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Autonomous systems are widely used in crucial applications such as surveil-

lance, defense, firefighting, and search & rescue operations. Many of these appli-

cation require systems to satisfy user-defined requirements describing the desired

system behavior. Given high-level requirements, we are interested in the design of

controllers that guarantee the compliance of these requirements by the system. How-

ever, ensuring that these systems satisfy a given set of requirements is challenging

for many reasons, one of which is the large computational cost incurred by having

to account for all possible system behaviors and environment conditions. These

computational difficulties are exacerbated when systems are required to satisfy re-

quirements involving large numbers of tasks emerging from dynamic environments.

In addition to computational difficulties, scalability issues also arise when dealing

with multi-agent applications, in which agents require coordination and communica-

tion to satisfy mission requirements. This dissertation is an effort towards address-

ing the computational and scalability challenges of designing controllers from high-

level requirements by employing reactive synthesis, a formal methods approach, and



combining it with other decision-making processes that handle coordination among

agents to alleviate the load on reactive synthesis. The proposed framework results

in a more scalable solution with lower computational costs while guaranteeing that

high-level requirements are met. The practicality of the proposed framework is

demonstrated through various types of multi-agent applications including firefight-

ing, fire monitoring, rescue, search & rescue and ship protection scenarios.

Our approach incorporates methodology from computer science and control,

including reactive synthesis of discrete systems, metareasoning, reachability analy-

sis and inverse reinforcement learning. This thesis consists of two key parts: reac-

tive synthesis from linear temporal logic specifications and specification inference

from demonstrations of formal behavior. First, we introduce the reactive synthe-

sis problem for which the desired system behavior specifies the method by which

a multi-agent system solves the problem of decentralized task allocation depending

on communication availability conditions. Second, we present the synthesis prob-

lem formulated to obtain a high-level mission planner and controller for managing a

team of agents fighting a wildfire. Third, we present a framework for inferring linear

temporal logic specifications that succinctly convey and explain the observed be-

havior. The gained knowledge is leveraged to improve motion prediction for agents

behaving according to the learned specification. The effectiveness of the inference

process and motion prediction framework are demonstrated through a scenario in

which humans practice social norms commonly seen in pedestrian settings.
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Chapter 1: Introduction

1.1 Motivation

Modern autonomous systems, operating in dynamic environments, are often

required to satisfy a user-provided set of high-level requirements describing the de-

sired system behavior. An expressive and powerful specification language of linear

temporal logic (LTL) is used throughout this dissertation to specify these require-

ments. A benefit of using a formal language like LTL is the existence of many

methods and tools that provide automatic synthesis and verification of the system

behavior for problems involving a wide range of requirements. Reactive synthesis,

for instance, is a method for generating controllers of complex systems using formal

specifications written in LTL. The primary benefit and motivation for research using

this method is the correct-by-construction attribute: the synthesized controllers take

into account system and environment variables with varying dynamics and initial

conditions, and are guaranteed to meet the specifications for a system, assuming the

environment behaves as formally described. Hence, programmers are not required

to “handcraft” individual behaviors of a system under specific conditions (of which

are often error prone) and can instead focus on defining the system and specifica-

tions in relation to an environment. The major difficulty of using reactive synthesis
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is the computational burden in dealing with large numbers of environment and sys-

tem variables, especially observable when considering dynamic environments. This

primarily stems from the state explosion that occurs when analyzing all possible

interactions between the system and environment. In this thesis, we will address

some of the challenges that arise when applying reactive synthesis to design control

protocols for multi-agent systems. Some of these challenges include computational

complexity, scalability, unreliable communication, and presence of obstacles in the

environment.

We are also interested in the inverse problem of reactive synthesis, which is,

given demonstrations of behavior satisfying some unknown formal specification, our

goal is to infer the specification that best conveys the demonstrated behavior. Con-

sider as a motivating example a scenario in which an agent attempts to satisfy a

specification stated as, “reach a yellow tile while avoiding red tiles” (see Fig. 1.1).

By observing multiple demonstrations of the agent’s behavior, operating in stochas-

tic settings, our goal is to infer the specification that succinctly conveys and explains

the agent’s intent. Often, there is no “correct” answer, and the task specification is

best described as a belief over multiple LTL specifications. Learning the most likely

LTL specifications from the observed behavior can be leveraged to enable artificial

agents to learn to perform the same task as the demonstrator without requiring

the user to explicitly provide specifications or objectives in advance, which can be

nontrivial and time intensive [96]. Furthermore, if the inferred behavior is expressed

as an LTL specification, this specification can be used to automatically synthesize

a policy for agents to execute. In addition, inference results can be leveraged to im-
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prove motion prediction for agents performing the learned task. This work primarily

focuses on leveraging inference results for improving motion prediction of humans.

The practicality of the proposed inference framework is demonstrated through a sce-

nario in which humans practice social norms commonly seen in pedestrian settings.

This thesis proposes that by inferring social norms that govern human’s motion be-

havior, we can gain a clearer understanding of the intent of the human and account

for the learned knowledge in the computation of the belief over the human’s future

states.

Figure 1.1: Example of an agent demonstrating its intent to satisfy the specification
“reach a yellow tile while avoiding red tiles” (adapted from [100]).

1.2 Related Work

Formal methods have been extensively studied in both computer science and

control. These approaches rely on applying mathematically-based techniques in

proving system correctness [65]. A challenge in the formal methods domain lies in

the combinatorial blow up of the state space, commonly known as the state explosion

problem. Recently, the development of a polynomial-time algorithm to construct

finite state automata from temporal logic specifications enables automatic synthesis

of discrete systems that satisfy a large class of properties including safety, guarantee

and response even in the presence of an adversary (typically arising from changes
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in the environments) [82]. Literature refers to this polynomial-time algorithm as

reactive synthesis. Applying reactive synthesis requires obtaining abstractions of

dynamical systems usually done via abstraction-based hierarchical approaches [60],

[61], [64]. For problems considering a large number of system and environment

states, a high-level controller created with just reactive synthesis could quickly

present an impractical solution. Indeed, research has largely avoided using reac-

tive synthesis for problems with a large number of environmental variables. When

the high-level design of a system involves large scale environmental permutations

and state spaces, solutions typically seek to discretize the synthesis problem or ap-

proach the problem from a different perspective. Discretization appears in the use

of receding horizon control in [63] and the use of decentralized controllers for mul-

tiple agents in [15]. Both examples break down the top-level synthesis problem into

smaller, discrete pieces for the computation benefits. On the other hand, [16] ap-

proached their synthesis problem with a focus on resolving deadlock under specific

environment conditions instead of directly avoiding dynamic obstacles. In each of

the presented cases, the problem description focused on a limited task space (i.e.

the number of progress goals) and how the solution can handle larger sets of actions

from an environment in relationship to safety specifications.

Further expanding this concept to a whole team of UAVs, the problem worsens

due to an increase in the number of system variables proportional to or greater than

the number of UAVs, if considering centralized controllers. Even with decentralized

controllers for each UAV, additional system variables might need to be introduced

to describe coordination and behaviors between the decentralized UAV controllers.
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To alleviate the computational complexity on reactive synthesis in this regard, the

coordination of UAVs can be handled by an alternative process. In this thesis, we

have proposed dynamic allocation as the alternative process for a firefighting ap-

plication and decentralized task allocation for surveillance and search and rescue

applications. Thus, we tackle different synthesis problem formulations with varying

levels of computational complexity by applying reactive synthesis within a metarea-

soning framework. In this framework, each agent in the team adopts a multi-layer

reasoning model consisting of metareasoning, reasoning and doing. At the reasoning

layer, we apply reactive synthesis to generate a task and path planner for each agent.

At the metareasoning layer, we employ reactive synthesis to generate a multi-agent

metareasoning policy.

Metareasoning research encompasses various approaches to reason about one’s

own thinking, memory and processing in order to control different aspects of rea-

soning such as strategy selection and allocation of resources. In the context of

cooperative MAS, metareasoning approaches have been applied to coordinating the

agents’ behavior, bringing new challenges as a result of agents performing additional

reasoning from which benefits gained might depend on the reasoning and behaviors

of other agents [49]. For instance, Raja and Lesser [38] framed multi-agent metarea-

soning as a decentralized coordination problem in which agents maintain a model of

each other’s meta-level control and coordinate the use of their reasoning resources.

George et al. [52] investigated an organizational design approach to coordinate both

the agents’ behavior and their reasoning by identifying high-performing behavioral

patterns and prohibiting agents from reasoning about behaviors counter to these
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patterns. The effectiveness of metareasoning was shown in [39] for coordinating a

team of agents in a tornado tracking application, while [33] applied a centralized

controller to coordinate agents with limited communication among them. In con-

trast to these metareasoning approaches which try to dynamically assess the benefit

of additional reasoning at the cost of computational complexity, the metareasoning

policy proposed in this thesis is trained completely offline and synthesized from LTL

specifications, limiting the computational effort required for online execution of the

policy.

1.3 Organization of the thesis and Summary of Contributions

The work in this dissertation is focused on synthesizing controllers from user-

defined system requirements. The concept of system here refers to autonomous

systems (e.g. UAVs, humans). A simple motivating example is a firefighting scenario

in which a team of UAVs is tasked with monitoring and dropping suppressant on

designated fire locations, returning to base for refilling suppressant, and emergency

landing when a system failure is detected. For such scenario, we are interested

in synthesizing a high-level planner that a team of UAVs can execute to satisfy

the given requirements within a formal methods framework. The key benefit of

such framework is the formal verification of the system behavior, governed by the

synthesized controller, with respect to the given requirements.

In this thesis, we consider single and multi-agent systems and their application

to modern day operations such as surveillance, fire monitoring, search and rescue
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and ship protection operations. For Part I of this thesis, we explore multi-agent

systems and adopt for each agent a multi-layered model with three different layers

of reasoning. This enables us to formulate the problem of controller synthesis at each

layer of reasoning and demonstrate the benefits and challenges of applying a formal

methods approach to solve for a controller with formal guarantees. For Part II of

this thesis, we consider single-agent systems in which the agent is assumed to be a

human. Here, we are interested in analyzing the human’s motion behavior satisfying

an LTL specification in pedestrian settings. Our goal is to infer the specification

that best explains the observed pedestrian behavior.

Thus, the research presented here consists of two key components controller

synthesis applied at each layer of reasoning and specification inference from demon-

strations of formal behavior. Specification refers to a precise description of both the

system and its desired properties. To simplify the analysis of the system, we apply

hierarchical based abstractions techniques to capture only the relevant aspects of

the system [53].

This thesis has two main parts. The first part focuses on the controller syn-

thesis aspect while the second part focuses on the specification inference aspect.

Specification is mentioned in both parts as a key requirement that enables sys-

tematic verification and design. The original contributions of this work cover both

theoretical and application aspects as outlined below.

Chapters 2 summarizes relevant concepts on metareasoning, linear temporal

logic and reactive synthesis. A brief overview of LTL notation is also provided

along with the type of specifications that are considered throughout this work. This
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chapter ends with the general formulation of the reactive synthesis problem along

with the system and environment definitions.

Part I: From LTL Specifications to Formal Behavior

Chapter 3 contains the main contributions of the part of the thesis describing

the controller synthesis problem formulated at the meta-level layer of each agent

in a MAS. Here, the goal of controller synthesis is to generate a metareasoning

policy (meta-level control) from LTL specifications encoding the team’s prescribed

behavior for task allocation as a function of the observed communication quality

in the environment. By applying reactive synthesis to generate the meta-level con-

trol, we obtain a policy that is correct-by-construction with respect to these LTL

specifications. Specifically, the contribution of this part of the thesis with respect

to applying reactive synthesis is the appropriate finite state abstraction for the sys-

tem and environment such that the complexity of the problem is kept low. The

organization of this chapter is as follows. First, it describes the decentralized task

allocation algorithms that each agent can execute to coordinate tasks with other

agents in the system. This description is followed by a discussion of the communi-

cation model used to simulate varying levels of communication as well as a detailed

description of each type of task allocation scenario considered for evaluation of the

policy. Then, we present the metareasoning framework within which the reactive

synthesis problem is formulated and solved. For each scenario, we demonstrate that

the proposed multi-agent metareasoning approach achieves enhanced performance
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(i.e. lower communication and travel costs) when solving the problem of decentral-

ized task allocation compared to running a single task allocation algorithm. The

material presented in this part of the thesis has been submitted and published in

[6] and [32], respectively.

The main contribution of Chapter 4 is in the application of reactive synthesis

at the object-level layer of each agent in a MAS. Here the goal of controller synthesis

is to generate a high-level mission planner and controller for managing unmanned

aerial vehicles (UAVs) fighting a wildfire through the hierarchical integration of

reactive synthesis, used for assuring desired system design traits, and dynamic allo-

cation, used for making heuristic-based decisions. This hierarchical approach makes

the synthesis problem more tractable and its solution more scalable. Reactive syn-

thesis provides a formal means of guaranteeing the correctness of the UAVs’ choice

of object-level actions corresponding to its transitions to areas of fire, refill of water,

and land as defined by the linear temporal logic specifications. Dynamic allocation

coordinates the behavior of multiple UAVs through assignments to regions of fire

based on a cost function that takes into consideration the fire locations relative to

a UAV, distance to the domain edge, wind speed and direction, and the amount of

suppressant already present. The use of receding horizons in the reactive synthesis

formulation helps address the computational complexity challenges. Modifications

to these horizon definitions guarantee that the scenario still maintains the overall re-

alizability of the formal specifications after the inclusion of static obstacles. Through

various scenarios, we demonstrate the effectiveness of multiple UAV fleets in slowing

down the progression of fires from reaching the domain edge. The material presented
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in this part of the thesis has been published in [7].

An additional contribution of Chapter 4 is the implementation of a low-level

controller using Hamilton-Jacobi (HJ) reachability analysis. Hamilton-Jacobi (HJ)

reachability analysis is a verification method for guaranteeing performance and

safety properties of systems [25]. The focus of this dissertation is to to provide

safety guarantees and assurances for the UAV executing the discrete transitions

dictated by its object-level layer assuming continuous dynamics with disturbance

assumptions.

Part II: Specification Inference From Formal Behavior

Chapter 5 shifts focus towards specification inference from demonstrations of

formal behavior. Specifically, we evaluate and compare three state of the art infer-

ence approaches within an Inverse Reinforcement Learning framework to identify

the best performing approach. The inference methods are compared in terms of

overall run-time including training time, output type, and main drawbacks. Once

the best performing method is identified, extensions are proposed to automatize

training data generation and improve the inference process in an iterative manner.

The first contribution is the systematic construction process of an initial hypothesis

space of specifications. The second contribution is a process of refinement applied

to systematically perturb likely specifications to find more complete specifications

that capture the demonstrated behavior. The third and last contribution is a hu-

man motion prediction framework that uses the inference results to set priors for all
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possible known goals that the human is expected to visit. Through various scenar-

ios that demonstrate behavior satisfying different LTL specifications, we show the

effectiveness of the inference process in obtaining the correct LTL specification and

enhanced human motion prediction results in terms of a larger posterior probability

for the human’s intended goal.
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Chapter 2: Background

This chapter provides background for later chapters. This includes a descrip-

tion of the relevant concepts of metareasoning and an overview of linear temporal

logic and reactive synthesis.

2.1 Metareasoning

Metareasoning research encompasses various approaches to reason about one’s

own thinking and decision making process. The goal of metareasoning in monitoring

and controlling an agent’s reasoning is to improve system performance while reduc-

ing computational effort. Extending this concept to multi-agent systems (MAS) has

led to multi-agent metareasoning, a process whereby a team of agents collectively

reasons about the team’s decision making process. In MAS, the goal of metar-

easoning is to improve performance of the MAS instead of the individual agent’s

performance.

The general metareasoning framework is outlined in [51], which presents a

multi-layered agent model (see Fig. 2.1). Within this framework, three types of

actions can be considered: meta-level actions, object-level actions and ground-level

actions, which we will refer to as low-level actions (to avoid confusion with the use of
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the term “ground-level” in UAV applications) . These actions are defined as follows:

1. Low-level actions : These actions are performed by each agent to change its

state in the environment. Examples of such actions are movement, communi-

cation and sensing.

2. Object-level actions : These actions correspond to computational processes that

output the low-level action to be performed by the agent to achieve its goal.

3. Meta-level actions : These actions are used to analyze and improve the perfor-

mance of object-level actions.

Figure 2.1: Multi-layered agent model [51].

In general, metareasoning approaches for MAS can be categorized by the type

of metareasoning structure, problem, and mode they consider [92]. The metar-

easoning structure describes the way in which metareasoning is implemented to

reason about a problem through a metareasoning mode. The mode describes the

output from the metareasoning process. In this thesis, we consider the problem of

multi-agent coordination. We propose the use of metareasoning to reason about

the appropriate algorithm the agents should use when communication availability

changes. Our metareasoning approach adopts an independent metareasoning struc-

ture, in which each agent in the team has its own meta-level control, which performs
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metareasoning independently from other agents. Fig. 2.2 shows the independent

metareasoning structure with independent meta-levels that do not communicate or

coordinate with each other. Instead, communication and coordination happen at

the object level.

Figure 2.2: Multiagent independent metareasoning structure with n agents that
communicate at the object level [92].

Furthermore, at each layer of reasoning, this thesis designs a correct-by-construction

controller synthesized from high level requirements written in Linear Temporal Logic

(LTL). LTL provides a precise mathematical language for describing the desired re-

quirements.

2.2 Linear Temporal Logic

Linear temporal logic (LTL) is utilized for describing specifications within the

formal methods framework. In this thesis, we use specifications involving temporal

logic, which is an extension of Boolean logic with temporal semantics. There exist
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multiple variations of temporal logic languages. LTL is one of the most commonly

used languages in the context of robot behavior synthesis. We choose this language

because of its expressiveness and the existence of efficient synthesis methods that

use LTL.

The building blocks of LTL formulas consist of Boolean variables, logical con-

nectives and temporal modal operators. The logical connectives include: negation

(¬), disjunction ( ∨ ), conjunction ( ∧ ) and material implication (→). The tempo-

ral modal operators include next (#), always (�), eventually (3) and until ( U ).

By combining these operators, it is possible to specify a wide range of requirements.

An atomic proposition is a statement on system variables S that has a unique truth

value for a given valuation of the system variables. Let s ∈ dom(S) be a state of the

system and p be an atomic proposition. Then s |= p if p is True at state s. Given a

set AP of atomic propositions, LTL formulas are formed according to the following

grammar:

ϕ := True|p|¬ϕ|ϕ1 ∧ ϕ2|# ϕ|ϕ1 U ϕ2, (2.1)

where p ∈ AP. Formulas involving eventually and always, can be derived from the

operators shown in Eq. 2.1. LTL formulas over AP are interpreted over infinite

sequence of states. Such sequence represents a behavior of the system.

Given a set of atomic propositions AP , we can form the alphabet Σa := 2AP .

We refer to w = w(0), w(1), w(2), ... ∈ ΣN
a as an infinite word, a string composed

of letters from Σa. We denote a finite word as wf . Let L be a labeling function

L : S → Σa and let the mapped state trajectories s(k)k≥0 ∈ SN to the set of infinite
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words ΣN
a be defined as w = L({s(k)}k≥0) := {w ∈ ΣN

a |w(k) = L(s(k))}. Then,

given an LTL formula ϕ, we state the satisfaction relation between w and ϕ as

w |= ϕ. We say that ϕ holds at position i ≥ 0 of w, if and only if ϕ holds for

the remainder of the sequence starting at position i. Furthermore, wk |= ϕ1 ∧ ϕ2

if wk |= ϕ1 and wk |= ϕ2. The next operator wk |= #ϕ holds if the property

holds at the next time instance ϕk+1. The until operator wk |= ϕ1 U ϕ2 holds if

∃i ∈ N : wk+i |= ϕ2, and ∀j ∈ N : 0 ≤ j < i, wk+j |= ϕ1.

Given propositional formulas p and q, important and widely used properties

can be defined in terms of their corresponding LTL formulas as follows,

1. Safety : A safety formula is of the form �p, which asserts that the property

p remains true throughout an execution. Typically, a safety property ensures

that nothing bad happens. A typical example of safety property frequently

used in the robot motion planning domain is obstacle avoidance.

2. Guarantee: A guarantee formula is of the form 3p, which guarantees that the

property p becomes true at least once in an execution. Reaching a goal state

is an example of this property.

3. Progress : A progress formula is of the form �3p, which states that the prop-

erty p holds infinitely often in an execution. A progress property typically

ensures that the system makes progress throughout an execution.

4. Response: A response formula is of the form �(p → 3q), which states that

following any point in an execution where the property p is true, there exists

a point where the property q is true. For example, a response property can
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be used to state how the system should react to changes in the operating

conditions.

In many applications, systems need to interact with their environments and

whether they satisfy the desired properties depends on the behavior of the environ-

ments. In the next section, we informally describe the work of Piterman, et al. [82].

We refer the reader to [82] for the detailed discussion of automatic synthesis of a

finite state automaton from system and environment specifications.

2.3 Reactive Synthesis

Reactive systems are systems that maintain an ongoing relation with their en-

vironment by appropriately reacting to it. The controllers that regulate the behavior

of such systems are called reactive controllers. A control system is a composition

of a physical plant, including sensors and actuators, and an embedded controller

that runs a control protocol to restrict the behaviors of the plant so that all the

remaining behaviors satisfy a set of system specifications.

