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Foreword

The last decade has been good for studying radiation belt physics. A primary reason
for this is NASA’s Van Allen Probes mission, a pair of satellites bristling with a
robust assortment of sensors carefully designed to assess the physical properties of
relativistic electrons and the other particles and electromagnetic fields responsible
for electron dynamics in near-Earth space. Collecting data for just over seven years,
these twin satellites provide us with arguably the biggest and best data set humanity
as ever had for disentangling the physics of the radiation belts. The data from the
Van Allen Probes mission is augmented by that from several other missions that
also surveyed this same region of outer space, namely the Time-History of Events
and Macroscale Interactions During Substorms (THEMIS) mission, the Magneto-
spheric Multiscale Mission, the Arase mission, geosynchronous orbiting spacecraft,
and low-Earth orbiting spacecraft, in particular several CubeSat missions. There has
also been an extensive long-duration high-altitude balloon program in recent years
focused on energetic electron physics, in particular the Balloon Array for Radiation-
belt Relativistic Electron Losses (BARREL) campaign, for which 40 such payloads
were launched from the ice sheets of Antarctica. The analysis of all of this data
was enhanced through the use of theoretical advancements and improved numerical
tools, including sophisticated suites of coupled models. The end result has been
hundreds, perhaps thousands, of new studies about the radiation belts, written and
published in the peer-reviewed disciplinary journals over the last decade, yielding
a substantially new understanding of the energetic particle environment encircling
our planet. The need of an updated holistic view on this topic is, therefore, critical.

As the Editor in Chief of one of those disciplinary journals in which many of
these studies were published—I was EiC of the Journal of Geophysical Research–
Space Physics for six years, from the beginning of 2014 through 2019—I am
familiar with the development of our new thinking about the radiation belts. I was
regularly amazed at the quantity of research articles produced by radiation belt
physicists. We solicited manuscripts for several special sections on this topic during
my EiC term, and each time I thought this would be the last, as surely the research
community was running out of new findings on the subject. But no; each of these
special sections was a huge success, with dozens of high-quality studies resulting
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vi Foreword

in large hundreds of citations—one measure of their impact on the direction of the
research field—over the next few years. The physics of Earth’s radiation belts was
definitely among the “hot topics” of space physics during my EiC term.

This book, Physics of the Radiation Belts—Theory and Observations by Drs.
Hannu Koskinen and Emilia Kilpua of the University of Helsinki, offers an
excellent distillation of those numerous new studies. They expertly blend the latest
findings with our long-standing theories, developed over many decades, explaining
the dominant physical processes governing relativistic charge particles in near-
Earth space. While there will always be new studies published with additional
contributions to our understanding, with some appearing right after publication
of this book, it is useful to periodically assemble the collected knowledge of the
research community in a single volume. The synthesis compiled herein of all of
the many original research contributions in this field over the past decade is reason
alone to read it.

Some might ask the question of why topical books like this one are needed
anymore. In the age of the internet, with seemingly all possible information we
could desire just a few clicks away, the concept of a book may seem antiquated. I
disagree. I not only vehemently oppose this viewpoint but also think that modern
technology—and the ease with which facts can be recalled to our electronic
devices—leads to a greater need for long-form compilations of our knowledge. I
like to think of it as “deep learning,” analogous “deep work,” deftly described by Cal
Newport’s book of that title. Deep learning is the process of minimizing distractions
and letting our minds focus on engaging with a single topic for an extended interval.
Books are more than a collection of many details but offer an integrative synthesis
of the subject, bringing together disparate and seemingly disconnected facets the
matter to compose a collective conceptual view that is greater than any one of the
interleaved components. This is not possible in the short-form writing found among
the brief descriptions of the issue available across the internet. New books are as
essential today as they ever were.

This book adroitly covers each of the important topics of its chosen subject
matter, examining each of the pieces of the radiation belt puzzle before bringing
all of these together. By providing several chapters of introductory plasma physics,
the book clearly defines the equations of motion governing why these fast-moving
electrically charged particles behave the way they do. Because they are flying at
relativistic speeds, they don’t spend much time at any one location, the forces are
mere nudges on their trajectories. It takes a persistent nudging to change their
flight path, and this is most effectively accomplished through their interaction
with electric and magnetic waves in space. The book devotes two full chapters
to waves, a necessary inclusion to fully describe their properties. That is, the
book systematically and robustly covers each of the principal topics of radiation
belt physics; this aspect makes it a worthwhile reference text for anyone in the
field. It doesn’t stop there, however. The content of the last two chapters are an
equally compelling reason to read the book, weaving those earlier sections into
a comprehensive tapestry of the relative importance of those processes on the
observed structure and dynamics of the radiation belts. Space physics, as a field, is
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moving towards a systems-level approach to geospace science, and this book makes
the case that a systems-level approach is needed for Earth’s radiation belts.

This is not the only new book on the radiation belts. There have been several
book-by-committee compilations on space physics in recent years, including some
on energetic particles in near-Earth space. The “chapters” of those books, however,
are independently written review articles. The unique contribution of this work is
that it is not an aggregated collection written by many different authors but a unified
story, building towards a synergistic conclusion.

Speaking of story, I greatly enjoy a good novel. A narrative that develops over the
course of hundreds of pages, taking hours to read, is one that carries me away along
the author’s carefully designed route, immersing me in a different realm among
new characters with difficult problems that they address through creative solutions.
Novels require many pages because there is a need to fully construct a setting, reveal
personality traits of the characters, and explore relationships between them that are
interwoven into a storyline. The world-building process revealed throughout a good
novel captivates the reader, compelling the continuation from one page to the next,
as the reader anticipates the progression towards a final climatic scene.

So it is with Physics of the Radiation Belts. There are many specific scientific
concepts needed to fully understand Earth’s radiation belts, and this book takes the
reader on a well-planned journey through these topics. By the end, the reader is
rewarded with a view of the radiation belts that incorporates all of those scientific
threads into a comprehensive comparative analysis. The result is a beautiful gestalt
of the radiation belts, tailor-made for deep learning about a hot topic of space
physics.

Department of Climate and Space Sciences Michael W. Liemohn
and Engineering
University of Michigan
Ann Arbor, MI USA
March 2021



Preface

The discovery of James A. Van Allen and his team in 1958 that the Earth is
surrounded by belts of intense corpuscular radiation trapped in the quasi-dipolar
terrestrial magnetic field can be considered as the birth of magnetospheric physics
as we understand it today. An authoritative account of how everything happened was
given by Van Allen (1983) himself in the monograph Origins of Magnetospheric
Physics.

At the time of the first artificial satellites, the progress in magnetospheric physics
was extremely rapid. The inner radiation belt was found using Geiger–Müller tubes
onboard Explorer I and III in February and March 1958, and the two-belt structure
was confirmed by the unsuccessful Moon probe Pioneer III in December 1958.
While Pioneer III did not achieve the escape velocity and fell back to Earth from an
altitude of more than 100,000 km, it crossed the outer belt twice and contributed
valuable observations of space radiation. Soon thereafter Thomas Gold (1959)
introduced the term “magnetosphere” to describe the (non-spherical) domain where
the Earth’s magnetic field determines the motion of charged particles. Later, the
designation “Van Allen radiation belts” became common to credit Van Allen’s
pioneering role.

Already three months before Explorer I, the second satellite of the Soviet Union,
Sputnik 2, had carried two Geiger–Müller tubes of Sergei Nikolaevich Vernov. Due
to several reasons, including a limited amount of data and the tight secrecy around
the Soviet space program, Vernov and his collaborators were not able to interpret
the fluctuations in the counting rates of the instrument having been due to trapped
radiation before the publication of Explorer and Pioneer observations (see, e.g.,
Baker and Panasyuk 2017).

From the very beginning it was clear that understanding, monitoring, and
forecasting the rapid temporal evolution of the radiation belts were critical to
both civilian and military space activities. At the end of 2020, more than 3300
active satellites were in orbit and several hundred are being launched annually.
Thus, the knowledge and understanding of the radiation belts is more important
than ever. The energetic corpuscular radiation is a common reason for satellite
malfunctions in Earth orbit and an obvious risk to the health of astronauts. In
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fact, every now and then, satellite operators “rediscover” the radiation belts with
unwelcome consequences. Due to the strong temporal variations of the intensity
and spectrum of the Earth’s radiation environment, in particular during geomagnetic
storms, monitoring and forecasting the radiation environment is a key element in
space weather services. Radiation belts also offer a unique natural plasma laboratory
to study fundamental plasma physical processes and phenomena, including wave–
particle interactions and acceleration of charged particles to relativistic energies.

The radiation belts have now been investigated for more than six decades,
but many details of the underlying physical processes remain enigmatic and new
surprises are found with increasingly detailed observations. Remarkable scientific
progress was taking place at time of writing this volume, owing to the highly
successful Van Allen Probes, also known as Radiation Belt Storm Probes (RBSP),
of NASA, which were launched in 2012 and deactivated in 2019. The mission
consisted of two satellites crossing through the heart of the outer radiation belt
with unprecedented instrumentation for this particular purpose. The authors of this
book were amazed and perplexed by the complexity of new observations and the
consequent development of new modeling and theoretical approaches to match
with the widening and deepening view on this important and intriguing domain of
near-Earth space. We are convinced that this was the right time to write a modern
textbook-style monograph combining the theoretical foundations with new data in
a form accessible to students in space physics and engineering as well as young
scientists already active in, or moving to, this exciting field of research.

We emphasize that there is a large and rapidly increasing amount of scientific
publications on radiation belts. As this volume is meant to be a textbook, not
a comprehensive review of the past and present literature, we have tried to be
selective with citations and included mainly references that we think are necessary
to follow the presentation. However, to credit the many recent contributions, the list
of references has become longer than is customary in textbooks. It is evident that
future studies will bring new light to the radiation belt phenomena and make parts
of the content of our book obsolete, even erroneous.

Of the earlier literature, we want to highlight the classic monographs The Adia-
batic Motion of Charged Particles (Northrop 1963), Dynamics of Geomagnetically
Trapped Radiation (Roederer 1970) and its thoroughly revised edition Dynamics
of Magnetically Trapped Particles (Roederer and Zhang 2014), Particle Diffusion
in the Radiation Belts (Schulz and Lanzerotti 1974), and Quantitative Aspects of
Magnetospheric Physics (Lyons and Williams 1984). Of the more recent sources,
particularly recommendable reading are the articles in the compilation Waves,
Particles, and Storms in Geospace edited by Balasis et al. (2016). A comprehensive
summary of the recent advances of understanding the radiation belts from the space
weather viewpoint is the review article by Baker et al. (2018).
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On the Style and Content of the Book

Our aim has been to write a book that is accessible to readers with various
backgrounds, in particular graduate students and young scientists as well as
magnetospheric researchers and space engineers, who feel that they need more
understanding of the physical foundations of radiation belt phenomena. While we
assume that the reader has some familiarity with basic plasma physics and the
Earth’s plasma environment, we briefly review the central concepts in the first four
chapters, simultaneously introducing the notations and conventions used later in the
book. For understandable reasons, we follow the presentation and notations of the
mongraph Physics of Space Storms—From the Solar Surface to the Earth (Koskinen
2011), which is also our main reference to more thorough discussions of basic space
plasma physics not included in the present volume. A careful reader may notice that
we have corrected a number of errors and typos in that book.

We wish to strongly emphasize the close ties between theory and observations.
Thus, we have included several examples from present and past observations
and their current interpretation. We remind that new and more comprehensive
observations will, every now and then, invalidate earlier conclusions, which of
course is the purpose of scientific research. As authors of a textbook, we try to
avoid taking side among competing ideas in the current scientific debate.

We begin with a brief description of the magnetic and plasma environment of
the radiation belts and magnetospheric dynamics in Chap. 1. The basics of single-
particle motion in a magnetic field and the adiabatic invariants, with the focus on
the quasi-dipolar field of the inner magnetosphere, are reviewed in Chap. 2. The
chapter is concluded with an introduction to drift shell splitting and magnetopause
shadowing. The basic concepts of plasma physics and the most important velocity
space distribution functions in the inner magnetosphere are discussed in Chap. 3.
Because the phase space density as a function of adiabatic invariants has due
to the improved observations become an important—but not always quite well
understood—tool in analysis of radiation belt data, the chapter concludes with a
presentation of the procedure how the phase space density can be obtained from
particle observations and its limitations.

Wave–particle interactions are the most important processes in transport, accel-
eration, and loss of radiation belt particles. There is no unique best approach to
treat this complex in the most logical way in a textbook. We have selected a
strategy where we first introduce in Chap. 4 the inner magnetospheric plasma wave
phenomena in general, yet keeping the focus on wave modes relevant to the topic of
the book. Thereafter, we discuss the drivers of the waves in Chap. 5 and the effects
of the waves to particle populations in Chap. 6. We want, however, to emphasize that
the growth and attenuation of the waves through particle acceleration/scattering are
intimately tied to each other. Thus, these three chapters should be studied together.

Chapter 7 is dedicated to the structure and evolution of the electron belts, which
became a primary focus during the Van Allen Probes era. Here, we also discuss the
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effects of different solar wind drivers of magnetospheric dynamics on radiation belts
as well as the effects of energetic electron precipitation on the atmosphere.

In the end of the book, Appendix A reviews some basic concepts of electro-
magnetic fields and waves. Appendix B contains a brief historical reference to the
spacecraft, the observations of which we have used in our presentation. We also
open the acronyms of the names of the satellites in the Appendix, where they are
easier to find than inside the main text.

We have deliberately left out two important topics suggested to us by some
of our colleagues. We do not explicitly deal with technological consequences of
corpuscular space radiation. There are several extensive compilations of articles on
technological and health risks posed by high-energy particles, from radiation belts
to cosmic rays, penetrating through the magnetosphere and practically any feasible
shielding of components and systems. Recommendable reading is Space Weather—
Physics and Effects (Bothmer and Daglis 2007).

Another wide research topic is physics of the radiation belts around other
magnetized planets, in particular Jupiter and Saturn. While the basic physics is
the same, the physical environments of the high-energy radiation belts around the
giant planets are very different from the terrestrial magnetosphere. The colocation
of radiation belts with moons and rings, which act as sources and sinks of heavy
neutrals and ions, makes the interparticle collisions and wave–particle interactions
much more complicated than in the Earth’s radiation belts. Furthermore, the large-
scale plasma dynamics of the fast-rotating massive magnetospheres is different. A
proper treatment of these issues would require a textbook of its own.

We and several of our colleagues have tested the basic space plasma physics
material included in Chaps. 1–6 in classroom practice over a period of more than
30 years. In our minds, extensive problem solving is an essential part of learning
physics. However, we decided not to include exercise problems in this volume.
If the book is used as course material, as we hope, the instructor can ask the
students to derive some of the theoretical results that have been skipped in the
text, to read and summarize seminal papers, to try to explain some peculiarities
in the data presentations, or to plot various quantities as functions of their variables.
Today, most observational data are available in various web-servers, which makes it
possible for the more advanced students to train their skills in scientific data analysis
and interpretation either using readily available tools or writing their own scripts to
illustrate the data.

Helsinki, Finland Hannu E. J. Koskinen
Helsinki, Finland Emilia K. J. Kilpua
June, 2021
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Chapter 1
Radiation Belts and Their Environment

The Van Allen radiation belts of high-energy electrons and ions, mostly protons,
are embedded in the Earth’s inner magnetosphere where the geomagnetic field is
close to that of a magnetic dipole. Understanding of the belts requires a thorough
knowledge of the inner magnetosphere and its dynamics, the coupling of the solar
wind to the magnetosphere, and wave–particle interactions in different temporal
and spatial scales. In this introductory chapter we briefly describe the basic
structure of the inner magnetosphere, its different plasma regions and the basics
of magnetospheric activity.

1.1 The Overall View to the Belts

The discovery of radiation belts dates back to the dawn of the space age when the
knowledge of the physical properties of the magnetosphere was still in its infancy. In
February 1958 the first U.S. satellite Explorer I1 carried a Geiger–Müller instrument
that was designed to measure cosmic radiation. It indeed did so until the spacecraft
reached the altitude of about 700 km when the instrument mysteriously fell silent.
The observations from Explorer III confirmed Explorer I observations only a month
later. In their seminal paper James Van Allen and his co-workers (Van Allen et al.
1958) suggested that the instrument was saturated due to high-intensity corpuscular
radiation trapped in the Earth’s magnetic field.

