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The problem of superresolution is to recover an element of a vector space from

data much smaller than the dimension of the space, using a prior assumption of

sparsity. A famous example is compressive sensing, where the elements are images

with a large finite resolution. On the other hand, we focus on a continuous form

of superresolution. Given a measure µ on a continuous domain such as the two

dimensional torus, can we recover µ from knowledge of only a finite number of its

Fourier coefficients using a total variation minimization method? We will see that

the answer depends on certain properties of µ. Namely, a necessary condition is

that µ be discrete.

We use methods from geometric analysis to investigate the continuous super-

resolution problem. Tools from measure theory relate properties of the support

of a measure, such as Hausdorff dimension, to properties of its Fourier transform.

We also use measure theory to investigate the possibility of alternatives to total

variation that may allow us to recover surface measures defined on space curves.



There is a theorem of Choquet concerning representations of points in convex

sets as sums of their extreme points. As it turns out, we can apply this to the

superresolution problem because the extreme points of the set of measures with total

variation 1 are precisely the set of delta measures. We consider superresolution as a

convex optimization problem, where the goal is to find representations of the initial

data as sums of delta measures. Choquet theory provides tools to investigate the

previously unresolved problem of uniqueness. We use this to give a novel sufficient

condition for a measure to be uniquely superresolved, given data on a known finite

set of frequencies.
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Chapter 1: Introduction

1.1 Compressive Sensing

A major motivation for studying superresolution is the success of the so-called

discrete case, known under another name as compressive sensing. The field of com-

pressed sensing is based on a famous set of papers published starting in 2004 written

by Candès, Romberg and Tao [14, 15, 16, 17]. The motivating problem is to find

sparse solutions to underdetermined systems of equations. The main results of the

original papers were that: yes, it is possible to recover a k-sparse vector in RN from

only m measurements when m & k ln(eN/k); the algorithm to do so is practically

effecient; and random sensing matrices are satisfactory for this algorithm with high

probability ≥ 1 − 2 exp(−Cm) provided the number of measurements is sufficient

as before.

In more formal terms, what we want is a sensing matrix A which is “short and

fat,” i.e. m × N where m � N. We denote our sensed data y = Ax, where x is

some k-sparse (or approximately k-sparse) vector in RN , and we want an algorithm

which recovers x# = ∆(y), so that the distance from x# to x is small in some sense.

The original work from Candès, Romberg and Tao showed that if x is indeed sparse,
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then we can get not only approximate, but exact recovery from the algorithm:

x# = argmin‖z‖1 such that Az = y. (1.1)

This can be formulated as a linear programming problem and hence has polynomial

complexity, a vast improvement over the similar “ideal” optimization problem—

sometimes referred to as `0 optimization,

x# = argmin|supp z| such that Az = y, (1.2)

which is essentially a combinatorial search.

This method is very powerful, and has implications for many applications, as

nearly sparse signals and images are very common in natural data [27]. However

there are a few obstacles which come up, which have been the topic of much study

over the past decades.

In their original papers, Candès, Romberg and Tao defined a number of prop-

erties of sensing matrices which are relevant to the compressive sensing problem,

including the Null Space Property (NSP), Uniform Uncertainty Principle (UUP),

Exact Reconstruction Principle (ERP), and Restricted Isometry Property (RIP)

[17]. Some of these have faded into mostly historical significance, but NSP and RIP,

in particular the latter, continue to get attention today.

Definition 1. (Null Space Property) An m×N matrix A is said to have the NSP

of order k if for any ν ∈ kerA \ {0}, S ⊂ {1, . . . , N} with |S| ≤ k, ‖νS‖1 <‖νSc‖1.
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An equivalent charactarization is to say that the null space of A, considered as

a hyperplane in RN , when placed on a k-sparse face of the `1 unit sphere, is tangent

to it. Hence it is clear that whenever Ax = y has a k-sparse solution, the algorithm

in (1.1) will recover it.

While the NSP provides a good geometric intuition, in practice it is difficult

to work with. Also, although the NSP guarantees exact reconstruction if the signal

is known to be sparse, the introduction of even a small amount of error can make∥∥x− x#
∥∥

2
very large, which is troublesome for applications. The RIP is introduced

to deal with both of these problems.

Definition 2. (Restricted Isometry Property) An m×N matrix is said to have the

RIP of order k with constant δ ∈ (0, 1) if for any k-sparse x ∈ RN ,

(1− δ)‖x‖2
2 <‖Ax‖2

2 < (1 + δ)‖x‖2
2 .

We say that δk is the restricted isometry constant of A if δk is the smallest δ > 0

such that A satisfies RIP of order k.

RIP is more restrictive than NSP, but in return we get much more robustness.

For this reason much research has been done on the RIP and various recovery

algorithms that depend on it in the past 15 years.

Both NSP and RIP represent sufficient conditions for accurate and unique

recovery in (1.70). The goal of this dissertation is to extend the results of compressive

sensing to a continuous domain, the two dimensional torus T2. In section 1.9 I

outline the space and algorithm of interest, and my main results, which are discussed
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in more detail in Chapter 4. As I will show, in continuous space the question

of uniqueness of the reconstruction is much more of an issue than in the finite

dimensional case. However I will prove both a necessary and a sufficient condition

for unique reconstruction.

1.2 Prony’s Method

There have been some limited attempts to extend compressive sensing into

the continuous domain with good results, but limited generality. An example of a

widely studied problem is the recovery of point masses, where we assume the signal

to be recovered is assumed to be of the form

f(x) =
M∑
k=1

δxk(x). (1.3)

Perhaps the most archetypal form of this problem dates back long before compressive

sensing. Prony’s method was known in the 18th century, but its ideas still see some

use today [26, 54].

Prony’s method is an algorithm for resolving discrete signals as in (1.3) on R.

However it is typically formulated on the frequency spectrum as a sampling problem.

The goal is to recover a signal f̂ ∈ L∞(R) which is a finite sum of sinusoids,

f̂(t) =
M∑
k=1

Bke
iωkt (1.4)
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from N = 2M evenly spaced samples,

f̂(∆n) =
M∑
k=1

Bke
iωk∆n, (1.5)

where ∆ > 0 is the fixed distance between samples.

The algorithm comes from recognizing two key relationships. First, since f̂

is the sum of M exponentials, it is the solution to a particular linear difference

equation of M variables. That is to say we have

f̂(∆n) =
M∑
k=1

Pkf̂(∆(n− k)). (1.6)

Then the frequencies ωk are related to this equation by the roots of the characteristic

polynomial,

zM − P1z
M−1 − · · · − PM =

M∏
k=1

(z − eiωk). (1.7)

The process of Prony’s method consists of first calculating the coefficients Pk

using (1.6),



FM−1 F1 · · · F0

FM FM−1 F1

...
. . .

...

FN−1 · · · FN−M−1





P1

P2

...

Pk


=



FM

FM+1

...

FN


, (1.8)

where Fk = f̂(∆k). Second, factor the polynomial in (1.7) to find the frequencies
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ωk. And finally the magnitudes Bk are found by another linear equation,



1 1 · · · 1

eω1∆ eω2∆ eωM∆

...
. . .

...

eω1∆M · · · eωM∆M





B1

B2

...

Bk


=



F1

F2

...

FM


. (1.9)

Prony’s method works on two conditions: first, that the number of samples is

at least twice the number of sinusoids; and second, that the sampling rate is at least

the Nyquist frequency. The second point is slightly more subtle, but it is because

during the polynomial factorization step we only solve for eωk , not the frequencies

themselves, hence they are non-unique up to a factor of 2π∆.

Prony’s method is seen in a broad variety of applications. Identifying and

demixing sinusoidal signals is useful in many signal processing applications, includ-

ing electromagnetics and antenna engineering [54]. It is frequently seen in the re-

lated, slightly more modern algorithms called matrix pencils, for finding generalized

eigenvalues of matrix operators, in a manner similar to finding the frequencies of

the sinusoids above [54].

1.3 Continuous Superresolution

Use of the total variation norm for basis pursuit in the continuous domain is

very recent, inspired by the massive success of compressive sensing in the discrete

case. The first work was from de Castro and Gamboa [25], who used Beurling’s
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theory of minimal extrapolations to generalize some of the concepts of the NSP and

random sensing matrices from compressive sensing. Notably they showed that for a

sensing apparatus defined from a family of functions F = (uk)
K
k=1, there must be a

solution to the optimization problem

µ# = argmin
µ∈M[0,1]

‖µ‖TV such that 〈uk, µ〉 = yk, 1 ≤ k ≤ K, (1.10)

that is supported in a finite set, which are the roots to a “generalized polynomial”

1−
∑

k ckuk. Under certain conditions on the family F , these solutions may also be

unique.

The use of Beurling’s minimal extrapolations were expounded in a different

way by Benedetto and Li [6], who studied the case of F a family of complex ex-

ponentials. This is equivalent to having prior knowledge of the Fourier transform.

In this case the zero sets of “generalized polynomials” are roots of trigonometric

polynomials.

The contribution of Benedetto and Li was giving quite sharp results for one

particular situation [6]. Let µ ∈ M(Tn) and our prior knowledge be f̂(m) for

m ∈ Λ ⊂ Zn, not necessarily a rectangular box. We consider the set of minimal

extrapolations as follows. If

ε = ε(f) = inf{‖ν‖TV | ν ∈M(T2), ∀m ∈ Λ ν̂(m) = f̂(m)}, (1.11)

then the set of minimal extrapolations is the set of extensions of f̂ which achieve
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the upper bound:

E = {ν ∈M(Tn) | ∀m ∈ Λ ν̂(m) = f̂(m) and ‖ν‖TV is minimal}. (1.12)

They divide into three possible situations, based on the observation that for all

m ∈ Λ, |f̂(m)| ≤ ε. Define Γ = {m ∈ Λ | |f̂(m)| = ‖ν‖}TV . The cases are whether

|Γ| is 0, 1 or greater than 1. In other words, how frequently does |f̂ | achieve its

maximal value and does ‖f̂‖∞ =‖µ‖TV ?

At first glance these distinctions may be arbitrary, but we will see in section

1.6, particularly in the work of Carathéodory on positive definite functions [19], that

in the case of positive definite extensions, sequences which achieve their maxima

represent points on the boundary of the convex set of positive definite functions.

Similarly here, functions f : Λ→ C will fall on the boundary of the set of functions

f with ε(f) = ε. This is not insignificant; we can relate this property back to the

NSP from compressive sensing—in the context of compressive sensing, a signal is

sparse if it is in the boundary of a face of the `1 ball, which is key to why compressive

sensing works.

The result is if |Γ| 6= 1, then we have results as Castro and Gamboa, that

solutions must fall within the roots of a trigonometric polynomial. If |Γ| ≥ 2, we

have even better, that this level set must take the form of a finite lattice, making

the calculation of the results very straightforward, and unique for sufficiently large

Λ.
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1.4 Resolution of Point Sources and Minimum Separation

Other work on point superresolution was done by Fernandez-Granda, et al.,

who have developed a nice investigation on the relationship of the recovery problem

and the uncertainty principle [12, 13, 30]. One disadvantage of moving to continuous

space is that there is no longer a straightforward relationship between the sparsity

and the fineness of our signal. In other words, if we only have prior knowledge up to

a finite band limit, then we can not be expected to resolve signals which have details

which are arbitrarily fine. It is easy to construct examples which are Fernandez-

Granda approaches this by adding a constraint on the minimum separation of the

signal. If µ ∈M(R) and suppµ = S, the minimum separation of µ is

∆(µ) = inf
t6=t′∈S

∣∣t− t′∣∣ . (1.13)

In [13], Candès and Fernandez-Granda show that minimum separation re-

quirements are enough to find uniqueness. Remarkably, this doesn’t require any

modification of the search algorithm. Standard basis pursuit is enough to find these

discrete signals, even though it has no “knowledge” of the minimum separation.

Their main theorem is as follows.

Theorem 1. Let µ ∈M(R) satisfy (1.13) with ∆(µ) ≥ D. If the values of µ̂(k) are

known for |k| ≤ fc, then if fc ≥ 128 and

∆(µ) ≥ 2

fc
, (1.14)
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then µ is the unique solution to the basis pursuit algorithm,

µ# = argmin
µ∈M[0,1]

‖µ‖TV such that µ̂(k) = yk |k| ≤ fc. (1.15)

The same result holds with a less restrictive constant for higher dimensions

Rn as well, and it also holds up to stability in the face of noisy measurements. Later

work from Fernandez-Granda has improved upon these constants, going as low as

1.26 in the 1-dimensional case [30].

1.5 Attempts at Superresolving Non-discrete Measures

There are only a few results that attempt to perform signal recovery on signals

that are not discrete. They tend to lean strongly on the works prior described. A

generalization from Unser, et al. [59] lets us perform superresolution on classes of

splines, functions which behave like discrete functions when applied to a differential

operator. He shows that splines, rather than deltas, are the archetypal solution for

a slightly altered problem,

x# = argmin
x∈X

‖Lx‖1 such that A(x) = y, (1.16)

where L is a differential operator, X = {x ∈ BV (Rn) | Lx ∈M(Rn)}, and A : X →

Rm is a linear measurement function. The theory is very similar to the above work,

but it demonstrates the flexibility of the theory nicely.

Another creative approach was by Ongie [48, 49], who looked to generalize
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Prony’s method to higher dimensions. Rather than starting with a mix of sinusoids,

they recognize a key step of Prony’s method is to factor the trigonometric polynomial

in (1.7). Let

φ(x) =
N∑
k=1

eiωk·x, (1.17)

be a trigonometric polynomial in on R2. Let f ∈ L∞(R2) be of the form

f =
M∑
k=1

αkχUk , (1.18)

where Uk are disjoint open subsets of R2 and ∪kUk = {x ∈ R2 | φ(x) 6= 0}. Then

by recognizing that φDf ≡ 0, it is possible to perform a similar calculation to

the 1-dimensional case and recover the support of f by factoring a trigonometric

polynomial. Bezout’s theorem puts a bound on the number of distinct Uk, so a

system of equations finds the weights αk, and we have theoretically guaranteed

recovery.

1.6 Positive Definite Functions

Carathéodory began studying positive definite functions in the early 20th cen-

tury, at around the same time he was doing work on convex geometry. The context

in which such functions were discovered was in complex function theory. The con-

nection is not immediately apparent, but as we will see there are deep similarities.
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There we say that a positive definite function on the unit disc is one of the form

f(z) = 1 +
∞∑
k=1

(ak + ibk)z
k, (1.19)

which is analytic and has positive real part. Remarkably, Carathéodory gave a

characterization of these functions that as we will see is useful for the problem we are

interested in today [19]. He said that such a function is positive definite if and only if

for each n ∈ N the coordinates (a1, b1, a2, · · · , an, bn) fall in the convex hull generated

by the curve (cos(α), sin(α), cos(2α) · · · , cos(nα), sin(nα)), for 0 ≤ α ≤ 2π. Call

this set Qn, and say that a point in Qn represents a function f if f has those

coefficients for 0 ≤ k ≤ n.

The main line of his proof contains many of the same beats as the other results

in this paper. He recognizes the convexity of the set of positive definite functions

P . He identifies that the interior of P is nonempty, or in other words there are

functions f for which an analytic neighborhood of f falls within P . Therefore Qn

cannot fall in a lower-dimensional hyperplane of R2n. And then he proves using

complex analytic methods that the boundary of P are all rational functions, which

are generated by those of the form

f(z) =
1

1− αz
|α| = 1, (1.20)

which are represented by points on the curve (cos(α), sin(α), cos(2α), · · · ,

cos(nα), sin(nα)), 0 ≤ α ≤ 2π.

12



Toeplitz [58] later showed that an equivalent characterization of sequences

(a1, b1, · · · ) is that
n∑

k,l=1

ck−lzkzl ≥ 0 n ∈ N, zk ∈ C, (1.21)

where c0 = 2, ck = ak − ibk, d−k = dk. This definition is the one that was used

commonly later in the century through today, and as we will see it has inspired a

host of problems of this form in more generality and under various conditions [56].

Indeed, as we will see it is quite relevant to the total variation optimization problem

in different settings as well.

Definition 3. Given a group G and a symmetric subset V ⊂ G, with 0 ∈ V, we say

f : V → C is positive definite if

n∑
k,l=1

f(xkx
−1
l )cicj ≥ 0 (1.22)

for all sequences Γ = (xj)
n
j=1 such that Γ− Γ ⊂ V , and sequences (cj)

n
j=1 ⊂ C.

For G = Z we get the definition above studied by Carathéodory and Toeplitz,

and for G = R we get a situation that has been studied extensively, and which has

particular interest in harmonic analysis because of Bochner’s theorem, which relates

them to the Fourier transform of positive measures.

Theorem 2. (Bochner) For any locally compact abelian group G with dual group

Ĝ, a function f : G → C is positive definite if and only if there exists a unique

13



nonnegative measure µ ∈M(Ĝ) such that

f(x) =

∫
Ĝ

e2πixξ dµ(ξ). (1.23)

The result is named after Salomon Bochner, who proved it first in 1932 for

the case G = R, and later generalized his result to higher dimensions [8, 9, 56].

Although, Bochner’s result was actually inspired by Herglotz, who proved the theo-

rem for the case G = Z in 1911. I will give details on both Herglotz and Bochner’s

Theorems in the following chapter, but first I will give a few other properties of

positive definite functions.

Proposition 1. Let G be a locally compact abelian group, let V = Γ− Γ ⊂ G and

let f : V → C be a positive definite function.

1. f(0) ≥ 0

2. f(−x) = f(x)

3.
∣∣f(x)

∣∣ ≤ f(0)

These are all easily verified from the definitions above, and are standard in

the literature [56]. The following is a standard but slightly less trivial result which

was first shown by Artjomenko [2].