The synthesis of reactive controls can be interpreted in assume-guarantee form.

Given the system specifications, the goal of control synthesis is to find a control

logic that, when implemented, ensures that the system satisfies the specifications;

or declares that no such logic exists [83].

Let E and D be sets of environment and controlled variables, respectively.

Let s = (e, d) ∈ dom(E) × dom(D) be a state of the system. Consider an LTL
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specification of assume-guarantee form, shown in Eq. 2.2,

ϕe → ϕs, (2.2)

where ϕe characterizes the assumptions on the environment and ϕs characterizes the

system requirements. The synthesis problem is then concerned with constructing

a control protocol which chooses the move of the controlled variables based on the

state sequence so far and the behavior of the environment so that the system satisfies

ϕs as long as the environment satisfies ϕe. Let the control protocol be denoted as a

partial function f : (s0s1...s1−t, et)→ dt. If such a protocol exists, the specification

ϕ is said to be realizable. The synthesis problem can be viewed as a two-player game

between an environment that attempts to falsify the specification and the system

that tries to satisfy it.

For general LTL, the synthesis problem has a doubly exponential complexity

[82]. However, a subset of LTL, namely generalized reactivity (1) (GR(1)), is used

to solve the synthesis problem in polynomial time (i.e. polynomial in the number

of valuations of the variables in E and D) [83]. GR(1) specifications restrict ϕe and

ϕs to have the following form,

ϕe = ϕei ∧ ϕet ∧ ϕeg,

ϕs = ϕsi ∧ ϕst ∧ ϕsg,

(2.3)

where ϕei , ϕ
s
i are the propositional formulas characterizing the initial values for the

environment and system variables, ϕet , ϕ
s
t represent transition relations character-
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izing safe, allowable moves of the state of the environment and system, and ϕeg, ϕ
s
g

are propositional formulas characterizing goal assumptions for the environment and

desired goal specifications for the system that should be attained infinitely often.

Given a GR(1) specification, there are game solvers and digital design synthesis

tools that output a finite-state automaton that represents the control protocol for

the system [81], [23].

This chapter covered the background knowledge of metareasoning, linear tem-

poral logic and reactive synthesis. The following chapters will now dive into the work

on designing reactive controllers with formal guarantees of satisfying user-defined

requirements under changing environment conditions.
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Part I

From LTL Specifications to Formal Behavior
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Chapter 3: Meta-Level Layer

In this chapter, we describe the process of formulating reactive synthesis at

the meta-level layer of the agent. Our goal is to obtain a multi-agent metareasoning

policy that the team executes to decide on how to solve the problem of decentralized

task allocation collaboratively. Collaboration in MAS usually requires communica-

tion between agents. However, communication is unreliable in realistic environments

and outside the control of the multi-robot team, making the coordination of tasks

more challenging. Otte et al. [31] and Nayak et al. [32] have shown that differ-

ent distributed task allocation algorithms perform better, relative to each other, at

different communication quality levels.

To attain robustness to changes in communication, a naive strategy is to have

each robot in the team use the best performing algorithm for the perceived level

of communication. However, this may cause composability problems. For example,

if communication quality varies over the environment, then different team mem-

bers may select incompatible task allocation algorithms. If communication levels

change over time, then switching between different task allocations algorithms may

introduce additional overhead, create inefficiencies, or require restarting the task

allocation process entirely. This raises questions on whether there are benefits to be
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gained from switching and which benefits are those.

Figure 3.1: A sample switching prescribed by the metareasoning policy for high and
low communication levels. On the left, agents a1, a2 and a3 perceive high communi-
cation availability at time t0 and execute ACBBA as their task allocation scheme.
On the right, agents switch to performing PI at time t1 as a result of perceiving low
communication availability.

The main motivation of this chapter is to present a meta-level control within

a metareasoning framework that addresses these challenges and provides answers

to these questions. We propose a multi-agent metareasoning approach that enables

a multi-agent team to select which task allocation algorithm to use as a function

of changing communication quality level. Given a set of multi-agent task alloca-

tion algorithms, we synthesize a policy that prescribes the best algorithm to use

among a predefined set of algorithms for a given communication level. We apply

reactive synthesis at the meta-level layer to generate the policy from high-level spec-

ifications written in Linear Temporal Logic encoding the agents’ switching behavior

with respect to the state of the environment. Since each agent in the team runs

the same policy, the team (or a part of the team) will collectively switch between

task allocation algorithms as a function of the observed level of communication.

The proposed distributed multi-agent metareasoning policy (Fig. 3.1) is synthesized
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offline a priori, and the resulting policy is executed continually by each agent in

real-time, adapting the team’s distributed task assignment scheme in response to

perceived changes in communication availability.

The contribution of this chapter is a meta-level controller that runs in parallel

across a team of agents, to improve system performance under changing communica-

tion conditions, when solving the problem of decentralized task allocation. Although

meta-level control for the purpose of coordinating agents’ behavior has appeared in

[38], [39] and [40], here we consider reasoning about a set of existing task allocation

methods in order to make the system more robust to varying communication. This

additional reasoning can lead to improved task allocation assignments even when

communication between the agents deteriorates.

We build the multi-agent metareasoning policy from a set of decentralized task

allocation methods for which performance profiles under varying levels of commu-

nication were obtained in [32]. This set includes: the Consensus Based Auction

Algorithm (CBAA) [41], the Asynchronous Consensus Based Bundle Algorithm

(ACBBA) [42][43], the Decentralized Hungarian Based Algorithm (DHBA) [44],

the Hybrid Information and Plan Consensus (HIPC) algorithm [45][46] and the

Performance Impact (PI) algorithm [47].

To test the proposed metareasoning policy, we model instantaneous communi-

cation conditions using a Rayleigh Fading model [48]. Changes in signal attenuation

(i.e., communication quality) over time are modeled by varying the path loss expo-

nent parameter. In each scenario, we simulate high or low communication for some

period of time after which, the communication level is switched to low or high,
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respectively. We consider a full-mesh topology in which every agent attempts to

communicate with every other agent and then messages are dropped according to

the communication model. This assumption is made to facilitate the discovery of

performance differences due to applying the proposed policy as opposed to having

agents improve communication by changing their network topology as described in

previous works [33], [37], [34]. For communication estimation, we propose a straight-

forward method in which each agent computes an estimate per communication link

over which heartbeat messages are expected to arrive from every other agent in the

environment. This method is well suited to provide link quality estimates for any

underlying communication model. Other sources have explored probabilistic esti-

mation methods of link quality with respect to channel power at different locations,

such as in [33], but such estimation is beyond the scope of this paper.

In the following section, we present an overview of the decentralized task

allocation algorithms considered for this work.

3.1 Decentralized Task Allocation

Research on decentralized task allocation has been motivated by the vulnera-

bilities of centralized approaches to communication disruptions and concerns regard-

ing their scalability. Most of the existing decentralized task allocation approaches

are consensus-based auction methods, in which agents place bids on tasks and each

agent acts as auctioneer and bidder. A comprehensive description of the most com-

monly used consensus-based decentralized task allocation methods can be found
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in [41]. Some of these approaches include CBAA and CBBA as well as its asyn-

chronous version, ACBBA [42][43]. Shown to have outperformed CBBA in various

problem instances, the PI algorithm [47] does consensus in the same way as CBBA

but uses a different valuation function to compute task bids. To improve robust-

ness to dynamic environments and robot failures, Najanath et al. [66] proposed an

auction approach in which each task is treated separately and independently from

other tasks. This method consists of executing parallel repeated auctions in which

every agent is an auctioneer and bidder in parallel to enable agents to recompute

task assignments.

Another class of decentralized task allocation methods consists of optimization-

based approaches, divided into deterministic or stochastic optimization based ap-

proaches. Ghassemi et al. [68] proposed a deterministic optimization based approach

in which the task allocation problem is posed as a maximum-weighted matching of

a bipartite graph. An improved maximum matching algorithm is used to obtain

an optimal sequence of tasks for each agent. This method assumes a deterministic

environment with perfect localization and guarantees conflict-free optimal task as-

signments. Another deterministic optimization approach is the DHBA [44]. This

method uses the Hungarian algorithm [69] to solve the task allocation problem and

works in a way similar to CBAA. However, it replaces the auction phase with solving

the task assignment problem via the Hungarian method on a cost matrix.

Examples of stochastic optimization-based approaches are the stochastic ant-

colony optimization algorithm proposed in [67] and the decentralized GA presented

in [72]. The decentralized GA was built as an extension of the GA approach pre-
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sented in [73] for decentralized systems. Under full communication availability, Patel

[72] showed that the decentralized GA outperformed CBBA in a number of problem

instances of a rescue scenario. However, it was also shown that the performance of

GA degrades significantly as communication quality decreases.

This is not an exhaustive list of task allocation algorithms available in lit-

erature. Recent works have incorporated modifications and extensions from some

of the mentioned algorithms, thus we refer the reader to [74] and [75] for more

comprehensive surveys of task allocation algorithms.

In previous work [32] we performed a large set of statistical tests to learn how

different multi-agent task allocation algorithms perform across different communica-

tion scenarios. We leverage these results to help train our proposed meta-reasoning

approach. We conduct experiments to assess the performance of the selected algo-

rithms for these additional scenarios and identify the best performing algorithm for

each scenario under various levels of communication.

We now describe each algorithm considered for the coordination of task se-

quence assignments in more detail.

3.1.1 CBAA

This task allocation algorithm [41] is an auction-based approach in which each

agent obtains a single-task assignment. The algorithm consists of two phases: the

assignment phase and the consensus phase. In the assignment phase, each agent

computes its local bids for all incomplete tasks and assigns itself the task with the
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lowest bid. The agent updates its winning bids list with the lowest bid task and

sends this list to all other agents. During the consensus phase, each agent updates

its bids list with the lowest bids received and each task is assigned to the agent with

the lowest bid.

3.1.2 ACBBA

This multi-task assignment algorithm [42] is an auction-based approach built

as an extension of CBBA [77] for agents communicating asynchronously. This

method operates in two phases: the assignment phase and the consensus phase.

In the assignment phase, each agent gets assigned a bundle of tasks, formed by

adding tasks sequentially in a greedy fashion up to the bundle size. Once bundles

are built, agents update and share their winning bids lists along with the winning

time stamps with all other agents. In the consensus phase, agents resolve any con-

flicts found on their task assignments and update their internal lists.

3.1.3 PI

The PI approach is presented in [47]. Similar to CBBA, this approach assigns

multiple tasks to agents, however, it uses a different kind of bid evaluation, referred

to as the “significance”. This evaluation is used to assess the contribution of a task

to the cost of the current task sequence assignment. There are two phases in this

approach: a task inclusion phase and a consensus and task removal phase. During

the task inclusion phase, the marginal significance of unassigned tasks is computed
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in order to update the task bundle and significance lists. During the consensus and

task removal phase, each agent shares its significance list with all other agents and

does consensus on the significance values received by removing tasks for which the

agent has been outbid by another agent. Instead of applying CBBA consensus rules

as in [47], we use ACBBA consensus rules for the consensus phase since we consider

an asynchronous system.

3.1.4 DHBA

This algorithm [44] is a method that assigns a single task to each agent based

on a cost matrix. This matrix is initialized using the current distance traveled and

the cost of doing incomplete tasks. Thus, this matrix keeps track of the cost of

each task for each agent. There are two phases in this algorithm: the assignment

phase and the update phase. In the assignment phase, the Hungarian algorithm

[78] is run on the cost matrix to obtain the optimal task assignment. In the update

phase, agents broadcast the cost matrix and update it according to the information

exchanged with other agents.

3.1.5 HIPC

This multi-task assignment algorithm [47] is built as an extension of CBBA,

however, instead of generating task bundles in a greedy fashion, HIPC tries to solve

the task assignment problem for all agents at once. This assignment is then used

to generate bids on the tasks. This algorithm has two phases: task allocation phase
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and consensus phase. The task allocation phase consists of each agent running

a full Task Allocation Algorithm (TAA) to generate its task bundle. We run a

variation of the nearest neighbors algorithm [70] using the min-max objective in the

TAA implementation. In the consensus phase, agents resolve any conflicts on task

assignments using ACBBA consensus rules.

For all bundle algorithms, the current task list is reset for each agent whenever

a new target is dynamically added or removed from the workspace.

In the next section, we describe the communication model used in our imple-

mentation.

3.1.6 Rayleigh Fading Model

Environmental clutter, e.g., buildings, trees, etc., tends to scatter radio sig-

nals and degrade communication quality. The propagated signals experience differ-

ent shifts in amplitude, frequency and phase. The Rayleigh fading model predicts

the attenuation of the received signal by assuming that the signal’s amplitude will

vary according to a Rayleigh distribution [48]. The Rayleigh fading model is an

appropriate model to use when considering more realistic environments with many

objects that can scatter the radio signal as it travels to the receiver. To quantify the

fading effects, a Rayleigh random variate sequence is obtained efficiently using the

Inverse Discrete Fourier Transform technique (IDFT)[79]-[80]. We sample from the

generated sequence, convert the sampled power value to decibel and calculate the

attenuation due to fading PF . In our implementation, in addition to fading effects,
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we also account for signal attenuation due to path losses. To compute path losses

PPL, we use Eq. (3.1) as follows,

PPL = PL0 + 10γ log10

(
d

d0

)
, (3.1)

where d is the current distance between the transmitter and receiver, γ is the path

loss exponent and PL0 is the path loss at reference distance d0. The total attenuation

is given by PL = PF + PPL. The total received power is given by PR = PT − PL,

where PT is the transmitted power. We define PS as the user-specified sensitivity

threshold. A message is dropped if the condition PR < PS is satisfied as shown in

Fig. 3.2.
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Figure 3.2: Received power of a signal attenuated by Rayleigh fading and path loss is
shown for three different values of the path loss exponent γ. The transmitted power
PT = 30 dB and the sensitivity threshold PS = −60 dB. Asterisks ‘∗’ represent dropped
packets. The number of dropped packets increases as the value of the path loss exponent
increases.
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In the next section, we introduce the LTL notation and the formal methods

framework used for synthesizing our policy.

3.2 LTL in MAS

In recent work, the formal methods community has focused on extending hi-

erarchical based abstractions techniques to multi-agent settings. Abstractions of

dynamical systems have been extended to model MAS as finite transition systems

through the use of of parallel composition [53][54] and reactive games [55]. Fur-

thermore, the use of LTL in MAS has mainly focused on generating cooperative

control strategies from rich, high-level planning objectives. Some of the objectives

considered in previous works include formation and navigation [56], cooperative

transportation and manipulation of objects [57], collision avoidance [58], communi-

cation [59] among others. Modeling the dynamical system of the agents is beyond

the scope of this work, in which we use high-level abstractions of the communica-

tion quality in the environment and the state of the agent to formulate the synthesis

problem.

In our metareasoning framework, a switching protocol between decentralized

task allocation algorithms is synthesized using abstraction-based hierarchical ap-

proaches in formal methods and temporal logic planning [60][61][62][64][71]. Similar

to [60], in which mode sequences are synthesized for continuous-time polynomial

switched systems, we seek to determine the algorithm switching strategy that each

agent must execute as to satisfy the metareasoning policy written in LTL. By ex-
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pressing the policy in LTL, we can automatically generate a correct-by-construction

meta-level controller. This controller can be obtained as the solution to a two-player

game between the environment (communication quality) and the system (task allo-

cation method) as is commonly done within a formal methods framework [65].

We apply reactive synthesis to generate the metareasoning policy from [83].

A benefit of using formal methods is the formal verification of our policy over an

(infinite) sequence of communication states. For each action that the environment

takes, a formal guarantee exists that the system will react appropriately to the

environment at all times by switching to the predefined algorithm. Although a meta-

reasoning policy could be synthesized using simpler methods, the formal framework

will enable us to easily encode high-level specifications describing additional reactive

behaviors of the system, laying groundwork for building extensions to this work. For

example, specifications for desired behaviors may include:

1. Conditions: “If target density is perceived as high, perform a bundle-based

task allocation algorithm with bundle of large size”;

2. Sequencing: “first perform a multi-task assignment algorithm, then perform a

single-task assignment algorithm”;

3. Avoidance: “Never perform decentralized task allocation algorithm X under

low communication.”

In order to apply reactive synthesis, we ensure the environment is finite by

discretizing the estimated communication availability into a finite number of levels.
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For the system, we also obtain a finite number of states by defining the agent’s

object level actions as the set of all possible states.

3.3 Problem Formulation

In this section, we present the metareasoning problem solved at the meta-level

layer and the task allocation problem solved at the object-level layer.

3.3.1 Metareasoning Problem

Consider a team of n agents A = {a1, . . . , an} and the multi-agent task alloca-

tion problem, denoted as P , that A needs to solve. Agents can choose from a set of l

multi-agent task allocation algorithms, A = {A1, . . . , Al}, to solve P . For instance,

we can set P = rescue and A1 = CBAA. Let E denote the space of environmental

features such as communication level and target density. Environmental features

are allowed to change as functions of time. Thus, a realization of environmental

features is denoted as e(t) ∈ E . Though we do not have direct access to the true

value of e(t) at any instant of time t, we can obtain an estimate of e(t), denoted

as ẽ(t). Consider ẽi;[0:ki] = {ẽi;0, ẽi;1, ..., ẽi;ki} to be the sequence of the first ki + 1

estimates computed from agent ai. Let En be the space of all possible sequences of

estimates from a team of size n. Let M be the multi-agent metareasoning approach.

Definition 4.1 (Instantaneous Multi-Agent Metareasoning Problem): Given

P and a sequence of observations from all n agents, {ẽ1;[0:k1], . . . , ẽn;[0:kn]} ∈ En, where

ki + 1 represents the number of observations obtained by the i-th agent, the instan-
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taneous multi-agent metareasoning problem is to calculate the tuples (Ai, Ti) =

M({ẽ1;[0:k1], . . . , ẽn;[0:kn]}) composed by the multi-agent algorithm Ai ∈ A as well

as the subteam Ti ⊆ A that will use algorithm Ai so that the team A =
⋃̇L

i=1Ti,

where L is the number of tuples generated, communally solves P . Note that the

subteams are disjoint sets of A since agents cannot belong to multiple subteams

simultaneously.

Definition 4.2 (General Multi-Agent Metareasoning Problem): For time

steps 1, . . . , t, repeatedly solve the Instantaneous Multi-Agent Metareasoning Prob-

lem, and then have agents in each subteam Ti use, respectively, multi-agent algo-

rithm Ai to solve P .

In the following section, we define the decentralized task allocation problem

P considered for each scenario given a team of agents A.

3.3.2 Decentralized Task Allocation Problems

The problem of decentralized task allocation can be formulated as a binary

integer programming problem, similar to the multiple Traveling Salesman Problem

(mTSP) [42]. Given a set of m tasks and a set of n agents, a solution is obtained

such that each agent is assigned a sequence of tasks and every task in the sequence

is completed by the agent. Consider a set of m tasks T . Let Si ⊆ T be a sequence

of tasks assigned to agent ai and pi be the number of tasks in Si. Let q(Si) be

the cost of sequence Si. The goal of the decentralized task allocation problem is to

obtain a sequence Si for each agent ai ∈ A such that these sequences are disjoint
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Task Allocation
Problem

Task Definition Objective Function

Rescue
No grid cells

and known stationary
targets

minX (maxai∈A q(Si))

Search
&

Rescue

Known grid cells
and unknown stationary

targets
minX (maxai∈A q(Si))

Fire
Monitoring

Known grid cells
and unknown fire targets

spreading
minX (maxai∈A q(Si))

Ship
Protection

Known grid cells
and unknown moving

targets

maxX (−k0F (X )+
k1h1(X ) + k2h2(X ))

Table 3.1: Task allocation problem, task definition and objective function type for
each scenario type. Scenarios are ordered in increasing level of difficulty.

and T =
⋃n
i=1 Si. See Table 3.1. for a summary description of all the scenarios

considered and Fig. 3.3, Fig. 3.4, Fig. 3.5, Fig. 3.6 for examples of the simulation

runs for each type of scenario.

We define T and q(Si) for each type of scenario as follows:

3.3.2.1 Rescue Scenario

In the rescue scenario, T is defined as a finite set of a priori known stationary

targets U = {u1, . . . , um} located in a map, W ⊂ R2, of size N × N . We define

T , U and Si to be the sequence of pi targets to be visited by agent ai. A target is

considered to be visited when an agent moves within a threshold distance δT of the

target’s location. The mission in this scenario is completed when every target has

been visited by at least one agent.

The min-max objective O(X ) considered in this scenario is to find a task
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assignment X ∗ = {S1, . . . , Sn} such that

O(X ∗) = min
X

(
max
ai∈A

q(Si)

)
. (3.2)

The cost function q(Si) is defined as

q(Si) = Ci + ci(u1) +

pi−1∑
k=1

‖uk+1 − uk‖, (3.3)

where Ci is the cost accrued by ai up to its current location and ci(uk) corresponds

to ai’s cost of visiting target uk. The cost ci(uk) is calculated as the Euclidean

distance from agent ai to target uk. Thus, the min-max objective is to minimize

the maximum distance traveled over all agents. Assuming a constant speed for the

agents, this is equivalent to minimizing the mission completion time.

