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Abstract

In this paper we assess the merits of financial condition indices constructed using

simple averages versus a more sophisticated alternative that uses factor models with

time varying parameters. Our analysis is based on data for 18 advanced and emerging

economies at a monthly frequency covering about 70% of the world’s GDP. We assess

the performance of these indicators based on their ability to capture tail risk for

economic activity and to predict banking and currency crises. We find that averaging

across the indicators of interest, using judgmental but intuitive weights, produces

financial condition indices that are not inferior to, and actually perform better than,

those constructed with more sophisticated statistical methods. An indicator that

gives more weight to measures of financial stress, which we term WA-FSI, emerges

as the best indicator for anticipating banking crisis, and is therefore better suited for

financial stability.

JEL codes: E32, E44, C11, C55.

Keywords: financial conditions, quantile regressions, banking crises, SVARs, spillovers.

∗The views expressed in this paper belong to the authors and are not necessarily shared by the European
Investment Bank or the Bank of Italy. The authors would like to thank seminar participants at the European
Central Bank for their valuable comments and suggestions.

mailto:arrigons@tcd.ie
mailto:a.bobasu@eib.org
mailto:fabrizio.venditti@bancaditalia.it




1 Introduction

The concept of financial conditions, a summary measure of how easily firms, households,

and governments finance themselves, plays a central role both in financial stability as well

as in monetary policy monitoring. Financial crises are typically heralded by long period

of low volatility, characterized by cheap borrowing rates, high asset prices, low volatility

and compressed spreads, during which imbalances build-up. Loose financial conditions

bring debtors close to their borrowing constraints, setting the stage for non-linear effects

when financial conditions tighten. In this context, financial condition indices (FCIs) can

help monitoring the phase of imbalances build-up (Adrian et al., 2018) and can be used

to appropriately calibrate macro-prudential policies. Yet, changes in financial conditions

are also at the center of the transmission mechanism of monetary policy. Even small

movements in short term rates can generate large movements in credit costs, mostly

via a widening of both term premia and credit spreads (Gertler and Karadi, 2015; Borio

and Zhu, 2012). Monetary policy makers therefore monitor the behavior of a number of

indicators of financial conditions, not only to identify shocks to which to react, but also

to gauge the effects of their own actions on the macro-economy.

Financial conditions are a function of various asset prices and of the quantity and

price of credit in the economy.1 Making this concept operational requires choosing the set

of variables to be aggregated as well as the aggregation weights. Given that the financial

sector can send conflicting signals, a large number of papers have developed FCIs by

summarizing in a single indicator the information coming from different segments of

the financial sector. A non-exhaustive list of papers on the topic includes Illing and Liu

(2006), Hakkio et al. (2009), Hatzius et al. (2010), Matheson (2012), Brave et al. (2012),

Hollo et al. (2012), and Koop and Korobilis (2014). Most of these papers borrow their

methodological setup from the factor model literature (Stock and Watson, 2002; Forni

et al., 2000; Doz et al., 2012; Stock and Watson, 2011) and build on the idea that the

relevant information contained in a large dataset can be summarized by a small number

of linear combinations of the available series (”factors”). The level of sophistication of

1In practice, indices of financial conditions are of two types. Some are more twisted versus spreads and
volatilities, and are more effective measures of stress in the financial system. Some give more relevance to
the level of credit costs, and are more closely related to measuring credit conditions in the economy.
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these indices has increased over time. For instance, Koop and Korobilis (2014) have

proposed to use factor model with time-varying loadings and time-varying volatilities

to aggregate a large number of macroeconomic and financial variables into financial

condition indices. This methodology should account for the fact that the relationship

between the financial sector and the real economy is subject to structural changes over

time. Model instability can indeed be a concern. Hatzius et al. (2010), for instance, find

that the predictive ability of their FCIs for future GDP relative to a simple autoregressive

benchmark changes over time.

In this paper we argue that indices based on sophisticated factor models may be

prone to some flaws when used to construct measures of financial conditions. First,

these techniques are designed to reduce information dimensionality in datasets that are

characterized by high collinearity. The intuition is that when many series behave in a

very similar way, their linear combination summarizes efficiently the information that

they convey. Yet, the series that enter popular measures of financial conditions have

very heterogeneous behavior. Table 1 shows the correlation structure of a representative

sample of nine macro-financial indicators that are typically used to construct financial

condition indices, including credit growth, interest rates, asset prices, volatilities and

exchange rates.2 Out of the 36 correlations that fill the off-diagonal elements of the table,

only 3 are higher than 0.3 in absolute value. Given this heterogeneity and the lack of

collinearity, it is very likely that the final composite index is largely going to reflect

the behavior of a limited block of the time series that compose the information set. To

illustrate this point in a “large data” context, Figure 1 shows the correlation between the

National Financial Condition Index (NFCI) for the US economy computed by the Federal

Reserve of Chicago and the individual series that compose the index.3 The different

colors illustrate the block to which the series belong (blue for Spreads and volatilities,

violet for Yields, yellow for Credit ratios, orange for Failure rates and delinquencies, green

for Lending standards, purple for Issuance and open interests). Visual inspection of Figure

1 shows that the NFCI loads very heavily on credit spreads, as shown by the large

2The table is constructed by computing this correlation matrix for each of the 18 countries that we
analyze in this paper and then averaging across countries.

3The Chicago Fed NFCI provides a comprehensive weekly update on US financial conditions in money
markets, debt and equity markets, and the traditional and “shadow” banking systems. The NFCI is
constructed using a dynamic factor model. Appendix H reports the series that are included in the index.
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dominance of blue bars at the high end of the correlation spectrum. Some yields are

also represented, but most of them have a correlation lower than 0.4 with the final index.

Finally, some categories display a negligible contribution to the common factor, like for

instance Lending standards.

Table 1: Correlation across macro-financial indicators

Credit
growth

Real 10Y
yields

Sovereign
spread

Inter-bank
spread

Term
spread

Equity
volatility

Stock
returns

Real house
prices

Exchange
rates

Credit growth 1.00 -0.10 0.19 0.02 -0.09 0.14 0.20 0.27 0.02
Real 10Y yields -0.10 1.00 -0.13 -0.02 0.21 0.06 -0.12 -0.06 -0.02
Sovereign spread 0.19 -0.13 1.00 0.33 -0.12 0.55 0.25 0.12 -0.08
Inter-bank spread 0.02 -0.02 0.33 1.00 0.09 0.20 0.14 0.08 0.00
Term spread -0.09 0.21 -0.12 0.09 1.00 0.00 -0.16 0.06 -0.02
Equity volatility 0.14 0.06 0.55 0.20 0.00 1.00 0.44 0.13 -0.22
Stock returns 0.20 -0.12 0.25 0.14 -0.16 0.44 1.00 0.07 -0.08
Real house prices 0.27 -0.06 0.12 0.08 0.06 0.13 0.07 1.00 0.14
Exchange rates 0.02 -0.02 -0.08 0.00 -0.02 -0.22 -0.08 0.14 1.00

Notes. Correlations are unweighted averages across countries. Country specific correlations are computed over the period January 1995-February
2020 for a sample of 18 countries including China, United States, India, Japan, Germany, Russia, Brazil, United Kingdom, France, Mexico, Italy,
Turkey, South Korea, Canada, Australia, Sweden, Norway, New Zealand.