Proposition 2. If f is positive definite on R and continuous at 0 then it is uniformly

continuous.

Proof. Let |x− y| < δ. Choosing Γ = {x, y, 0}, it follows from the definition of

14



positive definiteness that for any choice of {cx, cy, c0} ⊂ C,

(|c0|2 +|cx|2 +
∣∣cy∣∣2)f(0) + 2 Re

[
cxc0f(x) + cyc0f(y) + cxcyf(x− y)

]
≥ 0. (1.24)

With the choice c0 = 1, cx = −cy =
∣∣f(x)− f(y)

∣∣ /(f(x)− f(y)), and using the fact

that 2f(0) ≥
∣∣f(x)− f(y)

∣∣, we get

3f(0)− 2 Re f(x− y) ≥ 2
∣∣f(x)− f(y)

∣∣ (1.25)

2(f(0)− Re f(x− y)) ≥ 3

2

∣∣f(x)− f(y)
∣∣ . (1.26)

Hence we have a uniform bound on the continuity of f .

Other regularity results follow from positive definiteness as well. In a similar

manner to the previous result, it is possible to bound the derivatives of a positive

definite function.

Theorem 3. If for some k ∈ N a positive definite function f defined on R is 2k-times

differentiable at 0, then f is 2k-times differentiable on R as well.

The following on analytic positive definite functions was proven by each of

Lévy and Raikov independently [42, 51].

Theorem 4. If f is analytic and positive definite in a symmetric interval (−a, a),

then there exist positive constants α, β ∈ (0,∞] such that f can be extended to a

function holomorphic on the horizontal strip

{z ∈ C | −α < Im z < β}. (1.27)
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And finally, more recently Sasvári has proven a similar result for measurability

[55].

Theorem 5. If f is positive definite, and it is measurable on a symmetric interval

(−A,A), then it is measurable on all of R.

1.7 Bochner’s Theorem

I will not prove the theorem in full generality but I will provide details for the

two most relevant cases, G = Z (this case is often referred to as Herglotz’s theorem)

and G = R. The proofs given are not performed as in Bochner’s and Herglotz’s

original papers but are updated using distribution theory. The proofs as given are

based on a review from Maruyama [46]. Before I proceed to the proofs, I will make

a short statement on distribution theory that is necessary for them.

We will use distribution theory somewhat loosely in the upcoming section

for the purpose of being as general as possible while keeping the use of notation

reasonable. We will refer to S(G) as a set of test functions appropriate for G. For

example if G = Rn then the natural choice is the Schwartz functions. For G = Tn we

take the periodic summations
∑

n φ(x+ nT ) of Schwartz functions. The particular

choice for other groups G is not important, as the properties that are necessary will

be clear in the proofs of the following results, and we will focus our results in this

paper on the two cases above. Given our space of test functions S(G), S ′(G) is the

set of distributions. We can extend the Fourier transform to S ′(G) in a standard
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way by Parseval’s formula. For T ∈ S ′(G), FT is defined on F(S(G)) by

FT (Fφ) = T (φ) ∀φ ∈ S(G). (1.28)

Lemma 6. Let T ∈ S ′(G) be a distribution. Assume for all φ ∈ S(G) with φ ≥ 0,

T (φ) ≥ 0. Then T is a positive measure on G.

Proof. Assume that T is a positive distribution, as given above. T is a measure if

and only if it is a positive linear functional on C0(G). Because S(G) is dense in

C0(G), and T is positive, all that is necessary is to show that it is continuous with

respect to the supremum norm. Assume to the contrary, that there is a sequence

(φk)
n
k=0 of positive functions in S(G) that is uniformly bounded by a constant M ,

but for which T (φk) → ∞. Assume without loss of generality as well that each

φk has compact support. We lose no generality from doing this because compactly

supported functions are dense in both S(G) and C0(G). Define a sequence of smooth

compactly supported bump functions ηk ∈ S(G) such that for all k, 0 ≤ ηk ≤ 1,

ηk ≡ 1 on the support of φk, and all derivatives of ηk are uniformly bounded (Note

that this construction is valid for Schwartz functions).

Now see that T (ηkφk) = T (φk)→∞. But since 0 ≤ φk ≤M,

ηk(M − φk) ≥ 0 ∀k ∈ N. (1.29)

Because the derivatives of ηk are uniformly bounded we have that
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sup
∣∣T (Mη)

∣∣ <∞, so we can conclude that

lim
k→∞

T (ηk(M − φk)) = lim
k→∞

T (Mηk)− T (ηkφk) = −∞. (1.30)

But this result conflicts with (1.29). Hence T is a bounded linear functional on

C0(G), and therefore is identified with a measure µ ∈M(G) by the Riesz represen-

tation theorem.

The following proofs are from [46].

1.7.1 G = Z

Proof. (Herglotz) First, let µ ∈M(T) be positive and

f(n) =

∫ 1

0

e2πinξ dµ(ξ) n ∈ Z. (1.31)

Let (ck)
n
k=1 ⊂ C and let 1 ≤ k < l ≤ n. For all x ∈ T we can write

∑
a,b={l,k}

e2πi(a−b)xcacb = e2πi(k−l)xckcl + e2πi(l−k)xckcl +|ck|2 +|cl|2 (1.32)

= 2 Re(e2πi(k−l)xckcl) +|ck|2 +|cl|2 (1.33)

≥|ck|2 +|cl|2 − 2|ck||ck| (1.34)

≥ 0. (1.35)
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We can rewrite (1.22) by exchanging the order of integration:

n∑
k,l=1

ckcl

∫ 1

0

e2πi(k−l)ξ dµ(ξ) =

∫ 1

0

n∑
k=1

n∑
l=k

∑
a,b={l,k}

e2πi(a−b)ξcacb dµ(ξ), (1.36)

which as shown in (1.32) is nonnegative.

We have shown that the Fourier transform of a positive measure is positive

definite. Now we must show the converse. Let f : Z → C be positive definite. By

one of the properties in proposition 1,
∣∣f(n)

∣∣ ≤ f(0) for all n ∈ Z. This is enough

to demonstrate that f = FT for some distribution T ∈ S ′(G). Note that because

e−2πinx ∈ S(T), we can quickly calculate that f(n) = T (e2πinx). We want to show

that T is positive.

Let q be a trigonometric polynomial of order N ,

q(x) =
N∑

n=−N

cke
2πinx. (1.37)

We can write ∣∣q(x)
∣∣2 =

N∑
k,l=−N

ckcle
2πi(k−l)x, (1.38)

and then we get the formula

T
(∣∣q(x)

∣∣2) = FT
(
F
(
|q(x)|2

))
=

N∑
k,l=−N

f(l − k)ckcl ≥ 0. (1.39)

As the trigonometric polynomials are dense in S(T), we can say then that for

generic q ∈ S(T), T (|q(x)|2) ≥ 0. So for arbitrary p ∈ S(T) such that p ≥ 0, choose
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q(x) =
√
p(x) and it immediately follows that T (p) ≥ 0.

By lemma 6, we can conclude that T is a positive measure on T, and the proof

is complete.

1.7.2 G = R

Theorem 7. A function f : R̂ → C is the Fourier transform of a finite positive

measure µ ∈M(R̂) if and only if it is positive definite and continuous at 0.

Proof. The proof begins similar to that of Herglotz’ theorem. For µ ∈M(T) positive

and

f(x) =

∫
R
e2πixξ dµ(ξ), (1.40)

we must show that (1.22) holds for any choice of (ck)
n
k=1 ⊂ C, and any (xk)

n
k=1 ⊂ R.

Write

n∑
k,l=1

ckcl

∫
R
e−2πi(xk−xl)ξ dµ(ξ) =

∫
R

n∑
k=1

n∑
l=k

∑
a,b={l,k}

e2πi(a−b)ξcacb dµ(ξ). (1.41)

The rightmost sum is positive as shown before, so the function µ̂ is positive definite.

Note that we may justify changing the order of integration because µ is finite. By

the same reasoning we may differentiate µ̂ under the integral sign to show that it is

differentiable and therefore continuous.

Now assume that f : R̂→ C is continuous and positive definite. We have that∣∣f(x)
∣∣ ≤ f(0) <∞ because it is positive definite. So f ∈ S ′(R̂) and we can identify

a distribution T such that f̌ = T ∈ S ′(R). We must show that T is positive.
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Let φ ∈ S(R̂) be a test function. Then it follows from (1.22) that

∫∫
R̂2

f(x− y)φ(x)φ(y) dx dy ≥ 0. (1.42)

If this is not clear, then consider approximating the integral by a Riemann sum,

which will be of the form in (1.22) irrespective of the choice of partition or φ.

Through a change of variable we can write

∫∫
R̂2

f(y)φ(x)φ(x− y) dx dy ≥ 0. (1.43)

Let Φ(x) =
∫
φ(x)φ(x− y) dy, and note that 〈f,Φ〉 ≥ 0. Calculate the following for

Φ̌:

Φ̌(x) =

∫
R̂

Φ(ξ)e2πixξ dξ

=

∫∫
R̂2

φ(ζ)φ(ζ − ξ) dζe2πixξ dξ

=

∫∫
R̂2

φ(ζ)φ(ξ)e2πixζe−2πixξ dζ dξ

=

∫
R̂
φ(ζ)e2πixζ dζ

∫
R̂
φ(ξ)e−2πixξ dξ

=
∣∣∣φ̌(x)

∣∣∣2 .
We can conclude that if p(x) ∈ S(R) with p(x) ≥ 0, then by choosing φ̌(x) =√
p(x) ∈ S(R), T (p) = T (|φ̌|2) = 〈f,Φ〉 ≥ 0. Hence T is a positive functional, and
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by lemma 6 there exists a unique finite positive measure µ ∈M(R) such that

T (φ) =

∫
R
φ dµ ∀φ ∈ S(R). (1.44)

1.7.3 Additional Examples and Applications of Bochner’s Theorem

Notably, there are not many examples of functions which verify Bochner’s

theorem through an easy computation. One of the few is f(x) = e2πiαx = Fδα, for

α ∈ Ĝ For (ck)
n
k=1 ⊂ C and (xk)

n
k=1 ⊂ G,

n∑
k,l=1

ckcle
2πiα(xk−xl) =

n∑
k=1

n∑
l=k

∑
a,b={l,k}

cacbe
2πiα(a−b) ≥ 0. (1.45)

This is suggestive of Carathéodory’s work on holomorphic functions on the

disc. Recall that his characterization of positive definite functions identified that

a certain set of rational functions form the boundary for the convex set of positive

definite functions [19]. Then Toeplitz made the connection between holomorphic

functions

f(z) =
∞∑
k=0

ckz
k, (1.46)

and positive definite sequences (ck)
∞
k=0 ⊂ C. Formally we can write that on the

boundary of the unit circle, f(e−2πiθ) =
∑
cke
−2πikθ = F(ck)(θ). And see that if
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ck = e2πiαk as in (1.45), then f(z) is a rational function of the form

f(z) =
1

1− αz
, (1.47)

which as we’ve seen generate the set of positive definite functions as their convex

hull.

The theoretical interest in Bochner’s theorem is obvious, as it gives a char-

acterization of an important class of Fourier transforms. But it also has yielded

more applications through its life. A classical example due to Khintchin comes from

probability theory of continuous random processes [37].

Let (Ω, ε,P) be a probability space, and Xt(ω) : R × Ω → C be a stochastic

process. That is to say X is measurable in ε× L and for all t ∈ R, Xt is a random

variable on Ω. X is said to be second order stationary if second moments exist,

and both the expectation E(Xt) and covariance Cov(Xt, Xt+τ ) do not depend on t.

Define the covariance function

C(τ) = Cov(Xt, Xt+τ ). (1.48)

As it turns out, C(τ) is a positive definite function. In fact, since Cov(·, ·) forms an
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inner product, we can calculate for any pair (s, t), and complex numbers (cs, ct),

∑
a,b={s,t}

cacb Cov(Xa, Xb)

= |cs|2 Cov(Xa, Xa) + 2 Re csct Cov(Xa, Xb) +|ct|2 Cov(Xb, Xb)

≥ 0.

So for any collection (xk)
n
k=1 ⊂ R, (ck)

n
k=1 ⊂ C, we have

n∑
k,l=1

ckclC(xk − xl) =
n∑
k=1

n∑
l=k

∑
a,b={k,l}

cacbC(xa − xb)

=
n∑
k=1

n∑
l=k

∑
a,b={k,l}

cacb Cov(Xxb , Xxa)

≥ 0.

By application of Bochner’s theorem, we have that for any such X, there exists a

measure ν ∈M(R) such that

C(τ) =

∫
R
e−2πitτ dν(t). (1.49)

1.8 Positive Definite Extensions

What we call the positive definite extension problem was first posed explicitly

by Krein in 1940 [38]. For a locally compact abelian group G and symmetric subset

V , as in definition 3, denote the set of positive definite functions on V by P (V ).
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The question is, can we extend every function f ∈ P (V ) to a function in P (G)?

The case G = Z has the characterization from Carathéodory [19], which as

we’ve seen predates Krein’s question by thirty years. For Vn = {k ∈ Z | |k| ≤ n}, he

gave a characterization of those sequences in P (Vn) which have extenstions to P (Z).

Recall that the point (a1, b1, · · · , an, bn) is said to be the geometric representative of

a function f(z) = 1 +
∑

k akcos(2πk) + bksin(2πk) if and only if it falls within the

convex hull Qn of the curve defined by

(cos(2πα), sin(2πα), · · · , cos(2nπα), sin(2nπα)), 0 ≤ α < 2π. (1.50)

Krein’s problem is related by a simple change of variables. In fact in a later paper

Carathéodory showed that the two sets coincide [20].

Theorem 8. (Carathéodory) Every positive definite function on Vn can be extended

to a positive definite function on Z.

Proof. A function f defined on Vn is positive definite if and only if the matrix

A = (aij)
n
i,j=0, given by aij = f(i − j), is positive definite, i.e. for all c ∈ Cn+1,

cᵀAc ≥ 0. Consider for some z ∈ C the matrix formed by extending A by one row
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and column in the following way:

Az =



f(0) f(1) · · · f(n) z

f(1) f(0) · · · f(n− 1) f(n)

...
. . .

...

f(n) f(n− 1) · · · f(0) f(1)

z f(n) · · · f(1) f(0)


(1.51)

Az is a Hermitian matrix so we can say a few things. First, that it has a uni-

tary decomposition, and therefore n+ 1 distinct real eigenvalues (λi)
n+1
i=0 (including

multiplicity) and orthogonal eigenvectors (vi)n+1
i=0 .

We know by assumption that for c = (ci)
n+1
i=0 ∈ Cn+2, if cn+1 = 0, then cᵀAzc ≥

0. Consider the n + 1-dimensional subspace K = {c ∈ Cn+2 |
∑

i civ
i
n+1 = 0}. For

all c ∈ K, we have

(
n+1∑
i=0

civ
i

)T
Az

(
n+1∑
i=0

civ
i

)
=

n+1∑
i=0

|ci|2 λi ≥ 0. (1.52)

Because this is true for c in an (n+ 1)-dimensional space, we can conclude that at

least n+ 1 of the eigenvalues λi are nonnegative. Since Az is positive definite if and

only if each of its eigenvalues are nonnegative, it follows that since at most one λi

is nonpositive, Az is positive definite if and only if |Az| =
∏
λi ≥ 0.

The problem then reduces to solving a polynomial inequality |Az| ≥ 0, which
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can be computed to have a solution of the form

|z − z0| ≤ r (1.53)

for some z0 ∈ C, r ≥ 0.

We can continue this process for all n to inductively show that an extension

exists to P (R).

In Krein’s paper, he proved the logical next step for the problem by extending

such a result to G = R [38].

Theorem 9. (Krein) Any continuous positive definite function f on an interval

(−A,A) can be extended to a positive definite function on R.

I’ll give a sketch of the proof courtesy of Sasvári [56]. Let LA be the set of

functions with the form

φ(t) =
n∑
k=1

cke
2πixkt, (1.54)

where ck ∈ C and −A < xk < A for all k. Then define the functional Φ: LA → C

by

Φ(φ) =
n∑
k=1

ckf(xk). (1.55)

It follows that Φ is a nonnegative functional, and can therefore be extended contin-

uously to a nonnegative functional on L∞(R). Then by setting F (x) = Φ(e2πixt), it
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can be shown that f(x) = F (x) on (−A,A), and that

n∑
k,l=1

ckclF (xk − xl) = Φ


∣∣∣∣∣∣
n∑
k=1

cke
2πixkt

∣∣∣∣∣∣
2
 ≥ 0, (1.56)

for any collections ck ∈ C, xk ∈ R.

1.8.1 Extensions in Higher Dimensions

When we go to higher dimensions the situation quickly becomes much more

complicated. Consider the simple situation where G = Zn, n ≥ 2. Ten years later

it was proven by Calderón and Pepinsky that a similar extension is not possible.

Theorem 10. For n > 1, there exist positive definite functions defined on

{(k1, · · · , kn) ∈ Zn | |ki| ≤ M} such that they cannot be extended to positive

definite functions on Zn.

And another decade later it was Rudin who expounded and extended their

result to Rn [52].

Theorem 11. (Rudin) For n > 1, there exist continuous positive definite functions

f : In → C, where I = (−a, a) is a symmetric interval, such that f cannot be

extended to a positive definite function on Rn.

The proof is based on a relationship between positive definite functions and

sums of squares of polynomials, a problem that had been studied by Hilbert in the

19th century. Hilbert discovered that there exist nonnegative polynomials of three

28



variables that are not sums of squares, and later examples for n = 2 were found as

well [33].