Figure 3.3: Possible runs of agents performing decentralized TA for the rescue sce-
nario. Each target has a unique ID, not shown to reduce clutter.
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3.3.2.2 Search & Rescue Scenario

In this scenario, we define T , G ∪ U , where G = {g1, . . . , gr} ⊂ W is a

finite set of a priori known grid cells and U = {u1, . . . , um} ⊂ W is a finite set of

unknown stationary targets. The cells in G divide the search space into regions of

equal size. Initially, agents begin searching the map by visiting each cell in G. Each

cell is said to be completely searched when an agent reaches its center because, at

this location, an agent’s sensor radius Rd covers the entire cell, and the agent can

detect any targets in that cell. As agents search the space, they are able to detect

new targets located within their sensor radius. Discovered targets are added to the

set of known tasks K, which is equal to G at the start of the mission. Agents share

information about the newly discovered targets with other agents. Thus, Si is the

sequence of pi tasks (stationary targets and grid cells) in K that are assigned to ai.

The mission is completed when every cell is searched by at least one agent and every

target is visited by at least one agent.

The min-max objective O(X ) and cost function q(Si) in this scenario are

defined in the same way as in the rescue scenario.

3.3.2.3 Fire Monitoring

We define T , G∪U as in the search & rescue scenario with the difference that

stationary targets in this scenario correspond to fire locations which are dynamically

generated and added to the map during the mission. Fire locations are propagated

according to the wavelet differential equations and the Rothermel spread equation
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Figure 3.4: Possible runs of agents performing decentralized TA for the search &
rescue scenario.

provided in Farsite [21], a fire simulation engine. At each simulation step, fire grows

continuously for a time interval ∆t, after which new fire locations are discretized

into fire regions. Each fire region obtained is considered as an stationary target.

Fire locations are propagated until a max number of targets is reached. Discovered

fire targets are added to the set of known tasks K, which is equal to G initially.

Agents share locations of the newly discovered fire targets with other agents. Thus,

Si is the sequence of pi tasks (fire targets and grid cells) in K that are assigned to

ai. The mission is completed when when every cell has been search by at least one

agent and every fire target has been visited by at least one agent.

The min-max objective O(X ) and cost function q(Si) in this scenario are

defined in the same way as in the rescue scenario.
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Figure 3.5: Possible runs of agents performing decentralized TA for the fire moni-
toring scenario.

3.3.2.4 Ship Protection

In this scenario, we consider a ship with location (sx, sy), initially placed at the

boundary of the map. During the mission, the ship moves with a constant speed vs

and constant heading θs to the opposite side of the map. The tasks in this scenario

correspond to the set T , G ∪ U , where G = {g1, . . . , gr} ⊂ W is a finite set of a

priori known grid cells and U = {u1, . . . , un} ⊂ W is a finite set of unknown moving

targets. Unlike all previous scenarios, cells here are searched continuously since

targets can move across different cells and might appear in a cell already searched.

Each agent knows, for each cell gi, the elapsed time tgi since the last time that some

agent searched that cell. A cell is said to be searched when an agent reaches the

center of the cell, at which point tgi is reset to 0. Agents broadcast the locations of

all newly discovered targets in the cells and the timestamps at which the cells were
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last searched.

As agents search the space, they can detect, classify and track, if necessary,

all moving targets in the map in order to protect the ship. There are two types of

moving targets in the set U : adversarial and non-adversarial. Adversarial targets

move towards the ship using a directed random walk while non-adversarial targets

move randomly in the map. All targets move along piece-wise linear trajectories

and remain within a threshold distance δs from the ship. Let θui be the heading of

each adversarial target ui ∈ U . This heading is changed randomly at fixed intervals

of time, otherwise it is computed using the current location of the ship (sx, sy) and

the location of the target (uix, uiy) as

θui = tan−1(
sy − uiy
sx − uix

). (3.4)

The heading for each target is sampled from [−90°, 90°] and the target speed can

vary between 0 and vu, which is set to be strictly less than the agents’ max speed.

We do this to ensure that the agents succeed in tracking all the targets.

In addition to the sensor radius Rd that each agent uses for detecting targets,

we define a classification radius Rc. When a target moves within an agent’s classifi-

cation radius, it can be classified as adversarial or non-adversarial by the agent. We

set Rc < Rd in order to move agents closer to targets in their effort to classify them.

If the target is found to be adversarial, the agent proceeds to track it by moving
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towards the target using a proportional controller with control law,

w = kp(xui − xai) + vui, (3.5)

where kp is the controller gain, xui is the current position of target ui, xai is the

current position of agent ai, and vui is the current velocity of ui. An adversarial

target is considered to be tracked when an agent moves within a threshold distance

δT of the target’s location. A tracked adversarial target will move away from the ship

towards the boundary of the map and eventually leave the map for the rest of the

mission. A non-adversarial target successfully classified by an agent is considered

to be tracked immediately after. A tracked non-adversarial target will continue to

move along its trajectory unaffected by the agent’s actions.

Newly discovered targets are added to the set of known tasks K, initially set

equal to G. Newly tracked targets are added to the set Z ⊆ U , which is empty at

the start of the mission. Thus, Si is the sequence of pi tasks (grid cells and moving

targets) in K that are assigned to ai. The mission is finished when the ship reaches

the opposite side of the map.

The max objectiveO(X ) considered in this scenario is to find a task assignment

X ∗ = {S1, . . . , Sn} such that

O(X ∗) = max
X
−k0F (X ) + k1h1(X ) + k2h2(X ), (3.6)

where F (X ) is the max travel cost to be accrued by each agent ai ∈ A performing
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its assigned task sequence Si over all agents. This term is weighted by k0, a user-

specified value. We define this term as

F (X ) = max
ai∈A

q(Si). (3.7)

The cost function q(Si) is defined as in Eq. (6) where ci(uk) corresponds to agent

ai’s cost of tracking a moving target or visiting a grid cell in K.

The second term in the objective is the expected distance to the ship over all

unassigned cells and is defined as

h1(X ) = min
g∈G\

⋃
ai∈A Si

ptgds(g), (3.8)

where p is a value in (0, 1), tg is the time elapsed since cell g was searched and ds(g)

is the distance between the center of the cell and the location of the ship. The effect

of h1(X ) is to prioritize searching unassigned cells that are closer to the ship and

that have not been visited for a longer time.

The third term in the objective is the minimal distance to the ship over all

untracked targets and is defined as

h2(X ) = min
u∈K\Z

ds(u), (3.9)

where ds(u) is the distance between the target’s location and the ship. The effect of

h2(X ) is to prioritize tracking targets that are closer to the ship. The terms h1(X )

and h2(X ) are weighted by k1 and k2, respectively, both of which are user-defined
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coefficients. Thus, the max objective is equivalent to a weighted combination of

minimizing the maximum distance traveled over all agents, maximizing the minimum

expected distance to the ship over all unassigned cells and maximizing the minimum

distance to the ship over all untracked targets.

A second objective that we consider across all scenarios is the min-max number

of transmitted messages, whether received or not. Both performance metrics, max

travel distance (equivalent to mission time) and number of transmitted messages,

are critical in a number of applications in which agents may experience limited

communication such as area coverage [84], environmental monitoring [85], emergency

management [86], and search & rescue missions [87].

Figure 3.6: Possible runs of agents performing decentralized TA for the ship protec-
tion scenario. In this scenario, lighter shades of green reflect that a longer time has
passed since cells were last searched.
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3.4 Metareasoning Framework

Our metareasoning framework defines three control layers (shown in Fig. 3.7)

in every agent:

(i) Meta-level layer : This layer decides on the decentralized task allocation algo-

rithm the agent should perform (meta-level action).

(ii) Task-planning layer : This layer decides on the task sequence assignment (object-

level action).

(iii) Low-level layer : This layer generates the trajectories along which the agent

needs to move to reach each task location.

Each agent’s decision cycle consists of:

(a) Estimating the communication level in the environment at the task-planning

layer from heart-beat messages received at the low-level layer.

(b) Executing meta-level control to output the appropriate algorithm for the per-

ceived communication level according to the metareasoning policy.

(c) Performing the chosen algorithm to obtain a task sequence assignment.

The novelty of our approach lies in the policy we place in the meta-level control

layer. This layer consists of a switching protocol as defined by a fixed, common

metareasoning policy computed offline. This ensures that agents perform the same

algorithm for a given level of communication without the need to communicate or
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Figure 3.7: Control flow within the metareasoning framework proposed. Each agent
has a meta-level control layer, a task-planning layer and a low-level layer. Agents
compute a communication estimate from the messages received at the low-level layer.
Using this estimate, the meta-level control layer outputs the algorithm choice for
the agent.

synchronize their decisions during runtime. Since agents compute communication

quality estimates locally and run an independent copy of the policy, different agents

may have different beliefs about the communication quality at any instant of time

and therefore may use different algorithms simultaneously.

We synthesize the metareasoning policy as the solution to the reactive synthe-

sis problem involving the communication level in the environment and the agent’s

algorithm choice. In the following sections, we define the assumptions on the envi-

ronment and the system requirements.
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3.4.1 Environment

Each agent sends a fixed number of heartbeat messages periodically for the

purpose of communication estimation. These heartbeat messages do not contain any

meaningful information, but their absence can signal loss of communication between

a sender and a receiver. Each agent ai estimates the per link communication with

agent aj by computing the ratio of the number of heartbeat messages received per

link hij and the expected number of heartbeat messages h. At each time step, agent

ai can determine its communication estimate cei by computing the max ratio over

all its communication links,

cei = max
ai 6=aj ,aj∈A

(
hij
h

). (3.10)

The communication estimate cei is then mapped to a discrete communication

level. Nayak et al. [32] showed that the performance ranking of the task allocation

algorithms tested remains the same at high communication levels for the visit and

search & visit scenarios. It is only when communication drops substantially that

this ranking changes. For this reason, we define only two discrete communication

levels based on the analysis presented in [32]: high (H) for ct < cei ≤ 1 and low (L)

for 0 ≤ cei ≤ ct. The threshold value ct is specified experimentally by mapping the

sensitivity threshold values tested in [32] to either high or low communication based

on the sensitivity threshold value at which the change in ranking of the algorithms

was observed. In the synthesis problem, each of these discrete communication levels
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is represented by an environment variable, which is defined as a Boolean. Thus, the

environment in our problem can be described by these two variables as E = H ×L.

This implies that the state of the environment corresponds to a valuation of these two

Boolean variables. If the communication estimate cei is within the range ct < cei ≤ 1,

then H will be set to True and L will be set to False. Otherwise, if 0 ≤ cei ≤ ct,

H will be set to False and L will be set to True. The environment specifications

are as follows:

ϕei = L ∧ ¬H, (3.11)

ϕet = �(¬(H ∧ L) ∧ (H ∨ L)), (3.12)

ϕeg = �3H ∧ �3L. (3.13)

Eq. (3.11) states that initially the environment is assumed to have a low com-

munication level. This assumption is valid if we expect it will take a few milliseconds

for all agents to start up the exchange of messages. Though, any initial condition

can be chosen as long as it satisfies all other specifications. Eq. (3.12) is required

to verify that exactly one of the two variables H and L is true at all times. This is

specified to ensure that the environment is in a single level of communication, ignor-

ing cases in which communication is simultaneously high and low or simultaneously

neither. Finally, Eq. (3.13) states that always eventually: the communication level

of the environment will be high and that always eventually: the communication level

of the environment will be low. This specification ensures that the communication

in the environment will change at some future time. Communication changes may
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occur due to weather conditions, clutter in the environment, dynamic obstacles, or

even adversarial agents that seek to interfere communication among agents.

3.4.2 System

Let S = {Aj, Ak} × {True, False} be the set of states for each agent, where

{Aj, Ak} ⊂ A. An element s ∈ S represents the tuple composed by the multi-agent

task allocation algorithm used by the agent and a Boolean variable, denoted as

Reset. This variable will be set to True when the agent’s current task sequence

assignment and bids need to be reset before executing the task allocation process.

If Reset is set to False, then the agent performs the task allocation process using its

current task sequence assignment and winning bids information. The rationale for

this is that as communication improves, agents are likely to obtain better solutions

and may benefit from discarding solutions of lower quality obtained under poor

communication.

Let F ⊆ S × S be the set of all possible transitions between the elements in

the state space. Thus, the agent can transition between any two task allocation

algorithms. When switching happens, agents only need to transfer their current

winning bids, completed tasks and current sequence assignment of tasks into the

execution of an iteration of the new algorithm.

We define the following system specifications:

ϕsi = Ak ∧ Reset, (3.14)
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ϕst,1 = �((L ∧ #H)→ #(Aj ∧ Reset)), (3.15)

ϕst,2 = �((H ∧ #L)→ #(Ak ∧ ¬Reset)), (3.16)

ϕst,3 = �((L ∧ #L)→ #(Ak ∧ ¬Reset)), (3.17)

ϕst,4 = �((H ∧ #H)→ #(Aj ∧ ¬Reset)). (3.18)

Eq. (3.14) states that agents reset their task sequence assignments and perform

Ak initially. Eqs. (3.15)-(3.18) indicate which algorithm the agent should perform

and whether or not the agent should reset its current task sequence assignment next

based on the current and next states of the environment. Eq. (3.15) specifies that,

when communication improves, agents should reset their task sequence assignments.

Eqs. (3.16)-(3.18) specify that, when communication degrades or remains the same,

agents should perform the task allocation process specified using their current task

sequence and bids information.

All scenarios use the specifications as described in Eqs. (3.14)-(3.18). For each

scenario, we identify the best performing algorithms for high and low communication

levels, respectively, via simulation experiments. We assign the best performing

algorithm under high communication to Aj and the best performing algorithm under

low communication to Ak. For the rescue and search & rescue scenarios, we leverage

the results from [32] and set Aj = ACBBA and Ak = CBAA. We perform further

experiments to set Aj and Ak for the fire monitoring and ship protection scenarios.
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3.4.3 Alternative Team Up Strategy

When agents switch to performing different algorithms simultaneously because

of having different beliefs about the communication quality in the environment, they

may compute task assignments from outdated information. This information may

have been successfully received at some point in time, but may no longer be valid

once the agents lose communication and change their task allocation schemes. To

address some potential conflicts from changes in communication, we propose a team

up strategy in which agents fully collaborate only with agents from which they

perceive a high level of communication. Hence, if an agent teams up with another

agent, it will use all the bids information received from the agent when executing

task allocation. On the contrary, if an agent perceives low communication from

another agent, it will discard all bids information received from this agent except

for information pertaining completed tasks. Fig. 3.8 shows agents a0, a1 and a2

performing the team up strategy.

The motivation for this strategy is to prevent agents from relying on all the

information received from agents with which they experience poor communication.

Consider an agent a1 that receives messages about tasks that another agent a2

intends to do and plans accordingly. However, if a2 decides to do different tasks and

broadcasts messages about its updated plan, these messages may not be received

by a1. This could lead to a1 and a2 leaving some tasks incomplete or taking much

longer to complete all tasks. By enabling agents to select which information to

include in their computations based on the perceived communication quality, tasks
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can be completed even when all broadcasted messages are not received. We test this

team up strategy when we perform the metareasoning experiments.

Figure 3.8: Sample execution of the synthesized switching protocol where agents
team up according to the level of communication perceived. Agents a0 and a1 team
up as they perform ACBBA, while a2 individually performs CBAA.

3.5 Experimental Setup

The simulation framework is built in the Robot Operating System (ROS) [88]

Kinetic. Two types of modules are implemented: agent and environment. The

task allocation algorithms, written in Python, are executed in the processing unit of

each agent module every 0.1s. Once a task assignment is obtained, the agent starts

moving towards the task location unless it receives a message from another agent

indicating that the task has already been completed. Only when the agent arrives

at its assigned task will it proceed to complete its next assigned task. The agents

communicate their solutions and heartbeat messages over the ROS network through

a communication interface written in C++. Separate processes for all agents are

used in order to simulate a decentralized system. Only one process is used for
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the environment module. The environment module simulates the agents as point

robots as well as the 2D map in which the agents move. We assume a collision free

model for the agents. To move in the map, the agent module sends a request to the

environment simulator, which provides odometry sensor readings for the agent. For

more details about this simulation framework, see [32].

We ran all simulations on an on an AMD Ryzen Threadripper 2990WX. In all

scenarios except for the ship protection scenario, simulations were terminated when

at least one agent came to know all target locations had been visited. In the ship

protection scenario, simulations were terminated when the ship arrives to the other

side of the map.

Regarding the communication topology, we assume a full mesh topology in

which every agent attempts to communicate with every other agent by continuously

broadcasting messages. The Rayleigh Fading model is used to determine whether or

not a message is dropped. Thus, the topology of the network is sparse and changes

as a function of space and time.

3.5.1 Design of Experiments

For all scenarios, we used a randomized design of experiments. The dimension

of the map is N × N with N = 100. We set the agent speed As = 6 units/s

for all scenarios except the ship protection scenario. In this scenario, we used a

proportional controller and set the max As = 12 units/s so that agents can track

targets before they move out of sensor range. The map is divided into 25 grid cells
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of size 20 × 20. The detection radius Rd = 14.14 units (half length of diagonal of

grid cell) while the classification radius Rc = 8 units. We set the threshold distance

δT = 0.25 units.

For the rescue, search & rescue and ship protection scenarios, target locations

were sampled from a 2D Gaussian Mixture Model described as follows,

pgmm =
1

K

K∑
i=1

N (µi,Σi), (3.19)

where K is the number of clusters, each with radius ri, center at µi and co-variance

Σi =

r2
i 0

0 r2
i

 . (3.20)

For the fire monitoring scenario, initial fire locations were uniformly sampled

from [0, 100]× [0, 100]. We set additional parameters including wind speed and wind

direction.

For the ship protection scenario, we set the initial location of the ship to (50,

0), heading θs = 90°and speed vs = 1.6 units/sec. In addition, we set the ratio of

number of adversarial targets to non-adversarial targets and exclude initial locations

of targets that have a distance < 40 units from the ship. We set the default speed

for all moving targets as 4 units/sec. If adversarial targets are tracked, their speed

is set to 12 units/sec.

For all experiments, we set the Rayleigh fading model parameters as N= 64,

d0=1m, PT= 30 dB, and PL0 = 40 dB as suggested in [32].
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An instance is defined as one random sampling of the parameters from the

ranges mentioned in Table 3.2. for the rescue, search & rescue and ship protection

scenarios. For the fire monitoring scenario, we used the parameters from the ranges

indicated in Table 3.3.

Parameter Range
Number of agents [5,10]
Number of target clusters (K) [1,4]
Ratio of number of targets to agents [1,4]
Initial locations of agents ([0, 100],[0, 100])
Cluster centers (µi) ([0, 100],[0, 100])
Cluster radii (r) [15,50]
Ratio of number of adversarial targets to
non-adversarial targets *

[1,3]

Table 3.2: Parameter ranges for instance generation in the rescue, search & rescue
and ship protection scenarios. The * indicates parameter applies only to the ship
protection scenario.

Parameter Range
Number of agents [5,10]
Number of initial fires [4,10]
Initial locations of fires ([0, 100],[0, 100])
Initial locations of agents ([0, 100],[0, 100])
Wind speed (units/sec) [5,20]
Wind direction (radians) [0,2π)

Table 3.3: Parameter ranges for instance generation in fire monitoring scenario.

3.5.2 Determination of weighting coefficients for ship protection sce-

nario

Unlike the other scenarios, the ship protection scenario uses a multi-objective

function (3.6) to minimize max distance traveled while driving agents to track targets

closer to the ship and continuously search cells in the workspace. The three terms
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in the objective function are weighted by k0, k1 and k2, respectively. Changing

these weights affects the agents’ task allocations since task bids are computed using

this multi-objective function for all algorithms. Hence, for each algorithm we ran

experiments to determine the weights that exhibit the best performance on average

with respect to the minimum distance to the ship amongst all targets. We chose

this metric since protecting the ship is the primary goal in this scenario.

Assuming perfect communication, we generated 40 samples for (k0, k1) using

the Latin Hypercube Sampling method [90]. We sampled k0 and k1 from [10, 1000].

This range was determined empirically by analyzing the agents’ behavior at extreme

values of k0 and k1 and verifying that their behavior was different. At k0 = 10 and

k1 = 1000, agents often visited cells closer to the ship even when they were far away

from these cells. At k0 = 1000 and k1 = 10, agents were often assigned to visiting

cells that were closer to their own locations. We also observed that k2 = 500 was

an effective value to make agents prioritize tracking targets for all values of (k0,

k1) tested. We performed 50 experiments with 5 agents and 20 targets for each

generated sample of (k0, k1) and for each of algorithm. Initial locations of agents

and targets were randomly generated. We set the number of adversarial targets

equal to the number of non-adversarial targets.

We evaluate the results by calculating the average and 95 percent confidence

intervals of the chosen metric across the 50 experiments. Amongst the 40 samples,

we selected the 3 candidate samples with the highest average minimum distance to

the ship. From the selected samples, we kept the one with the smallest confidence

interval as this indicated more consistency in performance across scenarios. Table
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3.4. shows the best performing weights on average for all algorithms.

Weights
Algorithm k0 k1 k2

CBAA 621 655 500
DHBA 858 258 500
HIPC 109 478 500

ACBBA 483 320 500
PI 215 248 500

Table 3.4: Best performing weights on average for the ship protection objective
function with respect to minimum distance to the ship.