The second problem is that some of these statistical techniques do not give much

control over the sign with which the individual components end up contributing to the

final indicator. Yet, there is outside information that one might want to use to discipline

the direction in which the individual series affect the final index. For instance, exchange

rates will move financial conditions in different directions depending on the role that

foreign currencies have in the domestic economy. For countries that borrow in foreign

currency, a depreciation implies an increase of the cost of debt in domestic currency, i.e.

a tightening of borrowing conditions. For countries that lend in domestic currency, on

the other hand, an appreciation of the exchange rate generates a positive wealth effect.

The third issue is that the weight that the single indicators receive reflects the nature

of past shocks and past crises. It can therefore be the case that some variables that in the

past did not cause any crises, yet that ex-ante would be interesting to monitor, end up

receiving zero weight in a composite index, therefore exiting the radar of policymakers.

We argue that simply averaging across the indicators of interest, using judgmental

but reasonable weights, produces financial condition indices that are not inferior to,

and actually perform better than those constructed with more sophisticated statistical

methods. First, by making sure that no series receives zero weight, the heterogeneity of

the underlying components is by definition reflected in the final index. Second, one can
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Figure 1: Correlation of NFCI subcomponents with the final index
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judgmentally decide the sign of some variables, like for instance the exchange rate, based

on information on the financial structure of the economy. Finally, one can make sure that

all the indicators that one wants to keep in sight actually enter the final indicators. Of

course, these advantages need to be traded off against the costs of not using any statistical

objective function to aggregate information. This cost, however, can be assessed by

checking the performance of different financial condition indices based on given criteria.

We use two empirical criteria to evaluate the performance of our indicators. First,

we examine across different methods the strength of the correlation between tightening

in financial conditions and recessions using quantile regressions. It is well known that

recessions that originate in the financial sector are deeper than standard ones. A desirable

property of a financial condition index is, therefore, to bear stronger information for

the left tail of GDP distribution (Adrian et al., 2019). We perform this exercise both

in-sample as well as out-of-sample. The latter exercise is particularly challenging,

although recent studies have documented a lack of predictability of tail GDP movements

(Hasenzagl et al., 2020). Second, and related to the first, we examine how the various

alternatives are correlated with future banking and currency crises (broadly speaking

financial crises). Financial crises are somewhat related to deep recessions, so we see this

exercise as complementary to the previous one. The results of our empirical analysis

show that, for both exercises, FCIs constructed as weighted averages outperform indices

constructed with more sophisticated methods, and in particular those constructed using

the TVP-factor model by Koop and Korobilis (2014) that we take as our benchmark.4

One key contribution of our paper is to develop comparable indicators for a large set

of countries. This forces to limit the number of variables underlying each index but also

raises the question of whether “large data” alternatives, available for large advanced

economies like the US or the euro area (EA), outperform our simple indices. In the paper

we show that our FCIs outperform comfortably two popular alternatives, namely the

Chicago Fed’s National Financial Conditions Index (NFCI) for the US and the Composite

Index of Systemic Stress (CISS) by Hollo et al. (2012) for the euro area.5

4We take as a benchmark a “sophisticated” type of financial condition index, constructed as in Koop
and Korobilis (2014), because it is at the highest level of the sophistication spectrum, and it has been used
in policy analysis, for instance by the IMF in the 2017 Global Financial Stability Report in the context of
“growth at risk” analysis.

5Results available upon request show that for the US also other popular alternative like the VIX are
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The paper is organized as follows. Section 2 provides some motivation from an

empirical and theoretical point of view for the analysis. Section 3 provides a description

of the data and details on the construction of the indices. Section 4 describes the criteria

that we employ to assess the performance of our financial condition indices and discusses

the empirical results. Section 5 concludes.

2 Motivating evidence and theoretical background

Before delving into the core of the paper, we present some evidence on the causal and

predictive relationship between financial conditions and the business cycle. We then

discuss the channels through which asset prices affect the business cycle in theoretical

models.

We start with a simple but instructive analysis of the effects of a US financial conditions

shock on two neighbouring countries, namely an emerging economy (Mexico) and an

advanced economy (Canada). We proxy US financial conditions via the Excess Bond

Premium, a widely used measure of risk aversion and financial market sentiment for

the US economy (Gilchrist and Zakrajsek, 2012; Lopez-Salido et al., 2017) and study the

effect of a US financial shock on the financial system (in particular on long term interest

rates, stock prices, sovereign spreads, stock market volatility and the exchange rate) and

on the macroeconomy (CPI, GDP and monetary policy rates) of Mexico and Canada.6 In

order to conserve space we discuss the identification of the shock, which follows closely

Gilchrist and Zakrajšek (2012), as well as the technical details on the model estimation in

Appendix A.

Following the shock, in both countries stock prices fall, sovereign spreads rise,

implied stock market volatility increases, the domestic currency depreciates against the

US dollar and GDP falls (Figure 2). Importantly, asset prices respond very quickly to

the shock, while GDP falls with a significant delay. Besides these similarities, there are

important differences. In Mexico, like in most EMEs where inflation expectations are

poorly anchored and monetary policy is not perceived as credible, an exchange rate

depreciation raises inflation and long term yields (i.e. leads to a further tightening of

outperformed by our indicators.
6GDP is interpolated at the monthly frequency using a cubic spline.
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financial conditions). The central bank raises policy rates to stabilize the exchange rate,

resulting in a deeper and longer contraction of economic activity. In Canada, similar to

other AEs that have a credible monetary policy framework in place, no trade off between

stabilizing inflation and GDP emerges (as they both fall) and the central bank can afford

cutting rates to alleviate financial conditions and to support the economy. At the same

time, GDP falls less and recovers sooner than in Mexico.

Figure 2: Effects of a tightening of global financial conditions in AEs and EMEs

Notes. Impulse responses to a shock to the global financial conditions. The IRFs comprise confidence
bands. The methodology used to obtain these responses is explained in Appendix A.

We take two important points away from this exercise. First, there is a wide array of

shocks that induce a sharp tightening of financial conditions that leads by several months a

fall in GDP. This dynamics, which resembles closely the lead-lag relation between asset

prices and economic activity that emerges in financial accelerator models of the business

cycle (Bernanke et al., 1999), calls for a close monitoring of financial conditions, and has

indeed constituted the main motivation behind the literature on FCIs discussed in the

Introduction.7 Second, the use of judgment in constructing FCIs allows us to complement

7Alessandri and Mumtaz (2014) show that this predictive power is particularly strong for recessions.
This does not mean that all recessions are preceded by a tightening of financial conditions. The Covid-19
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statistical analyses with economic intuition when assigning weights to different asset

prices. This means, for instance, giving the exchange rate a different role in FCIs for AEs

and EMEs.