In December 1958 Pioneer III ventured further into space and understanding
of the basic structure of inner and outer radiation belts started to evolve. It soon
became clear that a population of multi-MeV protons, up to 1–2 GeV, dominates the
ion radiation at equatorial geocentric distances of about 1.1 − 3 RE (RE � 6370 km

1 The spacecraft mentioned in the text are briefly introduced and their acronyms deciphered in
Appendix B.
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2 1 Radiation Belts and Their Environment

Fig. 1.1 A sketch of showing the inner and outer electron belts and a slot region in between
embedded in the dipolar magnetic field of the Earth. The inner belt is within 2 RE form the center
of the Earth. The figure illustrates the structure when the outer belt is split to two spatially distinct
domains as observed by the Van Allen Probes. (Image credits: NASA’s Goddard Space Flight
Center and Grant Stevens, Rob Barnes and Sasha Ukhorskiy of the Applied Physics Laboratory of
the Johns Hopkins University)

is the radius of Earth).2 The high-energy electrons exhibit a two-belt structure with
a slot region in between (Fig. 1.1). The inner electron belt is partially co-located
with the proton belt at equatorial distances of about 1.1 − 2 RE . The outer belt is
beyond about 3 RE extending to distances of 7 − 10 RE with electron energies from
tens of keV to several MeV. Sometimes the outer belt exhibits two or even three
spatially distinct parts. As the proton mass is 931 MeV c−2 and the electron mass
511 keV c−2, the highest-energy inner belt protons and the outer belt electrons are
relativistic moving at almost the speed of light.

Since the early space age, the radiation belts have been investigated using a large
number of satellites.3 The observations now cover more than five solar cycles and
have revealed the extremely complex and highly variable structure of the belts.

2 When giving an altitude in terms of Earth radius, we always refer to geocentric distance.
3 A brief introduction to satellites cited in the book is given in Appendix B.
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Based on these observations and theoretical reasoning great number of different
numerical models of radiation belts have been constructed not only for scientific
purposes but also to meet the needs of spacecraft engineers and space mission
planners. As our focus is on the physical processes, we will not go into the details
of these models. An interested reader can find the models with their descriptions
at several web-sites, e.g., the Community Coordinated Modeling Center (CCMC)4

and the Space Environment Information System (SPENVIS)5 It is evident that the
observations during the Van Allen Probes era—many of which are discussed in this
book—and the subsequent modeling efforts will lead to important revisions and
refinements of the models.

Although the fluxes of the highest-energy particles and their energy densities are
considerably lower than those of the background plasma in the inner magnetosphere,
they are of a significant concern due to their space weather effects, both posing
risks to spacecraft and humans in orbit and affecting the upper atmosphere through
energetic electron and proton precipitation. The energization of radiation belt
particles is an interesting fundamental plasma physical process and much emphasis
has been placed on understanding the dynamics of relativistic and ultra-relativistic
populations.

The inner belt, in particular the proton population, is relatively stable, whereas
the outer electron belt is in continuous change. The high-energy electron fluxes can
change several orders of magnitude within minutes: the outer belt may suddenly
become almost completely depleted of, or get abruptly filled with, relativistic
electrons. Most activity occurs in “the heart of the outer belt”, at equatorial distances
of about 4 − 5 RE . While the Van Allen Probes mission has shown that there is
an almost impenetrable inner edge of the outer belt ultra-relativistic (� 4 MeV)
electrons at an equatorial distance of 2.8 RE , there have been a few observed events
when the slot region was filled with ultra-relativistic electrons and the electrons
remained trapped in the region up to several months.

The highly variable configuration and complex dynamics of the outer belt owe
to the continuous changes in the plasma and geomagnetic field conditions driven by
variable properties of the solar wind caused, in particular, by coronal mass ejections,
stream interaction regions, and fast solar wind flows carrying Alfvénic fluctuations.
Locally the kinetic response to particle injections from nightside magnetosphere
affect the thermodynamic properties of the radiation belt electrons.

The radiation belts overlap with different plasma domains of the inner magneto-
sphere: the ring current, the plasmasphere and the plasma sheet, whose properties
and locations vary in time. In particular the boundary of the plasmasphere, moving
between equatorial distances of 3 and 5 RE as a response to the solar wind driving,
is a critical region to the dynamics of the outer radiation belt.

The inner magnetospheric plasma exhibits complex wave activity transferring
energy and momentum between different plasma populations. The waves are known

4 https://ccmc.gsfc.nasa.gov/models/.
5 https://www.spenvis.oma.be.
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to scatter and energize the electrons depending on the particle energy, wave ampli-
tude and the direction of wave propagation. While much of elementary space plasma
theory has been developed under the approximation of linear perturbations, in the
case of observed large-amplitude waves nonlinear effects need to be considered.
Furthermore, the plasma and magnetic environment of the belts is not spatially
symmetric, but varies as function of local time sector and geomagnetic latitude,
and of course, temporally.

1.2 Earth’s Magnetic Environment

In the first approximation the Earth’s magnetic field is that of a magnetic dipole. The
dipole axis is tilted 11◦ from the direction of the Earth’s rotation axis. The current
circuit giving rise to the magnetic field is located in the liquid core about 1200–
3400 km from the center of the planet. The current system is asymmetric displacing
the dipole moment from the center, which together with inhomogeneous distribution
of magnetic matter above the core gives rise to large deviations from the dipole field
on the surface. The pure dipole field on the surface would be 30µT at the dipole
equator and 60µT at the poles. However, the actual surface field exceeds 66µT in
the region between Australia and Antarctica and is weakest, about 22µT, in a region
called South Atlantic Anomaly (SAA). The magnetic poles migrate slowly, and the
SAA has during the past decades moved slowly from Africa toward South America
being presently deepest in Paraguay. The SAA has a specific practical interest, as the
inner radiation belt reaches down to low Earth orbiting (LEO) satellites at altitudes
of 700–800 km above the anomaly.

1.2.1 The Dipole Field

Knowledge of the charged particle motion in the dipole field is essential in studies
of radiation belts. In the main radiation belt domain at geocentric distances 2–7 RE

the dipole field is a good first approximation for the quiet state of the magnetic field.
In reality, the dipole field is an idealization where the source current is assumed to
be confined into a point at the origin. The source of planetary and stellar dipoles
is a finite, actually a large, current system within the celestial body. Such fields,
including the Terrestrial magnetic field, are customarily represented as a multipole
expansion: dipole, quadrupole, octupole, etc. When moving away from the source,
the higher multipoles vanish faster than the dipole making the dipole field a good
starting point to consider the motion of charged particles in radiation belts. In the
dipole field charged particles behave adiabatically as long as their gyro radii are
smaller than the gradient scale length of the field (Chap. 2) and their orbits are not
disturbed by collisions or time-varying electromagnetic field.
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For the geomagnetic field it is customary to define the spherical coordinates in
a special way. The dipole moment (mE) is in the origin and points approximately
toward geographic south, tilted 11◦ as mentioned above. Similar to the geographic
coordinates the latitude (λ) is zero at the dipole equator and increases toward the
north, whereas the latitudes in the southern hemisphere are negative. The longitude
(φ) increases toward the east from a given reference longitude. In magnetospheric
physics the longitude is often given as the magnetic local time (MLT). In the dipole
approximation MLT is determined by the flare angle between two planes: the dipole
meridional plane containing the subsolar point on the Earth’s surface, and the dipole
meridional plane which contains a given point on the surface, i.e., the local dipole
meridian. Magnetic noon (MLT = 12 h) points toward the Sun, midnight (MLT =
24 h) anti-sunward. Magnetic dawn (MLT = 6 h) is approximately in the direction
of the Earth’s orbit around the Sun.6 The abbreviation h (for hour) is often dropped
and fractional MLTs are given by decimals instead of minutes and seconds.

The SI-unit of mE is A m2. In the radiation belt context it is convenient to
replace mE by k0 = μ0mE/4π , which is also customarily called dipole moment.
The strength of the terrestrial dipole moment varies slowly. For our discussion a
sufficiently accurate approximation is

mE = 8 × 1022 A m2

k0 = 8 × 1015 Wb m (SI : Wb = T m2)

= 8 × 1025 G cm3 (Gaussian units, 1 G = 10−4 T)

= 0.3 G R3
E (RE � 6370 km)

The last expression is convenient in practice because the dipole field on the surface
of the Earth (at 1 RE) varies in the range 0.3–0.6 G.

Outside its source, the dipole field is a curl-free potential field B = −∇Ψ , where
the scalar potential is given by

Ψ = −k0 · ∇ 1

r
= −k0

sin λ

r2 , (1.1)

yielding

B = 1

r3 [3(k0 · er )er − k0] . (1.2)

6 The definition of MLT in non-dipolar coordinate systems is more complicated but the main
directions are approximately the same.
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The components of the magnetic field are

Br = −2k0

r3 sin λ

Bλ = k0

r3 cos λ (1.3)

Bφ = 0

and its magnitude is

B = k0

r3 (1 + 3 sin2 λ)1/2 . (1.4)

The equation of a magnetic field line is

r = r0 cos2 λ , (1.5)

where r0 is the distance where the field line crosses the equator. The length element
of the magnetic field line element is

ds = (dr2 + r2dλ2)1/2 = r0 cos λ(1 + 3 sin2 λ)1/2dλ . (1.6)

This can be integrated in a closed form, yielding the length of the dipole field line
Sd as a function of r0

Sd ≈ 2.7603 r0 . (1.7)

The curvature radius RC = |d2r/ds2|−1 of the magnetic field is an important
parameter for the motion of charged particles. For the dipole field the radius of
curvature is

RC(λ) = r0

3
cos λ

(1 + 3 sin2 λ)3/2

2 − cos2 λ
. (1.8)

Any dipole field line is determined by its (constant) longitude φ0 and the distance
where the field line crosses the dipole equator. This distance is often given in terms
of the L-parameter

L = r0/RE . (1.9)

The parameter was introduced in the early days of Explorer data analysis by Carl
E. McIlwain to organize the observations in magnetic field-related coordinates.
Consequently, L is known as McIlwain’s L-parameter.
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For a given L the corresponding field line reaches the surface of the Earth at the
(dipole) latitude

λe = arccos
1√
L

. (1.10)

For example, L = 2 (the inner belt) intersects the surface at λe = 45◦ , L = 4
(the heart of the outer belt) at λe = 60◦ and L = 6.6 (the geostationary orbit)7 at
λe = 67.1◦.

The dipole field line length in (1.7) was calculated from the dipole itself. Now
we can calculate also the dipole field line length from a point on the surface to the
surface on the opposite hemisphere to be

Se ≈ (2.7755 × L − 2.1747) RE , (1.11)

which is a good approximation when L � 2.
The field magnitude along a given field line as a function of latitude is

B(λ) = [Br(λ)2 + Bλ(λ)2]1/2 = k0

r3
0

(1 + 3 sin2 λ)1/2

cos6 λ
. (1.12)

For the Earth

k0

r3
0

= 0.3

L3 G = 3 × 10−5

L3 T . (1.13)

At the magnetic equator on the surface of the Earth, the dipole field is 0.3 G (30µT),
at the poles 0.6 G (60µT).

The actual geomagnetic field has considerable deviations from the dipolar field
because the dipole is not quite in the center of the Earth, the source is not a point,
and the electric conductivity of the Earth is not uniform. The geomagnetic field is
described by the International Geomagnetic Reference Field (IGRF) model, which
is regularly updated to reflect the slow secular variations of the field, i.e., changes in
timescales of years or longer (Fig. 1.2).

1.2.2 Deviations from the Dipole Field due to Magnetospheric
Current Systems

The Earth’s magnetosphere is the region where the near-Earth magnetic field
controls the motion of charged particles. It is formed by the interaction between the

7 The geostationary distance is an altitude where a satellite on equatorial plane moves around the
Earth in 24 h. The orbit is called Geostationary Earth Orbit (GEO) or geosynchronous orbit.
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Fig. 1.2 The magnetic field magnitude on the surface of the Earth according to the 13th generation
IGRF model released in December 2019. The South Atlantic Anomaly is the deep blue region
extending from the southern tip of Africa to South America. The model is available at National
Centers for Environmental Information (NCEI, https://www.ncei.noaa.gov)

geodipole and the solar wind. The deformation of the field, caused by the variable
solar wind pressure, sets up time-dependent magnetospheric current systems that
dominate deviations from the dipole field in the outer radiation belt and beyond.

The solar wind plasma cannot easily penetrate to the Earth’s magnetic field and
the outer magnetosphere is essentially a cavity around which the solar wind flows.
The cavity is bounded by a flow discontinuity called the magnetopause. The shape
and location of the magnetopause is determined by the balance between the solar
wind dynamic plasma pressure and the magnetospheric magnetic field pressure. The
nose, or apex, of the magnetopause is, under average solar wind conditions, at the
distance of about 10 RE from the center of the Earth but can be pushed to the vicinity
of the geostationary distance (6.6 RE) during periods of large solar wind pressure,
which has important consequences to the dynamics of the outer radiation belt. In the
dayside the dipole field is compressed toward the Earth, whereas in the nightside
the field is stretched to form a long magnetotail. The deviations from the curl-free
dipole field correspond to electric current systems according to Ampère’s law J =
∇ × B/μ0 .

In the frame of reference of the Earth the solar wind is supersonic, or actually
super-magnetosonic, exceeding the local magnetosonic speed vms = √

vs + vA,
where vs is the sound speed, vA = B/

√
μ0ρm the Alfvén speed and ρm the mass

density of the solar wind. Because fluid-scale perturbations cannot propagate faster
than vms , this leads to a formation of a collisionless shock front, called the bow

https://www.ncei.noaa.gov
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shock, upstream of the magnetosphere. Under typical solar wind conditions the apex
of the shock in the solar direction is about 3 RE upstream of the magnetopause.
The shock converts a considerable fraction of solar wind kinetic energy to heat and
electromagnetic energy. The irregular shocked flow region between the bow shock
and the magnetopause is called the magnetosheath.

The current system on the dayside magnetopause shielding the Earth’s magnetic
field from the solar wind is known as the Chapman–Ferraro current, recognizing
the early attempt of Chapman and Ferraro (1931) to explain how magnetic storms
would be driven by corpuscular radiation from the Sun. In the first approximation
the Chapman–Ferraro current density JCF can be expressed as

JCF = BMS

B2
MS

× ∇Pdyn , (1.14)

where BMS is the magnetospheric magnetic field and Pdyn the dynamic pressure of
the solar wind. Because the interplanetary magnetic field (IMF) at the Earth’s orbit
is only a few nanoteslas, the magnetopause current must shield the magnetospheric
field to almost zero just outside the current layer. Consequently, the magnetic field
immediately inside the magnetopause doubles: about one half comes from the
Earth’s dipole and the second half from the magnetopause current.

The Chapman–Ferraro model describes a teardrop-like closed magnetosphere
that is compressed in the dayside and stretched in the nightside, but not very
far. Since the 1960s spacecraft observations have shown that the nightside mag-
netosphere, the magnetotail, is very long, extending far beyond the orbit of the
Moon. This requires a mechanism to transfer energy from the solar wind into the
magnetosphere to keep up the current system that sustains the tail-like configuration.

Figure 1.3 is a sketch of the magnetosphere with the main large-scale magneto-
spheric current systems. The overwhelming fraction of the magnetospheric volume
consists of tail lobes, connected magnetically to the polar caps in the ionized upper
atmosphere, known as the ionosphere. The polar caps are bounded by auroral ovals.
Consequently, in the northern lobe the magnetic field points toward the Earth, in the
southern away from the Earth. To maintain the lobe structure, there must be a current
sheet between the lobes where the current points from dawn to dusk. This cross-tail
current is embedded within the plasma sheet (Sect. 1.3.1) and closes around the tail
lobes forming the nightside part of the the magnetopause current.

The cusp-like configurations of weak magnetic field above the polar regions
known as polar cusps do not connect magnetically to magnetic poles, but instead
to the southern and northern auroral ovals at noon, because the entire magnetic
flux enclosed by the ovals is connected to the tail lobes. Tailward of the cusps the
Chapman–Ferraro current and the tail magnetopause current smoothly merge with
each other. Figure 1.3 also illustrates the westward flowing ring current (RC) and the
magnetic field-aligned currents (FAC) connecting the magnetospheric currents to
the horizontal ionospheric currents in auroral regions at an altitude of about 100 km.

The magnetospheric current systems can have significant temporal variations,
which makes the mathematical description of the magnetic field complicated. A
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Fig. 1.3 The magnetosphere and the large scale magnetospheric current systems. (Figure courtesy
T. Mäkinen, from Koskinen 2011, reprinted by permission from SpringerNature)

common approach is to apply some of the various models developed by Nikolai
Tsyganenko (for a review, see Tsyganenko 2013).8 Particularly popular in radiation
belt studies is the model known as TS04 (Tsyganenko and Sitnov 2005).