3.5.3 Determination of optimal algorithm parameters for fire moni-

toring and ship protection scenarios

The parameter space of CBAA, DHBA and HIPC contains the max itera-

tion count I, and for ACBBA and PI, it contains both I and max bundle size

B. Values for the I and B tuning parameters are chosen as follows: for each

I ∈ {1, 2, 3, 4, 5, 10, 15, 20} and B ∈ {2, 3, 4, 5, 10, 20, 30, 40}. The tuning was done

assuming perfect communication. For all the experiments, we used 7 agents, 22

targets for the ship protection scenario and a max of 40 fire targets for the fire

monitoring scenario. We set the number of adversarial targets equal to the number

of non-adversarial targets in the ship protection scenario.

We performed 15 experiments for each point in the parameter space, with each

experiment having randomly determined starting locations of targets and agents.

The performance metrics across all the experiments were averaged for each point in

the parameter space. For each algorithm, we selected the point in the parameter
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space that had the least average max distance traveled. The distribution of this

point was compared with the distributions of all other points in the parameter

space using the Wilcoxon-Signed Rank (WSR) test [91]. If the distributions were

similar with a 95 percent confidence and the difference in the average max distance

traveled was less than 15 percent, we chose the point with the lowest number of

transmitted messages.

The plots for the ship protection scenario and the fire monitoring scenario

results are shown in Fig. 3.9. Table 3.5. shows the best parameters for each of these

scenarios and for each algorithm. For the rescue and search & rescue scenarios, we

used the iteration counts and bundle sizes suggested in [32].

Algorithm
Scenario CBAA DHBA HIPC ACBBA PI

Fire monitoring 2 2 1 (1, 40) (1, 2)
Ship protection 4 1 1 (1, 40) (1, 2)

Table 3.5: Best algorithm parameters for each algorithm: I (iteration count) or (I
B) (iteration count, bundle size).

3.5.4 Design of Comparison Experiments

To compare the performance of the 5 algorithms for the ship protection and

fire monitoring scenarios, we used a similar design of experiments and analysis as

described in [32]. For each type of scenario, we generated 50 instances with different

parameter values mentioned in Table 3.2. and Table 3.3. respectively. With regards

to communication, we varied the sensitivity threshold PS in the range [-25, -75] dB

in -10 dB increments. Every instance was run at each sensitivity threshold. We
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used the WSR test and Metrics Trade-off plots (MTP) to evaluate the performance

of the algorithms in each scenario.

Observing the MTP for the fire monitoring scenario, we note that ACBBA,

HIPC, DHBA and CBAA consistently appear on the plots. From the WSR test,

it can be inferred that ACBBA and HIPC have no statistical difference in either

performance metric, thus implying no trade-off. ACBBA is chosen amongst this pair

as it minimizes the max distance traveled. DHBA and ACBBA exhibit statistical

difference in messages transmitted and max distance traveled at the highest level

of communication. Therefore, we again choose ACBBA for high communication

since it minimizes the max distance traveled. ACBBA and CBAA exhibit trade-off

at most communication levels. As we prioritize minimizing max distance traveled,

we choose ACBBA at high communication levels. At low communication levels,

we note that ACBBA and CBAA have no statistical difference in max distance

traveled. This is similar to PI and CBAA, which do not exhibit statistical difference

in either metric at the lowest level of communication. We can choose CBAA or PI

over ACBBA as both minimize the number of messages transmitted. Thus, for low

communication, we choose CBAA since it achieves the lowest number of messages

transmitted.

Performing a similar analysis on the ship protection scenario, we note that

PI, ACBBA and DHBA consistently appear on the trade-off plot. At the highest

communication level, we note that PI and ACBBA have statistical difference in max

distance traveled and number of messages transmitted which implies that a trade-off

exists. Prioritizing the minimum distance to ship metric, we choose PI over ACBBA.
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PI and DHBA do not exhibit statistical difference in max distance traveled but PI

obtains a higher mean for minimum distance to ship, thus we choose PI. At the lowest

level of communication, we again choose DHBA over ACBBA despite there being

statistical difference in both max distance traveled and number of messages. This

is done to prioritize minimum distance to ship in which DHBA performs better.

Fig. 3.11 shows the trade-off and Wilcoxon Signed Rank test results for the fire

monitoring and ship protection scenarios.

3.5.5 Determination of communication threshold value

To identify the value of ct, we ran 15 experiments using the rescue scenario

with 25 targets for simplicity and 2 agents for a single communication link. Since

the communication estimate is independent of the type of scenario, we limited the

experiments to the rescue scenario. Agent and target starting locations were ran-

domly generated. We varied the sensitivity threshold values from -25 dB to -75 dB

in increments of -10 dB. We computed the average over each agent’s communica-

tion estimates obtained over all time steps. We calculated the final communication

estimate for the experiment by taking the average over the estimates obtained from

all the agents. We then computed the mean estimate from all 15 experiments for

each sensitivity threshold value. Fig. 3.12 shows that sensitivity threshold values

above -35 dB corresponded to mean communication estimates below 0.2. Thus, ct

was set to 0.2.

To simulate different levels of communication, we first determined the ranges
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of values for γ corresponding to high and low levels of communication, respectively,

based on ct. Generally, values of γ range from 2 (less cluttered environments) to

5 (more obstructed areas) [89]. Thus, we ran the same 15 experiments described

above with the difference that we set PS to −65 dB and instead varied γ from 2 to 5

in increments of 0.25. We used these experiments to identify the ranges of values for

γ that would likely result in communication estimates above and below ct. Fig. 3.13

shows that values from 2.0 to 3.0 resulted in mean communication estimates above

ct while values from 4.5 to 5.0 resulted in mean communication estimates below ct.

Figure 3.12: Communication estimate values are shown for different sensitivity
threshold values using the Rayleigh Fading model. Segmented line indicates the
communication estimate value above which we define as high communication.
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Figure 3.13: Communication estimate values are shown for different path loss ex-
ponent values using the Rayleigh Fading model. Segmented line indicates the com-
munication estimate threshold value used to define high and low communication.

3.5.6 Design of Metareasoning Experiments

To test the metareasoning policy, we first identified the best performing algo-

rithms under high and low communication levels for each type of scenario. For the

rescue and search & rescue scenarios, we selected the best performing algorithms

based on the results from [32]. For the fire monitoring and ship protection scenarios,

we ran experiments to characterize the performance of each of the 5 algorithms con-

sidered under different levels of communication. These experiments were performed

using the optimal algorithm parameters for each scenario and the optimal weighting

coefficients k0, k1 and k2 in the objective function for the ship protection scenario.

Using the Rayleigh Fading model, results from [32] showed that the perfor-

mance ranking of the task allocation algorithms tested changed at a sensitivity

threshold value of -25 dB for the visit scenario and -35 dB for the search & visit
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scenario. Thus, we define values below -35 dB as high communication levels and

values above -35 dB as low communication levels. For each sensitivity threshold

value tested in [32], we ran experiments to compute the corresponding communi-

cation estimate. We then set the value of the communication threshold ct to the

communication estimate at which communication levels change from low to high.

Theoretically, we could vary the sensitivity threshold values to simulate high

and low communication. However, this would not be feasible in a hardware im-

plementation since the sensitivity threshold is inherent to the agent. Instead, we

choose to vary the path loss exponent γ, which is equivalent to generating different

amounts of clutter in the environment [89]. We used the values of ct and the ranges

of γ values found in previous section.

We selected the algorithms for the metareasoning policy for each type of sce-

nario from the results obtained. See Table 3.6. for a summary of these results. To

demonstrate the performance of our metareasoning approach, we ran experiments

for all the scenario types considered. Our policy as well as each algorithm used in

the policy were tested on multiple instances of each scenario type at two different

switching conditions of communication: low to high and high to low. These condi-

tions represent possible ways in which communication may change during a mission.

We sampled values for γ from [2.0, 3.0] to simulate high communication and from

[4.5, 5.0] to simulate low communication. We set the switching time for communi-

cation t1 as a random value in [5, 15]. The heartbeat rate is set to 5 messages per

second.

A total number of 50 instances was generated for each type of scenario and
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communication switching condition. The total number of experiments came to be

50 × 2 × 4 = 400. We tested the metareasoning policy as well as each algorithm

used in the policy across all these experiments in order to evaluate the performance

of the policy.

Scenario Type High Comm. Alg. Low Comm. Alg.
Rescue ACBBA CBAA
Search & rescue ACBBA CBAA
Fire monitoring ACBBA CBAA
Ship protection PI DHBA

Table 3.6: Algorithm specified by the policy for each level of communication and
type of scenario.

3.6 Results

In Figs. 3.14, 3.15, 3.16 and 3.18, we show our compiled results for the two com-

munication switching conditions tested and each type of scenario. We use trade-off

analysis to demonstrate the difference in performance between the metareasoning

policy and each individual algorithm used in the policy with respect to the met-

rics chosen: max distance traveled, max number of transmitted messages, and min

distance to the ship (applicable only to the ship protection scenario).
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Figure 3.14: Trade-off analysis for the metareasoning policy and each individual
algorithm used in the policy for the rescue scenario. High-low communication is
shown on the left and low-high communication is shown on the right. Best expected
performing methods are displayed as shaded circles. Methods with sub-optimal
solutions are displayed as shaded diamonds.

Figure 3.15: Trade-off analysis for the metareasoning policy and each individual
algorithm used in the policy for the search & rescue scenario. High-low commu-
nication is shown on the left and low-high communication is shown on the right.
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Figure 3.16: Trade-off analysis for the metareasoning policy and each individual
algorithm used in the policy for the fire monitoring scenario. High-low commu-
nication is shown on the left and low-high communication is shown on the right.

Figure 3.17: Trade-off analysis with respect to max distance traveled and messages
transmitted for the metareasoning policy and each individual algorithm used in the
policy for the ship protection scenario. High-low communication is shown on
the left and low-high communication is shown on the right.
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Figure 3.18: Trade-off analysis with respect to min distance to ship and messages
transmitted for the metareasoning policy and each individual algorithm used in the
policy for the ship protection scenario. High-low communication is shown on
the left and low-high communication is shown on the right.

We make a few important observations from these results. First, for the rescue

scenario, the metareasoning policy proposed was the single best expected performing

strategy with respect to both performance metrics. For the search & rescue scenario,

the metareasoning policy was the best expected performing strategy under low to

high communication, however, it only performed better in terms of max number of

transmitted messages under high to low communication. Consequently, we obtained

a trade-off between ACBBA and the metareasoning policy.

In the fire monitoring scenario, the metareasoning policy provided a trade-off

with ACBBA under high to low communication. In this communication scenario,

the policy obtained the best expected performance in terms of max distance traveled

while ACBBA resulted in a slightly lower number of transmitted messages. Under

low to high communication, both ACBBA and the policy, are the non-dominated

expected solutions. A possible reason for this is the target distribution, in which
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new fire targets appear near other targets. Agents can get an assignment of multiple

nearby targets at once using ACBBA; thus, switching their allocation to a single-

task assignment like CBAA may have spread out agents towards targets emerging

in different fire clusters, resulting in a larger max distance traveled.

For the ship protection scenario, we observe that with respect to max distance

traveled, the policy performed better on average compared to PI and DHBA. This

occurred under both communication scenarios. With respect to min distance to

ship, the metareasoning policy only performed better on average under low to high

communication. Thus, the policy was more effective in terms of minimizing the

max distance to track adversarial targets while DHBA was more effective in terms

of maximizing the min distance to ship.

The results obtained demonstrate that on average, the policy outperforms

running a single algorithm more consistently under low to high communication sce-

narios. Moreover, when agents experienced low communication at the start, metar-

easoning proved to be more effective when communication improved at a later time.

However, when agents started with high communication, changing their task allo-

cation scheme may not have been as effective. A reason for this may be that agents

can reach consensus early on if they are able to communicate successfully at the

beginning and may not benefit from changing their already computed solutions as

communication degrades. It is important to note that across all communication sce-

narios, agents tend to perceive low communication as they initiate communication,

however this is considered as a transient state of communication and is not explicitly

included as part of the overall communication scenario.
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Another observation we make is that the max number of transmitted messages

for CBAA was consistently larger than the max number of transmitted messages

obtained for the other two strategies. This can be explained by scenarios in which

agents were not able to receive messages about completed tasks. For this reason,

CBAA iterations continued to be executed until at least one agent successfully

received updated information about the completion status of all tasks.

3.7 Conclusions and Future Work

In this chapter, we describe a metareasoning policy that a team of agents can

execute to make effective meta-level control decisions based on the communication

availability in the environment. Our policy was tested in various types of scenar-

ios with different types of task allocation problems. We demonstrated that using

the policy can lead to gains in performance or trade-offs in terms of max distance

traveled and max number of messages transmitted compared to running a single

fixed strategy. Using the LTL framework, this policy can be naturally extended to

take into account additional environment features and desired reactive behaviors

of the agents using LTL specifications. This would be an interesting direction for

future work as well as exploring different metareasoning approaches that would not

only execute a prescribed policy, but also modify the policy or generate new policies

online.

In addition, with respect to communication, we would like to investigate the ef-

fects of more complex communication scenarios, for instance, scenarios in which only

68



certain regions of the environment experience drops in communication quality. With

respect to the metareasoning policy proposed, one possible extension is to include in

the portfolio of task allocation algorithms considered, those that account for com-

munication constraints and investigate the benefits of switching between such. This

can also help us address questions on how to better utilize information exchanged

among the agents and how to improve consensus under low communication.
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Figure 3.9: Tuning results for all 5 algorithms with respect to min distance to ship
(ship protection scenario only), max distance traveled (fire monitoring scenario only)
and max number of transmitted messages (both scenarios). The ship protection
scenario is shown in the 1st and 2nd columns while the fire monitoring scenario is
shown in the 3rd and 4th columns. Algorithms are shown in the following order:
CBAA (1st row), DHBA (2nd row), HIPC (3rd row), ACBBA (4th row), PI (5th
row).
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Figure 3.10: Metrics trade-off plot showing the best performing algorithms with
respect to (max distance traveled or min distance to ship) and max number of
transmitted messages for each level of communication tested.

Figure 3.11: For each communication level and pair of algorithms tested, we show
the Wilcoxon Signed Rank test results for the fire monitoring scenario (left) and ship
protection scenario (middle) with respect to the performance metrics evaluated.
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Chapter 4: Object-Level Layer

In this chapter, we describe the process of formulating reactive synthesis at

the object-level layer of the agent. Our goal is to obtain a task and path planner

for each agent in the team so that the team achieves a coordinated behavior. This

coordinated behavior is accomplished by having each agent execute the synthesized

high-level planner individually and employing dynamic allocation to assign different

goals to each agent. Thus, we address state explosion, one of the main challenges of

reactive synthesis, by employing a hierarchical integration of reactive synthesis, used

to satisfy desired system design traits at the agent level, and dynamic allocation,

used to coordinate the behavior of agents. However, a naive application of reac-

tive synthesis to control a single agent can also lead to state explosion if dynamic

environment settings are considered. We present a receding horizon framework to

solve the synthesis problem efficiently and demonstrate the successful utilization of

reactive synthesis for managing a team of UAVs in a firefighting application. We

first begin by describing the receding horizon framework proposed.
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4.1 Receding Horizon Framework

Previous works [3], [4], and [5] have explored reactive synthesis within a reced-

ing horizon (RH) framework. Within this framework, the state space for both the

environment and system are partitioned into separate horizons, enabling the con-

version of the given problem into a set of smaller problems for which to synthesize

a controller. A single controller that satisfies the high-level system requirements

and assumptions about the environment is then obtained by carefully combining

the individually synthesized controllers.

The receding horizon implementation consists in segmenting the total system

space into regions Wj for each progress specification. These regions are placed into

properly constructed ordered sets F i(W i
j) to ensure that the system variables will

converge to satisfying each progress statement for the system progress goal at W0.

Fig. 4.1 exemplifies the segmentation process of the total state space into an ordered

set of defined regions W i
j, in which i denotes the system progress statement i ∈ Ig,

and j indexes the ordered regions Wj about i.

Each region W i
j consists of its own GR(1) specification as shown in Eq. (4.1),

and the goal of the synthesized controller is to drive the system states towards the

next region within the ordered set so that the system eventually arrives at W0. For

example, the controller will move states in region W i
j towards region W i

j−1 in its

attempt to fulfill progress specification i. Such specification is formalized as a GR(1)
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Figure 4.1: Segmentation process of the state space and example of ordered set
flow-down performed in receding horizon framework [3].

specification as follows:

Ψi
j = ((s ∈ W i

j) ∧ Φ ∧
∧
i∈Ir

�ϕes,i ∧
∧
i∈If

�3ϕep,i)

−→ (
∧
i∈Is

�ϕss,i ∧ �3(s ∈ F i(W i
j)) ∧ �Φ).

(4.1)

where s refers to the system state. The formula Φ represents all limitations on

the system states in order to disallow system transitions to or initializing within

invalid states. Thus, each synthesized controller prevents transitions to states that

are infeasible for other horizons.

Before describing the implementation of the receding horizon framework in

more detail, we first provide some motivation for the chosen application to firefight-

ing and specific problem to be solved using this framework.
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4.2 Application to Firefighting

We explore the design of a high-level mission planner and controller for man-

aging unmanned aerial vehicles (UAVs) in a fire fighting application by having each

agent execute a reactive controller and applying dynamic allocation of the UAVs as

resources for fighting a growing fire.

The application of fighting wildfires presents various challenging opportuni-

ties for high-level reactive control design since it can involve an expansive objective

space. Typical fire fighting scenarios involve numerous ground workers and piloted

vehicles, including aerial vehicles capable of dropping large amounts of suppressant

over regions of fire. Due to the chaotic nature of fires, numerous progress specifica-

tions tied to the environment dynamics can be generated to formally describe how

a team of UAVs should slowdown the spread of fires. This serves as an apt example

of the type of problem many reactive synthesis-based research endeavors have not

addressed.

Managing wildfires is a relevant and complex challenge, straining the economy

of the United States. In 2016, an amount exceeding $63.5 billion was incurred due

to damages caused by wildfires, and more than $7.6 billion is spent annually to fight

said fires [9]. As discussed in [10] and [11], UAVs pose a huge benefit to traditional

firefighting methods, with the primary advantage of supplying additional “eyes in the

sky”. Previous work [8] has shown that aerial vehicles with suppression capabilities

have been critical in slowing down the growth of fires due to their far greater range of

maneuverability when compared to ground crews. Often these aircraft can change
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the outcome of a wildfire if used to attack a small fire early enough. Hardware

demonstrations of UAVs extinguishing fires have been presented in [13], on a small,

single-UAV scale, and through Lockheed Martin’s use of the K-MAX and Stalker

XE in [12]. Thus, there are many opportunities to leverage the use of mid-sized

autonomous drones for quick response to fledging small-scale wildfires as well as

limiting the number of required personale to a site.

Next, we present the problem formulation that exemplifies how reactive syn-

thesis is used to construct a high-level controller, to be executed by each agent in a

team of UAVs with the goal of slowing down the spread of multiple fires.

4.2.1 Problem Definition

We consider a 450-by-450 meter region of flat grassland, segmented by various

large-scale obstacles. We assume fires spread from starting regions under fixed

environmental conditions (e.g. wind speed and direction) and with any arbitrary

initial conditions. A base of operations exists near the edge of the region and

contains a fleet of N UAVs of moderately large size for fighting the fire.

Each UAV holds a varying level of suppressant for dumping on the fire, from

High (100%), Medium (66%), Low (33%), to Empty (0%), associated with a total

water volume of Wv = 125 liters. Each individual UAV contains a radio for commu-

nicating with base, GPS for determining position, and any other sensors required

for lower-level controllers. Each UAV’s average flight speed, v, is approximately

15 m/s. Design constraints on the UAVs require periodic landing and enforcement
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of in-flight kinematics resembling fixed-wing behavior. The design goal of the fleet

is to significantly slow down the fires’ spread to the outer edge of the domain as

compared to the fires’ natural growth. Fig. 4.2 visualizes the abstracted region for

this problem.

Figure 4.2: 2D grid partition of region with environmental indicators.

The formal definition of the abstracted system space is as follows.

Definition 1: The state set is defined as S = Sp × So × W , where the

position set is Sp = {(1; 1); (1; 2); (2; 1); ...; (10; 10)}, the orientation set is So =

{0; 90; 180; 270}, and the water level set is W = {0%; 33%; 66%; 100%}. A single

UAV at any given time is represented as an element s×S. For the elements of s, sx,y

is used to represent the position tuple, so is used to represent the orientation, and

w is used to represent the water level. This implies that each position represents

a cell of 45-by-45 meters. Furthermore, viable transitions for the UAVs between
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elements in the state space are defined assuming 3 transition scenarios: a sped up

counterclockwise turn, a sped up clockwise turn, and a straight drive ahead. These

transition scenarios result in the following transition system described in Definition

2, and visualized in Fig. 4.3.

Figure 4.3: Possible transitions for UAV within grid given starting orientation and
position.

Definition 2: The transition relation for the state set S is defined as T =

{s → s′ ∈ R ⊆ S × S}, where allowable transitions s → s′ ∈ R are defined under

the following conditions.