Theorem 12. (Hilbert) For a given n and d ∈ N, every nonnegative polynomial of

degree d in n variables can be expressed as a finite sum of squared polynomials if

and only if one of the following are true:

� n = 1

� d = 2

� n = 2 and d = 4.

Given a finite set Γ ⊂ Zn, define a subset of the trigonometric polynomi-

als which are supported on V = Γ − Γ. XΓ will be the set of all trigonometric

polynomials of the form

f(γ) =
∑
x∈V

c(x)e−2πiγ·x. (1.57)

We will call these Γ-polynomials. It is obvious that the coefficcients c(x) can be

retrieved from the Fourier transform of f . Define PΓ as the subset of XΓ of nonneg-

ative trigonometric polynomials. Then let QΓ be the set of sums of squares—that

is functions of the form

f(γ) =
J∑
j=1

∣∣gj(γ)
∣∣2 , gj ∈ XΓ. (1.58)

Immediately we have that QΓ ⊂ PΓ ⊂ XΓ.

The goal is to establish a correspondence between QΓ, PΓ and the positive def-
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initeness of c(γ). Then Hilbert’s result will tell us when positive definite extensions

are possible. With that in mind refer to PD(V ) and PD(Zn) as the set of positive

definite functions on V and Zn respectively. Given a function φ defined on V such

that φ(−x) = φ(x), we can define a real functional on XΓ by

Lφ(f) =
∑
x∈V

φ(x)f̂(x). (1.59)

In fact, since XΓ is finite dimensional, it is easy to see that every linear functional

on XΓ is of this form for some φ. The following two results establish the connection

to positive definite sequences.

Proposition 3. A function φ on V is in PD(Γ) if and only if Lφ(f) ≥ 0 for every

f ∈ QΓ.

Proof. Let

g(γ) =
∑
x∈Γ

c(x)e−2πiγ·x. (1.60)

Then we have

∣∣g(γ)
∣∣2 =

∑
x,y∈Γ

c(x)c(y)e−2πiγ·(x−y)

Lφ(|g|2) =
∑
x,y∈Γ

c(x)c(y)φ(x− y).

So Lφ(|g|2) is positive regardless of the choice of g if and only if φ is positive definite.

By the linearity of Lφ, the same is true for any f ∈ QΓ.

Proposition 4. A function φ defined on V can be extended to a member of PD(Zn)
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if and only if Lφ(f) ≥ for all f ∈ PΓ.

Proof. If φ ∈ PD(Zn) then by Bochner’s theorem there is a nonnegative measure

µ ∈M(Tn) such that

φ(x) =

∫
Tn
e2πiγ·x dµ(γ). (1.61)

If f ∈ XΓ then by Parseval’s formula we have

Lφ(f) =
∑
x∈V

f̂(x)φ(x) =

∫
Tn
f dµ. (1.62)

Then Lφ(f) ≥ 0 if f ∈ PΓ.

For the other implication, suppose Lφ(f) ≥ 0 for all f ∈ PΓ. Without loss of

generality assume |f | ≤ 1. Because Lφ(1) = φ(0) we have that Lφ(f) = Lφ(1− f)−

φ(0) ≥ −φ(0) and Lφ(f) = φ(0)− Lφ(1− f) ≤ φ(0), so
∣∣Lφ(f)

∣∣ ≤ φ(0). If φ(0) = 0

then Lφ = 0 on XΓ and φ = 0 on V , and the result is true.

Otherwise without loss of generality assume that φ(0) = 1. Then Lφ is a

bounded linear functional with
∥∥Lφ∥∥ = 1, and by the Hahn-Banach theorem it

extends to a linear functional of norm 1 on C(Tn), which is identified with a measure

µ ∈M(Tn). We have that for f ∈ XΓ,

Lφ(f) =

∫
Tn
f(−γ) dµ(γ). (1.63)

Because 1 = Lφ(1) = µ(Tn) ≤ ‖µ‖TV = 1, we can conclude that µ ≥ 0. We have
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that

φ(x) = Lφ(e2πiγ·x) =

∫
Tn
e2πiγ·x dµ(γ), (1.64)

so µ̂ is an extension of φ to Zn. By Bochner’s theorem it is positive definite, so the

result is proved.

Then we complete this process by coming to the following result.

Theorem 13. (Rudin) Given a finite set Γ ⊂ Zn, PΓ = QΓ if and only if every

φ ∈ PD(Γ) can be extended to a function in PD(Zn).

Proof. The proof will be in two parts. First we must show that QΓ is closed in PΓ,

and then we go on to prove the result.

Say that dimXΓ = |V | = d. Let r > d, and f =
∑r

i=1|gi|
2 , where gi ∈ XΓ.

There is a nontrivial set of (λ)ri=1 ⊂ R such that

r∑
i=1

λi|gi|2 = 0. (1.65)

Assume without loss of generality that λi ≤ λj whenever i ≤ j. By solving (1.65)

for |gr|2 , we get that

f =
r−1∑
i=1

(
1− λi

λr

)
|gi|2 . (1.66)

So f is a sum of r−1 squares. By repeating this process iteratively, we can conclude

that each f ∈ QΓ is a sum of at most d squares.

Now find a sequence of (fn)∞n=1 ⊂ QΓ such that fn → f ∈ XΓ uniformly. For
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each fn there are d Γ-polynomials (gjn)dj=1 such that

fn =
d∑
j=1

∣∣gjn∣∣2 . (1.67)

Each fn is uniformly bounded, hence gjn are also. We can conclude that there is a

subsequence (ni)
∞
i=1 such that for each 1 ≤ j ≤ d and for all x ∈ Γ, there exist cj(x)

such that

lim
i→∞

ĝjni(x) = cj(x). (1.68)

Then it is clear that for

gj(γ) =
∑
x∈Γ

cj(x)e−2πiγ·x, (1.69)

f =
∑

j

∣∣gj∣∣2. We conclude that f ∈ QΓ, thus QΓ is a closed subset of PΓ.

Now we will proceed to the second part of the proof. Assume that PΓ = QΓ.

Let φ ∈ PD(Γ). We know from proposition 4 that Lφ(f) ≥ for all f ∈ QΓ. Since

QΓ = PΓ, we have also Lφ(f) ≥ 0 for f ∈ PΓ, so by proposition 4, φ can be extended

to a function in PD(Zn).

For the other direction, assume that PΓ 6= QΓ. Then there exists some f0 ∈ PΓ

such that f0 /∈ QΓ. Because QΓ is a closed convex set, the Hahn-Banach theorem

guarantees the existence of a hyperplane in XΓ that separates QΓ from f0. In other

words there is a bounded linear functional L such that L(QΓ) ≥ 0 and L(f0) < 0.

Because XΓ is finite dimensional, there exists a function φ on V such that L = Lφ.

By propositions 3 and 4, we can conclude that φ ∈ PD(Γ) but can’t be extended to

a function in PD(Zn). The proof is complete.
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Rudin contributed once more in 1970 to extend the one-dimensional theorem

to one for radially symmetric functions [53].

Theorem 14. (Rudin) If f is positive definite on B(0, r) ⊂ Rn and radially sym-

metric, that is f(x) = ψ(|x|), then f can be extended to a positive definite radially

symmetric function on Rn.

1.9 My Contributions

The remainder of this dissertation will be focused on the following algorithm:

µ# = argmin
µ∈M(T2)

‖µ‖TV such that µ̂(m,n) = ymn, (1.70)

µ̂ is the Fourier transform and ymn is the a priori known values of the Fourier

transform, for −N ≤ m,n ≤ N. In Chapters 2 and 3, I will introduce concepts in

measure theory and Choquet theory respectively to address the motivating question:

which measures can be recovered uniquely through (1.70)?

We have seen some results that give unique recovery for certain kinds of dis-

crete measures, so in Chapter 2 we create tools to try and recover measures which

are not discrete, focusing on measures defined on smooth manifolds. There are dif-

ficult limitations to this task, though we generate ideas that may be fruitful with

future research. But the difficulties provide motivation not only to focus in on the

relationship between delta measures and (1.70), but if possible to try and represent

all solutions in terms of discrete measures.
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Chapter 3 discusses a field of convex geometry called Choquet theory, which

is concerned precisely with representation problems of this type. We will see that

delta measures form the so-called extreme points of the total variation norm, and

as such are well suited to be solutions to the algorithm in (1.70).

In Chapter 4 we use results from Choquet theory to state our main results. Our

Theorem 30 says that if we restrict to positive solutions, any initial data y admits at

least one solution µ# which is discrete, and thus our only hope for unique recovery

can come from discrete measures. Theorem 31 generalizes this result to signed and

complex measures. Then our Theorem 33 gives a novel sufficient condition on the

initial data y and integers N such that (1.70) yields a unique result.
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Chapter 2: Measure Theory and Surface Measures

2.1 Definitions and Notation

One thing we are interested in is whether it is possible to find application to

a broader category of measures than discrete ones. For example, is there a circum-

stance in which we can use total variation methods to recover a surface measure?

Or perhaps a singular measure like the Cantor measure? As it turns out, there are

some fundamental difficulties inherent in the geometry of algorithm (1.70) which

make these problems difficult. In order to explore these questions more fully will

require a deeper understanding of measure theory.

First some preliminaries on geometric measure theory. The field was developed

in the mid 20th century primarily to work on problems related to energy-minimizing

surfaces. Early pioneers include Wendell Fleming and Herbert Federer, the latter of

whose textbook remains a fundamental source on the field today [29]. As the theory

developed it found application to many more problems in both analysis and geometry

and has become a staple of the mathematical landscape. Fundamental concepts

include rectifiable sets, which are generalizations of sets witch admit tangent spaces,

and integral currents, which generalize the ideas of manifolds [47].

Fourier analysis has played an ever increasing role in the research of modern
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geometric analysts, such as Kenig and Toro, Hofmann, Mitrea and Taylor, Hofmann,

Martell and Uriarte-Tuero [47]. Two excellent sources on the development of Fourier

analysis in geometric measure theory are by Kahane and Salem [35], and a more

recent book from Mattila [47]. While the specifics of these works aren’t of interest

to us for the most part, the machinery involved is, particularly results which might

shed insight on the behavior of the Fourier transform. We hope to use those results

in conjunction with our work on positive definite measures.

As going forward I will begin to look at more complicated measures I will make

some definitions in order to be precise with terminology. For the n-dimensional

Lebesgue measure in Rn (or Tn, when applicable), I will write Ln. I refer sometimes

to a surface measure, which I will denote σK , where K is the image of a rectifiable

curve if n = 2, or some (n− 1)-dimensional surface for general n. Frequent choices

are K = Sn−1 for the surface measure on the unit sphere, or K = {(x1, · · · , xn) |

xn = 0}. The surface measure may be defined in a few equivalent ways. Here I will

say that it may be defined by an isometry from a rectifiable curve to (R,L1).

Definition 4. Let γ : [0, 1]→ R2 be a unit speed nonintersecting curve with image

K. σK(A) = L1(γ−1(A)).

This construction is also called a push-forward of L1 under γ. It turns out that

this definition is equivalent to the 1-dimensional Hausdorff measure restricted to K

also, which I will define.

In addition, in the cases where K = Sn−1 or K = {(x1, · · · , xn) | xn = 0}, K

is a topological group under rotations and horizontal translations respectively, and
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therefore has a unique Haar measure. Because the Lebesgue measure—and therefore

the Hausdorff measure as well—is invariant under each of those transformations, it

can be seen easily that the unique Haar measure is equivalent to the Hausdorff

measure definition up to a constant.

Denote by M(X) the set of Radon measures. We say a measure µ on X is

Radon if it is Borel-regular and locally finite. µ is Borel regular if for each A ⊂ X,

there is a Borel set B ⊂ A such that µ(B) = µ(A). If in addition |µ(X)| < ∞,

then we say that µ is bounded and we denote the set of bounded Radon measures

Mb(X). In general for this chapter I refer to positive real-valued measures, but for

later purposes I use this notation for complex-valued measures as well as specified.

In addition, in this chapter it becomes necessary at times to distinguish when a

measure is bounded or unbounded. In all other chapters we will only be concerned

with bounded measures, so I will use the notationM(X) to mean the set of bounded

measures.

Definition 5. The Hausdorff measure Hs in Rn is defined by

Hs(S) = lim
δ→0
Hs
δ(S), (2.1)

where for δ > 0,

Hs
δ(S) = inf

∑
j

α(s)2−sd(Ej)
s
∣∣∣ S ⊂ ∪jEj, d(Ej) < δ

 . (2.2)

d(A) is the diameter of A, and α(s) is a positive constant, which may be scaled so
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that when s is an integer it agrees with the volume of the s-dimensional unit ball.

If they agree, then in R2, Ln = Hn.

Likewise, the Hausdorff dimension of a set S ⊂ Rn is

dimS = inf{s | Hs(S) = 0} = sup{s | Hs =∞}. (2.3)

2.2 Energy Integrals

Understanding Hausdorff measures is important, but what we are really inter-

ested in are more general measures, defined on lower-dimensional sets. We would

like a natural way to relate a measure supported on a set to the dimension of its

support. As it turns out, one of the first central results in geometric measure the-

ory does just that. The goal of the following lemma is to aid in computing lower

bounds for Hausdorff dimensions. From the definition of Hs, it seems that comput-

ing lower bounds might be much more difficult that upper bounds, because we must

prove bounds for arbitrary coverings. Frostman’s lemma gives us a way to pseudo-

approximate from below, by showing the existence of measures that “behave well”

on balls that approximate the set from below.

Theorem 15. (Frostman’s Lemma) For a Borel set S ⊂ Rn, Hs(S) > 0 if and only

if there is a measure µ ∈M(Rn) with supp(µ) ⊂ S such that

µ(B(x, r)) ≤ rs ∀x ∈ Rn, r > 0. (2.4)
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I will not prove the theorem here, but I will point out that one direction is

immediate. If we have such a µ satisfying the condition, then given any covering of

S with balls (Bj), ∑
j

d(Bj)
s ≥

∑
j

µ(Bj) ≥ µ(S) > 0. (2.5)

An immediate consequence of Frostman’s lemma is that

dimS = sup{s | ∃µ ∈M(S) such that (2.4) holds}, (2.6)

which is a demonstration of the lemma’s usefulness in computing Hausdorff dimen-

sions.

We now have a way to relate geometry of sets and measures. A natural question

is whether we can go in the reverse direction, and find the “dimension” of a measure

in some sense? The answer is that it is much more difficult, but there are some

things we can do. Begin by defining the s-energy of a measure, which will quantify

the criterion given in (2.4).

Is(µ) =

∫∫
|x− y|−s dµ(x) dµ(y). (2.7)

We can relate this to equation (2.4) through a change of variables.

∫
|x− y|−s dµ(y) = s

∫ ∞
0

µ(B(x, r))

rs+1
dr (2.8)

If µ satisfies (2.4), then we have that if 0 < t < s, and if µ is compactly supported
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with diameter ≤M ,

It(µ) = t

∫∫ M

0

µ(B(x, r))

rt+1
dr dµ(x) ≤

∫ M

0

rs−t−1 dr <∞. (2.9)

In addition, if Is(µ) < ∞, then we can construct a measure that satisfies (2.4).

Since
∫
|x− y|−s dµ(x) < ∞ for almost all y, we can choose M > 0 and construct

A = {x |
∫
|x − y|−s dµ(y) < M} such that µ(A) > 0. Then for all x, r > 0,

µ�A(B(x, r)) ≤ 2sMrs. So µ�A satisfies (2.4).

We can conclude with a new full characterization of the Hausdorff dimension

in terms of the energy of supported measures.

dimS = sup{s | ∃µ ∈M(S) such that Is(µ) <∞}. (2.10)

For example, if µ=L1�[0,1], Is(µ) =
∫∫ 1

0
|x − y|−s dx dy < ∞ if and only if

s < 1. We also get a similar result if instead of [0, 1] we take L1�K where K ⊂ Rn

is the image of a rectifiable curve.

Analogously in higher dimensions if A ⊂ Rn has Ln(A) > 0, then

Is(Ln�A) <∞ if and only if s < n.

2.3 Cantor Measures

As an aside I’d also like to examine a less trivial example, which has non-

integer dimension. For this section I’m going to define and prove a few results on

Cantor sets and measures. I will define the Cantor set in the standard way.
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Let I ⊂ R be a closed interval of length one. We form the Cantor set iteratively

by deleting the middle third from each continuous interval at each step of the process.

Let I1,1 = I, then I2,1 and I2,2 are the two closed intervals that are produced by

removing the middle third of I. Likewise I2,1 is split into I3,1 and I3,2, and so on in

this fashion. The Cantor set itself is then defined

C =
∞⋂
k=1

2k⋃
i=1

Ik,i. (2.11)

The Cantor measure is typically defined using methods from real analysis. One

can define a Cantor function which is constant on each interval in the complement

of C, and then define the Cantor measure as the distributional derivative of this

function. The method of construction is not important, but what is important is

to note the following property of the Cantor measure, which I will heretofore refer

to as µ: for any Ik,i, µ(Ik,i) = 2−kµ(C). In fact this property alone, along with the

criterion that 0 < µ(C) <∞, is enough to characterize µ up to a constant.

Let s = log(2)/ log(3). I will take note of two identities.

2

(
1

3

)s
= 1, (2.12)

d(Ik,i)
s =

(
1

3

)sk
= 2−k = µ(Ik,i). (2.13)

Then I will show that 0 < Hs(C) ≤ 1. For any k, we have

2k∑
i=1

d(Ik,i)
s =

2k∑
i=1

µ(Ik,i) = 2kµ(Ik,i) = 1. (2.14)
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Since ∪2k

i=1Ik,i is a cover of C, Hs(C) ≤ 1. For the other inequality, we wish to

apply Frostman’s lemma to µ. Let J be an interval which intersects C but does not

contain C. Let Il,j be (one of) the largest intervals completely contained in J . Then

J ∩ C is contained in the union of at most four intervals Il,j1 , · · · , Il,j4 . Hence

µ(J) ≤ 4µ(Il,j) = 4d(Il,j)
s ≤ 4d(J)s. (2.15)

We conclude from Frostman’s lemma that Hs(C) > 0.