For illustrative purposes simpler models are sometimes useful. For example, the
early time-independent model of Mead (1964) reduces in the magnetic equatorial
(r, φ) plane to

B(r, φ) = BE

(
RE

r

)3
[

1 + b1

BE

(
r

RE

)3

− b2

BE

(
r

RE

)4

cos φ

]
, (1.15)

where we have adopted the notation of Roederer and Zhang (2014). Here BE is
the equatorial dipole field on the surface of the Earth (approximately 30.4µT =
30,400 nT) and φ is the longitude east of midnight. The cos φ term describes the
azimuthal asymmetry due to the dayside compression and nightside stretching of
the field. The coefficients b1 and b2 depend on the distance of the subsolar point of
the magnetopause Rs (in units of RE), which, in turn, depends on the upstream solar
wind pressure

b1 = 25

(
10

Rs

)3

nT

b2 = 2.1

(
10

Rs

)4

nT . (1.16)

8 Tsyganenko models are available at Community Coordinated Modeling Center:
https://ccmc.gsfc.nasa.gov/models/.

https://ccmc.gsfc.nasa.gov/models/
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This model is fairly accurate during quiet and moderately disturbed times at
geocentric distances 1.5–7 RE .

1.2.3 Geomagnetic Activity Indices

The intensity and variations of magnetospheric and ionospheric current systems
are traditionally described in terms of geomagnetic activity indices (Mayaud 1980),
which are available at the International Service of Geomagnetic Indices webpages
maintained by the University of Strasbourg.9 The indices are calculated from
ground-based magnetometer measurements. The large number of useful indices
illustrates the great variability of geomagnetic activity; sometimes the effects are
stronger at high latitudes, sometimes at low, sometimes the background current
systems are strong already before the main perturbation, etc. As different indices
describe different features of magnetospheric currents, there is no one-to-one
correspondence between them. The choice of a particular index depends on physical
processes being investigated. Here we briefly introduce the most widely used indices
for global storm levels, Dst and Kp, and for the activity at auroral latitudes, AE,
which will be used later when discussing the relation of radiation belt dynamics
with evolving geomagnetic activity.

The Dst index aims at measuring the intensity of the ring current. It is calculated
once an hour as a weighted average of the deviation from the quiet level of the
horizontal magnetic field component (H ) measured at four low-latitude stations
distributed around the globe. Geomagnetic storms (also known as magnetospheric
storms or magnetic storms) are defined as periods of strongly negative Dst index,
signalling enhanced westward the ring current. The more negative the Dst index
is, the stronger is the storm. There is no canonical lower threshold for the magnetic
perturbation beyond which the state of the magnetosphere is to be called a storm
and identification of weak storms is often ambiguous. In this book we call storms
with Dst from –50 to –100 nT moderate, from –100 to –200 nT intense, and those
with Dst < −200 nT big. A similar 1-min index derived from a partly different set
of six low-latitude stations (SYM–H) is also in use.

A sensitive ground-based magnetometer reacts to all magnetospheric current
systems and, thus, Dst has contributions from other currents in addition to the
ring current. These include the magnetopause and cross-tail currents, as well as
induced currents in the ground due to rapid temporal changes of ionospheric
currents. Large solar wind pressure pushes the magnetopause closer to the Earth
forcing the magnetopause current to increase to be able to shield a locally stronger
geomagnetic field from the solar wind. The effect is strongest on the dayside where

9 http://isgi.unistra.fr/.

http://isgi.unistra.fr/


12 1 Radiation Belts and Their Environment

the magnetopause current flows in the direction opposite to the ring current. The
pressure corrected Dst index can be defined as

Dst∗ = Dst − b
√

Pdyn + c , (1.17)

where Pdyn is the solar wind dynamic pressure and b and c are empirical parameters,
whose exact values depend on the used statistical analysis methods, e.g., b =
7.26 nT nPa−1/2 and c = 11 nT as determined by O’Brien and McPherron (2000).

The contribution from the dawn-to-dusk directed tail current to the Dst index
is more difficult to estimate. During strong activity the cross-tail current intensifies
and moves closer to the Earth, enhancing the nightside contribution to Dst . The
estimates of this effect on Dst vary in the range 25–50% (e.g., Turner et al. 2000;
Alexeev et al. 1996). Furthermore, fast temporal changes in the ionospheric currents
induce strong localized currents in the ground, which may contribute up to 25% to
the Dst index (Langel and Estes 1985; Häkkinen et al. 2002).

Another widely used index is the planetary K index, Kp. Each magnetic
observatory has its own K index and Kp is an average of K indices from 13
mid-latitude stations. It is a quasi-logarithmic range index expressed in a scale
of one-thirds: 0, 0+, 1−, 1, 1+, . . . , 8+, 9−, 9. Kp is based on mid-latitude
observations and thus more sensitive to high-latitude auroral current systems and
to substorm activity than the Dst index. Kp is a 3-h index and does not reflect rapid
changes in the magnetospheric currents.

The fastest variations in the current systems take place at auroral latitudes. To
describe the strength of the auroral currents the auroral electrojet indices (AE) are
commonly used. The standard AE index is calculated from 11 or 12 magnetometer
stations located under the average auroral oval in the northern hemisphere. It is
derived from the magnetic north component at each station by determining the
envelope of the largest negative deviation from the quiet time background, called
the AL index, and the largest positive deviation, called the AU index. The AE

index itself is AE = AU − AL (all in nT). Thus AL is the measure of the
strongest westward current in the auroral oval, AU is the measure of the strongest
eastward current, and AE characterizes the total electrojet activity. AE, AU, AL

are typically given with 1-min time resolution.
As the auroral electrojets flow at the altitude of about 100 km, their magnetic

deviations on the ground are much larger than those caused by the ring current. For
example, during typical substorm activations AE is in the range 200–400 nT and
can during strong storms exceed 2000 nT, whereas the equatorial Dst perturbations
exceed −200 nT only during the strongest storms.

1.3 Magnetospheric Particles and Plasmas

The magnetosphere is a vast domain with a wide range of relevant physical param-
eters. The energies, temperatures and densities vary by several orders of magnitude
and change also significantly as response to variable solar wind conditions. The
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inner magnetosphere consists of three main particle domains; the cold and relatively
dense plasmasphere, the more energetic ring current and the high-energy radiation
belts. They are not spatially distinct regions, but partially overlap and their mutual
interactions are critical to the physics of radiation belts. The plasma sheet in the
outer magnetosphere acts as the source of suprathermal particles that are injected
into the inner magnetosphere during periods of magnetospheric activity.

This introductory discussion remains at a very general level. We introduce the
details of individual particle motion in Chap. 2 and the basic plasma concepts in
Chap. 3.

1.3.1 Outer Magnetosphere

The outer magnetosphere can be considered to begin at distances of about 7–
8 RE where the nightside magnetic field becomes increasingly stretched. Table 1.1
summarizes typical plasma parameters in the mid-tail region, at about X = −20 RE

from the Earth. Here X is the Earth-centered coordinate along the Earth–Sun line,
positive toward the Sun. The tail lobes are almost empty, particle number densities
being of the order of 0.01 cm−3. The central plasma sheet where the cross-tail
current is embedded (Fig. 1.3) is, in turn, a region of hot high-density plasma. It
is surrounded by the plasma sheet boundary layer with density and temperature
intermediate to values in the central plasma sheet and tail lobes. The field lines of the
boundary layer connect to the poleward edge of the auroral oval. The actual numbers
differ considerably from the typical values under changing solar wind conditions
and, in particular, during strong magnetospheric disturbances.

Table 1.1 also includes typical parameters in the magnetosheath at the same
X-coordinate. The magnetosheath consists of solar wind plasma that has been
compressed and heated by the Earth’s bow shock. It has higher density and lower
temperature than observed in the outer magnetosphere. Typical densities of the
unperturbed solar wind at 1 AU extend from about 3 cm−3 in the fast (∼ 750 km s−1)
to about 10 cm−3 in the slow (∼ 350 km s−1) solar wind, again with large deviations.
Table 1.1 shows that, while the magnetic field magnitude is rather similar in

Table 1.1 Typical values of plasma parameters in the mid-tail. Plasma beta (β) is the ratio
between kinetic and magnetic pressures (Eq. 3.28)

Magneto- Tail Plasma sheet Central

sheath lobe boundary plasma sheet

n (cm−3) 8 0.01 0.1 0.3

Ti (eV) 150 300 1000 4200

Te (eV) 25 50 150 600

B (nT) 15 20 20 10

β 2.5 3 · 10−3 0.1 6
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all regions shown, plasma beta (the ratio between the kinetic and magnetic field
pressures), is a useful parameter to distinguish between different regions.

1.3.2 Inner Magnetosphere

The inner magnetosphere is the region where the magnetic field is quasi-dipolar.
It is populated by different spatially overlapping particle species with different
origins and widely different energies: the ring current, the radiation belts and
the plasmasphere. The ring current and radiation belts consist mainly of trapped
particles in the quasi-dipolar field drifting due to magnetic field gradient and
curvature effects around the Earth, whereas the motion and spatial extent of
plasmaspheric plasma is mostly influenced by the corotation and convection electric
fields (Chap. 2).

The ring current arises from the azimuthal drift of energetic charged particles
around the Earth; positively charged particles drifting toward the west and electrons
toward the east. Basically all drifting particles contribute to the ring current. The
drift currents are proportional to the energy density of the particles and the main
ring current carriers are positive ions in the energy range 10–200 keV, whose fluxes
are much larger than those of the higher-energy radiation belt particles. The ring
current flows at geocentric distances 3–8 RE , and peaks at about 3–4 RE . At the
earthward edge of the ring current the negative pressure gradient introduces a local
eastward diamagnetic current, but the net current remains westward.

During magnetospheric activity the role of the ionosphere as the plasma source
of ring current enhances, increasing the relative abundance of oxygen (O+) and
helium (He+) ions in the magnetosphere (to be discussed in Sect. 6.3.1). As a result
a significant fraction of ring current can at times be carried by oxygen ions of
atmospheric origin. The heavy-ion content furthermore modifies the properties of
plasma waves in the inner magnetosphere, which has consequences on the wave–
particle interactions with the radiation belt electrons, as will be discussed from
Chap. 4 onward.

The plasmasphere is the innermost part of the magnetosphere. It consists of cold
(∼1 eV) and dense (� 103 cm−3) plasma of ionospheric origin. The existence of the
plasmasphere was already known before the spaceflight era based on the propaga-
tion characteristics of lightning-generated and man-made very low-frequency (VLF)
waves. The plasmasphere has a relatively clear outer edge, the plasmapause, where
the proton density drops several orders of magnitude. The location and structure
of the plasmapause vary considerably as a function of magnetic activity (Fig. 1.4).
During magnetospheric quiescence the density decreases smoothly at distances from
4–6 RE , whereas during strong activity the plasmapause is steeper and pushed closer
to the Earth.
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Fig. 1.4 Plasma density in
the night sector organized by
the activity index Kp.
Kp < 1+ corresponds to a
very quiet magnetosphere,
whereas Kp = 4 − 5
indicates a significant activity
level, although not yet a big
magnetic storm. The L-shell
is defined in Sect. 2.6. It
corresponds to the magnetic
field lines of a given
L-parameter. (Adapted from
Chappell (1972), reprinted by
permission from American
Geophysical Union)

The location of the plasmapause is determined by the interplay between the
sunward convection of plasma sheet particles and the plasmaspheric plasma coro-
tating with the Earth. In Sect. 2.3 we add the convective and corotational electric
fields to the guiding center motion of charged particles and find that an outward
bulge called plasmaspheric plume develops on the duskside around 18 h magnetic
local time (MLT). Plasmaspheric plumes are most common and pronounced during
geomagnetic storms and substorms, but they can exist also during quiet conditions
(e.g., Moldwin et al. 2016, and references therein). During geomagnetic storms the
plume can expand out to geostationary orbit and bend toward earlier MLT.

Figure 1.5 shows global observations of the plasmasphere taken by the EUV
instrument onboard the IMAGE satellite before and after a moderate geomagnetic
storm in June 2000. Before the storm the plasmasphere was more or less symmetric.
After the storm the plasmasphere was significantly eroded leaving a plume extend-
ing from the dusk toward the dayside magnetopause. When traversing the plume.
the trapped radiation belt electrons, otherwise outside the plasmapause, encounter
a colder and higher-density plasma with plasma wave environment similar to the
plasmasphere proper. Consequently, the influence of the plasmasphere on radiation
belt particles extends beyond its nominal boundary depicted in Fig. 1.4.

The plasma parameters in the plasmasphere, in the plume and at the plasmapause
are critical to the generation and propagation of plasma waves that, in turn, interact
with the energetic particles in the ring current and radiation belts. Thus, the coldest
and the hottest components of the inner magnetosphere are intimately coupled to
each other through wave–particle interactions.
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Fig. 1.5 Plasmapheric plume and plasmaspheric erosion as observed by the IMAGE EUV
instrument. The picture is taken from above the northern hemisphere and the Sun is to the right.
(Figure courtesy: Jerry Goldstein, Southwest Research Institute, for more information of this
particular storm see Goldstein et al. 2004)

1.3.3 Cosmic Rays

In addition to ion and electron radiation belts another important component of
corpuscular radiation in the near-Earth space consists of cosmic rays. The kinetic
energies of a large fraction of cosmic ray particles are so large that the geomag-
netic field cannot trap them. Instead, the particles traverse through the Earth’s
magnetosphere without much deflection of their trajectories. Some of them hit the
atmosphere interacting with nuclei of atmospheric atoms and molecules causing
showers of elementary particles being possible to detect on ground. Those with
highest energies can penetrate all the way to the ground.

The spectrum of cosmic ray ions at energies below about 1015 eV per nucleon in
the near-Earth space has three main components:

• Galactic cosmic rays (GCR), whose spectrum peaks at energies above 100 MeV
per nucleon, are most likely accelerated by supernova remnant shock waves in
our galaxy.

• Solar cosmic rays (SCR) are accelerated by coronal and interplanetary shocks
related to solar eruptions. Their energies are mostly below 100 MeV per nucleon
and a fraction of them can become trapped in the inner radiation belt.
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• Anomalous cosmic rays (ACR) are ions of solar origin captured and accelerated
by the heliospheric termination shock, where the supersonic solar wind becomes
subsonic before encountering the interstellar plasma, or in the heliosheath outside
the heliopause. Some of the ions are injected back toward the Sun. Near the Earth
the ACR spectrum peaks at about 10 MeV per nucleon and thus the particles can
become trapped in the geomagnetic field.

Although the galactic cosmic rays cannot directly be trapped into the radiation
belts, they contribute indirectly to the inner belt composition through the Cosmic
Ray Albedo Neutron Decay (GRAND) mechanism. The cosmic ray bombardment of
the atmosphere produces neutrons that move in all directions. Although the average
neutron lifetime is 14 min 38 s, during which a multi-MeV neutron either hits the
Earth or escapes far away from the magnetosphere, a small fraction of them decay
to protons while still in the inner magnetosphere and may become trapped in the
inner radiation belt (to be discussed in Sect. 6.3.3).

Below about 10 GeV GCR and ACR fluxes are modulated by the 11- and 22-year
solar cycles, so they provide quasi-stationary background radiation in the timescales
of radiation belt observations. The arrivals of SCRs are, in turn, transient phenomena
related to solar flares and coronal mass ejections.

The cosmic ray electrons also have galactic and solar components. Furthermore,
the magnetosphere of Jupiter accelerates high-energy electrons escaping to the
interplanetary space. These Jovian electrons can be observed near the Earth at
intervals of about 13 months when the Earth and Jupiter are connected by the IMF.

Supernova shock waves are the most likely sources of the accelerated GCR
electrons, whereas in the acceleration of SCR and Jovian electrons also other mecha-
nisms besides shock acceleration are important, in particular inductive electric fields
associated with magnetic reconnection in solar flares and the Jovian magnetosphere.

The acceleration and identity of the observed very highest-energy cosmic rays up
to about 3 × 1020 eV remain enigmatic. It should not be possible to observe protons
with energies higher than 6 × 1019 eV, known as the Greisen–Zatsepin–Kuzmin cut-
off, unless they are accelerated not too far from the observing site. Above the cut-
off the interaction of protons with the blue-shifted cosmic microwave background
produces pions that carry away the excessive energy. It is possible that the highest-
energy particles are nuclei of heavier elements. This is, for the time being, an open
question.

