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Inland surface waters are critical to life, supplying fresh water and habitat, but are 

constantly in flux. There have been considerable advances in surface water 

monitoring over the last decade, though the extent of surface water has not been well-

quantified per international reporting standards. Global characterizations of change 

have been primarily bi-temporal. This is problematic due to significant areas with 

multi-year cycles of wet and dry periods or anomalous high water or drought years. 

Many areas also exhibit strong seasonal fluctuations, such as floodplains and other 

natural wetlands. This dissertation aims to characterize open surface water extent 

dynamics by employing all of the Landsat archive 1999-present, and to report area 

estimates with associated uncertainty measures as required by policy guidelines. 

From 1999 to 2018, the extent of permanent water (in liquid or ice state) was 2.93 

(standard error ±0.09) million km2, representing only 60.82 (±1.93)% of the total area 

that had water for some duration of the period. The unidirectional loss and gain areas 



  

were relatively small, accounting for only 1.10 (±0.23)% and 2.87 (±0.58)% of total 

water area, respectively. The area that transitioned multiple times between water and 

land states on an annual scale was over four times larger (19.74 (±2.16)%), totaling 

0.95 (±0.10) million km2, establishing the need to evaluate the time-series from the 

entire period to assess change dynamics. From a seasonal perspective, June has over 

double the amount of open surface water as January, with 3.91 (±0.19) million km2 

and 1.59 (±0.21) million km2, respectively. This is due to the vast network of lakes 

and rivers across the high-latitudes of the northern hemisphere that freeze over during 

the winter, with a maximum extent of ice over areas of permanent and seasonal water 

in February, totaling 2.49 (±0.25) million km2. This is the first global study to 

estimate the areas of extent and change with associated uncertainty measures and 

evaluate the seasonal dynamics of surface water and ice in a combined analysis. The 

methods developed here provide a framework for continuing to evaluate past trends 

and monitoring current dynamics of surface water and ice. 
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Chapter 1: Introduction 

 

1.1 Importance of water monitoring and current progress 

1.1.1 The dynamic nature and value of surface water 

Intuitively, we all understand the importance of water. We cannot survive 

more than a few days without water. Earth has an abundance of water; however, the 

majority is held in the world's saltwater seas and oceans. Water is also found inland in 

underground aquifers, the soil, the atmosphere, and, of course, on the surface. While 

humans, plants, and animals acquire water from all these different sources, inland 

surface water is the most accessible to much of life. Despite this, it only covers about 

3% of the continental surface (Pekel et al., 2016), with immense geographic variation 

leading to abundance and scarcity (Postel et al., 1996).   

Surface water and the systems surrounding them are of immense value, 

providing critical ecosystem services. These include the direct use of water for human 

consumption, irrigation supply, and electricity generation, as well as the mitigating 

services of regulating flow and filtration of pollution (de Groot et al., 2012; Mitsch 

and Gosselink, 2015). Surface water and wetland ecosystems account for more than 

20% of the total valuation of all global ecosystem service benefits and almost 40% of 

total terrestrial ecosystem service benefits (Costanza et al., 2014). Surface water also 

plays a significant role in local and global climate systems, storing immense amounts 

of carbon but also the source of more than a third of global methane emissions 

(Kayranli et al., 2010; Kirschke et al., 2013). Wetlands are among the most biodiverse 
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habitats, and seasonal waters are congregational spots for local and global animal 

migrations (Haig et al., 2019; Jin, 2008; Reid et al., 2019). While there are many 

lakes and rivers that remain mostly constant, much of the earth’s surface water is in 

flux with many natural and human-induced dynamics (Papa et al., 2010; Pekel et al., 

2016; Yamazaki et al., 2015).  

There are vast floodplains that inundate annually across the tropics, including 

those of the Zambezi, Parana, Brahmaputra, and Amazon rivers, to the boreal, 

including the Ob and the Mackenzie rivers. Some floodplains have only short 

vegetation cover and the inundation dynamics can be clearly observed from above, 

whereas others, such as the Amazon River, occur primarily under dense tree canopies 

and cannot be observed from above. The periodic flooding is critical to maintaining 

ecosystem integrity, with many plant and animal species adapted to be dependent on 

those cycles (Poff et al., 1997). While there is increasing awareness of their value, 

floodplains are under intense human land use and are continuing to be regulated and 

converted (Tockner and Stanford 2002, Hansen et al. 2020 (forthcoming)). Though 

not well-quantified, vast areas of floodplains, deltas, and other natural wetlands have 

been engineered for food production (Davidson, 2014; Tessler et al., 2016; Zhao et 

al., 2008). Rivers have been harnessed to provide stable water supplies for irrigation 

and consumption, meet electricity demands, enable transportation, and minimize 

flood risk. As a result, over half of the river systems of the world are moderately to 

severely fragmented by dams, levees, and other structures (Grill et al. 2015), and only 

37% of rivers >1000 km2 are free-flowing (Grill et al., 2019). While providing many 
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benefits, these structures impede the rivers' natural flow, inundation cycles and 

extent.  

The International Commission on Large Dams documents 58,713 dams with 

height >15m or with impoundments greater than three million m3 with thousands of 

additional large dams under construction or in advanced planning stages (Zarfl et al., 

2015). However, there are many more smaller dams with 91,457 total dams 

inventoried in the United States alone (U.S. Army Corps of Engineers, 2018). 

Irrigation is the largest driver of reservoir construction, with half of large dams built 

for that purpose (International Commission on Large Dams, 2020). This diversion of 

water for irrigation is driving a decline of saline lakes globally (Wurtsbaugh et al., 

2017). Additionally, due to high levels of extraction and low recharge, there is large-

scale groundwater depletion in the major semi-arid agricultural areas of the world, 

including portions of central Asia, India, and the USA (Rodell et al., 2018). Humans 

are now a significant actor in the global water cycle, with human water use (green, 

blue, and gray) amounting to half of global river discharge to oceans and exceeding 

groundwater recharge (Abbott et al., 2019).  

In addition to changes that affect water once it comes into a watershed, 

climate factors also affect the total amount of water available. As our climate system 

continues to gain energy, there is a global increasing temperature trend with the last 

six years being the warmest six on record (NOAA, 2020), but both the observed and 

modeled local temperature and precipitation trends vary in direction and magnitude 

around the world. Dai et al. (2009) found that a third of the largest 200 rivers globally 

had statistical increasing or decreasing trends over 1948-2004, with over twice as 
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many having a decreasing trend. Climate model simulations predict severe and 

widespread drought by the end of the century (Dai, 2013). Already four billion people 

are estimated to face water scarcity (Mekonnen and Hoekstra, 2016). Warming 

temperatures are also increasing glacier melt, which in the short term increases 

runoff, but leaves an uncertain future for river systems that rely on them (Chevallier 

et al., 2011; Lutz et al., 2014). Impacts are already seen in the Arctic with a 

documented increase in the ice-free season of lakes and rivers (Šmejkalová et al., 

2016; Xiao Yang et al., 2020) and projections estimating a 15-50 day increase by late 

century (Dibike et al., 2011; Prowse et al., 2011) with feedback effects on climate 

(Wik et al., 2016). 

1.1.2 International call for monitoring changes in surface water 

Due to how important surface water systems are and yet how threatened they 

are, numerous international organizations have set monitoring and conservation 

targets. The United Nations set Sustainable Development Goal 6.6, “By 2020, protect 

and restore water-related ecosystems, including mountains, forests, wetlands, rivers, 

aquifers, and lakes”. This is a broad-reaching target with one indicator, Indicator 

6.6.1: “the change in water-related ecosystems over time”, which has been further 

defined as the change in spatial extent, quantity, and quality of water over time (UN 

Water, 2018). The United Nations Conference on Biodiversity and the Ramsar 

Convention on Wetlands have also set targets for protecting inland water ecosystems 

(CBD, 2010; Rebelo et al., 2018). 

The World Meteorological Organization has also issued a call to monitor the 

surface water and ice extent of lakes as Essential Climate Variables (ECV) (World 
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Meteorological Organization (WMO) et al., 2016). ECVs provide a long-term data 

record to monitor changes in the climate and the interactions of these changes with 

the land surface. WMO cites a need for both water and ice extent of lakes to be 

monitored daily with 20m resolution for water and 300m resolution for ice. These 

ambitious goals are far from being met, though there is limited progress towards these 

targets (Pekel et al., 2016; Xiao Yang et al., 2020). 

To meet these global targets, Earth observation data must be employed. 

Unlike other land covers, such as agriculture or impervious surfaces, surface water is 

not a human land use and is often far from transportation networks, making field 

assessments difficult (Alsdorf et al., 2003). However, the rise of satellite imagery has 

given us the opportunity to observe and measure vast regions without ever visiting 

them (Wulder et al., 2019).  

1.1.3 Remote sensing of surface water 

Surface water is more distinct from other land covers and can be effectively 

mapped in a single observation, whereas, for many other land covers, particularly 

vegetation type mapping, a time-series is often critical. Water absorbs nearly all the 

radiation of the longer wavelengths, but can have different properties in the shorter 

wavelengths (Boland, 1976; Han et al., 1994; Rundquist and Han, 1994). During an 

algal bloom, surface water can appear bright green in the visual bands (Binding et al., 

2013; Han et al., 1994), or, in a river with high sediment load in the upper water 

column, surface water can appear bright (Han and Rundquist, 1994). Additionally, 

factors such as water depth, submerged aquatic vegetation, or other water quality 

measures can affect the spectral reflectance (Boland, 1976). Exploiting the difference 
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in reflection of the long and short wavelengths, McFeeters (1996) developed the 

Normalized Difference Water Index (NDWI), which is the normalized difference 

ratio of the green and near-infrared reflectance, to identify water presence. To more 

accurately distinguish surface water from built-up areas Xu (2006) proposed the 

Modified NDWI (MNDWI), which is the normalized difference ratio of green and 

short wave infrared (1.55 to 1.75 µm) reflectance. Other indices employing the 

combination of more bands and ratios have been shown to have efficacy for different 

environments (Crist, 1985; Danaher and Collett, 2006; Feyisa et al., 2014; Wang et 

al., 2018). However, each proposed water index for monitoring water performs better 

or worse depending on each of these factors and on the surrounding land cover, with 

no one index always the most accurate (Fisher et al., 2016). Thus, it is valuable to 

employ numerous bands and indexes with a collection of thresholds through machine 

learning approaches or iterative evaluation (Fisher et al., 2016; Pekel et al., 2016; 

Tulbure et al., 2016).  

Earth-observing satellite missions of recent decades and improved computing 

power enable global scale time-series analysis (Hansen et al., 2013; Pekel et al., 

2016). The Landsat missions provide the longest consistent record of earth 

observation. Landsat 1 was launched in 1972, inaugurating a new era of earth studies. 

For the first time, users could see anywhere in the world with publicly available data. 

There have been improvements in the sensors’ imaging and data transfer capabilities 

with each successive satellite, though the launch of Landsat 5 brought the advent of 

30m resolution spectral data and a thermal band. The Landsat program went through 

changes in management from 1985-2003, resulting in variable data volumes with 
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some parts of the world having 5-8 year gaps and others not even being imaged until 

1998 (Wulder et al., 2016). 1999 brought with it the launch of Landsat 7 and the 

institution of the Long Term Acquisition Plan, one of the most influential 

management changes in Landsat data provisioning began (Arvidson et al., 2006). This 

placed two comparable sensors in complementary orbits that enabled revisit rates of 8 

days at the equator.  However, due to data transfer limits, this was not actually 

obtained for most areas of the world, with Landsat 7 collecting <50% of potential 

sunlit land scenes per day and Landsat 5 even less (Wulder et al., 2016). 

Unfortunately, Landsat 7 had a considerable setback in May 2003 with the failure of 

its scan line corrector. While some users have declined to use these data due to the 

striping that resulted, 78% of the data remain uncorrupted (Chen et al., 2011). The 

number and quality of Landsat images significantly increased with Landsat 8 in 2013. 

Landsat 8 brought much higher data transfer capabilities such that most areas of the 

world actually are imaged every 16 days, plus what is captured by Landsat 7. The 

OLI and TIRS sensors onboard also provide increased radiometric resolution of 12-

bit data and additional spectral data with three new bands. 

Free and open access data is critical to large scale studies. In 2008, all the data 

from the Landsat program was made freely available to the benefit of the world 

(Wulder et al., 2012). From 1982-2007, broad-scale studies were limited by the 

prohibitive cost of obtaining Landsat scenes. The cost per scene before the opening of 

the archive was $600USD, down from the previous decade’s cost of $4400 (Wulder 

et al., 2012). Studies from the last decade would have been impossible at this rate; 

Hansen et al. (2013) would have cost half a billion dollars and Pekel et al. (2016) 
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would have cost multiple billion. It is estimated that in 2017 alone, the Landsat 

program provided $3.45 billion in benefits (Straub et al., 2019). 

Other public sensors were launched in the 1980s through the 2000s, but with 

much coarser spatial resolution, including AVHRR (1979-2019, 1.1km), MODIS 

TERRA and AQUA (1999 and 2002, 250-1000m), MERIS (2002, 300m). These 

sensors represent the tradeoff between spatial and temporal resolution with sub-daily 

to every three day revisit times. MODIS and MERIS also represent the tradeoff 

between spatial and spectral resolution with 36 and 15 bands, respectively. The 

improved temporal and spectral resolutions enable more detailed assessment of 

extensive landscape features, including large lakes. On a global scale, there are 

official MODIS annual water maps representing all areas with water cover ≥50% of 

the year (Carroll et al., 2017). Klein et al. (2017) harnessed the daily revisit rate to 

create maps of the number of days of water presence for 2015, providing the densest 

global seasonal examination of surface water presence. However, surface water has 

many fine-scale features, with rivers demonstrating a fractal nature (Tarboton et al., 

1988), and the size versus the abundance of lakes can be modeled with a power-law 

distribution (Cael and Seekell, 2016; Downing et al., 2006). As subpixel water bodies 

are more difficult to map, MODIS is insufficient to capture these abundant small 

rivers and lakes (Klein et al., 2017; Ticehurst et al., 2014). 

The European Space Agency brought a valuable new data stream with the 

Sentinel-2 mission. Sentinel-2A was launched in 2016 and Sentinel-2B in March 

2017, and full acquisition began in April 2017. The Sentinel-2 satellites are equipped 

with MSI sensors that capture the visible and NIR wavelengths with 10m spatial 
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resolution, narrower red edge spectral bands and longer wavelengths with 20m, and 

atmospheric bands at 60m resolution. Additionally, with the pair, the whole globe is 

imaged every 5 days. This offers an unprecedented opportunity to measure the 

seasonality of surface water and the extent of smaller water bodies. However, the lack 

of a thermal sensor on the Sentinel-2 satellites makes cloud detection more difficult 

(Tarrio et al., 2020). Various models have made strides to overcome this, some of 

which are adaptions of models initially developed for Landsat (Doxani et al., 2018; 

Louis et al., 2016; Qiu et al., 2019; Vermote et al., 2016). In an evaluation by Tarrio 

et al. (2020), an ensemble approach of these methods was most effective, but there is 

still much room for improvement. There have been no global Sentinel-2 studies to 

date, however, there have been some regional time-series studies demonstrating the 

potential of the data for broader studies (Wieland and Martinis, 2020; Xiucheng Yang 

et al., 2020). 

The last decade has brought huge leaps in our understanding of global inland 

surface water. Before this point, there was a 90m map derived from the Shuttle Radar 

Topography Mission (SRTM) elevation data, but this dataset only covered south of 

60°N and excluded small water bodies. Several circa 2000 Landsat based maps were 

produced (Chen et al., 2015; Feng et al., 2016; Verpoorter et al., 2014), and 

Yamazaki et al. (2015) produced a map with a limited delineation of temporary and 

permanent water from multiple observations. These demonstrated the reach of surface 

water, but are all limited through the use of only the Global Land Survey collection 

(Gutman et al., 2008; Tucker et al., 2004), which includes one Landsat image per 

circa 1990, 2000, 2005, 2010, each selected from a window of up to +/- 3 years, and 
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for some areas of the world, there are no completely cloud-free images, leaving data 

gaps where there was cloud cover. Hansen et al. (2013) classified all Landsat 7 

growing season images 2000-2012 but only provided a binary water and land map 

based on a threshold of 50% of the clear observations. Pekel et al. (2016) greatly 

moved forward the field in 2016 with the release of a time-series of surface water 

maps 1985-2015. They mapped water at a monthly scale and also aggregated it into 

annual layers and various summary maps, including percent water occurance over the 

entire period. They mapped change in two different ways: relative increase or 

decrease of water percent between the two epochs of 1985-1999 and 2000-2015 (now 

updated to 2000-2019), and a transition map between the first representative year and 

2015 (in the update 2019). This latter map is also primarily bi-temporal, with all the 

intervening years ignored except in the case where both the first and last year were 

land. In that case, the years between were checked to see if there was ever permanent 

or seasonal water and if so was labeled either ephemeral permanent or ephemeral 

seasonal based on a majority rule. If there was water in either the first or last year, the 

resulting transition class is the combination of the classes of those two years: 

permanent, new permanent (land and permanent), lost permanent (permanent and 

land), seasonal water, new seasonal (land and seasonal), lost seasonal (seasonal and 

land), seasonal to permanent, and permanent to seasonal.  Thus, though Pekel et al. 

(2016) mapped surface water with high temporal resolution (monthly), their synthesis 

of change is primarily bi-temporal and while both of these maps are valuable, they 

ignore much of the complexity of surface water dynamics and much of what is 

labeled stable in the transition map may not actually be.  
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Due to surface water extent’s high rate of variability, it is necessary to assess 

the entire time period of interest. With only ≤4 observations per pixel, Yamazaki et 

al. (2015) found that 13% of the total water area was temporary. With their much 

deeper assessment, Pekel et al. (2016) found that the area with temporary water was 

46% of the total water area. While some of this corresponds to monotonic changes 

such as reservoir creation (Zarfl et al., 2015) or stable seasonal water, much of it is in 

areas with significant interannual variability. Many systems exhibit significant 

variability between years such as lakes in arid and semi-arid regions of the Sahel 

(Kaptué et al., 2013) and Australia (Mueller et al., 2016; Tulbure et al., 2016); river 

systems such as the Magdalena River (Restrepo and Kjerfve, 2000), Ob River 

(Frappart et al., 2010), and Rio Negro (Frappart et al., 2008), that also have high 

seasonal variability; and saturated landscapes like the Prairie Potholes of North 

America (Liu and Schwartz, 2012).  

All of the aforementioned satellites have optical sensors. These are limited in 

their ability to capture the full scale of surface water due to cloud cover and its co-

occurrence with short-duration floods, which is of particular importance for 

monsoonal regions (Pham-Duc et al., 2017), and vegetation cover over surface water 

such as in the forested wetlands of the Amazon basin (Hess et al., 2015). Satellites 

equipped with radar sensors, which actively emit long wavelength radiation and 

measure the return, can overcome some of these issues (DeVries et al., 2020; Hess et 

al., 2015; Pham-Duc et al., 2017; White et al., 2015). 
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1.1.4 Area estimation 

According to the Intergovernmental Panel on Climate Change (IPCC) of the 

United Nations (Eggleston et al., 2006), it is essential for international reporting to 

adhere to the current guidelines of area estimation through a probability-based sample 

to obtain unbiased area estimators of known uncertainty as quantified by standard 

errors. Often maps are used directly to assess the area of a given class through 

summing pixel areas (Feng et al., 2016; Pekel et al., 2016; Yamazaki et al., 2015). 

