Zilberman, 2001). In 

this study, I use continuous variables, estimating at national and province levels the 

total area allocated to bean production with IBB varieties and the number of bean 

farmers cultivating IBB in season B of 2015. (Season B sowing dates span from 

around January to March, followed by harvest activities from June to July.) 

Established economic literature defines innovation diffusion as an aggregate 

measure of adoption and thereby analyzes the process through which the innovation 

penetrates markets and replaces traditional technologies (Sunding & Zilberman, 

2001). Measures of innovation diffusion include the percentage of the farming 

population that adopts new innovations and the area on which the innovation is 

employed as a share of the total land on which the innovation can be utilized. 

Namely, innovation diffusion is a process by which an innovation is communicated 
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through certain channels over time among the members of a social system (Rogers, 

Singhal, & Quinlan, 2019).   

A stream of the literature shows the importance of social networks, or peer-

effects, as a mechanism for the spatial diffusion of technology (Manski, 1993; 

Beaman, BenYishay, Magruder, & Mobarak, 2018). This mechanism is especially 

important when farmers lack information pertaining to the likelihood of the possible 

outcomes of the new agricultural technology. Farmers may be uncertain about the 

management practices they should optimally employ, the types and costs of inputs 

needed, and the economic returns of the new technology. In this context, social 

learning and social networks often complement or act as substitutes in delivering 

information and facilitating the technology adoption process.  

ii. Commonly Cited Characteristics and Constraints that Affect the Adoption 

and Diffusion of Innovation Agricultural Technology 

The characteristics of a social network—a farmer's social links through which 

information, goods, money, and services flow—are factors that might induce 

technology adoption and diffusion (Maertens & Barrett, 2013). Empirical studies 

have shown the effect of social networks on facilitating the adoption of new 

agricultural technologies in developing countries. Foster & Rosenzweig (1995) find 

that farmers with neighbors who have more farming experience have higher profits 

than those without such neighbors. Krishnan & Patnam (2014) find evidence that 

social learning was more persistent than learning from extension services for the 

adoption of new varieties and fertilizer in Ethiopia. Conley & Udry (2010) examine 

how learning from the experience of others and the flow of information depend on the 
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structure of social networks when there is no access to agricultural extension services. 

Ward & Pede (2015) find that neighbor effects are a significant determinant of hybrid 

rice use. They use two specifications to model the endogenous effect of being 

neighbors—one based on membership in the same village, and the other based on 

geographical distance.  

Other factors driving adoption includes farm size, access to credit, land tenure, 

human capital, infrastructure, and wealth. Farm size was one of the first factors 

explored in the empirical literature on adoption. Farm size can have different effects 

on the rate of adoption depending on the characteristics of the technology. A wide 

variety of empirical results interpreted in the context of the theoretical literature 

suggests that farm size is a surrogate for many potentially important factors driving 

technology adoption, such as access to credit, capacity to bear risk, access to scarce 

inputs, wealth, and access to information. Chirwa (2005) finds that close to 60 percent 

of sampled households in Malawi do not use hybrid maize varieties, but that adoption 

increases with income, education, and farm size. 

Many studies have examined the role of access to credit and appropriate financial 

instruments as a constraint in farmers’ adoption decisions (seeds, fertilizers, and 

pesticides). According to theoretical and empirical research studies, access to capital 

through either accumulated savings or capital markets is necessary to finance the 

adoption of many new agricultural technologies, especially for smallholder farmers. 

Simtowe, Zeller, & Diagne (2009) find higher hybrid maize adoption among 

households with access to credit in Malawi. Croppenstedt, Demeke, & Meschi (2003) 
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estimating a model of fertilizer use in Ethiopia, find that household cash resources are 

generally insufficient to cover fertilizer purchases.  

There are two methods commonly used in the literature to quantify the role of 

credit constraints. One is to ask farmers the primary reason why they do not adopt a 

technology in order to determine if the reasons might be correlated with either wealth 

or income. However, a problem with this method arises if the returns to the adoption 

of technology vary by farm scale. The second method is to control for income, scale, 

and insurance effects to avoid biased adoption estimates (Foster & Rosenzweig, 

2010).  

A number of empirical and descriptive studies have also considered the effects of 

land tenure arrangements (which is often considered to be a good proxy for wealth) 

and the proportion of farms rented on the adoption of new agricultural technology, 

such as improved, high-yielding varieties. Findings suggest that the form of land 

tenure (e.g., renters, sharecroppers, landowners) may affect adoption decisions and 

diffusion rates.  

Poor-functioning infrastructure affects the profitability of technology adopted by 

farmers. The extension and quality of road networks and mobile telephone services 

rank among the most important infrastructural conditions. In general, transportation 

limitations tend to reduce competition among input suppliers and middlemen. 

Empirical evidence shows that travel times between the farm gate and market can be 

high due in part to underdeveloped road infrastructure. Good transportation is 

associated with diffusion of technology, better access to inputs, and higher producer 

prices (Dorosh, Wang, You, & Schmidt, 2012). 
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Three mechanisms related to human capital have been identified in the literature 

to explain technology adoption: (1) more educated agents are wealthier, and thus the 

education–adoption relationship represents an income effect; (2) more educated 

agents have better access to information; and (3) more educated agents are better able 

to learn or otherwise internalize new information. The last mechanism has been the 

principal focus of economists (A. D. Foster & Rosenzweig, 2010). Numerous studies 

find a significant relationship between education indicators and farm productivity. 

Since the adoption of innovation generally increases productivity, the importance of 

education in affecting adoption behavior is implicit. Jamison & Moock (1984) test the 

effect of schooling and extension contacts on the adoption and diffusion of agriculture 

technology in Nepal. They find that schooling influences adoptive behavior, but that 

household income mediates the adoption decision. Weir & Knight (2007) find that the 

level of education within the household- in Ethiopia is an important factor in 

adoption, and that early adopters tend to be more educated and to influence their 

neighbors.  Giné & Yang (2009) find that farmers’ education, income, and wealth 

were positively correlated with the take-up of insured loans to adopt a new crop 

technology in Malawi.  

The local and regional geographical setting within villages that can directly and 

indirectly influence adoption—including geographical variables, such as rainfall, soil 

type, dominant ethnic group, slope, farmer management practices in a village, 

population density, road density, and market access. These may vary and, therefore, 

have an impact on yield differentials across farmers adopting the same technology. 
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iii. Theoretical Frameworks Applied to the Adoption of Agricultural 

Technology 

Economic studies have commonly distinguished between models of technology 

adoption and models of technology diffusion (path of aggregate demand). The most 

accepted theoretical analytical frameworks for investigating the adoption and 

diffusion of technology include (1) economic constraints, (2) adopter perceptions 

(probit model), (3) innovation-diffusion (epidemic models), and (4) spatial diffusion 

through social network (spatial econometric models).  

Economic constraint modeling is probably the most extensively used theoretical 

approach in the literature for examining the adoption of agricultural innovation. 

Research studies commonly apply the farmer’s decision-making model, which is well 

documented by Feder, Just, & Zilberman (1985). Using this model, it is assumed 

farmers’ decisions result from the maximization of an expected utility against 

constraints, including – but not limited to – land, access to credit, market access and 

infrastructure. Farmer profits are defined as a function of the farmer's choice of crops 

and varieties of these crops to cultivate traditional vs. modern. Therefore, a farmer's 

income is a function of land allocated to different crops and crop varieties, which can, 

consequently, be explained by the production function of each crop: yields, inputs 

(amount and prices), and other associated costs of production. To address the decision 

over time, Feder, Gershon and T. O’Mara, (1981) and Feder et al., (1985) suggest 

empirical models that factor in perceived parameters of the production function. 

These parameters can be updated through learning processes that incorporate prior 

perception and recent information about yields, input uses, prices and other factors for 
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farmers in any region using Bayesian modeling of learning rules to update farmers’ 

perceptions. Other variables considered in structural equations include extension 

services and human capital. Other dynamic variables include optimal timing of 

technology adoption, learning by using, and learning by doing, which require a 

wealth of data, such as a panel survey, for analysis.  

Another less cited theoretical approach is a framework based on farmers’ 

perceptions of technology characteristics. Agricultural technology attributes (e.g., 

yields, drought resistance, pest resistance) and consumers' subjective perceptions 

(e.g., taste) can be significant in explaining decisions to use a technology. Seminal 

papers by Adesina (1993) and Adesina (1995) assume farmers’ adoption decisions to 

be based on the non-observable underlying utility function, U (M, A), where M is a 

vector of farm and farmer-specific attributes of the adopter, and A is a vector of the 

attributes associated with the technology. Adesina (1993) examines farmer 

technology adoption conditioned to farmer perceptions of technology-specific 

characteristics of mangrove rice varieties in Sierra Leone. Adesina (1995) explores 

farmers’ perceptions of modern sorghum and rice varietal technologies in Burkina 

Faso and Guinea. 

An associated theory to adoption of a new technology is the product price 

treadmill, in which farmers continually seek to improve their incomes by adopting 

new agricultural innovations. Early adopters make profits for a short time because of 

their lower unit production costs. As more farmers adopt the technology, production 

goes up, prices go down, and profits are no longer possible, even with lower 

production costs. Average farmers are forced by lower product prices to adopt the 
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technology and lower their production costs to remain in the market. The laggards 

who do not adopt agricultural innovations are lost in the price squeeze and leave room 

for their more successful neighbors to expand (Sunding & Zilberman, 2001). 

The last theoretical framework, spatial diffusion through social interaction, is 

perhaps the most recent to propagate in the literature (Conley & Udry, 2010). Seminal 

work by Manski (1993) identifies three sources of social influence: (1) endogenous 

effects, (2) exogenous network effects, and (3) correlated effects. Most examples in 

agricultural technology diffusion place an emphasis on modeling the endogenous 

effects. Common spatial econometric methods used include the spatial error model 

and the spatial lag model (Holloway, 2002; Ward & Pede, 2015). I extend these 

methods by modeling the endogenous and exogenous network effects using the 

spatial Durbin model (Anselin, 1988; LeSage, 2009).  

This dissertation explores the spatial structure of the IBB adoption process in 

Rwanda. IBB is a relatively new technology in Rwanda and spatial contextualization 

is a key factor for understanding the diffusion of IBB varieties. I assume that the 

decision of a bean growing household to adopt an IBB variety is spatially correlated. 

Therefore, the bean farming household’s decision to adopt IBB depends not only on 

her own and her farm level characteristics, but it is also correlated with the decisions 

of neighboring bean farmers and their characteristics. Thus, a bean growing 

household that is close to a household that has adopted IBB has a higher probability 

of being an IBB adopter as well, which is the endogenous effect.  

Another condition relates to the social characteristics of a group as the main factor 

in spatial clustering, which is the likelihood of an individual to behave, on average, in 
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agreement with their social group. Whether or not the diffusion of IBB varieties is 

geographically driven, the spillover effects will determine a strong spatial 

relationship, i.e., similar farms will tend to be localized in the same geographical area. 

Therefore, within a region, it is possible to find similar economic structures, wealth 

and management practices levels, and family structures. 

The theoretical framework applied to the adoption of agricultural technology 

draws concepts on social interaction from Conley & Udry (2010) and Ward & Pede 

(2015) and concepts on optimal choice and utility maximization from Abdulai, 

Monnin, & Gerber (2008). To implement this framework, I make two broad 

assumptions (1) a smallholder farming household’s decision to grow IBB varieties is 

based on utility maximization theory; and (2) new IBB varieties produce higher yields 

conditioned on the use of modern inputs and management practices. Another salient 

uncertainty follows from the fact that the smallholder farming household is less 

familiar with IBB varieties. The structure of the production function of a smallholder 

farming household for period t and future period t+1 is specified in Eq. (1),  

𝑦ℎ,𝑡+1=𝑓(𝑋ℎ𝑡, 𝑘ℎ𝑡, 𝜔ℎ) +  𝜀ℎ,    (1) 

where 𝑦ℎ,𝑡+1is the smallholder farming household's future output, 𝑋ℎ𝑡 is the quantity 

of inputs used in the current period, 𝑘ℎ𝑡 is the smallholder farming households’ level 

of information used in the current period, 𝜔ℎ environmental conditions, and 𝜀ℎ,is a 

i.i.d disturbance for household h with zero mean and 𝜎𝜀
2. 𝜀ℎ,is assumed to follow a 

normal distribution.  

The profit function is shown in Eq. (2), 
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Пℎ,𝑡+1 = 𝑃𝑡+1𝑓(𝑋ℎ𝑡, 𝑘ℎ𝑡, 𝜔) − 𝐶𝑡 = 𝑚𝑎𝑥[𝑃𝑡+1𝑓(𝑋ℎ𝑡, 𝑘ℎ𝑡, 𝜔) − 𝛾𝑋ℎ𝑡 −  𝜁𝑘ℎ𝑡]  (2) 

Пℎ,𝑡+1 indicates that the value given by the function is the maximum profits 

obtainable given local market prices. C is the cost of production. Only the variables 

𝑋ℎ𝑡 and 𝑘ℎ𝑡 are under the smallholder farming household's control. The bean farming 

household chooses levels of these inputs, X and k, in order to maximize profits. The 

smallholder farming household maximum profits ultimately depend on these three 

exogenous prices, P, γ, and ζ, together with the form of the production function.  

The other two sets of assumptions include (1) smallholder farming household's 

profit expectation depends not only on their own experiences, preferences, etc., but 

also on their social interaction with other farmers experiences, expectation, and 

constraints; and (2) social interaction occurs in local places and its strength depends 

on the relative social geographic distance between IBB adopters and their neighbors. 

Therefore, smallholder farming households are assumed to maximize expected profits 

Пℎ𝑖 as stated in Eq. (3), 

𝐸𝑈 (Пℎ𝑖) ≡ 𝐸𝑈[Пℎ𝑖|𝑓(𝑥ℎ𝑖 , 𝑘ℎ𝑖 , 𝜔, 𝑑𝑖𝑗), 𝑓(𝑥ℎ𝑗 , 𝑘ℎ𝑗𝜔)]     (3) 

E denotes the expectation operator, U is the von-Neuman-Morgenstern utility 

function; 𝑥ℎ𝑖  and 𝑘ℎ𝑖  denote the smallholder farming household inputs decision; 

𝑥ℎ𝑗  and 𝑘ℎ𝑗  are the inputs decision of neighboring farmers which in turn are a 

function of the social geographic distance d; and ω denotes environmental conditions.  

Smallholder farming households will grow IBB varieties if the expected marginal 

benefit is greater than the marginal benefit of growing a traditional bean variety. 

However, the expected marginal benefit is not observable. The smallholder farming 

household either adopts or does not adopt IBB varieties. In this case, discrete-choice 
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models become instrumental. They are commonly used to investigate a wide range of 

areas in agricultural economics, including technology adoption and land-use decision-

making. I start from the basic empirical model, which is based on farmers' decisions 

on whether to adopt an IBB variety. 

II. Impact Evaluation  

In this section, I provide a review of the literature related to the evaluation of 

treatment effects. I present a brief review of the studies on the productivity of 

improved beans in Rwanda, the basis of the framework on potential outcomes, theory 

on observational studies, and a short discussion on PS matching estimators. 

i. Productivity of improved bean varieties in Rwanda 

Larochelle et al., (2014) examined the impact of improved bean varieties on bean 

farmers’ livelihoods in Rwanda. Their study was based on a comprehensive 

household survey conducted in 2011/12. Adopters of improved bean varieties were 

shown to report yield gains of 42 kg/ha compared to households that planted local 

varieties. Farmers that grew climbing bean varieties had 28 percent higher yields than 

farmers that grew bush bean varieties. More recently, based on the same nationally 

representative cross-sectional survey data that is used in this study, Vaiknoras & 

Larochelle (2018) evaluated the impact of IBB bush variety RWR2245 on 

productivity, consumption, purchases, and sales. The authors found that RWR2245 

growers had on average 49 percent higher yields than traditional bush bean growers, 

(note in that study the yield was measured as a ratio of quantity of grain harvested to 

quantity of seed planted). 
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ii. Potential Outcome Framework 

From an econometric point of view, estimating the effects of potential outcomes 

poses two computational problems: endogeneity and missing counterfactuals (Greene, 

2012). The former refers to risks with accurately identifying the causal effect 

associated with factors that affect both the treatment and the outcome. The latter 

refers to the fact that just one outcome is being observed. For instance, to measure the 

impact of IBB adoption on farmers’ yields, I would need to run the scenario of bean 

farmers’ production twice for the same farmers, one with IBB adoption and one 

without IBB adoption. To deal with both econometric problems, I implement the 

Rubin’s causal model (1974, 1978).  

In the literature, there are two statistical designs normally used to estimate the 

causal effect of a treatment or a policy on outcome variables: randomized controlled 

trials (RCTs) and observational studies. RCTs are considered the gold standard 

method for causal inference. The basis of an RCT is the random assignment of the 

treatment to subjects, which uses chance to form comparable groups. When RCTs are 

not ethical or not feasible, the effect of a treatment can be examined using 

observational studies. 

Observational studies are defined as quasi-experiments. A quasi-experimental 

design is like an experimental design in that there is a specific investigator-defined 

intervention for the “treatment” group in the study, but the subjects – in our case, 

Rwandan bean farmers – are not randomized to receive the treatment (Rosenbaum, 

2010). Observational studies are used in a variety of fields from economics to 
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medicine (Austin, 2011, 2014). When properly implemented, such studies can yield 

results that are almost as reliable and robust as those derived from analysis of RCTs.  

A critical requirement to evaluate causal effects on potential outcomes using 

either statistical design is that the evaluation must be a comparison of  𝑌ℎ(1)  and 

𝑌ℎ(2) for a common set of units, such as bean farmers N.  Formally, a causal effect 

must be a comparison of the ordered sets {𝑌ℎ(1), ℎ𝜖𝑁 } and {𝑌ℎ(0), ℎ𝜖𝑁 } (Rubin, 

2005). So, assumptions are required to implement potential outcomes scenarios. 

These assumptions include:  

1) The stable unit treatment value assumption, which requires two 

assumptions. First, it assumes that there is no interference between 

treatment units 𝑌ℎ(1) on 𝑌ℎ(0) or vice versa.  Secondly, it assumes that 

there are no hidden versions of treatments. In addition, I used Kelejian & 

Prucha (2001) Moran's I to test for the presence of spatial dependence 

among treatment units. 

2) The covariates and the potential outcomes are not affected by how I learn 

about them, whether by randomized controlled trials or observational 

studies. 

Broadly, there are statistical methods that control for variation in the confounding 

factors. Common statistical techniques include matched sampling, stratification, 

model-based adjustments, and combinations of these techniques (Rosenbaum, 2005). 

In this dissertation, I employ matched sampling methods, i.e. propensity score (PS) 

matching, which relies on the assumption of “selection on observables”. This means 
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that all variables that affect treatment assignments and outcomes have been measured 

(Rosenbaum and Rubin 2003).  

III. Efficiency analysis 

Economic indicators of performance, such as measures of productivity and 

efficiency, are commonly used to investigate the impact of a new technological-

innovation on farmers’ outcomes (Duflo, Kremer, & Robinson, 2008). Assessing 

farmers’ efficiency, which is defined as the ability of farmers to utilize the best 

available technology and to allocate resources productively, together with the impact 

of an intervention requires the combined application of analytical methods (e.g., for 

earlier examples (Dinar, Karagiannis, & Tzouvelekas, 2007) (Bravo-Ureta, Greene, & 

Solís, 2012). Recent literature in productivity analysis and impact evaluation 

highlights the importance of measuring spillovers to non-beneficiaries e.g. 

(Gamerman & Moreira, 2004; Schmidt, Moreira, Helfand, & Fonseca, 2009).  

When conducting efficiency analysis on a cross-sectional or a panel dataset, a 

high degree of heterogeneity may lead to biased and inefficient estimates of the 

efficiency scores. Researchers have approached this problem in different ways. One 

way is using non-parametric techniques, such as data envelopment analysis (DEA), 

which ignores the functional form of the production function. Other studies have 

implemented a two-step approach: the first estimates the frontier, while the second 

step analyzes the determinants exerting influence over economic agents’ efficiencies 

(Chavas, Petrie, & Roth, 2005; Simar & Wilson, 2007). Greene (2008) proposed the 

true-fixed effects and the true-random effects models for panel data. When there is 

spatial heterogeneity, instead of including spatial fixed effects, some authors allow 
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the externalities to spill over throughout the system (Han, Ryu, & Sickles, 2016a). In 

this research, I implement that latter method as described below. 

i. Theoretical Framework 

In economics, productivity and efficiency both deal with the economic 

performance of a production unit. Both refer to the production process in which the 

economic agent (farmer) transforms a set of inputs X ϵ 𝑅𝑀
+  into a set of outputs 

Y ϵ 𝑅𝑀
+ (Greene, 2008). Efficiency requires the existence of a benchmark (best 

practices) as it signifies the comparison between observed and optimal values on 

output or inputs or both. In this study, I evaluate efficiency for bush and climbing 

bean growers, separately. 

To evaluate efficiency levels among bean farmers, I used the total factor 

productivity (TFP) framework. The TFP index is the ratio of total bean production to 

total inputs employed by the bean farming household, h. This index allows for the 

presence of technical inefficiency in the bean production process. In addition, I 

measure, through scale efficiency analysis, how close bean farming households are to 

operating at the optimal scale. The larger the scale efficiency, the closer the farming 

household is to the optimal scale. 

To operationalize the concepts above, I introduce the production function in Eq. 

(4).  

𝑌ℎ =  𝐴ℎ 𝐹 (𝑋ℎ)      (4) 

where 𝑌ℎ relates to bean farmer’s output, 𝑋ℎ the vector of inputs used by the 

production unit. F(.) represents the body of knowledge available to the producer, and 

𝐴𝑖 is the index of productivity or the amount of output a given unit can produce from 
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a certain amount of inputs, given the technology level. This is more commonly 

known as the total factor productivity (TFP), formally Eq. (5), 

𝑇𝐹𝑃ℎ ≡ 𝐴ℎ =
𝑌ℎ

𝐹 (𝑋ℎ)
     (5) 

The 𝑇𝐹𝑃ℎ index is the ratio of total household bean production to total input 

employed. I use this framework to evaluate variation in productivity among bean 

farmers in season B 2015. It is relevant to note that the observed output is equal to the 

potential level of production, i.e. the frontier output, with no room for technical 

inefficiency. Allowing the presence of technical inefficiency in production processes 

lead to Eq. (6), 

𝑌ℎ ≤ 𝐴ℎ𝐹(𝑋ℎ)      (6) 

where the observed level of bean production in household h, 𝑌ℎ, does not necessarily 

turn out to be equal to the potential output. Koopmans (1951) introduces the formal 

definition of technical efficiency and Farrell (1957) operationalized the concept. 