In fact, because of how µ was defined, an immediate consequence of this fact

is that Hs�C is equivalent to µ up to a constant. Lastly, we can combine this result

with equation (2.9) to conclude that It(µ) <∞ if and only if t < s.

2.4 Fourier Analysis Methods

Next I will move into some tools for Fourier analysis by returning to the energy

integral (2.7). I can write

Is(µ) =

∫
ks ∗ µ(x) dµ(x), (2.16)

where ks is the Riesz kernel |x|−s. I can use the fact that for 0 < s < n, k̂s =

γ(n, s)kn−s and apply Parseval’s theorem to get a new formula for the s-energy:

Is(µ) = γ(n, s)

∫
|x|s−n|µ̂(x)|2 dx. (2.17)
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Now the flavor for the Fourier analysis of geometric measures becomes clear:

the dimension of the support of a measure must be related to the rate of decay of

its Fourier transform. At the very least we have a quick bound. If

µ̂(x) ≤ −s/2 (2.18)

then Is(µ) <∞ and therefore dim{suppµ} ≥ s.

However the reverse picture is not so clear. Not only do there exist measures

that don’t obey this rule, in fact there are sets which don’t admit any measures

which achieve (2.6) for s equal to their Hausdorff dimension. To express this gap

we have two new definitions. Define the Fourier dimension of a set S by

dimF S = sup{s ≤ n | ∃µ ∈M(S) such that µ̂(x) ≤ |x|−s/2}. (2.19)

As we showed above we have the bound dimF S ≤ dimS. But equality is not

achieved in general. Those sets that do achieve equality are called Salem sets.

Formally we can calculate the form of k̂s from the two facts that it is radial

and it has the property that ks(rx) = r−s(x). That implies that k̂s must also be

translation invariant and it has the property that

k̂s(rξ) =

∫
Rn
e−2πirx·ξks(x) dx = r−n

∫
Rn
e−2πix·ξks(x/r) dx = rs−nk̂s(ξ). (2.20)

It follows that k̂s = γ(n, s)kn−s for some constant γ depending only on s and n.

It is important to note that ks /∈ Lp for any 1 ≤ p ≤ ∞, but can be written
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as a sum of Lp functions, and therefore is a tempered distribution. The above may

be formalized in a more careful manner using this fact. I would next like to give a

derivation of the Fourier form of the engergy integral Is in (2.17).

Theorem 16. If µ ∈M(Rn) is a measure and 0 < s < n, then

Is(µ) =

∫
Rn
ks ∗ µ(x) dµ(x) = γ(n, s)

∫
Rn
|µ̂(ξ)|2|ξ|s−n dξ. (2.21)

Proof. If we assume that Parseval’s theorem holds, then the computation is straight-

forward.

∫
Rn
ks ∗ µ(x) dµ(x) =

∫
Rn

̂(ks ∗ µ)µ̂ =

∫
Rn
k̂sµ̂µ̂ = γ(n, s)

∫
|x|s−n|µ̂|2 dx. (2.22)

However, that is not a trivial assumption in this case, because neither ks nor µ may

be integrable functions, nor can they be assumed to have compact support, so we

will have to make the calculation more directly.

Let S(Rn) be the space of Schwartz functions, and S ′(Rn) the tempered dis-

tributions. It is straightforward to show that for any 0 < s < n, ks ∈ S ′(Rn), so the

convolution is at least well-behaved for µ = φ ∈ S(Rn).

Is(φ) =

∫
Rn
|φ̂(x)|2|x|s−n dx ∀φ ∈ S(Rn). (2.23)

What we wish to do then is approximate µ with test functions and show that the

equality holds true in the limit.
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Let ηε be an approximate identity. That is η ∈ S(Rn), with 0 ≤ η ≤ 1,∫
η = 1. Define ηε(x) = ε−nη(x/ε). Then µε = µ ∗ ηε −−→

ε→0
µ in S ′(Rn). By applying

Parseval’s formula to φ = µε, we get

Is(µε) =

∫
ks ∗ (µ ∗ ηε)(x)(µ ∗ ηε)(x) dx (2.24)

= γ(n, s)

∫
|x|s−n|µ̂(x)|2|η̂(εx)|2 dx. (2.25)

The term in (2.25) converges monotonely to γ(n, s)
∫
|x|s−n|µ̂(x)|2, so we only

need to examine the term in (2.24). Write

Is(µε) =

∫∫ (∫
ks(x− y)ηε(y − z) dµ(z)

)
dy

(∫
ηε(x−w) dµ(w)

)
dx

=

∫∫∫∫
|x− y|−sηε(y − z)ηε(x−w) dx dy dµ(z) dµ(w)

To show that we may exchange the order of integration, consider the integral

∫∫
|x− y|−sηε(y − z)ηε(x−w) dx dy

=

∫∫
|ε(u− v) + z−w|−sη(u)η(v) du dv

≤ |z−w|−s + ε

∫∫
|u− v|−sη(u)η(v) du dv.

For appropriately small ε, we can bound the final term by C(s)|z − w|, and if

I(µ) <∞, we may conclude that it is absolutely integral with respect to µ(z)×µ(w).
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Therefore we may swap the order of integration and pass through the limit to see

I(µε) =

∫∫∫∫
|ε(u− v) + z−w|−sη(u)η(v) du dv dµ(z) dµ(w)

−−→
ε→0

∫∫
|z−w|−s dµ(z) dµ(w) = I(µ).

Alternatively, if I(µ) = ∞, then the result follows from Fatou’s lemma, since ∞ =

I(µ) = I(limµε) ≤ lim I(µε).

2.5 Fourier Dimension and Salem Sets

Recall that the Fourier dimension dimF S of a set is given by the fastest decay

rate of µ̂, for all µ supported in S, in a way that follows naturally from (2.17), and

that a Salem set is a set whose Fourier dimension matches its Hausdorff dimension.

Unfortunately we do not have to look far to find sets which are not Salem. For

example, say S is supported in a lower-dimensional hyperplane H. Let ξ ∈ Rn be

orthogonal to that hyperplane, and let µ ∈ M(S). Then we have for the Fourier

transform of µ,

µ̂(ξ) =

∫
S

e−2πix·ξ dµ(x) =

∫
H

dµ. (2.26)

µ̂ is O(1) as |ξ| → ∞, so the Fourier dimension of S is 0, although the Hausdorff

dimension of S may be anywhere from 0 to n− 1.

As we will derive in section 2.6, the surface measure σ on the unit sphere does

achieve the optimal decay rate σ̂(x) . |x|1−n, so Sn−1 is a Salem set. As it turns

out, the key factor here is the curvature of Sn−1, which plays a role in the analysis
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of oscillatory integrals. In a certain sense Hn−1�Sn−1 has the optimal decay rate of

any similarly defined set precisely because its curvature is uniform.

Another example is the Cantor set, which we will see is not Salem.

Theorem 17. Let C be the Cantor set. For any µ ∈M(Cd),

lim sup
|x|→∞

|µ̂(x)| > 0. (2.27)

Proof. Assume for contradiction that such a measure µ ∈ M(C) exists, such that

lim µ̂(x) = 0. Without loss of generality we may actually assume less; that the

Fourier series coefficients µ̂(k), k ∈ Z tend to 0. Let φ ∈ S(R) be a Schwartz function

such that supp(φ) ⊂ (1/3, 2/3) and
∫
φ = 1. For j ∈ N, define φj(x) = φ([3jx]),

where [x] represents the fractional part of x.

First, I claim that for all x ∈ C, j ∈ N, [3jx] ∈ C. This is clear by recognizing

that x ∈ [0, 1] is in the Cantor set if and only if its base-3 representation contains

no 1’s. Multiplication by 3 in base-3 is represented by shifting each digit to the left,

so for any j ∈ N, the base-3 representation of [3jx] also contains no 1’s, and is still

in C.

Using this fact, we know that for all j ∈ N, suppφj∩C = ∅. We can represent

φj(x) =
∞∑

k=−∞

φ̂e2πix3jk. (2.28)

Therefore φ̂j(3
jk) = φ̂(k), and all other Fourier coefficients are 0. By Parseval’s

48



theorem, we have

0 =

∫
φj dµ =

∞∑
k=−∞

φ̂j(k)µ̂(k) =
∞∑

k=−∞

φ̂(k)µ̂(3jk)

= µ̂(0)µ̂(0) +
∑
|k|>0

φ̂(k)µ̂(3jk)

Because the sum ∑
|k|>0

φ̂(k)µ̂(3jk) (2.29)

converges absolutely, and limj sup|k|>0 µ̂(3jk) = 0, the sum tends to 0 as j → ∞.

But recognize that µ̂(0)µ̂(0) = µ(C), and hence we have shown that µ(C) = 0,

which is a contradiction.

I have demonstrated the proof only for the standard 1/3-Cantor set, but the

proof is easily generalizable to any number of other Cantor-type sets, including those

formed by removing intervals of ratio other than 1/3.

While we are on the subject I will take the opportunity to do one more cal-

culation, for the Fourier transform µ̂. For this, return to the representation of C

as the numbers which contain no 1’s in their base-3 representation. With that in

mind, we can construct C as a closed union C = ∪∞k=1Ek, where

Ek =

{ k∑
l=1

cl3
−l
∣∣∣∣ cl = 0 or 2, ∀l

}
. (2.30)

Then define the measure

νk = 2−k
∑
e∈Ek

δe. (2.31)
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It is clear that νk converges weakly, so by the same symmetry arguments we used

in defining µ, we can show that νk → µ weakly.

Then on the frequency spectrum, we can write

ν̂k(n) = 2−k
∑
e∈Ek

e−2πien = 2−k
∑
e∈Ek

e−2πin
∑k
l=1 el3

−l
, (2.32)

where el is the lth decimal point of e in base-3. A basic calculation shows then that

ν̂k(n) =
k∏
j=1

1 + e−4πi3−jn

2
=

k∏
j=1

e−2πi3−jncos(2π3−jn). (2.33)

Noting that
∑k

j=1 3−j = (1− 3−k)/2,

ν̂k(n) = e−πi(1−3−k)n

∞∏
j=1

cos(2π3−jn). (2.34)

Let k →∞, and we finally have

µ̂(n) = e−πin
∞∏
j=1

cos(2π3−jn). (2.35)

It is easy to verify that µ̂ does not tend to 0 as n → ∞. For k ∈ N, µ̂(3k) =

−
∏∞

j=1 cos(2π3k−j) is constant with respect to k and nonzero.

Given the above examples, it seems perhaps difficult to construct Salem sets.

Indeed there are few explicit constructions, especially with Hausdorff dimension not

an integer. However probabilistic methods are more fruitful. Particularly there are

good results for sets that are produced from Brownian motion [34].
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Theorem 18. If ω : [0,∞)→ Rn is a random Brownian motion, and S ⊂ [0,∞) is

a Borel set, then the following is true almost surely.

1. If n ≥ 2 or dimS ≤ n/2, then dimω(S) = 2 dimS.

2. If n = 1 and dimS > 1/2, then L1(ω(S)) > 0.

3. ω(A) is a Salem set.

The only known explicit examples of Salem sets of non-integer dimension are

of a form discovered by Kaufman, which takes advantage of famous results on Dio-

phantine approximation [36]. Let α > 0 and let E be the set of x ∈ R such that for

infinitely many rationals p/q,

|x− p/q| ≤ q−2−α. (2.36)

E is a Salem set with dimension 2/(2 + α). Recent results have generalized this to

Rn, so constructive Salem sets are now known to exist in every dimension [32].

2.6 Fourier Decay of Surface Measures

Here I go through an important derivation of the Fourier transform of the

surface measure σ ∈ M(Rn), defined by σ = Hn−1�Sn−1 . First consider a generic

radial function. It is a basic fact from calculus that if f ∈ L1(Rn), then

∫
Rn
f(x) dx =

∫
Sn−1

∫ ∞
0

f(rx)rn−1 dr dσ(x). (2.37)
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We will need another related formula for rewriting the surface integral. Let x0 ∈

Sn−1 be fixed and define Sθ = {x ∈ Sn−1 | x · x0 = cos(θ)}. Sθ is an (n − 2)-

dimensional sphere lying in Sn−1, with radius sin(θ). Call the surface measure on

Sθ by Hn−2�Sθ = σn−2
θ , and note that σn−2

θ (Sθ) = b(n) sinn−2 θ, where b(n) is the

surface area of the unit (n− 2)-ball. Then we can write

∫
Sn−1

f dσ =

∫ π

0

∫
Sθ

f(x) dσn−2
θ (x) dθ. (2.38)

Then for a radial function f(x) = ψ(|x|), we can compute for the Fourier

transform using these two identities:

f̂(rx0) =

∫
Rn
f(y)e−2πiy·rx0 dy =

∫ ∞
0

ψ(s)sn−1

∫
Sn−1

e−2πiy·rx0 dσ(y) ds.

We can take advantage of the fact that for y ∈ Sθ, e−2πiy·rx0 = e−2πir cos θ is constant

with respect to y.

f̂(rx0) =

∫ ∞
0

ψ(s)sn−1

∫ π

0

e−2πir cos θb(n) sinn−2 θ dθ ds. (2.39)

With the change of variable t = − cos θ, this becomes

∫ ∞
0

ψ(s)sn−1

∫ 1

−1

e2πisrt(1− t2)(n−3)/2 dt ds, (2.40)

which is in the form of a Bessel function. Using the definition of Bessel functions
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Jm : [0,∞)→ R,

Jm(u) =
(u/2)m

Γ(m+ 1/2)Γ(1/2)

∫ 1

−1

eiut(1− t2)m−1/2 dt, (2.41)

we can substitute and obtain the formula for f̂ ,

f̂(rx) =

∫ ∞
0

ψ(s)sn−1c(n)(rs)−(n−2)/2J(n−2)/2(2πrs) ds

= c(n)r−(n−2)/2

∫ ∞
0

ψ(s)J(n−2)/2(2πrs)sn/2 ds.

We can now use this formula to derive some decay estimates. Using the following

two classical properties of Bessel functions,

Jm(t) ≤ C(m)t−1/2 t > 0, (2.42)

d
dt

(
tmJm(t)

)
= tmJm−1 (t) , (2.43)

we can quickly calculate the Fourier transform of the unit ball.

χ̂B(0,1)(x) =
c(n)

2π|x|
|x|(2−n)/2Jn/2(2π|x|s)sn/2

∣∣∣∣∣
s=1

= C(n)|x|−n/2Jn/2(2π|x|).

Using (2.42), this satisfies the decay χ̂B(0,1)(x) ≤ C(n)|x|−(n+1)/2. Then finding a

bound for the surface measure σ on Sn−1 is as simple as recognizing that we can
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define it as a weak limit of the functions

δ−1χB(0,1+δ)\B(0,1), δ → 0. (2.44)

Then we get the formula

σ̂(x) = lim
δ→0

c(n)|x|−(n−2)/2δ−1

∫ 1+δ

1

J(n−2)/2(2πrs)sn/2 ds

= c(n)|x|−(n−2)/2J(n−2)/2(2π|x|).

This has a decay rate of σ̂(x) . |x|(1−n)/2.

2.7 Discussion

Our goal is to find options for recovering non-discrete measures. We know

that certain surface measures cannot be recovered by means of total variation min-

imization [6]. I consider two main candidates for accomplishing this: we may either

minimize for something other than total variation or limit the optimization to a

subspace of M(T2).

If we wish to recover surface measures a natural question is: what is a possible

subspace S ⊂M(T2) which contains some or all 1-dimensional surface measures but

no measures of dimension 0? We can rule out S being the set of all surface measures

of rectifiable curves, because the weak-* closure of this set is M(T2)—for example,

a sequential limit of surface measures on concentric circles with decreasing radius

will converge to a point mass. Therefore nothing is gained by limiting optimization
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to S; we must choose a subset which is closed.

Limiting the decay rate is also tempting. Take S = {µ ∈ M(T2 | µ̂(x) ≤

C|x|−1/2}, for some aptly chosen C > 0. We know from our derivation in the prior

section that S will contain at least some surface measures, and cannot include any

measures with support smaller than 1 dimension. The problem is with the choice of

C. Any solution to (1.70) will necessarily fall on the boundary of S, so the choice

of C has an effect on the outcome of the algorithm. This may be a good option. If,

for example, we know that the desired solution is a circle with prescribed radius, we

may find the correct value of C by direct calculation by means of the formula in the

previous section. However this method requires a large amount of prior knowledge

which may not be realistic.

One more option to explore is using the energy integrals Is as an alternative

or addendum to the total variation norm. Consider an algorithm,

σ# = argmin
µ∈M(T2)

‖µ‖TV + λIs(µ) such that F (µ) = y, (2.45)

for some appropriately chosen s and λ > 0. This algorithm would exclude any

discrete measures as solutions, but beside that fact the results are somewhat unclear.

One problem is that for µ a surface measure, I1(µ) =∞, so we must choose s < 1,

which will also allow potentially for solutions with dimension between 0 and 1.

Otherwise this territory is fairly unexplored to the author’s knowledge, and I would

recommend it as a topic of future research.

The relationship between total variation, Hausdorff dimension and the Fourier
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transform is rich and complex. There are relationships which may be exploited, but

dealing with them takes caution. The moral of this chapter is that it is difficult to

divorce the total variation norm on a continuous space from the discrete measures.