While valuable, this leaves users without a measure of its certainty or rigor, and will 

carry whatever biases are present in the classification into the area totals. According 

to good practice guidelines, area reporting requires the use of a statistical sample of 

reference data (Olofsson et al., 2014). Reference data must be of higher quality than 

the map itself and must be selected in a statistical way. Sampling allows one to 

estimate the fraction of a stratum that belongs to a class, and variance can be 

calculated to estimate, given the proportion of a class, how likely other estimates of 

the same sample size would obtain the same area estimate. While sample-based area 

estimation has become the standard for forest monitoring (Penman et al., 2016), it is 

slower to take hold in other areas of land cover and land use change (LCLUC).  

For estimating the area of elements of LCLUC that cover only a small fraction 

of the whole region of interest, maps can provide significant efficiency gains (Ying et 

al., 2017). In the case of inland surface water, which covers 3-4% of the continental 

landmass (Feng et al., 2016; Pekel et al., 2016), with simple random sampling, the 

mean case would only have 3-4 samples with water presence for every 100. To 

achieve high precision of surface water area estimation using random sampling, a 
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very high number of samples would be required.  Stratification, on the other hand, 

enables an efficient targeting of the class of interest and is particularly valuable for 

rare classes, such as global inland surface water. Additionally, change dynamics can 

represent an even far smaller fraction of the landscape. For instance, Pekel et al. 

(2016) reported 162,000 km2 of partial or complete loss, which equates to 0.1% of the 

land surface, making stratification all the more invaluable. In addition to being used 

as a stratifier, maps provide spatial information important for planning and 

management and for assessments of interactions with climate and land cover and land 

use change (UN Water, 2018; World Meteorological Organization (WMO) et al., 

2016). 

 

1.2. Dissertation research objectives and structure 

This dissertation aims to advance our understanding of and capability for 

monitoring open inland surface water dynamics through a mixed mapping and 

sampling approach with a dense time-series of all Landsat 1999-2019 data and 

analyze the effects of temporal and spatial resolution on extent and change estimates. 

Here, open water is defined as water on the ground surface that (1) is visible from 

above and not obscured by objects on or above the water surface, for example, forest 

canopy, floating aquatic vegetation, bridges, clouds, or ice; and that (2) covers ≥50% 

of a pixel. Figure 1.1 provides a graphical outline of the dissertation. 
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Figure 1.1: Outline of dissertation. 
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The first objective is to assess the current water detection algorithms using 

Landsat and characterize the spatial heterogeneity of surface water at 30m. The aim is 

to produce numerical answers with quantified uncertainty to the following questions: 

(1) How well can we map water using Landsat? (2) What are the spatial limitations of 

mapping with Landsat? Chapter 2 answers these questions using a stratified sample of 

20x20km units of 5m reference data. 

The second objective is to produce maps that characterize the dynamics of 

surface water extent using the entire Landsat time-series of 1999-2018 and to estimate 

the areas of permanent water, stable seasonal water, and five change dynamics with a 

probability sample analysis. The purpose of this is to answer these questions: (1) 

What is the global area of stable and dynamic surface water extent? (2) How much 

surface water extent has been lost, gained, fluctuates interannually, or fluctuates 

seasonally? (3) Globally, where are the areas of change? Chapter 3 addresses these 

questions through classifying all of the 1999-2018 Landsat archive, mapping stable 

and change dynamics of surface water globally, and estimating areas through a 

probability-based sample assessment. 

The third objective is to advance our knowledge of seasonal dynamics by 

employing the 10m data with ≤5 day revisit of Sentinel-2 to answer: (1) What is the 

monthly distribution of inland open surface water and inland surface water ice? (2) 

What portion of global inland surface water freezes? (3) What is the ability of 

Landsat and Sentinel-2 to capture these dynamics? To address these, in Chapter 4 a 

global sample was selected and all 2019 Sentinel-2 images together with 3m imagery 

of PlanetScope was labeled for the selected pixels, and the monthly area of open 
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inland water and surface water ice were estimated with associated uncertainties. 

Landsat based maps of surface water ice were developed and validated together with 

the 2019 maps of surface water from Chapter 3. 

The final chapter of this dissertation highlights the main advances of this body 

of research, evaluates its strengths and limitations, and discusses important areas of 

future research. 
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Chapter 2: Ensemble approach for Landsat water detection with 
sub-pixel evaluation1 
 

Abstract 

Many methods have been utilized to map water ranging from simple 

thresholds to more complex machine learning algorithms. Due to the variation in the 

reflectance properties of surface water due to factors such as sediment load or 

chlorophyll-a concentrations, information from multiple reflectance bands and 

indices is valuable. Here we present a classification tree ensemble approach to 

identify water, land, cloud, haze, shadow, and snow/ice. Using a stratified sample of 

20x20km blocks with water presence classified from 5m RapidEye imagery, we 

performed a subpixel assessment of our proposed method as well as the most broadly 

applied algorithm, that of Pekel et al. (2016). We found user’s and producer’s 

accuracies of 93.7 (±1.5)% and 96.0 (±1.2)%, respectively. Evaluating accuracy as a 

function of distance, have a user’s accuracy of 96.9 (±0.9)% and a producer’s 

accuracy of 99.0 (±0.3)% for all pixels >30m from the closest edge of a water body, 

and 70.9 (±1.6)% and 66.0 (±3.7)3%, respectively, for all pixels <30m from a water 

body edge. Results were similar for Pekel et al. (2016), but with a greater bias of 

omission particularly for mixed pixels. From this same probability sample of high 

resolution imagery, an estimated 10.9% (±1.9%) of global inland surface water is 

                                                 
1 The contents of this chapter have been published in: Pickens, A.H., Hansen, M.C., Hancher, M., 
Stehman, S.V., Tyukavina, A., Potapov, P., Marroquin, B., Sherani, Z., 2020. Mapping and sampling 
to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote 
Sensing of Environment 243, 111792. https://doi.org/10.1016/j.rse.2020.111792 
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within mixed pixels at Landsat resolution indicating significant benefits to monitoring 

of surface water changes with improved spatial detail. 

2.1. Introduction 

Since the advent of earth observation satellites, there has been a 

preponderance of methods to detect surface water. Surface water is darker than most 

other land covers, reflecting some light in the visible spectrum but absorbing almost 

all of the longer wavelengths (Martin, 2004; Pope and Fry, 1997; Smith and Baker, 

1981). McFeeters (1996) found that the normalized difference ratio between green 

and near-infrared (NIR) was particularly effective for identifying water presence and 

designated it the Normalized Difference Water Index (NDWI). Other indices have 

been developed to address specific contexts such the normalized difference ratio 

between green and short water infrared (1.55 to 1.75 µm), termed the Modified 

Normalized Difference Water Index, which was developed to better distinguish 

between open surface water and built-up environments (Xu, 2006). These indices 

have been widely used in studies around the globe (Huang et al., 2018). However, 

water can have a diversity of spectral properties based on variation within the water 

column and surface roughness (Boland, 1976; Han et al., 1994; Han and Rundquist, 

1994; Martin, 2004). Additionally, some land covers share reflectance properties of 

the various manifestations of surface water hindering single thresholds (Fisher et al., 

2016). For these reasons, combinations of bands and indices have been used in more 

complex machine learning algorithms to capture water through the span of its 

representations (Tulbure et al., 2016).  
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However, most of these methods have been developed for local or regional 

contexts and have not been employed or tested globally. Pekel et al. (2016) have 

released the first global maps of surface water with a dense time-series of 

observations from the 1984-2015 Landsat archive. Their water detection algorithm 

was created by iteratively selecting portions of the feature space as surface water. 

Here we present a new globally-applicable water and land detection algorithm that is 

derived in a data-driven, machine learning approach from a large volume of training 

data. We employ a probability-based sample of high resolution (5m) data to evaluate 

the global performance of both this new algorithm and that of Pekel et al. (2016) 

across arid and water-saturated environments. 

2.2 Methods 

2.2.1 Scene classification 

A time-series of open water presence was created through the automated 

implementation of per Landsat sensor ensembles of classification trees. For each 

sensor, classification tree models of observation quality and land or water state 

(Potapov et al., 2015) were developed in the Global Land Analysis and Discovery 

(GLAD) laboratory. These models were then implemented in Google Earth Engine 

(Gorelick et al., 2017) and applied to the entire 1999-2018 Landsat 5, 7, and 8 

archive, classifying each scene into land, water, cloud, shadow, haze, and snow and 

ice. In each scene we aim to map as water all pixels with ≥50% water cover according 

to the definition of open surface water given above. 
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Due to the diversity of reflectance patterns for open surface water targets, 

hierarchical, bagged classification trees (Breiman, 1996; Breiman et al., 1984) were 

used to discriminate clear observations from those contaminated by cloud, shadow, 

and ice and discriminate water from land. All images were first converted to top of 

atmosphere (TOA) reflectance (Chander et al., 2009). Water is sufficiently separable 

from land to employ TOA units in discrimination without conversion to surface 

reflectance or application of other normalization methods (Pekel et al., 2016; Tulbure 

et al., 2016; Yamazaki et al., 2015). The classification models utilize all the Landsat 

bands, normalized difference ratios of each pair of spectral bands, and 3x3 pixel 

spatial averages of all bands and ratios, as well as, utilize topographic inputs of 

elevation and derived slope, aspect, and hillshade data. There are 21 normalized 

difference ratios for Landsat 5 and 7 and 36 for Landsat 8 due to three additional 

spectral bands. These ratios include commonly applied water indices such as the 

Normalized Difference Water Index (NDWI, (Green-NIR)/(Green+NIR)) (McFeeters, 

1996) and the Modified Normalized Difference Water Index (MNDWI, (Green-

SWIR1)/(Green+SWIR1)) (Xu, 2006). Elevation was taken from Shuttle Radar 

Topography Mission (SRTM) (Jarvis et al., 2008) elevation data for areas south of 

60°N, and Global Multi-resolution Terrain Elevation Data 2010 (Danielson and 

Gesch, 2011) for areas north of 60°N.  

Five sets of seven bagged classification trees were built hierarchically for each 

sensor from a training set of fully classified scenes. These scenes were individually 

classified through manual training and using the same classification tree framework 

as the globally applied model. The sets of classified scenes were used to train the 
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global models, for example 165 Landsat 5 scenes were mapped with the six 

categories of water, land, cloud, shadow, and snow/ice and used in training a global 

Landsat 5 water model. The global models were iterated by testing images not 

included in the training, identifying errors and adding problematic scenes to the 

training set and adjusting sampling rates until results were deemed satisfactory at the 

global scale. The final number of scenes in the training set was 165, 164, and 120 per 

Landsat 5, 7, and 8, respectively, and these scenes were sampled with a rate of 0.5-

1.5% depending on the class and the set, resulting in over a billion pixels used as 

training for the global models. 

The first set of seven bagged classification trees separates cloud and snow and 

ice from haze, land, shadow and water; the second set separates water from haze, 

land, and shadow; the third set separates shadow from haze and land; and the fourth 

set separates haze from land; and the final set separates cloud from snow and ice. 

Thus, clear water observations are identified after the first two sets and clear land 

observations after four sets. The set of seven trees per sensor that discriminated water 

from clear land, shadow, and haze relied strongly on the normalized difference ratio 

of the near infrared and green bands (NDWI), accounting for 89%, 85%, and 81% of 

deviance decrease for the Landsat 5, 7 and 8 models respectively. For this set of trees 

separating water, all of the 3x3 pixel spatial average metrics accounted for 4.9%, 

6.7%, and 7.9% of the total deviance decrease, but for the first set of trees identifying 

cloud, snow, and ice the 3x3 metrics contributed 86.5%, 82.9%, and 74.4%, which is 

likely due to the diffuse nature of clouds. However, all of the Landsat and 

topographic inputs contributed to discriminating water, land, and bad data. The 
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models are thus complex, with 50-1000 nodes per tree. However, overfitting is 

avoided by using a large training sample and aggregating each set of trees by 

selecting the median output probability. This enables the identification of open 

surface water across many different states, from sediment-laden to clear to eutrophic 

and from shallow to deep; water with the surface obscured from above by vegetation 

or other obstructions such as bridges is excluded. 

2.2.2 Sample-based assessment 

To quantify accuracy for mapping water at a given instance at a subpixel 

scale, we used a stratified sample of 5m resolution reference imagery from RapidEye. 

This sample was used to estimate accuracy of water and land classifications only at 

the individual month time scale and was not suitable for evaluating change. To create 

strata, we divided the global land surface into 20x20km blocks and calculated the 

percent water cover in each block based on the water mask created by Hansen et al. 

(2013) that they termed “datamask” within their global forest change product (Figure 

2.1). This mask represents all pixels with water detection percent ≥50% for all clear 

growing-season observations of 2000-2012 from Landsat 7. Blocks that had no water 

pixels, no pixels with >0% tree cover, and all pixels with ≥95% bare ground were 

defined as desert blocks and excluded from the sampling frame (gray areas, Figure 

2.1). Blocks that were entirely water in all the observations, found exclusively in very 

large lakes and seas, were also excluded. The remaining 307,195 eligible blocks were 

divided into four near equal size strata corresponding to block water cover of 0%, 0-

0.08%, 0.08%-2%, and >2% (Figure 2.1).  
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Thirty-five blocks were randomly selected per stratum, and a 5m multispectral 

image was obtained from RapidEye for each block. Since we mapped each RapidEye 

image individually, no radiometric correction was necessary, other than to manually 

remove cloud or other artifacts from the image. However, RapidEye images were 

mis-registered by up to 40m when using reported ephemeris data. To overcome this 

issue, we implemented a post-processing step of shifting the RapidEye classifications 

to the x-y offset that yielded the greatest water overlap with the water mask of 

Hansen et al. (2013).  

All sample RapidEye images were from 2010-2013 growing seasons based on 

availability, and each sample image was compared against the monthly percent water 

layer from this current study corresponding to the month in which the image was 

taken. This time range allowed for data from Landsat 5, 7, and 8 to all be represented. 

The RapidEye single date images and monthly aggregate map products were not 

coincident given the varying acquisition rates of Landsat and RapidEye data. 

However, the majority of surface water is stable at monthly time scales and, in 

general, any non-matching data will lower the accuracy estimates rather than inflate 

them. Some blocks for which the RapidEye data could not be obtained or that had 

over 25% cloud cover were replaced by selecting the next eligible block from a 

randomly ordered list of sample blocks up to 15 blocks. Some blocks did not have 

any Landsat data from the corresponding month and were excluded. The final sample 

sizes were 28, 33, 29, and 26 for the very low, low, medium, and high water cover 

strata, respectively, due to missing data.  
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Each RapidEye image was individually trained and classified through an 

iterative process of delineating water and land training polygons and then running an 

image-specific set of seven bagged classification trees to classify the entire sample 

block. The classification trees were built on the five spectral bands in RapidEye 

imagery and clouds and shadows were manually masked. For many blocks, we 

iterated and added training polygons numerous times to obtain high quality maps at 

5m. These maps are suitable as reference data as the higher spatial resolution enables 

a more discrete mapping of surface water that is readily identifiable through a 

supervised mapping approach (Olofsson et al., 2014). The result is an independent 

and better characterization of water extent for the respective date than the 

corresponding Landsat map made using a global algorithm. 

 

 

Figure 2.1: Distribution of strata and sampled blocks for 5m assessment. The 
thresholds of the percent of block area covered by surface water for the very low, 
low, medium, and high strata are 0%, 0-0.08%, 0.08%-2%, and >2%.  
 

The resulting 5m discrete map of water, land, and no data was the reference 

set compared against the Landsat monthly percent water layers to obtain user’s 

(corresponding to commission) and producer’s (corresponding to omission) 
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accuracies at 5m and 30m resolutions. For this analysis, the Landsat monthly percent 

water was thresholded so that all pixels above 50% were labeled as water and all 

pixels below 50% were labeled as land, as the dominant state of land or water was 

more likely to match the surface conditions of when the RapidEye scene was imaged. 

Pixels with equal land and water observations were excluded to prevent introducing a 

bias, since there is no dominant state.  

To estimate user’s accuracy of the monthly mapped water class we used a 

ratio estimator (Stehman, 2013): 

                                                   𝑅𝑅� =
� yh

H
h=1

� xh
H
h=1

                                                        (1) 

where H is the number of strata, Yh is the total area of intersection between the 

Landsat monthly map of water and the reference classification from all sampled 

blocks of stratum h with the area from block i denoted yi, Xh is the total area of 

mapped water within the Landsat map from all sampled blocks of stratum h with the 

area from block i denoted xi, and 𝑅𝑅� is the estimator for user’s accuracy. For 

producer’s accuracy we used the same formula keeping the same definition for Yh and 

yi but now defining 𝑋𝑋h to be the total area classified as water in the reference data 

from all sampled blocks of stratum h and xi the area of this region in block i. The 

estimated variance of the ratio estimator is:  

       𝑉𝑉��𝑅𝑅�� = 1
𝑋𝑋�2
∑ 𝑁𝑁ℎ2 �1 − 𝑛𝑛ℎ

𝑁𝑁ℎ
� (𝑠𝑠𝑦𝑦ℎ2 + 𝑅𝑅�2𝑠𝑠𝑥𝑥ℎ2 − 2𝑅𝑅�𝑠𝑠𝑥𝑥𝑦𝑦ℎ)/𝑛𝑛ℎ𝐻𝐻

ℎ=1                 (2) 

where 𝑠𝑠𝑦𝑦ℎ2  and  𝑠𝑠𝑥𝑥ℎ2   are the sample variances of y and x in stratum h, 𝑠𝑠𝑥𝑥𝑦𝑦ℎ =

(∑ (𝑥𝑥𝑖𝑖 −  �̅�𝑥ℎ)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�ℎ))/(𝑛𝑛ℎ − 1)𝑛𝑛ℎ
𝑖𝑖=1  is the sample covariance between x and y in 

stratum h, nh is the sample size in stratum h, Nh is the total number of blocks in 
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stratum h, and 𝑋𝑋� = ∑ 𝑁𝑁ℎ�̅�𝑥ℎ𝐻𝐻
ℎ=1 . The standard error (SE) of the estimated accuracy is 

equal to the square root of the variance. The discrete 5m reference layers were also 

upscaled to continuous 30m maps of water with each 30m pixel representing the 

percent of 5m pixels within it that were labeled water. These new maps were also 

thresholded at 50% to create the 30m resolution, binary classified (land and water) 

reference set and we applied the ratio estimator to obtain user’s and producer’s 

accuracies of the monthly Landsat maps at 30m.  

To assess the spatial heterogeneity of surface water, we used the continuous 

30m reference data compute the percent of pixels, excluding pure land pixels, that 

were mixed, defined as having both water and land pixels at 5m. To explore the 

impact of these mixed pixels on the accuracy results as well as to determine the 

relationship between errors and the proximity to a land-water boundary, we calculated 

the distance to the nearest land-water boundary delineated in the 5m RapidEye 

classification (Figure 2.2). Distances were calculated in meters for every 5m pixel 

within each sample block with each 5m water pixel assigned the distance to the 

closest land pixel and each 5m land pixel assigned the distance to the closest water 

pixel. The distances were binned in 5m intervals and commission and omission rates 

were computed per bin using the ratio estimator (equation 1). For commission, yi is 

defined as the area classified as water in the monthly map and land in the reference 

data within the given distance bin and xi as the reference land area within the distance 

bin from the water-land boundary. For omission, yi is defined as the area classified as 

land in the monthly map and water in the reference data within the given distance bin 

and xi as the reference water area within the distance bin from the water-land 
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boundary. User’s and producer’s accuracies were also computed for the whole region 

within 30m of a land-water boundary which represents the potential mixed pixel 

region at Landsat scale and for the whole region beyond 30m from land-water 

boundary which represents the pure land or pure water pixel space at Landsat 

resolution. The spatial heterogeneity of surface water was further explored by 

estimating the percent of global inland water that is within mixed pixels at Landsat 

resolution. We used the ratio estimator (equations 1 and 2) with yi representing the 

area of water within mixed pixels in block i and xi representing the total area of water 

in block i. 