If so = 0°:

s′ =



(sx, sy), s′o = 0°

(sx + 1, sy), s′o = 0°

(sx + 1, sy + 1), s′o = 90°

(sx + 1, sy − 1), s′o = 270°

(4.2)
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If so = 90°:

s′ =



(sx, sy), s′o = 90°

(sx, sy + 1), s′o = 90°

(sx + 1, sy + 1), s′o = 0°

(sx − 1, sy + 1), s′o = 180°

(4.3)

If so = 180°:

s′ =



(sx, sy), s′o = 180°

(sx − 1, sy), s′o = 180°

(sx − 1, sy + 1), s′o = 90°

(sx − 1, sy − 1), s′o = 270°

(4.4)

If so = 270°:

s′ =



(sx, sy), s′o = 270°

(sx, sy − 1), s′o = 270°

(sx + 1, sy − 1), s′o = 0°

(sx − 1, sy − 1), s′o = 180°

(4.5)

Depending on the location of static obstacles and boundaries, elements within

the described transition relation should be avoided if they violate the reachabil-

ity property of the system, as defined through Definition 3. This implies that the

existence of obstacles requires limitation on allowable states S in the system spec-

ifications. A graph search for paths that lead to dead ends is an accessible way of
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determining these states.

Definition 3: The system S is reachable if there exists a path of states,

composed of a finite number of consecutive transitions in s→ s′ ∈ T ⊆ S × S, such

that all s ∈ S can be eventually reached from any other initial state s ∈ S.

The formal definition of the abstracted environment space is provided in Def-

inition 4. Note that this general environment definition is expansive in size (up to

2100+N combinations, where N is the number of fires). Also note that this environ-

ment definition serves as an abstraction to the fire growth model described in more

detail in Section 4.3.2.

Definition 4: The fire environment is defined as Fx,y = (x, y)×{True, False}

for any valid choice of x and y in the system domain except for the base and obstacle

locations. The element fx,y ∈ Fx,y corresponds to whether fire is present at (x, y) or

not. The environment domain consists of the combination of all Fx,y sets and the

landing signal sets of each UAV, i.e. E = F1,1 × F1,2 × F2,1 × ...× F10,10 × Sland,1 ×

Sland,2× ...×Sland,N , where Sland,i ∈ {True, False} corresponds to the landing signal

of the i-th UAV. Under these formal definitions on the system and environment, the

desired design constraints for each UAV are as follows. First, each UAV must fly to

any region in the state space associated with an active fire (Eq. (4.6)) and dump a

fraction of its water supply if possible (Eq. (4.7)),

φs1 =
∧

(x′,y′)

�(fx′,y′ −→ 3(sx,y ↔ (x′, y′))), (4.6)
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φs2 =
∧

(x′,y′)

�((w > 0% ∧ fx′,y′ ∧ (sx,y ↔ (x′, y′)))↔ #w = w − 33%). (4.7)

Next, each UAV must return to base for replenishing water supplies when empty

(Eq. (4.8)) and the water level must refill to the max level when the UAV reaches

base (Eq. (4.9)). Outside of any condition that forces the water level to change, the

water level must remain constant (Eq. (4.10)). Base is a proposition that is True

when sp matches the associated (x, y) tuple for the base,

φs3 = �(w = 0% −→ 3base), (4.8)

φs4 = �((w = 0% ∧ base)↔ #w = 100%), (4.9)

φs5 = �((¬# w = 100% ∧ ¬# w = 0%)↔ #w = w). (4.10)

The UAVs may receive landing signals and must land in the next available region

unaffected by fire (Eq. (4.11)),

φs6 = �((sland,n ∧ ¬fx,y) −→ (#sx,y ↔ sx,y)). (4.11)

Lastly, the order in which fires are addressed must be determined by their capability

of reaching the domain edge, and UAVs must coordinate suppressing fires in a man-

ner that increases their combined effect on the environment, a system specification

represented by φspriority. This specification is an open area of design, one in which

a formal description of the fire behavior model φemodel and system response φspriority

would require further environment and system definitions, specifically in relation to
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predicting and assessing the wildfire dynamics. In the reactive synthesis language,

the problem we seek to solve is defined as the following total specification:

φemodel →
∧
i∈[1,6]

φsi ∧ φspriority. (4.12)

Given the specifications φemodel and φspriority, our goal is to “synthesize” a con-

troller that satisfies Eq. (4.12) through utilizing reactive synthesis efficiently while

avoiding introducing further variables to the synthesis problem.

4.2.2 Proposed Solution

When the high-level design of a system does involve large scale environmental

permutations and state spaces, solutions typically seek to discretize the synthesis

problem. Discretization appears in the use of receding horizon control in [63] and

the use of decentralized controllers for multiple agents in [15]. Both examples break

down the top-level synthesis problem into smaller, discrete pieces for the computa-

tion benefits. On the other hand, [16] approached their synthesis problem with a

focus on resolving deadlock under specific environment conditions instead of directly

avoiding dynamic obstacles. In each of the presented cases, the problem description

focused on a limited task space (i.e. the number of progress goals) and how the solu-

tion can handle larger sets of actions from an environment in relationship to safety

specifications. The maximum state space sizes of [63]-[16] were up to the order of 100

variables (for [16] specifically), but the task space for each scenario explored never

exceeded 4 progress statements. For the purposes of fighting growing, dynamic fires
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with a single autonomous UAV system represented by a state space abstraction

size of 2 orders in magnitude or greater, a high-level controller created with just

reactive synthesis could quickly present an impractical solution if the design has to

accommodate a fairly granular environment space. Further expanding this concept

to a whole fleet of UAVs, the problem worsens due to an increase in the number

of system variables proportional to or greater than the number of UAVs, if con-

sidering centralized controllers. Even with decentralized controllers for each UAV,

additional system variables might need to be introduced to describe coordination

and behaviors between the decentralized UAV controllers.

To alleviate the computational complexity on reactive synthesis in this regard,

we propose the coordination of UAVs be handled by a dynamic allocation process.

Dynamic allocation presents an autonomous method for assigning resources in an

ever-changing environment and determining which fires the UAVs should prioritize.

For example, in [17], the resource allocation problem is framed as a multi-objective

optimization problem of minimizing the extinguishing time and resource utilization

cost, solved by the use of evolutionary algorithms. In [18], the fire behaviors and re-

sults due to resource allocation are formulated as a Markov Decision Process (MDP),

from which a Monte Carlo tree search is used to determine the best areas to allocate

resources. We implement a simplified optimization allocation strategy to address

the assignments of UAVs for our fire fighting scenario. If the fleet of UAVs are

treated as resources to manage with respect to a changing fire landscape, dynamic

allocation would serve well in assigning the UAVs to specific fires. Assignments de-

pend upon factors in the behavior of the fires such as density, ability to spread, wind
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and direction. An allocation algorithm is not necessarily constructed to control the

UAVs within the state space defined, nor the algorithm manages other high-level

system aspects associated with the UAVs, such as suppressant control and decisions

on landings. Building these high-level behaviors into an allocation algorithm re-

quires “handcrafting” these behaviors for all scenarios, an approach that synthesis,

on the other hand, is well suited to avoid.

Related to our work, [19] first touched upon the idea of manipulating the reced-

ing horizon framework for decomposing the synthesized problem and decentralizing

the planning procedure. For their purposes, this idea resulted in the ability of mul-

tiple agents to satisfy high-level specifications through only considering other agents

that entered their local horizon. For our purposes, decentralizing the planning pro-

cedure allows for dynamic allocation to output the order of progress goals specified

in the synthesized controller in real-time. Thus, our proposed solution integrates

reactive synthesis within the receding horizon framework previously described and

dynamic allocation. These two methods form a high-level planner and controller

that fulfills the design constraints imposed on each UAV and dictates the behavior

of each one as well as their collective maneuvers. Fig. 4.4 depicts a conceptual view

of the process of creating our solution and the tasks that each method performs. Fig.

4.5 depicts the direct relationship between the allocation process and a synthesized

controller.

As shown in Fig. 4.4, a common synthesized controller is created for each of

the UAVs through the receding horizon framework with the duties presented. Given

any arbitrary initial condition, the controller aims to progress to each viable parti-
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Figure 4.4: Diagram of creating the solution method and the responsibilities and
roles for both the synthesized controllers and the allocation process during real-time
implementation.

tioned space. Each one of these progress goals is represented within Fig. 4.4 by the

“nodes” protruding from each rectangle. The order that the controller meets these

progress statements for a single UAV, shown previously through the ordering of Wi

in Fig. 4.1, is not dictated by the synthesized controller as typically performed

within the RH framework. Instead, the allocation process decides which progress

specification any single UAV should pursue, represented within Fig. 4.5 by the

switching of the “nodes”’ order for any given moment in time, and the allocation

process is responsible for ensuring that each “node” can and/or will be fulfilled.

Hence, the allocation process prioritizes and assigns which goals a single controller

should meet next in real-time. The combination of these two methods in the de-

scribed manner works to highlight the strengths of each method. The synthesized

controllers manage various system oriented aspects of the design and path planning
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Figure 4.5: Diagram of allocation process rearranging the progress goal ordering (as
depicted in Fig. 4.1) for a single UAV controller instance in real-time.

while allocation governs the fleet behavior through assignments of goals for each

controller.

Previously mentioned in [13], a physical scenario was constructed that dealt

solely with one UAV gathering water, moving to another location, and dumping said

water on the destination. Reference [13] demonstrates the existence of lower level

controllers that could manage the individual actions necessary to achieve the high-

level planner and controller proposed (at least for a smaller scale UAV). In Section

4.4, we describe an implementation for synthesizing low-level controllers satisfying

reachability specifications in order to generate the required inputs to realize the

discrete transitions presented in Fig. 4.3.

Next section describes the construction and operation of the synthesized con-

trollers.
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4.2.3 Synthesis of Controllers in the Receding Horizon Framework

The goal of the RH framework is to individually synthesize a controller about

each progress goal while satisfying all safety specifications as formulated for the

entire system. To reinterpret the specifications provided in Eqs. (4.6) and (4.8)

in GR(1) form, we assume that the dynamic allocation process acquires the role of

determining when the UAV should go to base or fire. For example, when the UAV’s

water level is empty, the dynamic allocation forces the UAV to prioritize the goal

associated with base. Thus, the translated GR(1) goals involve always eventually

driving the system to fire regions or the base, invoked by the presence of fire or

absence of held water, respectively. As a result, Eqs. (4.6) and (4.8) are simply

reinterpreted as Eqs. (4.13) and (4.14), respectively. Therefore, the specifications

used in synthesis include the safety specifications shown in Eqs. (4.7), (4.9), and

(4.11) alongside these simplified goal specifications,

∧
x′,y′

�3(sx,y ↔ (x′, y′)), (4.13)

�3base. (4.14)

For the common synthesized controller, the formal environmental description

described beforehand is broken down to the relative signals as perceived by a sin-

gle UAV and changed by either the allocation method or the naturally occurring

environment. These Boolean environment variables consist of: sland, representing

whether or not the UAV needs to stop due to a landing signal; fd, representing
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the presence of fire directly beneath the UAV; and drop, representing the allocation

process’s signal to a UAV for dropping water on the assigned goal location. Hence,

the relative environment Er = {sland, fd, drop}. The environment specifications for

a single UAV are listed as follows:

φeinit = {}, (4.15)

φes = {}, (4.16)

φep = �3drop ∧ �3sland ∧ �3¬fd. (4.17)

We assume no guarantees on the environment’s initial condition and safety behavior

as stated in Eqs. (4.15) and (4.16). Eq. (4.17) states that always eventually allo-

cation instructs the UAV to drop water, always eventually the UAV will experience

engine failure, and always eventually the UAV will not fly over fire.

The system consists of S as described in Definition 1. Additional APs goal

and base are created to indicate when the UAV enters a specified goal location and

the base location, respectively. These revised definitions are used to form updated

specifications in GR(1) form for each set of horizons about each goal. The system

specifications are formally defined about each goal tied to a tuple (x, y) for each

UAV:

φsinit = Ψ. (4.18)

Eq. (4.18) reflects that a UAV will start in a state allowed by Ψ (the RH tautology

that governs feasible states). In this scenario, the tautology prevents the system
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from occupying any state that violates the conditions of Definition 3 before the

horizons are applied. This disallows states in which obstacles are present or any

states that only lead to obstacles.

φss,1 = �((sland ∧ ¬fd)↔ (#sx,y ↔ sx,y)). (4.19)

Eq. (4.19) is the modified form of Eq. (4.11), already in GR(1) form, replacing the

global fx,y element with the local fd variable.

φss,2 = �((w = 0% ∧ goal ∧ base)↔ (#w = 100%)), (4.20)

φss,3 = �((w > 0% ∧ goal ∧ ¬base ∧ drop)↔ (#w = w − 33%)), (4.21)

φss,4 = �((¬# w = 100% ∧ ¬# w = w − 33%)↔ (#w = w)). (4.22)

Eqs. (4.20), (4.21), and (4.22) are the modified versions of (4.9), (4.7), and (4.10),

respectively. In Eq. (4.20), the system reaching the base location has been replaced

with the local goal ∧ base proposition combination to enforce the notion that UAVs

only fill up when reaching base if the base was also set as the goal.

φsp = �3goal. (4.23)

Lastly, Eq. (4.23) is the generalized version of Eqs. (4.13) and (4.14). It models

both since the allocation process is responsible for ensuring the conditions that drive

the UAV to either the base location or a particular fire location, which serve as the
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current goal. Eqs. (4.18) - (4.23) along with the environment definitions form Eq.

(4.24), the synthesis problem about each progress goal.

Ψx′,y′ = φeinit ∧ φes ∧ φep

−→ φsinit ∧
∧

i∈{1,...,4}

φsi ∧ φsp ∧ Φ.
(4.24)

This formulation in the RH framework captures the intended behavior of the orig-

inal specifications while enabling the allocation method to dictate which goals are

prioritized in which order.

To apply the RH framework, the state space must be segmented into horizons

Wx′,y′

j about every possible goal region. A formal definition for such is provided by

Definition 5, and Fig. 4.6 visualizes the horizons for a single goal.

.

Figure 4.6: RH partitions for progress statement centered on position (4,4), i.e. W0

Definition 5: Horizons about (x′, y′) are defined asWx′,y′

j = {s ∈ S | 3(j−

1) ≤ |sx − x′|+ |sy − y′| ≤ 3j, j = 1, 2, 3, ...}. Wx′,y′

0 corresponds to the goal.
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Figure 4.7: Example of an unrealizable state (1) in W2 for the horizon specification
Ψ2 that does have a valid next move (2) into W3 and subsequent path back to W1.

These horizons are utilized to form the individual Ψx′,y′

j specifications used in

the RH framework. This formal definition is intuitive and easy to apply to this prob-

lem since it requires a simple calculation while automating the synthesis process.

Unfortunately, these horizons do not account for static obstacle placements which

create the restrictions represented by Φ, and blind application of the RH framework

will create unrealizable specifications. A possible case of this issue is shown in Fig.

4.7, in which transitions from state (1) in W2 cannot go into W1 because of obsta-

cles. Transitions that are allowed to “move back” toW3, however, can subsequently

provide a path back to W1, as represented by the numbered arrows. However, this

would violate the order along which the controller moves the system. To circumvent

a horizon violation as such, a horizon modification algorithm is applied during syn-

thesis to maintain the realizability of all RH specifications for the given environment

with a static obstacle configuration, shown in Algorithm 1.
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Algorithm 1: Wx′,y′

j Modification During Synthesis

1: procedure Synthesis Goal(x′, y′) . Synthesize controllers from all initial
conditions for the x′, y′ goal location

2: for 0 ≤ j ≤ N do
3: for s ∈ Wx′,y′

j do
4: Synthesize controller given x′, y′ goal and current s
5: if Controller == None then
6: Remove s from Wx′,y′

j

7: Add s to Wx′,y′

j+1

8: end if
9: end for

10: end for
11: end procedure

4.2.4 Receding Horizon Modification And Proof of Specification Re-

alizability

By applying Algorithm 1 during the synthesis and construction of controllers,

we can verify the viability of all initial conditions. If no controller from a given

initial condition is found that satisfies the specification, Algorithm 1 is used to au-

tomatically generate the needed modifications to the horizon template to render the

specification realizable. Doing so during execution allows for keeping valid horizons

initially provided and only changing them as needed for the given environment.

In Theorem 1, we provide a proof of realizability for the specification under the

modified horizon templates.

Theorem 1: Given a modified version of the system in Definition 1 which has

restricted accessible states and transitions through the addition of static obstacles but

still maintains the reachability property described in Definition 3, and by using the
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initial horizonsWx′,y′

j described in Definition 5 applied with the horizon modification

algorithm described by Algorithm 1, the specification for each horizon surrounding

each progress goal, Ψx′,y′

j , will remain realizable, preserving the RH framework guar-

antees on the overall specification.

Proof: First, we maintain that the overall specification (Eq. (4.24)) is realiz-

able for the modified system description given no horizons and any allowable initial

condition. Because of such, a horizon-based synthesized solution exists that fulfills

the framework and definitions provided in [3].

Given the Definition 5 description of the receding horizons Wx′,y′

j for any in-

dividual goal (x′, y′), reachability (Definition 3) implies that for any state sequence

that starts and leads from s ∈ Wx′,y′

j to a state sf with sf,x,y = (x′, y′), said sequence

π must contain at least one s ∈ Wx′,y′

k for all 0 ≤ k ≤ j. Under the modified sys-

tem definition, all available sequences for some s ∈ Wx′,y′

j may also need to include

s ∈ Wx′,y′
r for some r > j, i.e. the only available path to the goal may require the

state to move into horizons away from the goal before moving back through horizons

towards the goal due to the presence of obstacles. The presence of such a sequence

that includes paths with s ∈ Wx′,y′

r>j as the only valid path immediately violates

the order conditions for the receding horizon specification Ψx′,y′

j . To address this

violation, modifications to the horizons, as shown in Algorithm 1, are made during

synthesis to maintain the condition that a path π leading from s ∈ Wx′,y′

j does not

contain any s ∈ Wx′,y′

r>j .

As controllers are synthesized around each goal and for each initial condition

si within each setWx′,y′

j , starting with j = 0 and incrementing, realizability failures
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are direct results of the lack of a system path to the horizonWx′,y′

j−1 that remains only

inWx′,y′

j . This is a result of the failure to satisfy Ψx′,y′

j since the overall specification

Ψx′,y′ is realizable. Because a path starting at the initial condition si that fulfills the

global specification must exist on the global scale and none of the setsWx′,y′

j overlap

per index (x′, y′), the path must enter into Wx′,y′

j+1 due to the reachability property

stated before. Through the algorithm, this state si is removed fromWx′,y′

j and added

to Wx′,y′

j+1 . All intermediate states between the initial condition and horizon Wx′,y′

j+1

are also moved to the next horizon since each state is tested as an initial condition in

Algorithm 1, and these states cannot serve as viable initial conditions themselves.

Therefore, the revised Wx′,y′

j+1 contains the original set Wx′,y′

j+1 plus all states from

Wx′,y′

j that could not serve as initial conditions to reach the next horizon of Wx′,y′

j−1

(or goal if j = 0). This statement serves as a recursive assignment for each horizon

j, shifting states back horizons until a new horizon set for a goal is defined such that

each s ∈ Wx′,y′

j starts a path contained solely inWx′,y′

j that reachesWx′,y′

j−1 . Because

of this, the receding horizon modification ensures that Ψx′,y′ is realizable for all

goals, all horizons, and all initial conditions, maintaining the guarantees provided

by the RH framework used from [3].

Next section describes the allocation algorithm used for the high-level con-

troller.
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4.2.5 Dynamic Allocation

We apply a dynamic allocation process for assigning the UAVs to different

fire perimeter locations that spread with time. This process considers four main

attributes that directly affect a fire’s progress to the boundary edge and a single

UAV’s ability to suppress such. These include: proximity of the UAVs to fire lo-

cations; proximity of fires to the domain boundary; wind direction and magnitude;

and the amount of burn-through time provided by any suppressant acting on the

fire. These attributes were chosen due to their simplicity in calculation and their

ease of observation outside of the simulation environment. We assume that the fire

model (which determines the previous attributes) and its corresponding perimeter

is correctly abstracted into the cells used by the synthesis process (i.e. any cell that

contains the fire perimeter is interpreted as holding fire and is made available for

allocation). Algorithm 2 shows the process for allocating UAVs to the fire perime-

ter locations, performed at each update of the synthesized controllers. The inputs

consist of UAVs, the set of all location tuples si,(x,y) for the UAVs (ordered by the

index i), and Fp, the set of all current fire perimeter location tuples fp in the envi-

ronment domain. Due to the limited number of abstractions that our synthesized

controller acts over, calculating the cost of each individual fire relative to each UAV

is a feasible option of determining the minimized allocation cost per UAV at each

update of the synthesized controllers. Note that no optimization of UAV assign-

ments is performed across members, i.e. the UAVs are assigned to fire locations in

order and the next UAV cannot be assigned to a fire previously chosen in the main

95



Algorithm 2: UAV dynamic allocation process

1: procedure Assign UAVs(UAVs, Fp) . Allocate all UAVs to fires in the fire
perimeter set Fp

2: for si,(x,y) ∈ UAVs do
3: min cost ←− inf
4: for fp ∈ Fp do
5: cost ←− g(fp, si,(x,y))
6: if cost ≤ min cost then
7: f min ←− fp
8: min cost ←− cost
9: end if

10: end for
11: Allocate ith UAV to f min
12: Remove f min from Fp
13: end for
14: end procedure

loop. The cost function g(f, x) is calculated as the weighted sum of: the distance

between the fire and the UAV; the fire’s distance from the closest boundary edge;

the alignment of the fire’s direction alongside the wind and its magnitude; and the

amount of suppressant acting on the fire. This equation is displayed in Eq. ( 4.25),

g(f, x) = df∗ ‖ x− f ‖ +ef ∗min(‖ edge− f ‖)

− wf∗ ‖ f.wind ‖ +bf ∗ suppressant time left,

(4.25)

where df , ef , wf , and bf are heuristic weights for each relevant attribute. The

coefficient df behaves as a penalty weight for the distance between a UAV location

x and fire location f . The coefficient ef represents a penalty weight on fires that are

further from any location along the outer edge of the domain. The coefficient wf

is an importance weight on fires further along the direction of the wind. A greater

value contributes negatively to the total cost. Finally, coefficient bf corresponds to
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a penalty on the remaining time for suppressant already present at the fire. This

increases a relative fire’s cost proportionally to the remaining burn-through time.