1.4 Magnetospheric Dynamics

Strong solar wind forcing drives storms and more intermittent substorms in the
magnetosphere. Both are critical dynamical elements in the temporal and spatial
evolution of the radiation belts. They are primarily caused by various large-scale
heliospheric structures such as interplanetary counterparts of coronal mass ejections
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(CMEs/ICMEs),10 stream interaction regions (SIRs) of slow and fast solar wind
flows, and fast solar wind supporting Alfvénic fluctuations (to be discussed more
in detail in Sect. 7.3.1). ICMEs are often preceded by interplanetary fast forward
shocks and turbulent sheath regions between the shock and the ejecta, which all
create their distinct responses in the magnetosphere and radiation belts. Because
fast solar wind streams originate from coronal holes, which can persist over several
solar rotations, the slow and fast stream pattern repeats in 27-day intervals and
SIRs are often called co-rotating interaction regions (CIRs). However, stream
interaction region is a physically more descriptive term. SIRs may gradually evolve
to become bounded by shocks, but fully developed SIR shocks are only seldom
observed sunward of the Earth’s orbit. The duration of these large-scale heliospheric
structures near the orbit of the Earth varies from a few hours to days. On average,
the passage of a sheath region past the Earth takes 8–9 h and the passage of an ICME
or SIR about 1 day. The fast streams typically influence the Earth’s environment for
several days.

1.4.1 Magnetospheric Convection

Magnetospheric plasma is in a continuous large-scale advective motion, which in
this context is, somewhat inaccurately, called magnetospheric convection (for a
thorough introduction, see Kennel 1995). The convection is most directly observable
in the polar ionosphere, where the plasma flows from the dayside across the
polar cap to the nightside and turns back to the dayside through the morning
and evening sector auroral region. The non-resistive ideal magnetohydrodynamics
(MHD, Sect. 3.2.3) is a fairly accurate description of the large-scale plasma motion
above the resistive ionosphere. In ideal MHD the magnetic field lines are electric
equipotentials and the electric field E and plasma velocity V are related to each
other through the simple relation

E = −V × B . (1.18)

Consequently, the observable convective motion, or alternatively the electric
potential, in the ionosphere can be mapped along the magnetic field lines to plasma
motion in the tail lobes and the plasma sheet. As the electric field in the tail plasma
sheet points from dawn to dusk and the magnetic field to the north, the convection
brings plasma particles from the nightside plasma sheet toward the Earth where a
fraction of them become carriers of the ring current and form the source population
for the radiation belts.

10 Both acronyms are commonly used. We call the ejection CME when it is observed in the Solar
corona and ICME further away in the interplanetary space.



1.4 Magnetospheric Dynamics 19

In ideal MHD the plasma and the magnetic field lines are said to be frozen-in to
each other. This means that two plasma elements that are connected by a magnetic
field line remain so when plasma flows from one place to another (the proof of this
statement can be found in most plasma physics textbooks, e.g., Koskinen 2011). It
is convenient to illustrate the motion with moving field lines, although the magnetic
field lines are not physical entities and their motion is just a convenient metaphor. A
more physical description is that the magnetic field evolves in space and time such
that the plasma elements maintain their magnetic connection.

The convection is sustained by solar wind energy input into the magnetosphere.
The input is weakest, but yet finite, when the interplanetary magnetic field (IMF)
points toward the north, and is enhanced during southward pointing IMF. If the
magnetopause were fully closed, plasma would circulate inside the magnetosphere
so that the magnetic flux tubes crossing the polar cap from dayside to nightside
would reach to the outer boundary of the magnetosphere where some type of viscous
interaction with the anti-sunward solar wind flow would be needed to maintain
the circulation. This was the mechanism proposed by Axford and Hines (1961) to
explain the convection. The classical (collisional) viscosity on the magnetopause is
vanishingly small, but finite gyro radius effects and wave–particle interactions give
rise to some level of anomalous viscosity.11 It is estimated to provide about 10% of
the momentum transfer from the solar wind to the magnetosphere.

The magnetosphere is, however, not fully closed. In the same year, when Axford
and Hines presented their viscous interaction model, Dungey (1961) explained the
convection in terms of magnetic reconnection. The Dungey cycle begins with a
violation of the frozen-in condition at the dayside magnetopause current sheet.
A magnetic field line in the solar wind is cut and reconnected with a terrestrial
field line. Reconnection is most efficient for oppositely directed magnetic fields,
as is the case in the dayside equatorial plane when the IMF points southward, but
remains finite under other orientations. Subsequent to the dayside reconnection the
solar wind flow drags the newly-connected field line to the nightside and the part
of the field line that is inside the magnetosphere becomes a tail lobe field line.
Consequently, an increasing amount of magnetic flux is piling up in the lobes.
At some distance far in the tail the oppositely directed field lines in the northern
and southern lobes reconnect again across the cross-tail current layer. At this
point the ionospheric end of the field line has reached the auroral oval near local
midnight. Now the earthward outflow from the reconnection site in the tail drags
the newly-closed field line toward the Earth. The return flow cannot penetrate to
the plasmasphere corotating with the Earth and the convective flow must proceed
via the dawn and dusk sectors around the Earth to the dayside. In the ionosphere
the flow returns toward the dayside along the dawnside and duskside auroral oval.
Once approaching the dayside magnetopause, the magnetospheric plasma provides
the inflow to the dayside reconnection inside of the magnetopause. Note that the

11 This is one of many examples of the questionable use of word “anomalous”. There is nothing
anomalous in wave–particle interactions or processes beyond fluid description.
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resistive ionosphere breaks the frozen-in condition of ideal MHD and it is not
reasonable to use the picture of moving field lines in the atmosphere.

The increase in the tail lobe magnetic flux and strengthening of plasma convec-
tion inside the magnetosphere during southward IMF have a strong observational
basis. Calculating the east-west component of the motion-induced solar wind
electric field (E = V Bsouth) incident on the magnetopause and estimating the
corresponding potential drop over the magnetosphere, some 10% of the solar wind
electric field is estimated to “penetrate” into the magnetosphere as the dawn-to-dusk
directed convection electric field. Note that E = −V×B is not a causal relationship
indicating whether it is the electric field that drives the magnetospheric convection,
or convection that gives rise to the motion-induced electric field. The ultimate driver
of the circulation is the solar wind forcing on the magnetosphere.

The plasma circulation is not as smooth as the above discussion may suggest.
If the reconnection rates at the dayside magnetopause and nightside current sheet
balance each other, a steady-state convection can, indeed, arise. This is, however,
seldom the case since the changes in the driving solar wind and in the magneto-
spheric response are faster than the magnetospheric circulation timescale of a few
hours. Reconnection may cause significant erosion of the dayside magnetospheric
magnetic field placing the magnetopause closer to the Earth than a simple pressure
balance consideration would indicate. The changing magnetic flux in the tail lobes
causes expansion and contraction of the polar caps affecting the size and shape of
the auroral ovals.

Furthermore, the convection in the plasma sheet has been found to consist of
intermittent high-speed bursty bulk flows (BBF) with almost stagnant plasma in
between (Angelopoulos et al. 1992, and references therein). It is noteworthy that
while BBFs are more frequent during high auroral activity, they also appear during
auroral quiescence. BBFs have been estimated to be the primary mechanism of
earthward mass and energy transport in regions where they have been observed
(Angelopoulos et al. 1994). Thus the high-latitude convection observed in the
ionosphere corresponds to an average of the BBFs and slower background flows
in the outer magnetosphere.

1.4.2 Geomagnetic Storms

Strong perturbations of the geomagnetic field known as geomagnetic (or magnetic)
storms have been known since the nineteenth century. Because we look at the
storms in this book mostly from the magnetospheric viewpoint, we call them also
magnetospheric storms. As illustrated in Fig. 1.6, the storms are periods of most
dynamic evolution of radiation belts. They often, but not always, commence with
a significant positive deviation in the horizontal component of the magnetic field
(H ) measured on the ground (Fig. 1.7), called storm sudden commencement (SSC).
An SSC is a signature of an ICME-driven shock and the associated pressure pulse
arriving at the Earth’s magnetopause. SSCs are also observed during pressure pulses
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Fig. 1.6 Outer radiation belt response to solar and magnetospheric activity from the SAMPEX
satellite and Van Allen Probes observations over a period of more than two solar cycles.
The uppermost panel shows 27-day window-averaged relativistic (>2 MeV) electron fluxes at
geostationary orbit, the second panel the monthly minimum of the Dst index, and the third panel
the yearly window-averaged sunspot number (black) and weekly window-averaged solar wind
speed (red). The spectrogram in the lowest panel is a composite of 27-day window-averaged
SAMPEX observations of relativistic (∼2 MeV) electron fluxes until September 2012 and Van
Allen Probes REPT observations of (∼2.1 MeV) electron fluxes after 5 September 2012. The shift
from SAMPEX to Van Allen Probes is visible in the change of sensitivity to particle flux in the slot
region (From Li et al. 2017, Creative Commons Attribution-NonCommercial-NoDerivs License)

related to SIRs or to ICMEs that are not sufficiently fast to drive a shock in the solar
wind but still disturb and pile-up the solar wind ahead of them. If the solar wind
parameters are known, the pressure effect can be removed from the Dst index as
discussed in Sect. 1.2.3.

Storms in the magnetosphere can also be driven by low-speed ICMEs and SIRs
without a significant pressure pulse. SIR-driven storms occur if the field fluctuations
have sufficiently long periods of strong enough southward magnetic field to sustain
global convention electric field to enhance the ring current. Thus there are storms
without a clear SSC signature in the Dst index. On the other hand, a shock
wave hitting the magnetopause is not always followed by a geomagnetic storm, in
particular, if the IMF points dominantly toward the north during the following solar
wind structure. In such cases the positive deviation in the magnetograms is called a
sudden impulse (SI), after which the Dst index returns close to its background level
with small temporal variations only. If the dynamic pressure remains at enhanced
level, Dst can maintain positive deviation for some period.



22 1 Radiation Belts and Their Environment

Fig. 1.7 The horizontal component (H ) of the magnetic field measured at four low-latitude
stations during a magnetic storm on 15 May 1997. An ICME-driven solar wind shock hit the
magnetosphere on 15 May at about 02 UT causing the storm sudden commencement which is
indicated by a sudden positive jump of the H component at all stations (thick blue line). The
main phase of the storm started after 06 UT as indicated by the strong negative deviation in the H

component. The solid vertical lines give the UT midnight and the tick-marks on the horizontal axis
are given for each 3 h. (Figure courtesy: L. Häkkinen, adapted from Koskinen 2011, reprinted by
permission from SpringerNature)

After the SSC an initial phase of the storm begins. It is characterized by a
positive deviation of Dst , typically a few tens of nT. The initial phase is caused
by a combination of predominantly northward IMF and high dynamic pressure.
The phase can have very different durations depending on the type and structure
of the solar wind driver. It can be very brief if the storm is driven by an ICME
with a southward magnetic field following immediately a sheath with predominantly
southward magnetic field. In such a case the storm main phase, which is a period
characterized by a rapid decrease of the H component of the equatorial magnetic
field, starts as soon as the energy transfer into the magnetosphere has become strong
enough. If the sheath has a predominantly northward IMF, the main phase will not
begin until a southward field of the ejecta enhances reconnection on the dayside
magnetopause.

If there is no southward IMF either in the sheath or in the ICME, no regular
global storm is expected to take place. However, pressure pulses/shocks followed
by northward IMF can cause significant consequences to the radiation belt envi-
ronment, as they can shake and compress the magnetosphere strongly and trigger a
sequence of substorms (Sect. 1.4.3).

During the storm main phase, the enhanced energy input from the solar wind
leads to energization and increase of the number of ring current carriers in the
inner magnetosphere, as the enhanced magnetospheric convection transports an
increasing amount of charged particles from the tail to the ring current region.
Here substorms, discussed below, have important contribution, as they inject
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fresh particles from the near-Earth tail. The ring current enhancement is typically
asymmetric because not all current carrying ions are on closed drift paths but a
significant fraction of them passes the Earth on the evening side and continue toward
the dayside magnetopause. This is illustrated in Fig. 1.7 where the Honolulu and
Kakioka magnetometers show the steepest main phase development when these
stations were in the dusk side of the globe.

When energy input from the solar wind ceases, the energetic ring current ions
are lost faster than fresh ones are supplemented from the tail. The Dst index
starts to return toward the background level. This phase is called the recovery
phase. It is usually much longer than the main phase, because the dominating loss
processes of the ring current carriers: charge exchange with the low-energy neutral
atoms of the Earth’s exosphere, wave–particle interactions, and Coulomb collisions
(Sect. 6.3.2), are slower than the rapid increase of the current during the main phase.
As ICMEs last typically 1 day, storms driven by ICMEs trailed by a slow wind tend
to have relatively short recovery phases, whereas storms driven by SIRs and ICMEs
followed by a fast stream can have much longer recovery phases. This is because
Alfvénic fluctuations, i.e., large-amplitude MHD Alfvén waves (Sect. 4.4), in fast
streams interacting with the magnetospheric boundary lead to triggering substorms,
which inject particles to the inner magnetosphere. This can keep keep the ring
current populated with fresh particles up to or longer than a week. The ring current
development can also be more complex, often resulting in multi-step enhancement
of Dst or events where Dst does not recover to quiet-time level between relatively
closely-spaced intensifications. This typically occurs when both sheath and ICME
ejecta carry southward field or when the Earth is impacted by multiple interacting
ICMEs.

1.4.3 Substorms

From the radiation belt viewpoint the key significance of magnetospheric substorms
is their ability to inject fresh particles in the energy range from tens to a few hundred
keV from the tail plasma sheet into the inner magnetosphere. After being injected
to the quasi-dipolar magnetosphere, charged particles start to drift around the
Earth, contributing to the ring current and radiation belt populations. The injections
have a twofold role: They provide particles to be accelerated to high energies.
Simultaneously the injected electrons and protons drive waves that can lead to both
acceleration and loss of radiation belt electrons and ring current carriers.

Magnetospheric substorms result from piling of tail lobe magnetic flux in the
near-to-mid-tail region during enhanced convection. The details of the substorm
cycle are still debated after more than half a century of research. Observation-
ally it is clear that substorms encompass global configurational changes in the
magnetosphere, namely the stretching of the near-Earth nightside magnetic field
and related thinning of the plasma sheet during the flux pile-up (substorm growth
phase), followed by a relatively rapid return of the near-Earth field toward a dipolar
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shape (expansion phase), and a slower return to a quiet-time stretched configuration
associated with thickening of the plasma sheet (recovery phase). A substorm cycle
typically lasts 2–3 h. The strongest activity occurs following the onset of the
expansion phase: The cross-tail current in the near-Earth tail disrupts and couples
to the polar region ionospheric currents through magnetic field-aligned currents
forming the so-called substorm current wedge. This leads to intense precipitation
of magnetospheric particles causing the most fascinating auroral displays. During
geomagnetic storms the substorm cycle may not be equally well-defined. For
example, a new growth phase may begin and the onset of the next expansion may
follow soon after the previous expansion phase.

A widely used, though not the only, description of the substorm cycle is the
so-called near-Earth neutral line model (NENL model, for a review, see Baker
et al. 1996). In the model the current sheet is pinched off by a new magnetic
reconnection neutral line once enough flux has piled up in the tail. The new neutral
line forms somewhere at distances of 8–30 RE from the Earth, which is much
closer to the Earth than the far-tail neutral line of the Dungey cycle (Sect. 1.4.1).
Earthward of the neutral line plasma is pushed rapidly toward the Earth. Tailward
of the neutral line plasma flows tailward, and together with the far-tail neutral line,
a tailward moving structure called plasmoid forms. Sometimes recurrent substorm
onsets can create a chain of plasmoids. While it is common to illustrate the plasmoid
formation using two-dimensional cartoons in the noon–midnight meridional plane,
the three-dimensional evolution of the substorm process in the magnetotail is far
more complex. In reality a plasmoid is a magnetic flux rope whose two-dimensional
cut looks like a closed loop of magnetic field around a magnetic null point.

As pointed out in Sect. 1.4.1, the plasma flow in the central plasma sheet is not
quite smooth and a significant fraction of energy and mass transport takes place as
bursty bulk flows (BBFs). The BBFs are thought to be associated with localized
reconnection events in the plasma sheet roughly at the same distances from the
Earth as the reconnection line of the NENL model. They create small flux tubes
called dipolarizing flux bundles (DFBs). The name derives from their enhanced
northward magnetic field component BZ corresponding to a more dipole-like state
of the geomagnetic field compared to a more stretched configuration. Once created,
DFBs surge toward the Earth due to the force caused by magnetic curvature tension
in the fluid picture. They are preceded by sharp increases of BZ called dipolarization
fronts. DFBs are also associated with large azimuthal electric fields, up to several
mV m−1, which are capable of accelerating charged particles to high energies.
Whether the braking of the bursty bulk flows and coalescence of dipolarization
fronts closer to the Earth cause the formation of the substorm current wedge, or
not, is a controversial issue.