 

Figure 2.2: Zoom within a sample block in the high water stratum. Top-left: 
RapidEye data (NIR-Red Edge-Red) from August 21, 2013. Top-middle: Landsat 
data (SWIR1-NIR-Red) from August 15, 2013. Top-right: Landsat data (SWIR1-
NIR-Red) from August 24, 2013. Bottom-left: 5m RapidEye classification of water 
and land with the distance to the closest water-land boundary, the blue gradients are 
classified as water and the gray gradients are classified as land. Bottom-middle: 
GLAD percent water for August 2013. Bottom-right: Pekel et al. (2016) not water 
and water classification for August 2013. Image centered at 46.52°N, 31.84°E on the 
Ukrainian coast of the Black Sea. 
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2.3 Results 

The user’s and producer’s accuracies (corresponding to commission and 

omission rates) at 30m resolution of the monthly mapped water class defined by a 

threshold of 50% applied to the percent water are 93.7 (±1.5)% and 96.0 (±1.2)% 

respectively. The accuracies of the monthly mapped water class of Pekel et al. (2016) 

are 95.2 (±1.2)% and 90.3 (±2.3)% using the same reference sample data. All of the 

accuracies presented in this subsection refer to these water classes for different 

resolutions and regions. At 5m resolution, the user’s and producer’s accuracies in our 

study are 97.5 (±0.7)% and 97.7 (±0.7)% and Pekel et al.’s are 98.0 (±0.5)% and 95.1 

(±1.3)%. These numbers are heavily impacted by the region that is within 30m of the 

water body edge, both within the water body and in adjacent land, as can be seen 

when the water class commission and omission rates are plotted as a function of 

distance away from the land-water boundary as delineated in the 5m reference data 

(Figure 2.3). At a distance greater than 30m, the mapped water class of our study has 

a user’s accuracy of 96.9 (±0.9)% and a producer’s accuracy of 99.0 (±0.3)%, and the 

mapped water class of Pekel et al. (2016) has user’s and producer’s accuracies of 99.4 

(±0.2)% and 99.5 (±0.1)%. For the area 0-30m from the closest land-water boundary, 

our study’s user’s and producer’s accuracies are 70.9 (±1.6)% and 66.0 (±3.7)3% and 

Pekel et al.’s user’s and producer’s accuracies are 75.4 (±2.0)% and 51.6 (±3.3)%. 

Thus both datasets map water with high accuracy beyond 30m from shore lines and 

river banks, but both have difficulty distinguishing land and water when they are 

blurred together in mixed pixels. However, considering only the edge and mixed 

pixels, our map has less bias and correctly identifies as water 28% more of the 5x5m 
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footprints with water cover, and for this region within 30m of the land-water 

boundary two thirds of 5m space is correctly assigned. These contrasting commission 

and omission rates of the static water classification associated with mixed pixels carry 

over to the following change detection accuracy results because of the large area of 

mixed pixels. We found that 10.9 (±1.9)% of global inland water is within mixed 

pixels at Landsat resolution, defined as having both land and water at 5m resolution 

within the pixel. The most common sources of commission error aside from mixed 

pixels are over lava flows, urban centers with tall buildings and shadowed streets, 

glaciers (particularly when mixed with debris), and cloud shadow over dark, dense 

forests with persistent cloud cover such as in Gabon.  
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Figure 2.3: Error rates at 5m resolution of the monthly Landsat water detection as a 
function of distance from the land-water boundary as defined in the 5m reference 
data. Top: The left half of the figure has distances extending further into land and 
displays commission error rates of water for both this study and Pekel et al. (2016) 
and the right half has distances extending further into water bodies and displays 
omission error rates of water. Each vertical line represents 30m from the land-water 
boundary.  The space within 30m on either side of the land-water boundary represents 
the mixed pixel space at Landsat resolution. Bottom: The area within each stratum at 
the given distance from the land-water boundary. The area of water that the low and 
the very low water strata contribute drops off very quickly due to small water body 
size. There is no area at 0m because this is the boundary line between land and water. 
 
 

2.4 Discussion 

The validation employing 5m RapidEye data shows that the classification 

algorithm performed well in discriminating pure land from pure water pixels. 

Example error sources included ice cover, lava, dark vegetation cover, high turbidity 

or very shallow water, issues of timing, and, more frequently, the combination of 
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shadow or haze with one of these covers, as well as, mixed pixels. To investigate the 

impact of mixed pixels, we assessed accuracy as a function of distance from the class 

transition.  We found that water greater than 30m from the edge of the water body 

(i.e. the width of a Landsat pixel) had very high accuracy in both the maps produced 

in our study and in the study by Pekel et al. (2016). However, we must be concerned 

about the classification accuracy of mixed pixels given that 10.9 (±1.9)% of inland 

water area is within mixed pixels. In this study, we achieved user’s and producer’s 

accuracies of the water class in the mixed pixel region of 0-30m from the water-land 

boundary of 70.9 (±1.6)% and 66.0 (±3.7)% for the single month layers at a scale of 

5m. While theoretically a 30m map could have 100% accuracy at 30m, it could never 

have 100% accuracy at 5m. Thus, though mixed pixels have much lower accuracies, 

we correctly map two thirds of the 5m space within 30m of the land-water boundary. 

Furthermore, in our study we correctly identified 28% more of the 5x5m footprints 

with water cover compared to the only previous dense surface water record at 30m 

(Pekel et al. 2016). This increased accuracy translates to better quantification and 

monitoring of small water bodies.  

2.5 Conclusion 

Given that 10.9 (±1.9)% of global water is mixed with land at a 30m 

resolution and that many change dynamics occur within mixed pixels, there is a clear 

need for improving spatial detail in tracking surface water changes. Fortunately, 

newer high spatial resolution data from the Sentinel-1 and Sentinel-2 series of 

satellites offer a ready input for advancing open surface water monitoring. Planet 
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data, while likely not a feasible alternative for global mapping due to its high cost, 

may be used as reference data in assessing map accuracies and providing area 

estimates for various dynamics. In addition to higher spatial resolution, incorporating 

Sentinel-1 and Sentinel-2 together with Landsat will provide higher temporal 

resolution, enabling better characterization of ephemeral surface water.  
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Chapter 3: Mapping and sampling to characterize global inland 
water dynamics from1999 to 2018 with full Landsat time-series2 
 
 

Abstract 

Global surface water extent is changing due to natural processes as well as 

anthropogenic drivers such as reservoir construction and conversion of wetlands to 

agriculture. However, the extent and change of global inland surface water are not 

well quantified. To address this, we classified land and water in all 3.4 million 

Landsat 5, 7, and 8 scenes from 1999-2018 and performed a time-series analysis to 

produce maps that characterize inter-annual and intra-annual open surface water 

dynamics. We also used a probability sample and reference time-series classification 

of land and water for 1999-2018 to provide unbiased estimators of area of stable and 

dynamic surface water extent and to assess the accuracy of the surface water maps. 

From the reference sample data, we estimate that permanent surface water covers 

2.93 (standard error ±0.09) million km2, and during this time period an estimated 

138,011 (±28,163) km2 underwent only gain of surface water, over double the 

estimated 53,154 (±10,883) km2 that underwent only loss of surface water. The 

estimated area of 950,719 (±104,034) km2 that experienced recurring change between 

land and water states is far greater than the area undergoing these unidirectional 

trends. We provide the first unbiased area estimators of open surface water extent and 

                                                 
2 The contents of this chapter have been published in: Pickens, A.H., Hansen, M.C., Hancher, M., 
Stehman, S.V., Tyukavina, A., Potapov, P., Marroquin, B., Sherani, Z., 2020. Mapping and sampling 
to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote 
Sensing of Environment 243, 111792. https://doi.org/10.1016/j.rse.2020.111792 
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its changes with associated uncertainties and illustrate the challenges of tracking 

changes in surface water area using medium spatial and temporal resolution data.  

 

3.1 Introduction 

Surface water presence is highly variable, with diverse trends around the 

world reflecting direct and indirect human as well as natural drivers. Meandering 

natural rivers and their floodplains support high biodiversity and provide nutrient-rich 

soil for agriculture, but are increasingly rare (Tockner and Stanford, 2002). Extensive 

areas of floodplains and natural wetlands have been engineered for food production, 

for example to rice and aquaculture (Davidson, 2014; Tessler et al., 2016; Zhao et al., 

2008). Globally almost half of our river systems are moderately to severely 

fragmented by dams, levees, and other structures, affecting both ecosystems and 

economies (Grill et al., 2015). Climate change and diversion of rivers for irrigated 

agriculture have led to dramatic declines in the surface area of large saline lakes 

(Wurtsbaugh et al., 2017). Climatic changes are also intensifying rates of glacier melt, 

causing the lakes of the Tibetan plateau to expand and river discharge patterns to shift 

(Chevallier et al., 2011; Lutz et al., 2014).  

Improved quantification of historical surface water trends will help us to 

better understand the impacts of such changes and to protect water resource-related 

ecosystem services. Historical archives of data from earth observation satellites are 

the only viable means to quantify these dynamics at a global scale and through time. 

Various efforts have advanced our understanding of historical surface water trends. 

Pekel et al. (2016) is the most comprehensive surface water product to date with 30m 
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monthly water/non-water layers, annual maps of seasonal and year-round water, and 

various multi-temporal maps initially for the period of March 1984-October 2015. In 

mid-2019, Pekel et al. (2016) released an update extending the mapped period 

through December 2018, which is available through the original sources. The water 

mask produced by Hansen et al. (2013) represents persistent water over 2000-2012, 

with all pixels having water in ≥50% of all growing season Landsat 7 observations. 

Other global maps at 30-90m (Chen et al., 2015; Feng et al., 2016; Yamazaki et al., 

2015) have been produced but for isolated years and based on one or a few Landsat 

scenes per path-row as found in the Global Land Survey collection (Gutman et al., 

2008; Tucker et al., 2004). Other products have evaluated intra-annual and inter-

annual surface water dynamics but at subnational or national scale (Mueller et al., 

2016; Tulbure et al., 2016; Zou et al., 2018). However, the existing global maps that 

identify change are only based on two time periods. Change in Pekel et al. (2016) was 

defined in two different ways. In one map, change was defined as the difference in 

open water occurrence percent between 1984-1999 and 2000-2018. In the second 

map, change was defined as the transition between permanent water, seasonal water, 

and land between a first year and the last year, 2018. The first year was selected 

between 1984 and 2000 on a per-pixel basis as the first year which had sufficient 

observations through the year to characterize the water presence. All intervening 

years were ignored for pixels in which water was identified in one or both of the start 

and end years (Pekel et al. 2016). Due to the large extent of fluctuations between 

water and land both seasonally and inter-annually (Papa et al., 2010; Pekel et al., 
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2016; Prigent et al., 2012; Yamazaki et al., 2015), it is necessary to evaluate the entire 

time-series to accurately assess surface water dynamics.  

Previous quantifications of global water area have been based on “pixel 

counting” of the map (i.e., summing the area of pixels mapped as the target class). In 

contrast, current good practice guidelines recommend estimating area based on a 

probability sample of reference data (Eggleston et al., 2006; Olofsson et al., 2014; 

Penman et al., 2016). Because the reference class labels determined for the sample 

units have greater accuracy than the map classification, the area estimate based on the 

reference class labels is less subject to bias due to class labeling error. This greater 

accuracy of the reference class labels is achieved by using higher quality source data, 

such as by interpreting higher resolution imagery, or if using the same source data, by 

implementing an intensive interpretation effort to determine the reference class labels 

for the relatively small number of sample units (Olofsson et al., 2014). The variability 

of a sample-based area estimate is measured by the standard error, whereas, there is 

no measure of uncertainty associated with area derived from pixel counting. 

According to the Intergovernmental Panel on Climate Change (IPCC) of the United 

Nations (Eggleston et al., 2006), it is essential for international reporting to follow 

these guidelines in order to obtain unbiased area estimators of known uncertainty as 

quantified by standard errors. Good practice methods provide definitive information 

on area extent and change that can inform science applications and policy initiatives. 

We present a new map characterization of permanent open surface water and 

of various open surface water change dynamics from 1999-2018 based on the entire 

Landsat archive for this period, consisting of 3.4 million scenes. Using a probability 



 

 

37 
 

sample of reference data, we assess the accuracy of our global surface water maps for 

the 1999-2018 interval as well as the accuracy of the maps produced by Pekel et al. 

(2016). We also use these reference data from the probability sample to provide 

unbiased estimators of area of global open surface water extent and change. We 

define open surface water as water on the ground surface that (1) is visible from 

above and not obscured by objects on or above the water surface, for example, forest, 

floating aquatic vegetation, bridges, clouds, or ice and that (2) covers ≥50% of a 30m 

pixel. 

Here we analyze a more temporally dense time series than previous studies for 

both change maps and reference data, employing the full Landsat archive in 

improving the characterization of the dynamics of global open surface water extent. 

We employ the first probability-based sample that targets changes in global surface 

water extent, providing area estimates of dynamics derived from unbiased estimators. 

The results are less susceptible to the bias encountered when reporting change from 

pixel counts. The associated standard errors from the reference samples are an 

improvement over map product areas that lack measures of statistical uncertainty. Our 

accuracy assessment is another advance, covering the entire time-series of our map 

products as well as the entire global land surface, making it spatially and temporally 

comprehensive. Further, the accuracy assessment corroborates the quality of the maps 

of Pekel et al. (2016) based on a more complete reference sample data set than was 

used by Pekel et al. (2016) in their evaluation of their map. 
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3.2 Methods 

The ensemble of classification trees evaluated in Chapter 2 were applied to all 

3.4 million Landsat 5, 7, and 8 scenes from 1999 to 2018, totaling 2.4 petabytes of 

data. The resulting time-series of land and water observations are the input to our 

characterization of surface water dynamics. 

3.2.1 Creation of annual percent water time-series 

The land and water observations of a given pixel were summed per month and 

aggregated into water presence frequency at various time-scales, measured by the 

percent of clear observations flagged as water (water / (water + land)), hereafter 

referred to as water percent. To create a more representative and stable measure of 

water percent, the individual observations were filtered and weighted, a practice also 

implemented by Pekel et al. (2016). First, clear observations (water + land) over the 

full study period were examined and if less than 12.5% of observations were in an 

opposite state of water or land (not covered with clouds, shadows, haze, snow or ice), 

and the total number of these observations was ≤3, they were removed as outliers. 

This was done because cloud shadow over dense tree cover or other dark surfaces can 

erroneously be flagged as water, and image artifacts or undetected haze over water 

can sometimes be erroneously flagged as land. However the probability of these 

errors repeatedly happening over the same pixel is low, and we found that these 

thresholds removed considerable noise while not erasing real change.  

We created a seasonally-normalized annual water percent to account for intra-

annual variation in clear observation frequency (e.g. fewer observations in the far 
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north in winter due to low sun elevations or in tropical monsoon environments due to 

high cloud cover). The water and land observations were summed per meteorological 

seasons (December-February, March-May, June-August, September-November) of 

each year, and used to calculate the percent of water observations out of all clear 

observations per season. Months with less than 5 observations over the 20 years were 

excluded to remove a potentially irregular impact on the annual time-series due to 

different portions of the year being observed. The average of the four seasons with 

data was used to calculate percent of water per year. Given that the start day of 

hydrological years varies around the world, we selected a start day that corresponded 

with the meteorological seasons and that mostly closely aligned with a traditional 

calendar year. A year was thus defined as December 1 of the previous year through 

November 30 of the given year (e.g. 2003 was defined as December 2002-November 

2003). Seasonal weighting was done to account for varying number of clear 

observations during different seasons of the year due to seasonal prevalence of 

weather events which often both obscure the surface and cause more surface water, 

seasonal snow cover, and varying acquisition rates related to sun angle for regions at 

high latitudes.  

3.2.2 Dynamic type classification 

An inter-annual water dynamics model was developed to characterize and 

visualize the changes occurring over the study period (Figure 3.1). To reduce short-

term annual anomalies and inter-annual cloud-free observation variability, the annual 

open water percent time-series was smoothed using a 3-year mean moving window. 

Next, the range and mean of the annual percent water time-series data were calculated 



 

 

40 
 

per pixel. The range is representative of the difference between the maximum rate and 

the minimum rate of open water presence. Pixels with a range ≤33% and a mean 

≤10% or ≥90% were labeled permanent land and water, respectively, providing a 

stable target with low sensitivity to possible omission or commission effects due to 

image artifacts or atmospheric conditions. Change pixels were identified as pixels 

with a range ≥50%, and all other pixels labeled as stable seasonal, characterized by 

water presence having little or no inter-annual variation and consistent intra-annual 

variation. Further characterization was applied to pixels labelled as change to identify 

typologies defined by an analysis of all local maxima and minima in the time-series. 

These local extrema were used to segment the 17-year time-series; segments with an 

amplitude <30% of the overall time-series amplitude were removed. Remaining 

dominant change segments were used to characterize the following main change 

types: gain, loss, dry period (water-land-water), wet period (land-water-land), and 

high frequency (3 or more) land-water transitions. All of these change types were 

mapped and validated along with the stable seasonal, permanent land, and permanent 

water classes. If a pixel had less than 10 years with observations or less than 15 total 

observations and did not meet the criteria for permanent water or land, it was marked 

as sparse-data. 
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Figure 3.1: Workflow of time-series analysis starting with the monthly water and land counts and resulting in dynamic class 
labels. 
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3.2.3 Dynamic class mapping 

To visualize all of the classes in a continuum we reduced the time-series to 

three time-sequential values of water percent mapped in an R-G-B color space 

(Figure 3.2). Specifically, the aforementioned classification rules were refined to 

characterize the timing of monotonic changes and the intensity of all change types. 

For pixels with monotonic loss or gain of water, the red band value was taken from 

the maximum or minimum water percent, respectively, at the beginning of the period. 

The blue band value was taken from the minimum or maximum water percent, 

respectively, at the end of the period. The green band value was the mean of the entire 

period, which enabled a graphical representation of whether the change was 

comparatively early or late in the study period. For pixels with two changes, there 

was either a change from water to land to water (a dry period), or a change from land 

to water to land (a wet period). For pixels with a dry period, there was a local 

maximum, followed by the minimum, and then by a local maximum which were 

assigned time-sequentially to the R-G-B space. The minimum was assigned to the 

green band and the two maxima were assigned to the red and blue bands with the 

lesser maximum averaged with the beginning or end value of the time-series 

depending on whether it was before or after the minimum. For example, a pond that 

had year-round water that dried up for a few years and then filled up but only for half 

the year would be represented in R-G-B space by its initial maximum value of 100% 

(r), its minimum value of 0% (g), and its final seasonal value of 50% (b). Likewise, 

for pixels with a wet period, there was a local minimum then the maximum and then a 
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local minimum which were assigned time-sequentially to the R-G-B space. The 

maximum was assigned to the green band and the two minima were assigned to the 

red and blue bands with the greater minimum averaged with the beginning or end 

value of the time-series depending on whether it was before or after the maximum. 

For pixels with more than two changes, it was not possible to maintain the structure 

of the trend in an R-G-B reduction and the mean of the entire period was taken for all 

three points to show the average annual percent of time for which water was present. 