Within all four terms, the variable edge represents any location along the domain

boundary, the vector wind corresponds to a scenario’s x and y components of the

wind vector, and the function suppressant time left calculates the remaining burn

through time (in seconds) of suppressant at a current fire location, returning zero if

no suppressant is present. These weights represent “knobs” for heuristically tuning

the allocation of UAVs to individual fires. Ideally, we aim to have the UAVs prioritize

fire perimeters that are moving further along the wind direction and approaching the

edges of the domain foremost. The distance from fire and burn-through time terms

act to “spread out” the allocation of UAVs when the wind and edge terms are less

severe. Through initial testing, we achieved the desired behaviors using standard

units by choosing the coefficients df , ef , wf , and bf as 0.1, 1.0, 0.1, and 0.02,

respectively. For perspective, the four attribute terms in the cost function without

coefficient multiplication, using standard units when evaluated, were typically on

the order of 100, 100, 10,000, and 1,000, respectively.

Next section describes the fire fighting scenarios considered and simulation

used for testing our approach.

4.3 Implementation

To examine the effectiveness of the approach proposed in a fire fighting appli-

cation, we first present the fire model used to generate test scenarios as follows.
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4.3.1 Fire Simulation

A simplified fire simulation was constructed in Python following the wavelet

differential equations and the Rothermel spread equation provided in FARSITE

[21]. FARSITE models the fire fronts as propagating wavelets, with the fire spread

rate calculated by the Rothermel spread equation serving as the main indication of

intensity. Reference [22] provides the valuation of the Rothermel spread equation for

various fuel types and climates, shown in Fig. 4.8. For the simulation, we assumed

the fuel type was SH7, which is shrubbery in a dry climate, and approximated the

spread rates for 3 levels of wind speed. Table 4.1 provides these approximations for

each wind speed.

Figure 4.8: Fire spread rates as a function of wind speed for various fuel models,
pulled directly from [22].

At each update time for the fire, the calculated spread rate of a fire vertex

along the perimeter was also adjusted with a standard deviation to provide further

98



Wind Speed (m/s) Rate of Speed (m/min)
1.0 (Low) 3.0
4.0 (Medium) 18.0
8.0 (High) 48.0

Table 4.1: Chosen wind speeds and resulting spread rates of fires for use in simulation
scenarios.

variation in the fire front growth across each simulation. Additionally, the fire front

model’s perimeter was abstracted into distinct fire regions for use by the dynamic

allocation process. Fire suppression mechanics are a relatively unknown area of

research, and simulations typically assume that obstacles (both static and dropped

suppressant) simply stop or greatly slow the spread rate at that specific location on

a fire front, either indefinitely for static obstacles or a limited time for suppressant

(referred to as the burn-through time). The placement of temporary obstacles in

our simulation provided the direct mechanisms in which the fire was slowed down at

any point by a UAV. Note that we only modeled slowing the fire down or stopping,

no permanent extinguishing of cells.

The dropping of suppressant was modeled after the line length and burn-

through times for 1500 liters of suppressant, as discussed in [24]. For a 1500 liter

suppressant drop across 45 meters, the burn-through time is approximately 2 hours.

We assumed that a linear relationship exists between the amount of suppressant and

the burn-through time, i.e. 125 liters constitute about 10 minutes of burn-through,

and each fractional drop of 125 liters on an area added the same proportional amount

of 10 minutes to the current burn-through time. Additionally, we assumed a linear

relationship between the rate of growth of a fire vertex within a suppressant area

and the burn-through time left. The endpoints on this linear relationship were 0%
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of normal growth rate for full burn-through time left and 5% of normal growth for

no burn-through time left. This relationship was included to add conservative stress

on the UAVs’ ability to suppress the fires. Lastly, the geometry associated with

suppressant drops was ignored, i.e. any suppressant dropped on the fire front was

assumed to align itself so as to correctly block the fire within that region. The UAVs

were modeled to follow simplified kinematics as described in Section 4.4 and a low-

level controller was constructed and executed to maintain the transitions described

in the problem description at each time step. Additionally, the UAVs were assumed

to require 4 minutes anytime they were forced to stop, either by a random stop

signal or stopping at the base to pick up suppressant. Various fire scenarios’ initial

conditions and parameter settings were constructed for the purposes of testing the

controllers. These fire scenarios were aimed at testing the capabilities of the UAVs

to slow down all fires from reaching the borders and gauge the effectiveness of

different fleet numbers. These scenarios are provided in Fig. 4.9. The simulation

cycled through multiple iterations on each scenario, testing the effectiveness of up

to 4 fleet members. The average time for the fire to reach the outer edge on each

scenario and fleet number combination was calculated. For all scenarios, the UAVs

started at the base location.

4.3.2 Results

TuLiP [23] was utilized to realize and synthesize the controllers associated

with each region Wx′,y′

j . On an Intel i5-6500 CPU @ 3.20 GHz processor, this total
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Figure 4.9: Initial conditions of all fire scenarios, showing locations of 25 m diameter
starting fires (red dots) and constant wind conditions (blue arrows). Grey boxes
represent static obstacles.

process, approximately 250 regions W , took on the order of 8 hours. In addition to

the large amount of time to synthesize all of the individual controllers, numerous

memory issues came up throughout the process, even with a system limit of 16 GB

of RAM. The total size of the synthesized controllers was approximately 2 GB. For

each scenario tested, simulations where conducted 100 times to assess the fleet of

UAVs’ ability to slow down the spread of the fire to the domain edges, provided each

UAV experiences a 1% chance of a random stop signal for every transition time (3

seconds in all scenarios).
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Figure 4.10: Box plot distributions of the simulated time for fire to reach any domain
edge given a set number of UAVs fighting such fires (scenarios 1, 2, and 3).

Figure 4.11: Box plot distributions of the simulated time for fire to reach any domain
edge given a set number of UAVs fighting such fires (scenarios 4, 5, and 6).

The results were compiled and displayed in box plots shown in Fig. 4.10 and

4.11. The top and bottom of the boxes indicate the 75th and 25th percentiles, respec-

tively, with red plus signs showing outliers. Median duration times of a distribution

are represented by the middle red lines in the boxes, and mean duration times are

shown as the asterisks alongside numerical values.
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Figure 4.12: Box plot distributions of the simulated time for fire to reach any domain
edge given a set number of UAVs fighting such fires (scenarios 4, 5, and 6).

Figure 4.13: Box plot distributions of the simulated time for fire to reach any domain
edge given a set number of UAVs fighting such fires (scenarios 4, 5, and 6).
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Figure 4.14: Box plot distributions of the simulated time for fire to reach any domain
edge given a set number of UAVs fighting such fires (scenarios 4, 5, and 6).

Additionally, example time lapses for Scenarios 1, 4, and 6 are presented in

Figs. 4.12, 4.13 and 4.14, showcasing how the fire grew in response to a varying

number of UAVs. A few outcomes are observable through Figs. 4.10 and 4.11.

First, in all cases, increasing the number of UAVs generally increased the median

and average duration times of the tests, an intuitive result. Additionally though,

especially evident in the Scenario 1 side of Fig. 4.10, the greater the number

of UAVs used resulted in a higher spread between the minimum and maximum

test duration times. The most likely explanation for this behavior is that greater

differences between fire conditions in separate simulations accumulate over longer

run-times associated with larger UAV groups, and since the UAVs are suspect to 4

minute periods of stopping while the standard 33% of 125 liters suppressant dropped
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corresponds to 3.33 minutes of burn-through time, these differences can greatly

effect the UAVs’ ability to slow down critical fires in time before refilling. The

greater stress scenarios in 4 and 6 (greater wind and number of fires) provide notable

results in contrast to one another. In scenario 4, the obstacles provide additional

blockage for the UAVs, and as a result, a greater number of UAVs provides greater

performance since the number of critical fire locations (e.g. fires further in the wind

direction and closer to the edge) are limited and easily accessible in time. This is

evident in Fig. 4.13 in the 285 second time of the 2 UAV case. By only hitting

the edges of the fire about to wrap around the obstacle, the fire was greatly slowed

down. On the other hand, in scenario 6, few obstacles slowed the fires down, and

the UAVs had to “rush” in time to suppress the fires. Multiple UAVs were always

required for the test to have any chance of lasting longer than the 0 UAV case, but

often UAVs could not reach the critical fires in time, evident in both the 2 UAVs

and 4 UAVs cases of Fig. 4.14 and by the minimum duration values in the scenario

6 side of Fig. 4.11.

4.4 Low-Level Controller

Provided the transitions in Fig. 4.3, we now describe an implementation of

a low-level controller that enables the system to execute these transitions subject

to the vehicle dynamics and some disturbance assumptions. We perform Hamilton-

Jacobi (HJ) reachability analysis to compute the reach-avoid set corresponding to

each transition and the optimal control that drives the system to the target set
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from its initial position, thus enabling the system to execute the given transition.

We describe the HJ reachability analysis process in the following section.

4.4.1 HJ Reachability Analysis

HJ reachability analysis is a formal verification method for guaranteeing per-

formance and safety properties of dynamical systems [25, 26, 27, 28]. We choose this

method to synthesize the low-level controller due to its compatibility with general

nonlinear system dynamics, formal treatment of bounded disturbance and control,

and its ability to represent sets of arbitrary shapes [29]. In reachability analysis,

the goal is to compute the reach-avoid set, defined as the set of states from which

the system can be driven to a target set while satisfying time-varying state con-

straints at all times (see Fig. 4.15). One drawback of this method, however, is the

cost of computational complexity for highly-dimensional systems (> 6 dimensions)

[29]. For simplicity and efficient computation, we model the UAV as a 4D system,

described in the next section.

Figure 4.15: Example of target set and backward reachable set. Input signal a(.)
is chosen to drive the trajectory away from the target set, while input signal b(.) is
chosen to drive the trajectory toward the target. Figure taken from [30].
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Consider a system state x ∈ Rn, which evolves according to the ordinary

differential equation (ODE)

ẋ = f(x(t), a(t), b(t)), t ∈ [tf , 0], a(t) ∈ A, b(t) ∈ B, (4.26)

where a(t) and b(t) denote the input of Player 1 and Player 2 respectively. The

system dynamics, f : Rn × A × B −→ Rn is assumed to be uniformly continuous,

bounded, and Lipschitz continuous in x, while a(·) ∈ A and b(·) ∈ B are assumed to

be measurable functions. For robust control problems, which apply non-anticipative

strategies, one wants to obtain the robust control (Player 1) with respect to the

worst-case disturbance (Player 2), which can then be modeled as an adversary with

the instantaneous informational advantage. This advantage allows Player 2 to factor

in Player 1’s choice of input and adapting its own input accordingly for the purposes

of establishing safety and reachability guarantees under the worst-case scenarios.

That is, for a given control, we want to consider the worst disturbance out of all

possible disturbances so that the system chooses its next control action to drive it

back to its desired trajectory.

For our implementation, we can think of Player 1 as trying to steer the UAV

towards the target, and Player 2 as trying to steer the UAV away from the target.

Thus, we need to find the set of states such that the trajectories that start from

this set can reach some given target set. Consequently, we compute the backward
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reachable set (BRS) of the dynamical system defined as

G(t) = {x : ∃ ∈ Γ(t),∀b(·) ∈ B, ζ(0;x, t, γ[b](·), b(·) ∈ G0}, (4.27)

where Γ(·) in Eq. 4.27 denotes the feasible set of strategies for Player 1. The

computation of the BRS requires solving a differential game between Player 1 and

Player 2, which is then transformed into a differential game of degree using level set

methods. Formally, the goal is to find a Lipschitz function g(x) such that G0 (the

target set) is equal to the zero sublevel set of g, that is, x ∈ G0 ⇔ g(x) ≤ 0. Let J

be the cost function defined as

Jt(x, a(·), b(·)) = g(x(0)), (4.28)

then the system reaches the target set under controls a and b if and only if

Jt(x, a(.), b(.)) ≤ 0. (4.29)

Since Player 1 wants to drive the system to the target set, its control input seeks to

minimize J , while Player 2 seeks to maximize it. Thus, the BRS is obtained as

G(t) = {x : G(t, x) ≤ 0}, (4.30)
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where G(t, x) satisfies the following HJI PDE:

DtG(t, x) +H(t, x, λ) = 0,

G(0, x) = g(x).

(4.31)

The Hamiltonian is given by

H(t, x, λ) = min
a∈A

max
b∈B

λ · f(x, a, b). (4.32)

Finally, the optimal control for Player 1 to reach the target set despite the worst-case

disturbance is obtained as

a∗(t, x) = arg min
a∈A

max
b∈B

λ · f(x, a, b). (4.33)

4.4.2 UAV Continuous Dynamics

To simplify computation complexity, we model the UAV as a 4D system with

the following dynamics:

ẋ = v cos θ + dx

ẏ = v cos θ + dy

θ̇ = w

v̇ = a

(4.34)
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where (x, y, θ) represent the pose (position and heading) of the 4D UAV model, and

v is the speed. The control of the 4D model consists of the linear acceleration, a,

and the angular velocity, w. The disturbances are (dx, dy). The model parameters

are chosen to be a ∈ [−0.5, 0.5], |dx|, |dy| ≤ 0.5, and |w| ≤ 0.2.

4.4.3 Results

We implement reachability analysis using the level set toolbox toolboxLS and

the Hamilton-Jacobi optimal control toolbox helperOC available in MATLAB. The

reach and avoid sets are defined for each of the three possible transitions generated

by the high-level controller and for each orientation. For illustration, let’s assume

the initial orientation for the UAV is 0° and the UAV is located in a square region

defined by C = {(x, y, θ) : xlb ≤ x ≤ xub, ylb ≤ y ≤ yub}, where xlb and ylb are

the lower bounds in the x and y direction respectively, while xub and yub are the

upper bounds of C. Note that since no inequality is defined for θ, all possible values

for θ are contained in C. Let R be a region defined as R = {(x, y, θ) : xlb ≤ x ≤

xub + 2δ, ylb − δ ≤ y ≤ yub + δ}, where δ = xub − xlb = yub − ylb. Assuming the

UAV is directed to perform a straight drive ahead transition, we set the target set

as T = {(x, y, θ) : xub ≤ x ≤ xub + δ, ylb ≤ y ≤ yub}. We then perform set exclusion

on R to define the avoid set A = R \ T . This definition of reach and avoid sets

ensures that the UAV moves only within the appropriate discretized regions induced

by the high level controller actions. Fig. 4.16 shows reach and avoid sets for a UAV

with pose (35, 45, 0), and all possible transitions. A similar process is performed to
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define the reach and avoid sets for each combination of transition and orientation.

The discretization step for time is set to 0.5s.

Fig. 4.17 shows the resulting backward reachable set for the straight drive

ahead (forward) transition, which reaches the initial position at time t = 26s. Fig.

4.18 shows the trajectory of the UAV after performing a straight drive ahead tran-

sition followed by a a sped up counterclockwise turn, then followed by a sped up

clockwise turn transition. Figs. 4.19 and 4.20 show the optimal control for ac-

celeration and angular velocity, respectively, obtained by the reachability analysis

method.

Figure 4.16: Reach and avoid sets defined for the forward transition (left), the
forward and clockwise turn transition (middle), and forward and counter-clockwise
turn transition (right). Initial pose of UAV is (35, 45, 0).
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Figure 4.17: Backward reachable set propagation from target set to initial pose of
UAV at (35, 45, 0).
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Figure 4.18: UAV trajectory obtained by the reachability analysis method after
executing a sequence of transitions: forward, forward counter-clokwise turn, and
forward clockwise turn.
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Figure 4.19: Optimal control for acceleration.
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Figure 4.20: Optimal control for angular velocity.

4.5 Conclusions and Future Work

In this chapter, we constructed a high-level planner and controller for imple-

mentation in a fire fighting scenario. Our contributions include the RH framework

modification combined with dynamic allocation, the algorithm for modifying the

horizon definitions during synthesis, and the implemented simulation and results.

The simulation demonstrated the method’s ability to slow down the advancement

of fire fronts towards the domain edge, providing a starting point of guaging the

usefulness of automated UAVs in tackling fires before crews can arrive. The ability

to slow down a starting fire by even half an hour to an hour (comparable to the

maximum slowdown amounts in Scenarios 1, 2, 4, and 5) is a significant amount
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of time for ground crews to reach a location fast enough to effectively stop such a

fire in its early phases. Expanding upon the receding horizon framework for reac-

tive synthesis allowed us to expand the scope of this problem while integrating the

method with dynamic allocation for assigning UAVs. Even with such an approach,

numerous issues arose throughout the process that help highlight key difficulties

moving forward when using reactive synthesis in the control of UAVs. First, the RH

framework, when considering all initial conditions, still yields an excessively large

controller (about 2 GB) after 8 hours of runtime, a significant hurdle for applying

such a design when considering arbitrary static obstacle environments. Next, a sim-

plified transition system was utilized which limited the total orientation space and

interpreted UAV movement in only 2 dimensions, still far more restrictive than UAV

movement in reality. Lastly, no constraints were used in considering the orientation

of UAVs when dropping suppressant, which can significantly factor into how well

the suppressant slows down an advancing fire front. Each of these points combine to

exemplify the need for finer partitioning of possible transitions a UAV can take in 3D

space (easily dependent on at least 3 full degrees of freedom), should reactive syn-

thesize be used for UAV control. So while the reactive synthesis design is strong in

enforcing the design constraints formally, the scope of its application is still limited

per goal. For improvements on this problem as it was explored, multiple changes can

be assessed. First, the size of the synthesized controller could be addressed through

reformatting the outputted synthesized controller in each horizon. Currently, con-

trollers are synthesized per initial condition in a horizon, but synthesizing a single

controller for each horizon that includes all initial conditions can cut down on the
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total size of the generated finite state machine and possibly the synthesis time. Sec-

ond, modifications to the synthesized controllers can be made to enforce desired

orientations during suppressant drops. This will intuitively add to the size of the

controllers but enable more accurate control of the UAVs for dropping suppressant

in the correct direction. Lastly, direct coordination between synthesized controllers

should be explored to control the frequency of suppressant drops on critical fires.

The need for such is apparent by the “escaping” streak of fire present for all cases in

Fig. 4.13. If the UAVs had spread out the times they dropped suppressant on the

fire wrapping around the obstacle edge, the advancement of such would be hindered

further since the UAVs would avoid refilling at the same time and better stretch

out their resources. This effect could be achieved through modifying the allocation

algorithm to optimize the total assignment of UAVs through a finite time horizon,

perhaps achieved by expanding on the method presented in [18] and performing a

type of tree search across sequential UAV assignment options and their associated

costs.
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Part II

Specification Inference from Formal Behavior
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Chapter 5: Specification Inference via IRL

Specification inference serves a key role in robotics, enabling experts to demon-

strate behavior as a natural way to convey task specifications, rules and norms.

In many situations of practical interest, such as human motion in pedestrian set-

tings and robot navigation, it is important to become aware of implicit norms that

guide commonly seen motion patterns without the help of an expert providing these

norms. The gained information, for instance, can be leveraged to better understand

and predict motion patterns in pedestrian settings governed by known social norms.

One popular approach to addressing the challenge of specification inference is

inverse reinforcement learning (IRL). In this approach, the demonstrator, operat-

ing in a stochastic environment, is assumed to attempt to optimize some unknown

reward function over its trajectories [93]. The goal of IRL is to infer this reward

function as it would serve to encode and generalize the goals of the demonstrator to

new and unseen environments. However, the inference process can be challenging

due to the properties of demonstrations. Demonstrations can be noisy and prone to

error, unlabeled, context-dependent and ambiguous (i.e. partially ordered). Thus,

the inference methods we are interested in need to be i) noise resistant, ii) unsuper-

vised, and iii) computationally efficient.
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In this work, our goal is to apply IRL to not only infer the unknown reward

function but also the specification that best explains the agent’s behavior given

a sequence of demonstrations and a collection of specifications. We leverage LTL

to write these specifications for greater interpretability and explanatory power in

describing temporally extended (i.e. non-Markovian) patterns like safety and reach-

ability rules with temporal dependencies among different goals.

In this chapter, we first describe the gaps and limitations of three state-of-the-

art IRL methods tested to infer a social norm commonly practiced in pedestrian

settings. We state this norm as “wait in line to get service”. We present results

from testing each of the chosen methods on demonstrations of this norm to draw

performance comparisons. We then propose extensions to address the gaps of the

inference method that showed the best performance and present results from our

inference framework on different types of behavior demonstrations. To leverage the

inference results to improve human motion prediction, we present a motion predic-

tion framework that computes a posterior belief over the human’s goal sequence and

generates an occupancy grid for the human’s future states using prior probabilities

set according to the inference results. Finally, we conclude with a discussion of

some of the limitations of our work and how they might be addressed in pedestrian

applications, as well as suggestions for future research.
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5.1 Prior Work

With the goal of learning specifications from expert demonstrations in stochas-

tic settings, the underlying dynamics of the expert are modeled as a probabilistic

automaton, denoted as PA. This characterization allows us to model the agent as

choosing an action and the environment as sampling a state transition outcome. A

probabilistic automaton is defined as follows.