Particularly to note is the fact stated previously that a discrete measure may be

expressed as a limit of surface measures or continuous measures (approximate iden-

tity), but the converse is not true. In the next chapter I will explore the question of

why the discrete measures are unique in this regard, and I get a result that confirms

our expectations that unique recovery of non-discrete measures is impossible with

total variation minimization.
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Chapter 3: Choquet Theory

3.1 Choquet’s Theorem

Choquet theory is concerned with convex sets and their extreme points. Ex-

treme points can provide a characterization of convex sets, in particular if they are

compact. The content of this section is focused on results that provide representation

theorems of convex sets, and points within convex sets, centered on their extreme

points. For a motivating example I begin with a classical theorem of Carathéodory

[19].

Theorem 19. Let a point x fall in the convex hull of a set E ⊂ Rn. x can be

written as a convex sum of at most n+ 1 points in E.

An easy corollary is that if E consists of n+1 affinely independent points (the

points xk − x1 are linearly independent for k > 1), then the convex sum is unique.

In this case the convex hull of E is a simplex, and E are its vertices. From this it

is easy to see that the bound n + 1 is the best that can be done. If E is affinely

independent and x lies in the interior of E, then x is affinely independent from any

strict subset of E, therefore it can only be written as a convex combination of all

n+ 1 elements of E.
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Definition 6. A point x in a convex set S in a locally convex topological vector space

is an extreme point if for any a, b ∈ S, a 6= b, and for any t ∈ (0, 1), x 6= ta+(1− t)b.

Denote the set of extreme points of S by ex(S).

Definition 7. Let E be a subset of a locally convex topological vector space. The

convex hull of E is the smallest convex set containing E. The closed convex hull of

E is the smallest closed set containing E.

Extreme points are in a sense generators of compact convex sets. Because they

cannot be written as convex combinations of other elements, they carry essential in-

formation about the set. The Krein-Milman theorem tells us that they are sufficient

to characterize their underlying sets as well [39].

Theorem 20. (Krein-Milman) If X is a locally convex topological vector space and

S is a compact convex subset of X, then S is the closed convex hull of its extreme

points.

Results of this sort in finite dimensions date back to the early 20th century,

first attributed to Minkowski and Carathéodory [50]. Carathéodory’s theorem 19

suggests the idea of simplices as a basic archetype of a convex set. As we will see in

section 3.3, Choquet theory develops tools to generalize the idea of the simplex to

infinite dimensional space.

The insight of Choquet to convex geometry is generalizing the idea of a convex

combination to infinite-dimensional domains, by considering them as integrals rather

than sums. Now instead of being represented by the nonnegative weights of a finite
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sum, elements of a convex set can be represented as an integral over a nonnegative

measure supported on a generating set.

Definition 8. Let X be a locally convex topological vector space and S be a

nonempty compact subset. If µ is a probability measure on S, we say that a point

x ∈ X is represented by µ if

f(x) =

∫
S

f(t) dµ(t) for all affine functions f on X. (3.1)

We say that f : X → R is affine if for all x, y ∈ X, λ ∈ R, f(λx+ (1− λ)y) =

λf(x) + (1 − λ)f(y). Note that any point x is trivially represented by the delta

measure δx.

For example, in the finite dimensional case we might take x ∈ RN , and stan-

dard basis E = (en)Nn=1. Let x =
∑

n ξnen, where ξn > 0 and
∑

n ξn = 1. This

means that x is a convex combination of basis vectors. Alternatively, we can let

µ =
∑

n ξnδen be a measure on RN . For all yᵀ ∈ (RN)′,

∫
E

yᵀz dµ(z) =
N∑
n=1

ξny
ᵀen = 〈y,x〉 . (3.2)

Hence x is represented by the probability measure µ in a way that is analogous to

writing it as a convex combination. Note also that the restriction that µ be positive

and norm one is equivalent in this case to ξn > 0 and
∑

n ξn = 1.

For an example that is less trivial, I want an infinite dimensional space. Let

X =Mb(T2), the set of bounded complex measures on the Torus, which is relevant
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since I will return to it when I discuss superresolution. Let S = {δx | x ∈ T2}, and

σ be the 1-dimensional surface measure on the set {(x1, x2) | x2 = 0}. It is easy to

see that σ cannot be written as a finite convex combination of delta measures, but

I wish to show that it can be represented by a probability measure.

Proposition 5. Let Σ ∈Mb(S) be defined by Σ(A) = σ({x ∈ T2 | δx ∈ A}). Then

Σ represents σ.

Proof. First observe that Σ is well defined, and that it is a positive measure, with

‖Σ‖ = 1. Let f ∈ X ′ be a continuous linear functional onMb(T2). We wish to show

that f(σ) =
∫
S
f dΣ. Note that because of how Σ is defined, (S,Σ) and (T2, σ) are

isomorphic as measure spaces under the isomorphism δx 7→ x. We can conclude

that ∫
S

f(µ) dΣ(µ) =

∫
T2

f(δx) dσ(x). (3.3)

Now consider the sequence of measures

µN =
1

N

N∑
n=1

δ( nN ,0)
. (3.4)

µN converges to σ weakly. We can conclude that

∫
T2

f(δx) dσ(x) = lim
N→∞

∫
T2

f(δx) dµN(x)

= lim
N→∞

1

N

N∑
n=1

f

(
δ( nN ,0)

)

= lim
N→∞

f(µN)

= f(σ).

(3.5)
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Therefore Σ represents σ.

One thing to note is that the final inequality requires that f is continuous with

respect to the weak topology on Mb(T2). This is significant, as it is a requirement

for Choquet’s representation theorem for S to be compact, which it is in this case

only under the weak topology.

The ultimate goal of this machinery is to say that we can actually represent

all points in a convex set by measures on its extreme points, which was achieved by

Choquet in 1956 [22].

Theorem 21. (Choquet-Bishop-De Leeuw) Let S be a compact convex subset of

a locally convex space X. Let x ∈ S. Then there exists a probability measure

µ ∈ Mb(X) such that µ vanishes on every Baire subset of S that doesn’t contain

an extreme point of S, and that for any bounded linear functional f on X,

f(x) =

∫
S

f dµ (3.6)

Choquet initially proved the theorem under the slightly stricter case where

X is metrizable. Bishop and De Leeuw found the above strengthening three years

later.

3.2 Application to Completely Monotone Functions

Choquet’s theorem has found application to a variety of subjects, providing

elegant proofs of some well-known representation theorems [3, 24, 28, 50]. I will go
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through an example here to provide context for the theory and demonstrate its wide

application, and to illustrate the recurring themes of convex geometry that I wish

to exploit.

A function f : (0,∞) → R is said to be completely monotonic if it is smooth

and satisfies

(−1)nf (n) ≥ 0 ∀n ∈ N. (3.7)

For example, e−αx and x−α are completely monotonic. There is a theorem of Bern-

stein that characterizes completely monotone functions in terms of exponentials of

the form e−αx [7]. This result is particularly interesting in the context of the Laplace

transform. In a certain sense it can be viewed as a version of Bochner’s Theorem

for the Laplace transform. For more details see Widder’s comprehensive exposition

of the Laplace transform [60]. Phelps gives a proof of his theorem for bounded

completely monotonic functions, using methods from Choquet theory [50].

Theorem 22. (Bernstein) Let f be a completely monotone function. Then there

exists a unique nonnegative measure µ ∈M[0,∞] such that µ([0,∞]) = f(0+) and

f(x) =

∫ ∞
0

e−αx dµ(α). (3.8)

The rest of this section will be dedicated to a proof of Bernstein’s theorem. The

idea is clear from the representation formula. We wish to find an adequate topology

on the set of completely monotone functions and a subset which is compact and

convex, so that the extreme points are precisely the functions e−αx, α ∈ [0,∞].
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Let X be the convex cone of bounded completely monotonic functions. Note

that because f ∈ X is necessarily strictly nonnegative and nonincreasing, f is

bounded if and only if f(0+) < ∞. Define S ⊂ X as the set of all such functions

for which f(0+) ≤ 1. Choose the topology such that fk → f if and only if for all

n ∈ N, ‖f (n)
k − f‖∞ → 0. By definition, this is a locally convex topology. We wish

to show that in this case, S is compact.

We can construct the chosen topology of uniform convergence with a countable

family of seminorms,

pm,n(f) = sup{|f (k)(x)| | 1/m ≤ x ≤ m, 0 ≤ k ≤ n}. (3.9)

By a standard construction, X is metrizable, with the metric

d(f, g) =
∞∑

m,n=1

pm,n(f − g)

1 + pm,n(f − g)
. (3.10)

Under this definition, a set is bounded if and only if it is bounded in each semi-

norm. Therefore, given a bounded sequence of functions, the sequence is uniformly

equicontinuous on each derivative and each compact set. An application of the

Arzèla-Ascoli theorem, along with a diagonalization argument shows that the se-

quence has a convergent subsequence. Therefore every closed and bounded set is

compact.

S is clearly closed, so it remains to show that S is bounded.

Lemma 23. Let Sn = {(−1)nf (n) | f ∈ K}. Let a > 0 and n ≥ 0. Then Sn is
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uniformly bounded above on [a,∞) by a−n2(n+1)(n/2).

Proof. The proof is by induction. For n=0, the lemma holds because for any f ∈ K,

f(0+) ≤ 1 and f is strictly nonincreasing.

Assume for arbitrary k ∈ N that the lemma holds for Sk. Let a > 0. By the

mean value theorem we have the existence of a point c ∈ [a/2, a] such that

a

2
f (k+1)(c) = f (k)(a)− f (k)(a/2). (3.11)

Then using monotonicity of functions in Sk and the induction hypothesis, we have

(a/2)−k2(k+1)(k/2) ≥ (−1)kf (k)(a/2) (3.12)

≥ (−1)k+1a

2
f (k+1)(c) (3.13)

≥ (−1)k+1a

2
f (k+1)(a). (3.14)

The inequality follows, and because of the monotonicity of f ∈ Sk, it will hold for

x ≥ a as well.

We have now shown that we have an adequate setting for Choquet’s theorem

to apply, and all that remains is to characterize the extreme points of S to obtain

the desired representation theorem.

Lemma 24. The extreme points of S are precisely the functions of the form f(x) =

e−αx, where 0 ≤ α ≤ ∞.

Proof. A straightforward computation shows that any such function falls in S. First
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I will show that any extreme point must take this form.

Let f be an extreme point of S. Let x0 > 0 and define u(x) = f(x + x0) −

f(x)f(x0). I claim that f ± u ∈ S. Note first that

(f + u)(0+) = f(0+) + f(x0)− f(0+)f(x0)

= f(0+)(1− f(x0)) + f(x0)

≤ 1,

(f − u)(0+) = f(0+)− f(x0) + f(x0)f(0+)

= f(x0)f(0+) + (1− f(x0))

≤ 1.

And for k ∈ N,

|u(k)(x)| = |f (k)(x+ x0)− f(x0)f (k)(x)|

≤ max{|f (k)(x+ x0)|, |f(x0)f (k)(x)|}

≤ (−1)kf (k)(x).

Therefore (−1)k(f ± u)(k)(x) ≥ 0, and f ± u ∈ S.

Because we made the assumption that f is an extreme point of S, u ≡ 0.

Hence for any x, x0 > 0, f(x + x0) = f(x)f(x0). Because f is continuous, it must

be of the form e−αx. Because of the restriction that f ′ ≤ 0, α ≥ 0. Note that I am

allowing α =∞ for the case f ≡ 1.
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Finally, what remains is to show that every function e−αx is an extreme point.

We can solve this by taking note of the mapping f(x) 7→ f(rx) for r > 0. This

mapping is a bijection of S onto itself and preserves convex combinations, so it

takes extreme points to extreme points. Since the Krein-Milman theorem implies

that there is at least one nonconstant exponential function e−αx, which is an ex-

treme point of S, we can generate any such exponential function e−αrx by the above

mapping to show that it is an extreme point. The lemma is proved.

It follows from Choquet’s theorem that for any f ∈ S there exists a probability

measure µ ∈M(ex(S)) such that f(x) =
∫

ex(S)
dµ. Now, because the correspondence

T : [0, 1] → ex(S) given by α 7→ e−αx is actually an homeomorphism, we have a

natural correspondence fromM[0,∞] toM(ex(S)). We can identify µ ∈M(ex(S))

with T̃ (µ) ∈M[0,∞] by T̃ (µ)(A) = µ({e−αx | α ∈ A}) and it turns out that

f(x) =

∫ ∞
0

e−αx dT̃ (µ)(α), (3.15)

as intended.

To show uniqueness, one needs only to use the Stone-Weierstrass theorem.

Suppose that
∫∞

0
e−αx dµ(α) =

∫∞
0
e−αx dν(α) for all x > 0. If A is the subspace of

C[0,∞] generated by functions of the form α 7→ e−αx, then µ = ν as functionals on

A. Since A separates points of [0,∞], it is dense, and therefore µ ≡ ν.
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3.3 Uniqueness and the Choquet Simplex

While Choquet’s theorem is a great tool for proving existence, it doesn’t say

anything about uniqueness. In fact we don’t need to go further than the finite

dimensional case to see examples of the failure of convex representations to be

unique. For example, the unit square in the plane has extreme points (±1,±1),

and the origin is a convex combination of either of the two diagonal vertices. In

fact any point in the interior has at least two convex representations. The unit

ball by contrast is in a sense “maximally nonunique,” in that any point in the unit

ball is either an extreme point or has uncountably many representations as convex

combinations of extreme points.

The prototypical example of a set where Choquet-type representations are

unique is a simplex.

Proposition 6. Each point in a finite-dimensional simplex has a unique represen-

tation as a convex sum of its vertices.

Proof. Proceed by induction. For k = 0 is trivial, as the 0-dimensional simplex is

a single point. Assume the hypothesis is true for k. Refer to the k-dimensional

simplex as ∆k, with vertices {x1, · · · ,xk}. ∆k+1 is formed by adding a new vertex

xk+1, linearly independent from ∆k, and taking the convex hull of the result. Let

x ∈ ∆k+1, without loss of generality x 6= xk+1. Since x is in the convex hull of

the vertices {x1, · · · ,xk+1}, we can write x =
∑k+1

m=1 cmxm. Consider the line ` =

{tx + (1 − t)xm | t ∈ R}. ` passes through both the points xk+1 and x, therefore
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it passes through the face of ∆k+1 opposite xk+1, which is identified with ∆k. The

point x0 ∈ ` ∩∆k has for some t ∈ R,

x0 = t

 k+1∑
m=1

cmxm

+ (1− t)xk+1 = (1 + ck+1)
k∑

m=1

cmxm, (3.16)

which is in ∆k. By the induction hypthesis, (c1, · · · , ck) are unique, therefore xk+1

is also unique.

As an obvious consequence of this, the vertices of a simplex are also shown to

be its extreme points. Carathéodory’s theorem can be seen as an immediate con-

sequence of this result as well. Any n-dimensional polyhedron may be decomposed

into simplices. If the polyhedron has more than n + 1 vertices, then the decompo-

sition is not unique. For any point in the interior of the polyhedron, it has at least

one different Choquet representation for each choice of simplicial decomposition.

The generalization of this concept is the Choquet simplex, a construction that

generalizes the notion of simplices to infinite-dimensional vector spaces in a way

that guarantees that points in Choquet simpleces have unique representations as

measures on the extreme points. Here I will define the Choquet simplex and prove

Choquet’s uniqueness theorem for metric spaces.

The definition will require a few more constructions. Say that S is a compact

convex set in a real locally convex space X. I will be working with the cone of S, so

I will assume that S falls in an affine hyperplane in X that does not intersect the

origin. Denote the cone C = {λx ∈ X | x ∈ S, λ ≥ 0}. If S falls in a hyperplane

as described, then for all x ∈ C, there is a unique λ ≥ 0 such that λx ∈ S. We say
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that S is a base of the cone C.

The cone C defines a partial ordering on the space X. Let x � y if y− x ∈ C.

Since S falls in a hyperplane that misses the origin, C ∩ −C = {0}, so x � y and

y � x implies y = x. On the other hand if x � y � z, then y − x = αu, z − y = βv,

where α, β ≥ 0 and u, v ∈ S. Then

αu+ βv = (α + β)

(
α

α + β
u+

β

α + β
v

)
, (3.17)

which is in C, so x � z. Note as well that for x ∈ X, the set Cx = {y ∈ X | x �

y} = C + x, so the partial order is also translation invariant. Finally, we say that

for two elements x, y ∈ X have an upper bound z if x � z and y � z. The upper

bound is a least upper bound if for every upper bound z0, z � z0.

Finally, we define a convex set S that is the base of a cone C to be a Choquet

simplex if and only if the space C −C has the property that for each x, y ∈ C −C,

there is a unique least upper bound, which we denote x ∨ y. We say that C − C is

a vector lattice.

Definition 9. A partially ordered set is called a join- (meet-) semilattice if each

pair of elements has a unique least upper (lower) bound. If a vector space is a

semilattice which satisfies

1. x � y implies x+ z � y + z for all z

2. x � y implies αx � αy for all α ≥ 0,

then it is a vector lattice.
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Proposition 7. C − C is a vector lattice if and only if C is a meet-semilattice.

That is each pair of elements in C has a greatest lower bound.

Proof. For each x, y ∈ C, call their unique greatest lower bound x∧y. Let x = x1−x2

and y = y1 − y2 be elements of C − C. Let z = (x1 + y1) − (x1 + y2) ∧ (y1 + x2).

Because z−x = (x2 +y1)− (x1 +y2)∧ (y1 +x2), we have x � z, and similarly y � z.