These R-G-B reduction heuristics were also applied to the stable seasonal class to 

show the continuum of changes with intensity <50%. 
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Figure 3.2: Examples of classes of the water dynamics map. Each example has the annual water percent time-series and 
resulting R-G-B reduction for a given pixel. For the stable seasonal and high frequency examples, the 17-year monthly mean 
water percent is also shown. (A) Dry period: Chicamba Real Dam, Mozambique. (B) Gain: Bakun Dam, Malaysia. (C) Stable 
seasonal: Meghna River floodplain, Bangladesh. (D) Loss: Razazza Lake, Iraq. (E) Wet period: Lake Gregory, Australia. (F) 
High frequency: Ob River floodplain, Russia. 
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3.2.4 Landsat time-series sample 

A probability sample-based assessment was conducted to estimate areas and 

validate the inter-annual dynamics map from 1999-2018. The map was clipped using 

the Global Administrative Areas dataset (University of California, Berkley 2012) to 

exclude coastal and ocean waters, consistent with previous studies (Feng et al., 2016; 

Pekel et al., 2016). This assessment is for all areas with data within 56°S-75°N, 

excluding Greenland.  

Twelve strata derived using the mapped classes were created from the time-

series analysis, and fifty 0.00025° pixels were randomly selected per stratum, totaling 

600 sampled pixels (Figure 3.3). Mapped permanent water was separated into two 

strata: 1) the high confidence permanent water stratum which included all pixels 

whose R-G-B transformation resulted in each value ≥90%, and 2) the likely water 

stratum which included all pixels that did not meet the criteria defining the first 

stratum but that had mean annual open water present for ≥90% of the observable 

portion of the year and inter-annual variation ≤33%.  Permanent land was separated 

into three strata to target possible omission errors. The land buffer stratum included 

all land pixels within 1km of any water class, the high confidence land stratum 

included all remaining land pixels whose R-G-B transformation resulted in each value 

≤10%, and the likely land stratum included all land pixels that did not meet that 

criteria but that had mean annual open water present for ≤10% of the observable 

portion of the year and inter-annual variation ≤33%. There was an additional sparse-

data stratum which was defined as all pixels with <10 years of observations or <15 
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total observations. The sparse-data stratum was used for area estimation, but not for 

the accuracy assessment because it did not have a map dynamic type label.  

 

 

Figure 3.3: Distribution of sampled pixels of the Landsat time series. 
 

Stratification was essential to ensure that sufficient sample sizes were 

allocated to each class given that inland surface water only covers 3-4% of the planet 

and of that only a small fraction belongs to each of the dynamic classes (Pekel et al., 

2016). It was also necessary to have the strata take into account the entire time period 

because 40% of surface water area was found to be dynamic. The reference data must 

also cover the entire time period monitored and the only data source for such a task is 

the Landsat archive. The standard for reference data is that the reference classification 

must be of equal or higher quality than the map itself.  Manual interpretation of the 

time-series of individual sample pixels provided this more accurate time-series 

characterization relative to the output of our global-scale algorithm (Olofsson et al., 

2014). For the reference data, an observation from every month was selected as a 

compromise between exhaustive interpretation of every scene and feasibility that 

maintained sufficient temporal density to capture inter-annual water dynamics.  



 

 

47 
 

Because the data were processed in geographic (Lat/Long) at 0.00025° 

resolution and not in equal area projection, pixels differ in area depending on latitude. 

Pixels were sampled with inclusion probabilities proportional to the area of the pixel 

using the following method (Brewer and Hanif, 1982). All pixels were listed per 

stratum and the cumulative sum of pixel areas was computed for all pixels previous to 

and including the current pixel in the list. Fifty floating point numbers between zero 

and the total stratum area were randomly generated. For each of the randomly 

selected numbers, the first pixel that had cumulative area larger than this number was 

selected. This protocol results in a stratified random sample for which the inclusion 

probability of a pixel in each stratum is proportional to the area of the pixel.  

For each sampled pixel, a Landsat observation was randomly selected from 

each month for each year, resulting in up to 240 scenes being visually interpreted for 

each pixel. If for a given scene the sampled pixel was flagged as cloud, a new scene 

would be randomly selected from the same month if available, otherwise the original 

scene would be retained for interpretation. For each sampled pixel, a html page was 

built with thumbnails of all selected Landsat scenes (Figure 3.4). For each thumbnail, 

the pixel was labeled as land, water, or bad data through visual interpretation of the 

Landsat data and auxiliary high-resolution data from Google Earth was used to 

provide additional context. Since the data are resampled to 0.00025° via the nearest 

neighbor method, each 0.00025° pixel retains the spectral reflectance data of the 

nearest 30x30m pixel in the original Landsat data, which is in Universal Transverse 

Mercator (UTM) projection, and the footprint of the UTM pixel was utilized when 

considering the high-resolution data from Google Earth. 
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These land and water labels in the reference data were used to evaluate the 

inter-annual water dynamics map. A total of 87,926 scenes (600 sampled pixels x 12 

months x 20 years minus months with no available scenes) were visually interpreted 

as land, water, or bad data, and out of these, 57,230 observations were labeled as land 

or water both through visual interpretation and via the map classification trees. While 

this is a large number of scenes, it was manageable because only the 600 sample 

pixels needed to be interpreted, many of which were stable through time. The 

individual visual interpretations were aggregated to form an annual time series by 

calculating the percent of clear reference observations that were water per year and 

smoothed with a 3-year mean moving window as was done with the algorithm-

generated time-series. This reference time-series was input to the water dynamics 

model (Section 2.2) to generate class labels for each sampled pixel.  

These class labels of the reference data were used to estimate area of the water 

dynamic classes and aggregations of the classes. Additionally, the area that is 

inundated each year for greater than 25, 50, 75, and 90 and equal to 100 percent of the 

time was calculated from the annual percent values of each sampled pixel. Using this 

same stratified sample, we estimate user’s and producer’s accuracies for the trend 

classes. Details of area and accuracy estimation calculations can be found in the 

Appendix. 
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Figure 3.4: Example sampled pixel from the wet period stratum, centered at 
16.189375°N, 77.659375°E within the fluctuating footprint of Rayalumpad Reservoir 
in Telangana, India. The reservoir was constructed in 2009, first flooded the sampled 
pixel in 2013 and remained flooded through 2015, and then seasonally inundated the 
sampled pixel 2016-2018. The pixel is outlined in red in each of the Landsat 
thumbnails (SWIR1-NIR-red) and in the images from Google Earth, with an 
additional yellow outline for the source UTM pixel footprint. The graphs at the top 
are time series of the spectral reflectance of the pixel to aid interpretation (Green 
reflectance in light green, red reflectance in red, NIR in black, SWIR1 in dark green, 
SWIR2 in purple, and NDWI in blue).  Each Landsat scene could be individually 
marked as land, water, or bad data or a month, year, or the whole collection could be 
labeled as one of these classes. The full reference html page includes all months and 
years 1999-2018 and can be viewed here: 
https://glad.geog.umd.edu/timeSeriesReference/pagesUTM/sample419.html. 
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3.2.5 Comparison with Pekel et al. (2016) dataset 

The most comprehensive previous global surface water dataset is that of Pekel 

et al. (2016) with monthly water / not water maps from 1984-2018 with considerable 

data gaps pre-1999. They evaluate their product using a sample-based assessment that 

only quantifies water / not water state. The area estimates of change they provide are 

not produced using a probability-based sample of reference data but instead change is 

quantified from pixel counts, which ignores the biases inherent in the map products. 

Moreover, the multi-temporal maps made by Pekel et al. (2016) that identify change 

are principally bi-temporal, consisting of the change in percent of an epoch with open 

water present between two epochs, and a time-1 time-2 transition map. The transition 

map of Pekel et al. (2016) is derived from the first year with sufficient surface 

observations in the Landsat Thematic Mapper time-series, starting in 1984 through 

2000, and a last year of 2018, for the map update released this year. The transition 

map represents the classes in a transition matrix generated from the annual labels of 

permanent, seasonal, and land in the first and last year, an approach that ignores all 

intervening years except for pixels where the first and last year both have land labels. 

Permanent water on an annual time-scale is defined as all months with data flagged as 

water, and seasonal water is defined as having at least one month flagged as water 

and at least one month flagged as land. In the case of land labels for both the first and 

last year, the annual time-series is checked whether or not there was ever labeled 

water between the start and end years. If there is such ephemeral water, it is 

determined whether permanent or seasonal water states were observed more 

frequently and the pixel is labeled ephemeral permanent or ephemeral seasonal 
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according to a majority rule. If either the first or last year are water, the class label is 

assigned only using bi-temporal first and last year labels.   

Pekel et al. (2016) performed an extensive validation on their water / not 

water classification, but did not include the entirety of the map in the sampling frame. 

Importantly, their omission sampling frame for south of 60°N was only within the 

SRTM Water Bodies Dataset (SWBD) and for north of 60°N within the water class of 

Feng et al. (2015) and did not validate change. In SWBD, all water bodies with a 

width smaller than 183m are removed, and thus the omission accuracy only applies to 

bodies of water having width larger than 183m that are within the SWBD, a data set 

derived from a period of 10 days in February 2000. Finally, they did not use the 

reference data to report map-based area summations or to estimate uncertainty bounds 

of reported areas. In this study, we extended the results of the Pekel et al. (2016) 

study by producing maps that report various change classes based on all the years of 

the study period, conducting an accuracy assessment that represented the entire map, 

and reporting sample-based estimates of area of change accompanied by standard 

errors to quantify uncertainty of these estimates. 

We evaluated Pekel et al.’s (2016) global water dataset in three different 

ways. (1) To evaluate the monthly water product of Pekel et al. (2016), we calculated 

accuracies for the monthly water/non-water labels of Pekel et al. (2016) using the 

same single-date 5m reference data set described in Section 2.3.1 and performed the 

same steps of accuracy analysis as we did for our monthly product, which allows for 

accuracy estimates that apply to the whole map. Pekel et al.’s (2016) monthly data are 

labeled as water, land, or no observation and thus no threshold was needed for the 
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single-date validation. (2) In order to compare the sensitivity of our monthly water 

layers with those of Pekel et al. (2016) to detect and correctly identify change, we 

applied the same water dynamics model we developed in this study (Section 2.2) to 

the monthly water history of Pekel et al. (2016). This task was performed using the 

same rules applied in the creation of our change categories with the input monthly 

water history being from Pekel et al. (2016) instead of GLAD and with their water 

labels converted to 100% and not-water labels to 0% on a per month basis. This 

enabled us to create an annual time-series from monthly data in an identical manner 

for Pekel et al. (2016), GLAD, and the reference data set. Water dynamics were 

therefore modeled consistently across all three data sets.  Accuracies for Pekel et al. 

(2016) and GLAD were subsequently assessed using the same method. (3) To 

evaluate the transition map of Pekel et al. (2016), we compared their transition labels 

against the water dynamics class of the reference data. Since the readily available 

transition map of Pekel et al. (2016) is from the first representative year to 2018 

rather than 1999-2018, we computed a 1999-2018 transition map from their yearly 

water history according to the rules outlined in their published study. A one-to-one 

correspondence does not exist between the transition map labels and the class 

definitions developed in this study. In this case, we did not compute accuracies, but 

instead we have provided the confusion matrix. In this way, we are able to 

quantitatively compare the Pekel et al. (2016) bi-temporal water dynamics to a 

reference data set that is stratified on change and that more completely characterizes 

surface water dynamics.  
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3.3 Results 

3.3.1 Maps 

Monthly, seasonal, and annual water percent layers were created and maps of 

inter-annual dynamics for 1999-2018 were created for the entire year as well as for 

each set of three consecutive months. Natural dynamics such as the meandering of the 

rivers in the Ganges-Brahmaputra basin (Coleman, 1969) are observed as well as 

direct human change such as the expansion of rice cultivation and aquaculture 

(Davidson, 2014; Tessler et al., 2016; Zhao et al., 2008) (Figure 3.5). Large areas of 

water gain include the lakes of the Tibetan Plateau (Zhang et al., 2014), the prairie 

potholes of the USA and Canada (Zou et al., 2018), and the creation of reservoirs, 

particularly in Southeast Asia (Zarfl et al., 2015). Many of the large saline lakes of 

the world have all substantially diminished in area since 1999 (Wurtsbaugh et al., 

2017). Much of the area with multiple transitions between open water and land occur 

within wetlands and floodplains. In addition to visualizing inter-annual dynamics, 

mean water percent was also calculated per month for the period of 1999-2018, 

enabling analysis of seasonal water presence (Figure 3.6). Consistent annual seasonal 

open water can be seen in many of the floodplains around the world, for example, the 

Barotse floodplain in Zambia (Cai et al., 2017). Direct human seasonal dynamics 

such as single and double cropping of rice paddies can also be distinguished through 

the annual or biannual open water flooding regime. While much of the measured 

seasonal and inter-annual fluctuation is due to true variation in surface water 

presence, some of this fluctuation in open water presence, particularly in wetlands, is 

due to variation in vegetation levels that obscure the water surface. All layers are 
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available for visualization or download at www.glad.umd.edu/dataset/global-surface-

water-dynamics. 

 

 

Figure 3.5: 1999-2018 inter-annual water dynamics map examples for all 12 months 
with hues representing the type of change dynamic, saturation the intensity of the 
change, and value or brightness representing the maximum percent of a year that was 
inundated. All examples are shown at the same scale. (a) Expansion of aquaculture 
and shifting management practices on the coast of India. (b) Dramatic reduction of 
Lake Urmia in Iran, with slight recovery. (c) Increase of lakes across the Tibetan 
Plateau. (d) Shifting open water patterns in the Pantanal in Brazil, the largest wetland 
in the world. (e) Meandering of the Meghna River in Bangladesh by 10km and the 
growth of new islands in the Bay of Bengal. 
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Figure 3.6: 1999-2018 seasonal water examples. Both examples are shown at the 
same scale. Left: R-G-B of monthly mean water percent of April-June-August 
showing the seasonal floodplains of the Ob River, Russia. Right: R-G-B of monthly 
mean water percent of June-August-October showing the various rice and aquaculture 
flooding cycles in the Mekong Delta, Vietnam with the magenta areas experiencing 
two separate open water flooding periods and the green areas experiencing three 
separate open water flooding periods. 
 

We evaluated the effects of the filtering and smoothing of the time-series on 

the output inter-annual surface water dynamics maps. The filtering of anomalous 

water detections caused 0.17% of the final area mapped as land to be classified as 

land rather than a dynamic class and the filtering of anomalous land detections caused 

0.29% of final area mapped as permanent water to be classified as permanent water 

rather than a dynamic class. We evaluated the impact of using 30% as the magnitude 

threshold defining a transition and found that if instead the threshold was set at 10, 

20, 40, or 50 percent that 0.16-0.33% of the entire continental area changes class or, 

equivalently, 5.1-8.7% of the area mapped as permanent or dynamic water classes. 

Using the single year annual time-series as input to the water dynamics model instead 

of the 3-year mean annual time-series has a much larger impact, with 1.8% of the 

entire continental area changing class, or as a percent of the area mapped as 

permanent or dynamic water classes 45% changes class and increases the total area 

mapped as dynamic by 4.2%. 
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3.3.2 Sample-based area estimates 

We estimated 2,928,992 (±93,027) km2 of the continental area to be 

permanent open water from 1999-2018 (Table 3.1). Areas that were open water at any 

point during 1999-2018 totaled 4,815,478 (±82,986) km2. There was a total of 

138,011 (±28,163) km2 that had unidirectional gain of open surface water and 53,154 

(±10,883) km2 that had unidirectional loss of open water, whereas, areas that changed 

between persistent water and persistent land two or more times through the period 

totaled 950,719 (±104,034) km2. The mean annual area with open water present for 

≥50% of the observable portion of the year was 3,687,781 km2 (standard deviation 

over all years of the annual area estimates = 46,440 km2).  
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Table 3.1: Area estimates of trends with associated uncertainty of open water within the continental area between 75°N and 56°S as 
delineated by the Global Administrative Areas dataset (University of California, Berkeley 2012) and excluding Greenland. The last 
four categories are aggregates of the classes above. 
 

 Area (±SE) km2 Percent of total area Percent of all water Class definition 

Land   126,971,335  (±82,868)          96.34 (±0.06) —     Mean water percent ≤10% and inter-
annual variability ≤33% 

Permanent water       2,928,992  (±93,027) 2.22 (±0.07)         60.82 (±1.93) Mean water percent ≥90% and inter-
annual variability ≤33% 

Stable seasonal          735,347  (±99,792) 0.57 (±0.08)         15.69 (±2.07)  
Intra-annual variability with inter-
annual variability <50% 

Gain          138,011  (±28,163) 0.10 (±0.02)           2.87 (±0.58) Land-dominant to water-dominant 

Loss            53,154  (±10,883) 0.04 (±0.01)           1.10 (±0.23) Water-dominant to land-dominant 

Dry period            47,344  (±8,982) 0.04 (±0.01)           0.98 (±0.19) 
Water-dominant to land-dominant to 
water-dominant 

Wet period          120,543  (±49,543) 0.09 (±0.04)           2.50 (±1.03) Land-dominant to water-dominant to 
land-dominant 

High frequency          784,417  (±93,460) 0.60 (±0.07)         16.29 (±1.94) 3+ transitions between water-dominant 
and land-dominant 

Multiple transitions          950,719  (±104,034)  0.72 (±0.08) 19.74 (±2.16) Dry period, wet period, and high 
frequency (2+ transitions) 

All change types       1,141,884  (±106,120)  0.87 (±0.08) 23.71 (±2.20) Gain, loss, dry period, wet period, high 
frequency 

All dynamic types       1,895,159  (±114,006) 1.44 (±0.09) 39.36 (±2.37) Gain, loss, dry period, wet period, high 
frequency, stable seasonal 

All with water       4,815,478  (±82,986)  3.65 (±0.06) 100.00 
Permanent water, stable seasonal, gain, 
loss, dry period, wet period, high 
frequency 
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3.3.3 Accuracy of classes of water dynamics derived from time-series 

The accuracy of each class of water dynamics derived from our dataset for 

1999-2018 varied greatly by the number of changes represented by each class. The 

same was true for the accuracies of the classes derived from the monthly layers of the 

study by Pekel et al. (2016) when the same water dynamics model developed in our 

study was applied to the Pekel et al. (2016) data.  The resulting map and labels 

derived from the water dynamics model were not produced by Pekel et al. (2016) but 

it is instructive to examine the accuracy of their product when their data are translated 

through this model. Accuracies were highest for land with the user’s and producer’s 

accuracies of our study at 99.9 (±0.0)% and 99.7 (±0.1)%, followed by permanent 

water with user’s and producer’s accuracies of 97.8 (±1.8)% and 85.8 (±2.4)%, both 

of which had similar accuracies for Pekel et al.’s (2016) dataset. These are the largest 

classes, accounting for 98.6% (±0.1%) of the global continental area.  

The accuracies of each of the classes where pixels sometimes are land and 

sometimes have water, hereafter referred to as ‘all dynamic types’, are much lower 

and for the GLAD dataset have higher rates of commission than omission (Table 3.2). 