The NENL model has been challenged by the common observation that the
auroral substorm activation starts at the most equatorward arc and expands thereafter
poleward. Whether the NENL model or some of the competing approaches (for a
discussion, see e.g., Koskinen 2011) is the most appropriate substorm description, is
not relevant to our discussion of radiation belts. What is essential is that the substorm
expansions dipolarize the tail magnetic field configuration having been stretched
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during the growth phase and inject fresh particles into the inner magnetosphere. The
particle injections can be observed as dispersionless, meaning that injected particles
arrive to the observing spacecraft simultaneously at all energies, or dispersive
when particles of higher energies arrive before those of lower energies. Because
the dispersion arises from energy-dependent gradient and curvature drifts of the
particles (Sect. 2.2.2), a dispersionless injection suggests that the acceleration occurs
relatively close to the observing spacecraft, whereas dispersive arrival indicates
acceleration further away from the observation when the particle distribution has
had time to develop dispersion due to energy-dependent drift motion.

Dispersionless substorm injections are typically observed close to the midnight
sector at geostationary orbit (6.6 RE) and beyond, but have been found all the way
down to about 4 RE (Friedel et al. 1996). The injection sites move earthward as
the substorm progresses and are also controlled by geomagnetic activity, although
the extent of the dispersionless region is unclear, both in local time and radial
directions. Neither have the details of acceleration of the injected particles been
fully resolved. It has been suggested to be related both to betatron and Fermi
acceleration (Sect. 2.4.4) associated with earthward moving dipolarization fronts.
Another important aspect of dipolarization fronts for radiation belts is their braking
close to Earth, which can launch magnetosonic waves that can effectively interact
with radiation belt electrons.
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Chapter 2
Charged Particles in Near-Earth Space

In this chapter we discuss the concepts that govern the motion of charged particles
in the geomagnetic field and the principles how they stay trapped in the radiation
belts. The basic particle orbit theory can be found in most plasma physics textbooks.
We partly follow the presentation in Koskinen (2011). A more detailed discussion
can be found in Roederer and Zhang (2014). A classic treatment of adiabatic motion
of charged particles is Northrop (1963).

The Lorentz force and Maxwell’s equations are summarized in Appendix A.1
where we also introduce the key concepts and notations of basic electrodynamics
used in the book.

2.1 Guiding Center Approximation

The equation of motion of a particle with charge q , mass m and velocity v under the
Lorentz force due to the electric (E) and magnetic (B) fields is

dp
dt

= q(E + v × B) , (2.1)

where p = γmv is the relativistic momentum and γ = (1 − v2/c2)−1/2 the
Lorentz factor. As discussed in Appendix A.1 we do not use terms “rest mass”
or “relativistic mass”. The mass of an electron is me = 511 keV c−2 and of a proton
mp = 931 MeV c−2.

Integration of the equation of motion in realistic magnetic field configurations
must be done numerically. Numerical computation of even a fairly large number of
particle orbits is not a problem for present day computers but to get a mental picture
of particle motion we need an analytically tractable approach. Such is the guiding
center approximation introduced by Hannes Alfvén in the 1940s (Alfvén 1950).
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Let us start, for simplicity, from non-relativistic particles and consider a homo-
geneous static magnetic field in the direction of the z-coordinate with zero electric
field. The equation of motion of a charged particle

m
dv
dt

= q(v × B) (2.2)

describes a helical orbit with constant speed along the magnetic field and circular
motion around the magnetic field line with the angular frequency

ωc = |q|B
m

. (2.3)

We call ωc gyro frequency (also terms cyclotron frequency or Larmor frequency
are frequently used). In the literature ωc sometimes includes the sign of the charge
q . In this book we write the gyro frequency as a positive quantity ωc = |q|B/m

and indicate the sign explicitly. The corresponding oscillation frequencies fcα =
ωcα/(2π) of electrons and protons are

fce(Hz) ≈ 28 B(nT)

fcp(Hz) ≈ 1.5 × 10−2 B(nT) .

The period of the gyro motion is

τL = 2π

ωc

(2.4)

and the radius of the circular motion perpendicular to the magnetic field

rL = v⊥
ωc

= mv⊥
|q|B , (2.5)

where v⊥ =
√

v2
x + v2

y is the velocity perpendicular to the magnetic field. rL is

called the gyro radius (cyclotron radius, Larmor radius). Looking along (against)
the magnetic field, the particle rotating clockwise (anticlockwise) has a negative
charge. In plasma physics this is the convention of right-handedness.

This way we have decomposed the motion into two elements: constant speed v‖
along the magnetic field and circular velocity v⊥ perpendicular to the field. The sum
of these components is a helical motion with the pitch angle α defined as

tan α = v⊥/v‖
⇒ α = arcsin(v⊥/v) = arccos(v‖/v) . (2.6)
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Alfvén pointed out that this decomposition is convenient even in temporally and
spatially varying fields if the variations are small compared to the gyro motion and
that the field does not change much with the particle motion along the magnetic field
during one gyro period. This is the guiding center approximation. The center of the
gyro motion is the guiding center (GC) and we call the frame of reference where
v‖ = 0 is the guiding center system (GCS).

In the GCS the charge gives rise to a current I = q/τL along its circular path
with associated magnetic moment

μ = Iπr2
L = 1

2

q2r2
LB

m
= 1

2

mv2⊥
B

= W⊥
B

. (2.7)

Here we have introduced “perpendicular energy” W⊥ to refer to the kinetic energy
related to the velocity perpendicular to the magnetic field. Similarly, we define
“parallel energy” W‖ = (1/2)mv2‖ . The total energy of the particle is W = W‖+W⊥.
With the word “energy” we refer to the kinetic energy, written relativistically
(Appendix A.1) as

W = mc2(γ − 1) . (2.8)

The magnetic moment is actually a vector (q/2) rL×v⊥ , where the gyro radius is
a vector rL pointing from the guiding center to the particle. The magnetic moment of
both negatively and positively charged particles is opposite to the ambient magnetic
field. Thus charged particles tend to weaken the background magnetic field and the
plasma consisting of free charges resembles a diamagnetic medium. This is a useful
concept when we discuss electromagnetic waves in the cold plasma approximation
(Chap. 4).

For relativistic particles the gyro frequency and gyro radius are obtained simply
replacing m by γm. In the formulas later in the text ωc refers to the non-relativistic
frequency and γ is introduced explicitly, when needed. Of course, when calculating
the gyro periods and gyro radii, γ must be included. Furthermore, the magnetic
moment of relativistic particles must must be expressed in terms of momentum (p =
γmv) as

μ = p2⊥
2mB

. (2.9)

Note that here the constant mass m (not γm) is introduced in the denominator to
give the familiar magnetic moment at the non-relativistic limit. We will return to the
relativistic magnetic moment in Sect. 2.4.1.
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2.2 Drift Motion

Adding a background electric field or letting the magnetic field be inhomogeneous,
as it always is in the magnetosphere, modifies the path of the charged particles.
If the effect remains small enough during one gyro period, the guiding center
approximation is a useful tool to describe the motion.

2.2.1 E×B Drift

We start by adding a constant electric field perpendicular to the constant magnetic
field. The equation of motion is again straightforward to solve. The guiding center
is found to drift perpendicular to both electric and magnetic fields with the velocity

vE = E × B
B2

. (2.10)

This is called the electric drift (or E×B drift). The drift velocity is independent of the
charge, mass and energy of the particle. All charged particles move with the same
velocity and thus the E×B drift does not give rise to electric current. An example
of the drift is the magnetospheric convection (Sec. 1.3.1) transporting particles from
the tail plasma sheet toward the Earth.

The E×B drift can also be found by making a non-relativistic (γ ≈ 1) Lorentz
transformation to the frame co-moving with the guiding center

E′ = E + v × B . (2.11)

In this frame E′ = 0 ⇒ E = −v × B, from which we find the solution (2.10) for v.
Note that a possible electric field component parallel to B cannot be eliminated by
coordinate transformation because E · B is Lorentz invariant.

This coordinate transformation is possible for weak enough perpendicular forces
F⊥ resulting in a general expression for the drift velocity

vD = F⊥ × B
qB2 . (2.12)

Here “weak enough” means F/qB  c . For example, for the E×B drift the
ratio E/B must be much smaller than speed of light. Otherwise the guiding center
approximation cannot be used.
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2.2.2 Gradient and Curvature Drifts

The charged particles in the radiation belts move in a nearly dipolar magnetic field
of the Earth that is curved and has gradients perpendicular to and along the field.
Consider a spatially inhomogeneous magnetic field, assuming that the perpendicular
and field-aligned components of the gradients are small within one gyration of the
particle

|∇⊥B|  B/rL ; |∇‖B|  (ωc/v‖)B .

Under these circumstances it is possible to use perturbation approach to solve the
equation of motion (Northrop 1963). The validity of these conditions does not
depend on the field geometry alone but also on the energy and mass of the particle
whose motion is to be calculated.

As only weak spatial inhomogeneities of the field are assumed, we can make
Taylor expansion of the external magnetic field around the particle’s GC. The details
of the calculation can be found in most advanced plasma physics textbooks (e.g.,
Koskinen 2011). The solution of the equation of motion can be expressed as a sum
of the unperturbed gyro motion and a small correction.

We start by neglecting the field line curvature. Keeping the first order terms and
averaging over one gyro period the force reduces to

F = −μ∇B . (2.13)

If the gradient has a magnetic field-aligned component, the force causes accelera-
tion/deceleration of charged particles along the field

dv‖
dt

= − μ

m
∇‖B = − μ

m

∂B(s)

∂s
b , (2.14)

where s is the coordinate and b the unit vector along the magnetic field.
In the perpendicular direction we find a drift across the magnetic field in the same

way as for the zero order drift. The drift must balance the perpendicular force term
(2.12) implying

vG = μ

qB2B × (∇B) = W⊥
qB3 B × (∇B) . (2.15)

This is called the gradient drift. The drift is perpendicular to both the magnetic field
and its gradient. It is a result of small changes of the gyro radius as the particle
gyrates in the inhomogeneous magnetic field (Fig. 2.1).

The gradient drift depends both on the perpendicular energy and the charge of
the particle. Because negatively and positively charged particles drift to opposite
directions, the drift contributes to the electric current in the plasma.
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Fig. 2.1 The small variation of the gyro radius due to the magnetic field gradient results in the
gradient drift

In a curved magnetic field also the GC motion is curved and the reference frame
attached to the GC is not inertial. Let us denote the GC velocity by V. Now V‖ is
not exactly equal to v‖ because V is determined at the GC whereas v is the velocity
of the charge at the distance of rL from the GC. The difference becomes significant
for particles whose gyro radii approach the gradient scale length, i.e., near the limit
where the GC approximation becomes invalid (for a more detailed discussion, see,
Roederer and Zhang 2014).

Let us move to the frame co-moving with the GC. Let the orthogonal basis {ei}
define the coordinate axes and choose e3 ‖ v‖ ‖ B. Now v = ∑

vi ei , and {ei}
rotates when its origin moves with the GC.

dv
dt

=
∑

i

(
dvi

dt
ei + vi

dei

dt

)
=
∑

i

(
dvi

dt
ei + vi (V‖ · ∇) ei

)
. (2.16)

The term
∑

vi(V‖ · ∇)ei is due to the curvature and causes a centrifugal effect.
Averaged over one Larmor cycle the curvature force is

FC = −
〈
m
∑

i

vi(V‖ · ∇)ei

〉
. (2.17)

Due to the assumption of weak curvature (V‖ · ∇) ei can be approximated constant
in every point along the gyro orbit. In the present approximation the perpendicular
velocity components v1 and v2 oscillate sinusoidally and thus 〈v1e1〉 = 〈v2e2〉 = 0.
Furthermore, during one gyro period, on average, v‖ ≈ V‖ and we get

FC = −mV 2‖ (e3 · ∇) e3 . (2.18)
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A little exercise in differential geometry yields

(e3 · ∇) e3 = RC/R2
C , (2.19)

where RC is the radius of curvature vector, pointing inward. Now

FC = −mV 2‖
RC

R2
C

. (2.20)

Because B = Be3,

(e3 · ∇)e3 = (B · ∇B)/B2 (2.21)

and we can write the resulting curvature drift velocity as

vC = −mV 2‖
qB2

RC × B

R2
C

= mV 2‖
qB4 B × (B · ∇)B . (2.22)

Now we can again approximate v‖ ≈ V‖ and express the curvature drift in terms of
the parallel energy of the particle W‖ = (1/2)mv2‖ .

If there are no local currents (∇ × B = 0), as in the case of a pure dipole field,
the curvature drift simplifies to

vC = 2W‖
qB3 B × ∇B (2.23)

and vG and vC can be combined as

vGC = W⊥ + 2W‖
qB3 B × ∇B = W

qBRC

(1 + cos2 α) n × t , (2.24)

where t ‖ B and n ‖ RC are unit vectors. The drift velocities are straightforward to
write relativistically replacing m by γm.

As a consequence of the gradient and curvature of the near-Earth geomagnetic
field charged high-energy particles drift around the Earth, electrons to the east and
positively charged particles to the west, resulting in net westward current. The
motion of low-energy particles is dominated by the E×B-drift.

The perturbation approach can be continued to higher orders. The recipe is
the same as above. First determine the force due to the higher order perturbation
and calculate the drift velocity to balance its effect. Mathematically this procedure
results in an asymptotic expansion of the guiding center position as a function of
time (for a detailed discussion, see, Northrop 1963).
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2.3 Drifts in the Magnetospheric Electric Field

In magnetospheric physics a commonly used frame of reference is the Geocentric
Solar Magnetospheric coordinate system (GSM). In the GSM system the X-axis
points toward the Sun and the Earth’s dipole axis is in the XZ-plane. Z points
approximately northward and Y is opposite to the Earth’s orbital motion around
the Sun. As the Earth rotates, the XZ-plane flaps about the X-axis such that the
dipole remains in the XZ-plane but can be tilted from the Z-direction maximally
34◦, which is the sum of the tilts of the Earth’s rotation axis (≈23◦) from the ecliptic
plane and of the dipole axis (≈11◦) from the rotation axis.

The large-scale magnetospheric plasma flow in the GSM system gives rise to the
electric field E = −V×B. If the magnetic field is time-independent, the electric field
is curl-free and can be expressed as the gradient of a scalar potential E = −∇ϕ .
During rapid changes of the magnetic field, such as geomagnetic storms, also the
inductive electric field given by Faraday’s law ∂B/∂t = −∇ ×E must be taken into
account.

Let us, for simplicity, consider the motion of relatively low-energy plasma sheet
and plasmaspheric particles in the GSM equatorial plane. Assume further that the
magnetospheric magnetic field is perpendicular to the equatorial plane pointing
upward (Z-direction). Thus the sunward advection in the plasma sheet corresponds
to a dawn-to-dusk (Y -direction) pointing electric field E0 ey , which we here assume
to be constant. Let r be the distance from the center of the Earth and φ the angle from
the direction of the Sun. Then the electric field, called in this context convection
electric field, is given by

Econv = −∇(−E0r sin φ) (2.25)

and its potential is

ϕconv = −E0r sin φ . (2.26)

The Earth and its atmosphere rotate in the GSM frame. The corotation extends
in the equatorial plane roughly up to the plasmapause. The angular velocity toward
the east is ΩE = 2π/24 h. Assuming, again for simplicity, a perfect corotation, the
plasma velocity in the GSM frame is

Vrot = ΩEr eφ , (2.27)

where eφ is the azimuthal unit vector pointing toward the east. Consequently the
motion induced electric field is Erot = −V × B, the potential of which is

ϕrot = −ΩEk0

r
= −ΩEB0R

3
E

r
. (2.28)
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Fig. 2.2 Equipotential lines of convection and corotation electric fields in the equatorial plane.
The local time directions are given at the faces of the panels. (From Koskinen 2011, reprinted by
permission from SpringerNature)

Here k0 = 8 × 1015 T m3 is the Earth’s dipole moment and B0 the dipole field on
the surface of the Earth at the equatorial plane (B0 ≈ 30µT). The convection and
corotation electric fields are illustrated in Fig. 2.2. The total field is the superposition
Econv + Erot .