This preliminary analysis also raises questions over what is the economic mechanism

that drives this relationship between asset prices and the real economy. A broad review

of this literature is beyond the scope of this paper but at least two different strands are

of interest for our purpose. The first is the set of papers that focus on economies with

occasionally binding constraints (Deaton, 1991; Guerrieri and Lorenzoni, 2017). In these

economies credit constraints embody a pecuniary externality that induces private agents

to borrow excessively. Individual agents fail to internalize the aggregate consequences of

their individual over-borrowing and carry too much debt when they face a tightening of

financial conditions (Bianchi, 2011). When asset prices fall and their borrowing constraint

becomes binding they need to scale back consumption significantly. This intuition can be

generalized to non-financial firms, see for instance Jermann and Quadrini (2012) and

Liu et al. (2013). Interestingly, in line with the empirical evidence presented in Figure 2,

these models predict that the loss of net worth due to a large drop in asset prices can

lead to long-lasting effects.8 In the second set of papers, financial intermediaries take

center stage. Financially leveraged institutions face a sudden spike in their leverage

(debt to asset ratio) when the price of the assets that they hold suddenly falls and their

net worth plummets. As they try to return to their leverage target, they generate fire

sales, exacerbating the initial price spiral and causing a financial crisis (Brunnermeier

and Oehmke, 2013). Similar amplification effects emerge in models that include frictions

in the financial intermediation process, see for instance Gertler and Karadi (2011), Gertler

and Kiyotaki (2010), He and Krishnamurthy (2019), and Brunnermeier and Sannikov

(2015).

Summarizing, incomplete markets and financial frictions make the real economy

vulnerable to sudden shifts in financial conditions. This gives financial conditions indices

predictive power for economic activity and makes them a useful element in the toolbox

recession, for instance, occurred in an environment of favourable financial conditions.
8In Bernanke and Gertler (1989), for instance, once a shock lowers the net worth of leveraged

entrepreneurs, economic activity and profits falls. This implies that it takes entrepreneurs a long time
before they accumulate sufficient retain earnings to rebuild their net worth.
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of economists interested in having a synthetic (and comparable across countries) view of

the state of financial markets.

3 Data

Our analysis is based on data for 18 advanced and emerging economies at a monthly

frequency from January 1995 to May 2020. As Figure 3 shows, these countries represent

about 70% of the world’s GDP at Purchasing Power Parity.

Figure 3: Shares of GDP at Purchasing Power Parity
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Notes. Blue bars represent advanced economies, red bars represent emerging market economies. Data in
percentages of the world’s total. Source: IMF World Economic Outlook, 2019 data.

Our dataset includes a set of financial as well as macroeconomic variables, which are

used in different combinations to construct three sets of financial conditions and stress

indicators. For details on data sources see Table A1 in Appendix B.

TVP-FCI (Time Varying Parameters - FCI). We start by constructing FCIs in the spirit

of Koop and Korobilis (2014) and Arregui et al. (2018). The information set includes (i)

real long term government bond yields; (ii) a set of various spreads, namely sovereign

(for emerging economies only), corporate (for advanced economies only), inter-bank and
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term spreads (for all countries); (iii) the percentage change of equity and real residential

house prices; (iv) the growth rate of credit to households and non-profit institutions

serving households; (v) realized equity volatility; (vi) the bilateral exchange rate with

the US Dollar. Common dynamics across these indicators are summarized through a

(single) factor model with time-varying parameters that, according to Koop and Korobilis

(2014), provides a flexible weighting scheme for the input variables. For more details on

the methodology see Appendix C. The estimated common factor is our TVP-FCI. The

resulting indices are strongly correlated with those constructed by the IMF for the 2017

Global Financial Stability Report. Visual inspection, and a simple correlation analysis,

reveal that these indices load heavily on some specific indicators, either inter-bank

spreads or realized equity volatility.

WA-FSI (Weighted Averages - FSI). As a first alternative, we construct another

indicator using the same set of variables used for the TVP-FCI but aggregated through

simple weighted averages. Table 2 summarizes the weights and the signs of the input

variables. We choose the weights so as to give relative more importance to measures

of stress, like equity volatility and spreads, which account for half of the final weights.

The remaining weights are, by and large, evenly distributed across the remaining

indicators. The exchange rate plays less of a role as it is heavily correlated with interest

rates differentials with respect to the dollar, and therefore somewhat reflected in other

variables. Given that an increase in the index is interpreted as a tightening, we assign

a positive sign to interest rates, spreads and volatilities and a negative sign to equity

prices, house prices and credit volumes. We let the exchange rate have a different role for

indices constructed for advanced and emerging economies. Since emerging economies

own a non-negligible part of their debt in US dollars (Bénétrix et al., 2019), when the

local currency weakens against the dollar, the cost of debt expressed in national currency

rises and financial conditions tighten. For advanced economies we let the exchange rate

work through a traditional trade channel, so that for these countries a weakening of the

domestic currency results in an easing of the FCI.

WA-FCI (Weighted Averages - FCI). The second alternative index is constructed

as the weighted average of a smaller set of financial variables, which are potentially

available at daily frequency. This FCI could be used, for instance, for the high frequency

10



Table 2: WA-FSI, summary of weights

AEs EMEs
Weight Sign Weight Sign

Credit to HHs and NPIs, m-o-m growth rate †∗ 10% - 10% -
Real 10 years government bond yields 15% + 15% +
Sovereign spread 10% +
Corporate spread † 10% +
Inter-bank spread † 15% + 15% +
Equity volatility † 25% + 25% +
Equity prices, m-o-m growth rate † 15% - 15% -
Real residential house prices, m-o-m growth rate † 15% - 15% -
Bilateral exchange rate with the US Dollar 5% - 5% +

Notes. A positive sign indicates a tightening in the index, while a negative sign an easing. An
increase in the bilateral exchange rate (being it expressed as national currency per USD) denotes a
depreciation of the national currency, while a decrease an appreciation. In line with how we want
the exchange rate to contribute to the FCI, this explains the positive sign for emerging economies
and the negative sign for advanced economies. ∗ HHs = households, NPIs = Non-profit Institutions
serving households. † A 3 months centered moving average is applied to the variables defined by
this symbol.

monitoring of financial markets routinely conducted in central banks between monetary

policy decision meetings. For the sake of comparison with the other two sets of indices,

we aggregate these daily variables at the monthly frequency. The input variables are

(i) short (3/6 month or 1 year according to best availability) and long term (10 years)

interest rates; (ii) price to earnings ratios; (iii) exchange rates (bilateral with the US Dollar

for emerging markets and the nominal effective exchange rate, NEER, for advanced

economies9); and (iv) a measure of spread, namely corporate spreads for advanced

economies and the JP Morgan EMBI stripped10 spreads for emerging markets.

Both the choice of variables as well as the weights are inspired by the widely used

financial condition indices developed by Goldman Sachs (Hatzius et al., 2016) and

readily available to financial market observers. These indices are designed to capture the

9An increase in the NEER denotes an appreciation of the currency, while a decrease a depreciation.
10The stripped spread is a better measure of spread for emerging markets, in which calculation the value

of collateralized flows are stripped from the bond. In the case of a bond with principal collateral, the
present value of the collateral is discounted using US Treasury Strip rates and subtracted from the price of
the bond. The zero curve is then parallel shifted upward and used to discount the remaining unsecured
flows until the present value of the cash flows equals the ex-collateral price of the bond. The number
of basis points the curve must be shifted upward is called the Stripped Spread, i.e. the value of Z such
that market value of portfolio equals

∑
[CashFlow/(1 + R(t) + Z)t], where R(t) is the zero-coupon rate at

the t-year point of the Treasury curve. This calculation is also valid for uncollateralized bonds. Stripped
spread is calculated using offer side prices. (Source: Haver Analytics)
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evolution of financial conditions in normal times, rather than in crisis times. This implies

giving relatively more weight to long term interest rates, which are used as a benchmark

for a variety of interest rates for loans to households and non-financial corporations,

as well as to equity valuations. As a result, long term rates and price earning ratios

represent around half of our WA-FCIs. The rest of the weights are chosen so as to broadly

match the indices produced by Goldman Sachs on standardized series. Tables 3 and 4

summarize the weights and respective signs of the input variables.