Here, I build on the case of one output and many inputs. I introduce below the output-

oriented measure of technical efficiency.  

𝑇𝐸𝑜(𝑋𝑖, 𝑌𝑖) = [𝑚𝑎𝑥{∅: ∅𝑌 ≤𝑖 𝐴𝑖𝐹(𝑋𝑖)}]−1    (7) 

Solving for 𝑌𝑖, 

𝑌𝑖 =  𝑇𝐸°(𝑋𝑖𝑌𝑖). 𝐴𝑖𝐹(𝑋𝑖)     (8) 

where 𝑇𝐸𝑜(𝑋𝑖, 𝑌𝑖)  ≤ 1. If the framework allows for technical inefficiency, maximum 

potential output will be equal to the observed output corrected for the output-oriented 

technical score, which is equal to 1 for fully efficient smallholder bean farming 

households. From a theoretical point of view, differences in productivity levels are 

due to differences in factors relating to: (1) technology, (2) scale of production, and 

(3) externalities. In the first stage, I estimate smallholder farming households’ 
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efficiency and scale of efficiency. Scale efficiency expresses how close the bean 

farmer is to the optimal scale size; the larger the scale efficiency, the closer the firm is 

to optimal scale. I employed stochastic models to estimate efficiency and DEA 

analysis to explore smallholder farming households scale of production. In the second 

stage, I explore factors that exert influence on households’ efficiency levels. 

ii. Spillovers 

I recognize that the biofortification program rollout might have created spatial 

spillovers in the technical efficiency of non-beneficiary bean farmer growers. 

Spillovers can be the result of the interactions between economic agents from a local 

to a global perspective. These interactions may include spillovers of knowledge, 

technology, and social behavior.  

Knowledge spillovers can create economic value for other agents. For instance, 

knowledge spillovers may occur when information is exchanged between farmers 

about the benefits of a new agricultural technology (Besley & Case, 1993; A. D. 

Foster & Rosenzweig, 2010), such as the exchange of information on the nutritional 

and agronomic benefits of IBB. Conley & Udry, (2010) show that pineapple farmers 

in Ghana follow the decisions made by other, more experienced farmers, when 

deciding to adopt a new technology. For example, a farmer would determine the 

amount of farmland devoted to a crop by considering the amounts allocated by the 

other farmers in the system.  

Technology spillovers refers to the benefits that smallholder farming households 

receive from research efforts without incurring shared costs. At a broader spatial 

scale, international spillovers from public agricultural research and development 
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(R&D) represent a high percentage of agricultural productivity growth (Alston, 

2002). Specifically, agricultural R&D and technology spillovers among geographical 

areas (countries-to-countries, states-to-neighboring states) occur when research 

conducted by one geographic area transfers benefits to other geographic area(s). An 

illustrative example includes the 10 varieties of iron biofortified beans, which were 

released in Rwanda between 2010 and 2012, following years of collaborative research 

between HarvestPlus, CIAT and RAB. Parental lines of improved bean varieties are 

bred in CIAT, which is headquartered in Latin America, and distributed to national 

agricultural research services in Africa, Asia and Latin America for further 

development, adaptation and release.  

The adoption of a new agricultural technology, when released, will depend not 

only on varying physical geographical variables, like climate, terrain, and soil, but 

also on other regional and economic factors, such as road infrastructure, accessibility 

to markets, and institutional setting. To shed light on the spatial patterns of growing 

IBB varieties and the determinants of farmers’ technical efficiency, I conducted a 

spatial clustering analysis to better understand the geographic concentration of 

advanced farmers versus less advanced farmers.  

This section presented three theoretical frameworks that are combined to study (1) 

smallholders’ decision and the role of peers to adopt IBB, (2) the economic benefits 

of the iron biofortified bean program, and (3) the efficiency of iron bean production. 

The next section provides details of the analytical methods employed in the analyses 

to answer the questions and hypotheses presented in the first chapter.    
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Chapter 3: Methodology 
 

This chapter presents three conceptual frameworks for use in the analyses 

presented and discussed in chapters 4, 5, and 6. The first conceptual framework 

introduces two econometric tools: the probit model and the spatial probit model. I 

employed these econometric tools to model latent levels of the utility of adopting IBB 

in smallholder farming households and their peers. I run separate analysis for IBB 

climbing type and IBB bush type. Climbing bean type is mostly grown in the Western 

and Northern regions (one spatial regime) while bush bean type is mostly grown in 

the Eastern and Southern regions (second spatial regime). This spatial pattern of IBB 

adoption suggests a form of heterogeneity that relates to the spatial variability of the 

parameters that provide evidence for separate analysis. To assess the significance of 

these two spatial regimes, I run a Chow test. In my dataset, I classify households 

based on these two spatial regimes. One spatial regime includes smallholder farming 

households growing IBB climbing type in the Western and Northern regions. The 

second spatial regimes include smallholder farming households growing IBB bush 

type in the Eastern and Southern. The second conceptual framework introduces a 

multivariate matching algorithm to implement Rubin’s causal model. This matching 

algorithm tests the null hypothesis of no treatment effect. The third conceptual 

framework introduces the stochastic frontier analysis applied to estimate bean 

farmers’ technical efficiency.  
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I. Conceptual framework: choice model 

i. Logit model 

A smallholder farming household’s expected profit from adopting a biofortified 

seed, instead of a local seed or other improved variety, depends on different sets of 

variables: prices of inputs and outputs; fixed factors, such as farm assets and land 

holdings; soil characteristics; socioeconomic characteristics, such as education and 

wealth; neighborhood influences (expected profits to neighbors from adoption); and 

factors on the supply side, such as seed availability in the market.  

I start with a basic latent regression model as shown in equation (9). I analyze the 

outcome of a discrete choice as a reflection of an underlying regression function. The 

basic theory is that the farmer makes a marginal benefit or marginal cost estimation 

based on the utilities achieved (Greene 2012). I model the difference between benefit 

and cost as an unobserved variable, y* = П1𝑖 − П0𝑖 , which represents the difference in 

utility where П1𝑖 represents the utility associated with variety 1, and П0𝑖,  the utility 

from other varieties, such that 

 

y* = x'β + ɛ  (9) 

I assume that ɛ has a mean of zero. Our only observation of the data generation 

process is 

 y = 1 if y* > 0  

 y = 0 if y* < 0.  (10) 

The smallholder farming household either did adopt (Y = 1) or did not adopt (Y = 

0) biofortified beans in season B of 2015. I hypothesized that a set of intrinsic factors, 
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such as farmer characteristics, plot characteristics, and environmental factors, 

gathered in a vector x, explain farmers' decisions, so that: 

 Prob (Y = 1|x) = F(x, β) 

 Prob(Y = 0|x) = 1 – F(x, β) . (11) 

The set of parameters β reflects the impact of changes in x on the probability. For 

instance, the marginal effect of household head age on the probability of adoption of 

IBBs may be a factor of interest.  

Normally, the estimation of P(X) = Pr(C = 1 | X) is done by means of a probit or 

logit model. However, when there are spatial effects, conventional models calculated 

by maximum likelihood are not adequate. By construction, the errors of a spatial logit 

model are heteroscedastic, and estimates based on the hypothesis of homoscedasticity 

in the presence of heteroscedastic errors are inconsistent (Greene, 2012) . Therefore, 

spatial probit models are used to calculate the probability, P(X)=Pr(D = 1 | X), or 

propensity, of being an IBB grower for each observation.  

ii. Spatial choice model 

In this model, I test two hypotheses, whether the propensity of an individual 

smallholder farming household to grow a new IBB variety depends on (1) the 

prevalence of IBB adoption of neighboring farmers and 2) on the prevalence of the 

distribution of the characteristics of neighboring smallholder farming households. In 

spatial econometrics, social interaction is operationalized by constructing a spatial 

structure that defines the interdependences among farmers in which preferences, local 

knowledge, and constraints faced by one farmer are directly influenced by the 
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characteristics and choices of other farmers. I use spatial econometric theory on 

Bayesian spatial probit modeling presented by LeSage (2008). 

In contrast to the standard probit and logit model, where 𝑦ℎ
∗   represents the latent 

unobservable utility that depends not only on observable determinants of household h 

represented by X, spatial probit modeling also depends on latent variables 𝑦ℎ𝑗
∗  of 

neighboring households.  

The general model for social-spatial interaction takes the following (matrix) form: 

𝑦∗ =  𝜌𝑊𝑦∗ + 𝑋𝛽 +  𝛾𝑊𝑥 + 𝑢   (12) 

𝑢 =  𝛼 + 𝛾𝑊𝑢 + 𝜀     (13) 

where the matrix W(n×n), called the spatial weight matrix, captures the dependence 

structure between neighboring farmers. The variable Wy* denotes the endogenous 

interaction effects among the dependent variables across neighboring farmers, Wx the 

exogenous interaction effects among the independent variables, and Wu the 

interaction effects among the disturbance terms of the different spatial units. ρ is 

called the spatial autoregressive coefficient, λ the spatial autocorrelation coefficient, 

𝛂 represents a n×1 vector of fixed but unknown parameters to be estimated, and β is a 

n×k matrix of unknown parameters to be estimated.  

For the first hypothesis, I test endogenous effect which is also described in the 

literature as imitation, contagion, bandwagons, social norms, and keeping up with the 

Joneses. Similar to the standard probit and logit model, as presented in Section 3.I.i, 

where 𝑦ℎ
∗  represents the latent unobservable utility that depends not only on 

observable determinants of household h represented by X, spatial probit modeling 
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also depends on the latent utility of the neighboring household 𝑦ℎ𝑗
∗ . Restriction γ = 0 

and λ = 0 give rise to the spatial autoregressive model (SAR). 

In more detail, the SAR model, according to LeSage, (2009), is 

 𝑦ℎ
∗  = ρW𝑦ℎ

∗  + βX + ɛ, ɛ ~ N(0, In) , (14) 

 

The data generating process for y is 

 𝑦ℎ
∗  = (In – ρW)-1 Xβ + (In – ρW)-1 ɛ 

 ɛ ~ N (0, In). (15) 

where (𝐼 − 𝜌𝑊)-1 is the “Leontief inverse” that links the decision of the 

smallholder farmer, 𝑦𝑖 to all X1 the system through a so-called spatial multiplier 

(Wilhelm & de Matos, 2013).  

For the second hypothesis, I model the effect of contextual factors on smallholder 

farming household’s decision to adopt IBB planting material. I employ a variation of 

the SAR model in the analysis of contextual effects—the Bayesian spatial Durbin 

model (SDM). This model allows variables from neighboring farmers contained in 

the matrix X to exert an influence on the propensity of IBB adoption by household ℎ𝑖. 

This is accomplished by adding average-neighbor values of the explanatory variables, 

created using the matrix product WX   

LeSage, (2009) provides the data generation process of the SDM as 

 𝑦ℎ
∗  = ρW𝑦ℎ

∗  + αι +βX + θWX + ɛ; ɛ ~N(0, In) . (16) 

The spatial lag latent dependent variable W𝑦ℎ
∗ involves the n x n spatial weight 

matrix W that contains elements consisting of either one or zero. All elements of the 

matrix W is row standardized (non-negative and each row sums to 1). The scalar 

parameter ρ measures the strength of dependence, with a value of zero indicating 

independence. A non-spatial probit model emerges when ρ = 0. 
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iii. Average Marginal Effect 

In spatial models, a change in some explanatory variable xi for observation i will 

not only affect the observations 𝑦𝑖 directly (direct impact), but also affect neighboring 

observations 𝑦𝑗(indirect impact). These impacts potentially also include feedback 

loops from observation i to observation j and back to i  (Lacombe & LeSage, 2018). 

The scalar summary measure of indirect effects cumulates the spatial spillovers 

falling on all other observations, but the magnitude of impact will be greatest for 

nearby neighbors.  

LeSage, et al. (2011) construct a matrix version of the own partial and cross 

partial derivatives, where d(.) represents the n × 1 vector on the diagonal of a 

diagonal matrix D(.), where the nondiagonal elements are zeros. By construction, D(.) 

is symmetric. The n × 1 vector d(f(n)) contains the probability density function (pdf) 

evaluated at the predictions for each observation and associated n × n diagonal matrix 

D(f(n)), which has d(f(n)) on the diagonal. Using the matrix of own partial and cross 

partial derivatives, LeSage et al. show that an n × 1 vector of total effects can be 

written as: 

 
𝜕 Pr(𝑦=1)

𝜕𝑥′ᵥ
 𝜄𝜂 = [ 𝐷 ((𝑓(𝜂))𝜄𝜂 + 𝜌𝐷(𝑓(𝜂))𝑊𝜄𝜂 +  𝜌²𝐷((𝑓(𝜂))𝑊2𝜄𝜂 + ⋯ ]𝛽ᵥ 

 = [ 𝐷 ((𝑓(𝜂))𝜄𝜂 + 𝜌𝐷(𝑓(𝜂))𝜄𝜂 +  𝜌²𝐷((𝑓(𝜂))𝜄𝜂 + ⋯ ]𝛽ᵥ 

  = (𝐷 ((𝑓(𝜂))𝜄𝜂)(1 − 𝜌)−1 𝛽ᵥ 

  = (𝑑 (𝑓(𝜂)))𝜄𝜂)(1 − 𝜌)−1 𝛽ᵥ . (17) 

As a scalar summary measure of average total effect, LeSage et al. (2011) uses an 

average of the vector of total effect, 

 𝑛−1(𝑑 (𝑓(𝜂))′𝜄𝜂)(1 − 𝜌)−1 𝛽ᵥ . (18) 

The average direct effect is 
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1

𝑛
𝑡𝑟 (

𝜕 Pr(𝑦=1)

𝜕𝑥′ᵥ
) 

 = [ 𝑡𝑟(𝐷 (𝑓(𝜂))) + 𝜌𝑡𝑟(𝐷(𝑓(𝜂))𝑊) +  𝜌²𝑡𝑟(𝐷(𝑓(𝜂))𝑊2) + ⋯ ]
𝛽ᵥ

𝑛
 . (19) 

For the average indirect effect, they propose using the difference between the 

average total effect and the average direct effect.    

iv. Multilevel model 

As a robustness test, I ran a new set of regressions with fixed and random effects. 

To do so, our multilevel data structure includes villages in the upper level of the 

model and smallholder farming households nested within those villages as the lower 

level. I carried out a multilevel Bayesian analysis of latent Gaussian models using the 

Integrated Nested Laplace Approximation (INLA) (Rue, Martino, & Chopin, 2009). 

In a sample of villages, the model with fixed and random effects treats observations 

from a given village as a cluster and assumes a random effect for each village. I 

define 𝜇𝑖𝑗 = (𝑌𝑖𝑗|𝑈𝑗).  Let 𝑌𝑖𝑗be the response of smallholder farmer i in cluster j, i = 

𝑖1,..., 𝑖𝑛. In our case, the responses are adoption of IBB planting material. I 

implemented i.i.d random effect term U at the upper village level. The i.i.d random 

effect representation implies 1) strong intra-village dependence between the lower-

level observations here smallholder farmers; and 2) weak inter-village dependence. 

The general mixed model has the form, 

 

     𝑔(𝜇𝑖𝑗) =  𝛾𝑋  +  𝑈𝑗;  𝑖 = 1, . . . , 𝑛𝑗; 𝑗 = 1, . . . ,81 ; 𝑢𝑗  ~  𝑁 (0, 𝜏𝑢)  (20) 

 

g is the link function, for binary outcomes is the logit link. 𝑋𝑖𝑗 denotes a vector of 

explanatory variables such as household head age, years of farming experience, 

household size, wealth index, and number of bean varieties cultivated, for fixed effect 
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model parameters γ. 𝑈𝑗 denotes the vector of random effects for village j. This is 

common to all observations in the cluster. The random effect vector 𝑈𝑗 is assumed to 

have a multivariate normal distribution 𝑁 (0, 𝜏𝑢). The covariance matrix 𝜏𝑢 depends 

on unknown variance components and correlation parameters. Parameters pertaining 

to the random effects may be also of interest as a useful summary of the degree of 

heterogeneity of the population of smallholder farmers. Note that 𝑛𝑗  represents the 

number of smallholder farmers in village v. Village v is indexed from 1 to 81.  I 

expect that the random effect (villages) will produce a weaker spatial relationship, 

whether this is true, I would expect to have robust result confirming our hypothesis 

that closer neighbors matter more than those farther away. 

v. Specification 

I used the nomenclature M1 and M2 for the two specifications used for each of 

the non-spatial and spatial probit models as specified in subsections 3.I.i and 3.I.ii, 

respectively. Specification M1 aims to test how household characteristics, such as 

wealth (proxied by a household asset index - see Appendix), household composition, 

iron bean consumption, and years of farming experience, play a role on IBB adoption. 

In addition, it explores the role of a number of varieties used to manage risk of food 

insecurity due to crop failure caused by the prevalence of drought. Specification M2, 

on the other hand, looks at the importance of household technical capacity measured 

through a management index connected to household education level and household 

size. The latent variable for the adoption of IBB corresponds to the unobserved 

profitability. For the construction of the normalized spatial weights matrix, I 

determine the inverse bilateral distances between all bean farmers in the data.  
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The specification of the covariates is key, in line with economic theory. To 

provide further details for each specification and its covariates, in the following 

section I provide a brief description of the main covariates used through chapters 4, 5, 

and 6.  Table 1 shows relevant factors driving IBB adoption, which include household 

characteristics, farm characteristics, management practices, and regional geographical 

variables. I considered spillovers between bean farmers being geographically bound 

within a radius of 3 kms. For reasons of interpretation, I row sum normalize W.  

In Rwanda, more than 80 percent of the economically active population are 

involved in agriculture. In this study, on average, households with more economically 

active members have a higher propensity to adopt IBB, suggesting that available 

labor is a consideration in the decision to adopt. The difference in the average 

household family size is statistically significant between adopters and non-adopters, 

suggesting an increased need among adopters to meet food demand in the household.  

The average education of members in households that grew IBB is statistically 

greater than for non-adopting households, indicating that higher education influences 

adoption of the new technology and is positively correlated with wealth. Three 

mechanisms related to human capital have been identified in the literature to explain 

technology adoption: (1) more educated agents are wealthier, and thus the education–

adoption relationship represents an income effect; (2) more educated agents have 

better access to information; and (3) more educated agents are better able to learn/ 

internalize new information. The last mechanism has been the principal focus of 

economists.  
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Adopters managed more plots and varieties over larger cropped land areas. These 

behaviors could be associated with a household’s food security strategy where 

households use mixed bean seeds (local, improved, and iron biofortified) to minimize 

the risk of food insecurity associated with crop failure or poor crop yield performance 

of a specific bean variety.  

Adopters had larger farmland. Farm size can have different effects on the rate of 

adoption depending on the characteristics of the technology. A wide variety of 

empirical results interpreted in the context of the theoretical literature suggests that 

farm size is a surrogate for many potentially important factors, such as access to 

credit, capacity to bear risk, access to scarce inputs, wealth, and access to information 

(Foster & Rosenzweig, 2010). 

In this study, I found that land ownership affects the adoption of IBB. A number 

of empirical and descriptive studies have also considered the effects of land tenure 

arrangements (which is often considered to be a good proxy for wealth) and the 

proportion of farms rented on the adoption of new agricultural technology, such as 

improved, high-yielding varieties. Findings suggest that the form of land tenure (e.g., 

renters, sharecroppers, landowners) may affect the adoption decisions and diffusion 

rates.  

About one third of IBB adopters received planting material from friends or 

relatives. As a proxy of household economic well-being and technical capacity, I used 

the wealth index and management index, respectively (see section on Multiple 

Correspondence Analysis in the Appendix i). Adopters were wealthier, more 

technical in their crop management practices, and experienced higher yields. 
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Households located in the Northern Province on average had the highest management 

index, followed by the Western and Southern provinces. Management practices refer 

to the methods bean farmers use to increase productivity. Households in the city of 

Kigali were on average wealthier than farmers from other regions. The second-

wealthiest rural households were located on the Western region, followed by 

households in the Northern region. Less wealthy households were in the Southern and 

Eastern regions.  

I included regional geographical variables to control for the disparities in quality 

of road infrastructure and accessibility to extension services. Travel time to extension 

services represents a geographic accessibility measure. Access is defined as the time 

needed to travel from a specific household to the nearest location of interest. Good 

transportation is associated with diffusion of technology, better access to inputs, and 

lower transportation costs. 