Definition 5.1 Let a probabilistic automaton (PA) be a tuple (S, s0, A, δ),

where S is the finite set of states, s0 ∈ S is the initial state, A is a finite set of

actions, and δ specifies the transition probability of going from state s to state s′

given action a, i.e. δ(s, a, s′) = Pr(s′|s, a). A demonstration, ξ, is a sequence of

(action, state) pairs starting from s0. Thus, a demonstration of length τ ∈ N is an

element of (A× S)τ .

This system definition is adopted by each of the IRL methods described below.

5.1.1 Logic Based IRL

Logic Based IRL is an approach based on automata and logic based encod-

ings of rewards [94][95] with the objective of translating them to LTL specifications.

Given a set of specifications, the goal of this method is to infer an LTL specification

from demonstrated behavior trajectories in the PA. To do so, this method finds the

specification that minimizes the expected number of violations by an optimal agent

compared to the expected number of violations by an agent applying actions uni-

formly at random [96]. An agent accrues violations every time its behavior deviates
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from the specification. The computation of the optimal agent’s expected violations

is done by applying dynamic programming on the product of the deterministic Ra-

bin automaton [97], representing the LTL specification, and the state dynamics,

modeled as a PA. This method has two main drawbacks, i) heavy run-time cost

due to the curse of history and ii) lack of likelihoods over candidate specifications.

5.1.2 Traditional IRL

The goal of traditional IRL is to infer the reward function that best explains

the actions of an agent operating in a MDP seeking to maximize its reward. The

total reward accrued by the agent can be computed for each trajectory ξ over the

PA as,

R(ξ) :=
∑
s∈ξ

r(s) = θ.f(s), (5.1)

where s represents a state in the trajectory ξ, r is a reward map from states to reals,

r : S → R, θ ∈ Rn represents the preference in reaching or avoiding certain states,

and f denotes the state features, f : S → Rn
≥0.

Since there can be many reward functions that could explain the agent’s be-

havior for a given set of demonstrations, one can apply the principle of maximum

causal entropy [99] to find a policy consistent with the observed features from the

expert demonstrations. Below are some definitions needed to state this principle.

Definition 5.1 Let X1:τ := X1, ..., Xτ denote a temporal sequence of τ ∈ N

random variables. The probability of a sequence Y1:τ causally conditioned on sequence
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X1:τ is:

Pr(Y1:τ ||X1:τ ) :=
τ∏
t=1

Pr(Yt|X1:t, Y1:t−1) (5.2)

The causal entropy of Y1:τ given X1:τ is defined as,

H(Y1:τ ||X1:τ ) := EY1:τ ,X1:τ [−log(Pr(Y1:τ ||X1:τ ))] (5.3)

The principle of maximum causal entropy seeks to find the policy whose action

sequence A1:τ , maximizes the causal entropy H(A1:τ ||S1:τ ), conditioned on the state

sequence S1:τ and subject to feature matching constraints.

The learner learns form a dataset of N trajectories, D = {ξ1, ξ2, ..., ξN}. Each

trajectory ξi = {(sξi1 , a
ξi
1 ), (sξi2 , a

ξi
2 ), ..., (sξiτ , a

ξi
τ )} is a state-action sequence of length

τ . Given D, the learner can compute the empirical feature expectation as,

µ̃Dk :=
1

N

∑
ξ∈D

h∑
t=1

fk(s
ξ
t ). (5.4)

The feature expectation given a policy π can be computed as,

µπk |D :=
∑
s∈S

PD(s1 = s)µπk |s1=s, (5.5)

where PD(s1 = s) = N1(s)/N is the maximum likelihood of the expert’s initial state

distribution, given that N1(s) is the number of trajectories with s1 = s.

In addition to learning from a set of successful demonstrations D, [98] also

accounts for a set of failed demonstrations F and formulates the IRL problem as
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the following constrained optimization problem:

max
π,w,z

H(A1:τ ||S1:τ ) +
K∑
k=1

wkzk −
λ

2
‖w‖2

s.t. µπk |D = µ̃Dk ∀k

and µπk |F − µ̃Fk = zk ∀k

and
∑
a∈A

π(s, a) = 1 ∀s ∈ S

and π(s, a) ≥ 0 ∀s ∈ S,∀a ∈ A

(5.6)

where λ is a constant. The objective in Eq. 5.6 seeks to maximize the causal entropy

of π as well as the dissimilarity between π’s feature expectations and the empirical

expectations in F . The third term serves to discourage large values of w.

Ziebart et. al [99] showed that solving Eq. 5.6 amounts to solving a soft

Bellman equation:

log(πθ(at|st)) := Qθ(at, st)− Vθ(st) (5.7)

where

Qθ(at, st) := Est+1 [Vθ(st+1)|st, at] +
K∑
k+1

θkf(st) (5.8)

Vθ(st) := ln
∑
at

eQθ(at,st) = softmaxatQθ(at, st), (5.9)

where θk = wDk +wFk represents the sum of the weight vectors corresponding to the

successful demonstrations and the failed demonstrations, respectively.

The major drawback of this approach is that despite successfully inferring

the most probable reward function, this function is not able to capture temporal
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dependencies among different goals and cannot be easily interpreted. The IRL

method described next addresses these drawbacks.

5.1.3 IRL from Non-Markovian Boolean Rewards

To explicitly capture temporal properties from demonstrations, the IRL ap-

proach proposed in [100] frames specification inference as the problem of learn-

ing Boolean specifications, which are able to express temporal dependencies among

different goals. Thus, the rewards accrued by the demonstrator are captured as

Boolean non-Markovian rewards to enable the handling of historical dependencies.

This requires encoding the original MDP into a time unrolled MDP, which results

in an algorithm with run-time exponential in the trace length. To address this com-

putational complexity, the exponential time algorithm is translated into a polyno-

mial time algorithm through the use of Reduced Ordered Binary Decision Diagrams

(BDDs). Formally, the Boolean specifications and specification inference problem

are stated as follows.

Definition 5.2 A LTL specification ϕ is a subset of demonstrations,

ϕ ⊆ (A× S)τ . (5.10)

Let a collection of specifications Φ define a concept class. Thus, true :=

(A× S)τ , ¬ϕ := true \ ϕ, and false := ¬true.

Definition 5.3 The specification inference problem is defined as a tuple (M,X,

Φ, D) where M = (S, s0, A, δ) is a probabilistic automaton, X is a (multi-) set of
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τ -length demonstrations drawn from an unknown distribution induced by a teacher

attempting to satisfy some unknown specification within M , Φ is a concept class of

specifications, and D is a prior distribution over Φ. A solution to (M, X, Φ, D) is:

ϕ∗ ∈ argmin
ϕ∈Φ

Pr(X |M,ϕ) . P rϕ∼D(ϕ), (5.11)

where Pr(X |M,ϕ) denotes the likelihood that the teacher would have demonstrated

X give the task ϕ. Thus, the likelihood of multi-set i.i.d demonstrations, X, given

a particular policy, π(a|s) = Pr(a|s), is computed by:

Pr(X|M,π) =
∏
ξ∈X

Pr(ξ|M,π). (5.12)

One key aspect of the inference method is the machinery employed for embed-

ding the full trace history into the state space, a process referred to as unrolling.

This process is defined as follows,

Definition 5.4 Let M = (S, s0, A, δ) be a PA. The unrolling of M is a PA,

M ′ = (S ′, s0, A, δ
′), where

S ′ = s0 ×
∞⋃
i=0

(A× S)i (5.13)

ξn = (s0, ..., (an−1, sn)) (5.14)

δ′(ξn+1, a, ξn) = δ(sn+1, a, sn) (5.15)

Given a non-Markovian reward R over τ -length traces, the unrolled PA can be

126



endowed with the Markovian Reward in S ′,

r′(s0, ..., (an−1, sn)) :=

{
R(s0, ..., sn) if n = τ

0 otherwise

, (5.16)

∞∑
t=0

r′((s0, a0), ..., st) = R(s0, ..., sτ ). (5.17)

Probabilistic automata can equivalently be characterized by 11
2

player games

where each round has the agent choose and action and then the environment samples

a state transition outcome. Let M be represented by the 11
2

player formulation and

thus be encoded by a directed bipartite graph. For τ -length traces, this graph forms

a decision tree T of depth τ . Hence, each τ -length trace over M associated with

reward R(ξ) corresponds to a leaf in T.

For the purposes of specification inference, the non-Markovian reward corre-

sponding to a specification ϕ is defined as,

Rϕ(ξ) :=

{
1 if ξ ∈ ϕ

0 otherwise

, (5.18)

and the corresponding decision tree T becomes,

Tϕ : (A× Ae)τ → {0, 1}, (5.19)

where A represents the actions of the system and Ae represents the actions of the

environment. Using this reward definition in Eqs. (5.8) and (5.9), the policy that
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maximizes the causal entropy with respect to ϕ is obtained by computing the soft

Bellman equation,

Qθ(at, ξt) = E[Vθ(ξt+1)|ξt, at] (5.20)

Vθ(ξt) =

{
θ.ϕ(ξt) if t = τ

softmaxatQθ(at, ξt) otherwise

. (5.21)

A downside of the dynamic programming scheme defined in Eqs. (5.20)-(5.21) over

the unrolled tree T is its exponential blow-up. This issue is addressed by translating

T to a reduced ordered probabilistic decision diagram, denoted as T , via eliminating

and combining isomorphic sub-graphs. To further reduce computational complexity,

T is encoded as a Boolean predicate over an alternating sequence of action bit strings

and coin flip outcomes (environment actions) determining whether the specification

is satisfied or not,

T : {0, 1}n → {0, 1}, (5.22)

where n := τ log2(|A× Ae|). Thus, T is re-encoded as a reduced ordered BDD.

To summarize, the inference method consists in: i) selecting a specification

from the concept class Φ, ii) constructing a BDD from the composition of the dy-

namical system with the specification, iii) computing the maximum causal entropy

policy on the BDD, iv) encoding the demonstrations as bit-vectors, and v) comput-

ing the likelihood of the demonstrations using the encoded demonstrations and the

policy.
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5.2 Application to Learning Social Norms from Pedestrian Behavior

As previously mentioned, we are interested in applying specification inference

to inferring social norms from demonstrations of pedestrian behavior. In particular,

we are seeking to infer the commonly practiced social norm, “wait in line to get

service” and compare the performance of the three IRL methods discussed with

respect to learning this social norm.

To implement the three IRL methods discussed, we consider a simulated nav-

igation domain in which the demonstrator navigates its environment to reach the

waiting area while the service area is unavailable. Once the service area becomes

available, the demonstrator proceeds to move to this area. The state space contains

all possible (x, y) positions of the demonstrator. The action space is defined as

A = {up, down, left, right, stay}. The workspace is set to be of dimension 20× 20

with a region designated as the service area and another region designated as the

waiting area.

For the logic based IRL method implementation, we defined the Boolean

proposition, serviceAvailable, which is set to true when the service area is available,

otherwise it is set to false. The action set is extended toA = {up, down, left, right, stay}×

{getToService, getInLine}. We also defined Boolean propositions {getToService,

getInLine} corresponding to each action (where, e.g., the proposition getToService

is true whenever the agent’s last action was to move towards the service area). The
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demonstrator is to satisfy the LTL specification,

ϕ = �((#getInLine U serviceAvailable)

∧ (serviceAvailable→ #getToService)).

(5.23)

The “always” (�) temporal operator is included in ϕ (although it is not necessary

to express the social norm in this form) since this method applies to specifications

in persistent form only. A total of 20 demonstrator trajectories are generated to

test this method. A sample demonstrator trajectory is obtained as follows,

ξ = (up, getInline), (right, getInLine),

(stay, getInLine), (up, getToService),

(up, getToService), (stay, getToService),

(5.24)

and the corresponding trace of evaluations for the serviceAvailable proposition is

(false, false, false, true, true, true, true).

For the traditional IRL method implementation, we sample initial states from

a uniform distribution over the state space for all experimental runs, including

training and testing runs. Feature vectors are computed as discretized Euclidean

distances between the demonstrator and the target into 5 possible values for the x

and y directions, resulting in a feature vector f(s) ∈ {0, 1}10 for any s ∈ S. In the

case that the service area is unavailable, the weighting vectors for the successful

demonstrations wD are set to provide larger rewards to closer distances between

the demonstrator and the waiting area, with the demonstrator receiving the largest
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reward when it arrives at the waiting area. For failed demonstrations, wF is set

to provide large reward values to large distances between the demonstrator and

the waiting area. This choice of weighting vectors assumes that we have access

to completely failed demonstrations and successful demonstrations that show the

complete desired behavior. As soon as the service area becomes available, the reward

function for successful demonstrations is redefined by providing the largest reward

to the closest distance between the demonstrator and the service area. Similarly, the

reward function for failed demonstrations is redefined by providing large rewards to

larger distances between the demonstrator and the service area.

For the implementation of the last IRL method discussed, we also defined

Boolean propositions to denote the waiting area and the service area. We generated

20 expert demonstrations and tested this approach on a set of candidate specifica-

tions involving the defined Boolean propositions. For all the methods, we assume

that the demonstrator is able to use sensors to evaluate the truth value of the defined

propositions about the regions of interest. More details about the implementation

of this method and the extensions proposed will be discussed in the next section.

Table 5.1 summarizes the output type, run-time and drawbacks of each IRL

approach tested. Based on the obtained results, we can observe that the most ef-

fective method in terms of the type of output provided and the average run-time

is the method that uses Non-Markovian Boolean rewards. This method not only

obtains a specification but also computes likelihoods over the candidate specifica-

tions. However, there are questions not addressed by this work that we will answer

in the next section. These questions include: i) how should the hypothesis space of
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candidate specifications be generated?, ii) can we systematically perturb the speci-

fication to make it more likely?, iii) how to set prior probabilities for the candidate

specifications?, and iv) how should we leverage inference results to improve motion

prediction?.

IRL Method Output Avg. Runtime Main Drawback(s)
Logic Based
IRL

Specification that
minimizes viola-
tion cost by an
optimal agent.

Average run-time
of 120 minutes for
demonstration set
of size 20.

Heavy run-time cost
and no specification
likelihoods provided.

Traditional
IRL

The most proba-
ble reward func-
tion.

Average run-
time of 110 and
330 minutes for
demonstration
sets of sizes 5 and
50, respectively.

Cannot represent
temporally complex
norms.

IRL from
Non-
Markovian
Boolean
Rewards

Posterior dis-
tribution over
candidate specifi-
cations.

Average run-time
of 7 minutes for
demonstration set
of size 20.

Does not address
questions about
selection of speci-
fications and prior
probabilities.

Table 5.1: Performance comparison of three types of IRL methods on inferring
the social norm “wait in line to get service” with respect to output type, average
run-time and main drawbacks.

5.3 Inference Framework

Building on the IRL method presented in [100], we propose the following ex-

tensions: i) generating training data from a selected specification in LTL and a

dynamical system modeled as an MDP, ii) constructing the initial hypothesis space

of specifications and systematically perturbing the specifications according to their

likelihood estimates (we will refer to this process as specification generation and

refinement), iii) computing the most likely specification using the likelihood esti-
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mates and the constructed prior probabilities. From the most likely specification,

we derive the most likely goal sequence the demonstrator exhibits and set goal prior

probabilities according to these sequences to be used for human motion prediction.

Fig. 5.1 shows a diagram of the overall inference process presented in [100] and the

extensions proposed in this work (highlighted in blue).

Figure 5.1: Diagram of the IRL method presented in [100] and the extensions pro-
posed highlighted in blue. The specification inference process begins with a set of
candidate specifications that go through a refinement process. The desired output
is the most likely specification computed by combining the prior probabilities and
the likelihood estimates.

The first extension proposed facilitates the automatic generation of trajectories

satisfying the specification we seek to learn. This process is done following a common

framework within behavior synthesis from LTL specifications and a system model.

In the following section, we describe the system model used to represent human

motion behavior throughout this chapter.
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5.3.1 Human Modeling

We model human walking behavior as an MDP with unknown transition prob-

abilities in order to capture the unknown stochastic nature of human motion (e.g.,

speed, smoothness), which can vary significantly among different individuals [102].

More precisely, the human is modeled as a discrete-time stochastic control system

defined as,

Σ = (X,U, ς, f), (5.25)

where X ⊆ Rn is the state space of the system, U ⊆ Rm is the input space of the

system, ς is a sequence of independent and identically distributed (i.i.d.) random

variables from a sample space Ω to the set Vς and f : X×U×Vς → X is a measurable

function characterizing the state evolution of Σ. The evolution of the state of Σ for

an initial state x(0) ∈ X and an input sequence u(k) : Ω→ U, k ∈ N is described

as:

x(k + 1) = fH(x(k), u(k), ς(k)). (5.26)

Let x represent the state of the human and n be the dimension of the human state

space. This state could correspond to positions and velocities of the human. In this
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work, we define the evolution of the human state as,

x(k + 1) =

hx(k + 1)

hy(k + 1)



=

vH(k) cosφH(k) + ςx(k)

vH(k) sinφH(k) + ςy(k)

 ,
(5.27)

where hx and hy are the planar coordinates of the human, vH is the velocity, φH is

the heading and ς is the additive noise, drawn according to a uniform distribution

and used to model the stochasticity of the human. In this work, we assume that

the human’s intents and policies (i.e., goals and sequences of goals) are guided by

social norms known to the human. We can formally express such normative rules

as logic-based specifications using formulae in LTL.

5.3.2 Generation of Demonstrations

In general, for verification and synthesis purposes, the required LTL properties

are translated into a deterministic finite automaton (DFA) Aϕ over the alphabet Σa

(formed by a set of atomic propositions AP ), such that the set of infinite words

satisfying the formula ϕ is equal to the set of infinite words accepted by the DFA

Aϕ, denoted as L(Aϕ) = L(ϕ). Given an LTL formula, we can synthesize policies

for the human over an abstract representation of the MDP that models the human’s

motion (as described in Eqs. 5.25-5.27). The goal of synthesis is to compute a

policy ρ that maximizes the probability that a state trajectory of Σ satisfies an LTL

135



formula over a finite time horizon T , denoted as P(wf ∈ L(Aϕ) s.t |wf | ≤ T + 1).

We employ the abstraction-based synthesis method proposed in [103] to generate

satisfying trajectories with respect to social norms expressed as LTL formulas. The

synthesis method from [103] abstracts the continuous-space MDP into a finite MDP

system and synthesizes a policy using a model-free reinforcement learning scheme.

The main benefit of this approach is that it provides probabilistic closeness

guarantees between the resulting behavior of the finite MDP and its continuous-

space counterpart. Thus, the Markov policy obtained enforces the given formula ϕ

over Σ with the probability of satisfaction within a guaranteed threshold from the

unknown optimal probability. A limitation of this approach is that it only works

with a fragment of LTL properties known as syntactically co-safe linear temporal

logic (scLTL). This fragment of LTL requires the negation operator (¬) to only occur

before atomic propositions. The reason for limiting the space of LTL properties to

scLTL formulas is that even though scLTL are defined over infinite words, their sat-

isfaction can be guaranteed in finite time [104]. For our purposes, we consider social

norms that can adopt the form of scLTL properties and assume this representation

to evaluate finite horizon satisfaction. Fig. 5.2 shows a diagram summarizing the

policy synthesis process from a given LTL specification.

Once satisfying trajectories are obtained for a given LTL specification and

dynamical system, we proceed to discretize the trajectories and use them as expert

demonstrations in the specification inference scheme. The next extension to be

discussed addresses the questions previously posed about the construction of the

hypothesis space of candidate specifications.
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Figure 5.2: Diagram of the synthesis process [103] resulting in a policy ρ that
maximizes the probability that a system trajectory satisfies ϕ over a finite time
horizon. This policy is used to generate demonstration trajectories of a human
performing a social norm encoded by ϕ.

5.3.3 Hypothesis space construction

To apply the inference method described in [100], we restrict our hypothesis

space to a finite set of Past Linear Temporal Logic (PLTL) templates. PLTL is

a formal language analogous to LTL with the difference that it serves to express

properties over finite traces in past time. The temporal operators of PLTL include:

yesterday (#−1), analogous to next, historically (�−1), analogous to always, once

(3−1), analogous to eventually, and since (S), analogous to until. We refer the

reader to [101] for more details on the formalism of PLTL.

We propose that any specification can be composed by the following elements:

i) a selection of a number of free propositions nP , denoted as p ∈ AP , where AP

is a set of atomic propositions, ii) a selection of a PLTL template involving a com-

bination of temporal and Boolean operators, and iii) a selection of a number of

conjunctions N , initially set to 1. Thus, the first step in the hypothesis construc-

tion is to select a PLTL template P . Once P is selected, it is instantiated with a
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selection of nP propositions p. For example, consider a set of propositions AP =

{red, yellow, brown, blue}. Consider a formula consisting of a single conjunct with

template P . We can instantiate P to “historically” with p = [red ] to obtain the

formula ϕ = �−1(red). If the template selected is S and p = [red, yellow ], then the

formulas obtained are ϕ1 = (red S yellow) and ϕ2 = (yellow S red). If N = 2,

P = historically and {p} = {[red ], [blue]}, we obtain the formula ϕ = �−1(red) ∧

�−1(blue). Thus, each ϕ is generated by choosing a PLTL template P , the number

of conjunctions N , and the proposition instantiations, p. For N = 1, the number

of possible instantiations that can be generated from a set AP with n propositions

and number of free propositions nP , is computed as n!
nP !(n−nP )!