Table 3: WA-FCI, summary of weights for Emerging Economies

Weight Sign
Short term yields 5% +
Long term yields 35% +
Price/Earning ratio 20% -
Bilateral exchange rate with the US Dollar 20% +
JPM EMBI sovereign spread 20% +

Notes. A positive sign indicates a tightening in the index, while a
negative sign an easing. An increase in the bilateral exchange rate (being
it expressed as national currency per USD) denotes a depreciation of the
national currency, while a decrease an appreciation. This explains the
positive sign. When variables have missing values, FCIs are computed
on re-scaled weights on the total weight of the available variables.

Table 4: WA-FCI, summary of weights for Advanced Economies

Weight Sign
Short term yields 8.5% +
Long term yields 38.5% +
Price/Earning ratio 23.5% -
Nominal effective exchange rate (NEER) 23.5% +
Corporate spread 6% +

Notes. A positive sign indicates a tightening in the index, while a negative
sign an easing. An increase in the NEER denotes an appreciation of
the currency, while a decrease a depreciation. This explains why the
positive sign. For United States we apply a different set of weights
(i.e. 5%, 25%, 25%, 10%, 35%). The rationale of giving more weights to
corporate spreads subtracting from long term yields follows a matching
with the FCI by Goldman Sachs and the fact that US corporations tend
to borrow a larger share from the bond and commercial paper markets
than corporations in the other G10 economies.

Comments and comparisons. Figures 4 and 5 compare the three sets of indicators.
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For some of the countries the factor model (blue lines) produces indices that are hard

to interpret. Two main anomalies emerge. First, looking at Germany and Japan, the

TVP-FCI presents a visible upward trend, hard to reconcile with falling rates in both

countries. Second, looking at Italy, the factor model suggest that the financial crisis did

not result in any major tightening of financial conditions, while only the European debt

crisis led the index to spike. Both of these problem disappear implementing weighted

averages on the same raw series (WA-FSI). Looking at the WA-FCI, it is clear that the

prevalence of interest rates and equity valuations results in indices that are more cyclical

and spike less during the GFC.

4 Empirical analysis

In this section we provide a more detailed description of the two criteria that we use to

assess quantitatively and qualitatively the performance of the three indices of financial

conditions.

4.1 Quantile regressions

The quantile regression approach provides a framework for estimating the impact of a

given variable X on the entire conditional distribution of a dependent variable y. This is

achieved through separate coefficients for the various quantiles (see Appendix D for more

details). Based on this approach, Adrian et al. (2018) find a close link between current

financial conditions and the conditional distribution of future GDP growth. In particular,

the lower quantiles of future GDP growth are much more sensitive than the higher ones

to current financial conditions developments. Moreover, the entire distribution of future

GDP growth evolves over time. Recessions are associated with left-skewed tails, while

during expansions the conditional distribution is broadly symmetric. This asymmetry in

the evolution of the conditional tails of the distribution of future GDP growth indicates

that downside risks to economic activity vary more strongly over time and react more to

developments in financial conditions compared to upside risks.

We use quantile regressions to test for the non-linear impact on the different quantiles

of industrial production of the three measures of financial conditions described in Section

13



Figure 4: Comparison of the FCIs, 10 largest countries

-2

0

2

4

6

8

1995m1 2000m1 2005m1 2010m1 2015m1 2020m1
date

TVP-FCI WA-FSI WA-FCI Chicago NFCI EA CISS

-2

-1

0

1

2

3

95 00 05 10 15 20

CHN

-2

0

2

4

6

8

95 00 05 10 15 20

USA

-2

0

2

4

6

95 00 05 10 15 20

IND

-2

0

2

4

6

95 00 05 10 15 20

JPN

-2

0

2

4

6

95 00 05 10 15 20

DEU

-2

0

2

4

95 00 05 10 15 20

RUS

-2

0

2

4

95 00 05 10 15 20

BRA

-2

0

2

4

6

95 00 05 10 15 20

GBR

-2

0

2

4

6

95 00 05 10 15 20

FRA

-2

0

2

4

6

95 00 05 10 15 20

MEX

Notes. Shaded areas represent NBER recessions. All indicators are standardized.

14



Figure 5: Comparison of the FCIs, continued
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3 (for data availability see Appendix E). Two main messages emerge from our analysis.

Two main messages emerge. First, irrespective of the index used (TVP-FSI, WA-FSI, or

WA-FCI) and for almost all the countries (but Norway), the impact of financial conditions

on the lower quantiles of industrial production11 is significantly more negative than

either on the central tendency or on the upper tails. This implies that financial conditions

convey powerful signals on downside risks to the real economy, but are less informative

about median growth and economic booms. Second, for some countries the asymmetry

is striking (e.g. United States, United Kingdom).12 Figure 6 compares the impact on the

lower (5th) quantile of the distribution among the three FCIs.13

Comparing the results across countries and financial indicators we find that for a

number of countries (e.g. United Kingdom, China, South Korea, Sweden, Russia, New

Zealand and Mexico) the WA-FSI has the biggest impact on the lower quantiles of the

industrial production distribution. Downside risks for economic activity in the United

States, Italy, Australia, Germany, India, Brazil, Turkey, France, Canada and Japan are

better captured by developments in the WA-FCI.14 Importantly for all the countries

considered, the TVP-FCI is materially outperformed by the weighted average indicators,

in terms of the impact on the 5th percentile of industrial production. Simpler, weighted

average indicators convey more precise (in sample) information on downside risks for

future economic activity.

A possibility is that the particular method that we have picked as an alternative to

our simple indices (i.e. a factor model with time-varying parameters) is a poor choice.

Other methods among those proposed in the literature might work better. Two obvious

alternatives are the Chicago Fed NFCI for the US and the CISS by Hollo et al. (2012) for

the euro area. While the former is estimated via a large factor model, the latter is obtained

by aggregating 13 indicators of financial stress through a time varying correlation model.

11We use industrial production rather than GDP as data are available at monthly frequency and for a
longer period of time, especially for emerging markets.

12For Italy the asymmetry in terms of the impact of the three financial indicators on industrial production
distribution is only valid for WA-FSI and WA-FCI. For India and Norway the asymmetry is not so evident
for any of the measures considered.

13For reasons of space we only report here the impact on the 5th percentile (left tail) of the distribution
of industrial production. The results obtained for the other percentiles of the distribution are available
upon request.

14Norway is the only country for which none of the three financial indices yields significant and plausible
effects on the lower quantiles of industrial production.
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Figure 6: Impact of FCIs on the 5th percentile of the Industrial Production distribution
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To test how our simple indices compare against these two alternatives, we repeat

the quantile regression analysis for the US and the EA including also the NFCI and the

CISS as potential competitors. The results of this exercise, shown in Figure 7, indicate

that both the NFCI for the US as well as the CISS for the euro area have lower in-sample

information content than the indices obtained via simple average.