For model comparison, I estimated the log-likelihood as a measure of fit adjusted 

for model complexity. I also reported two information criteria, the Bayes (Schwarz) 

information criterion (BIC) and the Akaike information criterion (AIC) measures. To 

compare multilevel models, I estimated measures of complexity and fit such as 

model’s deviance information criterion (DIC). Smaller values of the DIC indicate a 

better trade-off between complexity and fit of the model. The Watanabe-Akaike 

information criterion (WAIC), also known as widely applicable Bayesian information 

criterion, is similar to the DIC but the effective number of parameters is computed in 

a different way. See Watanabe (2013) and Gelman, Hwang, & Vehtari (2014) for 

details.  
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Table 1 Characteristics of adopters and non-adopters of IBB in Rwanda 

Variables Non-adopters HIB adopters p-level* 

Household characteristics    
Number of women 12 - 49 years old 2.03 2.22 0.00 

Number of individuals 0-19 <= >= 65 years old 2.77 2.92 0.12 

Number of people per household 4.80 5.14 0.01 

Dependency ratio (children) 1.39 1.43 0.51 

Number of individuals per household - Economic active population 

[18-65] 
2.68 2.93 0.00 

Female household head (proportion of households) 0.27 0.26 0.66 

Number of male members per households 2.22 2.54 0.00 

Age of household head (years) 46.77 46.83 0.94 

Level of education (average number of years in education per 

household) 
2.82 3.46 0.00 

Wealth Index 0.42 0.47 0.00 

Years of farming experience 8.10 7.13 0.07 

Farm characteristics and management practices    
Number of crops 1.78 1.87 0.08 

Number of plots 2.97 3.34 0.00 

Number of varieties 2.44 4.34 0.00 

Percentage rented in land 13.97 11.06 0.08 

Percentage own title 70.24 73.45 0.18 

Percentage no title 13.17 14.07 0.63 

Percentage share cropping 1.81 0.86 0.08 

Total farmland (m²) 2369.91 3092.79 0.00 

Management index 0.39 0.45 0.00 

Weighted plot slope (percent) 12.87 12.25 0.19 

Land labor ratio (m²/person) 998.82 1153.23 0.08 

Time to plot (minutes) 15.45 15.36 0.94 

Land terraced (proportion of households) 0.22 0.26 0.13 

Plot irrigated (proportion of households) 0.06 0.09 0.08 

Hired labor (proportion of households) 0.35 0.49 0.00 

Applied fertilizers (proportion of households) 0.20 0.26 0.03 

Applied manure (proportion of households) 0.77 0.86 0.00 

Applied compost (proportion of households) 0.59 0.66 0.02 

Applied pesticide (proportion of households) 0.09 0.10 0.56 

Bean area m² (proportion of households) 1545.58 1927.93 0.00 

Bean consumption (proportion of households) 0.06 0.09 0.00 

Weighted average yield (kg/ha) 850.18 870.44 0.54 

Access to credit (proportion of households) 0.21 0.20 0.54 

Geography    
Kigali region (proportion of households) 0.02 0.02 0.81 

Southern region (proportion of households) 0.27 0.28 0.80 

Western region (proportion of households) 0.26 0.16 0.00 

Northern (proportion of households) 0.21 0.20 0.54 

Travel time (minutes) to cities equal or greater than 50,000 

inhabitants 
248.80 254.65 0.54 

DEM (meters) 1734.27 1658.07 0.00 

Drought index -0.03 -0.03 0.70 

Number of observations 962.00 432.00   

*We are testing that the mean difference is zero and is a difference t-test p-value. 
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II. Conceptual framework: multivariate matching algorithm  

To estimate the impact of IBB on smallholder farming households’ yields and 

incomes in Rwanda, I used a multivariate matching algorithm that implements 

Rubin’s causal model. The aim of using Rubin’s causal model is to test the null 

hypothesis of absolutely no effect on IBB adoption 𝐻0: 𝑌𝑖(0) − 𝑌𝑖(1) for any bean 

farming household. Basically, the model seeks to measure the impact of the Rwanda 

IBB delivery efforts on IBB growers’ yield and income outcomes. The three key 

components of Rubin’s model are: (1) subjects – in the case here, beans farming 

households, (2) treatment (Z) – in the case here, a binary treatment in which 𝑍𝑖 equals 

1 if bean farming household h receives IBB and 0 otherwise, and (3) potential 

outcomes – in the case here, yields, 𝑌ℎ, or incomes, 𝑍ℎ, for each bean farmer. Our 

identification strategy estimates the average treatment on the treated (ATT). ATT is 

defined as E (𝑌ℎ1 - 𝑌ℎ0|X, Z=1) = 𝐸(𝑌ℎ1|𝑋, 𝑍 = 1) − 𝐸(𝑌ℎ0|𝑋, 𝑍 = 1), where 𝑌ℎ0 is 

bean yield of regular bean varieties, 𝑌ℎ1 is yield of IBB varieties (Z=1), and X is a 

vector of observed covariates. I use 14 covariates, X, related to household, farm, and 

regional characteristics. Matching methods like PS find a substitute for 𝐸(𝑌ℎ0|𝑋, 𝑍 =

1) based on the statistical independence of  (𝑌ℎ0, 𝑌ℎ1) and Z conditional on X, i.e., 

technology is exogenous after conditioning on X. This condition is also referred to as 

“selection on observables”. 

i. Implementation of causal model – multivariate matching algorithm 

I use multivariate matching algorithms to implement Rubin’s causal model. 

Matching creates the conditions of a natural experiment in which IBB (bush or 
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climbing) are randomly assigned to two comparable groups: a control group (non-

growers) and a treatment group (growers). Existing literature on matching algorithms 

proposes 5 general steps to estimate the average treatment effect (Caliendo & 

Kopeinig, 2008; Rosenbaum, 2010). I add an extra step to the estimation, adding 

statistical tests to check for spatial spillovers that relates to the stable unit treatment 

value assumption of independence between units. In more detail, these six steps help 

to identify treatment and control groups by:  

1) Defining the structural form and variables selection,  

2) Testing for spatial autocorrelation or spatial spillovers, 

3) Selecting and defining matching algorithms, 

4) Checking overlap/common support areas,  

5) Assessing matching qualities, and  

6) Running sensitivity tests (Figure 1).  

The theoretical properties of the implicit model have been extensively explained 

elsewhere, so the full development and implementation need not be repeated here. 
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Figure 1 Implementation steps to estimate average treatment effect 

 

The theoretical motivation for a spatial lag model is based on the literature on 

peer effects and social interaction. A few studies combine impact evaluation 

methodology and spatial econometric techniques to control for bias selection and 

spatial autocorrelation. For example, Chagas, Toneto, & Azzoni, (2012) uses a spatial 

propensity score-matching algorithm to estimate the effect of cultivating sugarcane on 

the human development index of sugarcane growing regions. Gonzales, Aranda, & 

Mendizabal, (2018) used Bayesian spatial-propensity score matching to evaluate the 

regional effects of microfinance for poverty reduction and women-empowerment at 

the municipality level in Bolivia. 

First, I define the model structural form and pre-treatment covariates. I add a 

spatial structure to the basic probit model through a distance-neighboring matrix to 

test for spatial dependence and spillover effects. In contrast to the standard 

probit/logit model, the spatial probit model 𝑦ℎ
∗  represents latent unobservable utility 

that depends not only on observables determinants of household h, represented by X, 
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but also on other household neighbors’ latent variables 𝑦ℎ𝑗
∗ . LeSage (2009) introduces 

the spatial probit model as the spatial autoregressive model (SAR model), or spatial 

lag model.  

The data generating process for 𝑦ℎ
∗  is: 

𝑦ℎ
∗  = (𝐼𝑛 − 𝜌𝑊)-1 Xβ + (𝐼𝑛 − ρW)-1 ε, ε ~ N (0, 𝐼𝑛)   (21) 

The spatial lag of the latent dependent variable Wy involves the nxn spatial 

weight matrix W(n x n) that contains elements consisting of either 1 or 0. A full 

description of each parameter is included in Eq 14 and Eq 15. The spatial weight 

matrix captures the dependence structure between neighboring observations, such as 

farmers or nearby locations. Wy is a linear combination of neighboring observations. 

The scalar ε is the dependence parameter and will be assumed to be abs(ε) <1. The 

k+1 model parameter to be estimated are the parameter vector β and the scalar ρ. I 

assume that ε follows a multivariate normal distribution, with zero mean and a 

constant scalar diagonal variance-covariance matrix σ 2𝐼𝑛. The fitted values from this 

model are the estimates of the propensity score. The fitted probabilities from the 

spatial probit model are extracted and added as an explanatory variable to the 

matching algorithm. For the estimated probabilities, consistency is necessary, so the 

first stage needs to be correctly specified and the standard errors need to be adjusted. 

Therefore, I include the propensity score as a covariate, as it will tend to balance all 

the observed covariates (Rosenbaum, 2005). 

In choosing explanatory variables for the multivariate matching model, some 

authors suggest including not only statistically significant variables, but also variables 

known to be theoretically associated with selection and outcome variables. Economic 
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theory and knowledge about the institutional setting should guide the selection of 

variables (Austin, 2011; Caliendo & Kopeinig, 2008).  

I use the household as the unit of analysis. The household unit associates coping 

strategies, food availability, labor pooling, wealth level, and farm management 

practices to the outcomes of interest. In addition, using the household as the unit of 

analysis allows us to explore the link between household and plot management 

activities, and between household and community activities. For pairing comparable 

treated and control households, I used 14 covariates for each household. These 

observed covariates are grouped into three levels: household, farm, and region.   

For the household level variables, I use average household education level, 

number of children under five years of age, age of household head, number of years 

of farming experience of the household head, the number of economic active males in 

the household, and household wealth. The average household education level aims to 

capture human capital. Numerous studies find a significant relationship between 

education indicators and farm productivity (Weir & Knight, 2000; Foster & 

Rosenzweig, 2010). 

Risk aversion and uncertainty about the benefits of an innovation entails 

subjective risk, i.e., yield, and objective risks, i.e., pest and weather (Feder et al., 

1985). The propensity of farmers to manage risk with the adoption of a new 

technology is associated with wealth and bigger farms (A. D. Foster & Rosenzweig, 

2010). Therefore, as another household level variable, I construct a household wealth 

index as a proxy for risk aversion. The wealth index includes three groups of assets: 

household assets, livestock, and other agricultural assets. The number of 
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economically active members in the households was included to explore labor-

intensive practices associated with bean production. Bush bean production can be 

more labor intensive than climbing bean production during the harvesting season. 

Farming experience is useful in the early stages of adoption, when farmers are still 

testing the potential agricultural and nutritional benefits of a new technology.   

Farm characteristics include management index, plot slope, land labor ratio, and 

number of bean varieties cultivated. To measure the technical capacity of households 

and reduce multidimensionality, the management index aims to summarize farmers’ 

management practices, whether farmers have irrigated plots, or used a variety of 

inputs, such as fertilizers, manure, compost, and or pesticides.  Other farmer practices 

that affect farm output include the number of bean varieties grown and the slope of 

the plots. Land to labor ratio is a proxy for labor availability. Labor is another factor 

that influences farmers’ decisions to adopt a new technology. A negative correlation 

between adoption and land-to-labor ratio would support the hypothesis of adoption 

intensification as population density grows. I observe the positive direct effect 

associated with the number of bean varieties cultivated. Due to uncertainty in 

household bean yield in securing food sufficiency in a household and as a coping 

strategy to secure food security, households manage the risk of crop failure by 

cultivating multiple bean varieties. The number of varieties could also be because 

they don’t have access to sufficient seed of a single preferred variety.  

I include regional geographical variables to control for disparities in road 

infrastructure and extension services. Travel time to extension services represents a 

geographic accessibility measure. Access is defined as the time needed to travel from 
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a specific household to the nearest location of interest. Good transportation is 

associated with diffusion of technology, better access to inputs, and lower 

transportation costs.  

The third step focuses on selecting the proper matching algorithms. To do so, I 

tested different specifications to reduce either bias or/and variance. I present the 

results of the most suitable algorithm for our analyses, the nearest neighbor algorithm. 

This algorithm uses a distance matrix (Euclidean distance) (King & Nielsen, 2019) 

with calipers which reduces the risk of unfavorable matches if the closest neighbor is 

far away. A caliper is a non-negative number that measures the degree of similarity of 

two households in term of their covariates X. A distance matrix is defined as a table 

with one row for each treated subject and one column for each potential control. For 

instance, two households with the same value of X would have distance zero. With a 

caliper of width w, if two individuals, say k (treatment) and l (control), have PS that 

differ by more than w—that is, |(𝑋𝑘) −  (𝑋𝑙)| > w— then the distance between these 

individuals is set to ∞, whereas, if  |(𝑋𝑘) −  (𝑋𝑙)| < w, the distance is a measure of 

proximity of 𝑋𝑘 and 𝑋𝑙 The caliper width, w, is often a multiple of the standard 

deviation of the PS, (X). A widely use caliper width of 20% of the standard deviation 

of the PS is a good start (for details, see Appendix).    

The raw sample is pre-processed by “trimming” (removing) individual 

households iteratively, checking for balance on all covariates. The matching 

algorithm weights on each covariate and the propensity score. As suggested by King 

& Nielsen (2019), the matching algorithm performs better than the PS alone. 

Observations that were outside the common support area from either control or 
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treatment groups were discarded. For each value of PS, the common support 

represents a positive probability of being both treated and control. Estimation of the 

ATT was based on the region of common support. I implemented the minima and 

maxima PS criteria. Propensity score values outside this range were removed for the 

estimation of the ATT. Once the region of common support is defined, households 

that fall outside this region must be disregarded as their treatment effect cannot be 

estimated. This exclusion of households may seem as if it would substantially reduce 

the statistical power of the study to detect effects. However, this is not always the 

case because of improved covariate balance (see Appendix).  

I evaluate each algorithm based on its performance in balancing the measured 

covariates between treatment and control groups (see Appendix). Inferences about the 

treatment effect are robust if the matched sample of treated and control bean farmers 

have similar distributions of measured baseline covariates. The pooled standard 

deviation for covariate k is√(𝑆𝑡𝑘
2 + 𝑆𝑐𝑘

2 /2. The absolute standardized difference 

before matching is 𝑠𝑑𝑏𝑘 = |�̂�𝑡𝑘−�̂�𝑐𝑘|/√(𝑆𝑡𝑘
2 + 𝑆𝑐𝑘

2 /2 (Rosenbaum, 2010). The 

absolute standardized difference after matching is 𝑠𝑑𝑏𝑘 = |�̂�𝑡𝑘−�̂�𝑐𝑚𝑘|/

√(𝑆𝑡𝑘
2 + 𝑆𝑐𝑘

2 /2; where �̂�𝑡𝑘 and �̂�𝑐𝑚𝑘  are the means of covariate k for the treated, 

control, and matched groups, respectively. A covariate is balanced if the standardized 

bias or the absolute standardized difference mean (ASDM) on each covariate is less 

than 0.20, ideally below 0.15. The second check is to graphically observe whether the 

distributions of treated versus control units are even in a kernel density plot (see 

appendix). 
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I test the sensitivity of the average treatment effect (ATT) in two ways. First, I 

employed more than one matching algorithm to conduct the matching procedure. The 

second method adheres more to the standard definition of sensitivity analysis in an 

observational study. I ask how the conclusions of the study might change if people 

who looked comparable were somewhat different (Rosenbaum, 2010). 

ii. Heterogenous treatment effect 

In the case of considerable bias associated with treatment effect estimate and 

heterogeneous treatment effect, there are different ways to characterize the 

heterogeneity. Here, I implement the smoothing-differencing (SD) method. To do so, 

I fit two separate non-parametric regression models, local polynomial regression, for 

the outcome variables on the propensity score and covariates; one for each: the 

treatment group and the control group. The difference between the group-specific 

regressions gives an estimate of the heterogeneous treatment effects (Zhou & Xie, 

2016).   

III. Conceptual framework: productivity analysis 

In this analysis of technological adoption, I employed economic indicators of 

performance such as measures of productivity and efficiency. Assessing farmers’ 

efficiency together with the impact of an intervention requires the application of 

advanced econometric methods. To do so, I employed a two-steps approach. The first 

step estimates technical efficiency scores on every bean farmer. The second step uses 

censored statistical methods to identify determinants affecting bean farmers’ 

efficiencies. 
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i. Technical efficiency analysis 

I used stochastic frontier analysis (SFA) and stochastic spatial frontier analysis 

(SSFA) to estimate bean farmers technical efficiency. In addition, I used an output-

oriented DEA model to estimate scale efficiency. Other methods that estimate 

technical efficiency include DEA solved through linear programming. In broader 

terms, these frontier analysis techniques for measuring productivity can be frontier 

and non-frontier techniques modeled either through deterministic or stochastic (Del 

Gatto, Di Liberto, & Petraglia, 2011). 

In contrast to DEA analysis, SFA requires a few more a priori assumptions about 

the structure of the production function (Greene, 2008). SFA deviations from the 

frontier is attributed to two factors: a normal error representing randomness and a 

non-negative error term representing technical inefficiency, the sum of both 

constitutes the total error.  

𝑦𝑖 = 𝑓(𝑥𝑖, 𝛽) + 𝜀𝑖     (22) 

𝜀𝑖  = 𝑣𝑖 – 𝑢𝜀𝑖           (23) 

where 𝑣𝑖~𝑁(0, 𝜎𝑣
2) 𝑎𝑛𝑑 𝑢𝑖~𝑁(0, 𝜎𝑢

2) 

Combining equation 22 and 23,  

𝑦𝑖 = 𝑓(𝑥𝑖, 𝛽) + 𝑣𝑖 − 𝑢𝑖      (24) 

where i indexes cross-section of bean growing households. 𝑦𝑖 denotes bean 

production of household i, whereas 𝑋𝑖 is a vector (1xK) of N inputs used by 

household i. β is the vector (Kx1) of technology parameters to be estimated, and 𝜀𝑖 is 

a i.i.d disturbance for household i with zero mean and variance 𝜎𝜀
2 assumes to follow 

a normal distribution. This term takes care of the stochastic nature of the production 
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process and possible measurement errors of the inputs and output. The composed 

error (23) consists of a normal error component 𝑣𝑖 and a with a non-negative random 

variable 𝑢𝑖, which represents the technical efficiency term. By assuming that the 

productivity component follows a non-negative distribution, I am able to estimate the 

best practice production function rather than the average practice production function.  

However, it is to be noted that model (24) does not include any type of spatial 

dependence between the observations a potentially restrictive specification in 

empirical applications. Three types of spatial interaction effects can be given on the 

non-spatial production function (24) (Han et al., 2016a). The first is endogenous 

effects which explain the dependence between the dependent variable, 𝑦𝑖 and𝑦𝑗. The 

second is exogenous interaction effects, which explain the dependence between the 

dependent variable of a specific unit, 𝑦𝑖, and the independent variable of another unit, 

𝑋. Third, interaction effects among the error terms equation (26). A full model with 

all types of spatial interaction effects are specified in equation (25). 

𝑦𝑖 = 𝜌 ∑ 𝑊𝑖𝑗
𝑁
𝑗=1 𝑦𝑖 + 𝛽0 + 𝑋𝑖𝛽1 + 𝛾 ∑ 𝑊𝑖𝑗

𝑁
𝑗=1 𝑥𝑗 + 𝜀𝑖 (25) 

𝜀𝑖 = 𝜆 ∑ 𝑊𝑖𝑗
𝑁
𝑗=1 ℰ𝑗 + 𝑢𝑖     (26) 

where, y is a Nx1 vector of observations on the dependent variable, W is an 

exogenous N x N spatial weight matrix with non-negative elements, ρ is the spatial 

autoregressive parameter. In this specification, the inclusion of the spatially lagged 

dependent variable W𝑦𝑖 on the right-hand side of the equation relates the value of the 

dependent variable to the values at neighboring locations. 𝑋𝑖 is a N x K matrix of 

observations on explanatory variables with associated K x1 coefficient vector 𝛽𝑖. 𝑋𝑖 

the spatial lags of the covariates (independent variables) with coefficients γ.  ε is a 
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Nx1 vector of error terms as i.i.d disturbance for household ℎ𝑖 with zero mean and 

variance 𝜎𝜀
2. Restriction γ = 0 and λ = 0 give rise to the spatial autoregressive model 

(SAR) and restriction to ρ = 0 and γ = 0 give rise to the error spatial autoregressive 

model. 

I implemented the first and third methods following the spatial specifications 

search suggested by Anselin & Rey, (2014). I started with a basic ordinary least 

squares (OLS) model and ran the Lagrange Multiplier (LM) statistics to decide for 

either the lag or error specifications. If no spatial autocorrelation evidence is found 

from the LM-error and the LM-Lag tests, I report the OLS model.  

For the efficiency analysis, I transformed the type production function in equation 

(4) to a frontier model by introducing a non-negative random variable 𝑢𝑖 which 

represents the technical inefficiency of unit i. 𝜀𝑖 is divided into two parts: 𝑢𝑖, a non-

negative random variable associated with technical inefficiency, and 𝑣𝑖 a systematic 

random error, equation (2). Because I am unable to identify the term -u, I use a 

relative efficiency measure that accounts for the output of each unit to the output that 

could be produced by a fully efficiency unit as suggested in (Han et al., 2016a). 

The empirical model includes five explanatory variables. The inputs of the 

production function include total cultivated land area (in square meters), 

economically active population (number of adults between 15-64 years old), hired 

labor (whether the household hired labor) as a substitute for household labor, total 

amount of bean seed (kilograms), and a management index (an index derived from 

multiple correspondence analysis as a surrogate of technical capacity). The output is 

measured as the total household bean production (kg). The estimates of technical 
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efficiency are obtained by comparing the input–output bundle of each farm household 

with the nonparametric and parametric representation of the frontier technology. 

Reducing the number of variables in the production function would increase the 

number of inefficient households but would bias efficiency estimates. I shift more 

importance to the second stage-censored analysis. In all models, I used the 

multiplicative form and conduct the estimation in log-linear form. The first order 

coefficients can be interpreted as partial elasticities. 

ii. Second stage analysis – factors affecting bean farmers’ technical efficiency 

Estimated technical efficiency serves as a dependent variable on the post-

efficiency analysis.  The second stage analysis has two purposes: (1) to explain the 

variation of relative efficiency and (2) to validate the empirical model from the first 

stage. A series of control variables are tested using truncated regression. The 

motivation of this section is to have a better understanding of why some bean farmers 

are more efficient than others. I explore whether farmers’ efficiency is affected by 

droughts, physical proximity to technical services, crop diversification, or bean 

growing households’ link to local markets to meet the demand for staple food crops. 

This last variable indicates whether the smallholder farming household sold their crop 

surpluses to inhabitants residing in the corresponding local village.  

Truncated regression has shown robust results. A truncated regression is a 

distribution that occurs when some values above or below of the variable of interest 

are omitted.  Simar & Wilson (2007) used Monte Carlo experiments to examine the 

statistical performance of two estimators, namely Tobit and truncated regression, 

when employing a two-stage approach for non-parametric distance function 
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estimators of technical efficiency. Their experimental results revealed that Tobit 

regression showed unstable results, whereas the truncated regression was more stable. 

iii. Clustering Analysis 

Clustering analysis can produce evidence on where this technology has been 

effective, thereby providing valuable input into targeting strategies and resource 

allocation for scaling up of such interventions. To identify clusters of farmers with 

similar and dissimilar technical efficiency scores, I used Local Moran’s I statistics. 