Now let w = w1 − w2 be an upper bound for x and y. It is clear from the

definitions that w2 + x1 + y1 � w1 + x2 + y1 and w2 + x1 + y1 � w1 + x1 + y2.

Therefore,

w − z = (w1 + x1 + y2) ∧ (w1 + y1 + x2)− (w2 + x1 + y + 1) � 0. (3.18)

For the reverse direction, given C − C is a vector lattice, one can define a

greatest lower bound by x ∧ y = −(−x ∨ −y). By restricting to C − {0} = C, it is

demonstrated that C is a meet-semilattice.

Geometrically, this can be interpreted as saying that the intersection of two

identical cones will be another congruent cone. For basic examples, consider the

finite dimensional examples I discussed earlier. The intersection of two circular

cones C0 = {(x, y, z) ∈ R3 | y2 + z2 ≤ x2} and Cw = C0 + w situated in the same

direction will be a hyperbola-shaped crescent. Therefore 0 and w can’t have a least

upper bound because for any v ∈ C0 ∩ Cw, Cv = C0 + v ⊂ C0 ∩ Cw is a strict

subset; it does not contain all upper bounds of 0 and w. Therefore the circle is not

a Choquet simplex.
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By contrast, the nonempty intersection of two triangular pyramids, oriented in

the same direction, is another identical prism. Thus, the triangle, a simplex, indeed

meets the criterion to be a Choquet simplex as well.

3.4 Technical Proofs

Now I will provide some more technical proofs in Choquet theory. To start

with there are some tools we will need in the upcoming proofs. First, I define an

equivalence relation on measures. Say that µ ∼ ν if for all h ∈ A(X),
∫
h dµ =∫

h dν.

Definition 10. Let X be a convex subset of a topological vector space and f : X →

R. f is called convex if for all x, y ∈ X, and for all 0 < λ < 1,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (3.19)

If the inequality above is strict, we say f is strictly convex. If it is an equality, then

f is said to be affine. −f is concave.

Define the set of all affine functions on X by A(X). Notice that A(X) contains

functions of the form f(x) + r, where r ∈ R and f is linear, so it is rich enough to

separate points.

Definition 11. Let f : X → R be bounded. Call the upper envelope of f the
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function given by

f(x) = inf{h(x) | h ∈ A(X) and h ≥ f}. (3.20)

These are few basic properties of f, which will be useful:

Proposition 8.

1. f is concave, bounded and upper semicontinuous.

2. f ≤ f for all f . f = f if and only if f is concave and upper semicontinuous.

3. If f, g are bounded functions, f + g ≤ f + g, and |f − g| ≤‖f − g‖C0
. f + g =

f + g if g ∈ A(X).

4. rf = rf , for r > 0.

The following proposition shows how the upper envelope function interacts

with the extreme points of its underlying set.

Proposition 9. Let X be a convex subset of a topological vector space. If f ∈

C(X), then for each x ∈ X,

f(x) = sup

{∫
f dµ | µ ∼ δx

}
. (3.21)

f(x) = f(x) if x is an extreme point of X.

Proof. Let g = sup{
∫
f dµ | µ ∼ δx}, and we wish to show that g = f . For any

µ, ν with µ representing x and ν representing y, and 0 < α < 1, π = αµ+ (1− α)ν
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represents αx + (1− αy). Then we have the inequality
∫
f dπ ≤ g(αx + (1− αy)).

Taking the supremum over all µ and ν, we have that

g(αx+ (1− αy) ≥ αg(x) + (1− α)g(y), (3.22)

Therefore g is concave.

To show that g is upper semicontinuous, let {xα} be a net converging to a

point x ∈ X, with g(xα) ≥ r for each α. Fix ε > 0, and then for each α choose

a measure µα ∼ δxα such that µα(f) > r − ε. By the weak-* compactness of the

set of probability measures, there exists a convergent subnet {µβ} that converges

to a measure µ. For each h ∈ A(X), h(xβ) = µβ(h) → µ(h), so µ(h) = h(x), and

µ represents x. Also because µβ(f) > r − ε for each β, we have µ(f) ≥ r − ε, and

therefore g(x) ≥ r − ε. Because ε was arbitrary, we can let it go to 0 and obtain

g(x) ≥ r, which shows that g is upper semicontinuous.

Now since g is concave and upper semicontinuous, it follows that g ≥ f . On

the other hand, if h ∈ A(X) and h ≥ f , for any x ∈ X and µ representing x, we

have h(x) =
∫
h dµ ≥

∫
f dµ. From this we get h(x) ≥ g(x), and then taking the

infimum over all such h, f(x) ≥ g(x).

3.4.1 Choquet’s Theorem for Metrizable Spaces

Now we wish to move on to our first major proof. Recall Choquet’s Theorem.

Theorem 25. (Choquet) Let S be a compact convex subset of a metric space X.

Let x ∈ S. Then there exists a probability measure µ ∈ Mb(X) such that µ is
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supported on ex(S), and that for any bounded linear functional f on X,

f(x) =

∫
S

f(t) dµ(t) (3.23)

This was the first representation theorem proved by Choquet [22]. It was, of

course, generalized not long after to the Choquet-Bishop-De Leeuw theorem, but the

proof is much more technical and the added machinery for working in non-metrizable

topological spaces is not necessary for our purposes. The proof is courtesy of Phelps

[50].

Proof. (Choquet’s theorem) Suppose X is a metrizable compact convex subset of a

locally convex topological vector space E. Let x0 ∈ X be arbitrary. What we get

from the metrizability of X is that C(X), and therefore A(X), is separable. Let

(hk)
∞
k=1 be a sequence of functions in A(X) such that ‖hk‖C0

= 1 and {hk | k ∈ N}

is dense in the unit sphere of A. In other words, (hk) separates points of X.

Then let f =
∑

k 2−kh2
k. Note two things: (hk) is uniformly bounded, so the

sum converges uniformly; and h2
k is strictly convex for all k, so f is also strictly

convex. Then we can define a subspace B = A(X) + rf , r ∈ R. For h ∈ A(X) and

r ≥ 0, we have by Proposition 8 that h + rf = h+ rf . If r < 0, then h + rf is

concave, and h+ rf ≤ h+ rf = h+ rf . In either case we have

h+ rf ≤ h+ rf, (3.24)

and the functional on B defined by h + rf 7→ h(x0) + rf(x0) is dominated by the
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functional g 7→ g(x0), which is bounded on C(X). Therefore we can apply the Hahn-

Banach theorem to extend to a functional m on C(X) which satisfies m(g) ≤ g(x0)

and m(h+ rf) = h(x0) + rf(x0). Note that if g is negative then m(g) ≤ g(x0) ≤ 0,

so m is positive, and therefore is identified with a measure on X. m(1) = 1, so m is

a probability measure. Because for any h ∈ A(X), m(h) = h(x0), m represents x0.

Now for any h ∈ A(X) such that f ≤ h, and therefore h ≥ f. Hence m(f) ≤

m(h) = h(x0). By the definition of f, m(f) ≥ m(f), and since f ≥ f , m(f) = m(f).

We can conclude that m is supported on the set {x ∈ X | f(x) = f(x)}.

Let x, y, z be distinct points in X. If x = y/2+z/2, then by the strict convexity

of f ,

f(x) <
1

2
f(y) +

1

2
f(z) ≤ 1

2
f(y) +

1

2
f(z) ≤ f(x). (3.25)

Therefore x is not in the support of m. We can conclude that every m is supported

on a subset of the extreme points of X.

As it turns out, one additional fact that follows from this proof is that the

constructed function f has the stronger property that f(x) = f(x) if and only if

x is an extreme point of X, which gives us another way of characterizing extreme

points.

3.4.2 The Choquet-Meyer Theorem

The Choquet-Meyer theorem says that Choquet simplices are precisely the

convex sets that support uniqueness of Choquet representations [23].

Theorem 26. (Choquet-Meyer) Let X be a compact convex subset of a locally
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convex, metrizable topological vector space E. The following are equivalent.

1. X is a Choquet simplex.

2. For all f ∈ C(ex(X)), if f is convex, then f ∈ A(X).

3. If µ ∈ M(ex(X)) represents x ∈ X, and f ∈ C(X) is convex, then f(x) =

µ(f).

4. For any convex f, g ∈ C(X), f + g = f + g.

5. For all x ∈ X, there is a unique measure µ ∈M(ex(X)) that represents x.

The process outlined in this section is again from Phelps, as was much of the

material in this chapter [50]. We will need a few more materials before attacking

the proof in its entirety.

Define a partial ordering on M(X) given by µ ≺ ν if for all convex functions

h on X,
∫
h dµ ≤

∫
h dν. This definition is meaningful. For example, we can show

that the surface measure (normalized) on the unit sphere is greater than the Dirac

delta at the origin. Let f be convex and continuous on the unit ball. Because for

all x ∈ Sn−1, f(0) < (f(x) + f(−x))/2, we have

∫
f(x) dδ(x) = f(0) =

∫
Sn−1

f(0) dσ (3.26)

<

∫
Sn−1

f(x) + f(−x)

2
dσ(x) =

∫
f(x) dσ(x). (3.27)

With that established, it follows from an application of Zorn’s lemma that there are

maximal measures in this ordering. We wish to show the following equivalence:
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Proposition 10. A measure µ ∈ M(X) is maximal in the ordering from ≺ if and

only if it is supported on the extreme points of X.

Proof. Assume µ as above is maximal. Let f ∈ C(X). Define a linear functional

L on the subspace span{f} given by rf 7→ rµ(f). This functional is dominated by

the bounded sublinear (but not linear) functional p : C(X) → R p(g) = µ(g). By

the Hahn-Banach theorem we can extend L to a linear functional on C(X) which is

bounded by p. If g ≤ 0, then g ≤ 0, so L(g) ≤ p(g) = µ(g) ≤ 0, so L is a positive

functional, and can be represented by a measure ν ∈ M(X). Now, for any convex

function g, −g = −g, so

ν(−g) ≤ p(−g) = µ(−g), (3.28)

and µ ≺ ν. Since µ is maximal, we know that µ = ν, and

µ(f) = ν(f) = L(f) = µ(f). (3.29)

Now assume that for any convex continuous function f , µ(f) = µ(f). Let

choose a maximal measure such that µ ≺ λ. We know λ exists again from Zorn’s

lemma. Then for any concave g, λ(g) ≤ µ(g). We can write for convex f ,

λ(f) = inf{λ(g) | g is concave and g ≥ f}

≤ inf{µ(g) | g is concave and g ≥ f} = µ(f).

Hence for any convex f , µ(f) = λ(f). Because {f − g | f, g are convex} is dense in

C(X), we can conclude that µ = λ and µ is maximal.
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Finally, recall that in the proof of Choquet’s theorem, we constructed a convex

function f ∈ C(X) that has the property that ex(X) = {x ∈ X | f(x) = f(x)}.

Then we can conclude that a measure µ is supported on the extreme points of X if

and only if µ(f) = µ(f). The proof is complete.

Furthermore, the set of nonnegative measures on a vector space X forms a

lattice under this ordering.

Proposition 11. Given two positive measures µ and ν in M(X), their greatest

lower bound exists and is of the form

µ ∧ ν = min
(

dµ
dµ+ν

, dν
dµ+ν

)
(µ+ ν), (3.30)

where d·
d· denotes the Radon-Nikodym derivative.

Proof. Let σ ≺ µ, ν. It’s obvious that σ is absolutely continuous with respect to

µ + ν, since it is absolutely continuous with respect to µ and ν individually. If

f ∈ C(X) is convex, then

∫
f

dσ

dµ+ ν
dµ+ ν =

∫
f dσ ≤

∫
f dµ =

∫
f

dµ

dµ+ ν
dµ+ ν, (3.31)

and likewise for ν. Hence, dσ
dµ+ν

≤ min
(

dµ
dµ+ν

, dν
dµ+ν

)
= dµ∧ν

dµ+ν
, and σ ≺ µ ∧ ν.

The last thing we will need is a decomposition lemma for vector lattices.

Lemma 27. Let V be a vector lattice. If we have two subsets of positive elements of

V , (xi)
I
i=1 and (yj)

J
j=1, and if

∑I
i=1 xi =

∑J
j=1, then there exists zij ≥ 0, 1 ≤ i ≤ I,
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1 ≤ j ≤ J , such that xi =
∑J

j=1 zij and yj =
∑I

i=1.

Proof. Consider the case where I = J = 2. We have x1 + x2 = y1 + y2 and let

z11 = x1 ∧ y1

z12 = x1 − z11

z21 = y1 − z11

z22 = x2 − z21 = y2 − z12

The desired identities follow immediately, so what we must show is that the final

equality holds, and that each zij are nonnegative. By the translation invariance of

the vector lattice, we have

z12 ∧ z21 = (x1 − z11) ∧ (y1 − z11) = x1 ∧ y1 − z11 = 0, (3.32)

so z11, z12, z21 are nonnegative. Furthermore,

z12 + x2 = x1 + x2 + z11 = y1 + y2 + z11 = z21 + y2. (3.33)

It follows that y2 − z12 = x2 − z21, so z22 is well defined. z21 ≤ z21 + y2, so

z21 = z21 ∧ (z12 + x2) ≤ z21 ∧ z12 + z21 ∧ x2 = z21 ∧ x2. Hence z21 ≤ x2, and z22 is

nonnegative.

Finally, we can generalize to higher I, J by induction. If we are given x1 +x2 =

y1 + y2 + y3, we can set ỹ2 = y2 + y3 and then we have x1 + x2 = y1 + ỹ2, and we
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can generate z̃11, · · · , z̃22 as before. Then we have z̃12 + z̃22 = y2 + y3. We can apply

the above again to get z12, z13, z22, z23 such that
∑3

j=2 zij = z̃i2,
∑2

i=1 zij = yj. Set

z11 = z̃11 and z21 = z̃21 and the desired result follows. Proceed inductively in this

manner for all I, J.

Now we move on to the proof of the main theorem.

Proof. (Choquet-Meyer) (1⇒ 2) Let f ∈ C(X) and X be a simplex. Let x1, x2 ∈ X,

α1, α2 > 0 such that α1 + α2 = 1. Call z = α1x1α2x2. We’d like to show that f is

affine, so we need that f(z) = α1f(x1) + α2f(x2).

By Proposition 9, f(z) = sup{µ(f) | µ ∼ δz}. Suppose µ is a discrete measure

and µ ∼ δz. Then there exist a finite sequence of βj ≥ 0 and yj ∈ X such that∑
βj = 1 and µ =

∑
βjδyj . By using Lemma 27 on vector lattices, we can then

get a sequence of z′ij so that βjyj = z′1j + z′2j and αixi =
∑

j z
′
ij. If we write

z′ij = γijzij, γij ≥ 0 and zij ∈ X, then we get that xi =
∑

j α
−1
i γijzij, which is a

convex combination of elements of X. It follows that it represents a discrete measure

µi =
J∑
j=1

α−1
i γijδzij i = 1, 2, (3.34)

with µ ∼ δxi . We can conclude that f(xi) ≥ µi(f) =
∑

j α
−1
i γijf(zij).

Finally, by the convexity of f , we have f(yj) ≤ β−1
j γ1jf(z1j) + β−1

j γ2jf(z2j),
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so we can conclude that

µ(f) =
∑
j

βjf(yj)

≤
∑
i,j

γijf(zij) = α1µ1(f) + α2µ2(f)

≤ α1f(x1) + α2f(x2).

If we take the supremum over all possible µ, we get f(z) ≤ α1f(x1)+α2f(x2). Note

that we made the assumption that µ may be a discrete measure without justification.

This is acceptable because we can approximate any µ ∼ δz with a discrete measure

from below; this can be made formal using a partitioning argument relying on the

compactness of X.

(2⇒ 3) If µ ∼ δx is supported on ex(X), then µ(f) = µ(f). We want to show that

µ(f) = f(x). f is affine and upper semicontinuous. Because for h ∈ A, µ(h) = h(x),

it is enough to show that f can be approximated from above by continuous affine

functions. Let h1 and h2 be in A such that hi > f . We want to show that there is

another h ∈ A, h > f such that h ≤ h1, h2. Define J = {(x, r) ∈ X × (0,∞) | r ≤

f(x)} and Ji = {(x, r) ∈ X × (0,∞) | r = h(x)}. Notice that by the semicontinuity

of f, J is closed, and J1∪J2 is compact. Since the two sets are disjoint, by the Hahn-

Banach separation theorem we can separate them with a hyperplane L(x, r) = α.

The function given by h(x) = L(x, h(x)) satisfies our requirements. Then the set

H = {h ∈ A | h ≥ f} is directed downwards. In addition, the closure of H is
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bounded below, so it has a unique minimal element f ′. Because for all z ∈ X, there

exists hn ∈ H such that hn(z)→ f(z) ≥ f ′(z), we can conclude that f ′ = f , and

µ(f) = inf{µ(h) | h ∈ H} = inf{h(x) | h ∈ H} = f(x). (3.35)

(3⇒ 4) Let f, g ∈ C(X) be convex. Choose µ ∼ δx supported on ex(X).

(f + g)(x) = µ(f + g) = µ(f) + µ(g) = f(x) + g(x). (3.36)

(4 ⇒ 5) Let x ∈ X. Consider the set S ⊂ C(X) of convex functions, and define a

linear functional on S−S by m(f−g) = f(x)−g(x). Because for any h1, h2 ∈ C(X),

h1(x)+h2(x) = h1 + h2(x), m is linear on S−S, and we have as a property of upper

envelopes that |m(f−g)| ≤‖f − g‖, we can conclude that m is uniformly continuous

on S − S, and therefore extends to a continuous function on C(X) with norm at

most 1. m(1) = 1, so m is a probability measure, and therefore is identified with a

measure on X.