Next, we test the out-of-sample predictive accuracy of each of the financial indicators

in the quantile regression framework. Following Adrian et al. (2018), we compute

predictive scores as the predictive distribution generated by the model and evaluated at

the realized value of the time series.15 The higher the predictive scores, the more accurate

the out-of-sample prediction. To provide a compact view of the results, we summarize

them in a heatmap (Figure 8) where the rows represent the countries and the columns the

different FCIs. The darker the color, the better the average out-of-sample performance,

so the dark cells indicate the best performing FCI.16

It is pretty evident that the TVP-FCI is the worst performing indicator, as it ranks last

or next to last in most cases, apart from Sweden, Brazil and Mexico. Overall, the WA-FCI

outperforms the other measures in terms of out-of-sample accuracy for a significant

number of countries (i.e Euro Area, Canada, United Kingdom, France, Germany, Norway,

Australia, Turkey, Korea, China). For other countries the WA-FSI performs well too (i.e

United States, Italy, Japan, New Zealand, Russia, India). We include in this comparison

also the VIX and the Chicago Fed NFCI for the US and the CISS for the euro area.17 None

of these indicators ever ranks best in our out-of-sample comparison.

4.2 FCIs and crisis probability

As a second criterion for assessing the informational content of the three competing

indices, we consider their ability to predict a set of crises, specifically systemic banking

15In a nutshell, we re-estimate the quantile regressions using expanding windows, then fit the skewed
t-density into the estimated quantiles and evaluate the predictive density score of this density at the
actually realized value. Following Adrian et al. (2018), we fit the skewed t-distribution developed by
Azzalini and Capitanio (2003) in order to recover a probability density function.

16We use an ordinal criterion to measure performance, i.e. the best performing model is the one that
attains the highest score in most months.

17Since the VIX performs poorly in case of US, its out-of-sample performance was not tested for the
other countries employed in the analysis.
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Figure 7: Impact of FCIs on the lower quantile of Industrial Production distribution for
US and EA - Comparison with Chicago NFCI and EA CISS
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Figure 8: Rank of predictive scores of out-of-sample performance

Notes. The figure reports the predictive scores of the probability integral transform. The out-of-sample
predictive scores of the predictive distribution for industrial production growth are conditioned on each
FCI at a time, a constant and persistence of industrial production growth. The color coding defines the
score ranking: the index that performs best the highest number of times is colored dark blue and ranked 1,
the next one lighter blue and ranked 2, and so on with the lowest number of cases being colored the
lightest blue and ranked 5.
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and currency crises.18 For this purpose, we collect data on the timing of these crises from

Laeven and Valencia (2020)19 and estimate the following panel probit model20 for each

set of crises:

Pr(Yt = 1 | Xt−1) =

∫X ′t−1β

−∞ φ(t)dt = Φ(X ′t−1β) (1)

where Pr denotes the outcome probability, Y is a binary variable equal to 1 when a crisis

occurs and 0 otherwise, and X is a vector of explanatory variables that influence the

outcome. We estimate four different specifications. In the first three, we include each of

the competing indicators of financial conditions separately. In the fourth, we include all

of them. We also include a set of standard control variables (Xt), namely the growth rate

of inflation and of real GDP, the level of real credit from banks to the private non-financial

sector and the growth rate of real domestic and foreign credit.21 Since we are more

interested in the predictive power rather than in the contemporaneous relationship of

the variables, we lag all the regressors by one period.

Table 5 reports the results. Let us look first at banking crises (panel A). Except for the

TVP-FCI, the coefficients associated with the FCIs have a positive sign (i.e. a tightening

in financial conditions at time t-1 increases the probability of a banking crisis at time t).

However, the only FCI that combines statistical and economic significance is the WA-FSI.

In addition, the magnitude of the coefficients, as well as the value of the log-likelihood,

suggest that the WA-FSI is the best performing measure. This result is confirmed by the

fact that when we include all the indicators simultaneously (column 4), only the coefficient

associated with the WA-FSI remains statistically and economically significant. For a

graphical comparison of the models, Figure 9 plots the Receiver Operating Characteristic

(ROC) curves for each of the model in Table 5 and a model including only controls and

excluding any type of FCI (i.e. model 5). Conceptually, the ROC compares the true

positive, i.e the probability of a crisis according to the model when there is a crisis (known

18Laeven and Valencia (2020) define a banking crisis as an event combining significant signs of financial
distress in the banking system and significant banking policy intervention measures in response to
significant losses in the banking system. They define a currency crisis as a sharp nominal depreciation of
the domestic currency against the US dollar. We do not consider sovereign debt crises because there is
only one debt crisis matching our sample (Russia, 1998).

19The database only specifies the exact quarter the crisis started for a subset of episodes. Whenever the
starting quarter is unknown we assign a value of 1 to the dummy for the entire year, while we assign the
value of 1 only to the exact quarter when available.

20Due to data constraints the model is estimated using quarterly data on the sample 1995-2017.
21The last three variables are expressed in US Dollars.

20



Table 5: Panel Probit results

A. Systemic Banking Crises
(1) (2) (3) (4)

TVP-FCIt−1 -0.007 -0.214*
(0.944) (0.054)

WA-FSIt−1 0.197*** 0.333***
(0.002) (0.005)

WA-FCIt−1 0.095 -0.025
(0.309) (0.810)

Observations 1,454 1,454 1,454 1,454
Log likelihood -95 -93 -95 -91

B. Currency Crises
(1) (2) (3) (4)

TVP-FCIt−1 0.170** 0.054
(0.050) (0.526)

WA-FSIt−1 0.205** 0.229**
(0.021) (0.013)

WA-FCIt−1 -0.060 -0.199***
(0.277) (0.003)

Observations 1,454 1,454 1,454 1,454
Log likelihood -36 -35 -37 -35

Notes. Robust p-values in parentheses. Statistical significance
levels: *** p<0.01, ** p<0.05, * p<0.1.
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as sensitivity), against false positives, i.e. the estimated probability of a crisis when there

is not a crisis (known as specificity). The ROC curve of a random choice model is the 45

degrees line. The area below the ROC curve (AUROC) can be interpreted as a measure

of accuracy of a binary model. The higher the AUROC, the better the model. The chart

confirms that the best performing model is the fourth one (in green). This conclusion is

supported also by formal tests on the statistical significance of the differences between

the AUROC of the best model and the AUROCs of the other models (see Appendix F).

Moving to currency crises (panel B), the best predictor seems to be again the WA-FSI.

In fact, this is the only indicator whose coefficient remains statistically and economically

significant when all the FCIs are included in the model. In this case, however, formal

tests do not detect statistically significant differences across the alternative models.

5 Conclusions

In this paper we evaluate alternative measures of financial conditions indicators for a

large number of advanced and emerging economies.

We argue that indices based on sophisticated factor models with time varying

parameter do not offer any significant comparative advantage in terms of signalling risks

for economic activity nor predicting financial crises. Indices constructed on the basis

of alternative data reduction methods, like principal component analysis suffer from

similar problems. In Appendix G we show that, indeed, principal component based

indices and TVP based indices, are strongly correlated with each other.

A better alternative is simply averaging across the indicators of interest, using

judgmental but reasonable weights. Indicators based on simple averages have some

obvious benefits. Decomposition into the underlying drivers is simpler and more

transparent. Moreover, the sign of some variables, like for instance the exchange rate, can

be judgmentally decided, based on information on the financial structure of the economy.