This test identifies five data groups. The first cluster of hotspots is characterized by 

farmers with high efficiency surrounded by farmers with similar efficiency scores. 

The opposite of hot spots are cold spots, characterized by bean farmers with low 

efficiency surrounded by bean farmers with similar low efficiency. The other two 

data groups are spatial outliers. One set refers to bean farmers with low efficiency 

scores surrounded by farmers that are more efficient while the second set of outliers 

reflect the opposite. The firth group are observation without any particular spatial 

pattern.    
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Chapter 4: Social Interaction and Technology Adoption: 

Geographic Diffusion of Iron Biofortified Beans (Phaseolus 

Vulgaris) in Rwanda 

I.  Introduction  

IBB is a relatively new technology. Farmers may be risk-averse when they lack 

information pertaining to the likelihood of occurrence of possible outcomes (e.g. 

yield, costs, profitability) from use of the new technology. Such risk-averse attitudes 

would exert a detrimental impact on adoption. Farmers may be uncertain about the 

economic returns of the new technology owing to insufficient knowledge about the 

types and costs of inputs needed, the yield distribution, expected market prices and 

the demand for the produce (Abadi Ghadim & Pannell, 1999; Tessema, Asafu-

Adjaye, Kassie, & Mallawaarachchi, 2016). In this context, social learning and social 

networks often complement and/or act as substitutes in delivering information and 

facilitating the technology diffusion process. In the seminal work of Manski, (1993), 

he identified three sources of social influence in the adoption of technology: (1) 

endogenous effects, (2) exogenous network effects, and (3) correlated effects. The 

endogenous effect emphasizes that the adoption behavior of individual farmers would 

be influenced by their neighbors’ adoption outcomes as a result of peer learning about 

the profitability or the appropriate use of the new technology or due to merely 

wanting to conform with observed peer behavior. The exogenous network effect 

highlights contextual interactions, wherein the propensity of an IBB grower to behave 

is correlated with exogenous characteristics of his/her neighbors. The correlated 

effect stresses that smallholder farmers in the same group tend to behave similarly 

because of commonly observed and unobserved characteristics of the group, for 
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example sharing a common institutional or physical environment (Tessema et al., 

2016). All these three effects imply a spatial contextualization of the diffusion of IBB 

varieties, meaning that the decision of a bean growing household to adopt an IBB is 

spatially correlated. In more detail, farmers' decisions to adopt IBB depend not only 

on their own farm-level characteristics, but also on the decisions and personal 

characteristics of neighboring bean farmers. Information about the benefits of 

growing and consuming IBB varieties is also a factor that affects technology adoption 

(Abdulai et al., 2008; A. D. Foster & Rosenzweig, 2010). Under this spatial context, a 

bean growing household that is close to a household who is an IBB grower has a 

higher probability of being an IBB adopter, which is the endogenous effect. Another 

condition relates to the social characteristics of a group as the main factor in spatial 

clustering, which is the likelihood of an individual to behave, on average, in 

agreement with their social group. Whether or not the diffusion of IBB varieties is 

geographically driven, the spillover effects will determine a strong spatial 

relationship, i.e., farms with similar IBB adaptation behavior tend to be localized in 

the same geographical area. These sources of social influence have differing 

implications for prediction of policy impacts. Common spatial econometric methods 

applied to technology adoption include the spatial error model and the spatial lag 

model. I extend these methods by modeling the endogenous and exogenous network 

effects using the spatial Durbin model, which allows for an enhanced understanding 

of IBB adoption as it relates to the characteristics of neighboring smallholder farmers. 

Shaped by local place and constrained by social geographic distance, I model 

social interactions by setting geographic neighbors' relationships. By social 
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interactions, I refer to interdependence among smallholder farmers in which 

preferences, tacit knowledge, expectations, and constraints faced by one smallholder 

farming household are directly influenced by the characteristics and choices of others. 

I am interested in the importance of tacit knowledge which concerns direct experience 

and know-how on the use of IBB agricultural technology. In spatial regression 

analysis, measures of spatial interaction include the spatial autoregressive parameter 

through different spatial weight structures. The spatial autoregressive parameter 

represents a way to model structured dependence between observations that arise 

from peer effects (Case, 1992). The spatial autoregression parameter in technology 

adoption studies contains important policy information. Mapping interactions of 

farmers’ IBB adaptation behavior can provide guidance to technology delivery 

programs on how specific initial investments in technology promotion will generate 

further geographic diffusion. 

This chapter analyzes smallholder farming households' adoption of these varieties 

by specifically examining the influence of demand-side factors and the role of peers. I 

draw upon several theories from studies on the adoption of agricultural technology, 

social behavior, and spatial econometric methods to build the models. I test for the 

presence of spatial association among economic agents (farmers), estimate prevalence 

rates of IBB adoption by district, and examine any potential interactions with 

contextual factors. I implement spatial probit models for discrete-choice data using 

Bayesian modeling. The use of Bayesian modeling to estimate spatial processes 

allows estimating more realistic models. These methods produce useful measures of 

direct and spatial spillover impacts from changes in the explanatory variables. By 
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doing all the above, this chapter achieves objective one of this dissertation, which is 

to analyze smallholder farming households’ decisions to adopt iron biofortified beans 

in Rwanda using theory on social interactions and choice behavior.  

II. Data 

For this chapter, as well as chapters 4 and 5 of this dissertation, I use nationally 

representative survey data of rural bean producers in Rwanda that was collected in 

two stages. In the first stage, as part of a listing exercise, 120 villages were randomly 

selected. All rural households in the selected villages were interviewed. Rural 

households were shown a seed sample of ten iron-biofortified bean variety and asked 

whether they had heard of the variety, had grown it, and, if so, the season they first 

adopted it and whether they had grown the variety in each subsequent season. The 

listing exercise was conducted in May and June 2015 (i.e., season 2015B) and 

included 19,575 households (Asare-Marfo et al., 2016).    

In the second stage, 12 households per village were re-interviewed in greater 

depth in September-October 2015, after the harvest of the same season and included 

1,394 households. When possible, six smallholders who grew an IBB in 2015B and 

six non-adopters were selected randomly in each village. In villages with fewer than 

six IBB adopters, all adopters were selected and non-adopters were randomly selected 

to obtain a total of 12 households. Enumerators interviewed the member of the 

smallholder farming household responsible for bean production decision making 

during season 2015B. Questions were asked about household demographics and 

composition, bean farming decision making, asset ownership, bean production and 

consumption, and iron-biofortified bean adoption history from 2012B to 2015B. 
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A community survey of 120 villages, conducted along with the main household 

survey, was administered to key informants, including the village leader, to gather 

information on village characteristics, services and amenities related to market access, 

extension, and the presence of formal iron-biofortified bean delivery approaches in 

the village. 

III. Background 

Annual food crop production in Rwanda follows the bimodal annual distribution 

of rainfall that divides crop cultivation into two major seasons: A and B. Season A 

sowing dates are in September and October, followed by harvest activities from 

January to March. Season B sowing dates span from January to March, followed by 

harvest activities in June and July. I analyze adoption of IBB for season B in 2015. At 

a national level, I estimated 214,130 hectares as having been cultivated with beans in 

that season, with 58 percent planted with bush and 42 percent with climbing varieties.  

The results of the 2015 survey show that local bean varieties still dominate bean 

production in Rwanda, with 68 percent of cultivated area, followed by improved and 

IBB varieties, with 21 percent and 11 percent, respectively. The latter figure indicates 

the intensity of adoption of IBB varieties following only 8 seasons of IBB delivery 

efforts. IBB bush varieties show a higher intensity of adoption than IBB climbing 

varieties, at 12 and 10 percent adoption rates, respectively. Of the total population of 

bean growing households in 2015 Season B, 24 percent had grown IBB varieties.  

Four-fifths of the area under bean cultivation comprised plots cultivated with 

either bush or climbing bean varieties, with the other 20 percent planted with a 

mixture of both bush and climbing varieties. Plots with only local varieties dominated 
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with 55 percent, composed of bush (33 percent) and climbing (22 percent). The 

second-largest share was allocated to plots with only improved varieties, at about 16 

percent, of which 8 percent were bush varieties, and 8 percent climbing. About 8 

percent were plots cultivated with either IBB bush or IBB climbing varieties, at 5 and 

3 percent, respectively. 

Two out of the ten IBB varieties disseminated throughout Rwanda are IBB bush 

varieties: RWR2245 and RWR2154. The former had an intensity of adoption of 11 

percent of the total land area cultivated with bush bean varieties (157,416 hectares), 

while the latter represented less than 1 percent. The remaining eight varieties are 

climbing beans with an intensity of adoption of 10 percent of the total land area 

cultivated with climbing beans (114,568 hectares). MAC42 was the most popular 

climbing IBB variety, with almost 5 percent, followed by RWV3316 (~2 percent) and 

RWV1129 (1 percent). The other five climbing IBB varieties were cultivated in less 

than 1 percent of the area under bean cultivation.  

Beyond bean varieties, I also looked at land ownership and bean consumption. 

Seventy-one percent of the cultivated land area was owned under a title, 14 percent 

had no title, and 12 percent was rented land. In descending order, bean utilization 

breaks down as grain used for home consumption (60 percent), sale in local markets 

(17 percent), crop given away (6 percent), and saved to be used as seed for next 

season (6 percent). 

At the subnational level, bean production varies by region and by the two bean 

types, bush and climbing. The geographic distribution of bean production and IBB 

adoption at district level is shown in Figure 1. The map shows the percentage of total 
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bean area per district normalized by the total national bean area, while the pie charts 

show the percentage of IBB area cultivated in the district by IBB type. Bean 

production, about 40%, is concentrated in the Eastern region, gradually decreasing in 

intensity toward the Central, Southern, and Western regions. Second, the intensity of 

adoption of IBB varieties mirrors the natural geographic concentration of bush and 

climbing bean varieties, measured by cultivated area. IBB bush varieties are mostly 

grown in the Eastern (61 percent) and Southern (32 percent) regions, while IBB 

climbing varieties dominate in the Western and Northern regions. The Central and 

Southern regions is a mix of both types, in accordance with the literature. These 

figures may be partially explained by delivery and marketing efforts to introduce 

IBB, as illustrated in Figure 3. The high intensity of IBB adoption in the eastern 

region has been propelled in part by the high density of delivery systems that enhance 

access to IBB seed to smallholder bean farmers. For practical purposes of this 

analysis, I re-scaled the density map to squares of 10 km x 10 km as a result of a 

kernel density function. Therefore, the density values are reported as the number of 

points or delivery venues per 10 square kilometers. We can observe a high density of 

delivery mechanisms on the Eastern region with lower density values over the 

Northern region. 
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Figure 2 Choropleth map: share of total bean production and pie chart of IBB 

production by bean type by area, by district 

 
Figure 3 Spatial density of seed delivery 

 

Note: the density values are reported as the number of points or delivery venues per 10 square kilometers. 
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IV. Results and Discussion 

i. Spatial Econometric Analysis: Adoption Model Estimates (non-spatial probit 

[NSP] vs. spatial probit [SP] models) 

The coefficient estimates (posterior means, standard deviations, and Bayesian p-

levels) of the two specifications (M1 and M2) for two spatial models (SAR and SDM) 

and a non-spatial probit (NSP) model are shown in Tables 2 and 7, while Tables 3-6 

and 8-11 show the average marginal effects estimates. Tables 4-6 and 8-11 are the 

basis for inference regarding the effect of changes in the various independent 

variables on the probabilities that bean farmers will adopt IBB and on the spatial 

spillover effect on neighboring bean farmers. I also tested the robustness of our 

results. Table A.1 in the Appendix shows posterior means (standard deviations) of a 

multilevel spatially structured fixed and random effects model. I described 

specifications M1 and M2 in chapter 3. 

For each scenario, I use a standard generalized linear model (GLM) probit model 

and two spatial probit models. I describe and compare the average marginal effects 

for each model. There are three common covariates in both specifications: number of 

children in the household, age of household head, and accessibility to extension 

services. The specification M1 aims to test how household characteristics, such as 

wealth (based on an asset-based wealth index as explained in Appendix A, section I), 

household composition, and years of farming experience, play a role in IBB adoption. 

In addition, the M1 scenario explores the role of the number of varieties used to 

manage the risk of food insecurity due to crop failure caused by drought. The 

specification M2, on the other hand, looks at the importance of household 
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management technical capacity measured through a management index in connection 

with education level and household size (see Appendix A, section I). M2 does not 

include the wealth index because of its positive correlation with the management 

index and education level.   

For all non-spatial probit models, I computed and reported a diagnostics test 

(Kelejian-Prucha (error)) for spatial dependence. The results of the test for all probit 

models were positive and significant; therefore, spatial probit models are used to 

calculate the probability, P(X)=Pr(D = 1 | X), or propensity, of being an IBB grower 

for each observation. I report the marginal direct and indirect effects just for the 

spatial probit models. Models are compared using log-likelihood and information 

criteria, such as AIC (Akaike Information Criterion) and BIC (Schwartz’ Bayesian 

Information Criterion). For comparing models using the log-likelihood value, models 

with log-likelihood values closer to zero are considered better models. While for 

comparing models using the information criteria, models with smaller values of these 

criteria are considered better models. The Chow test provides evidence that the 

coefficient are not equal across regimes rejecting the null hypothesis. The value of the 

test statistics is 3.65 which is significant. There is evidence that the model 

coefficients indeed are not constant across the two spatial regimes, indicating spatial 

heterogeneity and suggesting the need to carry out separate analysis for IBB bush 

type and IBB climbing type. 

ii. Bush bean analyses 

Table 2 shows the results of M1 and M2 on bush bean varieties. I observe that the 

signs of some covariates are consistent in the spatial probit models and non-spatial 
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probit model. Years of farming experience, planting material from friends and 

relatives, numbers of varieties cultivated, management index, and the number of 

economic active male members in the household have a positive influence on the 

propensity of adoption of IBB bush varieties, while the numbers of children in the 

household have a negative influence. In the following, I discuss the significant level, 

magnitude and sign of the average marginal effect of each variable in greater detail 

with the summary measures of direct, indirect, and total impacts.  

Tables 3–6 show the significant level and marginal effect outputs for the non-

spatial and spatial probit models for bush bean growers. The first column lists all 

variables used in each model specification. Columns with the headings direct, indirect 

effect and total effect show the posterior means and their respective lower (5 percent) 

and upper (95 percent) bounds confident intervals for the SAR spatial probit model. 

The last column corresponds to the marginal effect of the standard non-spatial probit 

model, which is equivalent to the direct effect of the SAR models.  

Spatial probit models, such as SAR and SDM, allowed us to disentangle the total 

marginal effect into direct and indirect impacts. The direct effect measures how a 

change in an explanatory variable in household ℎ𝑖 affects the dependent variable in 

household ℎ𝑖, plus any feedback effects. The indirect effects measure how changes in 

the explanatory variables associated with household ℎ𝑖 cumulatively impact the 

dependent variable in all other households. These effects are referred to as spatial 

spillovers. The statistically significant spatial autocorrelation coefficient ρ on the 

lagged dependent variable in the spatial Durbin model suggests spatial 
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autocorrelation, which means that the SDM specification helps correct biases of 

estimated coefficients and improve the efficiency of the estimations.  

In general and comparing the absolute values of the coefficients, the SAR model’s 

indirect effects are smaller than the direct effects. The SAR model’s direct impacts 

were statistically indifferent from the direct effects of the non-spatial probit model’s 

direct impacts in terms of both sign and magnitude. Below, I provide a discussion of 

the average marginal effect for the SAR models.  

Table 3 presents own partial derivatives (direct effect), 𝑍𝑖 𝑋𝑣𝑖⁄  and cross-partials 

derivatives (indirect effect), 𝑍𝑖 𝑋𝑣𝑗⁄ , or spatial spillover effects in the case of spatial 

dependence. Of the household characteristics evaluated at the sample means in Table 

3, farming experience had a positive and significant effect of 1 percent and a spatial 

spillover effect of about 0.3 percent for every additional year of farming experience, 

resulting in a total effect of 1 percent, ceteris paribus. Indirect effects are accumulated 

across all neighboring farmers, so the impact on individual farmers is likely smaller 

than the direct effects. Farming experience is useful in early stages of adoption, when 

farmers are still testing the potential agricultural benefits of IBB. Having 

economically active male household members had a positive effect, with one 

additional male member increasing the adoption rate by 4 percent, and a positive 

indirect effect of 2 percent. Households are averse to adopting new varieties given the 

risk and uncertainty of their future performance. As a coping strategy to minimize the 

chances of food insecurity, households manage the risk of crop failure by cultivating 

multiple varieties. Growing of an additional variety increases the probability of IBB 

adoption by 7 percent and a spatial spillover of 3 percent.   
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Specification M2 aims to check the consistency of the estimated casual effect 

(Tables 2 and 5). I use four new covariates: household access to title land, household 

size, education level, and management index or technical capacity. The management 

index and education level variables were precluded in specification M1 because of 

collinearity with the wealth index variable. The scalar parameter ρ in Table 2 

measures the strength of spatial dependence of the IBB adoption propensity, with a 

value of zero indicating independence. The estimated ρ in each M2 model is 

statistically significant at 1 percent level and its magnitude varies from 0.38 to 0.42, 

suggesting significant positive spatial autocorrelation in bean farmers’ decisions 

regarding adoption of new iron biofortified bean varieties. In other words, there is a 

global social multiplier in the system that indirectly affect non-beneficiaries. Of the 7 

variables in Table 5, the effect of household management practices is statistically 

significant and positive. When the management index increases from the lowest value 

zero to the largest value 1, the probability of the adoption will increase by 23 percent, 

with a spillover effect of around 17 percent, and a total effect of 40 percent. As with 

any new technology, IBB varieties would be more frequently used by farmers who 

already use other agricultural inputs, such as fertilizers or manure, to increase farm 

productivity. Household education level, household size, and other variables were not 

significant.  

Tables 4 and 6 summarize the SDM’s marginal effects of bush bean growers. Of 

the nine explanatory variables included in specification M1 (table 4), six are 

statistically significant at the 5 percent level for the estimates of the direct effect, 

which are "number of economic active males in HH", "farming experience", "number 
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of bean varieties cultivated", "IBB planting material from friends or relatives", and 

"travel time to extension services". For specification M2 (table 6), out of the seven 

included covariates, two variables—management index and access to extension 

services—are statistically significant at the 5 percent level for both the direct and the 

estimates of the indirect effects. The latter effect confirms the presence of spatial 

spillovers or peer effects. Proximity to extension centers has a positive direct effect of 

4 percent and a spatial spillover effect of 2 percent, which seems consistent with the 

notion of accessibility of farmers to agricultural extension agents. Extension services 

can help guide farmers, particularly on the agricultural superiority of improved 

varieties such as iron biofortified ones, strengthening farmers’ knowledge and 

experience in agricultural best practices. Poor-functioning infrastructure affects the 

profitability of technology adopted by farmers, and road networks (extension and 

quality) and mobile services rank among the most important infrastructural 

conditions. In general, transportation limitations tend to reduce competition among 

input suppliers and middlemen. Empirical evidence shows that travel times between 

the farm gate and market can be high due in part to underdeveloped road 

infrastructure. Good transportation is associated with a diffusion of technology, better 

access to inputs, and higher producer prices (Dorosh & Wang, 2010). 

The management index also exerts a positive direct and indirect impact on the 

propensity of iron bean adoption, suggesting that I would observe increased adoption 

rates on bean farmers that already use other agricultural practices like irrigation, 

terracing, fertilizer, pesticides, manure, and/or compost. The indirect impact from 

management practices on nearby farmers is almost half the magnitude of the direct 
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impact, suggesting a very significant spatial spillover impact in adoption rates, in 

comparison with other variables.  

Figure 4 shows point estimates of village-level random effect. The values of the 

point estimates change from one village to its neighbors ranging from 0.1 to 0.8 with 

a higher prevalence of villages with negative point estimates. These villages have a 

lower probability to adopt IBB bush varieties. This analysis provides evidence that 

geographic distance significantly slows the spread of new agricultural technology. 