In addition to the large scale electric field in their frame of reference, the plasma
particles are also under the influence of magnetic field gradient and curvature forces.
Let us consider particles that move in the equatorial plane of the dipole (v‖ = 0 or
equivalently α = 90◦). For these particles the curvature effect is zero and and the
total drift velocity including the E×B and gradient drifts is

vD = 1

B2

[
Econv + Erot − ∇

(
μB

q

)]
× B = 1

B2 B × ∇ϕeff , (2.29)

where μ is the magnetic moment of the particles. The effective potential is

ϕeff = −E0r sin φ − ΩEB0R
3
E

r
+ μB0R

3
E

qr3
. (2.30)

In the time-independent potential field the particles move along stream lines of
constant ϕeff . These stream lines depend on the charge and energy of the particles
through their magnetic moments. For low-energy particles, whose perpendicular
velocity in the moving frame is small (v⊥ ≈ 0 ⇒ μ ≈ 0) , the streamlines are
equipotential lines of the combined convection and corotation fields (Fig. 2.3). In
this approximation the motion is a pure E×B-drift and all particles move with the
same velocity.
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Fig. 2.3 Orbits of
low-energy particles (μ ≈ 0)
in the equatorial plane
assuming E0 = 0.3 mV m−1.
The distance between
consecutive points is 10 min.
(From Koskinen 2011,
reprinted by permission from
Springer Nature)

Figure 2.3 illustrates the formation of a separatrix that separates the low-energy
corotating plasmaspheric plasma from the sunward cold plasma motion in the
plasma sheet. In this single-particle model the separatrix is the plasmapause. The
separatrix has an electric neutral point (E = 0) at the distance

r =
√

ΩEB0R
3
E

E0
(2.31)

in the direction of 18 MLT. While this model of the plasmasphere is a strong
simplification, it explains qualitatively why the plasmasphere is compressed during
enhanced magnetospheric activity (Fig. 1.4) and the formation of the plasmaspheric
bulge, or plume, in the evening sector (Fig. 1.5). The enhanced energy input
enhances the convection velocity and thus the dawn-to-dusk electric field, whereas
the rotation of the Earth remains constant and the corotation electric field is
always the same. Consequently, the separatrix is pushed toward the Earth when the
convection enhances, i.e., E0 in (2.30) increases.

The real plasma has a finite temperature and the plasma drifting from the plasma
sheet is much warmer than the plasmasphere. Thus the gradient drift term in (2.30)
must be taken into account. Consequently, the shape, density and actual location
of the plasmaspheric plume is determined by the actual plasma environment. The
observed plume is widened and often pushed toward the earlier local time (Fig. 1.5).
Furthermore, the plasmapause reacts to the changing electric field with some
delay, which can lead to detachment of the plume from the plasmasphere and its
subsequent disappearance to the dayside magnetopause.
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In the finite-temperature plasma sheet, the magnetic field gradient separates the
motion of positive and negative charges (remember that we consider here equatorial
particles only, for which the curvature drift is zero). To illustrate this effect consider
particles whose magnetic moment is so strong that it supersedes the effect of
corotation electric field. Now the effective potential, again in the equatorial plane
only, is

ϕeff = −E0r sin φ + μB0R
3
E

qr3 . (2.32)

The r sin φ-dependence implies that far from the Earth the particles follow the
convection electric field, but closer in they become dominated by the magnetic
drifts. This way the dipole field shields the cold plasmasphere from the hot plasma
sheet.

The positive and negative high-energy charges drift as illustrated in Fig. 2.4. They
have different separatrices, called Alfvén layers. Because the plasma sheet is a finite
particle source, a larger fraction of positive charges pass the Earth in the evening
sector and a larger fraction of negative charges in the morning sector. This leads
to piling of positive space charge in the evening sector and negative charge in the
morning sector. The accumulated charges are discharged by magnetic field-aligned
currents flowing to the ionosphere from the evening sector and from the ionosphere
to the magnetosphere in the morning sector.

Figure 2.4 also gives a qualitative explanation for a mechanism how energetic
particles can be lost from the plasmasphere during the main phase of strong
magnetospheric storms, and on the other hand, how particles on open drift paths can
become trapped again during the recovery phase. As the convective electric field
rapidly grows during the main phase, the particles are pushed outward from the
radiation belt in the dayside. The particles, whose trajectories are open, intercept

Fig. 2.4 Formation of Alfvén layers of energetic particles. (From Koskinen 2011, reprinted by
permission from SpringerNature)
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the magnetopause and are lost from the inner magnetosphere. At the same time
more particles on the nightside E×B-drift deeper into the ring current and radiation
belts. Once the activity ceases, the trapping boundary, i.e., the Alfvén layer, moves
outward and thus particles that were originally on open drift paths past the Earth
find themselves trapped into the expanding plasmasphere. Note, however, that the
actual losses and enhancements of high-energy radiation belt particles depend on
several other processes discussed in the subsequent chapters of this book.

2.4 Adiabatic Invariants

The trapped charged particles in the radiation belts perform three nearly periodic
motions in the geomagnetic field. These quasi-periodic motions are related to
adiabatic invariants in the terminology of Hamiltonian mechanics.

In physical systems symmetries correspond to conservation laws. For example, in
classical mechanics rotational symmetry is associated with conservation of angular
momentum. The angular momentum is invariant in a periodic motion around the
axis of symmetry. If the motion is nearly-periodic, such as the gyro motion in
the guiding center approximation, adiabatic invariants take the role of conserved
quantities. The adiabatic invariants do not need to be the same as conserved
quantities in the strictly periodic case and their conservation depends critically of
the “slowness” of the variations.

In the framework of Hamiltonian mechanics it can be shown that if Q and P are
the canonical coordinate and momentum of the system and if the motion is nearly
periodic, the integral

I =
∮

PdQ (2.33)

over the (quasi-)period of Q is an adiabatic invariant, i.e., a conserved quantity. This
statement requires, of course, a proof (see, e.g., Bellan 2006, or advanced classical
mechanics textbooks).

A classic example of an adiabatic invariant is the Lorentz–Einstein pendulum in
the gravitational field (g). Let the length of the pendulum (l) change so slowly that
its frequency ω = √

g/l does not change much during one swing. However, as
work is done on the pendulum, the energy of the pendulum per unit mass

W = 1

2
l2θ̇2 + 1

2
glθ2 , (2.34)
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where θ is the angle from the vertical direction, is not constant. It is a straightforward
exercise to show that in this case the conserved quantity is the ratio W/ω. This is
closely analogous to the magnetic moment

μ = W⊥
B

= q

m

W⊥
ωc

, (2.35)

which readily suggests that the magnetic moment is an adiabatic invariant, if the
magnetic field changes slowly with respect to the gyro motion.

2.4.1 The First Adiabatic Invariant

A recommendable introduction to the Hamiltonian treatment of radiation belt
particles is Ukhorskiy and Sitnov (2013). To show that the magnetic moment
is an adiabatic invariant in the Hamiltonian framework recall from the classical
electrodynamics that the momentum of a particle in an electromagnetic field is
p = mv + qA , where A is the vector potential of the field. We can take the
gyro radius vector rL as the canonical coordinate in the plane perpendicular to the
magnetic field. Then the corresponding canonical momentum is p⊥. Assuming that
the guiding center approximation is valid, i.e., the gyro motion is nearly periodic,
the integral

I =
∮

p⊥ · drL =
∮

mv⊥ · drL + q

∫
S

(∇ × A) · dS

=
∫ 2πrL

0
mv⊥dl + q

∫
S

B · dS (2.36)

= 2πmv⊥rL − |q|Bπr2
L = 2πm

|q| μ

is an adiabatic invariant. In plasma physics the magnetic moment is called the first
adiabatic invariant.

The physical dimension of μ is energy/magnetic field. Its SI-unit is J T−1 but in
radiation belt physics the non-SI unit MeV G−1 is commonly used.

Note that also the magnetic flux enclosed within the gyro orbit

Φ = Bπr2
L = 2πm

q2 μ (2.37)

is constant. This has important implication to flux conservation in macroscopic
plasma physics, which is an expression of the concept of magnetic field lines being
frozen-in to plasma motion.
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To directly show, within Newtonian mechanics, that the magnetic moment, or any
of the other invariants discussed below, is an adiabatic invariant is a cumbersome
task. Plasma physics textbooks usually treat some special cases only. A fairly
complete treatise can be found in Northrop (1963).

For the purpose of this book, it is instructive to look at the invariance of μ in
a static magnetic field in the absence of electric field. Since there is no temporal
variation of the magnetic field, the energy1 of the particle W = W‖+W⊥ is constant,
i.e.,

dW‖
dt

+ dW⊥
dt

= 0 . (2.38)

As W⊥ = μB,

dW⊥
dt

= μ
dB

dt
+ dμ

dt
B . (2.39)

Now dB/dt = v‖dB/ds is the change of the magnetic field along the GC path. The
parallel force is accroding to (2.14)

m
dv‖
dt

= −μ
dB

ds
. (2.40)

By multiplying this by v‖ = ds/dt we get

dW‖
dt

= −μ
dB

dt
. (2.41)

Thus

dW‖
dt

+ dW⊥
dt

= B
dμ

dt
= 0 , (2.42)

illustrating that μ is an adiabatic invariant in this special case.
If the magnetic field changes slowly in time (∂/∂t  ωc), Faraday’s law implies

the presence of an inductive electric field along the gyro path of the particle, yielding
acceleration

dW⊥
dt

= q(E · v⊥) . (2.43)

1 Recall that in our notation W refers to kinetic energy unless stated otherwise.
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During one gyro period the particle gains energy

�W⊥ = q

∫ 2π/ωc

0
E · v⊥dt . (2.44)

Due to the slow change we can replace the time integral by a line integral over one
closed gyration and use Stokes’ law

�W⊥ = q

∮
C

E · dl = q

∫
S

(∇ × E) · dS = −q

∫
S

∂B
∂t

· dS , (2.45)

where dS = n dS, n is the normal vector of the surface S pointing to the direction
determined in the right-hand sense by the positive circulation of the loop C. For
small variations of the field ∂B/∂t ≈ ωc�B/2π . Thus

�W⊥ = 1

2
|q|ωcr

2
L�B = μ�B . (2.46)

On the other hand

�W⊥ = μ�B + B�μ , (2.47)

implying �μ = 0. Thus for slow time variation μ is conserved although the
inductive electric field accelerates the particle. This is analogous to the Lorentz-
Einstein pendulum: The energy is not conserved but μ is.

In Chap. 6 we will discuss how temporal variations with a frequency near the
gyro frequency of the particles can break the invariance of the magnetic moment
and lead to acceleration, scattering and loss of particles through wave–particle
interactions.

Generalization of the magnetic moment to relativistic particles must be done with
some care. The relativistic conserved quantity is p2⊥/B. In Eq. (2.9) we formulated
the relativistic magnetic moment dividing this by the constant 2m (recall that m is
the velocity-independent constant mass of the particle). Now

μrel = p2⊥
2mB

= γ 2m2v2⊥
2mB

= γ 2 mv2⊥
2B

= γ 2μnonrel . (2.48)

When reading the literature it is important to be alert whether the magnetic
moment in an equation is the relativistic or non-relativistic quantity. Northrop (1963)
pointed out that it is not easy to prove in a general magnetic configuration that this
really is the correct generalization of the non-relativistic magnetic moment. Further
complications arise if there is a parallel electric field that accelerates the particle and
the total momentum is not constant.



42 2 Charged Particles in Near-Earth Space

Magnetic Mirror and Magnetic Bottle

The invariance of the magnetic moment leads us to important concepts in the motion
of radiation belt particles: the magnetic mirror, the magnetic bottle and the loss-
cone.

Assume first that the total kinetic energy W and the magnetic moment μ =
W⊥/B of a charged particle are conserved. Let the guiding center of the particle
move along the magnetic field in the direction of a weak positive gradient of B. W⊥
can increase until W‖ → 0. The perpendicular velocity is v⊥ = v sin α and we can
write the magnetic moment as

μ = mv2 sin2 α

2B
. (2.49)

On the other hand, as now v2 ∝ W is also assumed to be constant, the pitch angles
at two different magnetic field intensities are related as

sin2 α1

sin2 α2
= B1

B2
. (2.50)

When W‖ → 0, α → 90◦. The deceleration of the GC motion in an increasing
magnetic field (2.14) is said to be due to the mirror force F = −μ∇‖B , which
finally turns the motion back toward the weakening B. The magnitude of the mirror
field Bm at the turning point depends on the particle’s pitch angle at a reference point
B0. At the mirror field αm = 90◦ and we get

sin2 α0 = B0/Bm . (2.51)

As Bm < ∞, every mirror field is leaky. Particles having smaller pitch angles
than α0 in the field B0 pass through the mirror. These particles are said to be
in the loss cone. Two opposite mirrors form a magnetic bottle, which confines
particles outside the loss cone of the weaker of the two magnetic mirrors. The quasi-
dipolar near-Earth magnetic field is a giant inhomogeneous and temporally variable
magnetic bottle trapping the radiation belt and ring current particles.

The mirror force does not need to be the only force affecting the parallel motion
of the GC. If there is an electric field with a parallel componentE‖ and/or the particle
is in a gravitational field, the parallel equation of motion becomes

m
dv‖
dt

= qE‖ + mg‖ − μ∇‖B . (2.52)

If the non-magnetic forces can be derived from a potential U(s) the equation of
motion (2.14) is

m
dv‖
dt

= − ∂

∂s
[U(s) + μB(s)] . (2.53)
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Now the GC moves in the effective potential U(s) + μB(s). Work is done to the
charged particle and thus its energy is not conserved but its magnetic moment is.
In solar-terrestrial physics, examples of such potentials are the gravitational field on
the Sun and parallel electric fields above discrete auroral arcs, of which the latter can
have consequences to the radiation belts, affecting the width of the loss cone. Also
plasma waves with a parallel electric field component contribute to the dynamics of
radiation belt particles.

2.4.2 The Second Adiabatic Invariant

Assume that the energy is conserved, i.e., the speed v of the particle is constant. The
bounce motion between the magnetic mirrors of a magnetic bottle is nearly periodic
if the field does not change much during one bounce period, or bounce time, τb

τb = 2
∫ s ′

m

sm

ds

v‖(s)
= 2

v

∫ s ′
m

sm

ds

(1 − B(s)/Bm)1/2 , (2.54)

where s is the arc length along the GC orbit and sm and s′
m are the coordinates of the

mirror points. Here we have used Eq. (2.51) and v‖/v = cos α = √
1 − B(s)/Bm to

move the constant speed outside the integral, which now depends on the magnetic
field configuration only. The bounce period is defined over the entire bounce motion
back and forth.

The concept of bounce motion makes sense in the guiding center approximation
if τb � τL. Thus the condition for the bounce motion to be nearly periodic is more
restrictive than the condition for nearly periodic gyro motion

τb
dB/dt

B
 1 . (2.55)

If this condition is fulfilled, there is an associated adiabatic invariant. In nearly-
periodic bounce motion the track of the GC does not enclose any magnetic flux
and the canonical momentum reduces to p‖. Now the canonical coordinate is the
position of the GC along the magnetic field line. Consequently,

J =
∮

p‖ ds (2.56)

is an adiabatic invariant, generally known as the second adiabatic invariant or
longitudinal invariant. The invariance of J is broken when the temporal variation
of the magnetic field takes place in time scales comparable to or shorter than the
bounce motion.
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Both μ and J depend on particle momentum. As long as μ is conserved, the
momentum can be eliminated from the second invariant by introducing a purely
field-geometric quantity K

K = J√
8mμ

= I
√

Bm =
∫ s ′

m

sm

[Bm − B(s)]1/2 ds , (2.57)

where m is the mass of the particle. The integral I is

I =
∫ s ′

m

sm

[
1 − B(s)

Bm

]1/2

ds (2.58)

and J = 2pI . Since the invariance of J requires the invariance of μ, and m is
the constant mass, J and K are physically equivalent. The physical dimension of
K is square root of magnetic field times length, which in radiation belt studies is
expressed in units of RE G1/2.

Neither the bounce period nor the integral I can be expressed in a closed
form. We can, however, find useful expressions for particles mirroring close to the
minimum of a symmetric magnetic bottle, e.g., the dipole equator, where we can
approximate the field by a parabola

B(s) � B0 + 1

2
a0s

2 . (2.59)

Here a0 = ∂2B/∂s2 evaluated at the equator, where the magnetic field is B0. Now
the parallel equation of motion mdv‖/dt = −μ∂B/∂s becomes

m
d2s

dt2 = −μa0 s . (2.60)

This is the familiar equation of motion for a linear pendulum with the period

τb = 2π

√
m

μa0
= 2π

√
mB

W⊥a0
≈ 2π

√
2

v

√
B0

a0
, (2.61)

where we have approximated v ≈ v⊥ and B ≈ B0, as we consider particles with
the equatorial pitch angle αeq ≈ 90◦.