For each of the dynamic types the data from our study have lower rates of omission 

than the results from using Pekel et al.’s (2016) monthly water history, and for three 

out of the six dynamic types our study has lower rates of commission. However, 

many of the misclassifications are between the change and seasonal classes 

themselves, rather than missing the transitory nature of the surface water entirely, as 

can be seen by the accuracies when all dynamic types are aggregated into a single 

class. Our study resulted in user’s and producer’s accuracies for the class “all 
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dynamic types” of 68.3(±3.9)% and 93.4(±0.6)%, respectively. Pekel et al. (2016) 

yielded user’s and producer’s accuracies for “all dynamic types” of 46.1(±19.3.)% 

and 60.2(±4.9)%. However, one of the sampled pixels in the land buffer stratum was 

labelled stable seasonal using the Pekel et al. (2016) dataset, and if this one sample 

unit is removed from the analysis, the user’s accuracy of “all dynamic types” 

increases to 78.5(±5.0)% and the producer’s accuracy remains the same. Thus the 

user’s accuracy result is strongly impacted by one influential “outlier” sample pixel. 

Through comparison between the producer’s accuracies of ‘all dynamic types’ and of 

‘all change types’, 93.4(±2.7) % and 70.6(±6.1)% respectively, we can see that many 

of the omissions of change occur when the sample pixel is classified in the map as 

stable seasonal, since that is the only additional class in ‘all dynamic types’. The 

amplitude threshold of the time-series for a pixel to be labeled as change rather than 

seasonal is 50%, meaning a pixel must gain or lose the equivalent of half a year of 

open water one or more times through the 20 years of the study. Thus, in this case, the 

amplitude of the inter-annual changes in the algorithm generated time-series was 

below the threshold of 50% to be labeled as change and was thus labeled stable 

seasonal, but in the reference data time-series was greater than the threshold of 50% 

and was labeled with a change type. The distribution of omission and commission 

errors can be seen in Table 3.3. 
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Table 3.2: The user’s and producer’s accuracies of the classes of water dynamics from the time-series data of this study and of 
Pekel et al. (2016) when the water dynamics model is applied to each monthly water history dataset and to the reference data. 
The last four categories are aggregates of the classes above and a sample pixel is considered correct for the aggregate if it is in 
one of the contributing classes. See Table 3.1 for class definitions. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
GLAD Accuracy 

Accuracy of GLAD water dynamics model 
applied to Pekel et al. (2016) monthly water 

history 

 User's Producer's User's Producer's 
Land 99.9 (±0.0) 99.7 (±0.1) 99.5 (±0.1) 99.1 (±0.8) 
Permanent water 97.8 (±1.8) 85.8 (±2.4) 95.1 (±1.8) 89.9 (±2.6) 
Stable seasonal 44.0 (±7.1) 73.0 (±5.6) 17.4 (±12.1) 36.3 (±8.3) 
Gain 59.6 (±7.2) 74.8 (±13.9) 48.0 (±12.8) 45.4 (±10.9) 
Loss 30.0 (±6.5) 86.2 (±7.4) 49.8 (±19.3) 65.5 (±11.4) 
Dry period 46.0 (±7.1) 81.1 (±11.8) 17.7 (±8.0) 31.7 (±9.5) 
Wet period 34.0 (±6.8) 39.8 (±16.7) 62.5 (±15.1) 37.5 (±17.5) 
High frequency 54.3 (±7.4) 54.9 (±6.2) 50.4 (±9.3) 35.4 (±7.1) 
Multiple transitions 58.2 (±5.8) 62.2 (±6.6) 54.1 (±7.9) 40.3 (±6.4) 
All change types 60.0 (±4.6) 70.6 (±6.1) 62.8 (±6.9) 50.0 (±5.8) 
All dynamic types 68.3 (±3.9) 93.4 (±2.7) 46.1 (±19.3) 60.2 (±4.9) 
All with water 92.1 (±1.6) 98.6 (±0.6) 79.1 (±15.5) 85.9 (±2.3) 
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Table 3.3: Confusion matrix of GLAD water dynamics map with the reference classification. In row i and column j, the left 
half of the cell represents in a gray gradient the estimated percent of pixels labeled i in the reference data and that were mapped 
j in GLAD, and the right half of the cell represents in a green gradient the estimated percent of pixels mapped j in GLAD that 
were labeled i in the reference data. The grays not along the center diagonal of correct classification show the distribution of 
omission and the greens show the distribution of commission. The percent estimates were derived from the estimated area of 
each (i,j) cell. 

  GLAD water dynamics classes map 1999-2018 

   Land 
Permanent 

water 
Stable 

seasonal Gain Loss Dry period Wet period 
High 

frequency 

Re
fe

re
nc

e 

Land   99.7    99.9         -           -        0.2    18.0      0.0      8.5      0.0    28.0      0.0      8.0      0.0    20.0      0.1    10.9  
Permanent water        -           -      86.1    97.8      6.8    16.0      0.5      8.5      0.9    18.0      0.2      8.0      0.5    10.0      4.9    19.6  
Stable seasonal     7.4      0.0      0.8      0.2    73.0    44.0      1.4      6.4      2.5    12.0      0.7      6.0      0.4      2.0    12.8    13.0  
Gain        -           -           -           -    

       -    
  17.9      2.0    74.8    59.6         -           -        1.2      2.0      6.4      6.0         -           -    

Loss        -           -           -           -           -           -           -      86.2    30.0      3.1      2.0    10.6      4.0         -           -    
Dry Period        -           -      12.7      0.2         -           -           -           -           -           -      81.3    46.0      6.0      2.0         -           -    
Wet period        -           -      37.4      1.8         -           -        6.1      4.3      2.6      2.0         -           -      39.8    34.0    13.2      2.2  
High frequency     1.4     0.0         -           -      31.8    20.0      2.8    12.8      2.1    10.0      3.0    28.0      4.2    22.0    54.9    54.3  
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We also compared the reference data time-series classification to the transition 

map of Pekel et al. (2016) (Table 3.4). The transition map underestimates water 

presence, as a number of water extent and dynamics classes are labeled as permanent 

land in Pekel et al (2016).  Specifically, 6% of the reference area of permanent water 

is labeled as land, 43% of seasonal water area is labeled as land, and 41% of the area 

of all the change classes is labeled as land. Change was also underestimated with an 

additional 11% of reference change area classified as permanent water in Pekel et 

al.’s (2016) map. While there is not a one-to-one correspondence between the 

reference class definitions and Pekel et al.’s (2016) definitions, the nature of the 

change is also misidentified; for example, 45% of what was classified by Pekel et al. 

(2016) as new permanent water from land and 52% of lost permanent water to land 

actually experienced multiple transitions between land-dominated and water-

dominated states, the ‘high frequency’ reference class. The three classes of Pekel et 

al. (2016) which had the majority of the area correctly mapped within the 

corresponding reference classes are land with 99%, permanent water with 93%, and 

ephemeral permanent with 100% within the corresponding reference classes. The 

remaining classes of Pekel et al. (2016) have the majority of their area in a reference 

class with a definition that does not overlap.  In summary, the Pekel et al. (2016) map 

omits considerable areas of surface water extent and change and mischaracterizes 

change types. 
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Table 3.4: Confusion matrix of Pekel et al. (2016) transition map 1999-2018 with the reference classification. In row i and 
column j, the left half of the cell represents in a gray gradient the estimated percent of pixels labeled i in the reference data and 
that were mapped j by Pekel et al. (2016), and the right half of the cell represents in an orange gradient the estimated percent of 
pixels mapped j by Pekel et al. (2016) that were labeled i in the reference data. The percent estimates were derived from the 
estimated area of each (i,j) cell. 
 
  Pekel et al. (2016) transition map 1999-2018 

  Land 
Permanent 

water Seasonal 
New 

permanent 
New 

seasonal 
Seasonal to 
permanent 

Lost 
permanent 

Lost 
seasonal 

Permanent 
to seasonal 

Ephemeral 
permanent 

Ephemeral 
seasonal 

Re
fe

re
nc

e 

Land   99.1    99.3      0.0      0.6      0.8    77.3         -           -           -           -           -           -           -           -        0.0    16.7         -           -           -           -        0.0    36.8  
Permanent water     6.4      0.1    88.6    93.0      1.4      2.9      0.9    24.6      0.7    12.1      1.1    52.6      0.1      3.4         -           -        0.9    34.3         -           -        0.1      1.3  
Stable seasonal   43.1      0.3      6.9      1.9    24.2    12.8         -           -        7.6    31.0         -           -        0.4      3.6    10.5    52.2      1.2    12.6         -           -        6.0    35.2  
Gain   28.4      0.0      6.5      0.3    23.5      2.2    21.0    27.3    15.3    11.2      5.3    11.9         -           -           -           -           -           -           -           -           -           -    
Loss     5.7      0.0         -           -      11.5      0.4         -           -           -           -           -           -      65.5    41.4    17.2      6.2         -           -           -           -           -           -    
Dry period     6.0      0.0    26.8      0.5    21.2      0.7         -           -        7.1      1.9      7.1      5.7         -           -        7.1      2.3    24.8    16.2         -           -           -           -    
Wet period   48.0      0.0      2.4      0.1      4.7      0.4      2.4      2.8    25.6    16.9         -           -           -           -        4.9      4.0         -           -        4.7    26.4      7.1      6.8  
High frequency   46.5      0.3    13.7      3.7      6.1      3.2      6.2    45.3      6.5    27.0      2.3    29.8      5.9    51.6      3.7    18.7      3.6    36.9      2.1    73.6      3.3    19.9  
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3.4 Discussion 

This study provides the first sample-based area estimates of global surface 

water extent and change. The method employs mapped surface water change to 

stratify the global land surface and uses a probability sample of reference data to 

produce unbiased estimators of area of surface water extent and change, accompanied 

by standard errors to quantify the associated uncertainties of the area estimates. Good 

practice methodology establishes that areas should be estimated via a sample-based 

analysis rather than by merely summing the area of class pixels in the map (Olofsson 

et al., 2014; Stehman, 2013). Given that there are errors in all maps, pixel counting 

will generally result in an over or under estimation of the true area with unknown 

magnitude. In contrast, a probability sample-based analysis allows for estimation of 

area bounded by quantified uncertainties that can be appropriately used in science and 

policy applications (Eggleston et al., 2006; Olofsson et al., 2013; Penman et al., 

2016).  

The time-series sample provides class accuracies of the inter-annual dynamics 

map, but more importantly, area estimators of surface water extent and change 

accompanied by standard errors to quantify uncertainty of these estimates. This 

analysis enables proper use of the inter-annual dynamics map as well as highlights the 

challenges of time-series change mapping. These two analyses extend the validation 

of Pekel et al. (2016) in that (1) accuracy estimates represent the entire map, and (2) 

the reference sample data explicitly evaluate change were used to calculate unbiased 
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estimators of areas, and (3) standard errors were reported to provide an assessment of 

uncertainty of the area estimates. 

Results illustrate that while pure water pixels are usually easily discriminated 

from land pixels, change between the two categories is very difficult to characterize 

in mixed pixels and mixed pixels are prevalent as 22.8% of all 30m pixels with water 

present also have land present (Chapter 2).  We found that the amount of area that has 

fluctuating rates of open water presence far exceeds the area that has unidirectional 

trends of gain and loss (Table 3.1). Of the pixels that experienced change in surface 

water, 83% did not experience unidirectional change. These results demonstrate how 

difficult it is to map water dynamics accurately at a 30m spatial resolution and 

highlights the need for time-series of higher spatial resolution data, such as Sentinel-2 

(10-20m with 5 day revisit), or commercial data such as Planet (3m with daily revisit) 

to improve change area estimation. Radar data sources, such as Sentinel-1, also offer 

a path forward for mapping open water, with advantages in both the spatial and 

temporal domains compared to Landsat, particularly in rainy seasons and flood events 

due to radar’s ability to penetrate clouds. However, since the first Sentinel-2 satellite 

was launched in 2015, the first of Planet in 2014, and the first of Sentinel-1 in 2014, 

historical analysis before these dates will still rely on Landsat. 

It is unknown how much surface water is left undetected due to being under 

forest cover or other vegetation obscuring the surface of the water from above. As a 

result, it is unknown how much variation in open water presence is due to variation in 

vegetation cover rather than surface water presence. Much of the area of stable 

seasonal and multiple transitions is within natural wetlands. These are areas that 
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fluctuate greatly in both surface water extent as well as vegetation extent and density 

as part of a natural cycle. There have been various efforts to quantify wetland extent 

at regional and global extents, but as of yet, there is no consensus on global wetland 

area with some estimates double the area of others (Davidson et al., 2018), reflecting 

the current lack of consistency among map products of wetland extent (Hu et al., 

2017). While coarser resolution products of global mapped surface water inundation 

exist (Fluet-Chouinard et al., 2015; Papa et al., 2010), no global inundation maps 

exist at medium spatial and temporal resolution. Medium resolution synthetic 

aperture radar has been used at a regional scale to map inundation during the wet and 

dry seasons, including in the forest (Hess et al., 2015).  

3.4.1 Area comparison 

Having reference data for every year enabled estimation of the mean annual 

area with various frequencies of open water presence (Figure 3.7) and the standard 

deviation (SD) over all years of the annual area estimates. For example, 3.13 million 

km2 (SD = 0.06 million km2) has open water ≥90% of the year, 3.69 (SD=0.04) 

million km2 has open water >50% of the year, and 4.12 (SD=0.05) million km2 is has 

open water ≥25% of the year. These estimated areas represent the continental area 

within 56°S and 75°N delineated by the Global Administrative Areas dataset 

(GADM) (University of California, Berkley 2012) and exclude Greenland. Existing 

Landsat-based published studies fall within the range of annual areas with associated 

SDs for different rates of open water presence (Chen et al., 2015; Feng et al., 2016; 

Pekel et al., 2016; Yamazaki et al., 2015) (Figure 3.7). All but Pekel et al. (2016) use 

the Global Land Survey collection, which is comprised of single Landsat scenes from 
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isolated years, with some scenes selected from surrounding years instead, rendering 

analysis of seasonality impossible (Gutman et al., 2008; Tucker et al., 2004). Two 

other Landsat based products map sub-categories of global open water with an 

estimate of the global areas of lakes of 4.76 million km2 by Verpoorter et al. (2014) 

and an estimate of the global area of rivers of 0.773 (± 0.079) million km2 by Allen 

and Pavelsky (2018). 

Pekel et al. (2016) report 2.78 million km2 of permanent water and 0.81 

million km2 of seasonal water October 2014 - October 2015, where seasonal is 

defined as at least one month being labeled as land and at least one month being 

labeled as water. Pekel et al. (2016) use an upper bound of 78°N and the coast is also 

delineated by GADM. Pekel et al. (2016) additionally provide two time-series 

aggregate areas, 4.46 million km2 with open water at any point between 1984 and 

2015 and 2.4 million km2 with permanent water from 1984-2015. For 1999-2018, we 

estimate 4.82 (±0.08) million km2 to be one of any of our water classes and 2.93 

(±0.09) million km2 to be permanent open water as defined in this study (Table 3.1) 

and 2.43 (±0.13) million km2 to be permanent open water if we apply the strictest 

definition of 100% water detections. Although the studies cover two different time 

intervals, this strictest estimate from our analysis (2.43 million km2) nearly matches 

Pekel et al.’s (2016) permanent water estimate of 2.4 million km2. Our estimate for 

the area in any of our water classes is 0.36 million km2 larger than Pekel et al.’s 

(2016) area of water at any time, and if we broaden our definition to include water at 

any time, our estimate is 9.48 (±1.97) million km2 which is over twice as large as 

Pekel et al.’s (2016) reported area for 1984-2015. This larger estimate includes all 
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sample units that had a mean annual open water presence percent ≤10% and inter-

annual variation ≤33% and also had at least one of the observations labeled water in 

the reference data, which is considered land in the smaller estimate. This estimate 

may be much larger due to the filtering of Pekel et al. (2016), which is not 

reproducibly described but is intended to remove cloud shadows, as well as, the bias 

of omission found for the Pekel et al. (2016) monthly water layers. Since our 

estimates are calculated only from the reference data and the strata areas, the GLAD 

map bias does not contribute to the reported difference. While not enough to account 

for the magnitude of the difference, our analysis also includes three additional years 

beyond the scope of Pekel et al.’s (2016) areas.  

 

 

Figure 3.7: Global area estimates from this study and other previously published 
studies based on Landsat data. Each estimate from this study is the area with open 
water for the given percent of the year, and the gray area bounding it corresponds to 
the standard error of the estimate. Confidence intervals were not provided for the 
other studies. 
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Our study reports change areas based on the entire time-series rather than bi-

temporally. Our sample-based estimates for 1999-2018 are 138,011 (±28,163) km2 of 

gained persistent water and 53,154 (±10,883) km2 of lost persistent water. Much of 

the increase is due to the creation of reservoirs (Zarfl et al., 2015) as well as climate 

impacts such as has caused the increase of lakes in the Tibetan plateau (Zhang et al., 

2014) and in the prairie pothole region of North America (Zou et al.,2018) and much 

of the decrease comes from desiccation of many of the large saline lakes in the 

Middle East (Wurtsbaugh et al., 2017).  

Given that the area that experienced multiple transitions between water and 

land on an annual time-scale was over 400% larger than the area with only 

unidirectional change (i.e. either loss or gain), it is imperative to look at the whole 

time-series to quantify trends of gain or loss. In contrast, previous studies only 

reported change areas bi-temporally from map pixel counts. Taking loss for example, 

Pekel et al. (2016) reported 162,000 km2 of permanent water loss, 90,000 km2 of 

which changed to land and 72,000 km2 to seasonal water. These results cannot be 

appropriately compared to those of our study, because of differences in both their 

definition of loss and their time period. Pekel et al. (2016) defined loss as a transition 

from having all months labelled as water to having any months not labelled as water 

and this definition of loss was based on comparing only the first representative year 

(defined per pixel with a range of 1985-2000) and 2015, thereby ignoring all 

intervening years. The comparison of the Pekel et al. (2016) transition labels we 

generated for 1999-2018 versus the reference class for the time-series sample 

highlights this, showing that only 41% of the transition label lost permanent, defined 
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as permanent water to land, is actually loss when the intervening years are taken into 

account and 52% changes back and forth between land-dominant and water-

dominant. The goal of the definitions of change types used in our study is to 

characterize the dominant behavior of the pixel through all 20 years, but change areas 

are inherently dependent on the definition and the complexity of defining change 

types increases for a land cover that is as dynamic as open surface water. 

The areas reported in our study are the first to be estimated according to good 

practice guidelines. The areas reported by Pekel et al. (2016) were generated from 

summing the mapped area, or pixel counts. Doing so carries the classification bias 

into the estimated area. The validation performed by Pekel et al. (2016) within their 

study found a bias such that the number of seasonal water detections was 21-25% 

smaller than detected in their reference data set, which means there will be 

considerable bias in the areas computed from pixel counts. This bias is present even 

though their omission sampling frame itself omitted many smaller water bodies. Pekel 

et al. (2016) had separate sampling frames for omission and commission, and their 

omission sampling frame did not include many smaller water bodies due to only 

sampling within the SRTM Water Body Data (SWBD) for <60°N. The SWBD only 

represents lakes that are at least the equivalent of 20x6 Landsat pixels, and only 

represents rivers that have a segment that is at least that same size (“SRTM Data 

Editing Rules,” 2003). Bodies of water with area <0.1km2, which is a threshold 

roughly equal to the minimum size of SWBD water bodies, contribute a large fraction 

of total surface area of inland waters with estimates ranging between 12% and 17% of 

total inland water area (Downing et al., 2006; Verpoorter et al., 2014). Smaller water 
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bodies have a higher proportion of mixed pixels and are more likely to be transient, 

both of which make them harder to map. Since only pixels within the SWBD were 

eligible to be sampled (all other pixels had an inclusion probability of 0), the 

omission error estimates only apply to the area within that mask. The stratified 

random sample of reference data that we selected from the whole map and which 

targets each dynamic class yields unbiased estimators of area that are representative 

of the whole map, and the standard errors quantify the uncertainty of these area 

estimates.  These uncertainty bounds inform the appropriate use of the estimates in 

further research as well as policy. 