However, I can observe clusters of villages in the Eastern, Kigali, and Southern 

regions have positive point estimates which increase their probability to adopt IBB 

bush varieties. Random effects is a useful measure of the degree of spatial 

heterogeneity of the smallholder farming households in Rwanda.   
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Table 2 SAR, SDM, and GLM probit model estimate for bush bean farmers 

Variables M1-SAR  M1-SDM M1-NSP M2-SAR M2-SDM M2-NSP 

Rho 0.309*** 0.297***   0.423*** 0.385**   

  (0.091) (0.079)   (0.091) (0.101)   
Constant -5.180 -7.663 -3.998 -5.135 -4.404 -2.919 

  (8.918) (9.389) (8.941) (8.063) (8.091) (7.967) 

Household size       0.005 0.001 0.011 
        (0.038) (0.038) (0.037) 

Number of economic active males in HH 0.171** 0.171*** 0.161**       

  (0.063) (0.063) (0.062)       
Number of children under 5 years old in HH -0.166 -0.167** -0.166** -0.142 -0.138 -0.165 

  (0.109) (0.099) (0.103) (0.101) (0.101) (0.100) 

Log (HH head age) 2.646 3.986 1.935 2.679 2.769 1.365 
  (4.769) (5.062) (4.81) (4.314) (4.315) (4.263) 

(Log(HH head age))² -0.479 -0.666 -0.377 -0.401 -0.412   

  (0.634) (0.678) (0.644) (0.569) (0.569)   
HH average years of schooling      0.024 0.026 0.015 

        (0.039) (0.041) (0.039) 

Wealth Index 0.408 0.377 0.310       
  (0.513) (0.527) (0.495)       

Number of varieties cultivated 0.309*** 0.311*** 0.293***       

  (0.042) (0.042) (0.041)       
Farming experience (years) 0.038*** 0.039*** 0.035***       

  (0.010) (0.011) (0.010)       

Share of land area with legal title      0.002 0.001 0.002 
        (0.001) (0.002) (0.001) 

Management Index      0.717** 0.818** 0.830** 
        (0.298) (0.293) (0.285) 

Land labor ratio (m²/person) -0.000 -0.000 -0.000       

  (0.000) (0.000) (0.000)       
Travel time to technical services -0.008 0.094 -0.002 0.016 0.124 0.020 

  (0.022) (0.085) (0.024) (0.017) (0.071) (0.020) 

Planting material from friends or relatives 10.1*** 17.16*** 26.11       
  (3.02) (4.273) (803.8)       

W-HH size         0.020   
          (0.070)   

W-Number of economic active males in HH   0.081         

    (0.135)         
W-Number of children under 5 years old in 

HH   -0.122     -0.329*   

    (0.187)     (0.187)   
W-Log (HH head age)   -0.008     -0.015   

    (0.013)     (0.009)   

W-HH average years of schooling          -0.093   
          (0.076)   

W-Wealth Index   0.671         

    (1.012)         
W-Number of varieties cultivated   0.108         

    (0.076)         

W-Farming experience (years)   0.011         
    (0.021)         

W-Share of land area with legal title         0.002   

          (0.002)   
W-Management Index         -0.194   

          (0.459)   

W-land labor ratio (m2/person)   -0.0002**         

    (0.0001)         

W-Travel time to technical services   -0.106     -0.106   

    (0.085)     (0.071)   
W-Planting mat. from friends or relatives   -1.844*         

  (1.002)        

Kelejian-Prucha (error)       3.987***   4.618*** 
Log likelihood  -205.480 -197.387 -289.821 -211.031 -295.813 -294.343 

BIC 485.679 525.532 685.493 490.553 653.892 644.724 

AIC 434.960 436.775 613.642 444.060 611.626 606.686 

Number of observations 506 506 506 506 506 506 

Notes: () are standardized errors. *, ** and *** denote significance at the 10%, 5%, and 1% level, respectively.  
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Figure 4 Point estimates of village-level random effect: IBB bush M1.IID 

 
 

Note:  Random effect values range from -1 to 1. Values around zero mean spatial 

randomness, values close to 1 suggests clustering and values close to -1 suggests a 

negative spatial association. 
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Table 3 SAR and GLM probit model effects estimates for bush bean growers (M1) 

 Direct effect Indirect effect Total effect 

Variables  Lower 0.05 Coefficient Upper 0.95 Lower 0.05 Coefficient Upper 0.95 Lower 0.05 Coefficient Upper 0.95 

Num of economic active males in HH 0.016 0.038 0.061 0.004 0.016 0.034 0.022 0.0547 0.089 

Num of children under 5 yrs. old in HH -0.077 -0.037 0.005 -0.038 -0.016 0.002 -0.109 -0.0532 0.006 

Log(HH head age) -1.111 0.596 2.364 -0.459 0.255 1.147 -1.577 0.8518 3.368 

(Log(HH head age))² -0.345 -0.108 0.12 -0.167 -0.046 0.045 -0.488 -0.1541 0.173 

Wealth Index -0.091 0.091 0.279 -0.040 0.037 0.128 -0.132 0.1283 0.393 

Number of varieties cultivated 0.056 0.069 0.083 0.011 0.029 0.054 0.075 0.0988 0.129 

Farming experience (years) 0.005 0.008 0.012 0.001 0.004 0.007 0.006 0.0122 0.018 

Land labor ratio (m²/person) 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 

Travel time to technical services -0.009 -0.002 0.006 -0.005 -0.001 0.002 -0.015 -0.0029 0.008 

Planting material from friends or relatives 1.269 2.263 3.465 0.433 0.907 1.450 1.973 3.170 4.555 

 

Table 4 SDM probit model effects estimates for bush bean growers (M1) 

 Direct effect Indirect effect Total effect 

Variables Lower 0.05 Coefficient Upper 0.95 Lower 0.05 Coefficient Upper 0.95 Lower 0.05 Coefficient Upper 0.95 

Numb of economic active males in HH 0.014 0.036 0.058 0.005 0.016 0.031 0.020 0.051 0.085 

Numb of children under 5 years old in HH -0.069 -0.035 -0.001 -0.035 -0.016 -0.001 -0.102 -0.051 -0.002 

Log(Household head age) -0.881 0.836 2.521 -0.363 0.371 1.263 -1.251 1.207 3.849 

(Log(Household head age))² -0.371 -0.140 0.088 -0.185 -0.062 0.036 -0.552 -0.202 0.127 

Wealth Index -0.095 0.078 0.256 -0.038 0.035 0.129 -0.133 0.113 0.372 

Number of varieties cultivated 0.052 0.065 0.078 0.013 0.029 0.047 0.070 0.094 0.118 

Farming experience (years) 0.005 0.008 0.012 0.001 0.004 0.007 0.006 0.012 0.018 

Land labor ratio (m²/person) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Travel time to technical services -0.009 0.020 0.050 -0.003 0.009 0.024 -0.013 0.029 0.071 

Planting material from friends or relatives 2.279 3.601 5.229 0.765 1.521 2.369 3.314 5.122 7.099 
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Table 5 SAR and GLM probit model effects estimates for bush bean growers (M2) 

Variables Direct effect Indirect effect Total effect 

 Lower 0.05 Coefficient Upper 0.95 Lower 0.05 Coefficient Upper 0.95 Lower 0.05 Coefficient Upper 0.95 

Household size -0.019 0.002 0.022 -0.015 0.001 0.018 -0.034 0.003 0.039 

Number of children under 5 years old in HH -0.101 -0.046 0.010 -0.083 -0.034 0.006 -0.177 -0.079 0.016 

Log(Household head age) -1.388 0.860 3.193 -1.001 0.662 2.619 -2.440 1.522 5.696 

(Log(Household head age))² -0.432 -0.129 0.167 -0.359 -0.099 0.123 -0.766 -0.228 0.296 

HH average years of schooling -0.014 0.008 0.028 -0.010 0.006 0.022 -0.024 0.013 0.049 

Share of land area with legal title 0.000 0.001 0.001 0.000 0.000 0.001 0.000 0.001 0.002 

Management Index 0.073 0.230 0.386 0.043 0.167 0.311 0.124 0.397 0.659 

Travel time to extension services -0.004 0.005 0.015 -0.003 0.004 0.012 -0.006 0.009 0.026 

 

 

Table 6 SDM probit model effects estimates for bush bean growers (M2) 

Variables Direct effect Indirect effect Total effect 

 Lower 0.05 Coefficient Upper 0.95 Lower 0.05 Coefficient Upper 0.95 Lower 0.05 Coefficient Upper 0.95 

Household size -0.019 0.000 0.020 -0.013 0.000 0.013 -0.032 0.000 0.033 

Number of children under 5 years old in HH -0.095 -0.043 0.007 -0.069 -0.027 0.004 -0.159 -0.070 0.011 

Log(HH head age) -1.290 0.868 3.064 -0.770 0.579 2.308 -2.007 1.447 5.181 

(Log(HH head age))² -0.420 -0.129 0.159 -0.311 -0.085 0.089 -0.711 -0.215 0.246 

HH average years of schooling -0.013 0.008 0.030 -0.008 0.005 0.020 -0.021 0.014 0.048 

Share of land area with legal title 0.000 0.000 0.001 0.000 0.000 0.001 -0.001 0.001 0.002 

Management Index 0.095 0.256 0.400 0.036 0.162 0.323 0.147 0.418 0.701 

Travel time to extension services 0.003 0.039 0.075 0.001 0.025 0.058 0.005 0.064 0.128 
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iii. Climbing bean analyses 

Scenario 1 for climbing bean adopters shows a different spatial pattern (Table 7). 

Contrary to IBB bush adopters, the propensity of adoption of IBB climbing varieties 

increases with household's wealth and risk-taking households or households with less 

farming experience. In the SDM, the direct and direct effects turned statistically 

significant at the 5 percent level (Table 9) for four covariates: household's wealth, 

number of bean varieties cultivated, household head farming experience, and IBB 

planting material received from friends or relatives. The largest total marginal effect 

was associated with IBB planting material from friends or relatives followed by 

household's wealth, which increased the probability of adoption by 25 percent, the 

number of bean varieties grown by the household, which increased the propensity of 

adoption by 5 percent. To cope with the risk associated with crop failure and food 

insecurity, bean farmers cultivate more than a single bean variety.  

In scenario M2, three variables turned statistically significant at the 5 percent 

level: management practices, household size, and household education level (table 7). 

Household size positively affects the propensity of IBB adoption, with a positive 

direct impact of increasing adoption by 2 percent for an additional member in the 

household. Larger households have the capacity to increase the labor availability 

required with the adoption of a new variety, such as IBB, while household education 

level had a direct impact of increasing the probability of adoption by 3 percent. Most 

notably, the results suggest that the average education level of household members 

(rather than the education level of the head of household) influence the adoption of 

new technology, and it is positively correlated with wealth. Farming households that 
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are more educated are wealthier, and thus the education–adoption relationship may 

represent an income effect (Jolliffe, 2002). Also, as it was reported in the descriptive 

statistics, wealth may be correlated with the scale of operation, as adopters tend to 

manage more and larger plots.  

Tables 8 to 10 summarize the observed values of the estimates of the marginal 

effects for specifications M1 and M2 of the SAR and SDM models for climbing bean 

growers. The SDM model effect for specification M1 (Table 9), out of the nine 

covariates, just four covariates are statistically significant at the 5 percent level: 

farming experience, number of bean varieties cultivated, wealth index, and IBB 

planting material from friends or relatives. The positive direct effect of the number of 

bean varieties cultivated and planting material from friends or relatives suggest that 

higher values of these variables for bean growing household ℎ𝑖 lead to an increase in 

the propensity of adoption of IBB climbing varieties. Farming experience indicates a 

negative direct effect suggesting that household heads with less farming experience 

are more likely to adopt IBB climbing varieties. Socioeconomic characteristics of 

neighboring bean farmers, such as their household size and level of education exert 

positive spatial spillovers on IBB adoption rates. Higher magnitude of the estimated 

parameters of these covariates increases the propensity of the adoption of IBB 

climbing varieties.  For specification M2 (Table 11), out of the seven included 

covariates, three variables—management index, household size, and household 

average years of schooling—are statistically significant at the 5% level for both the 

direct and the estimates of the indirect effects. Contrary to IBB bush varieties, where 

the last two covariates were not statically significant. 
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The national adoption rate of IBB varieties was 28 percent. To better understand 

patterns of IBB adoption at sub-national level, Figure 5 contains a choropleth map of 

the prevalence rates of IBB adoption by bean types at the district level. From this 

map, I highlight two spatial patterns. First, from the choropleth map, it is clear that 

the rates of adoption for IBB bush varieties are higher in the Eastern region and 

gradually decreasing toward the Central, Southern, and Western regions. IBB 

climbing varieties, on the other hand, have higher rates of IBB adoption in the 

Western and Northern regions. IBB bush varieties have higher probabilities of 

adoption in the Central and Southern regions.  

Figure 6 shows point estimates of village-level random effect for IBB climbing 

growers. The values of the point estimates range from -0.8 to 0.6 with a higher 

prevalence of villages with point estimates that range between -0.4 and 0. These 

villages have a lower probability to adopt IBB climbing varieties and do not follow a 

particular spatial pattern. On the other hand, the spatial footprint of villages with 

positive point estimates is less frequent. These villages have higher probabilities to 

adopt IBB climbing varieties and tend to form clusters. Geographic diffusion of iron 

biofortified planting material occurs among these neighboring villages that exhibit: 

interdependent decision-making patterns, as well as similar characteristics relative to 

the group.   
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Table 7 SDM probit model effects estimates for climbing bean growers (M1) 

Variables M1-SAR  M1-SDM M1-NSP  M2-SAR M2-SDM M2-NSP 

Rho 0.3128*** 0.293*    0.419*** 0.405**   

  (0.08145) (0.093)    (0.093) (0.096)   
Constant -1.446 -2.266 -1.907  -4.699 -3.867 -4.947*** 

  (8.491) (8.651) (8.394)  (7.728) (7.756) (7.649) 

Household size        0.075*** 0.075*** 0.070*** 
         (0.034) (0.035) (0.033) 

Number of economic active males in HH 0.059 0.047 0.039        

  (0.058) (0.061) (0.057)        
Number of children under 5 years old in HH -0.006 0.008 -0.001  0.005 0.046 0.017*** 

  (0.097) (0.100) (0.094)  (0.102) (0.099) (0.095) 

Log (HH head age) -0.803 -0.299 -0.548  1.794 1.527 1.764 
  (4.532) (4.619) (4.475)  (4.081) (4.113) (4.063) 

(Log(HH head age))² 0.201 0.128 0.158  -0.227 -0.187 -0.221 

  (0.603) (0.612) (0.595)  (0.533) (0.538) (0.533) 
Level education        0.094*** 0.101*** 0.0961*** 

         (0.033) (0.033) (0.032) 

Wealth Index 1.023** 1.17** 1.072**        
  (0.471) (0.464) (0.465)        

Number of varieties cultivated 0.227*** 0.236*** 0.219***        

  (0.037) (0.039) (0.038)        
Farming experience (years) -0.036** -0.038*** -0.035**        

  (0.017) (0.016) (0.016)        

Share of land area with legal title        -0.001 -0.001 -0.001 
         (0.001) (0.001) (0.001) 

Management Index        0.502* 0.517* 0.566** 
         (0.266) (0.303) (0.279) 

Land labor ratio (m²/person) -0.000 -0.000 -0.000        

  (0.000) (0.000) (0.000)        
Travel time to technical services 0.008 0.022 0.002  -0.008 0.003 -0.012 

  (0.020) (0.077) (0.023)  (0.017) (0.067) (0.021) 

Planting material from friends or relatives 9.584*** 11.73** 27.75        
  (1.412) (2.968) (669.1)        

W-Household size          -0.041   

           (0.061)   
W-Number of economic active males in HH   0.108          

    (0.113)          

W-Number of children under 5 years old in HH   -0.329*      -0.203   
    (0.194)      (0.175)   

W-Log (HH head age)   0.009      0.002   

    (0.012)      (0.009)   
W-Level education          -0.045   

           (0.055)   

W-Wealth Index   -0.959          
    (0.919)          

W-Number of varieties cultivated   -0.034          

    (0.066)          
W-Farming experience (years)   -0.019          

    (0.019)          

W-Share of land area with legal title          -0.004   
           (0.003)   

W-Management Index          0.517   

           (0.303)   
W-Land labor ratio (m2/person)   0.000          

    (0.000)          

W-Travel time to technical services   -0.011      -0.014   
    (0.078)      (0.068)   

W-Planting mat. From friends or relatives.   0.054          

    (0.867)          
Kelejian-Prucha (error)     4.013***      4.582***  

Log likelihood  -249.459 -244.114 -252.6889  -326.712 -322.465 -326.984 

BIC 569.522 616.663 575.9799  717.607 754.042 711.733 
AIC 520.919 528.296 527.3779  673.423 678.930 671.968 

Number of observations 613 613 613  613 613 613 

Notes: () are standardized errors. *, ** and *** denote significance at the 10%, 5%, and 1% level, respectively 
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Figure 5 Choropleth map: prevalence rate of IBB adoption, by district 

 
 

Figure 6 Point estimates of village-level random effect: IBB climbing M1.IID 

 

Note: Random effect values range from -1 to 1. Values around zero suggest spatial 

randomness, residual values close to 1 suggest spatial clustering and residual values 

close to -1 suggest a negative spatial association. 
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Table 8 SAR and GLM probit model effects estimates for climbing bean growers (M1) 

 Direct effect Indirect effect Total effect 

Variables  Lower 0.05 Coefficient Upper 0.95 Lower 0.05 Coefficient Upper 0.95 Lower 0.05 Coefficient Upper 0.95 

Number of economic active males in HH -0.008 0.013 0.034 -0.003 0.006 0.017 -0.011 0.019 0.052 

Number of children under 5 years old in HH -0.037 -0.001 0.033 -0.019 -0.001 0.015 -0.055 -0.002 0.047 

Log(Household head age) -1.788 -0.171 1.490 -0.843 -0.086 0.680 -2.579 -0.257 2.101 

(Log(Household head age))² -0.175 0.043 0.260 -0.081 0.021 0.127 -0.259 0.064 0.373 

Wealth Index 0.055 0.222 0.389 0.022 0.104 0.210 0.080 0.326 0.582 

Number of varieties cultivated 0.036 0.049 0.061 0.011 0.023 0.037 0.052 0.073 0.093 

Farming experience (years) -0.014 -0.008 -0.002 -0.008 -0.004 -0.001 -0.022 -0.012 -0.003 

Land labor ratio (m²/person) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Travel time to technical services -0.005 0.002 0.009 -0.002 0.001 0.005 -0.007 0.003 0.014 

Planting material from friends or relatives 1.506 2.090 2.648 0.491 0.959 1.427 2.349 3.049 3.796 

 
Table 9 SDM probit model effects estimates for climbing bean growers (M1) 

 Direct effect Indirect effect Total effect 

Variables  Lower 0.05 Coefficient Upper 0.95 Lower 0.05 Coefficient Upper 0.95 Lower 0.05 Coefficient Upper 0.95 

Number of economic active males in HH -0.013 0.010 0.032 -0.005 0.004 0.016 -0.018 0.014 0.046 

Number of children under 5 years old in HH -0.036 0.002 0.036 -0.014 0.001 0.016 -0.048 0.002 0.052 

Log(Household head age) -1.692 -0.069 1.587 -0.754 -0.015 0.729 -2.327 -0.083 2.303 

(Log(Household head age))² -0.186 0.028 0.243 -0.087 0.010 0.105 -0.273 0.038 0.340 

Wealth Index 0.097 0.251 0.414 0.022 0.106 0.231 0.130 0.357 0.619 

Number of varieties cultivated 0.037 0.051 0.064 0.008 0.021 0.039 0.049 0.072 0.096 

Farming experience (years) -0.014 -0.008 -0.003 -0.007 -0.003 -0.001 -0.020 -0.012 -0.004 

Land labor ratio (m²/person) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Travel time to technical services -0.023 0.005 0.031 -0.009 0.002 0.015 -0.031 0.007 0.045 

Planting material from friends or relatives 1.514 2.524 3.660 0.423 0.999 1.609 2.240 3.523 4.733 
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Table 10 SAR and GLM probit model effects estimates for climbing bean growers (M2) 

Variables Direct effect Indirect effect Total effect 

 Lower 0.05 Coefficient Upper 0.95 Lower 0.05 Coefficient Upper 0.95 Lower 0.05 Coefficient Upper 0.95 

Household size -0.019 0.002 0.022 -0.015 0.001 0.018 -0.034 0.003 0.039 

Number of children under 5 years old in HH -0.101 -0.046 0.010 -0.083 -0.034 0.006 -0.177 -0.079 0.016 

Log(HH head age) -1.388 0.860 3.193 -1.001 0.662 2.619 -2.440 1.522 5.696 

(Log(HH head age))² -0.432 -0.129 0.167 -0.359 -0.099 0.123 -0.766 -0.228 0.296 

HH average years of schooling -0.014 0.008 0.028 -0.010 0.006 0.022 -0.024 0.013 0.049 

Share of land area with legal title 0.000 0.001 0.001 0.000 0.000 0.001 0.000 0.001 0.002 

Management Index 0.073 0.230 0.386 0.043 0.167 0.311 0.124 0.397 0.659 

Travel time to extension services -0.004 0.005 0.015 -0.003 0.004 0.012 -0.006 0.009 0.026 

 

Table 11 SDM probit model effects estimates for climbing bean growers (M2) 

 Direct effect Indirect effect  Total effect  

Variables  Lower 0.05 Coefficient Upper 0.95 Lower 0.05 Coefficient Upper 0.95 Lower 0.05 Coefficient Upper 0.95 

Household size 0.004 0.022 0.039 0.002 0.014 0.030 0.007 0.036 0.066 

Number of children under 5 years old in HH -0.035 0.013 0.060 -0.024 0.009 0.044 -0.060 0.022 0.100 

Log(HH head age) -1.489 0.431 2.356 -0.958 0.319 1.820 -2.400 0.751 4.149 

(Log(HH head age))² -0.307 -0.053 0.199 -0.236 -0.039 0.127 -0.537 -0.093 0.326 

HH average years of schooling 0.013 0.029 0.044 0.006 0.019 0.037 0.022 0.048 0.076 

Share of land area with legal title -0.001 0.000 0.000 -0.001 0.000 0.000 -0.002 0.000 0.001 

Management Index 0.012 0.148 0.294 0.006 0.100 0.226 0.019 0.247 0.495 

Travel time to extension services -0.031 0.001 0.034 -0.021 0.001 0.024 -0.050 0.002 0.055 
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Table 12 Multilevel spatial regression models for bush and climbing bean growers 

Variables Bush Climbing 

  M1.IID M2.IID M1.IID M2.IID 

Constant 8.139 5.941 4.436 7.835 

  (15.502) (13.414) (14.933) (13.353) 

Household size   0.020   0.128*** 

    (0.064)   (0.059) 

Number of economic active males in HH 0.293***   0.056   

  (0.102)   (0.099)   

Number of children under 5 years old in HH -0.318** -0.280* -0.014 0.039 

  (0.184) (0.170) (0.168) (0.167) 

Log (HH head age) 4.115 2.850 -0.401 2.641 

  (8.352) (7.178) (7.957) (7.091) 

(Log(HH head age))² -0.773 -0.462 0.210 -0.330 

  (1.121) (0.949) (1.057) (0.929) 

HH average years of schooling   0.030   0.170*** 

    (0.066)   (0.056) 

Wealth Index 0.545   2.002**   

  (0.882)   (0.847)   

Number of varieties cultivated 0.513***   0.397***   

  (0.073)   (0.071)   

Farming experience (years) 0.065***   -0.067**   

  (0.018)   (0.031)   

Share of land area with legal title   0.003   -0.002 

    (0.002)   (0.003) 

Management Index   1.387***   0.970** 

    (0.491)   (0.506) 

Land labor ratio (m²/person) 0.000   0.000   

  (0.000)   (0.000)   

Travel time to technical services -0.003 0.038 0.006 -0.024 

  (0.045) (0.037) (0.044) (0.042) 

Planting material from friends or relatives 20.481***   22.064**   

  (12.315)   (12.818)   

Log Likelihood -269.670 -342.630 -310.600 -375.700 

DIC 453.540 605.390 535.290 664.980 

WAIC 454.890 605.160 537.400 663.220 

Number of observations 506 506 613 613 
Notes: () are standardized errors. *, ** and *** denote significance at the 10%, 5%, and 1% level, respectively 
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V. Conclusions 

This chapter contributes to the research literature in two ways. First, it provides a 

national and a sub-national analysis on the intensity of adoption and adoption rates of 

iron biofortified beans (IBB) by bean type. Second, the chapter examines, with the 

assistance of spatial econometrics techniques and theories of social interaction, and 

choice behavior, how households and farms characteristics, as well as regional 

factors, influence smallholder farmers' decisions to grow IBB. I used a cross-sectional 

nationally representative survey of bean producing households on bean varieties 

grown in 2015 season B in Rwanda. I employed two spatial probit specifications, 

spatial autoregressive model (SAR) and spatial Durbin model (SDM), to empirically 

assess the interdependence of farmers’ decisions to adopt IBB. Robustness of the 

results was tested by setting a simple social grouping where smallholder farmers are 

nested within villages. This multilevel fixed model with random effect (village) 

produced weaker spatial relationship across villages. This confirms our hypothesis 

that closer neighbors matter more than those farther away.  