. The generated for-

mulas form a hypothesis space for the concept class of specifications Φ. In this

way, Φ is systematically constructed from a given set of predefined templates and

propositions. See Table 5.2 for a summary of the PLTL templates used in this

work.

To refine the initial hypothesis space, we apply a modification algorithm that

perturbs a subset of specifications in Φ. This subset Φ′ contains all the specifi-

cations for which the inference process obtains higher likelihoods compared to the

True specification. This ensures that for each specification in Φ′, it is more likely

that the teacher would have demonstrated behavior given the specification than

given that the agent applies actions uniformly at random. The refinement process

combines all the specifications in Φ′ with the same template into a new specification

via conjunctions. If the refined specification does not obtain a higher likelihood

compared to True, we can modify it by removing the conjunct with the lowest like-
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Template nP Formula Meaning

ϕavoid 1 �−1(¬pi) pi was not true throughout the
entire trace.

ϕeventually 1 3−1pi pi occurred at some point in
the trace.

ϕsince 2 piSpj pi has been true since a time
when pj was true.

ϕresponse 2 �−1(pi → 3−1pj) At all times that pi occurred, pj
was true at some point after.

ϕeventuallysince 2 (3−1pi)Spj pi occurred at some point in
the trace since a time when pj
was true.

ϕimplication 2 3−1pi → #−1pj If pi was true at some point in
the trace, then pj was true at
some previous time.

Table 5.2: PLTL templates considered in this work. nP represents the number of
free propositions for each template.

lihood estimate. We repeat this process of removing a conjunct from the formula at

a time to ensure that the specification is systematically perturbed until it obtains a

higher likelihood compared to True or there are no more conjuncts to remove. The

refinement process is shown in Algorithm 3.

In the next section, we describe the prior function that serves to assign a prior

to each specification.
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Algorithm 3: Φ Modification During Inference

1: procedure Refinement(Φ′, ΦP , E , P , minP ) .
Compute a refined hypothesis space of candidate specifications Φ′ based on ΦP

and the corresponding likelihood estimates E , template P and lowest likelihood
estimate minP .

2: for ϕP ∈ ΦP do
3: ε = E(ϕP )
4: Add conjunct
5: if ε > E(True) and N(ϕP ) = 1 then
6: ϕnew = ϕp ∧ ϕnew
7: end if
8: Remove conjunct
9: if ε < E(True) and N(ϕP ) > 1 then

10: for conjunct ∈ ϕp do
11: if E(conjunct) = minP then
12: ϕnew = Remove conjunct from ϕP if N(ϕP ) > 1
13: break
14: end if
15: end for
16: end if
17: Add ϕnew to Φ′

18: end for
19: end procedure
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5.3.4 Prior Function

We now define a prior function over the hypothesis space Φ to serve as a

preference module for the system designer. We define a categorical distribution with

weights wP ∈ Rk over the k possible PLTL templates and a categorical distribution

with weights wp ∈ R|AP | for all propositions p ∈ AP . The system designer can use

wP to set preferences for inferring certain types of templates over others. Likewise,

the designer can set wp to give preference to certain types of propositions. For

example, propositions that represent places of interest for planning problems may

require the designer to favor these propositions. The number of conjunctions N

can be assigned a probability according to a geometric distribution with a decay

rate of λ. The reasoning behind this is that mining low-complexity specifications

(those with fewer number of conjunctions) should be preferable over mining long

and convoluted specifications.

Combining all the elements that completely specify a formula ϕ, we now state

the full prior function for ϕ as follows:

Pr(ϕ) = Pr(P )Pr(N)Pr({p}), (5.28)

where Pr(P ) and Pr(N) are calculated using categorical and geometric distribu-

tions, respectively. Pr({p}) is calculated by the average categorical weight, wP ,

over all propositions,

Pr({p}) =

∑
p∈{p}

∑
p∈pwp∑

p∈{p} |p|
. (5.29)
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For example, for N = 2 and {p} = {[red, yellow], [yellow, blue]}, and wred = 1
4
,

wyellow = 1
2

and wblue = 1
4
, Pr({p}) = 5/4

4
= 5

16
.

5.4 Experimental Setup

To evaluate the inference process, we define 4 different scenarios in which the

demonstrator behavior can be expressed by an LTL specification. We set the bounds

for the state space of the human model as hx ∈ [0.0, 20.0] and hy ∈ [0.0, 20.0] and

we set the bounds for the input to the system, φH ∈ [−π, π]. We set vH = 1.4m/s.

The co-variance matrix of the additive noise is set to

Σ =

0.5 0

0 0.5

 . (5.30)

We set the discretization parameter for the system states to 0.5 and the discretization

parameter for the system input to 0.05. Table 5.3 provides a summary of the scenario

definitions and the corresponding specifications we seek to infer from each scenario.

The implementation of the policy synthesis from a given LTL specification is

done via the open source tool AMYTISS [105]. The obtained policy is then used

to generate trajectories satisfying the given specification within a maximum of 20

time-steps. The resulting continuous trajectories are discretized and provided as

demonstrations to the inference process. Fig. 5.3 - 5.6 shows sample trajectories

for each scenario implemented.
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Scenario PLTL specification

Wait in line if service
area is unavailable.

3−1(¬ SAaccessible ∧ WA)

Wait in line if service
area is unavailable, then
get service once service
area becomes available,
then proceed to exit.

3−1(¬ SAaccessible ∧ WA)
∧ (3−1(SAaccessible ∧ SA) → #−1WA)

∧ (3−1 Exit → #−1SA)

Visit area 1, then area 2,
then area 3

(3−1G3→ #−1G2)
∧ (3−1G2→ #−1G1)

Avoid obstacle areas
(�−1¬O)

Table 5.3: Chosen PLTL specifications for each scenario. In the first two scenarios,
we denote the service area as SA and the waiting area as WA. SAaccessible is used to
denote whether or not the service area is accessible. In the third scenario, G1, G2
and G3 denote area 1, area 2, and area 3, respectively. O denotes obstacle areas.

Figure 5.3: Sample trajectories for scenario with specification, “wait in line if service
area is unavailable”.
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Figure 5.4: Sample trajectories for scenario with specification, “wait in line if service
area is unavailable, then get service once service area becomes available, then proceed
to exit.”.

Figure 5.5: Sample trajectories for scenario with specification, “visit area 1, then
area 2, then area 3”.

Figure 5.6: Sample trajectories for scenario with specification, “avoid obstacle ar-
eas”.
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5.5 Inference Results

For all scenarios, we set λ = 0.8 and the template weights as wavoid = 0.17,

weventually = 0.17, wsince = 0.21, wresponse = 0.12, weventuallysince = 0.12, wimplication =

0.21. Doing so favors implication and since templates over other templates to give

preference to specifications that capture temporal dependencies among goals. All

other templates are given similar weights with slightly larger values given to simpler

templates.

Scenario 1

For the first scenario, we construct the hypothesis space Φ overAP = {SA,WA}

with proposition weights wSA = 1/2 and wWA = 1/2. In this scenario, we assume

that the service area is unavailable by default, which implies ¬ SAaccessible evalu-

ates to True, (¬ SAaccessible ∧ WA) evaluates to the truth value of WA and (¬

SAaccessible ∧ SA) evaluates to the truth value of SA at all times. Using the tem-

plates defined in Table 5.2 and AP , 14 specifications were initially generated. Fig.

5.7 shows the relative likelihoods for each of these specifications. From these results,

we can observe that there are only two specifications for which we obtained positive

values for the relative likelihoods, which implies that only these specifications are

more likely than random behavior. Since the resulting specifications have different

templates, no refinement is needed and the most likely specification is computed

using the corresponding priors.
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Figure 5.7: Inference results for scenario, “wait in line if service area is unavail-
able”. Positive values correspond to specifications that are more likely than random
behavior.

Scenario 2

For the second scenario, we construct the hypothesis space Φ over

AP = {SA,WA, SAaccessible}, (5.31)

with proposition weights wSA = 1/3, wWA = 1/3, and wSAaccessible = 1/3. Using the

templates defined in Table 5.2 and AP , 36 specifications were initially generated.

Fig. 5.8 shows the relative likelihoods for each of these specifications. We can

observe that there are 14 specifications for which we obtained positive values for the

relative likelihoods. Then, we proceed to combine the specifications with the same

templates and we obtain the the relative likelihoods for the refined specifications

shown in Fig. 5.9. From these results, we note that the specification with the
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eventuallysince template does not obtain a positive value for the relative likelihood;

thus we proceed to remove the conjunct with the least likelihood and compute the

relative likelihoods again as shown in Fig. 5.10. At this point, all specifications

have positive relative likelihood values and no further refinement is needed.

Figure 5.8: Inference results for scenario, “wait in line if service area is unavailable,
then get service once service area becomes available, then proceed to exit.” For
conciseness, we do not include specifications with zero relative likelihood values.
We use SA (A) to denote SA and SAaccessible and SA (NA) to denote SA and
¬SAaccessible.
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Figure 5.9: Inference results from refined specifications after 1 iteration of refinement
for scenario, “wait in line if service area is unavailable, then get service once service
area becomes available, then proceed to exit.”

Figure 5.10: Inference results from refined specifications after 2 iterations of refine-
ment for scenario, “wait in line if service area is unavailable, then get service once
service area becomes available, then proceed to exit.”
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Scenario 3

For the third scenario, we construct the hypothesis space Φ over

AP = {G1, G2, G3}, (5.32)

with proposition weights wG1 = 1/3, wG2 = 1/3, and wG3 = 1/3. Using the tem-

plates defined in Table 5.2 and AP , 36 specifications were initially generated. Fig.

5.11 shows the relative likelihoods for each of these specifications. We can observe

that there are 8 specifications for which we obtained positive values for the relative

likelihoods. Then, we proceed with the refinement process and we obtain the the

relative likelihoods for the refined specifications shown in Fig. 5.12.

Figure 5.11: Inference results for scenario, “visit area 1, then area 2, then area 3.”
We denote area 1 as G1, area 2 as G2, and area 3 as G3.
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Figure 5.12: Inference results from refined specifications after 1 iteration of refine-
ment for scenario, “visit area 1, then area 2, then area 3.”

Scenario 4

For the last scenario, we construct the hypothesis space Φ over

AP = {G1, G2, O}, (5.33)

with proposition weights wG1 = 1/3, wG2 = 1/3, and wO = 1/3. We use O to denote

to areas that should be avoided. Using the templates defined in Table 5.2 and AP ,

36 specifications were initially generated. Fig. 5.13 shows the relative likelihoods

for each of these specifications. We can observe that there are 9 specifications

for which we obtained positive values for the relative likelihoods. Then, we proceed

with the refinement process and we obtain the the relative likelihoods for the refined

specifications shown in Fig. 5.14.
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Figure 5.13: Inference results for scenario, “avoid obstacle areas.” We denote area
1 as G1, area 2 as G2, and obstacle areas as O.

Figure 5.14: Inference results from refined specifications after 1 iteration of refine-
ment for scenario, “avoid obstacle areas.”

From the inference results, we can derive the goal sequence from the most likely

specification in each scenario and summarize these results for all scenarios in Table

5.4. Note that for all scenarios, except for the last one, the most likely specification
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Scenario
Most Likely
Specification

Total
Time

Goal
Sequence

Wait in line if
service area is
unavailable.

¬ SAaccessible ∧ (¬(SA) S (WA))
15.5 s WA

Wait in line
if service area
is unavailable,
then get service
once service
area becomes
available, then
proceed to exit.

(3−1(SAaccessible ∧ SA) →
#−1(WA ∧ ¬SAaccessible))
∧ (3−1 Exit → #−1SA)

469.5 s WA → SA
→ Exit

Visit area 1,
then area 2,
then area 3

(3−1G3→ #−1G2)
∧ (3−1G2→ #−1G1)

989.7 s G1→ G2→
G3

Avoid obstacle
areas

(3−1G2→ #−1G1)
466.1 s G1 → G2

Table 5.4: For each scenario, we obtain the most likely specification using their
likelihood estimates and prior probabilities. Goal sequences are derived from the
specification.

obtained was exactly or similar in meaning to the specification we expected to infer.

However, note also that despite not being the most likely specification, the avoid

specification did belong to the final set of likely specifications.

In the next section, we present how the goal sequences obtained are leveraged

to set prior goal probabilities in a human motion prediction framework with the goal

of improving the posterior belief over the human’s goals and future states.
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5.6 Motion Prediction Framework

Previous work in cognitive science [106], [107], [108], has proposed a model for

human motion based on the concept of utility-driven optimization. This concept

enables us to think of the human’s behavior as being driven by a reward function

that depends on the human’s state, action and current goal (i.e. with high reward

given to the shortest path to her goal). As seen in the IRL framework, this reward

function can be computed as a linear combination of features, which capture the

preferences of the human over her possible destinations. In this work, we assume

that these preferences are set according to the goal sequences derived from the

inference results. By applying the principle of maximum entropy [99] to model the

human as more likely to choose an action uH from a finite set of actions U with

high expected utility (or state-action value Q), the probability distribution over the

human’s actions conditioned on her state is computed as,

P (uH |xH ; β; gH) =
eβQH(xH ,uH ,gH)∑
u∈U e

βQH(xH ,u,gH)
, (5.34)

where goal gH ∈ R2, reward function rH(xH , uH , gH) = −vH∆t and state-action

value QH(xH , uH , gH) = −vH∆t− ‖ xH + vH [cosuH , sinuH ]T∆t − gH ‖2. The first

term in QH corresponds to the distance traveled over time step ∆t or current reward

while the second term corresponds to the future reward with respect to how much

closer the human will be to her goal after ∆t. The parameter β is termed as the

rationality coefficient in the cognitive science model and is used to quantify the
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degree to which we expect the human’s control choice aligns with its model of

utility [106]. As β decreases to 0, the human is modeled to be more “irrational”

and expected to choose actions at random. On contrast, as β increases, the human

is modeled to be more “rational” and is expected to choose actions that optimize

the reward function. Thus, the human is assumed to choose control actions in a

Markovian fashion according to the probability distribution shown in Eq. 5.34.

Using the model in Eq. 5.34, we maintain a Bayesian belief about the possible

values of gH . Initially, we begin by setting priors for each known possible goal gH

and update this distribution in real-time given measurements of the human’s states

and actions. We start with a prior belief b0
− over the initial value of gH and update

the belief over gH , bi−(gH), at each discrete time step i ∈ {0, 1, ..., n} by applying

Bayes’ rule. We denote the updated belief as bi+. Since gH may change over the

prediction horizon and we do not have a transition model for gH , we use a naive

transition model. At each time step i, gH may change with some probability ε and

be re-sampled from the initial distribution b0
− or it may stay the same otherwise. By

changing ε, we can effectively change the rate at which bi− approaches b0
− if no new

measurements are obtained. Thus, the belief over the next value of gH is computed

as,

bi−(g′H) = (1− ε)bi−1
+ (g′H) + εb0

−(g′H), (5.35)

and the updated belief bk+ about gH is computed as,

bi+(gH) =
P (uiH |xiH , β, gH)bi−(gH)∑
g∈G P (uiH |xiH , β, g)bi−(g)

, (5.36)
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Using the Kolmogorov forward equations, we can propagate the human’s state dis-

tribution to any future time step i+ 1 as follows,

P (xi+1
H , β, gH) =

∑
xiH ,u

i
H

P (xi+1
H , ukH , β, gH).

P (uiH |xiH , β, gH)P (xiH , β, gH),

(5.37)

for a particular choice of gH . To obtain the overall occupancy probability distribu-

tion at each time step i, we marginalize over gH as:

P (xiH , β) = EgH∼biP (xiH , β, gH). (5.38)

Since the randomness in fH comes from the human’s choice of control input uH , we

have the following distribution over the human’s future states,

P (xi+1
H |x

i
H , u

i
H , β, gH) = 1{xi+1

H = fH(xiH , u
i
H)}. (5.39)

In the next section, we present results for the posterior beliefs over the goals

generated by setting the priors according to the goal sequences derived from the

inference process.

5.7 Prediction Results

To test the motion prediction framework, we use the discrete dynamics corre-

sponding to the simple, purely kinematic model of continuous-time human motion
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as,

xi+1
H − xiH = xH(t+ ∆t)− xH(t). (5.40)

The implementation of the motion prediction framework was done in Python.

We set the parameters β = 1.0, vH = 1.5m/s (i.e. the average human walking

speed), ε = 0.02, and ∆ = 0.01. The human control actions are chosen from U =

{0, 15, 30, ..., 345}. For each scenario tested, we generated 20 trajectories starting

from different initial locations sampled according to a uniform distribution over all

possible values of x and y in a workspace of 20× 20. The objective of the human is

to reach each of the goals in order as defined by the goal sequence of each scenario

as shown in Table 5.4.

The results for each scenario are displayed in Figs. 5.15- 5.18. The posterior

goal probabilities computed during the length of the human trajectory are shown

for two types of goal priors: a uniform prior and a prior set according to the goal

sequence derived in Table 5.4. We also include results for the case in which the

prior is set according to the inference results but the human unexpectedly visits goal

locations out of order with respect to the goal sequence defined.

For the scenario, “wait in line if service area is unavailable”, we assume

there are 4 possible goal locations. For the case of uniform prior, we set b0
− =

[0.25, 0.25, 0.25, 0.25] corresponding to possible goal locations, [g0, g1, g2, g3]. For the

case of the prior set according to the inferred specification, we set b0
− = [0.9, 0.03, 0.03,

0.03], respectively. A few outcomes are observable in Fig. 5.15. First, the posterior

probabilities for the human’s intended goal given a uniform prior is slightly greater
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than the posterior probabilities for all other goals. In contrast to this, the posterior

probabilities for the human’s intended goal given the specification prior are much

greater than those of the other goals. Second, for the case in which the human does

not abide by the inferred specification and goes to a different goal location to the one

expected, the posterior probability for the human’s intended goal quickly increases

despite being set to a low value initially. For all other scenarios which involve a

sequence of goal destinations that the human has to visit, we can make the same

observations. The goal that the human pursues has the highest posterior probability

among all possible goal destinations with the posterior probabilities obtained using

the specification prior being much higher.

In Fig. 5.7, we can observe the differences in the occupancy grids computed

by using the uniform prior and the specification prior for the scenario, ‘wait in line

if service area is unavailable, then get service once service area becomes available,

then proceed to exit”. For the case of uniform prior, we observe an occupancy grid

that contains more future states with low probability values, while the occupancy

grid for the case of the specification prior shows fewer locations with low probability

values. In addition, most of the probability is concentrated on a few states. Thus,

there is more confidence about the future states of the human in the case of using

the specification prior.
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Figure 5.15: Posterior goal probabilities for scenario, “wait in line if service area is
unavailable” using a uniform prior (left) and a prior set according to the inference
results (middle and right). On the right, we show the case in which the inferred
specification is incorrect with respect to the human motion behavior.

Figure 5.16: Posterior goal probabilities for scenario, “wait in line if service area
is unavailable, then get service once service area becomes available, then proceed
to exit”. Red dots indicate the time steps at which the human reaches a goal and
proceeds to the next.

Figure 5.17: Posterior goal probabilities for scenario, “visit area 1, then area 2,
then area 3.” On the right, we show the case in which the inferred specification is
incorrect with respect to the human motion behavior.
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Figure 5.18: Posterior goal probabilities for scenario, “avoid obstacle areas.” On the
right, we show the case in which the inferred specification is incorrect with respect
to the human motion behavior.
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Figure 5.19: Sample occupancy grids generated for scenario, “wait in line if service
area is unavailable, then get service once service area becomes available, then proceed
to exit”, at different time steps of the simulation. On the left, the uniform prior
is used and the occupancy grid appears to be more spread out. On the right, the
specification prior is used resulting in a smaller set of future states with higher
probability values.

5.8 Conclusions and Future Work

In this chapter, we evaluate and compare three state of the art inference ap-

proaches within an Inverse Reinforcement Learning framework to identify the best

performing approach. The inference methods are compared in terms of overall run-

time including training time, output type, and main drawbacks. Once the best per-

forming method is identified, extensions were proposed to automatize the generation

of demonstrations satisfying a given LTL specification. Our contributions include

the systematic construction process of an initial hypothesis space of specifications,

a process of refinement applied to systematically perturb likely specifications to find

more likely and complete specifications that convey the demonstrated behavior, and

a human motion prediction framework that uses the inference results to set priors

for all possible known goals that the human is expected to visit. Through various

scenarios, we demonstrate the effectiveness of the inference process in obtaining the
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correct LTL specification and enhanced human motion prediction results in terms

of larger posterior probabilities for the human’s intended goals. The resulting occu-

pancy grids also show a higher confidence on the human’s future states.

With respect to the training data generation aspect of this chapter, one pos-

sible extension is to use motion capture technology to collect human trajectories.

Observing real data can help us address questions on how to identify the set of

atomic propositions for a particular environment. With respect to the human mo-

tion prediction aspect, future work can be done to adapt the rationality coefficient

as well as the belief over the goals in order to improve prediction results at the cost

of increasing computational effort. Additionally, this framework can be integrated

with a safe-navigation framework that robots can operate within to safely maneuver

around humans given their predicted occupancy grids.
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