3.4.2 Maps 

Water is unique compared to many other land cover types because it can be 

highly variable, literally ebbing and flowing over time, sometimes at regular annual 

rates and sometimes in long-term trends. Our approach to analyzing the time-series 

was to model high-confidence transitions for unidirectional and oscillating change 

dynamics. Monthly, seasonal, and annual percent water layers were generated and the 

annual time-series used to calculate a three-point model of inter-annual dynamics for 

deriving change categories. The resulting inter-annual dynamics map enables the 

viewing of mapped changes and their intensity (www.glad.umd.edu/dataset/global-

surface-water-dynamics) (Figure 3.5). This map extends beyond the results of 

previous studies in that it characterizes eight different stable and dynamic classes in a 

continuum and from all years rather than just bi-temporally based on only the start 

and end dates. Given that the area that experienced multiple transitions between 

persistent water and persistent land was over four times larger than the area with 
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monotonic gain or loss, taking all years into account when mapping changes is critical 

for derivative studies that will use the water dynamic maps and/or area estimates.  

In the previous chapter it was found that pure water and land pixels were 

identified with high accuracy within a single month (96.9 (±0.9)%  user’s accuracy 

and 99.0 (±0.3)%  producer’s accuracy), but there was greater classification error of 

mixed pixels (70.9 (±1.6)%  user’s accuracy and 66.0 (±3.7)%  producer’s accuracy). 

This extends to the inter-annual dynamics map and users should be aware that while 

core change pixels should be viewed with high confidence, edge and isolated pixels 

are more likely to be mapped inaccurately. Additionally, the dynamic classes have 

much lower accuracies than the permanent land and water classes. 

3.5 Conclusion 

This study presents the first set of area estimates for global open surface water 

extent and change that follow good practice guidance for area reporting (Eggleston et 

al., 2006; Olofsson et al., 2014; Penman et al., 2016; Stehman, 2013) as well as that 

use all Landsat imagery for the entire monitoring period to classify seven different 

temporal dynamics. We establish the necessity to evaluate time-series data through 

the entire period given that the area that transitioned multiple times between land and 

water inter-annually was four times larger than the area of unidirectional loss or gain. 

The maps produced in this study provide detailed visualizations of inter-annual 

surface water dynamics using the entire Landsat archive 1999-2018 that enable 

assessment of changes through the past 20 years. This analysis could be extended 

back to 1984 for regions that were regularly imaged from 1984-1998 such as the 
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United States and Australia. Map accuracy is high for permanent land, permanent 

water, and water change as a single theme, with considerably lower accuracies for 

individual water dynamics. The presented Landsat-based method will continue to be 

updated, with the current map products available through 2020, and is available for 

download at www.glad.umd.edu/dataset/global-surface-water-dynamics.   
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Chapter 4: Global seasonal inland water and ice dynamics 

 

Abstract 

Freezing temperatures and seasonal precipitation cause inland open surface 

water extent to vary dramatically through the year at both local and global scales. 

Though ice onset and melt patterns of inland waters have a significant impact on 

climate, and periodic inundation of floodplains is critical to natural ecosystem 

functioning, global seasonal dynamics of water and ice extent have not been well 

quantified. Here, we present the monthly areas of water and ice for 2019 with 

associated uncertainties divided into the areas of permanent and seasonal waters and 

into those that freeze over and those without ice presence. A probability-based sample 

of reference data was created from all 2019 Sentinel-2 observations for selected 

sample pixels together with 3m PlanetScope data. From this dataset, we find that 64% 

of permanent water freezes over, totaling 1.97 (±0.21) million km2, and 1.13 (±0.19) 

million km2 remains liquid all year. Because of the vast area of freeze, June had the 

most open surface water with 3.91 (±0.19) million km2 and January had the least with 

1.60 (±0.21) million km2. Seasonal water that never has ice cover fluctuates between 

a January low of 0.31 (±0.10) million km2 to double the area in July (0.63 (±0.15) 

million km2). In total, 4.86 (±0.16) million km2 had water presence at some point 

during the year. With this reference set we assessed the seasonal accuracy of the 30m 

Landsat-derived water layers of Pickens et al. (2020), and found an aggregate 

monthly user’s accuracy of 88 (±2)% and producer’s accuracy of 83 (±2)%, showing 
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the potential to monitor water and ice dynamics spatially explicitly. Sentinel-2 

provides an opportunity to map surface water and ice dynamics at fine spatial and 

temporal scales moving forward, and the Landsat mission enables potential 

assessment of long-term changes. 

4.1 Introduction 

Local and global hydrologic systems change dramatically through the year, 

with the annual freeze and thaw of the boreal biome resulting in dramatic river flow 

variation, and the annual progression of the intertropical convergence zone dictating 

seasonal inundation of tropical wetlands (Mitsch et al., 2010).  Floodplain inundation 

is critical to ecosystem functioning (Poff et al., 1997) and areas of seasonal water are 

biodiversity hotspots, particularly for migrating species (Haig et al., 2019). Many 

wetlands are characterized by seasonal water pulses (Odum et al., 1995), and are 

among the most valuable ecosystems as centers for high biodiversity, carbon storage, 

pollution filtering, and flow regulation (de Groot et al., 2012). High latitude lakes and 

rivers cover a vast area with ecosystem services varying between the open water 

summer months and the ice-covered winter months, and including biogeochemical 

cycling (Wik et al., 2016), habitat provisioning (Vincent et al., 2011), and cultural 

services (Knoll et al., 2019). While the functioning is different between frozen and 

open water, few global studies have measured the timing and duration of these 

transitions (Klein et al., 2017; Xiao Yang et al., 2020), and there is no global data 

mapping this transition at medium to high resolution and no monthly area estimates 

of inland surface water and ice dynamics. Measuring these dynamics will enable a 
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better understanding of the current state and the ongoing and future impacts of 

climate change. 

Several products map water dynamics at global scale, most notably Pekel et 

al. (2016) and Pickens et al. (2020), which provide dense time-series analysis of 30m 

Landsat multispectral data. Both of these studies primarily evaluated inter-annual 

open water extent dynamics, ignoring ice cover, but also mapped seasonal water 

cover. The only global area estimates that align with international reporting standards 

by providing uncertainty bounds are those by Pickens et al. (2020), producing area 

estimates of permanent water, five inter-annual change types, and stable seasonal 

water. However, this estimate of stable seasonal water was only a measure of the area 

with a mean annual occurrence percent of 10-90% of the ice-free period and inter-

annual variability less than 50%, and did not provide estimates of the seasonal 

distribution of open surface water. Additionally, both of these studies ignored the 

frozen portion of the year with Pickens et al. (2020) removing snow and ice 

observations from the time series on a per-pixel basis and Pekel et al. (2016) 

excluding all data from the northern winter down to 30°N for December. 

There are other studies that more closely examine seasonality, but lack either 

area estimates or global coverage. Klein et al. (2017) map seasonality globally as a 

percent of the entire year with 250m MODIS data, but do not provide area estimates 

or global seasonal distributions. Che et al. (2019) provided regional scale area 

estimates of the seasonal water cover of central Asia with associated uncertainty 

through a Landsat-based combined mapping and sampling approach.  
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The Sentinel-2 mission provides an additional public data source that is 

suitable for water monitoring moving forward. Sentinel-2A was launched in June 

2015 and Sentinel-2B in March 2017 and full acquisition began in April 2017. While 

this limits its use for historical studies, it is better equipped than Landsat to evaluate 

seasonality in recent years due to its 5-day revisit interval at the equator and with 

much greater frequency toward the poles. Due to the increasing swath overlap of its 

orbits, twice as many unique observations are collected for every point at 56°N, 3x 

more at 67°N, 4x more at 72°N, and everywhere above 75°N is imaged daily during 

the period of the year with daylight at the time of overpass (mean local solar time of 

10:30am). Visible and near-infrared bands are collected at 10m resolution with other 

bands collected at 20m and 60m. Given that the normalized difference ratio of NIR 

and green has been shown to be so effective for mapping surface water (McFeeters, 

1996; Pickens et al., 2020; Tulbure et al., 2016), this dataset provides an opportunity 

to better capture small water bodies and to further explore the question of scale and 

heterogeneity of open surface water. While there are some national and subnational 

Sentinel-2 surface water dynamics studies (Carlson et al., 2020; Wieland and 

Martinis, 2020; Xiucheng Yang et al., 2020), there are no existing Sentinel-2 global 

products of any kind and no global surface water studies that have utilized this 

dataset. 

In this study, we present the first global area assessment of seasonal inland 

open surface water dynamics together with the timing and duration of ice cover over 

water bodies through a combined mapping and sampling approach. Utilizing the 

water maps of Pickens et al. (2020) and a probability-based sample, we estimate the 



 

 

78 
 

area and associated uncertainties of open surface water and water body ice cover per 

month and as a fraction of the year according to good practice guidelines (Olofsson et 

al. 2014) and provide preliminary global 30m maps of ice cover. 

4.2 Methods 

To estimate the seasonal distribution of the global area of open surface water 

for 2019, a time-series of reference data was derived from visual interpretation of 

10m Sentinel-2 and 3m PlanetScope imagery within a stratified, random, one-stage 

cluster sample. In parallel, we created a monthly time series of water percent and ice 

cover from the 2019 water layers of Pickens et al. (2020) and the GLAD Analysis 

Ready Data (Potapov et al. 2020) to provide the associated spatial distribution of 

seasonal and permanent surface water. The reference data set was also used to 

evaluate the monthly and annual performance of these layers. 

4.2.1 Sample-based assessment 

A total of 99,727 10m pixels were evaluated in a stratified, random, one-stage 

cluster sample of reference data to assess accuracy and to enable area estimation 

according to good practice guidelines (Olofsson et al., 2014). The mean of the 2017-

2019 annual percent water layers from Pickens et al. (2020) was used as the 

stratifying layer (Figure 4.1). Although only 2019 is assessed in the reference data, a 

three-year period was chosen in order to include areas of seasonal water that may 

have had low observation density or low water presence in 2019. Three strata were 

selected: stable water presence (≥90%), seasonal water presence (<90% and >5%), 

and stable land (≤5%). This strata map was projected into a 30m map per UTM zone 
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that aligns with the native Sentinel-2 data, resulting in an equal area population of 

clusters corresponding to all continental 30m grid cells. Each 30m grid cell represents 

a cluster of nine 10m Sentinel-2 pixels. 

 

 

Figure 4.1: Stratification represented in geographic projection. 
 

Fifty clusters were selected for each of the stable strata and 100 clusters for 

the seasonal stratum. Clusters were selected through first selecting a random point on 

the Earth’s surface according to the method described in Hansen et al. (2020), 

checking what stratum that point belongs to within the corresponding UTM zone 

map, and adding it to the final sample set if the desired number of samples had not yet 

been reached in that stratum. All overlapping 2019 Sentinel-2 images were 

interpreted for each selected cluster, with a median of 110 dates per cluster. For each 

image, the nine sampled pixels were manually labelled land, water, cloud, haze, 

shadow, snow/ice, or bad (indistinguishable cloud, snow, or shadow or a corrupted 

image) through visual interpretation. For clusters with a mix of land and water in a 

single observation, 3m PlanetScope data was referenced to more accurately assign a 
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majority label to each 10m pixel. Ice, cloud, haze, and shadow were all labeled at the 

cluster level. Months with no images available that had a preceding and following 

calendar month with ice identified were labeled ice in the time-series. Due to the full 

systematic acquisition of Sentinel-2 imagery, the only areas and months with no 

images available are during the dark winter months of high latitudes when the sun has 

not risen by the time of the satellite overpass. Figure 4.2 shows the Sentinel-2 and 

PlanetScope data evaluated for one of the clusters. 

The result is a dense time-series of water, land, and ice labels with a median 

of 44.5 clear observations. From this we calculated percent water for each month as 

the number of water labels divided by the sum of all clear observations. Annual 

percent water was derived as the mean percent water of all the months with data. 

Clear observations were defined in two different ways: by only land and water 

observations, and by land, water, and ice observations. The former provides the 

percent of the period in which open surface water can be observed (the ice-free 

period), and the latter the absolute percent of the year that open surface water exists. 

In the latter case, an ice time-series was derived from the reference data with all 

months with ice in ≥50% of clear observations. A total of 186,435 10m observations 

were evaluated.
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Figure 4.2: Example of Sentinel-2 and PlanetScope data for a selected cluster of 10m sample pixels centered at 
173.3305011°W, 64.2007883°N. Since there is a mix of land and water in the 30m cluster, this sample was interpreted using 
the 3m Planet labs data. The 30m cluster is identified with a red outline in the Sentinel-2 image and the 10m pixels with a 
yellow outline in the PlanetScope image.
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Areas were estimated according to standard stratified one-stage cluster 

protocol. To calculate the area of water per month, the reference monthly water 

percent was first thresholded at ≥50% per month for each 10m pixel to form a binary 

reference classification; and to calculate the annual area for a given threshold T, the 

reference annual percent was thresholded at ≥T%. This binary data of the 10m 

secondary sampling units within each cluster u (30m unit) was then summed and 

divided by the number of 10m pixels with data within the cluster to create the cluster 

variable yu that equals the proportion of the cluster that was the target class. This 

proportion, yu, then serves as the variable for estimating the area, �̂�𝐴, for the given 

threshold (adapted from equation (3) of Stehman (2014)):  

�̂�𝐴 = �𝑦𝑦�ℎ𝐴𝐴ℎ

𝐻𝐻

ℎ=1

 

where 𝑦𝑦�ℎ = ∑ 𝑦𝑦𝑢𝑢/𝑛𝑛ℎ𝑢𝑢∈ℎ , and 𝑛𝑛ℎ is the number of sampled clusters in stratum h, and 

Ah is the area of stratum h. Since all the sub-units (10m pixels) from a cluster are 

included in one-stage cluster sampling, the variance estimator used to estimate the 

standard error (SE) is based only on the cluster level data, yu:  
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where A is the total area of all strata and 𝑠𝑠𝑦𝑦ℎ2 = ∑ (𝑦𝑦𝑢𝑢 −   𝑦𝑦�ℎ)2/(𝑛𝑛ℎ − 1)𝑢𝑢∈ℎ  (adapted 

from equations (25) and (26) of Stehman (2014)). 

Reference data were also calculated at 30m resolution by assigning to each 

observation the value of the majority class of the 10m labels. If no class covered ≥5 

of the nine 10m pixels, the observation was marked as no data. Areas were then 

(3) 

(4) 
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estimated from this data in the same manner, except, as there are no longer subpixel 

proportions, yu is either 0 or 1 based on the threshold. 

4.2.2 Landsat time-series 

We combined the 2019 water layers of Pickens et al. (2020) with the ice and 

no data flags from the GLAD Analysis Ready Data (ARD) (Potapov et al., 2020a) to 

create a preliminary integrated global monthly dataset of water and ice extent, and 

used the reference data to evaluate the performance. The data of Pekel et al. (2016) 

are not suitable for this study as the northern winter is not mapped, with December 

mapped only ≤30°N. The 2019 water layers consist of monthly water percent and 

annual water percent calculated by the number of water observations divided by the 

sum of land and water observations. Pickens et al. (2020) filtered the input to the 

annual water percent by removing up to three outliers from permanent land or water 

and months with <5 observations over the 20 years, while the individual month layers 

were left unfiltered. To create a more stable monthly dataset, we used this 2019 

annual water percent to filter out these same anomalous water or land flags from the 

monthly water percent maps. Given that there is not an ice label embedded in this 

product, we combined it with the flags within the quality assurance layer of the 16-

day Landsat GLAD ARD (Potapov et al., 2020a) to add ice cover to the time-series. 

Each 16-day interval was assigned to the month with the most days in common. 

There is an ice/snow flag in the ARD. However, images are not processed for the 

intervals and 1° tiles that had >50% snow cover on the tile-scale based on the average 

2001-2019 monthly snow cover from MODIS/Terra Snow Cover Monthly L3 Global 

0.05Deg CMG, Version 6, (https://nsidc.org/data/MOD10CM/versions/6). Images are 
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processed where available for all other periods and locations. Thus, we converted the 

ARD time-series into a monthly labels of ice, other processed data, and no processed 

data. Since all available Landsat scenes were classified in Pickens et al. (2020), a no-

data value in that dataset represents either no image was available that month or that 

there were only ice, cloud, haze, or shadow observations. These months with no land 

or water observations in the Pickens et al. (2020) data were labeled ice if there was 

ice flagged in the ARD dataset, or there was (1) no processed ARD data, (2) evidence 

of ice in the time-series by an ARD flag or by ≥3 months with no processed data for 

regions ≥40°N, and (3) an adjacent month that matches these criteria or was flagged 

as ice. The final monthly time-series consisted of the 0-100% water labels of Pickens 

et al. (2020) with the no-data months either labeled ice as inferred from the ARD or 

remaining as no-data. 

Using this combined dataset, we mapped the percent of the entire year with 

open liquid water presence, the number of months with ice cover over areas of 

seasonal or permanent water, and the months of ice onset and melt. Months that were 

labeled ice in the time-series without an explicit ice flag in the ARD and that are 

adjacent to a month with land or water observations are given the additional label of 

shoulder month. While more often truly having ice presence, these shoulder months 

have the greatest amount of uncertainty, and accuracies are computed with and 

without these months. 

Accuracies were estimated at 30 m for both the monthly water and ice maps 

and the annual water maps using a ratio estimator (Stehman, 2014). Since the 

reference data were converted to 30 m at the observation level, the reference data was 
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then assigned as “water” or “no water” and “ice” or “no ice” in the same manner as 

the 10 m data as described in Section 2.1.3. For the map data, months that were 

labeled ice in the time-series without an explicit ice label in the ARD and that were 

adjacent to a month with land or water observations are here referred to as shoulder 

ice months with no data. While more often actually having ice presence, these 

shoulder months have the greatest amount of uncertainty, and accuracies were 

computed both with them as ice and as no data. For each of these cases, the same 

rules as for the reference data were then used to attribute water in the monthly and 

annual map data. As ice was already “ice” or “no ice” in the monthly map data, no 

additional thresholding was necessary. For both user’s and producer’s accuracies, yu = 

1 if both the reference and map labels were of the target class for a 30 m cell u, 

otherwise, yu = 0. For user’s accuracy, xu = 1 if the map label of cell u was of the 

target class, else xu = 0; for producer’s accuracy, xu =1 if the reference label of cell u 

was of the target class, else xu = 0. User’s and producer’s accuracies were then 

computed according to equation (27) of Stehman (2014). 

𝑅𝑅� = ∑ 𝑁𝑁ℎ𝑦𝑦�ℎH
ℎ=1

∑ 𝑁𝑁ℎ�̅�𝑥ℎH
ℎ=1

                                                                                                                     

where 𝑦𝑦�ℎ and �̅�𝑥ℎ were the stratum-specific sample means of 𝑦𝑦𝑢𝑢 and 𝑥𝑥𝑢𝑢. The variance 

estimator used to estimate the standard error (SE) is:  
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where 𝑠𝑠𝑦𝑦ℎ2 = ∑ (𝑦𝑦𝑢𝑢 −   𝑦𝑦�ℎ)2/(𝑛𝑛ℎ − 1)𝑢𝑢∈ℎ ; 𝑠𝑠𝑥𝑥ℎ2 = ∑ (𝑥𝑥𝑢𝑢 −   �̅�𝑥ℎ)2/(𝑛𝑛ℎ − 1)𝑢𝑢∈ℎ ; and 

(5) 

(6) 
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𝑠𝑠𝑦𝑦ℎ2 = ∑ (𝑦𝑦𝑢𝑢 −   𝑦𝑦�ℎ)(𝑥𝑥𝑢𝑢 −   �̅�𝑥ℎ)/(𝑛𝑛ℎ − 1)𝑢𝑢∈ℎ  (equations (26), (28), and (29) of 

Stehman (2014)). 