The tabular analyses of the data indicate that local bean varieties still dominate 

the area under bean cultivation, followed by improved and IBB varieties, 

respectively. Given that IBB varieties were only released 3-5 years prior to the time 

of the survey, 11 percent coverage figure indicates the intensity of adoption of IBB, 

suggesting early stages within a long-run S-shaped adoption curve. The spatial 

econometric results indicate interdependence on farmers' decisions to adopt IBB. In 

addition to the directly targeted beneficiaries, the parameter ρ suggests that the 

biofortification program affected non-beneficiaries as well. This finding indicates that 
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(1) a household is more likely to grow IBB if the household is near other early IBB  

adopters which communicate about the nutritional and yield benefits of IBB 

technology and (2) the propensity of a household to grow IBB varies with the 

characteristics of neighboring farmers. A non-spatial probit model would not measure 

spatial association as an indicator of interaction of farmers in a social network.  

Structural factors are the main direct and indirect determinants for predicting the 

likelihood of adoption of IBB varieties. For IBB bush growers, these factors include 

the number of economically active male members in a household, and management 

practices. In absolute terms, the largest total marginal effect is management practices. 

For IBB climbing growers, household size and education level were most effective to 

exert direct and indirect effect in the adoption of IBB. Common factors that influence 

the adoption of IBB varieties for both bush and climbing bean growers include the 

number of years of farming experience and the number of varieties cultivated. 

Farming experience has a negative direct impact, as well as a negative spatial 

spillover on the household’s propensity to adopt IBB climbing varieties. In contrast to 

the adoption of IBB bush varieties, years of farming experience have a positive direct 

impact on the adoption of IBB varieties and a positive spatial spillover. The second 

common factor that influences the adoption of IBB is the number of varieties 

cultivated. I observe a positive direct effect associated with the number of varieties 

cultivated, suggesting that a higher value of this variable leads to an increase in the 

propensity to adopt IBB varieties by the household. I considered the variable planting 

material from friends or relatives of a smallholder farmer as covariate. The coefficient 

for this covariate for both IBB bush and climbing growers was positive and 
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significant, which further supports the positive role of social interaction in technology 

diffusion. 

Some general policy implications can be drawn from the above results. First, 

drafting a differentiated geographical targeting strategy for bush and climbing bean 

varieties as a function of farmer and farm characteristics might increase adoption 

rates on the most vulnerable groups in rural areas. Second, if schooling augments the 

propensity to adopt climbing IBB varieties, increasing educational levels on the 

nutritional and agronomic benefits of IBB might be an effective policy to stimulate 

technological diffusion. Third, strengthening partnerships with extension services will 

stimulate adoption. Fourth, considering spatial econometric techniques in program 

evaluation helps to assess the impact of policies on indirect beneficiaries. Finally, 

considering progressive farmers and strengthening social group activities when 

designing technology-promotion programs increases the spread of information and 

geographical diffusion of IBB. In sum, social interaction works as an invisible cost-

effective delivery strategy of IBB in rural population that are likely at risk of iron 

deficiency. These activities might continue to support scaling up of delivery activities 

for IBB varieties in rural areas of Rwanda. 
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Chapter 5:  Impact of iron biofortified beans on yields and 

farmers’ incomes: The case of Rwanda 
 

I. Introduction 

In Rwanda, micronutrient malnutrition is highly pervasive. Thirty seven percent 

of children under five years of age and nearly 20 percent of women of childbearing 

age suffer from anemia (NISR, 2015) in the country, and about 25 percent of children 

and 37 percent of women have iron deficiencies (Petry et al., 2016). At the same time, 

Rwandans have one of the highest per capita bean consumption rates in the world, 

with rural households consuming beans on average six days a week (Asare-Marfo et 

al., 2016), and in significant quantities (Berti et al., 2012). However, in terms of bean 

production, bean farmers in Rwanda have low productivity (FAO, 2020) translating 

into low food availability. With less food available, vulnerable populations face an 

increased risk of malnutrition. To satisfy growing food demand, there are two broad 

options: 1) increase land under production, 2) food imports, or/and 3) boost crop 

productivity. Crop productivity can increase through the adoption of higher yielding 

varieties and more efficient production techniques.   

Following several years of collaborative research between HarvestPlus, the 

Rwanda Agriculture Board (RAB), and the International Center for Tropical 

Agriculture (CIAT), four iron biofortified bean (IBB) varieties were officially 

released for planting in Rwanda in 2010. Another six were released in 2012. Of the 

IBB varieties released, two were bush and eight were climbing types. Farmer 

feedback studies on the IBB varieties conducted following early delivery efforts have 
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shown that farmers are willing to grow these beans in increasing areas as well as to 

share the planting material with others. Consumer acceptance studies found that 

consumers prefer the IBB varieties over most of their local varieties (Oparinde et al., 

2016).  

In addition to their nutritional benefits, biofortified crop varieties are bred to yield 

as well as the best yielding current varieties. However, these hypotheses haven’t been 

tested. Therefore, in Rwanda, adoption of IBB is expected to improve yields, which 

may translate into one or a combination of the following: (1) higher household 

consumption of IBB, that will translate into improved iron intakes, and (2) higher 

levels of market sales and hence subsequent income gains. Assessment of income 

gains is particularly important in Rwanda. The share of agriculture in GDP (32 

percent) is higher than the average for low-income countries (27 percent) and higher 

than the average in Sub-Saharan Africa (12 percent). Currently, there is very little 

empirical evidence on these hypotheses and also a lack of evidence on the 

productivity levels across the two bean types, especially for IBB varieties. By filling 

this important niche in the literature, this chapter achieves objective two of this 

dissertation: 

Objective 2: to estimate the potential impact of iron biofortified beans on 

smallholder farming households’ outcomes: yields and incomes in Rwanda 
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II. Background 

i. IBB adoption 

IBB are grown in every district of Rwanda. By the end of 2015 Season B, ten 

biofortified IBB varieties had been disseminated to smallholder farming households 

in Rwanda, out of which two are iron biofortified bush bean varieties: RWR2245 and 

RWR2154 and eight are iron biofortified climbing bean varieties. Figure 7 shows 

percentage of IBB area from 2010 to 2015 plotted against travel time to markets (see 

appendix A). Bush IBB adoption was highest in rural areas from onset and gradually 

increased over time to areas closer to markets of 50,000 inhabitants or more. On the 

other hand, climbing IBB adoption was highest in areas closer to markets and over 

time expanded to smallholder farming households living in rural areas. 

Figure 7 Cumulative percentage of area allocated per year for (a) IBB bush and (b) 

IBB climbing varieties  

(a) Cumulative percentage of area allocated per year for IBB bush 
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(b) Cumulative percentage of area allocated per year for IBB climbing 

 

ii. Bean prices 

In addition to the household survey, a community survey was implemented. Data 

on bean prices in 120 local markets during periods of both low and high seasonal 

availability of beans was collected in the community survey. To assign bean prices 

from local markets to the location of the 1,397 bean growing households, I employed 

spatial interpolation methods to create bean price surfaces across our study area. In 

this study, I used Thiessen polygons. Thiessen polygons (also known as Voronoi 

diagrams) are obtained by assigning to each bean farmer the bean price reported at the 

nearest local market. Basically, each Thiessen polygon represents a local market, 

which influences farmers' prices much more so than any other sample price point or 

local market. This process results in the partitioning of space into a tessellation of 
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many local markets, which corresponds to the notion of spatial local market areas 

where only transportation costs matter (Anselin & Le Gallo, 2006).  

Figure 8 Thiessen polygon interpolation of bean prices (RWF/kg) in local markets in 

Rwanda during periods of low availability of beans (left) and high availability of 

beans (right) in season B 2015 

 

Figure 8 shows prices of regular beans in local markets during periods of low and 

high availability of beans in season B 2015. During low availability periods, prices 

ranged from 290 RWF/kg to 1000 RWF/kg, with an overall mean of 470 RWF/kg. 

This overall mean hides considerable variability across provinces. For instance, the 

average bean prices for local markets in districts in Eastern Province was 398 

RWF/kg, while it was 425 RWF/kg in Kigali city, 485 RWF/kg in districts in 

Northern Province, and 500 RWF/kg in the Southern and Western provinces. During 

high availability periods, bean prices dropped by 29%. Bean prices ranged from 150 

RWF/kg to 600 RWF/kg with a mean of 320 RWF/kg. A similar pattern was 



 

92 

 

observed with lower prices in the eastern part of the country. To estimate production 

values for the analysis here of the impact of IBB on smallholder farming household 

income, I used the midpoint of prices during the low and the high availability periods 

for beans in season B 2015 in local markets. 

III. Results and Discussion 

i. Impact of iron biofortified beans on yields and smallholder farming 

households' incomes 

Tables 19 and 21 provide the results of the probit models for IBB bush and IBB 

climbing varieties, respectively. The bottom of the tables shows the diagnostics tests 

of spatial dependence, all of which are significant, hence, rejecting the null 

hypothesis that IBB adopters are randomly distributed. I re-estimated the probability 

of adoption and added it as a lagged variable in the multivariate matching algorithm. 

The Appendix provides a discussion of the results of the multivariate matching 

algorithm.  Chapter 4 provides a full discussion of the marginal effects of the 

propensity to adopt IBB varieties. For the purpose of this chapter, the discussion is 

focused on the impact of the treatment effect and on the heterogeneity of impacts on 

outcome variables. 

With respect to the impact, tables 13 and 14 provide summary statistics of the 

treatment effect on bean yields and agricultural incomes for both IBB bush growers 

and IBB climbing growers, respectively. As shown in table 1, IBB bush growers 

increased their bean yields by 153 kg/ha, which was a 23 percent increase over prior 

yields. The 95 percent confidence interval around this estimate ranged between 73 
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kg/ha and 240 kg/ha. For IBB climbing growers as shown in table 2, their bean yields 

increased by 20 percent (equivalent to 182 kg/ha).  

I also examined IBB bean impact on smallholder farming households’ incomes. 

The conversion rate (PPP) from dollars to Rwandan francs is based on the 2015 

exchange rate of RWF 750=US $1.00. IBB bush growers increased their potential 

incomes by 27 percent (equivalent to $84/ha). IBB climbing growers increased their 

potential incomes by 23 percent (equivalent to $110/ha. The total national economic 

value added for both IBB bean types in season B 2015 equaled 2.5 million US 

dollars. Extrapolated from the onset of the iron biofortification bean program, the 

total economic value added equaled 9 million US dollars. 

Table 13 Models for potential outcomes (ATT) for IBB bush growers – estimates and 

95% confidence intervals (CI) 

 Summary 

Treatment effect Mean P-value CI 

Yield gain (kg/ha) 153.54 0.04 73 - 240 

 (72.36)   

Income gain ($/ha) 84.41 0.02 39 - 127 

 (37.19)   

Total added value ($) 1,524,106   
ATT = average treatment on the treated, based on 1000 simulations. The 

model reported the average yields of bush type of IBB: 805 kg/ha and the 
average yields of regular bush beans: 652 kg/ha. N=206 
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Table 14 Models for potential outcomes (ATT) for IBB climbing growers – estimates 

and 95% confidence intervals (CI) 

 Summary 

Treatment effect Mean P-value CI 

Yield gain (kg/ha) 181.53 0.04 78 - 292 

 (90.97)   

Income gain ($/ha) 109.74 0.02 56 - 162 

 (47.97)   

Total added value ($) 1,236,169   
ATT = average treatment on the treated, based on 1000 simulations. The 

model reported the average yields of climbing type of IBB: 1081 kg/ha and the 

average yields of regular climbing beans: 899 kg/ha. N=206 

The results of the sensitivity analysis by IBB type are presented in Table 23 in the 

Appendix. This analysis checks for the presence of hidden bias due to unobserved 

covariates that are related to the treatment assignment mechanism. The larger gamma 

value indicates the group difference is more resistant to hidden bias. For IBB bush 

adopters, a change of 0.04 or 0.08 on the odds of treatment assignment will change 

the treatment effect from significant to non-significant at the 5 and 10 percent 

significance levels, respectively. 

This indicates that the treatment effect could be quite easily altered by accounting 

for some unobserved covariates. For IBB climbing adopters, a change of 0.09 or 0.15 

on the odds of treatment assignment will change the treatment effect from significant 

to non-significant at 5 and 10 percent significance levels, respectively. This indicates 

that the conclusion of treatment effect is less sensitive to being altered by accounting 

for some presently unobserved covariates. 

While our estimates of impacts are significantly positive, impacts on outcomes are 

heterogeneous across farming households. I invoke the ignorability assumption that 
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after I control for a set of observed covariates, there are no additional confounders 

between farming households that adopted and did not adopt IBB. 

ii. Heterogeneous treatment effect over PS, land-labor ratios, and travel time to 

markets 

Figures 9 and 10 show how the treatment effect on yields and incomes varied over 

PS for bush and climbing bean growers, respectively. For the bush bean growing 

smallholder farming households, the impact on yields was highest and positive for 

farming households less likely to grow IBB. The impact declines to a threshold before 

the impact on yields starts to increase again. Figure 10 (b) shows the case of climbing 

bean growers. The results suggest that households with the lowest PS had the greatest 

yields and incomes gains. Farming households with PS higher than 0.6 tended to have 

lower treatment effect on yields and incomes. The impact on incomes was similar to 

yields, but it declined to a positive value and remained relatively even for farming 

households with PS greater than 0.6 for both growing mechanisms. These findings 

were unexpected and suggests the presence of negative and positive selections. 
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Figure 9 Heterogeneity of treatment effect of PS over (a) yields and (b) incomes - 

IBB bush 

(a) Yields 

 
 

 

 

(b) Incomes 
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Figure 10 Heterogeneity of treatment effect of PS over (a) yields and (b) incomes - 

IBB climbing 

(a) Yields 

 
 

 

(b) Incomes 

 

These findings suggest that the delivery of IBB seed was most effective in 

increasing the yields and incomes of farmers who were less likely to adopt IBB. This 

outcome is partially explained by the fact that extension agencies have been tailored 
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by design to target smallholder farming households with less access to agricultural 

inputs, less technologically advanced, and less wealthy. The aim of the 

biofortification program is to reduce micronutrient deficiency, rather than maximizing 

adoption. A possible explanation for the low propensity of IBB adopters with 

relatively large yields and incomes might be related to the proximity of farming 

households with respect to markets and land-labor ratios. In Rwanda, IBB adoption 

has led to an increase in yields and an increase in incomes, thus creating a win-win 

situation in smallholding farmers. Our results of negative selection are similar to 

previous research that highlights the problem of negative selection. Verhofstadt & 

Maertens (2015) reported negative selection on cooperative memberships; they found 

the largest impacts among smallholder farming households with the lowest 

probability to become a cooperative member. 

Another significant finding of this study relates to how treatment effect on yields 

and incomes varied over land-labor ratios. Figures 11 and 12 show these relationships 

for IBB bush growers and IBB climbing growers, respectively. I observed a negative 

relationship between land-labor ratios and outcomes. The treatment impact on yields 

and incomes was the highest for farming households with small land-labor ratios in 

both groups of IBB growers. Most evidence from within low-income countries 

suggests that agricultural productivity and scale are inversely related (Hazell, Poulton, 

Wiggins, & Dorward, 2010).  
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Figure 11 Heterogeneity of treatment effect of land-labor ratios over (a) yields and (b) 

farmers’ incomes - IBB bush 

(a) Yields 

 

(b) Incomes
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Figure 12 Heterogeneity of treatment effect of land-labor ratios over (a) yields and (b) 

farmers’ incomes - IBB climbing 

(a) Yields 

 

(b) Incomes 

 

The literature has highlighted several explanations for the inverse relationship, 

including risk, labor market, and omitted variable bias. Ali & Deininger (2015) 

reported evidence of a strong inverse relationship between land-labor/farm size and 

productivity in Rwanda. They argued that labor market imperfections drive the 

inverse relationship, rather than other unobserved factors. Foster & Rosenzweig 
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(2017) reported that smallholder farms that are exclusively managed and run by 

family members have lower operational costs. Larson, Otsuka, Matsumoto, & Kilic 

(2014) underlying premise is that small farms are productive in the African context 

and they do not experience economies of scale. Given the consensus that smaller 

farms have a lower land-labor ratio than large farms, I could argue that small farms 

enjoy higher land productivity in the short-run. However, over the long-run, land 

productivity would tend to decrease given heavy cultivation of the land. This study 

provides evidence of this inverse relationship based on smallholder farming 

households in a similar environment, markets, and technology frontier. 

In addition, it is important to ask how treatment effects on yields and agricultural 

incomes vary over travel time to markets. Travel time to the nearest market is a key 

factor for increasing agricultural productivity. This is because it determines farmers’ 

physical accessibility to agricultural inputs and influences smallholder farming 

households’ ability to sell crop surpluses. By way of illustration, in Sub-Saharan 

Africa, Dorosh et al., (2012) reported that agricultural production and adoption of 

technology were highly correlated with the proximity to urban markets. Figures 13 

and 14 show how ATT varies over travel time to midsize towns. I found a negative 

relationship between travel time to markets and treatment effects over yields and 

incomes. These findings imply that the delivery of IBB seeds was most effective in 

increasing the yields of farming households located closer to midsize markets. 

Similarly, treatment impact over income was greater for farming households closer to 

markets than farming households in most rural areas.  
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Figure 13 Heterogeneity of treatment effect of travel time to markets over (a) yields 

and (b) farmers’ incomes - IBB bush 

(a) Yields 

 

(b) Incomes 
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Figure 14 Heterogeneity of treatment effect of travel time to markets over (a) yields 

and (b) farmers’ incomes - IBB climbing 

(a) Yields 

 

(b) Incomes 

 

This combination of findings provides some support for the conceptual premise 

that: (1) farming households closer to markets might be able to trade beans at higher 

prices, allowing for higher income gains and lower transaction costs; and (2) farming 

households in remote areas might face higher transportation costs in order to trade 

their crop surpluses in larger markets. On the first premise, providing nutrition 

information about the IBB varieties, these varieties might receive a premium from 
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consumers. The farming households that benefit from proximity to midsize towns 

tend to have smaller land-labor ratios. 

Together, these results provide important insights into geographic targeting for 

introducing iron biofortified staple food crops. I found evidence that impact on 

smallholders’ outcomes varied by their propensity to adopt IBB, land-labor ratios, 

and travel time to markets. The incidence of higher income along with bean yields 

increases as a farmer’s propensity to adopt IBB decreases (negative selection), land-

labor ratios decrease, and travel time to markets decreases.   

iii. Policy Implications 

On a policy level, this study provides positive empirical evidence that 

demonstrates the superior yield and potential income effects of growing biofortified 

beans as it supports the hypothesis that IBB growers have significantly higher yields 

than farmers that grew non-biofortified (improved or traditional) beans. This 

increases the food availability to vulnerable populations by boosting the adoption of 

higher yielding varieties. These findings provide evidence that supports continuing 

investment in agricultural research, such as the biofortification of staple food crops, 

as a cost-effective strategy to reduce micronutrient deficiency and to mitigate rural 

poverty in Rwanda.   

I found evidence of negative selection in the incidence of higher yields and 

incomes increasing as farmers’ propensity to adopt IBB decreases (negative 

selection). This is partially explained by the early delivery strategy of reaching the 

most vulnerable populations in remote and rural areas, which have little to no access 
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to agricultural inputs, are less technically advanced, and comparatively considered to 

be less wealthy farming households.  

I also examined the heterogeneous treatment effects on outcomes by propensity 

score and a set of covariates, key for program targeting and for policy formulation. 

Understanding the pattern of heterogenous treatment effects across the targeted 

population can help policymakers to effectively classify target geographic areas for 

investment. In addition to production, consumption, and micronutrient indicators, a 

subnational geographic index could factor in covariates. These could include travel 

time to urban centers as a proxy of delivery costs and consumer's propensity to adopt 

as a proxy to market segmentation. In summary, such an index could help inform 

future biofortification programs on how to tailor and assign different treatments to 

smallholder farmers with various characteristics by geography. Overall, the potential 

outcomes from tailored extension services include an increase in adoption rates, a 

strategy to maximize average outcomes (yields and incomes), and a strategy to reduce 

delivery costs.  

Given the mounting evidence of, positive and significant nutrition, cognitive and 

physical performance impacts of IBB, the policies and investments for their scale up 

are expected to be beneficial for nutrition, for health, and for income outcomes. 