By Proposition 9, we have that for any f ∈ C(X), m(f) = f(x) = sup{µ(f) |

µ ∼ δx}, so µ . m for any µ ∼ δx. Therefore m is the unique maximal measure

which represents x. Equivalently, it is the unique measure supported on ex(X)

which represents x.
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(5 ⇒ 1) Consider the cone P of nonnegative measures on X. As we have shown

in Proposition 11, this cone forms a lattice. We would like to consider the subcone

Q ⊂ P of measures supported on ex(X), and find that this is a lattice as well.

First, for any two λ, µ ∈ Q, (λ+ µ)(f) = (λ+ µ)(f), so λ+ µ ∈ Q. For r ≥ 0,

rµ ∈ Q also.

Let x, y ∈ Q, and let x ∧ y be their greatest lower bound in P . Recall the

formula for the greatest lower bound of two measures in (3.30). It is clear from this

formula that x ∧ y is supported on the union of the supports of x and y, which are

contained in ex(X).Therefore x ∧ y is in Q. To show that x ∧ y is still a greatest

lower bound in the natural ordering on Q, take w ∈ Q such that x − w and y − w

are in Q. Because x∧y is a greatest lower bound on P , we have that 0 ≺ P ≺ x∧y.

It follows that x ∧ y − w ∈ P and x ∧ y − w ≺ z. Because x ∧ y ∈ Q, x ∧ y − w

is absolutely continuous with respect to x ∧ y, and therefore it is also supported on

ex(X) and therefore x ∧ y − w ∈ Q, and w is less than x ∧ y in the natural order

on Q. x ∧ y is a true greatest lower bound, and Q is a lattice. Moreover, the set

Q1 = {µ ∈ Q | µ(X) = 1} is a base for Q, and Q1 is a simplex.

The final step is to show that X is a simplex. Define the resultant map

r : Q1 → X by r(µ) is the unique point in X represented by µ. It is easy to see that

the resultant is an affine function. Our assumption was that to each x ∈ X, there

is a unique measure in Q1 such that µ represents x. This implies that the resultant

map is one-to-one. By Choquet’s theorem it is also onto, and therefore it follows

that X is a simplex isomorphic to Q1.
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Notice that throughout this section we used the assumption that X is a metric

space. This assumption can be dropped, but not without a cost. The Choquet-

Bishop-De Leeuw theorem shows that we still get representation, but we cannot say

that measures are supported on the extreme points anymore. One problem is that

in a metrizable space, the extreme points form a Gδ set, but in the absence of a

metric they may not even be Borel. Bishop and De Leeuw gave examples of such

convex sets [50].

A more subtle use of the fact that X is a metric space was in the proof of

Proposition 10. Recall that in the proof of Choquet’s theorem we constructed a

convex continuous function f such that ex(X) = {x ∈ X | f(x) = f(x)}. This

construction relied on the metrizability of X, and clearly is not possible without it,

as it would imply that ex(X) is a Gδ set. Without this tool it isn’t possible to prove

Proposition 10 in its full generality. Rather we get the weaker fact that µ ∈M(X)

is maximal if and only if µ(f) = µ(f) for all f ∈ C(X). Thus the generalized version

of Choquet-Meyer is

Theorem 28. (Choquet-Meyer, non-metrizable) Let X be a compact convex subset

of a locally convex, metrizable topological vector space E. X is a Choquet simplex if

and only if for each x ∈ X there is a unique maximal measure µx such that µx ∼ δx.

This is not exactly comparable to the Choquet-Bishop-De Leeuw theorem for

non-metrizable spaces. Recall that the Choquet-Bishop-De Leeuw theorem says that

there exists a representing measure which vanishes on Baire sets which contain no

extreme points. However, the Choquet-Meyer Theorem does not show uniqueness of
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measures which satisfy this condition. Mokobodzki found an example of a simplex

X, for which ex(X) is Borel, but not Baire, and there exists a point x ∈ X with two

distinct representing measures µ and ν, with µ(X\ex(X)) = 0 and ν(X\ex(X)) = 1,

but both vanish on every Baire subset of X which is disjoint from its extreme points

[50].

We aren’t too concerned with these anomalous spaces, but they are the subject

of some continuing study today in functional analysis.
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Chapter 4: My Results

4.1 Uniqueness of Positive Definite Extensions

Now I proceed to my contributions to the topic, including the proofs of my

main results. I wish to apply Choquet theory to both the problems of positive

definite extensions and continuous superresolution. Recall that the positive definite

extension problem is a special case of the superresolution problem, when we restrict

ourselves to only caring about probability measures. The first thing we must do is

identify the space we are working with and its extreme points.

Proposition 12. Let P be the set of probability measures on the torus,

P = {µ ∈M(T2) | ∀f ≥ 0µ(f) ≥ 0, ‖µ‖TV = 1}. (4.1)

µ ∈ P is an extreme point if and only if µ = δx for some x ∈ T2.

Proof. The extreme points of a closed convex set are those which are not a convex

combination of two distinct elements. Note that for two probability measures ν and

ξ, the support of λν + (1− λ)ξ is the union of the supports of ν and ξ. Let µ be a

probability measure. If µ is supported on a single point, then it cannot be written

as a convex combination of any distinct ν and ξ, because if they are distinct, their
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supports must contain points outside of the support of µ.

If, on the contrary, µ is supported on at least two points a and b, then we can divide

T2 into two sets, A and B, such that a ∈ A and b ∈ B, such that µ(A) > 0 and

µ(B) > 0. Then we can write

µ = µ�A + µ�B. (4.2)

Because µ�A/
∫

dµ�A and µ�B/
∫

dµ�B are distinct probability measures, µ cannot

be an extreme point.

The problem I’ll focus on is to find whether the following algorithm produces

a unique result:

µ# = argmin
µ∈M(T2)

‖µ‖TV such that µ̂(m,n) = ymn −N ≤ m,n ≤ N, (4.3)

where (ymn) ∈ C(2N+1)×(2N+1) are the observed data.

Recall from Proposition 11 that the cone of nonnegative measures is a meet-

semilattice. Because P is a base for that cone, we know that P is a Choquet

simplex and has the property that each element has a unique representation as a

probability measure supported on ex(P ). But that clearly isn’t sufficient for unique

reconstruction from a finite number of frequency samples. We have many examples
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of non-unique reconstruction [6]. A simple example is the two probability measures

µ1 =
1

2

(
δ + δ1/2

)
, (4.4)

µ2 =
1

4

(
δ + δ1/4 + δ1/2 + δ3/4

)
. (4.5)

µ̂1(n) = µ̂2(n) when |n| < 2, but not when |n| ≥ 2.

Consider the map F : P → C(2N+1)×(2N+1) given by

F (µ)(m,n) = µ̂(m,n) −N ≤ m,n ≤ N. (4.6)

F (P ) is a compact, convex set in C(2N+1)×(2N+1). F will preserve convex combina-

tions in the sense that if µ is a probability measure that represents x ∈ M(T2),

then the pushforward F∗µ represents F (x) on C(2N+1)×(2N+1). Recall that µ is a

linear bounded functional on the space M(T2) with the property that for all affine

functions p : M(T2)→ C,

p(x) =

∫
M(T2)

p(t) dµ(t). (4.7)

Given an affine function q on C(2N+1)×(2N+1), we calculate

q(F (x)) =

∫
M(T2)

q(F (t)) dµ(t) =

∫
C(2N+1)×(2N+1)

q(z) dF∗µ(z), (4.8)

and thus it is shown that F (x) has a representation by F∗µ, which is also a proba-

bility measure.
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Notice that there is a characterization of the uniqueness problem in the fol-

lowing way: the measure µ# in (1.70) is unique if the point (ymn) ∈ C(2N+1)×(2N+1)

has a unique representation F∗µ, where µ is a measure supported on ex(M(T2)).

We can conclude that, despite the fact we are attempting to reconstruct measures

in an infinite dimensional space, the reconstruction is actually taking place in the

finite dimensional space C(2N+1)×(2N+1). We wish to know whether we can formu-

late (1.70) in full without appealing to the infinite dimensional space M(T2). The

following lemma helps with that goal.

Lemma 29. Let P ⊂M(T2) be the set of probability measures as before, and F as

above. Then,

ex(F (P )) = F (ex(P )). (4.9)

Moreover, for each z ∈ ex(F (P )), there is a unique element x ∈ T2 such that

z = F (δx). F �ex(P ) is a homeomorphism.

Proof. First, P is a convex, compact (in the weak-* topology) set, so by the Krein-

Milman theorem 20 it is the closed convex hull of ex(P ). F is linear and continuous

with respect to the weak-* topology, so F (P ) is not only compact and convex itself,

but it is also the closed convex hull of F (ex(P )). Therefore, by applying the Krein-

Milman theorem to F (P ), we can conclude that ex(F (P )) ⊂ F (ex(P )).

We must show that each point of F (ex(P )) cannot be a convex combination of

two other points in F (P ). Notice first that each point z ∈ F (ex(P )) is of the form

zmn = e2πi〈m,n〉·x, (4.10)
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for some x ∈ T2. Hence each vector z ∈ F (ex(P )) has ‖z‖2 = 2N + 1. Therefore

F (P ) ⊂ B(0, 2N + 1). Likewise, for any two distinct points z,w ∈ F (P ), t ∈ (0, 1)

∥∥tz + (1− t)w
∥∥

2
< t‖z‖2 + (1− t)‖w‖2 ≤ 2N + 1. (4.11)

Hence, tz + (1− t)w is not in F (ex(P )), and every point in F (ex(P )) is an extreme

point of F (P ).

Finally, if z ∈ ex(F (P )), then it must be in F (ex(P )), so there is an element

δx ∈ ex(P ) such that z = F (δx). Note that for x,y ∈ T2, if for m,n ∈ {0, 1},

e2πi〈m,n〉·x = e2πi〈m,n〉·y, then x = y. Therefore, given N ≥ 1, x is unique.

Finally, we have shown that F �ex(P ) is a continuous bijection. Because F is an

open map, so is its restriction. Therefore F �ex(P ) is a homeomorphism.

An immediate consequence of this lemma is that the pushforward map F∗ : M(ex(P ))→

M(ex(F (P ))) is in fact an isomorphism of vector spaces. Therefore we conclude that

the following two statements are equivalent:

� z ∈M(T2) has a unique representation by a measure µ ∈M(ex(P )).

� F (z) has a unique representation by a measure ν ∈M(ex(F (P ))).

Of course, F (P ) is not a simplex, as it has infinitely many extreme points, so as

we already knew from the examples in [6] and (4.4), unique reconstruction is not

possible in general. But we are aware that in certain cases we can get unique

construction. For example, the measure 1/2(δ + δ(1/2,0)) is the unique solution to
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(1.70) when N ≥ 2. This is because the line

tF (δ) + (1− t)F (δ(1/2,0)) t ∈ [0, 1] (4.12)

is a simplex which lies in the boundary of F (P ). We call this a face of F (P ),

analogous to a face of a polyhedron. The idea of a face of a convex set came from

Alfsen, who defined the face of a Choquet simplex [1]. This idea will be important

for uniqueness.

Now I will prove my first main result on positive definite extensions.

Theorem 30. If a finite sequence y ∈ C(2N+1)×(2N+1) has an extension to an infi-

nite positive definite sequence (ymn)∞m,n=−∞, then at least one such positive definite

extension must be a finite sum of the form

ymn =
K∑
k=1

λke
−2πi〈m,n〉·xk λk > 0,xk ∈ T2, (4.13)

where K ≤ 4N2 + 4N + 2.

Proof. Let y ∈ C(2N+1)×(2N+1) be arbitrary, such that the given assumptions hold.

Without loss of generality let y0,0 = 1. By Bochner’s theorem, there exists a µ ∈ P

such that y = F (µ). Because C(2N+1)×(2N+1) is finite dimensional, Carathéodory’s

theorem 19 implies that y has a representation as a convex combination of at most

(2N + 1)2 + 1 = 4N2 + 4N + 2 extreme points of F (P ). Because each extreme point
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is of the form F (δx) for some unique x ∈ T2, we have

y =
K∑
k=1

λkF (δxk) = F

 K∑
k=1

λkδxk

 λk > 0,
K∑
k=1

λk = 1. (4.14)

The measure ν =
∑
λkδxk is a probability measure on T2 with F (ν) = y, so ν̂ is a

positive definite extension of y. The proof is complete.

4.2 Faces of Choquet Simplices

The first obstacle to generalizing Theorem 30 to signed measures is that there is

no longer an obvious setting to apply Choquet theory. The set of complex measures

{µ ∈ M(T2) | ‖µ‖TV = 1} is no longer even convex, let alone a Choquet simplex.

We propose to solve this problem by introducing the idea of faces. Consider why

compressive sensing works in the finite dimensional case: in high dimensions, the

shape of the `1 ball is such that not only is it a polyhedron, but most of its tangent

affine planes of sufficiently low dimension will hit one of the low-dimensional faces.

The faces of the `1 ball are in fact simplices. I will refer to the `1 ball as a cross-

polytope in n dimensions. The solid (hollow) cross-polytope is the set {x ∈ Rn |

‖x‖1 ≤(=) 1}.

Notably, because its faces are simplices, a hollow cross-polytope has the prop-

erty that each point is a unique convex combination of vertices. We would like to

find an infinite-dimensional analogy for M(T2). We have by Proposition 7 that the

probability measures form a Choquet simplex. It is easy to see that each set of

the form {σµ | µ ∈ M(T2), σ ∈ L∞(T2), µ ≥ 0, |σ| ≡ 1} is also an isomorphic
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simplex via the affine transformation µ 7→ σµ. The central question of this section

is whether it is possible to define a generalized polytope, and in what generality can

it be defined?

A similar topic was studied by Alfsen [1]. As it turns out we may define a face

of a simplex in the following way.

Definition 12. Let X be a compact convex set in a topological vector space V . An

affine space H of codimension 1 is said to be a supporting hyperplane for X if

H ∩X 6= ∅ and X \H is convex. (4.15)

If H is a supporting manifold, then H ∩X is a face of X.

An immediate implication is that a face can consist of a single point {x} if

and only if x is an extreme point. Thus the extreme points are analogous to the

vertices of a simplex. We can in fact strengthen that statement to the following.

Proposition 13. If x in a face F = H ∩ X has a representation µ ∼ δx, then µ

must be supported in H.

Proof. Assume x, F,H, µ as above, and that µ is not supported in H. It is a standard

fact, and a corollary of the Hahn-Banach theorem, that there is a linear functional

f : V → R such that f = 0 on H and f > 0 on X \H. Because µ is not supported

in H, there must be some compact S ⊂ X \ H such that µ(S) > 0 and f(S) is
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bounded below by ε > 0. We can conclude that

∫
X

f(t) dµ(t) ≥ εµ(S) > 0 =

∫
X

f(t) dδx(t), (4.16)

which is a contradiction.

An immediate consequence is that extreme points of faces correspond well with

extreme points of their underlying sets.

Corollary 1. Let C be a face of a compact convex subset X. Then C is also compact

and convex, and ex(C) ⊂ ex(X).

Proof. C is the intersection of a closed convex hyperplane H and a compact convex

set X, so it is immediately compact and convex.

Let x ∈ ex(C). By the Krein-Milman theorem we have that x ∈ C, so Cho-

quet’s theorem implies that there exists a measure µ supported on ex(X) such

that µ represents x. But by Proposition 13, µ is supported in H ∩ X = C, and

since x is an extreme point of C we can conclude that µ = δx. But because

{x} = supp(µ) ⊂ ex(X), x is an extreme point of X.

We now know that the face structure of a closed convex set has some useful

properties with respect to its extreme points. One more important implication is

a property of Choquet simplices which will be helpful in generalizing Theorem 30.

Proposition 14 explores this, but first we need to return to some materials on cones

and lattices.
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Definition 13. A subcone X̃ of a cone X is said to be hereditary if 0 ≤ x ≤ y and

y ∈ X̃ implies x ∈ X̃.

Proposition 14. Each face of a Choquet simplex is itself a simplex. The extreme

points of a face are each extreme points of X as well.

Proof. The proof will take place in two parts. Recall that associated to any Choquet

simplex X is a cone X̃. A compact convex set X is a Choquet simplex if and only

if the associated cone X̃ is a lattice under the associated order: x ≤ y if y− x ∈ X̃.

In part 1 of the proof, we wish to show that each face F of X forms a hereditary

subcone of X̃—that is given y ∈ F̃ and x ∈ X̃, if x ≤ y then x ∈ F̃ . In part 2 we

will show that every hereditary subcone of a lattice is a lattice itself.

(Part 1) If F is a face of X, then there is a hyperplane H ⊂ V such that F = H∩X,

and X falls on one side of H. Equivalently we can say that there exists a linear

functional f such that H = {x ∈ V | f(x) = 1}, and f(x) ≤ 1 for all x ∈ X.

We can extend f to the cone X̃ sitting in the space V × R in a natural way by

f(αx) = αf(x). Then we can characterize F̃ = {αx ∈ X̃ | f(αx) = α}.

Let y ∈ F and x ∈ X such that for some positive numbers α, β we have

αy ≥ βx. We know immediately that f(βx) ≤ β, so f(αy−βx) ≥ f(αy)−β = α−β.

On the other hand, because αy − βx ∈ X̃, we have that

f(αy − βx) = f

(
(α− β)

(
α

α− β
y − β

α− β
x

))
≤ (α− β). (4.17)

Therefore f(αy − βx) = α− β and βx ∈ F̃

(Part 2) Now I wish to show that every hereditary subcone of a lattice is a lattice
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itself. To that end, let ≤X be the ordering induced by X and ≤F be the one induced

by F . Let x, y ∈ F̃ and we wish to find a greatest lower bound for x and y in F̃ . Let

z be the greatest lower bound in X̃, and let w ∈ F̃ such that w ≤F x and w ≤F y.