Our econometric evaluation, based on a large sample of countries, shows that simple

averaging produces financial condition indices that are not inferior to, and actually

perform better than those constructed with more sophisticated statistical methods. These

results hold both in the context of quantile regressions, where they prove useful in
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Figure 9: Comparison of ROC curves for each model
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anticipating downside risks to economic activity, as well as in probit models, where they

show a stronger correlation with future banking and currency crises. Importantly, for the

euro area and for the US our simple indices outperform popular alternatives based on

larger information sets and on different econometric methods, namely the Composite

Index of Systemic Stress (CISS) for the euro area and the National Financial Conditions

Index (NFCI) published by the Chicago Fed for the US.

An indicator that gives more weight to measures of financial stress, which we term

WA-FSI, emerges as the best indicator for anticipating banking crisis, and is therefore

better suited for financial stability. At the same time the index seems quite suitable also

for detecting downside risks to economic activity. For the latter criteria, an index of

financial conditions that gives more weight to interest rates and to equity valuations

and that is potentially available at the daily frequency (which we term WA-FCI) seems

also appropriate. Nevertheless given its composition the WA-FCI index might be more

appropriate for monitoring the effects of monetary policy.
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A The spillovers of a US financial shock

To estimate the effects of an exogenous tightening of financial conditions in the US on

Mexico and Canada, we follow a two step strategy. First, we estimate a small Vector

Autoregression (VAR) on US economy using domestic variables (Consumer Price Index,

Industrial Production and the Excess Bond Premium) and global variables (the price of

oil and global industrial production). We then identify a shock to financial conditions

by assuming that the EBP reacts contemporaneously to slow moving variables (CPI, IP

and the global variables), but that the latter only react with at least one month delay to

an EBP shock. Admittedly with this crude identification assumption we are capturing

a wide array of shocks (uncertainty, financial and credit supply shocks, just to name

three) that impact contemporaneously financial conditions and that affect the business

cycle with some delay. The exact definition of this shock is not crucial, as the purpose of

the exercise is indeed to confirm that there is an important interplay between financial

conditions and the business cycle conditional on a wide array of shocks.22 We then use the

estimated shocks as exogenous variables in VAR-X framework to study the effects on

individual economies. This two step procedure has been widely used, see for instance

Cesa-Bianchi et al. (2018) and Bhattarai et al. (2020), and rests on the assumptions that US

and global shocks are exogenous with respect to developments in the small economies

(like Canada and Mexico).

The effect of the shock on individual countries is examined using the following VAR-X

model:

Yit =

p∑
j=1

BjY
i
t−j + Γ

ist + ε
i
t (A.1)

where Yit is a vector of macro/financial variables for country i and st is the shock to

financial conditions estimated in the first step. Both VARs are estimated with Bayesian

methods using standard Minnesota priors. In this way we take into account all the

sources of uncertainty when estimating the effects of the shocks on individual countries.

In practice, conditioning on a draw of st from the posterior of the US/global VAR we

take a draw from the country specific VARs and estimate the IRFs. The IRFs shown in

22This identification assumption follows Gilchrist and Zakrajsek (2012). Bhattarai et al. (2020) use the
same methodology to study the spillovers of US uncertainty shocks.
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Figure 2 are obtained from this model.

This motivational empirical analysis is naturally subject to some caveats. More

sophisticated identification schemes could strengthen the case for a causal relationship

going from the financial sector to the real economy. This has been done elsewhere in the

literature. Caldara et al. (2016), for instance, show that financial shocks have been an

important source of cyclical fluctuations since the 80s and that uncertainty shocks that

cause a tightening of financial conditions are equally damaging for the business cycle.
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B Data Sources

Table A1: Data sources and descriptions

Variable Detailed description Source

Credit�, m-o-m
growth rate

Credit to households and non-profit institutions serving
households provided by all sectors. Adjusted for breaks,
market value

Bank for International
Settlements

Long term
government bond
yields

10-years nominal government bond yields. For TVP-FCI
and WA-FSI yields are transformed in real terms by
subtracting the annual growth rate of inflation

National sources via Refinitiv
Datastream

Short term
government bond
yields

3/6 months or 1 year short term nominal government
bond yields, according to country’s best availability

National sources via Refinitiv
Datastream

Sovereign spread If available, we use the JPM EMBI stripped spreads.
Otherwise we construct it as 10-years government bond
yields minus the benchmark country’s 10 years yield (US,
UK, Germany, Japan, Switzerland)

Refinitiv Datastream, JP
Morgan Chase

Inter-bank spread Constructed as 3-months government benchmark bid
yield minus 3-months inter-bank offered rate

National sources via Refinitiv
Datastream

Term spread Constructed as short minus long term government bond
yields

National sources via Refinitiv
Datastream

Equity volatility 30-days historical volatility of national stock indices National sources via Refinitiv
Datastream

Equity prices,
m-o-m growth rate

Price indices of national stock exchange National sources via Refinitiv
Datastream

Real residential
house prices�,
m-o-m growth rate

National residential property prices indices, deflated by
consumer price indices

Bank for International
Settlements, Oxford Economics,
Cesa-Bianchi et al. (2015)

Bilateral exchange
rate with the US
Dollar

Market exchange rates, expressed as national currency per
US Dollar

Refinitiv Datastream,
International Monetary Fund,
Federal Reserve Board, Haver

Price/Earning ratio Price to earning ratios on national stock exchange National sources via Refinitiv
Datastream

NEER Nominal effective exchange rates Refinitiv Datastream

Corporate spread◦ Constructed as redemption yields of corporate indices
minus government bond yields with the same maturity

Merrill Lynch, Barclays and
Refinitiv Datastream

Industrial
production

Industrial production indices, standardized National sources via Refinitiv
Datastream

Headline inflation Consumer price indices International Monetary Fund
and Bank for International
Settlements

Real GDP Real GDP in local currency, seasonally adjusted at annual
rate

Organisation for Economic
Co-operation and Development,
Haver

Real domestic
banks credit

Real domestic credit from banks to non-financial sector in
US Dollar

Bank for International
Settlements

Real foreign banks
credit

Computed as a weighted average of domestic banks credit
using country specific GDP PPP weights, US Dollars

Bank for International
Settlements, International
Monetary Fund

Notes. � Since these data are originally quarterly, when used monthly we keep the value constant over the relative months of
the quarter. ◦ In some cases, to extend series of corporate spreads when not available, we extend them using equity volatility
and standardize the combined series.
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Figure A1: Correlations with FCIs from Arregui et al. (2018)

Mexico 92.6%
Germany 92.2%
China 91.5%
Turkey 89.8%
Australia 88.3%
Japan 83.9%
France 83.1%
Norway 82.9%
Brazil 82.0%
United	Kingdom 76.7%
Italy 76.1%
United	States 74.3%
India 72.1%
Canada 70.1%
New	Zealand 54.3%
South	Korea 52.1%
Sweden 25.3%
Russia ‐10.0%

Notes. Due to the public availability of the data for the FCIs from Arregui et al. (2018) correlations are
computed over the period January 1995 - September 2016.

Figure A1 shows the correlation between the FCIs from Arregui et al. (2018) and our

TVP-FCI. As expected, the replication using the factor model leads to a good match for

almost all the countries.