IV. Conclusions 

In this chapter, I contributed to the empirical literature on assessing the impact of 

improved and biofortified crop varieties. More notably, I examined the impact of iron 

biofortified bean (IBB) varieties on Rwandan smallholder farming households’ 

livelihoods, focusing on the outcomes of yields and incomes for beneficiary 
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households. It supports the hypothesis that IBB growers had significantly higher 

yields (23 percent for bush and 22 percent for climbing bean types), and potential 

incomes (24 percent for bush and 25 percent for climbing bean types) than farmers 

that grew non-biofortified (improved or traditional) beans. Our empirical analysis 

demonstrated the need to control for spatial spillovers which provide evidence that 

adopting households nearby increases a smallholder farming household’s probability 

of adoption of iron biofortified beans. 
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Chapter 6:  Efficiency analysis of smallholder bean farming 

households  

I. Introduction 

Agriculture is an important sector in Rwanda’s economy. It accounts for 39 

percent of gross domestic product (GDP) and 80 percent of employment (World 

Bank, 2013). Rwandans have one of the highest per capita bean consumption rates in 

the world, with rural households consuming beans on average six days in a given 

week (Asare-Marfo et al., 2016), and in significant quantities (Berti et al., 2012). 

Despite beans being naturally high in iron content, a significant proportion of the 

Rwandan population is at risk of iron deficiency, resulting in loss of economic 

development and growth. Beans have the highest share of the crop-harvested in 

Rwanda, though, there are significant productivity challenges. Limited access to 

agricultural technology, in particular seeds of improved varieties of beans and other 

complementary inputs such as fertilizers or staking material for higher yielding 

varieties like climbing beans can partially explain the country’s low productivity 

issue. Therefore, there are significant yield gains to be made from the introduction 

and scaling up of seeds of improved varieties of beans.  Iron biofortified beans (IBB) 

can not only help improve yields and hence incomes, but also nutrition and health 

outcomes (e.g., cognitive) and physical functions of consuming populations. 

Economic indicators of performance such as measures of productivity and 

efficiency are commonly used to investigate the impact of a new technological-

innovation on farmers’ outcomes (Duflo et al., 2008). Assessing farmers’ efficiency 

defined as the ability of farmers to utilize the best available technology and to allocate 
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resources productively, together with the impact of an intervention requires the 

combines application of analytical methods (e.g., for earlier examples (Bravo-Ureta et 

al., 2012; Dinar et al., 2007).  

When conducting efficiency analysis on a cross-sectional or a panel dataset, a 

high degree of heterogeneity may lead to biased and inefficient estimates of the 

efficiency scores. Recent literature has approached this problem in different ways. 

One way is using non-parametric techniques, such as data envelopment analysis 

(DEA), which ignore the functional form of the production function. Other studies 

have implemented a two-step approach: the first step estimates the frontier and the 

second step analyzes the determinants exerting influence over economic agents’ 

efficiencies (Chavas et al., 2005; Simar & Wilson, 2007). Greene (2008) proposed the 

true-fixed effects and the true-random effects models for panel data. When there is 

spatial heterogeneity, instead of including spatial fixed effects, some authors allow 

the externalities to spill over throughout the system, (Han, Ryu, & Sickles, 2016b). In 

this chapter, I implement the latter method through a three-pronged approach. 

The first prong assesses the importance of social networks in the adoption and 

diffusion of the technology in question (i.e., IBB). The second prong uses a 

multivariate matching algorithm method to measure the impact of growing IBB on 

farmers’ bean yield and bean income. This second prong also produces a mechanism 

for controlling for observable heterogeneity and for producing an unbiased subsample 

for the third prong, namely the technical efficiency analysis. In this latter prong, 

spatial stochastic frontier models are fit to each of the data groups (control, treated, 

and pool).  
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This chapter contributes to the research literature by presenting a case study on an 

intervention that delivered a new technology, IBB, in Rwanda. I developed a multi-

pronged approach and applied it to a cross-sectional, nationally representative data of 

bean farmers in Rwanda to estimate farmers’ unbiased efficiency scores. I combine 

spatial econometrics and quasi-experimental methods to estimate a national 

technological frontier for all bean farmers, a frontier for IBB growers, and a frontier 

for farmers that grow other improved or traditional bean varieties. I compare standard 

stochastic frontier models to spatial stochastic frontier models, which help us estimate 

efficiency spillovers among IBB growers (treatment) and others (control). Clustering 

analysis produces evidence on where and how this new technology has been 

effective, thereby providing valuable input into targeting strategies and resource 

allocation for scaling up of such interventions. By completing the above three-

pronged procedure, I achieve objective three of this dissertation:  

Objective 3: to estimate the impact of IBB on smallholder farming households’ 

efficiency.  

II. Results and discussion 

i. Bush bean farmers 

Table 15 presents the results of the fitted models for the pool, treated (bush IBB 

growers), and control (other bush bean growers) data groups. The starting point of the 

model is the production function estimated with OLS. To this end, I test whether the 

technical efficiency of farming households is stochastic. I also report the LM test 

statistics to determine which spatial terms are appropriate. For the former, the highly 
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significant (p=0.001) likelihood test confirms the presence of technical inefficiency 

LR=−2 ∗ [𝑙𝑛𝐿𝑜𝑙𝑠 − 𝑙𝑛𝐿𝑠𝑓𝑎], while the LM tests suggested different spatial 

specifications.  

As Table 15 shows, in the OLS-pool model the lack of significance of the IBB 

parameter suggests that there is no significant difference between the two groups of 

bean farmers: treated and control. However, the LR test (p=0.05), estimated as 𝐿𝑅 =

2 ∗ [𝑙𝑛𝐿𝑝𝑜𝑜𝑙 − (𝑙𝑛𝐿𝐼𝐵𝐵 + 𝑙𝑛𝐿𝑐𝑜𝑛𝑡𝑟𝑜𝑙)] rejects the null hypothesis of equality of the 

parameters across the treatment and control groups. Therefore, I estimated separate 

technology frontiers for each data group. The bottom of Table 15 shows the results of 

the spatial specification of the LM test statistics. The LM lag test favors the spatial 

autoregressive model for the pool and for the control data groups while the LM error 

test favors the spatial autoregressive error model for the treated group. The rho and 

lambda parameters were significant, justifying the need to use spatial econometrics. It 

is worth highlighting that the parameter rho (0.115) or global spatial multiplier is 

significant for the spatial stochastic frontier model - pool (SSFA-pool). This 

parameter reveals the link or spillover effect in the system between treated and 

control groups. Bean farmers who did not grow IBB got an indirect benefit of 12 

percent in terms of total bean production because they interact with neighbors who 

grew IBB. In addition, the IBB adoption parameter in both the stochastic frontier 

analysis - pool (SFA-pool) and the SSFA-pool models is positive and significant 

(p<0.10). 

With respect to the pool specifications of the SSFA; bean area, hired labor, and 

economic active population positively contributed the most to bean production. For 
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the control group (SSFA-C), bean area and hired labor positively contributed the 

most, whereas for the treatment group (SSFA-T), hired labor, seed, and bean area had 

a positive significance and the most influence on bean production. Interpretation of 

the coefficient requires the estimation of direct and indirect impact effects, which I do 

not discuss in this chapter to maintain its analytical focus. The sum of all partial 

production elasticities is larger than 1, suggesting bean farmers are not operating at an 

efficient scale. Scale efficiency (SE) analysis indicates farms of sizes smaller than SE 

are too small as they exhibit increasing returns to scale.  

In the last two rows of table 15, I include two summary measures of economic 

performance: relative efficiency and relative efficiency weighted by bean production 

(kg). In the SSFA-pool model, the relative efficiency of bean farmers estimated was 

0.18 while the relative efficiency weighted by bean production was about 0.361. In 

addition to having a higher relative efficiency, IBB bush growers had a 3 percent 

higher output than bean farmers with a similar level of inputs growing other bean 

varieties. 

 

 

 

 

 

 



 

112 

 

Table 15 Estimation results of an OLS, a non-spatial frontier analysis (SFA) model and a spatial frontier model (SSFA): pooled, 

control (C) and treatment (T) bush bean growers 

Variable OLS - pool SFA-pool SSFA-pool OLS-C SFA-C SSFA-C OLS-T SFA-T SSFA-T 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Log(Bean area) 0.514*** 0.641*** 0.522*** 0.582*** 0.747*** 0.578*** 0.447*** 0.483*** 0.466*** 

 (0.080) (0.073) (0.078) (0.121) (0.110) (0.117) (0.104) (0.088) (0.101) 

Log(Management index) 0.801 0.317 0.818 0.993 0.567 1.010 0.381 -0.179 0.179 

 (0.537) (0.462) (0.524) (0.779) (0.515) (0.748) (0.752) (0.612) (0.732) 

Log(Economic active population) 0.541** 0.554** 0.507** 0.509 0.243 0.394 0.674* 1.038*** 0.714** 

 (0.241) (0.203) (0.236) (0.363) (0.293) (0.358) (0.322) (0.334) (0.304) 

Hired labor (dummy) 0.627*** 0.441*** 0.608*** 0.445 0.443** 0.466 0.830*** 0.642*** 0.802*** 

 (0.181) (0.150) (0.176) (0.304) (0.207) (0.292) (0.222) (0.192) (0.205) 

Log(seed) 0.150 0.278 0.152 -0.180 -0.069 -0.138 0.768** 0.797*** 0.781*** 

 (0.206) (0.193) (0.201) (0.289) (0.276) (0.277) (0.302) (0.283) (0.282) 

IBB adoption 0.278 0.238* 0.282*       

 (0.172) (-0.132) (0.168)       

Constant 2.300 3.597*** -2.770 3.034*** 4.700*** 2.449*** 1.259* 2.194*** 0.040 

  (0.534) (0.509) (1.740) (0.749) (0.684) (0.769) (0.719) (0.677) (0.897) 

Observations 220 220 220 110 110 110 110 110 110 

Rho   0.115*   0.185*   0.27 

Lmerr 1.385   1.456   6.123***   

Lmlag 4.351   3.321*   1.101   

Log Likelihood -355.2678 -325.977 -353.676 -184.889 -166.765 -183.189 -165.042 -153.444 -162.920 

LR Test   3.183*   3.401*   4.243** 

TE   0.179   0.169   0.212 

Average TE     0.361     0.333     0.363 
Notes: () are standardized errors. *, ** and *** denote significance at the 10%, 5%, and 1% level, respectively
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ii. Climbing bean farmers 

As table 16 shows, the two pooled models, SSFA and OLS, suggest that there are 

no significant differences in output between IBB adopters and non-adopters. 

However, the LR test (p=0.01) provides strong evidence for the estimation of separate 

technologies for each data group. The LMlag test statistics are significant, suggesting 

the presence of spatial spillovers. The rho (0.09) parameter for the pool (SSFA-pool) 

was significant, revealing the presence of spatial spillovers between the treated and 

control groups, i.e. climbing bean growers who did not grow iron biofortified 

varieties got an indirect benefit of 9 percent in terms of total bean production. The 

sum of all partial production elasticities is larger than 1 which indicates increasing 

returns to scale in all models. Given increasing returns to scale, climbing bean 

growers are not operating at an efficient scale. 

The most influential parameters for both the, SFA-pool and the SSFA-pool 

models were the management index, bean area, and seed. For the SFA control (SFA-

C) model, bean area and economic active household members were the most 

influential parameters. The most influential parameters for the SSFA control (SSFA-

C) model were the management index and the bean area. The SSFA treatment (SSFA-

T) model shows something new compared to the control model. After the 

management index, the seed parameter shows a positive and large influence in 

households’ bean production. The management index indicates whether the farmers 

have irrigation systems, terraced plots and whether they apply pesticides, compost, 

manure, and fertilizers on their plots. Farmers that practice better management 

activities on their farms (i.e., those that have higher management index scores) 
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exhibit higher efficiency. The results indicate that, when controlling for the total bean 

area, there is a statistically significant and positive relationship between plot size and 

output of bean production. The quantity of seed used was positive and significantly 

(p=0.001) correlated with the output level. This suggests that the treatment group had 

access to new technologies, such as IBB planting material, and coupled with other 

agricultural inputs used by bean farmers within this group, managed to have higher 

bean production.  

In table 16, I observe the relative efficiency of bean farmers estimated with spatial 

pool stochastic production frontier was 0.262 while the relative efficiency weighted 

by bean production was 0.395. IBB climbing adopters reported higher relative 

efficiency than the control group of bean farmers. In addition to having higher 

relative efficiency, IBB climbing growers had 13 percent higher output than bean 

farmers with similar level of inputs who grew other bean varieties. 

 

 

 

 

 

 

 

 

 

 



 

115 

 

Table 16 Estimation results of an OLS, a non-spatial frontier analysis (SFA) model and a spatial frontier model (SSFA): pooled, 

control and treatment climbing bean growers 

Variable OLS-pool SFA-pool SSFA-pool OLS-C SFA-C SSFA-C OLS-T SFA-T SSFA-T 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Log(Bean area) 0.557*** 0.611*** 0.549*** 0.702*** 0.729*** 0.674*** 0.380*** 0.484*** 0.371*** 

 (0.051) (0.052) (0.050) (0.065) (0.066) (0.062) (0.081) (0.080) (0.074) 

Log(Management index) 1.131** 1.044*** 1.132*** 0.706 0.923 0.593 1.652 1.385*** 2.012*** 

 (0.418) (0.396) (0.409) (0.662) (0.605) (0.664) (0.559) (0.497) (0.506) 

Log(Economic active population) 0.217 0.257* 0.237 0.414* 0.433** 0.445** 0.046 0.080 -0.001 

 (0.175) (0.150) (0.172) (0.232) (0.211) (0.214) (0.257) (0.191) (0.233) 

Hired labor (dummy) 0.081 0.048 0.084 -0.060 -0.070 -0.069 0.119 0.092 0.151 

 (0.117) (0.104) (0.114) (0.167) (0.151) (0.161) (0.170) (0.138) (0.161) 

Log(seed) 0.564*** 0.500 0.549*** 0.400* 0.357* 0.403** 0.900*** 0.856*** 0.931*** 

 (0.152) (0.143) (0.149) (0.188) (0.182) (0.234) (0.253) (0.240) (0.234) 

IBB adoption 0.174 0.202** 0.170       

 (0.116) (0.132) (0.114)       

Constant 2.396 3.497*** 2.013*** 2.746*** 3.544*** 2.728*** 1.908** 3.189*** 1.768*** 

  (0.437) (0.436) (0.472) (0.543) (0.556) (0.513) (0.643) (0.568) (0.592) 

Observations 242 242 242 121 121 121 121 121 121 

Rho   0.091*   0.196**   0.236* 

Lmerr 3.094*   4.217   0.943***   

Lmlag 2.339   8.025*   3.482*   

Log Likelihood -303.537 -291.302 -302.04 -140.365 -137.273 -138.019 -155.545 -147.84 -153.425 

LR Test   2.983*   4.692**   4.240** 

TE   0.262   0.239   0.299 

Average TE     0.395     0.340     0.472 
Notes: () are standardized errors. *, ** and *** denote significance at the 10%, 5%, and 1% level, respectively
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iii. Truncated – second stage analysis 

In contrast to the input variables used in the first stage to estimate bean farmers’ 

relative efficiency, the covariates listed in table 17 are sources of inefficiency. 

Proximity to extension services is an indicator of regional endowment. Bean farmers 

closer to extension services had higher efficiency than those farmers farther away. 

The more distant farmers may incur higher transportation costs to access basic 

agricultural inputs and advice from extension services. Bean farmers with lower 

transportation costs are more efficient at connecting to markets to meet the demand 

for staple food crops in the local market. On this last point, proximity to towns with a 

population greater than 50,000 people was not significant. However, univariate 

statistical analysis shows a positive correlation for bean farmers’ efficiency near local 

markets. 

IBB adopters that sold their IBB surpluses in local markets show a strong positive 

effect in their relative efficiency. This suggests that bean farmers are likely to 

increase their participation, as sellers of staple food crops, in functioning markets that 

give them appropriate incentives to increase their agricultural income. Overall, access 

to IBB varieties brings about a significant change in crop production efficiency, 

which in turn improves farm households’ income. 

I found crop specialization is associated with higher efficiency. The parameter of 

crop diversification (i.e., the number of crops grown) was negative and significant. 

This evidence suggests that bean farmers’ efficiency increases as they cultivate fewer 

crops.  However, in Rwanda bean farmers grow up to six crops. The fact that most 

farms are dual or multi-crop farms suggests that the benefits of diversification are 



 

117 

 

significant in Rwandan agriculture, which I do not test in this study. These benefits 

could manifest in two ways: the presence of economies of scope, reflecting the 

reduced costs associated with producing multiple outputs; and the risk-reducing 

effects of diversification (Chavas et al., 2005). From a nutritional security and 

suitability (transaction cost) point of view, diversification can be efficient and 

sustainable in agriculture, but might have an adverse impact on yields of any one 

crop. 

The drought index (-1 to 1) parameter is also significant and has the most 

influence on farmers’ efficiency (magnitude of the coefficient). Negative values 

indicate areas affected by droughts and positive values indicate normal level of 

rainfall. The drought index helps to evaluate farmers’ ability to manage weather 

shocks. Households in areas less prone to droughts witnessed higher efficiency. This 

might be associated with farmers’ efforts to adapt to climate change by adjusting their 

farming management plans. 

Table 17 Truncated analysis of bean farmers' TE 

Variables Estimate 

Travel time to agrotechnical services -0.013 

 (0.007) 

Crop count index -0.076* 

 (0.039) 

Drought index 0.388** 

 (0.155) 

Bean farmers link to markets 0.149*** 

 (0.051) 

Intercept 0.072 

 (0.051) 

Log-Likelihood 289.10 

AIC -566.00 

Notes: () are standardized errors. *, ** 

and *** denote significance at the 10%, 

5%, and 1% level, respectively.  
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iv. Clustering analysis 

Figure 15 shows that the Moran’s I test (0.2839) confirms the presence of global 

spatial autocorrelation (pseudo-p < 0.001 randomized with 999 permutations). The 

scatter plot shows the values of a given location (x-axis) against the values of its 

neighbors (y-axis). The units are in standard deviations. Figure 16 splits the global 

spatial association into five observation groups in three categories: 

• no significant spatial association;  

• two sets of clusters, (2) hot spots (high-high) and (3) cold spots (low-

low); and  

• two sets of spatial outliers: (4) low-high and (5) high-low. 

 

Figure 15 Moran's I bean farmers' technical efficiency 
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Figure 16 LISA cluster map of farmers' technical efficiency 

 

The second cluster category in the legend in figure 15 are hotspots of bean 

farmers with high efficiency scores surrounded by farmers with similar efficiency 

scores. These hotspots, depicted in red, are found in the neighboring districts of 

Burera, Gakenke, and Musanze in the Northern region and in the districts of Nyabihu 

and Ngororero in the Western region. More hot spots are observed in the neighboring 

districts of Rwamagana and Bugeresa in the Eastern region. Hotspots of smallholder 

bean farming households are associated with attributes, such as households with a 

higher wealth index, a higher level of education, and a higher management index. In 

addition, these households tend to be in less vulnerable areas to droughts and sell 

their crop surpluses to local markets. The opposite hold for cold spots. Cold spots, the 

third cluster category (depicted in dark blue) of bean farmers with low efficiency 

scores are observed in the neighboring districts of Ruhango, Nyanza, and Huye in the 

Southern region and in the districts of Gatsibo and Nyagatare in the Eastern region. 
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The last two cluster categories are spatial outliers. The first set refers to bean 

farmers with low efficiency scores surrounded by farmers that are more efficient, 

depicted in light blue, while the second set of outliers reflect the opposite-farmers 

with high efficiency surrounded by farmers that are lower efficiency scores, depicted 

in yellow. Identification and training of farmers with high technical efficiency scores 

who are in closer proximity to those with lower technical efficiency scores could be a 

cost-effective strategy for the diffusion of new technologies, such as IBB varieties. 

III. Conclusions 

In this chapter, I used a multi-pronged approach to estimate the relative efficiency 

of bean farmers in Rwanda to provide key policy recommendations, as well as 

support country-program implementation. To control for self-selection, a multivariate 

matching approach was used to create two comparable matched groups: a treatment 

group, which included farmers who grew iron biofortified bean in 2015 Season B and 

a control group who grew other bean varieties. Then, a non-spatial stochastic frontier 

model and a spatial stochastic frontier model were fit for each of the three data 

groups: pool, control, and treated. In a second stage analysis, I fit a truncated model 

to validate and explore the sources of inefficiency. This chapter contributes to the 

literature by controlling for self-selection bias, missing counter-factual, and spatial 

spillovers. These analyses were conducted separately for climbing bean farmers and 

bush bean farmers. Results reveal that farming households who grew IBB varieties 

were more technically efficient and generated higher total bean production. Overall, 

the analysis shows a (positive) technology spillover is indeed an improvement in the 

use of the existing technology. 
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IBB bush and climbing growers had higher relative technical efficiency and 

higher total bean production than their counterpart in the control group of bean 

farmers. However, most bush and climbing bean farmers are not operating at an 

efficient scale. The sum of all partial production elasticities is larger than 1 which 

indicates increasing returns to scale in all models. In the second stage analysis, I 

discovered IBB growers that had market linkages were in areas less vulnerable to 

weather shocks and had better access to extension services. Based on these factors, 

they were more likely to exhibit higher relative efficiency scores. Clustering analysis 

helped to identify hotspots of bean farmers with high and low efficiency. Farmers’ 

efficiency could be increased given the current state of technology and it is possible 

to reach out to them through targeted, tailored-made interventions. These analyses 

provide valuable input into targeting strategies and resource allocation for scaling up 

of such interventions. 
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Chapter 7: Conclusion 
 

Summary 

 

Micronutrient malnutrition affects key development outcomes, including physical 

and mental development in children, vulnerability to disease, blindness, and general 

losses in productivity. In Rwanda, micronutrient malnutrition is highly pervasive, 

adoption rates of improved varieties of staple crops are low, and bean farmers' 

productivity levels are low. Since 2012, HarvestPlus and its partners have been 

intensively disseminating common iron biofortified bean (IBB) varieties to help 

alleviate iron deficiency in Rwanda. In this dissertation, I analyzed smallholder 

farming households' decisions to adopt these newly-released IBB varieties by 

specifically examining the influence of demand-side factors and the role of peers. To 

do so, I drew upon several theories from studies on the adoption of agricultural 

technology, social behavior, and utility maximization to test three hypotheses.  For 

the first hypothesis, I tested how the adoption behavior of smallholder farming 

households would be influenced by their neighbor’s adoption outcomes, as a result of 

peer learning about the profitability or the appropriate use of IBB. This phenomenon 

is known as endogenous effect, which is described as imitation, contagion, 

bandwagons, and social norms. For the second hypothesis, I modeled the effect of 

contextual factors, wherein the propensity of an IBB grower to behave is correlated 

with the exogenous characteristics of his/her neighbors. For the third hypothesis, I ran 

a new set of regressions with fixed and random effects. The model treats observations 

from a given village as a cluster and assumes a random effect for each village. As 

expected, the random effect produced a weaker spatial relationship. This result 
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confirms the hypothesis that closer neighbors matter more than those farther away. 