To assess the accuracies of all the monthly maps combined, we again employ a one-

stage cluster. However, instead of a spatial cluster of 10 m cells, the 30 m cell of each 

month becomes a secondary sampling unit and all months together form a temporal 

cluster. In this case, yu equals the number of months with target class agreement for 

cluster u. For user’s accuracy, xu equals the number of months where the map label 

was of the target class for cluster u; for producer’s accuracy, xu equals the number of 

months where the reference label was of the target class for cluster u. Accuracies and 

associated standard errors were then estimated with the same formulas as for an 

individual month, here termed aggregate user’s and aggregate producer’s accuracies. 

4.3 Results 

4.3.1 Area estimates 

Almost two-thirds of the area of permanent water (defined as areas never 

having land) freezes over in the winter months for 2019, and truly permanent, year-

round open water only comprises 23% of total area with open water presence (Fig. 

4.3). June has the largest area of open surface water with 3.91 (±0.19) million km2 as 

well as the largest area of seasonal water that freezes (0.42 (±0.11) million km2), 

reflecting the high flows and high water table after the spring melt of the northern 

hemisphere. January has the smallest area of open water with only 1.60 (±0.21) 

million km2. While 1.76 (±0.19) million km2 have seasonal water presence at some 
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point in the year, the largest monthly area of seasonal water is only 1.00 (±0.17) 

million km2 in June. However, April proportionately has the most seasonal water with 

70% of water being permanent and October has proportionately the most permanent 

water (83%). Of regions that do not freeze, it is evenly split between permanent water 

(51%) and the total area of temporary water presence (49%), but for any given month, 

permanent water is 62% (July) – 79% (January) of existing open surface water that 

does not freeze. February has the largest area of ice cover over water bodies with 1.90 

(±0.22) million km2 over stable water and 0.59 (±0.13) million km2 over regions with 

temporary water (2.49 (±0.25) million km2 total) (Fig. 4.4).  

 

Figure 4.3: Area of open surface water surface water per month (km2). The regions 
with diagonal lines represent +/- one standard error (SE) of the single class total 
beneath it. The uncertainty associated with the total area of water per month is 
represented by +/- one SE. 
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Figure 4.4: Area of ice cover per month (km2) over permanent water bodies and areas 
that had seasonal water presence. The regions with diagonal lines represent +/- one 
standard error (SE) of the single class total beneath it. The uncertainty associated with 
the total area of ice per month is represented by +/- one SE. 
 

The sample-based estimates show the month with the largest area of melt of 

ice over permanent water bodies is May, and the month with the largest area of freeze 

onset is November (Fig. 4.4). Using the Landsat time-series for 2019, we mapped the 

month of melt and of ice onset for all permanent water bodies and found the month 

with the largest area of melt is June (24% of total melt area), followed by May (23% 

of total melt area), and the month with the largest area of ice onset was also 

November with 45% of the total area of ice onset. The mean month of melt and of 

freeze can be seen at 1° scale in Figure 4.5.   
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Figure 4.5: Number of months with ice cover, month of ice melt, and month of freeze for permanent water bodies ≥40°N 
aggregated to roughly 5km resolution.
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4.3.2 Accuracy 

The monthly maps of Pickens et al. (2020) had aggregate user’s and 

producer’s accuracies of 92 (±2)% and 89 (±2)%, respectively, with no seasonal bias, 

in the case of ice being treated as no-data as it was by Pickens et al. (2020). When ice 

is considered valid non-water data (in either the reference or map), there are 

aggregate user’s and producer’s accuracies of 89 (±2)% and 83 (±2)%, respectively. 

Here the northern winter months have lower accuracies, particularly more omission 

(Fig. 4.6). If we refine the time-series so that the shoulder months without ice 

explicitly identified are labeled instead no-data as ice melt or onset may or may not 

have happened in that month, there is a reduction of omission errors with aggregate 

user’s and producer’s accuracies of 89 (±2)% and 86 (±2)% with the primary 

improvement within October and November. These omissions in the shoulder months 

are cases where there was no data in the Landsat time-series directly between months 

of ice and water/land and thus labeled ice, but there was water identified in the 

reference data of that month. However, there is still lower accuracy within the months 

with greater ice presence. 

On the annual scale, the shoulder months with no data in the GLAD ARD and 

Pickens et al. (2020) also play a significant role in defining the accuracies as shown in 

the comparison of the two sets in Figure 4.7. Omission is much higher than 

commission in both sets, but when the shoulder months are defined as no-data, this 

gap shrinks. The precision of the percent of the year values is also a function of the 

number of clear observations and of clear months. The Landsat record had a median 

of 14 clear water and land observations during 2019 for the sample locations, 
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whereas, the Sentinel-2 reference data had a median of 35 clear water and land 

observations and the Planet reference data had a median of 40.  

Monthly ice had aggregate user’s and producer’s accuracies of 85 (±2)% and 

88 (±2)% when shoulder months with no data were treated as ice. If the shoulder 

months are treated as no-data, the accuracies go up to 93 (±2)% and 87 (±2)%, 

respectively. Accuracies were highest for January-April, and lowest for June and 

October, however, these latter months contribute little to the aggregate accuracies 

because of the small area of ice cover. 

  
Figure 4.6: Accuracy of monthly water and ice maps. 
 

  
Figure 4.7: Accuracy of binary maps of water presence ≥X% of the year.  
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4.3.3 10m vs 30m reference data area estimates 

Monthly water area computed with 30m reference data was very similar to 

when computed with 10m reference data, resulting in a median monthly area 

estimates of 0.3% larger and a range of 1.7% smaller to 3.3% larger. The standard 

errors were uniformly larger when computed at 30m with a median increase of 4.1% 

and a maximum increase of 12.8%. Very similar results were found at the annual 

scale with area estimates ranging from 1.8% smaller to 3.0% larger and a median 

increase of 0.2%, and standard errors all larger with a range of 1.1% - 12.4%. Thus, 

while assessing the reference data at 10m does not change the area estimates in a 

uniform way, with either more or less water detected, there estimates have greater 

precision and can be assumed to then provide better estimates. In both the monthly 

and annual sets, the 30m SEs had the largest percent increases when the estimated 

area was larger, e.g. the northern summer and low annual percent. 

Based on 5m RapidEye imagery, Pickens et al. (2020) found that 10.9 

(±1.9)% of global inland surface water is within mixed pixels at Landsat scale. Using 

the same dataset, we estimate 3.3 (±0.6)% of global inland is within pixels with <50% 

water cover at Landsat scale and should be excluded based on our mapping definition, 

and 7.6 (±1.3)% is within pixels with ≥50% and <100% water cover and will be more 

difficult to map accurately. The percent of change calculated in the 10m and 30m 

estimates provide an empirical example of the effect of this, and all 30m estimates for 

this study are within 3.3% of their 10m counterparts and have a mean absolute 

difference of 1.0% for the monthly and 0.9% for the annual estimates. However, these 

10m estimates presented here may not represent the full area of fine-scale water 
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features since much of this will be just a minute fraction within the land stratum, but 

the 5m RapidEye sample should account for most of the surface water down to that 

resolution because of the utilization of 20x20km reference maps and the degree of co-

location at that scale. Thus, while there are gains from the 10m, it will be application 

specific whether this greater degree of precision is needed. 

4.4 Discussion 

4.4.1 Water and ice dynamics 

The World Meteorological Organization (WMO) identified lake area and lake 

ice extent as essential climate variables (ECV) in 2006, and further refined this in 

2008 by specifying daily resolution and 20m and 300m spatial resolution 

respectively. While we still have not met this benchmark, our results are the first 

global estimates of seasonal water and water ice extent broken down by month and by 

percent of the year. Given that over half of the world’s inland surface water freezes 

over during the northern winter, the estimates of permanent water derived from only 

the ice-free portion, as has been done previously (Pekel et al., 2016; Pickens et al., 

2020), will be more than double the area with open surface water for all twelve 

months (Fig. 4.8). As indicated by the WMO, it is important to distinguish between 

frozen and liquid surface water because the ecosystem services provided by the two 

states are vastly different with changing habitats (Vincent et al., 2011), transportation 

networks (Stephenson et al., 2011), and climate factors such as albedo and emission 

rates (Wik et al., 2016). 
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Figure 4.8: Comparison of the area estimates of annual water extent for varying 
temporal percent thresholds for two different annual aggregation methods. The 
stacked area graph represents the extent of open liquid water present ≥X% of the 
entire year. The orange line represents the extent of water present ≥X% of the portion 
of the year without ice (ice is considered no-data), with the area estimate of 100% 
water equal to the combined area of permanent liquid water and permanent water that 
freezes. There is a widening difference between the two estimates, such that the 
previous practice of ignoring ice results in an estimate of 100% water that is 2.5x 
larger than the area of permanent liquid water. 

 
Ice is the dominant driver of the seasonality of global water area (Fig. 4.3). 

However, ice cover phenology can differ on the scale of months among neighboring 

water bodies of varying size and type, as shown in Figure 9. Several previous 

estimates of ice phenology have been modeled by temperature constraints such as the 

0°C isotherm model of Brooks et al. (2013), however these will have bias among 

different water body sizes and types. A recent study by Xiao Yang et al. (2020) 

mapped the seasonality of river ice at the Landsat scene scale and developed an 

empirically based model from the prior 30 day mean Surface Air Temperature (SAT). 

This provides greater accuracy not only because of the more accurate temperature 

effect monitoring, but also due to the restriction of only rivers with width ≥90m. A 

global 30m, or even better, 10m dataset will enable an analysis of the differential 
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behavior of rivers and lakes of various scales, which could be modeled with climate 

data to have better indications of future change. There is already a documented 

increase in the ice-free season (Šmejkalová et al., 2016; Xiao Yang et al., 2020) with 

projections estimating a 15-50 day increase by late century (Dibike et al., 2011; 

Prowse et al., 2011). Wik et al. (2016) estimated that a 20-day increase would cause 

an 24-50% increase in methane emissions from lakes above 50°N. However, they 

also found high variability in emissions between water body types. High spatial and 

temporal resolution maps of water and ice extent and change together with water 

body typologies could greatly improve these estimates and our understanding of 

climate interdependencies. 

 
Figure 4.9: Landsat derived month of ice melt over permanent water bodies for 2019 
with many small lakes melting two months earlier than the large lakes. Centered on 
125.5°W, 66.0°N.  

The Landsat derived maps of ice dynamics presented here provide a proof of 

concept for further mapping efforts (Fig. 4.5, Fig. 4.9). Given that some of the ice 
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labels are inferred from data availability and the MODIS snow cover product rather 

than being mapped directly, there is the most uncertainty for shoulder months without 

an explicit snow identification. Water ice phenology and land snow phenology can be 

significantly different. Ice is dependent on longer temperature patterns and on the 

latent heat of the water bodies. Snow is precipitation dependent and can come very 

quickly after below freezing temperatures or be delayed. The depth of the snowpack 

affects how soon the snow melts, but often there is a greater lag for water body ice 

thaw. Due to this potential temporal mismatch in ice and snow phenology and how 

our time-series is derived together with better imagery during the melt season due to 

higher sun angles, we are more likely to directly map ice in the thaw season rather 

than freeze season, as can be seen in the greater precision of the month of melt 

compared to the month of freeze in Figure 4.5. Additionally, due to not having a 

count of ice observations in a month, if there was water or land presence the month 

was labeled with the corresponding water percent value. Despite the ambiguity of 

labeling ice in the Landsat time-series, the maps have reasonable accuracies with 

aggregate monthly water user’s and producer’s accuracies of 88% and 83%, and 

aggregate monthly ice user’s and producer’s accuracies of 85% and 88%, 

respectively. These maps could be improved if ice was directly classified from the 

Landsat imagery, and the timing could be further improved by utilizing Sentinel-2 

imagery.  

However, both the water and the ice area estimates at the monthly and annual 

time scales are derived solely from the interpreted Sentinel-2 and PlanetScope 
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reference data. This means that any ambiguity in labeling the Landsat time-series 

does not affect these estimates.  

4.4.2 Seasonal surface water 

Seasonal waters are also significant, encompassing 16-28% of open surface 

water for any given month. Seasonal water is defined as locations with land and water 

presence during the year. Considering the entire year, 1.76 (±0.19) million km2 had 

seasonal waters at some time. This is over double the estimate of Pekel et al. (2016) 

for October 2014-October 2015. Pekel et al. (2016) defined seasonal water as at least 

one month not having water, which results in a minimum threshold of 8% of the year. 

Here we found that the area with seasonal water ≥10% of the year totaled 1.37 

(±0.18) million km2, 69% larger than the estimate of Pekel et al. (2016), though this 

does not exclude seasonal water that only is land for less than a month. Additionally, 

it is significantly larger than the area of stable seasonal water reported by Pickens et 

al. (2020), but that estimate only accounted for areas with inter-annual variability of 

half a year or less, and many areas of seasonal water can have significant year to year 

variation. Most seasonal waters are found in natural wetlands, floodplains, or crop or 

mineral extraction land use.  

In a synthesis of over 320 case studies, de Groot et al. (2012) estimated the 

yearly value per hectare of coastal wetlands at $193,845 and of inland wetlands at 

$25,682, five times more than any other non-coastal terrestrial environment, followed 

by tropical forest valued at $5,264. Rivers and lakes are estimated the next most 

valuable at $4,267, though in a similar study by Costanza et al. (2014) rivers and 

lakes were valued instead at $12,512 with other ecosystem values remaining 
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approximately the same. While these are not intended to be market prices, they 

connote the value of the ecosystem service benefits. Regulating services, particularly 

of waste treatment, regulation of water flows, and disturbance moderation, rank as the 

most valuable ecosystem services of wetland systems along with providing habitat for 

biodiversity.  

Floodplain inundation is critical to the ecological integrity of river ecosystems 

(Poff et al., 1997). However, almost half of our river systems are moderately to 

severely fragmented by human-built impediments (Grill et al., 2015). While for some 

rivers, much of the inundation will be under vegetation cover, and thus invisible from 

above, for other rivers, such as the Ob, Parana, or Zambezi, this critical inundation 

can be monitored (Pickens et al. 2020, Pekel et al. 2016). Monitoring is of particular 

use to evaluate the impact of flow-altering dams and levees either built during the 

monitoring period or under changed management practices. 

4.4.3 Future monitoring 

Landsat may provide sufficient data to evaluate changes in inland surface 

water ice presence and timing over the last 20 years. While the monthly water and ice 

areas summed from the monthly Landsat maps have a similar general pattern and 

magnitude as the sample-based area estimates, there are also significant differences 

on the month level (Fig. 4.10). The area estimates derived from the 30m reference 

data were all within 3% of the 10m area estimates, indicating that if ice and water are 

properly labeled the dynamics could be derived directly from Landsat data. Before 

1999 there was not a systematic global acquisition of scenes, resulting in long data 

gaps and some regions such as Siberia not being imaged until 1999 (Pekel et al., 
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2016; Wulder et al., 2016), prohibiting long-term analyses. Since this study benefited 

from the higher acquisition rates since the launch of Landsat 8 in 2013, wall-to-wall 

mapping of the ice phenology of 1999-2012 will be more limited, and in all cases, 

areas should be estimated with a statistical sample. 

The increased temporal resolution of the Sentinel-2 mission enables near-daily 

monitoring of the high latitudes. We found that there were 2.5 times more clear land 

and water observations in the Sentinel-2 times-series compared to Landsat for the 

reference samples. Together with the 10m spatial resolution of the visible and near 

infrared bands, this offers the potential to meet the ECV standards of the WMO for 

2017 forward. The temporal domain would be further enhanced by the integration of 

Landsat and Sentinel-2 observations. Such a capability would enable a 3-5 day revisit 

interval for the tropics and increase the probability of capturing cloud-free 

observations of short duration flood events while providing precise quantification of 

seasonal hydroperiods. Additionally, while the area estimates derived from the 30m 

reference data are very close to those obtained with the 10m reference data, the full 

scale of water bodies smaller than 30m is not yet quantified due to the stratification 

and sampling strategy and the small fraction of the land surface they cover. With 

global Sentinel-2 time-series maps of surface water presence at 10m, we could further 

answer how much has remained unmapped and with greater accuracy map small 

water bodies. This is particularly valuable given the outsized importance of small 

water bodies for biodiversity, water regulation, and geochemical cycles (Biggs et al., 

2017; Downing, 2006). 
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Figure 4.10: Map based areas from the Landsat time series. Area of no data for 
permanent water classes is most likely water, however, in the seasonal water classes, 
the no-data months could be water or land.  
 

4.5 Conclusion 

Global hydrology is constantly in flux. The global area of surface water in 

June is 2.5 times that of January. While 4.86 (±0.16) million km2 had water at some 

point during 2019, only 1.13 (±0.19) million km2 was truly permanent without 

freezing. The rest experienced either a water-land or water-ice transition, with all 

such changes impacting climate and ecosystem functioning. Significant progress has 

been made mapping interannual change (Pekel et al., 2016, Pickens et al., 2020), but 

the results presented here are the first global estimates of monthly water and surface 
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water ice presence with associated uncertainties. Landsat offers possibilities to 

evaluate changes in the timing of ice onset and melt over the past 20 years, and since 

2017, Sentinel-2 has offered unprecedented monitoring potential with 10m spatial 

resolution and a 5-day revisit rate at the equator and near-daily in the boreal. As we 

continue to modify the surface of the earth and the climate continues to change, 

improved quantification of inland surface water and ice change will provide insights 

into the impacts and feedbacks of climate and weather, and of land cover and land use 

change. 
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Chapter 5:  Conclusion 
 
 

5.1 Summary of contributions 

This dissertation presents the first set of area estimates for global open surface 

water extent and inter-annual and seasonal change that follow good practice guidance 

for area reporting (Eggleston et al., 2006; Olofsson et al., 2014; Penman et al., 2016; 

Stehman, 2013).  The results are also the first that employ all Landsat imagery for the 

entire study period. Seven types of inter-annual dynamics were mapped and estimated 

globally: permanent, stable seasonal, loss, gain, wet period, dry period, and ≥3 

transitions between water and land (Ch. 3). Sample-based area estimates showed that 

of the area with water at some point from 1999 to 2018, only 60.82 (±1.93)% was 

permanent, totaling 2.93 (±0.09) million km2. Unidirectional loss and gain 

represented a small portion with 1.10 (±0.23)% and 2.87 (±0.58)%, respectively. The 

area that transitioned multiple times between land and water inter-annually was more 

than 4x larger, accounting for 19.74 (±2.16)% of total water area and totaling 0.95 

(±0.10) million km2. This establishes the necessity to evaluate time-series data 

through the entire period to report trends of loss or gain as well as other dynamics. 