C The dynamic factor model with time-varying parame-
ters

Let xit = (x1t, ..., xnt) ′ be an n−dimensional vector of variables that follows a dynamic

factor model of the form:

xit = λitft + εit (C.1)

ft = Btft−1 + ηt (C.2)

where ft is the k × 1 vector of factors, λit is the n × k factor loadings, Bt is a k × k

matrix of VAR(1) coefficients and εit and ηt are disturbance terms. It is further assumed

that εt ∼ N(0,Vt) and ηt ∼ N(0,Qt) where Vt and Qt are the n× n and k× k diagonal
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covariance matrices respectively. Note that the εit are uncorrelated with both ft and ηt

at all leads and lags. In order to complete the description of the TVP-DFM model we

need to define how the time-varying parameters evolve. We allow λt and βt to evolve as

driftless random walks:

λt = λt−1 + ut ut ∼ N(0,Rt) (C.3)

βt = βt−1 + vt vt ∼ N(0,Wt) (C.4)

The model ha a standard state space representation where equation C.1 is the measurement

equation and C.2 to C.4 are the state equations. The state vector ft, λt,βt are estimated

via the Kalman smoother, provided that an estimate of the covariances, Vt,Qt,Rt,Wt is

available. We assume that errors across blocks of equations are uncorrelated, i.e. that ut

and vt are i.i.d. errors, with each other as well as with εt and ηt at all leads and lags.23

The model covariances are estimated using a standard forgetting factor algorithm. First,

Rt andWt evolve as follows:

Rt =

(
1 − θR
θR

)
Pλt−1/t−1

Wt =

(
1 − θW
θW

)
Pβt−1/t−1

where Pλt−1/t−1 and Pβt−1/t−1 are the estimated covariance matrices of the unobserved

state vectors λt and βt in the model. The smoothing parameters θR and θW are set at

0.96. The matrices Vt and Qt are estimated by suitably discounting past squared one

step ahead prediction errors:

V̂t = κvV̂t−1 + (1 − κv)εtε
′
t (C.5)

Q̂t = κQQ̂t−1 + (1 − κQ)ηtη
′
t

where εt is the vector that collects the measurement errors in equation C.1 and κv and

κQ are also set at 0.96.

23See, for instance, Cooley, 1971; Koop and Korobilis, 2010.
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D Quantile regression framework

In our exercise, a quantile τ for h quarters ahead of the distribution of industrial production

growth (y) is modeled as a function of current financial conditions (or other financial

measures/vulnerability indicators), a constant and the current industrial production

growth:

yt+h,τ = βc + βFCIFCIt + βytyt + εt+h,τ (D.1)

where τ is the τth conditional quantile. In a quantile regression the slope β is chosen so

as to minimize the quantile weighted absolute value of errors. The predicted value is the

quantile of y(t+h) conditional on the vector of regressors. In the paper we consider h=1

(month).

E Data sample for quantile regressions

The sample of data that we use for quantile regressions differs between countries due

to data availability of industrial production. Table A2 reports the country specific data

sample.

Table A2: Data sample for quantile regressions

CHN: Jan 1995-Nov 2019 GBR: Jan 1995-Dec 2019 KOR: Jan 1995-Dec 2019
USA: Jan 1995-Dec 2019 BRA: Jan 1995-Dec 2019 CAN: Jan 1995-Nov 2019
IND: May 2005-Dec 2019 FRA: Jan 1995-Dec 2019 AUS: Jan 1995-Aug 2019
JPN: Jan 1995-Dec 2019 MEX: Jan 1995-Dec 2019 SWE: Jan 2000-Dec 2019
DEU: Jan 1995-Dec 2019 ITA: Jan 1995-Dec 2019 NOR: Jan 1995-Dec 2019
RUS: Jan 1999-Mar 2019 TUR: Jan 2010-Dec 2019 NZL: Jan 1995-Nov 2019
Notes. Countries are ordered by GDP shares at purchasing parity power.

F Test for difference of Probit models’ AUROCs

We formally test whether the AUROC associated with model 4 (benchmark model) is

statistically different from the AUROC of every other model in pairwise comparisons.

Table A3 shows the results. For systemic banking crises we can reject the null hypothesis

and conclude that AUROCs are statistically different from the AUROC of model 4. Not

surprisingly, the only exception is that the AUROC for model 2 is not statistically different
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from the AUROC for model 4. With regard to currency crisis, the AUROCs are not

statistically different from the AUROC of the best model.

Table A3: Test for statistical difference of AUROCs

A. Systemic Banking Crises
H0 χ2 Pr > χ2

AUROC(4)=AUROC(1) 3.9752 0.0462**
AUROC(4)=AUROC(2) 0.4360 0.5091
AUROC(4)=AUROC(3) 4.2909 0.0383**
AUROC(4)=AUROC(5) 3.7352 0.0533*

B. Currency Crises
H0 χ2 Pr > χ2

AUROC(4)=AUROC(1) 0.6803 0.4095
AUROC(4)=AUROC(2) 0.1530 0.6957
AUROC(4)=AUROC(3) 2.0605 0.1512
AUROC(4)=AUROC(5) 2.0450 0.1527

Notes. *** p<0.01, ** p<0.05, * p<0.1. If Pr > χ2 is sig-
nificant we can reject H0, i.e. the AUROC is statistically
different from the AUROC of the benchmark model.

G Principal component analysis

An alternative, widely used, technique to compute synthetic financial condition indices

is Principal Component Analysis (PCA). We select the first principal component, that

is the one explaining the largest fraction of the variance of the original variables, to

be our PCA-FCI. Results reported in table A4 show that this method delivers financial

conditions indices that closely mirror those obtained with the TVP-DFM. Correlations

indicate that, except for Russia, there are no major differences between using the factor

model or the PCA. Indeed, for 12 out of 18 countries the correlation is larger than 90%,

suggesting that the two approaches produce almost identical results.
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Table A4: Correlations between TVP-FCI and PCA-FCI

France 98.6% Australia 96.4%
Germany 98.2% New Zealand 95.4%
Norway 98.2% Italy 94.3%
Canada 98.1% Brazil 88.5%
United States 98.0% Mexico 85.9%
Sweden 98.0% India 80.8%
Japan 97.9% South Korea 78.7%
China 97.9% Turkey 76.3%
United Kingdom 97.6% Russia 29.5%

H NFCI subcomponents explainer

Figure A2: NFCI components and categories

1 Spreads and implied volatilities
2 Credit ratios
3 Failure Rates and delinquencies
4 Lending standards
5 Issuance and open interest
6 Yields and price indices
7 Others