Now we have also the expression for the bounce period at the limit αeq → 90◦
where the integrand in (2.54) diverges at the same time as the path length goes to
zero. The bounce time remains finite, even if there is no actual bounce motion. This
is analogous to the linear mechanical pendulum at rest (here v‖ = 0). The period of
the pendulum is well-defined whether it swings or not! For the bounce motion about
the dipole equator (2.61) this means that the “equatorially mirroring” particles do
not violate the guiding center hierarchy τb � τL. Once the equatorial pitch angle
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deviates from 90◦, if only slightly, the bounce motion takes the time τb because the
particle spends most of its bounce time close to the mirror point.

For equatorially mirroring particles integrals J, K and I are trivially zero. Using
the same expansion as before we can find analytical expression for I for particles
mirroring close to the equator. Letting s = 0 at the equator the mirror points are
found to be

sm ≈ ±
√

2B0

a0

(
1 − B0

Bm

)
(2.62)

and the integral reduces to

I � π√
2

√
B0

a0
cos2 αeq . (2.63)

This approximation is good if Bm/B0 � 1.1, corresponding to particles whose
equatorial pitch angles are in the range 75◦ � αeq ≤ 90◦. Bm and a0 depend on the
magnetic field configuration. In the dipole field the integral is found to be (Roederer
1970)

I � π

3
√

2
LRE

(
1 − k0

BmL3R3
E

)
. (2.64)

The bounce periods in the dipole field are calculated in Sect. 2.5.

2.4.3 The Third Adiabatic Invariant

Also the drift across the magnetic field may be nearly-periodic if the drift motion
takes place around an axis. This is particularly important in the radiation belts
where particles drift around the Earth in the quasi-dipolar magnetic field. The
corresponding third adiabatic invariant is the magnetic flux Φ through the closed
contour defined by the equatorial track of the GC given by

Φ =
∮

A · dl , (2.65)

where A is the vector potential of the field and dl is the arc element along the drift
path of the GC, which now can be taken as the canonical momentum and coordinate.
In order for Φ to be an adiabatic invariant, the drift period τd has to fulfil τd � τb �
τL. Consequently, the invariant is weaker than μ and J and much slower changes in
the magnetic field can break the invariance of Φ.
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Table 2.1 Summary of adiabatic invariants

Invariant Velocity Time-scale Validity

Magnetic Gyro motion v⊥ Gyro period τ � τL

moment μ τL = 2π/ωc

Longitudinal- Parallel velocity Bounce period τb τ � τb � τL

invariant J of GC V‖ and μ constant

Flux invariant Φ Perp. velocity Drift period τd τ � τd � τb � τL

of GC V⊥ and μ and J constant

Table 2.1 summarizes the functions {μ, J,Φ} and the conditions for their
adiabatic invariance.

In three-dimensional space there are at most three independent adiabatic invari-
ants but the actual number can be smaller, even zero. In radiation belts μ is often
a good invariant and J is invariant for particles that spend at least some time in
the magnetic bottle of the nearly-dipolar field. Under steady conditions also Φ

is constant, but its invariance can be broken by spatial inhomogeneities and ultra
low frequency (ULF) oscillations of the magnetospheric magnetic field, as will be
discussed in Chap. 6.

In the language of Hamiltonian mechanics the functions {μ, J,Φ} defined in
Eqs. (2.36), (2.56), and (2.65), whether invariant or not, form a set of canonical
action variables or action integrals of the canonical electromagnetic momentum
p + qA over the periods of the canonical coordinates si

Ji = 1

2π

∮
i

(p + qA) · dsi (2.66)

each of which having an associated phase angle ϕi : the gyro phase, bounce phase
and drift phase. {Ji, ϕi} is a convenient set of six independent variables, e.g., when
discussing velocity distribution functions, also known as phase space densities
(Sect. 3.5), of radiation belt particles.

Note that the set of action integrals and their adiabatic invariance depend on the
symmetries of the magnetic field configuration. For example, in a two-dimensional
picture of the current sheet in the Earth’s magnetotail the motion of charged particles
may be symmetric about the center of the sheet with an associated adiabatic
invariant. Such a motion is known as Speiser motion. The violation of the invariance
in this case leads to the chaotization of the particle motion with consequences to the
stability of the current sheet (e.g., Büchner and Zelenyi 1989).

2.4.4 Betatron and Fermi Acceleration

When particles drift adiabatically in an inhomogeneous magnetic field, their
energies and/or pitch angles are affected. Consider the rate of change of the kinetic
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energy W of a charged particle in a general time-dependent magnetic field B. The
time derivative in a moving frame of reference is d/dt = ∂/∂t + V · ∇, where V
is the velocity of the frame of reference, i.e., the velocity of the GC In the GCS the
energy equation is

dWGCS

dt
= μ

dB

dt
= μ

(
∂B

∂t
+ V⊥ · ∇⊥B + V‖

∂B

∂s

)
. (2.67)

This equation can be transformed to the energy equation in the frame of reference
of the observer (OBS)

dWOBS

dt
= dWGCS

dt
+ d

dt

(
1

2
mV 2‖

)
+ d

dt

(
1

2
mV 2⊥

)

= μ
∂B

∂t
+ qV · E , (2.68)

where non-electromagnetic forces have been neglected.
The first term in the right hand side of (2.68) describes the gyro betatron effect

on charged particles, in which the changing magnetic field at the position of the
GC leads to gyro betatron acceleration of the charged particle through the inductive
electric field. The increase in the perpendicular velocity of the particle increases
also the gradient drift velocity of the GC that depends on the perpendicular energy
(2.15).

The second term describes the action of the electric field on the motion of the GC
covering both magnetic field-aligned acceleration (if E‖ �= 0) and another betatron
effect, called drift betatron acceleration. The second term is zero if the velocity
of the GC and electric field are perpendicular to each other, i.e., the drift betatron
acceleration requires that the electric field has a component in the direction of
particle’s drift velocity. Therefore, the drifts due to the electric field do not contribute
to drift betatron acceleration.

When the GC advects adiabatically in a quasi-static electric field toward an
increasing field (B2 > B1), the invariance of μ implies

W⊥2

W⊥1
= B2

B1
. (2.69)

Thus W⊥2 > W⊥1. This leads to an anisotropic “pancake” velocity space distri-
bution (Sect. 3.4) of particles transported by the convection electric field from the
magnetotail to the inner magnetosphere. Pancake distributions drive two of the most
important wave modes in radiation belt dynamics, the electromagnetic ion cyclotron
waves and the whistler-mode chorus waves (Sect. 5.2). The betatron effect driven by
the inductive electric field is discussed in Sect. 2.6 in the context of the drift shells
in a quasi-dipolar magnetic field.

A special case of betatron acceleration is the drift of a particle in J -conserving
bounce motion toward a region where the mirror field increases. This corresponds
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to moving the mirror points closer to each other and, consequently, decreasing∮
ds. To compensate this v‖ of the particle and thus its parallel energy W‖ in the

observer’s frame must increase. This mechanism is known as Fermi acceleration. A
mechanical analogue of Fermi acceleration is hitting a tennis ball with a racket.
In the spectator’s frame the ball is accelerated but in the racket’s frame it just
mirrors. The concept of Fermi acceleration is often used in the context of moving
astrophysical shock fronts, the solar-terrestrial examples of which are interacting
CME shocks or an ICME shock approaching the bow shock of the Earth.

2.5 Charged Particles in the Dipole Field

Figure 2.5 illustrates the motion of charged particles in the guiding center approxi-
mation in a dipole field introduced in Sect. 1.2.1.

The guiding center approximation can be applied in a static dipole field if the
particle’s gyro radius is much smaller than the curvature radius RC of the field.
In terms of the particle’s rigidity p⊥/|q| the condition for the guiding center
approximation is

rL

∣∣∣∣∇⊥B

B

∣∣∣∣ = p⊥
|q|RCB

∝ p⊥
|q|r0B

 1 , (2.70)

i.e., the GC approximation is valid if

p⊥
|q|  r0B , (2.71)

Fig. 2.5 Motion of an electron in a dipole field
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where r0 is the Earth-centered distance to point where the field line crosses
the dipole equator. The conversion of particle energy to rigidity is given by the
relativistic relationship between momentum and kinetic energy (A.16)

p2⊥ = 1

c2 (W 2 + 2mc2W) sin2 α . (2.72)

Rigidity describes how the magnetic field affects a charged particle. A particle
with a large rigidity is less affected by the ambient magnetic field than a particle
with smaller rigidity. The rigidities of most cosmic rays are so large that they cannot
be trapped by the Earth’s dipole field and just move through the radiation belts being
deflected by the magnetic field. The deflection depends on the rigidity of the particle
and on the angle it arrives to the magnetosphere.

Some of the cosmic ray particles penetrate to the atmosphere, the most energetic
ones even to the ground. In cosmic ray physics it is common to use the units familiar
from elementary particle physics, setting c = 1. Thus particle mass, momentum and
energy are all given in energy units, typically with GeV, which is of the order of
proton mass mp = 0.931 GeV. Consequently, the unit of rigidity is GV.

Let λm be the mirror latitude of a particle trapped in the dipole field and B0 the
magnetic field at the equatorial plane. The equatorial pitch angle of the particle is

sin2 αeq = B0

B(λm)
= cos6 λm

(1 + 3 sin2 λm)1/2
. (2.73)

Denote the latitude, where the field line intersects the surface of the Earth, by λe.
If λe < λm, the particle hits the Earth before mirroring and is lost from the bottle.
Actually the loss takes place already in the upper atmosphere through collisions
with atmospheric atoms and molecules. This can, of course, happen within a wide
range of altitudes. In this book we mainly discuss particles with energies �100 keV,
most of which deposit their energy at altitudes around 100 km or below. In any case
100 km is small as compared to 1 RE and we can approximate the equatorial half-
width of the loss cone by

sin2 αeq,l = L−3(4 − 3/L)−1/2 = (4L6 − 3L5)−1/2 , (2.74)

where L is the geocentric distance to the point where the magnetic field line
crosses the dipole equator expressed in units of RE , i.e., McIlwain’s L-parameter
(Sect. 1.2.1). The particle is in the loss cone if αeq < αeq,l .

As shown in Fig. 2.6, the half-width of the equatorial loss cone in the outer
radiation belt is a few degrees and widens quickly along the field lines when the
magnetic latitude exceeds 30◦. In addition to the loss-cone width, the curves in the
figure indicate the magnetic latitudes where the dipole field lines cross the surface
of the Earth, e.g., L = 4 at λ = 60◦.
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Fig. 2.6 The half-width of the atmospheric loss cone as a function of magnetic latitude for L-
parameters 2–7

The bounce period in a dipolar bottle is

τb = 4
∫ λm

0

ds

v‖
= 4

∫ λm

0

ds

dλ

dλ

v‖

= 4r0

v

∫ λm

0

cos λ(1 + 3 sin2 λ)1/2

1 − sin2 αeq(1 + 3 sin2 λ)1/2/ cos6 λ
dλ

= 4r0

v
T (αeq) . (2.75)

T (αeq) is known as the bounce function, which needs to be integrated numeri-
cally. At the limit λm = 90◦ (αeq = 0) the integral can be given in a closed form
yielding T (0) = (S/r0)/2 = 1.38, where S is the length of the field line (1.7).
For nearly equatorially mirroring particles (αeq ≈ 90◦), the dipole field can be
approximated as a parabola (2.59), yielding T (π/2) = (π/6)

√
(2) ≈ 0.74. Between

these extremes (0 < αeq < 90◦) a good approximation is (Schulz and Lanzerotti
1974)

T (αeq) ≈ 1.3802 − 0.3198 (sinαeq +√
sin αeq) . (2.76)
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For αeq � 40◦ a little less accurate approximation

T (αeq) ≈ 1.30 − 0.56 sin αeq (2.77)

is often good enough in practice (as used by, e.g., Roederer 1970; Lyons and
Williams 1984). As T (αeq) is of the order of 1, τb ≈ 4r0/v is a pretty good
approximation in back-of-the-envelope calculations.

Finally, we investigate the drift time around the Earth. In the terrestrial dipole
field (where ∇ × B = 0), ions drift to the west and electron to the east with the
combined curvature and gradient drift velocity (2.24)

vGC = W

qBRC

(1 + cos2 α) (2.78)

= 3mv2r2
0

2qk0

cos5 λ(1 + sin2 λ)

(1 + 3 sin2 λ)2

[
2 − sin2 α

(1 + 3 sin2 λ)1/2

cos6 λ

]
,

where the Eqs. (1.4) and (1.8) for the dipole field B(λ) and curvature radius RC(λ)

have been inserted.
In the drift motion around the Earth, vGC is usually less interesting than the

bounce-averaged azimuthal speed 〈dφ/dt〉 = 〈vGC/r cos λ〉 that gives the drift rate
of the guiding center around the dipole axis. A straightforward calculation yields

〈
dφ

dt

〉
= 4

vτb

∫ λm

0

vGC(λ)(1 + 3 sin2 λ)1/2

cos2 λ cos α(λ)
dλ

≡ 3mv2r0

2qk0
g(αeq) = 3mv2REL

2qk0
g(αeq) , (2.79)

where

g(αeq ) = 1

T (αeq)

∫ λm

0

cos3 λ(1 + sin2 λ)[1 + cos2 α(λ)]
(1 + 3 sin2 λ)3/2 cos α(λ)

dλ . (2.80)

Similarly to T (αeq) also g(αeq) is of the order of 1. For equatorial pitch angles
larger than 30◦ g(αeq) can be approximated as

g(αeq ) ≈ 0.7 + 0.3 sin(αeq) (2.81)

yielding for non-relativistic equatorial particles (αeq = 90◦)

(
dφ

dt

)
0

= 3mv2REL

2qk0
= 3μ

qr2
0

. (2.82)
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Fig. 2.7 Drift periods of radiation belt electrons with energies 100 keV, 1, 5, and 10 MeV as a
function of L calculated from Eq. (2.83)

For relativisic equatorial particles this is modified to

(
dφ

dt

)
0

= 3mc2REL

2qk0
γβ2 = 3μrel

γ qr2
0

, (2.83)

where μrel is the relativistic first invariant p2⊥/(2mB) (2.48) and β = v/c. The
coefficient
3mc2RE/(2qk0) is

• 0.035 degrees per second for electrons and
• 64.2 degrees per second for protons.

Note that the drift period decreases with increasing L. While this may, at the
first sight, seem counterintuitive, recall that according to the expression for the
gradient–curvature drift velocity in current-free magnetic field (2.24) the drift speed
is proportional to 1/(BRC). The dipole field scales as L−3 and the curvature radius
as L. Thus vGC ∝ L2, (dφ/dt)0 = vGC/L ∝ L and τd ∝ L−1 .

In Fig. 2.7 drift periods of radiation belt electrons are plotted for selected energies
in the range 100 keV–10 MeV at L-shells 2–8 and Table 2.2 gives examples of
electron gyro, bounce and drift periods at L = 2, L = 4 and L = 6. The
bounce times are calculated from (2.75) for αeq = 80◦ correspoinding to the bounce
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Table 2.2 Examples of approximate electron gyro, bounce and equatorial drift periods for selected
energies. Note that the magnetic drift period of 10-keV electrons deep in the plasmasphere (L =
2) is longer than the corotation time (24 h). Thus their physical drift motion around the Earth is
determined by the corotational electric field. Note also that the ultra-relativistic particles move
practically with the speed of light, thus their bounce times at a given L-shell are almost identical

10 keV 100 keV 1 MeV 5 MeV 10 MeV

L = 2 τL 9.71µs 11,4µs 28.1µs 103µs 196µs

τb 0.64 s 0.23 s 0.14 s 0.13 s 0.13 s

τd 44.2 h 3.65 h 36.9 min 8.09 min 4.19 min

L = 4 τL 0.08 ms 0.09 ms 0.26 ms 0.82 ms 1.57 ms

τb 1.27 s 0.46 s 0.27 s 0.26 s 0.26 s

τd 22.1 h 1.83 h 18.5 min 4.05 min 2.09 min

L = 6 τL 0,26 ms 0.31ṁs 0.76 ms 2.88 ms 5.29 ms

τb 1.91 s 0.69 s 0.41 s 0.38 s 0.38 s

τd 12.3 h 1.22 h 12.3 min 2.70 min 1.40 min

function T ≈ 0.75. The drift periods are calculated from (2.83) for particles with
αeq = 90◦.