Much of the area of multiple transitions is seasonal water in any given year, and 

stable seasonal comprised an additional 15.69 (±2.07)% of 1999-2018 water area, 

defined as places with mean annual water presence 10-90% of a year and interannual 

variation <50%. Together, these seasonal waters are found primarily in floodplains 

and other natural wetlands, or in human land uses such as for rice cultivation or 

mineral extraction. 
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Providing a more in-depth investigation into the dynamics of seasonal waters, 

area estimates of the monthly distribution of surface water and ice were derived 

according to good practice guidelines for 2019 using a multi-sensor approach 

combining Landsat, Sentinel-2, and PlanetScope imagery together with elevation data 

(Ch. 4). This analysis is the first global study to combine water and ice dynamics at 

≤30m resolution. Results show that 63% of the area of permanent water, defined as 

areas with continuous water or ice cover, have ice cover for some duration. 

Correspondingly, June had the largest area of water with 3.91 (±0.19) million km2and 

January had the least with 1.59 (±0.21) million km2 due to the vast amount of surface 

water in the high-latitude northern hemisphere. 1.76 (±0.19) million km2 had seasonal 

water presence defined as having both water and land in the time-series. February had 

the maximum ice extent over permanent and seasonal waters with a total of 2.53 

(±0.24) million km2. To derive these estimates, 2017-2019 Landsat annual water 

percent layers from Chapter 3 were used to stratify 30m grid-cells into land, 

permanent water, and seasonal water and each 30m grid-cell was subdivided into nine 

10m pixels. All 2019 Sentinel-2 images were evaluated and labeled per sampled 

pixel; if there was both water and land presence within the sample unit for any date, 

3m data for every 5 days was obtained from PlanetScope and labeled. This enabled a 

subpixel accuracy assessment of the 2019 monthly Landsat water percent maps. 

Additionally, this study showed the potential advantages of using Sentinel-2 data, 

with its 10m spatial resolution and, more importantly, offering 2.5 times more clear 

observations through the year than the Landsat 7 and 8 time-series. In the boreal, 
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Sentinel-2 offers near-daily observations with weekly clear observations, enabling 

high spatial and temporal mapping of the freeze and thaw dynamics of ice cover. 

Undergirding these analyses of the Landsat time-series, Chapter 2 showed the 

accuracy of mapping water with the employed detection method at the month scale at 

5m resolution, with user’s and producer’s accuracies of 97.5 (±0.7)% and 97.7 

(±0.7)%, respectively. The 5m reference maps of open surface water from classified 

RapidEye imagery enable estimation of accuracy as a function of distance from the 

closest water-land boundary. This product was shown to have 96.9 (±0.9)% user’s 

accuracy and 99.0 (±0.3)% producer’s accuracy for pixels >30m from a boundary and 

70.9 (±1.6)% user’s accuracy and 66.0 (±3.7)% producers accuracy for pixels within 

the 30m of the land-water boundary. Handling of these mixed pixels is important as 

10.9 (±1.9)% of global inland water is within mixed pixels at Landsat resolution, as 

estimated with the 5m reference data. 

Together, this dissertation provides the most temporally dense area estimates 

of interannual and seasonal change at 30m resolution, and the maps produced in this 

study provide detailed visualizations of seasonal and inter-annual surface water 

dynamics using the entire Landsat archive from 1999 to 2020. These maps enable 

local and regional assessment of changes through the past 20 years and have many 

potential applications in ecological, LCLUC, and climate studies. The presented 

Landsat-based method will continue to be updated, with the current monthly, annual, 

and interannual map products available through 2020, and is available for download 

at www.glad.umd.edu/dataset/global-surface-water-dynamics.   
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5.2 Potential improvements and outstanding issues 

While high accuracies are obtained at the monthly scale, change was shown to 

be difficult to map, with much lower accuracies. This is due in part to not only having 

to accurately identify water and land, but also the timing and duration of changes of 

state of water or land. This is compounded by the fact that there are some land covers 

and water properties that are difficult to accurately map every time. There are 

classification issues with volcanic and other dark rock or debris-laden glacial flows 

labeled water, particularly if they coincide with cloud shadow. Very shallow waters 

or those with partial vegetation cover are sometimes classified as land. Mixed pixels 

are also a source of classification confusion. Due to this, persistent mixed pixels were 

often labeled as dynamic. Additionally, mixed pixels are inherent in change and many 

of the problematic classification cases are also present. 

In both Chapters 3 and 4, the time-series samples employed enabled area 

estimates of stable and dynamic classes with associated uncertainty, but these global 

estimates could be improved and have greater precision with a larger sample 

allocation. Additionally, a greater allocation of samples could enable regional 

estimation of stable and change extents. This could be done within both studies 

through selecting additional sample locations within the existing sampling designs. 

For national or regional reporting of the extent and change of open surface water, 

additional sample locations could be selected and interpreted for just that region.  

Through the process of evaluating the reference data for the seasonal 

assessment of Chapter 4, the importance of surface water ice became apparent. There 

is no ice flag embedded in the current set of maps, however, given that over half of 
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global surface water freezes over (Ch. 4), ice plays a critical role. In the classification 

that results in the water and land labels ice is also identified, but unfortunately, those 

labels were not saved. To visualize some of these dynamics in 2019, an ice label was 

retroactively given through a combined analysis with the GLAD Analysis Ready Data 

(ARD) Landsat (Potapov et al., 2020a). As shown in other studies (Prowse et al., 

2011; Wik et al., 2016), there are differential rates of ice onset and melt between 

different types and sizes of water bodies. Thus, a 30m map of ice dynamics would 

provide valuable additional data for forecasting the interactions with climate. In 

addition to mapping ice, I should have also labeled ice as I interpreted the 1999-2018 

time-series sample data. This would have illuminated the large impact of ice earlier 

and may have been able to show change or variability in ice patterns. 

While I repeatedly use the term global throughout this dissertation, the 

geographical scope is 56°S – 75°N, excluding Greenland, as has been done in other 

studies (Hansen et al., 2013; Potapov et al., 2020b; Ying et al., 2017). While this does 

not affect estimates for some land covers such as tree cover, it does have a marginal 

effect on water estimates and a much larger effect of estimates of water ice due to 

water bodies north of 75°N being frozen nearly the entire year. 

An additional caveat is that optical sensors such as the TM, ETM+, and OLI 

of Landsat and MSI of Sentinel-2 cannot penetrate through clouds or vegetation 

cover, thus preventing water from being mapped that is under these conditions. For 

this reason, the maps of this dissertation represent open surface water which is here 

defined as water on the ground surface that (1) is visible from above and not obscured 

by objects on or above the water surface, for example, forest, floating aquatic 
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vegetation, bridges, clouds, or ice and that (2) covers ≥50% of a pixel. It is unknown 

how much surface water is left undetected due to persistent monsoonal cloud cover or 

under persistent vegetation canopy such as in forested wetlands of the Amazon. 

5.3 Future research 

Many more questions arising from these studies remain unanswered - How 

would 10m maps with ≤5 day revisit aid further studies? What are the differences in 

ice phenology between water body types? What are the trends in ice phenology? 

What is the extent and duration of storm event floods? How much surface water is 

under vegetation canopy? What are the trends in various water quality measures? 

How do water and ice extent and quality interact with climate? How do water extent 

and quality interact with land cover and land use change? 

As has been discussed, Sentinel-2 offers an unprecedented opportunity to 

monitor open surface water from 2017 forward. There have been several regional 

time-series Sentinel-2 derived maps, but no global maps. While this dissertation has 

reduced the bounds of uncertainty, the question still remains how much additional 

water could be identified with a 10m map? Through classifying all the Sentinel-2 

observations into water, land, ice, and cloud or shadow, the seasonality and extent of 

water and ice could be shown at the greatest detail to date, and finally give a well 

quantified answer to this question. The higher resolution of Sentinel-2 would also be 

helpful for water body type identification and for small rivers and streams to be 

shown with more continuity. As testified to in Chapter 4 and shown in other research 

(Prowse et al., 2011; Wik et al., 2016), there is different behavior of ice for different 
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types of water bodies based on various properties such as size, depth, and flow. 

Additionally water body size and type affect ecological functioning, geochemical 

cycling, and other ecosystem services (Biggs et al., 2017; Raymond et al., 2013; Wik 

et al., 2016; Woolnough et al., 2009). 

As our climate continues to change, warming is particularly fast in the Arctic 

with lake ice projected to have a shorter season by 20 or more days by late century 

(Dibike et al., 2011; Prowse et al., 2011). There is a clear need to better document 

current ice phenology, to have a water body typology map, and to assess current and 

future ice dynamics. Chapter 4 showed the feasibility of monitoring water and ice 

with Landsat for the current period, but this can best be done with Sentinel-2 data for 

2017 forward. However, of particular interest would also be to retrospectively map 

surface water ice using Landsat to establish trends in ice dynamics. The feasibility of 

this for given scales remains to be seen. Landsat provides the longest total period of 

observation, but there are low acquisition rates before 1999 and some of Siberia was 

not imaged until 1998. Additionally, there are less acquisitions before 2013 and the 

operation of Landsat 8. Thus, some ice maps and sample-based assessments will be 

able to be made, but they may not have the temporal density to inform trends at the 

per-pixel level across the Arctic. Data may instead be able to be aggregated across 

regions to assess trends. However, there have always been dense observations over 

the USA and this may provide an opportunity to assess trends in Alaska back to 1985 

and make potential inferences for more of the Arctic. MODIS provides an additional 

data stream for 2000 forward, but the 250-1000m resolution of its bands limits it to 

larger water bodies. Given the relatively small scale of the shift in ice timing, 
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particularly relative to the revisit rate of Landsat, with estimates of the shift of freeze 

and break up in the Arctic over the last decades ranging from a shift of a day per year 

to a day per 8 years (Lopez et al., 2019; Prowse et al., 2011; Šmejkalová et al., 2016), 

a high degree of precision will be required, necessitating a larger volume of samples. 

To expedite disaster response, it would be conducive to have near-real-time 

maps of flood extent resulting from large storms. However, typically there is 

concurrent prevailing cloud cover that prevents observation with Landsat or Sentinel-

2 satellites. However, another ESA satellite mission, Sentinel-1, has C-band synthetic 

aperture radar (SAR) sensors which can penetrate clouds. Concurrent Sentinel-2 and 

Landsat observations could be used to train a global Sentinel-1 water detection 

model. Various regionally or locally derived models have been produced for flood 

extent monitoring (DeVries et al., 2020; Twele et al., 2016; Zhang et al., 2020). There 

are two Sentinel-1 satellites, together offering 6-day revisit data since 2016, with 

higher frequency toward the poles. Unfortunately, while the timing could line up 

between the satellite overpass and the maximum flood extent, in many cases, the 

overpass will not coincide and could be several days after when it would be useful. 

Two more Sentinel-1 satellites are planned, with Sentinel-1C scheduled for a 2022 

launch. On the optical side, Landsat 9 is scheduled for a September 2021 launch, and 

there are also two more Sentinel-2 satellites planned.  This will provide an optical 

sensor constellation of ≤30m resolution and near daily repeat. While Landsat and 

Sentinel-2 cannot see through the clouds, more observations provide more 

opportunities to image the land surface, and together with Sentinel-1 data will enable 

more accurate maps of flood extent in near-real time.  
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It is unknown how much surface water remains undetected due to forest 

canopy or other vegetation cover. While Sentinel-1 can record the ground surface 

through clouds, C-band SAR has limited penetration in forest canopies. L-band SAR 

has a greater capacity to penetrate vegetation, and inundation maps have been 

produced with it for the wet and dry seasons of the Amazon basin (Hess et al., 2015). 

However, while it may not be possible to map water under the canopy directly with 

C-band SAR, it may be possible to detect fluctuations within a delineated wetland 

extent. I am developing a wetland map using Landsat and topographical metrics 

indicating water accumulation (Bwangoy et al., 2010; Margono et al., 2014) with 

preliminary results contained in Hansen et al. (2021, submitted).  

In addition to extent, water quality is a critical issue. Both climate and land 

use impact water quality (Tong and Chen, 2002; Whitehead et al., 2009), with current 

relationships modeled with in situ or remote sensing data from local and regional 

studies. Landsat has been employed to model water quality parameters, including 

total suspended solids (TSS), chlorophyll-a, and surface temperature, though due to 

the empirical nature of many of the algorithms, they are often applicable only to 

particular regions (Wulder et al., 2019). While, several regional Landsat time-series 

analyses of water quality exist (Dang et al., 2018; Heege et al., 2014; Olmanson et al., 

2008), global assessments are needed to evaluate past impacts and future risks 

(UNEP, 2016). Water masks like those produced in this study provide a spatial target 

for developing water quality models and applying them through time. Within the 

Global Environment Monitoring System for Freshwater (GEMS/Water) program of 

the United Nations Environment Programme (UNEP), a global database of water 
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quality measurements containing data from 75 countries and 5,700 stations and 

totaling more than 7 million entries is publicly available and continues to be updated 

(https://gemstat.org/). With careful data cleaning, this dataset could be harnessed 

together with satellite data from Landsat and Sentinel-2 to develop reflectance-based 

models that could be applied globally and through time. In addition to the benefits of 

a global scale assessment, it could aid local water resource management, particularly 

in data poor regions. 

5.4 Conclusion 

Global hydrologic systems are continually in flux with increasing direct 

impacts from humanity and continuing future impacts from climate. Quantifying the 

dynamics of change in the past decades enables better understanding of impacts in the 

next decades. This dissertation provides a small piece of this task and provides 

insights into how to further do so. As our water resources become more strained in 

many parts of the world, new monitoring capacities and analyses of causes and effects 

will enable better management of water resources in balancing the needs of 

humankind and the maintenance of natural hydrologic systems. 
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Appendices 

 

A.I Area estimation of water dynamics classes 

Area was estimated for each of the eight classes of water dynamics as well as 

for aggregations of these classes with these reference data. For a given class, the 

global area W of that class is estimated by:  

                                                 𝑊𝑊� = ∑ 𝑊𝑊�ℎ
𝐻𝐻
ℎ=1                                                        (7) 

where H is the number of strata. The estimated area of the class within stratum h is 

𝑊𝑊�ℎ = 𝐴𝐴ℎ𝑝𝑝�ℎ where Ah is the area of stratum h and 𝑝𝑝�ℎ is the sample proportion of pixels 

of that class within stratum h. The stratum area Ah is calculated by summing the areas 

of all pixels within the stratum. The estimated variance of a stratum-specific area 

estimate is: 

                                                𝑉𝑉��𝑊𝑊�ℎ� =  𝑠𝑠ℎ,𝑢𝑢
2 /𝑛𝑛ℎ                                                    (8) 

where nh is the number of sampled pixels in stratum h, 𝑠𝑠ℎ,𝑢𝑢
2  is the sample variance for 

the nh values of u, where u=Ah if the sample pixel is of the class being estimated and 

u=0 if the sample pixel is not of that class.  The standard error for the global 

estimated area is the square root of the sum of the variances over all strata: 

                                              𝑆𝑆𝑆𝑆(𝑊𝑊� ) =  �∑ 𝑉𝑉�(𝑊𝑊�ℎ)𝐻𝐻
ℎ=1  .                                       (9) 

For area estimates of aggregations of classes, the aggregation was defined as a new 

class and the above calculations were performed for each. Additionally, the area that 
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is inundated each year for greater than 25, 50, 75, and 90 and equal to 100 percent of 

the time was calculated from the annual percent values of each sampled pixel. 

A.II Accuracy estimation of water dynamics classes 

Using the stratified sample of Landsat time-series data, we estimate user’s and 

producer’s accuracies for the trend classes. Each pixel within the global continental 

area had a non-zero inclusion probability, so the accuracy estimates are representative 

of the entire map.  To estimate the accuracies for a given class c, one can estimate 

with equation (3) the four areas of intersection of map class c and non-c and reference 

class c and non-c within an error matrix and calculate the derived accuracies. 

Standard error estimates require the per pixel inclusion probabilities and pairwise 

inclusion probabilities, designated by  𝜋𝜋𝑢𝑢 and 𝜋𝜋𝑢𝑢𝑣𝑣 where u and v denote pixels. The 

pairwise inclusion probability is the probability that pixels u and v will both be 

included in the sample. The estimated variance for an estimated ratio (either user’s or 

producer’s accuracy) is: 

   𝑉𝑉��𝑅𝑅�� = 1

𝑍𝑍�2 ∑∑�1− 𝜋𝜋𝑢𝑢𝜋𝜋𝑣𝑣
𝜋𝜋𝑢𝑢𝑣𝑣

�
(𝑦𝑦𝑢𝑢−𝑅𝑅�𝑧𝑧𝑢𝑢)

𝜋𝜋𝑢𝑢

(𝑦𝑦𝑣𝑣−𝑅𝑅�𝑧𝑧𝑣𝑣)
𝜋𝜋𝑣𝑣

              (10) 

where the double summation is over all possible pairs of sample pixels, and where the 

estimated ratio is 𝑅𝑅� = 𝑌𝑌�
𝑍𝑍�  and 𝑌𝑌� = ∑

𝑦𝑦𝑢𝑢 𝜋𝜋𝑢𝑢�𝑠𝑠  and 𝑍𝑍� = ∑ 𝑧𝑧𝑢𝑢 𝜋𝜋𝑢𝑢�𝑠𝑠  (Särndal et al., 1992). 

The inclusion probability for a pixel u in stratum h is 𝜋𝜋𝑢𝑢 = 𝑛𝑛ℎ𝑎𝑎𝑢𝑢/𝐴𝐴ℎ where au is the 

area of pixel u, nh is the sample size from stratum h, and Ah is the total area of all 

pixels in stratum h. The pairwise inclusion probability between two sample pixels u 

and v depends on whether the two pixels are from the same stratum. If from different 

strata, the pairwise inclusion probability is simply the product of the inclusion 
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probabilities, 𝜋𝜋𝑢𝑢𝑣𝑣 = 𝜋𝜋𝑢𝑢𝜋𝜋𝑣𝑣, which means �1− 𝜋𝜋𝑢𝑢𝜋𝜋𝑣𝑣
𝜋𝜋𝑢𝑢𝑣𝑣

� = �1− 𝜋𝜋𝑢𝑢𝜋𝜋𝑣𝑣
𝜋𝜋𝑢𝑢𝜋𝜋𝑣𝑣

� = 0 in equation (5). 

If the two pixels are from the same stratum,  

    𝜋𝜋ℎ,𝑢𝑢𝑣𝑣 = (𝑛𝑛ℎ−1)𝜋𝜋ℎ,𝑢𝑢𝜋𝜋ℎ,𝑣𝑣
[𝑛𝑛ℎ−𝜋𝜋ℎ,𝑢𝑢−𝜋𝜋ℎ,𝑣𝑣+𝐾𝐾]               (11) 

where 𝐾𝐾 = ∑ 𝜋𝜋𝑢𝑢2𝑈𝑈ℎ /𝑛𝑛ℎ and Uh denotes all pixels in stratum h, including those outside 

the sample (Hartley et al., 1962). Lastly, if u and v are the same pixel, 𝜋𝜋𝑢𝑢𝑢𝑢 = 𝜋𝜋𝑢𝑢. For 

both accuracy estimates, 𝑌𝑌� is the estimated total area correctly mapped as class c and 

yu = area of pixel u if pixel u is both mapped as class c and has reference class c, 

otherwise, yu = 0. For user’s accuracy, 𝑍𝑍� is the estimated area mapped as class c and 

zu = area of pixel u if pixel u is mapped as class c, otherwise zu = 0. For producer’s 

accuracy, 𝑍𝑍� is the estimated area of reference class c and zu = area of pixel u if pixel u 

has reference class c, otherwise zu = 0. For each estimated accuracy 𝑅𝑅�, 𝑆𝑆𝑆𝑆�𝑅𝑅�� =

 �𝑉𝑉��𝑅𝑅��.  
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