Mnemonic Financial indicator Category Mnemonic Financial indicator Category
A2P2 1-mo. Nonfinancial commercial paper A2P2/AA credit spread 1 INS Total Assets of Insurance Companies/GDP 4
ABCP 1-mo. Asset-backed/Financial commercial paper spread 1 ITA Fed funds and Reverse Repurchase Agreements/Total Assets of Commercial Banks 4
ABSI Nonmortgage ABS Issuance (Relative to 12-mo. MA) 5 JINC 30-yr Jumbo/Conforming fixed rate mortgage spread 1
ABSSPREAD BofAML Home Equity ABS/MBS yield spread 1 LHY Markit High Yield (HY) 5-yr Senior CDS Index 6
BAA Moody's Baa corporate bond/10-yr Treasury yield spread 1 LIBID 3-mo. Eurodollar spread (LIBID-Treasury) 1
BDG Broker-dealer Debit Balances in Margin Accounts 7 LIG Markit Investment Grade (IG) 5-yr Senior CDS Index 7
BONDGR New US Corporate Debt Issuance (Relative to 12-mo. MA) 5 LPH CoreLogic National House Price Index 6
CARSPREAD UM Household Survey: Auto Credit Conditions Good/Bad spread 1 MBOND 20-yr Treasury/State & Local Government 20-yr GO bond spread 1
CBCAR Commercial Bank 48-mo. New Car Loan/2-yr Treasury yield spread 1 MBONDGR New State & Local Government Debt Issues (Relative to 12-mo.h MA) 5
CBILL 3-mo. Financial commercial paper/Treasury bill spread 1 MBSI Total MBS Issuance (Relative to 12-mo. MA) 5
CBPER Commercial Bank 24-mo. Personal Loan/2-yr Treasury yield spread 1 MCAP S&P 500, NASDAQ, and NYSE Market Capitalization/GDP 6
CCDQ S&P US Bankcard Credit Card: 3-mo. Delinquency Rate 3 MDQ MBA Serious Delinquencies 3
CCG Consumer Credit Outstanding 2 MG Money Stock: MZM 6
CCINC S&P US Bankcard Credit Card: Excess Rate Spread 1 MINC 30-yr Conforming Mortgage/10-yr Treasury yield spread 1
CG Commercial Paper Outstanding 4 MLIQ10 On-the-run vs. Off-the-run 10-yr Treasury liquidity premium 7
CILARGE FRB Senior Loan Officer Survey: Tightening Standards on Large C&I Loans 4 MMF Total Money Market Mutual Fund Assets/Total Long-term Fund Assets 7
CISMALL FRB Senior Loan Officer Survey: Tightening Standards on Small C&I Loans 4 MSWAP Bond Market Association Municipal Swap/20-yr Treasury yield spread 1
CITA Commercial Bank C&I Loans/Total Assets 2 NACMM NACM Survey of Credit Managers: Credit Manager's Index 2
CMBS BofAML 3-5 yr AAA CMBS OAS spread 1 NCL Commercial Bank Noncurrent/Total Loans 2
CMBSI CMBS Issuance (Relative to 12-mo. MA) 5 NFC Nonfinancial business debt outstanding/GDP 2
COMMODLIQ COMEX Gold/NYMEX WTI Futures Market Depth 6 OEQ S&P 500, S&P 500 mini, NASDAQ 100, NASDAQ mini Open Interest 5
CONTA Commercial Bank Consumer Loans/Total Assets 2 OINT 3-mo. Eurodollar, 10-yr/3-mo. swap, 2-yr and 10-yr Treasury Open Interest 5
CPH FRB Commercial Property Price Index 6 PENS Total Assets of Pension Funds/GDP 7
CPR Counterparty Risk Index (formerly maintained by Credit Derivatives Research) 7 RATELIQ CME Eurodollar/CBOT T-Note Futures Market Depth 6
CRE FRB Senior Loan Officer Survey: Tightening Standards on CRE Loans 4 REIT Total REIT Assets/GDP 7
CRG S&P US Bankcard Credit Card: Receivables Outstanding 7 REPO Fed Funds/Overnight Treasury Repo rate spread 1
CTABS ICE BofAML ABS/5-yr Treasury yield spread 1 REPOA Fed Funds/Overnight Agency Repo rate spread 1
CTERM 3-mo./1-wk AA Financial commercial paper spread 1 REPOGR Repo Market Volume (Repurchases+Reverse Repurchases of primary dealers) 6
CTF ICE BofAML Financial/Corporate Credit bond spread 1 REPOMORT Fed Funds/Overnight MBS Repo rate spread 1
CTMBS ICE BofAML Mortgage Master MBS/10-year Treasury yield spread 1 RRE FRB Senior Loan Officer Survey: Tightening Standards on RRE Loans 4
CWILL FRB Senior Loan Officer Survey: Willingness to Lend to Consumers 4 RTA Commercial Bank Real Estate Loans/Total Assets 2
D10 10-yr Constant Maturity Treasury yield 6 RTERM 3-mo./1-wk Treasury Repo spread 1
DBC ABA Value of Delinquent Bank Card Credit Loans/Total Loans 3 SBD Total Assets of Broker-dealers/GDP 2
DCLOSE ABA Value of Delinquent Consumer Loans/Total Loans 3 SMALL NFIB Survey: Credit Harder to Get 2
DCOMM Commercial Bank Total Unused C&I Loan Commitments/Total Assets 7 SPCILARGE FRB Senior Loan Officer Survey: Increasing spreads on Large C&I Loans 1
DHE ABA Value of Delinquent Home Equity Loans/Total Loans 3 SPCISMALL FRB Senior Loan Officer Survey: Increasing spreads on Small C&I Loans 1
DNET Net Notional Value of Credit Derivatives 2 SPR210 10-yr/2-yr Treasury yield spread 1
DOTH ABA Value of Delinquent Noncard Revolving Credit Loans/Total Loans 3 SPR23M 2-yr/3-mo. Treasury yield spread 1
DURSPREAD UM Household Survey: Durable Goods Credit Conditions Good/Bad spread 1 STA Commercial Bank Securities in Bank Credit/Total Assets 2
EQUITYLIQ CME E-mini S&P Futures Market Depth 6 STKGR New US Corporate Equity Issuance (Relative to 12-mo. MA) 5
FAILS Treasury Repo Delivery Fails Rate 3 STLOC Federal, state, and local debt outstanding/GDP 2
FAILSA Agency Repo Delivery Failures Rate 3 SWAP10 10-yr Interest Rate Swap/Treasury yield spread 1
FAILSC Corporate Securities Repo Delivery Failures Rate 3 SWAP2 2-yr Interest Rate Swap/Treasury yield spread 1
FAILSMBS Agency MBS Repo Delivery Failures Rate 3 SWAP3M 3-mo. Overnight Indexed Swap (OIS)/Treasury yield spread 1
FC Total Assets of Finance Companies/GDP 4 TABS Total Assets of ABS issuers/GDP 5
FCORP Total Assets of Funding Corporations/GDP 4 TED 3-mo. TED spread (LIBOR-Treasury) 1
FG Finance Company Owned & Managed Receivables 7 TERM 1-yr/1-mo. LIBOR spread 1
FINS S&P 500 Financials/S&P 500 Price Index (Relative to 2-yr MA) 6 USD Advanced Foreign Economies Trade-weighted US Dollar Value Index 6
GSE Total Agency and GSE Assets/GDP 4 VIX CBOE Market Volatility Index VIX 1
GVL FDIC Volatile Bank Liabilities 4 VOL1 1-mo. BofAML Option Volatility Estimate Index 1
HH Household debt outstanding/PCE Durables and Residential Investment 2 VOL3 3-mo. BofAML Swaption Volatility Estimate Index 1
HOUSSPREAD UM Household Survey: Mortgage Credit Conditions Good/Bad spread 1 W500 Wilshire 5000 Stock Price Index 6
HY BofAML High Yield/Moody's Baa corporate bond yield spread 1 Macro Macroeconomic adjustment due to activity and inflation 7

Notes. The choice of macro-categories and the allocation of components to them is based on the judgment
of the authors.
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