We know already that w ∈ F̃ . Since F ⊂ X, we have that 0 ≤X w ≤X z. Then

because z−w ≤X z ∈ F̃ , so z−w ∈ F̃ and w ≤F z. Therefore z is a greatest lower

bound and F is a lattice.

We can conclude that each face of a Choquet simplex X generates a hereditary

subcone of X̃, and is therefore a Choquet simplex itself.

To end this section, I will point out that the definition of a face of a simplex is

easily generalizable. We will find the notion useful in exploring the shape of cross-

polytopes (which are not Choquet simplices but share some useful properties) in

M(T2).

Definition 14. Let C be a compact convex set in a topological vector space V . An

affine space H of codimension 1 is said to be a supporting hyperplane for C if

H ∩ C 6= ∅ and C \H is convex. (4.18)

If H is a supporting manifold, then H ∩ C is a face of C.
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4.3 Uniqueness for Signed and Complex Measures

Let B = {µ ∈ M(T2) | ‖µ‖TV ≤ 1}. I observe that by the definition from

Alfsen, P is actually a face of B. Take the hyperplane in M(T2) defined by

H =

{
µ ∈M(T2) | Re

∫
T2

dµ = 1

}
. (4.19)

Then P = H ∩ B and for all µ ∈ B, Re
∫

dµ ≤ ‖µ‖TV ≤ 1. Therefore H is a

supporting hyperplane which carves out the face P . It is easy to imagine that one

is able to prove similar results for other faces of B, which begs the question: what

is a characterization of the faces of the cross-polytope B?

A hyperplane H in a vector space V can always be generated by a linear

functional f : V → R, such that H = f−1(1). We can say that H is a supporting

hyperplane for a compact convex set C if and only if f can be chosen such that

for all x ∈ C, f(x) ≤ 1. Otherwise the hyperplane would split C into two disjoint

convex sets f−1((1,∞)) ∩ C and f−1((−∞, 1)) ∩ C.

Let σ : T2 → C be a continuous function with ‖σ‖∞ = 1. σ is identified with

a complex valued functional on M(T2) given by µ 7→ σ(µ) =
∫
σ(t) dµ(t). In fact,

recall that we’ve given M(T2) the weak-* topology, therefore by definition every

element of the topological dual M(T2)∗ is of this form for some σ [5]. Define the

affine hyperplane generated by σ as

Hσ = σ−1(1). (4.20)
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I make the following observations about Hσ.

Proposition 15. Hσ is a supporting hyperplane for B if and only if ‖σ‖∞ = 1.

Proof. If ‖σ‖∞ = 1 then there exists some x ∈ T2 such that for all y ∈ T2, |σ(y)| ≤

|σ(x)| = 1. Then for all µ ∈ B, |
∫
σ(t) dµ| ≤ 1 and

∫
σ(t) d(σ(x)δx(t)) = 1. Thus

Hσ ∩B is nonempty and B \Hσ is convex.

Given Hσ is a supporting hyperplane of B, then for all x ∈ T2, |σ(x)| =

|σ(δx)| ≤ 1, so ‖σ‖∞ ≤ 1. On the other hand, there must exist some µ ∈ B such

that

1 =

∫
T2

σ(t) dµ(t) ≤ ‖σ‖∞ |µ|(T
2) = ‖σ‖∞ . (4.21)

Proposition 16. Let σ ∈ C(T2) with ‖σ‖∞ = 1. The face Hσ ∩ B can be charac-

terized as following. A measure µ ∈ B is in Hσ ∩ B if and only if σµ is a positive

measure supported on the set {x ∈ T2 | |σ(x)| = 1}.

Proof. Given µ ∈ B, µ is in Hσ if
∫
σ(t) dµ(t) = 1. Assume for contradiction

that σµ is not a positive measure. Then there exists a set A ⊂ T2 such that

Re(σµ)(A) < |σµ|(A). Then

|σµ|(T2) = |σµ|(A) + |σµ|(Ac) (4.22)

> Re(σµ)(A) + Re(σµ)(Ac) (4.23)

= Re(σµ)(T2) = 1. (4.24)

But because µ ∈ B, ‖σµ‖M ≤ ‖σ‖∞‖µ‖TV ≤ 1, which is a contradiction.
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Similarly, if µ is not supported on the set {x ∈ T2 | |σ(x)| = 1}, then there

exists a constant ε < 1 such that Aε = {x ∈ T2 | |σ(x)| < ε} has non-zero |µ|-

measure. Then

1 = σ(µ) =

∫
Aε

σ(t) dµ(t) +

∫
Acε

σ(t) dµ(t) (4.25)

≤ ε|µ|(Aε) + |µ|(Acε) (4.26)

< |µ|(Aε) + |µ|(Acε) ≤ 1, (4.27)

which is a contradiction. The proof is complete.

We can conclude that faces ofM(T2) are characterized by continuous functions

with ‖σ‖∞ = 1. Now consider the set F (B). We have the following result from Alfsen

which links the face structure of B and F (B) [1].

Proposition 17. Let φ : V → W be a linear map between vector spaces and let

X ⊂ V be a convex set. H ⊂ φ(X) is a face of φ(X) if and only if φ−1(H) is a face

of X.

So because F is a linear map, we conclude that faces of F (B) correspond

to faces of B, but not every face of B necessarily corresponds to a face of F (B).

For example, the face of B defined by the function σ = 1 contains all measures of

the form δx, x ∈ T2, but the set {F (δx) | x ∈ T2} does not fall in a hyperplane

of C(2N+1)×(2N+1), so it cannot map to a face of F (B). In fact, in order for σ to

represent a face of F (B), it must factor through F , in the sense that there exists a

function σ̃ : C(2N+1)×(2N+1) → R such that σ(x) = σ̃(F (x)).
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Now I will prove the main theorems of this section.

Theorem 31. For each sequence y ∈ C(2N+1)×(2N+1), there exists an finite sum of

point measures

µ =
K∑
k=1

αkδxk αk ∈ C, xk ∈ T2, (4.28)

such that for −N ≤ m,n ≤ N, µ̂(m,n) = y(m,n). Furthermore, for all ν ∈M(T2),

if ν̂(m,n) = y(m,n) for −N ≤ m,n ≤ N, then ‖ν‖TV ≥‖µ‖TV .

Proof. Let 0 6= y ∈ C(2N+1)×(2N+1). Because F (B) is closed, bounded and contains

a neighborhood of the origin, we can guarantee that there exists an α > 0 such that

y ∈ αF (B), and that α is the minimal such constant. Without loss of generality,

assume that α = 1. Then for all ν ∈ M(T2), if F (ν) = y, then ‖ν‖TV ≥ 1. It is

sufficient to construct µ satisfying the desired property, such that ‖µ‖TV = 1.

Because α is minimal and F (B) is compact, y must fall in the boundary of

F (B). It is a fact that the boundary of a compact convex set is the union of its

faces, therefore there exists a hyperplane H and a corresponding face of F (B) such

that y ∈ H ∩ F (B). Recall, as in Propositions 15 and 16, that associated to H

is a functional σ ∈ (C(2N+1)×(2N+1))∗, such that for all x ∈ F (B), 〈σ,x〉 ≤ 1 and

H = σ−1(1). Likewise, F−1(H) is a supporting hyperplane of B, which is generated

by the functional σ ◦ F . By Corollary 1, each extreme point of the face H ∩ F (B)

is an extreme point of F (B), which corresponds with a unique extreme point of B.

Because G contains all its extreme points, we can then characterize it as a closed
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convex hull of delta measures.

ex(G) = {σ̂(x)δx ∈M(T2) | |σ̂(x)| = 1}. (4.29)

Because G is isomorphic to a face of the set of positive definite measures, it is a

Choquet simplex. We then proceed in an identical manner to the proof of Theorem

30. First I claim that for each z ∈ ex(F (G)), there is a unique x ∈ M(T2) such

that z = σ̂(x)F (δx). It follows from the Krein-Milman theorem that ex(F (G)) ⊂

F (ex(G)), so we must show that each point in F (ex(G)) is an extreme point of

F (G). Let x ∈ T2 such that z = σ̂(x)F (δx) is an extreme point of G. Then

zmn = σ̂(x)e−2πi〈m,n〉·x, (4.30)

and it is straightforward to see that ‖z‖2 = 2N + 1. If we let z 6= w ∈ F (G),

t ∈ (0, 1), then we can compute

∥∥tz + (1− t)w
∥∥

2
< t‖z‖2 + (1− t)‖w‖2 ≤ 2N + 1. (4.31)

Therefore for any non-extreme point of F (G), its norm must be strictly less than

2N + 1, thus every point in F (ex(G)) is extreme.

By Carathéodory’s theorem, there exists a representation of y as a finite convex

sum of extreme points of F (G). As we have shown, to each extreme point z ∈

ex(F (G)), we can associate a unique x ∈ T2 such that z = σ̂(x)F (δx), so we can
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write y as a convex sum with weights λk > 0:

y =
K∑
k=1

λkσ̂(xk)F (δxk) = F

 K∑
k=1

λkσ̂(xk)δxk

 . (4.32)

Finally, because each xk is distinct, we can compute that

∥∥∥∥∥∥
K∑
k=1

λkσ̂(xk)δxk

∥∥∥∥∥∥
TV

=
K∑
k=1

λk|σ̂(xk)| = 1. (4.33)

We have successfully constructed µ as desired.

Now we have shown that we cannot hope to uniquely recover non-discrete

measures via the total variation minimization in (1.70). My final result is a charac-

terization of exactly which measures allow for unique reconstruction. As we already

know, any such measure must be supported on a finite set, but that is still not suffi-

cient. Recall the work of Candès and Fernandez-Granda [12, 13, 30], which showed

that a minimum separation requirement was sufficient. My characterization is based

on a description of the faces of F (B). Recall that faces of B are generated by con-

tinuous functions σ on T2, and that it corresponds to a face of F (B) if the function

σ factors through F . Since unique reconstruction depends on the face structure of

F (B), then we can characterize them by describing the admissible functions σ which

generate faces of F (B) which are also simplices.

For the proof of this theorem I first need the following lemma.

Lemma 32. Each face of B is a Choquet simplex.

Proof. Let G = B∩Hσ be a face of B. By Proposition 16, σ ∈ C(T2) with ‖σ‖∞ = 1.
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Let P be the set of probability measures onM(T2), and consider the linear operator

σ∗ : G→ P given by

σ∗(µ) = σµ. (4.34)

Note that σ∗ is invertible, because for any µ ∈ G, σσµ = µ. On the other hand for

all ν ∈ P , ν ∈ σ∗(G) if and only if |σ|ν = ν. Therefore we can conclude that σ∗ is a

linear isomorphism between G and P ∩H|σ|. Because P ∩H|σ| is a face of a Choquet

simplex, by Proposition 14 it is also a simplex, and likewise G is as well.

Theorem 33. Let µ ∈ M(T2). µ is the unique solution to the algorithm in (1.70)

if there exists a trigonometric polynomial on T2,

σ =
N∑

m,n=−N

cmne
−2πi〈m,n〉·x cmn ∈ C, (4.35)

with the following properties:

1. ‖σ‖∞ = 1

2. σµ = |µ|

3. The set S = {σ(x)δx ∈ T2 | |σ(x)| = 1} is finite, and F (S) is affinely indepen-

dent.

Proof. Assume without loss of generality that ‖µ‖TV = 1. The proof will be in four

parts.

(Part 1) First, it follows immediately from Proposition 16 that properties 1 and 2

are equivalent to the statement that µ is in a face G of B generated by σ.
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(Part 2) Next I claim that any σ satisfying properties 1 and 2 is of the form (4.35)

if and only if it factors through F , which likewise is true if and only if F (G) is a

face of F (B).

Let σ ∈ C(T2), with ‖σ‖∞ = 1. σ factors through F if and only if there exists

a covector σ̂ ∈ (C(2N+1)×(2N+1))∗ such that for any µ ∈ M(T2), σ(µ) = σ̂(F (µ)).

This expands to ∫
T2

σ(t) dµ(t) =
N∑

m,n=−N

σ̂(m,n)µ̂(m,n). (4.36)

It is clear from this equality that σ̂ must be the Fourier transform of σ and by

Parseval’s theorem equality holds for all µ ∈ M(T2) if and only if the Fourier

transform of σ is supported on C(2N+1)×(2N+1), in which case it is a trigonemetric

polynomial of the form in (4.35). Hσ̂ is clearly a supporting hyperplane of F (B),

and F (G) = F (B)∩Hσ̂. The reverse direction is true trivially from Proposition 17.

Thus the claim is proved.

(Part 3) y is a unique convex combination of extreme points of the face F (G)

if F (S) is affinely independent.

σ(x)δx ∈ ex(G) if and only if |σ(x)| = 1, so S = ex(G). Therefore if F (S) is

affinely independent, F (G) is a simplex. Therefore by Carathéodory’s theorem, we

can write y as a unique convex combination of extreme points of G. Because every

representation of y must be supported on G, this combination must be unique over

all representations on ex(F (B)).

(Part 4) My next claim is that µ must be the unique solution to (1.70) if y = F (µ)
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can be written as a unique sum of extreme points of F (G).

In the case that y is not in the boundary of F (B), there exists some 0 < α < 1

such that y ∈ αF (B). Then there exists some ν ∈ αB such that F (ν) = y.

‖ν‖TV ≤ α < ‖µ‖TV , so µ is not a solution to (1.70). Likewise the pushforwards

F∗µ and F∗ν are distinct measures supported on ex(F (B)), which each represent y.

Hence the claim holds.

In the case that y is in the boundary of F (B), there exists some supporting

hyperplane Hσ̂ ⊂ C(2N+1)×(2N+1) such that y is in the face F (G) = F (B) ∩ Hσ̂.

By Proposition 17, G ∩ B is also a face of B, which is generated by a supporting

hyperplane Hσ. Let ν ∈ G∩B. By Proposition 32, G∩B is a Choquet simplex, so by

the Choquet-Meyer theorem there is a unique probability measure ν̃ ∈ (M(T2))∗,

supported on ex(G), which represents ν. By Lemma 29, F �G is a homeomorphism,

so F induces a vector space isomorphism F∗ betweenM(ex(G)) andM(ex(F (G))).

For any functional A on C(2N+1)×(2N+1), see that

∫
C(2N+1)×(2N+1)

A(t) dF∗ν̃(t) =

∫
M(T2)

A(F (s)) dν̃(s) = A(F (ν)). (4.37)

Because A was arbitrary, F (ν) = y if and only if F∗ν̃ represents y. Because F∗ is

an isomorphism of vector spaces, we can conclude that ν is the unique measure in

B such that F (ν) = y if and only if F∗ν̃ is the unique measure in M(ex(G)) which

represents y. In addition, by Theorem 31, if ν is unique then the measure F∗ν̃ must

be a finite sum.

The proof is complete.
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A few notes on the preceding theorem. It may be possible to loosen the last

requirement on σ slightly. Assume that ex(G) is finite. Using tools from algebraic

geometry, we may put a bound on the number of extreme points of G. Let φ =

(1−σσ). The zero set of φ is identical to the set ex(F−1(G)). Under the assumption

that this set is finite, Bézout’s theorem gives us a bound. Because φ has degree at

most 4N , Bézout’s theorem says that it can have at most 4N zeros. For a more in

depth derivation of this result, see appendix A.3 of [49].

Now F (G) is a simplex if and only if the set of extreme points of F (G) is

linearly independent in C(2N+1)×(2N+1). This may not seem like a simplification, but

for any given polynomial σ we can guarantee this to be true for sufficiently large

N . Consider that for δx ∈ ex(G), as N → ∞, F−1(F (δx)) approaches the delta

function δx, and it is easy to see that any finite set of Dirichlet kernels, F(F (δxk) for

xk ∈ T2, will evenually be linearly independent for sufficiently large N . How large

N must be relative to the degree of σ is unknown to the author’s knowledge.

Finally, we conclude with one more useful result that is an immediate appli-

cation of the preceding theorem.

Corollary 2. Any pair of positive delta measures can be uniquely recovered from

(1.70), given N ≥ 2.

Proof. Let x = (x1,x2),y = (y1,y2) ∈ T2. Define the polynomial ρ(s, t) = (1 −

cos(s) − cos(t))/2. It is easy to see that 0 ≤ ρ ≤ 1, and ρ = 0 if and only if
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s = t = 0. Define

σ(s, t) = 1− ρ(s− x1, t− x2)ρ(s− y1, t− y2). (4.38)

0 ≤ σ ≤ 1, and |σ(z)| = 1 only when z = x or y. Therefore for any positive

measure supported on {x,y}, µσ = |µ|. Finally, note that as x and y are distinct,

{F (x), F (y)} is trivially affinely independent. Therefore σ satisfies the properties

for Theorem 33, and we can conclude that any positive measure supported on {x,y}

can be uniquely recovered by (1.70).

107



Bibliography

[1] Erik M. Alfsen, On the geometry of Choquet simplexes, Math. Scand. 15 (1965),
no. 1, 97–110.

[2] A. P. Artemenko, Hermitian positive functions and positive funcctionals, Ph.D.
thesis, Odessa State University, 1983.

[3] Joseph A. Ball and Moisés D. Guerra Huamán, Convexity analysis and the
matrix-valued Schur class over finitely connected planar domains, J. Operator
Theory 70 (2013), no. 2, 531–571.

[4] John J. Benedetto, Harmonic Analysis and Applications, CRC Press, 1996.

[5] John J. Benedetto and Wojciech Czaja, Integration and Modern Analysis,
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de France, 1958.
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