These analyses all together estimate the prevalence of IBB adoption by district.  

From a broader analytical perspective, the second part of this dissertation aimed at 

answering what was the economic impact of the biofortification program in Rwandan 

smallholder farming households’ outcomes: yields and incomes – a question that 

links the program delivery efforts and its economic impact on beneficiaries. In this 

analysis, I tested the null hypothesis of absolutely no effect on IBB adoption for any 

smallholder farming household. The results indicate that the adoption of improved 

IBB increased smallholder farming households’ yields and incomes, which may 

translate into improved iron intakes, and higher levels of market sales and hence 

subsequent income gains.   

The third part of this dissertation compares technical efficiency across IBB 

growers and non-IBB growers. After controlling for biases from observed and 

unobserved variables, IBB bush growers had a 3 percent higher output than non-IBB 

growers with a similar level of inputs. IBB climbing growers had a 13 percent higher 

output than bean farmers with similar levels of inputs who grew other bean varieties. 

In addition to having higher relative efficiency, the empirical results suggest that the 

frontier for IBB bush growers and the frontier for IBB climbing growers are located 

above the ones for the non-IBB grower groups.  

i. Research Objectives and Outcomes 

The first objective of this dissertation aimed to answer a question that relates to 

the risk a smallholder bean farming household faces in adopting IBB. To do so, I used 

the von-Neuman-Morgenstern utility framework. I approached this theoretical 
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framework by applying spatial econometric techniques to estimate neighborhood 

influence and to determine the factors driving the adoption of IBB. To estimate the 

strength of social interactions and the robustness of the results, I used different 

techniques including a spatial autoregressive probit model and a spatial Durbin 

model. The results show that the adoption of both bush and climbing IBB varieties 

exhibit positive spatial autocorrelation and spatial spillovers. This indicates that 

geographic diffusion of iron bean planting material occurs among neighboring 

farmers that exhibit interdependent decision-making patterns, as well as similar 

characteristics relative to the group. 

This dissertation contributes to the research literature in two ways. First, it 

provides spatially granular statistics on the intensity of adoption and adoption rates of 

IBB by bean type. Second, the paper examines, with the assistance of spatial 

econometrics techniques, theories of social interaction, and choice behavior, how 

household and farm characteristics, the role of peer influence, as well as regional 

factors, influence smallholder farming households' decisions to grow IBB. 

The second objective of this dissertation aimed to inform policy makers of the 

economic impact of IBB on smallholder farming households’ yields and incomes in 

Rwanda. To do so, I analyzed the impact of IBB on smallholder farming households’ 

yields and incomes. Using observational studies and spatial econometrics methods, 

this dissertation estimated the treatment effect and heterogeneous impact of IBB 

production on farmers’ yields and potential incomes. 

This dissertation adds to the empirical literature on assessing the impact of 

improved and biofortified crop varieties. I examined the impact of IBB varieties on 
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Rwandan farmers’ livelihoods, focusing on the outcomes of yields and incomes for 

beneficiary households. It supports the hypothesis that IBB growers had significantly 

higher yields (23 percent for bush and 22 percent for climbing bean types), and 

potential incomes (24 percent for bush and 25 percent for climbing bean types) 

compared with farmers that grew non-biofortified (improved or traditional) beans.  

The third objective complements the second objective at estimating the impact of 

IBB on smallholder farming household’s technical efficiency in bean production in 

Rwanda. This analysis provides key policy recommendations, as well as supports 

country-program implementation. To control for self-selection, a multivariate 

matching algorithm was used to create two comparable matched groups: a treatment 

group, which included farmers who grew iron biofortified bean in 2015 Season B and 

a control group who grew other bean varieties. Then, a non-spatial stochastic frontier 

model and a spatial stochastic frontier model were fit for each of the three data 

groups: pool, control, and treated. In a second stage analysis, I fit a truncated model 

to validate and explore the sources of inefficiency. 

This analysis contributes to the literature by controlling for self-selection bias, 

missing counter-factual, and spatial spillovers. These results provide less biased 

technological frontiers including a national technological frontier for all bean farmers, 

a frontier for IBB growers, and a frontier for farmers that grow other improved or 

traditional bean varieties. Results reveal that farming households who grew IBB 

varieties were more technically efficient and generated higher total bean production. 

Overall, the analysis shows a (positive) technology spillover, which is indeed an 

improvement in the use of the existing technology. 
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ii. Research Insights 

This dissertation provides recommendations for policy, research, and practice. 

Research and policies need to be adapted in order to increase the uptake of IBB 

varieties and to optimize the delivery of agricultural technology to the most 

vulnerable rural farming households in Rwanda.  

On a policy level, this study provides positive empirical evidence demonstrating 

the superior yield and potential income effects of growing biofortified beans. As such, 

this study supports the hypothesis that IBB growers have significantly higher yields 

than farmers that grew non-biofortified (improved or traditional) beans. This strategy 

proved to increase food availability in vulnerable populations by boosting the 

adoption of higher yielding varieties. These findings provide evidence to support 

continuing investment in agricultural research—such as biofortification of staple food 

crops—as a cost-effective strategy to increase food availability, as well as to mitigate 

rural poverty in Rwanda.   

In terms of research and practice, this dissertation examined the heterogeneous 

treatment effects on outcomes by the probability of IBB adoption and a set of control 

covariates—key for program targeting and for policy formulation. Understanding the 

pattern of heterogeneous treatment effects across the targeted population can help to 

effectively classify target geographic areas for investment. In addition to production, 

consumption, and micronutrient indicators a subnational geographic index could 

factor in covariates—such as travel time to urban centers as a proxy of delivery costs 

and consumers’ propensity to adopt as a proxy of market segmentation. This 

composite summary geographic index could help inform biofortification programs on 
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how to tailor and assign different treatments to smallholder farming households with 

various characteristics by geographies. Potential outcomes from tailored extension 

services include a strategy to increase IBB adoption rates, a strategy to maximize 

average outcomes (yields and incomes), and a strategy to reduce delivery costs.   

Priority should be given in drafting a differentiated geographical targeting 

strategy for bush and climbing bean varieties as a function of farmer characteristics, 

farm characteristics, the role of peers, and regional endowment of resources. This 

might help to increase adoption rates for the most vulnerable groups in rural areas. If 

schooling augments the propensity to adopt climbing IBB varieties, increasing 

educational levels on the nutritional and agronomic benefits of IBB might be an 

effective policy to stimulate knowledge and technological diffusion. Considering 

progressive farmers and strengthening social group activities when designing 

technology-promotion programs increases the spread of information and geographical 

diffusion of IBB. In sum, social interaction works as an invisible cost-effective 

delivery strategy of IBB in rural population that are likely at risk of iron deficiency. 

These activities might continue to support scaling up of delivery activities for IBB 

varieties in rural areas of Rwanda. 

Given the mounting evidence pointing to positive and significant nutritional 

benefits, as well as enhanced cognitive and physical performance resulting from 

consumption of iron biofortified beans, policy makers should support greater 

investment and scaling up of biofortification technologies—as it has proven to be a 

powerful tool to improve lives and livelihoods of smallholder farming households. 
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Appendices 
 

I. Construction of the wealth and management indices 

Multiple correspondence analysis (MCA) was used to create two composite 

indices: the wealth index and the management index. The first composite index aims 

to measure household wealth in the absence of data on household income. The second 

aims to summarize farmers’ management practices. The former includes household, 

livestock, and agricultural assets. The later includes management practice activities, 

including whether the farmers have irrigation systems and apply pesticides, compost, 

manure, and fertilizers on their plots. Construction of the management index helped 

to control for multi-collinearity.  

By construction, the wealth and management indices range from 0 to 1: for the 

wealth index, it is equal to 0 in case of no assets and for the management index, it is 

equal to 0 in case of no modern agricultural practices. It is equal to 1 when a 

household own all assets considered in constructing the wealth index or equal to 1 

when a household wholly uses modern agricultural practices. 

In a nutshell, MCA is the application of a correspondence analysis algorithm to 

multivariate categorical data coded in the form of an indicator matrix (binary coding 

of the factors) that consists of an individual × variables matrix, where the rows 

represent individuals and the columns represent categories of the variables (Asselin 

2009). For instance, the wealth index ranks households from poorest to wealthiest. 

Each household is given an individual wealth index, summarized below. 

The functional form to build a composite indicator is as follows: 
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CWIi = 
1

𝑘
 ∑ ∑ 𝑊𝐽𝑘

𝑘𝐽𝑘
𝐽𝑘=1

𝑘
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𝑘𝑖

𝑘  

𝑊𝑗𝑘

𝑘 =  
𝑆𝑘

√𝜆1
 , 

where k is the number of dimensions (variables) with k = (1, 2, …, K), j is the 

number of modalities of each dimension with j = (1, 2, …, Jk) and I is the binary (0/1) 

indicator of each modality. W is the weight determined with MCA (the factor score 

on the first axe normalized by the eigenvalue λ with s = factor score), and I is the 

index number indicating household. 

The composite indicator is the simple average across dimensions (variables) of 

the weighted sum of each binary modality of each dimension.  

  Ip = binary indicator 0/1; 1 indicates household h has the modality, 

otherwise 0. 

  Wi = the average global welfare of household h.  

There are three categories included in the wealth index: household assets, 

livestock assets, and agricultural assets. Household assets include land, houses, 

motorcycles, bicycles, cells, radios, TVs, saving accounts, and savings in informal 

groups. Livestock assets are sheep, goats, cattle, pigs, chicken, rabbits, etc. 

Agricultural assets include ploughs, wheelbarrows, machetes, shovels, picks, and 

sprayers.  

Variables included in the management index are whether farmers have a terraced 

plot or irrigated plot, and whether or not they apply fertilizers, manure, compost, and 

pesticides.  
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II. Travel time 

Travel time is estimated using an algorithm that factors in road quality, speed, 

slope, and biophysical characteristics. Thirty percent of the population of Rwanda 

lives within 2 hours of travel time to midsize cities or cities equal or greater than 

50,000 inhabitants while 70 percent lives at least 3.5 hours travel time. The latter 

remote areas are where the most vulnerable population lives. According to the World 

Bank's poverty assessment report in Rwanda, poor households tend to be more 

isolated, living at greater distances from markets, public transport facilities, and 

health centers. Based on the travel time index, the World Bank report finds that the 

most isolated households are twice as likely to be poor relative to the most connected 

households. 

Table 18 Summary statistics travel time in hours, population (thousands), bean 

production (thousands), and bean availability in 2015, by travel time decile 

TT deciles 

Travel time, 

hrs. Population 

Share 

population 

Bean 

production, 

tons 

Bean 

availability, 

kg/person 

1 1 842 7 0 0 

2 2 1222 10 10 8 

3 3 992 8 7 7 

4 4 1318 11 13 10 

5 4 1010 9 13 13 

6 5 1105 9 18 16 

7 5 1550 13 23 15 

8 5 1043 9 22 21 

9 6 1134 10 22 20 

10 6 1486 13 53 35 

Average/total 4 11703 100 181 15 
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III. Bush bean growers, matching members of treatment and control groups 

Table 19 shows the results of the probit model for IBB bush growers.  

 

Table 19 Probit model IBB bush 

Variable Coefficient 

Constant -1.02*** 

 (0.36) 

Number of varieties cultivated 0.29*** 

 (0.04) 

Management Index (0-1) 0.78** 

 (0.31) 

Wealth Index 0.03 

 (0.48) 

Number of children under 5 years old in household -0.13 

 (0.10) 

HH average years of schooling -0.02 

 (0.04) 

Drought index -0.48 

 (0.40) 

Land labor ratio -0.00 

 (0.00) 

HH head age -0.02** 

 (0.01) 

Farming experience (years) 0.02** 

 (0.01) 

Travel time to extension services 0.01 

 (0.02) 

Weighted slope -0.00 

 (0.01) 

Number of individuals per household - economically active members [18-65] 0.09 

 (0.07) 

% corrected predictes 75.89 

Log-likelihood -258.78 

LR test 88.68*** 

Kelejian-Prucha (error) 2.73*** 

Pinske (error) 6.96*** 

Pinske -Slade (error) 5.71** 

Number of observations 506 

 



 

132 

 

Multivariate matching 

Figures 17 and 18 display the comparability of the two groups – treatment and 

control – with respect to the fourteen baseline covariates for bush type IBB growers. 

Careful examination of figure 17 allows one to visually assess the performance of the 

nearest neighbor algorithm to balance each of the baseline covariates, while 

examination of figure 18 allows us to see the distribution of PS for the treatment and 

the control groups.  

The y-axis lists the name of the fourteen baseline covariates and the x-axis shows 

the absolute standard difference of means (ADM). The black dashed line shows an 

ADM benchmark set to 0.20 as suggested by literature (Rosenbaum, 2005). The red 

line shows the ADM for each of the baseline covariates of the unadjusted dataset, 

while the blue line shows the ADM for each of the baseline covariates of the adjusted 

dataset. In the red line, I observe that five out of the fourteen baseline covariates have 

standardized differences that exceed the 0.20 threshold, in descending order: PS, 

number of bean varieties, management index, number of neighboring households, and 

wealth index. This imbalance suggests that making causal inferences on the raw 

dataset would result in biased and spurious estimates. The blue line, adjusted by the 

nearest neighbor algorithm, minimized the ADM of the 14 covariates below the 0.20 

cutoff value and created a balanced match of 103 pairs of treated and control subjects. 
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Figure 17 IBB bush - balance of baseline covariates before (unadjusted) and after 

nearest neighbor matching algorithm measured by the absolute standardized 

difference of means (ASDM) 

 

The matching algorithm helps to correct the imbalances on most covariates and to 

create similar PS distributions for the treatment and control groups. To illustrate this 

fact, the kernel density plot in figure 19 shows a full overlap over the common 

support area for both distributions, treated vs. control. For the treated-group, PS range 

from 0.070 to 0.893 with a median equal to 0.308, while for the control-group PS 

range from 0.076 to 0.896 with a median equal to 0.294. 

Figure 18 Nearest neighbor matching algorithm – Kernel density balancing plot – 

region of common support between treatment and control groups – bush bean growers 
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Table 20 Probit model IBB bush nearest neighbor matching algorithm - balancing 

properties of baseline covariates in treated and control groups 

Baseline covariates Mean treated Means control SD control Mean diff 

Propensity score (unbalanced) 0.36 0.21 0.14 0.15 

Balanced 0.31 0.30 0.15 0.00 

Number of bean varieties cultivated (unbalanced) 3.17 2.01 1.41 1.17 

Balanced 2.80 2.70 1.78 0.10 

Mean education of HH members, years (unbalanced) 3.66 2.88 1.89 0.78 

Balanced 3.51 3.5 2.00 0.00 

Household head age, years (unbalanced) 47.80 47.04 16.03 0.77 

Balanced 46.78 47.4 15.52 -0.61 

Wealth index (0-1) (unbalanced) 0.48 0.41 0.14 0.07 

Balanced 0.47 0.48 0.13 -0.01 

Cohort 0-5 years old (unbalanced) 0.73 0.83 0.84 -0.10 

Balanced 0.68 0.75 0.81 -0.07 

Economically active members [18-65] (unbalanced) 2.64 2.61 1.32 0.03 

Balanced 2.69 2.81 1.44 -0.12 

HH head - years of farming experience (unbalanced) 8.58 7.71 8.35 0.86 

Balanced 8.88 8.18 10.39 0.69 

Land labor ratio, m/person (unbalanced) 1414.25 1270.53 1814.88 144.00 

Balanced 1319.96 1510.18 2115.74 -190.21 

Drought index (from -1 to 1) (unbalanced) -0.04 -0.03 0.17 -0.01 

Balanced -0.05 -0.04 0.18 -0.00 

Accessibility to extension services (unbalanced) 5.63 5.41 3.18 0.22 

Balanced 5.75 5.90 3.22 -0.15 

Plot slope % (unbalanced) 11.52 10.80 7.33 0.72 

Balanced 10.98 11.13 6.80 -0.15 

Management Index (0-1) (unbalanced) 0.40 0.32 0.23 0.07 

Balanced 0.35 0.39 0.19 -0.04 

Number of neighbors (unbalanced) 13.88 11.19 7.18 2.69 

Balanced 12.83 11.70 7.63 1.13 

Number of observations 103 103   
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IV. Climbing bean growers, matching members of treatment and control 

groups 

Table 21 shows the results of the probit model for IBB bush growers.  

 

Table 21 Probit model IBB climbing 

Variable Coefficient 

Constant -1.93*** 

 (0.38) 

Number of varieties cultivated 0.22 

 (0.03) 

Management Index (0-1) 0.21 

 (0.30) 

Wealth Index 1.24*** 

 (0.46) 

Number of children under 5 years old in household -0.02 

 (0.10) 

HH average years of schooling 0.05 

 (0.04) 

Drought index 1.03*** 

 (0.45) 

Land labor ratio -0.00 

 (0.00) 

HH head age 0.02** 

 (0.01) 

Farming experience (years) -0.04** 

 (0.02) 

Travel time to extension services -0.02 

 (0.02) 

Weighted slope -0.01 

 (0.01) 

Number of individuals per household - economically active members [18-65] -0.09* 

 (0.06) 

% corrected predicted 77.81 

Log-likelihood -297.23 

LR test 92.20*** 

Kelejian-Prucha (error) 4.36*** 

Pinske (error) 19.46*** 

Pinske -Slade (error) 17.70*** 

Number of observations 613 
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Multivariate matching 

Figure 19 reports the absolute standard difference of means (ADM) of the 

unadjusted sample and of the fitted algorithm (adjusted). In the unadjusted sample 

(red line), I observe differences that exceed the 0.20 benchmark in 7 of the 14 

covariates. In descending order, the covariates with the largest difference: PS, the 

number of bean varieties cultivated, years of farming experience, wealth index, 

average household education level, number of EA males in household, and 

management index. The blue line, adjusted dataset fitted by the matching algorithm, 

minimized these differences below the 0.20 cutoff value in all baseline covariates, in 

most cases below 0.15. The matching algorithm created 130 balanced pairs of treated 

subjects to control subjects. 

Figure 19 IBB climbing - balance of baseline covariates before (unadjusted) and after 

nearest neighbor matching algorithm measured by the absolute standardized 

difference of means (ASDM) 
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The matching algorithm helps to correct the imbalances and to create similar PS 

distributions. The kernel density plot (figure 20) shows, over the common support 

area, a full overlap of the PS distributions of the treatment and control groups. For the 

treated-group PS range from 0.086 to 0.782 with a median value equal to 0.282, while 

for the control-group PS range from 0.086 to 0.779 with a median value equal to 

0.291. 

Figure 20 Nearest neighbor matching algorithm – Kernel density balancing plot – 

region of common support between treatment and control groups – climbing bean 

growers 
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Table 22 IBB climbing - nearest neighbor matching algorithm - balancing properties 

of baseline covariates in treated and control groups 

Baseline covariates Mean treated Means control SD control Mean diff 

Propensity score (unbalanced) 0.36 0.21 0.14 0.15 

Balanced 0.31 0.30 0.15 0.00 

Number of bean varieties cultivated (unbalanced) 3.17 2.01 1.41 1.17 

Balanced 2.80 2.70 1.78 0.1 

Mean education of HH members, years (unbalanced) 3.66 2.88 1.89 0.78 

Balanced 3.51 3.50 2.00 0.00 

Household head age, years (unbalanced) 47.80 47.04 16.03 0.77 

Balanced 46.78 47.4 15.52 -0.61 

Wealth index (0-1) (unbalanced) 0.48 0.41 0.14 0.07 

Balanced 0.47 0.48 0.13 -0.01 

Cohort 0-5 years old (unbalanced) 0.69 0.72 0.80 -0.02 

Balanced 0.72 0.75 0.78 -0.03 

Economically active members [18-65] (unbalanced) 3.15 2.74 1.38 0.41 

Balanced 3.03 3.04 1.44 -0.01 

HH head - years of farming experience (unbalanced) 5.72 8.54 10.68 -2.82 

Balanced 5.78 6.00 5.18 -0.22 

Land labor ratio, m/person (unbalanced) 669.66 678.61 1047.11 -8.94 

Balanced 687.48 697.43 815.37 -9.94 

Drought index (from -1 to 1) (unbalanced) -0.01 -0.03 0.14 0.02 

Balanced -0.02 -0.03 0.13 0.01 

Accessibility to extension services (unbalanced) 5.43 5.58 2.73 -0.15 

Balanced 5.43 5.43 2.71 0.00 

Plot slope % (unbalanced) 13.08 14.00 8.40 -0.91 

Balanced 13.67 13.18 7.74 0.48 

Management Index (0-1) (unbalanced) 0.50 0.45 0.21 0.06 

Balanced 0.48 0.49 0.17 -0.01 

Number of neighbors (unbalanced) 5.81 5.88 1.96 -0.08 

Balanced 5.75 5.67 1.75 0.08 

Number of observations 130 130   
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Table 23 Sensitivity analysis using one-tailed P-value for departures from random 

assignment.  

Gamma IBB bush IBB climbing 

Value p-value p-value 

1 0.040 0.025 

1.01 0.045 0.028 

1.02 0.051 0.031 

1.03 0.057 0.035 

1.04 0.063 0.039 

1.05 0.070 0.043 

1.06 0.077 0.047 

1.07 0.084 0.052 

1.08 0.092 0.057 

1.09 0.100 0.062 

1.1 0.108 0.068 

1.11 0.117 0.074 

1.12 0.126 0.081 

1.13 0.135 0.088 

1.14 0.144 0.095 

1.15 0.154 0.102 

1.16 0.164 0.110 

Note: Gamma values range from 1 to 1.16 with an increment of 0.01 in Gamma - 

Wilcoxon’s statistic 
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