2.6 Drift Shells

The guiding center of a charged particle traces a drift shell when the particle drifts
around the Earth (right-hand picture in Fig. 2.5). In a symmetric static magnetic field
in the absence of external forces when μ and W are conserved, the drift shell can be
uniquely identified by

I = constant

Bm = constant (2.84)

where I is the integral (2.58) and Bm the mirror field. In a dipolar configuration the
magnetic field and the drift shells are symmetric around the dipole axis. The drift
shells are in this case defined by constant L and commonly referred to as L–shells.

Beyond about 3–4 RE temporal and spatial asymmetries of the magnetospheric
magnetic field affect the formation and evolution of the drift shells. The geomagnetic
field is compressed on the dayside by the Chapmann–Ferraro current (1.14), which
together with the stretching of the nightside magnetic field causes azimuthal
asymmetry. The asymmetry increases with increasing dynamic pressure of the
solar wind, in particular, when a solar wind pressure pulse or interplanetary shock
compresses the dayside configuration, or the nightside field stretches during the
substorm growth phase.
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For a distorted dipole the L-parameter can be generalized by defining

L∗ = 2πk0

ΦRE

. (2.85)

L∗ is sometimes called Roederer’s L-parameter to distinguish it from the original
McIlwain’s L-parameter of the dipole field. L∗ is inversely proportional to the
magnetic flux (Φ) enclosed by particle’s drift contour. Thus L∗ is an alternative
way to express the third action integral. If changes in the field are slower than the
drift period of the particle, L∗ remains invariant.

L∗ is equal to McIlwain’s L-parameter only in a purely dipolar field. Otherwise,
L∗ corresponds to the radial distance to the equatorial points of the symmetric L-
shell on which the particle would be found if all non-dipolar contributions to the
magnetic field were turned off adiabatically. This method can also be applied if
internal field perturbations closer to the Earth are taken into account.

2.6.1 Bounce and Drift Loss Cones

Charged particles that complete one or more drift cycles around the Earth are said
to be stably-trapped. Trapping is lost if the particle reaches an altitude where it
is lost through collisions with atmospheric particles, or if the particle’s drift shell
encounters the magnetopause and the particle is lost there. Particles that are able to
perform a number of bounces but are lost before a complete drift cycle are said to
be pseudo-trapped.

If the particle does not fulfil a complete bounce cycle in the magnetic bottle of
the inner magnetosphere before it is lost into the atmosphere, it is said to be in the
atmospheric (or bounce) loss cone. In the dipole field the width of the atmospheric
loss cone depends on L and the magnetic latitude (Fig. 2.6). As bounce periods of
radiation belt electrons are only fractions of a second (Table 2.2), electrons close to
the edge of the bounce loss cone can be lost rapidly from the belts due to wave–
particle interactions whereas scattering from larger equatorial pitch angles takes
more time (Chap. 6).

The asymmetric deviations from the dipole introduce complications to this
picture. Although the field inside of about 3–4 RE is very close to that of a dipole,
the dipole is displaced from the center of the Earth, which introduces an asymmetry
in the Earth-centered frame of reference. Now the distance from the dipole to the
upper atmosphere varies as a function of geographic latitude and longitude.

Let us consider an electron in the Earth’s displaced dipole field, freshly injected
to a field line where it is not in a bounce loss cone. Assume that the electron mirrors
from the field Bm at an altitude somewhat above 100 km, and drifts around the Earth.
If the dipole field were symmetric, the electron would stay trapped unless something
(e.g., wave–particle interaction) lowers its pitch angle letting it to escape from the
magnetic bottle. But in the case of a displaced dipole the electron can drift to a
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field line that is connected to the atmosphere above a region that is farther from the
dipole. The field at 100 km is now smaller than Bm and the particle may reach a
lower altitude and be lost from the magnetic bottle. The particle has performed a
number of bounces but was not able to complete a full drift around the Earth. It is
said to have been in the drift loss cone. The drift loss cone is as wide as the widest
bounce loss cone on a given drift shell. The effect is strongest above the South
Atlantic Anomaly, where the minimum surface magnetic field is 22µT, which is
much smaller than 35µT of Earth-centered 11◦-tilted dipole in the same region
where dipole latitude is about −20◦.

2.6.2 Drift Shell Splitting and Magnetopause Shadowing

In an azimuthally symmetric static magnetic field particles with different pitch
angles, which at a given longitude are on a common drift shell, will remain on
the same shell. This is called shell degeneracy. It is a consequence of condition
(2.84), according to which drift shells are defined by constant mirror magnetic field
magnitude Bm and constant integral I . In a pure dipole field I can be replaced by
the L-parameter.

In an azimuthally asymmetric field charged particles with different pitch angles,
whose guiding centers are on a joint magnetic field line at some longitude, do not
stay on a common field line when they move to another longitude. The reason is
that they mirror at different field strengths Bm and, consequently, their I -integrals
are different. This is known as drift shell splitting. The magnetosphere is always
compressed on the dayside and stretched on the nightside, and the asymmetry
increases during increased solar wind forcing and geomagnetic storms. Figure 2.8
illustrates the shell splitting in the noon–midnight cross section under weakly
asymmetric configuration. The particles with different equatorial pitch angles on
a common drift shell in the nightside are found on different shells in the dayside
(top). Vice versa, particles on a common drift shell in the dayside are on different
shells in the nightside (bottom).

In Fig. 2.8 the drift shell splitting is most pronounced at equatorial distances
beyond about 6–7 RE . The upper panel indicates that the drift shells of particles with
large equatorial pitch angles (small cos α0) extend in the dayside further out than of
particles with smaller pitch angles. Depending on the amount of compression of
the dayside magnetosphere these particles may hit the magnetopause and be lost
to the magnetosheath before they pass the sub-solar direction. The phenomenon
where particles are lost at the magnetopause is known as magnetopause shadowing.
Particles lost this way are said to pseudo-trapped, as they remain trapped during a
part of their drift around the Earth.
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Fig. 2.8 Illustration of drift shell splitting from nightside to dayside (top) and from dayside
to nightside (bottom) in a weakly compressed/stretched magnetic field configuration. The dots
indicate the mirror points for different equatorial pitch-angle cosines. (From Roederer 1970, the
colors of dots have been added to guide the eye) (Reprinted by permission from Springer Nature)

The magnetopause shadowing, where the drift shell splitting plays a role, thus
leads to a loss of particles nearly 90◦ pitch angles, while the scattering of particles
to the atmosphere results in the loss of particles with small pitch angles. In two-
dimensional velocity space (v‖, v⊥) this leads to a butterfly shape of the particle
distribution function (Sect. 3.4.2).
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Magnetopause shadowing is an important particle loss mechanism from the outer
electron belt (Sect. 6.5.1). The shadowing is most important during strong magneto-
spheric activity when the dayside magnetopause is most compressed/eroded and the
nightside field is stretched already at the distance of the outer radiation belt. Note
that although the bulk plasma is frozen-in the magnetospheric field, the gyro radii
of the energetic radiation belt particles are large enough to break the freezing close
to the magnetopause boundary layer.

Correspondingly, common drift shells in the dayside are split when particles drift
toward the nightside (Fig. 2.8, bottom). In this case the drift shells of particles with
larger equatorial pitch angles are closer to the Earth in the nightside and the particles
remain stably trapped. However, now particles with small pitch angles, reaching
farther out to the magnetotail, may lose their magnetic field guidance, when crossing
the current sheet, before they drift through the midnight meridian and again become
pseudo-trapped.

Note that particles observed at a given point on the dayside come from different
locations in the nightside. As there may well be more high-energy particles with
large pitch angles in the nightside closer to the Earth than farther away, the observed
pitch-angle distribution in the dayside may have a shape of a pancake (Sect. 3.4.1)

The compression of the dayside magnetopause due to solar wind pressure
produces further local quasi-trapping regions in the high-latitude dayside magne-
tosphere. While the pure dipole field along a given field line has a minimum on
the equatorial plane, the compression of the dayside magnetopause enhances the
equatorial magnetic field causing a local maximum at the dayside equator. Now the
equatorial minimum bifurcates to off-equatorial local minima (Fig. 2.9).

These local magnetic bottles in the northern and southern hemispheres are
continually reformed due to the changing angle between of the dipole axis and
the Sun-Earth line and due to the changes in the solar wind pressure. This leads
to complicated charged particle orbits known as Shabansky orbits (Antonova and
Shabansky 1968). For example, a fraction of the particles drifts across the noon
sector bouncing in the northern hemisphere, another fraction bouncing in the
southern hemisphere. (For examples of Shabansky orbits, see, e.g, McCollough et al.
2012).

2.7 Adiabatic Drift Motion in Time-Dependent
Nearly-Dipolar Field

As an example of drift betatron acceleration (Sect. 2.4.4) we consider the effects
of slow temporal changes of the quasi-dipolar field, examples of which are due
to changes in solar wind pressure or approaching dipolarization fronts from the
magnetotail. To keep the presentation simple we limit the discussion to bounce-
averaged motion in the equatorial plane. Furthermore, we assume that there is no
background electric field.
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Fig. 2.9 Bifurcation of the local magnetic minima in the compressed dayside dipole field. The
crosses indicate the local minima on different field lines in the noon–midnight meridional plane.
(From McCollough et al. 2012, reprinted by permission from American Geophysical Union)

We start with the fully adiabatic motion2 conserving all three adiabatic invariants,
i.e., we assume that the temporal changes in the magnetic field are slower than the
drift motion around the dipole

B

dB/dt
� τd , (2.86)

where τd is the bounce-averaged drift period (2.83). Temporal increase or decrease
of the magnetic field is associated with an azimuthal inductive electric field Ei .
In the equatorial plane this leads to an outward or inward Ei×B drift across the
magnetic field lines, corresponding to positive or negative dL∗/dt .

2 The term “adiabatic motion” is often used to refer to conservation of the first adiabatic invariant
without the requirement of conserving the other action integrals.
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Particles can thus gain (lose) energy when they are transported by the Ei×B
drift across the region of increasing (decreasing) magnetic field magnitude. The
radial location and energy of the particles change during such a slow contraction or
expansion of the magnetic field but the fully adiabatic process is reversible and the
initial state of the particles is recovered when the field returns to its original strength.
Particles that were on a common drift shell at the beginning of the magnetic field
perturbation are transferred to an outer drift shell and return to the original shell
when the magnetic configuration recovers its configuration before the perturbation.
Due to the slow temporal changes all particles experience the same amount of
inductive electric field in their orbit around the Earth, and therefore the same amount
of inward/outward displacement. This kind of reversible process is observed during
weak and moderate magnetic storms when the ring current enhances slowly in the
main phase and then recovers in the recovery phase. This causes weakening and
subsequent strengthening of the equatorial magnetic field. As the changes of the
equatorial magnetic field strength are displayed in the Dst index, the reversible
process is called the Dst effect.

The change of the particle energy during the expansion and contraction of the
drift shells can be calculated by bounce-averaging the energy equation (2.68)

〈
dW

dt

〉
b

= μ

〈
∂B

∂t

〉
b

+ q 〈V · Ei〉b (2.87)

= μ

〈
∂B

∂t

〉
b

+ q 〈V0〉b · Ei0 ,

where V0 is the drift velocity of the GC and Ei0 is the inductive electric field,
both at the equator. In a slowly changing magnetic field the inductive electric field
increases the kinetic energy of the particle both in its gyro motion (gyro betatron
acceleration) and in its drift motion (drift betatron acceleration). The particle has
in this case time to gradient drift considerably around the Earth before Ei×B drift
takes it significantly inward, i.e., the drift velocity of the GC consists now primarily
on the azimuthal gradient drift velocity and thus, the drift betatron term in, i.e., the
second term on the RHS of (2.87), is finite. The Ei×B drift, being perpendicular to
Ei , does not contribute to the betatron acceleration.

In the inner magnetosphere the temporal changes often are faster than the
azimuthal drift motion but slower than the bounce motion (τb  B/(dB/dt)  τd ).
Bounce-averaging of the energy equation is still possible but now the Ei×B drift
is faster than the azimuthal drift. Consequently, the charged particles follow the
contracting or expanding field lines. Now in the second term on the RHS of
(2.87) the velocity of the GC consist primarily of the Ei×B drift that is naturally
perpendicular to the inductive electric field Ei . The drift betatron acceleration is
zero because the Ei×B drift displaces the particle inward/outward so quickly that it
does not have time to gradient drift much around the Earth. The increase/decrease
in particle’s energy is therefore due to gyro-betatron acceleration/deceleration.
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Let us then consider a sudden impulse (SI, Sect. 1.4.2) in which a solar wind
shock suddenly compresses the magnetosphere and the field thereafter relaxes
slowly without no major storm development in the ring current. Assume that the
compression is fast enough to violate the third invariant. Since the compression
is now also asymmetric, particles at different longitudes, i.e., at different phases
in their drift motion around the Earth respond differently to the disturbance. The
compression is strongest on the dayside and particles there experience largest Ei

and are mostly transported toward the Earth by the Ei×B drift. Since compression
is now fast compared to the drift motion and the frozen-in condition applies, this
can be considered in terms of particles following field lines as they are compressed
toward the Earth. On the other hand, particles in the nightside at the time of the
shock arrival more or less retain their original drift orbits. As a consequence,
particles originally on the same drift shell but at different longitudes are transported
to different distances toward the Earth and gain, in irreversible manner, different
amount of energy.

Assuming that after the initial rapid compression the inductive electric field effect
vanishes adiabatically, the particles find themselves on different drift shells. The
change of the drift shell due to the inductive electric field depends on the longitude,
i.e., the magnetic local time, where the particles are at the time of the asymmetric
compression, and dL∗/dt is positive for some particles and negative for others. After
the return to the original state the original distribution has diffused to a wider range
of L∗. This is an example of radial diffusion that will be discussed further in the
context of ULF waves in Chap. 6. For violation of L∗ the disturbance has thus to
be both fast when compared to the drift motion around the Earth and azimuthally
asymmetric. Otherwise, all particles initially at the same drift shell would experience
the same amount of displacement due to EixB-drift and there would be no diffusion
in L∗.

Let us finally consider the case where the shock compression is followed by
a magnetic storm. If the main phase (the rapid decrease of the Dst index) is not
too fast, particles are subject to the fully adiabatic Dst effect described above.
Faster and asymmetric changes can result, e.g., from substorm related ∂B/∂t and
corresponding inductive electric field, and ULF waves. They can lead to further
violations of L∗ and further spreading of drift shells compared to the initial situation.
Furthermore, the radiation belt particles are accelerated and scattered in pitch-angle
by various wave–particle interactions (Chap. 6). Thus the reversible Dst effect can
be, while partially identifiable in observations, obscured by other processes.

Another inductive electric field effect is related to the injection of particles from
the magnetotail into the inner magnetosphere during substorms. If the dipolarization
is faster than the azimuthal drift motion, the injected particles are transported by the
Ei×B drift toward the Earth gaining energy. At some point their energy becomes
large enough for the gradient and curvature drifts to take over and the particles
become trapped in the ring current and radiation belts.



2.7 Adiabatic Drift Motion in Time-Dependent Nearly-Dipolar Field 61

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Chapter 3
From Charged Particles to Plasma
Physics

In this chapter we move from single particle motion to the statistical description of
a large number of charged particles, the plasma. This discussion provides the basis
for the rich flora of plasma waves that are essential for understanding the sources
and losses of radiation belt particles through wave–particle interactions.

3.1 Basic Plasma Concepts

While we assume the reader to be familiar with basic plasma physics, we start with
a brief review of concepts that we are using in the subsequent chapters. According
to our favorite characterization space plasma is quasi-neutral gas with so many free
charges that collective electromagnetic phenomena are important to its physical
behavior.

3.1.1 Debye Shielding

The first attribute in the above characterization is the quasi-neutrality.1 Space
plasmas consist of positive and negative charges with roughly the same charge
density

ρq,tot =
∑
α

ρqα =
∑
α

nαqα ≈ 0 , (3.1)

1 Also non-neutral plasmas are considered in plasma physics but they are of no interest in our
treatise.
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where α labels the different charge species and nα is the number density. In the
radiation belt context we consider high-energy electrons and ions in different spatial
domains. However, the total amount of radiation belt particles is so small compared
to the background plasma that they do not violate the quasi-neutrality of the entire
system.

A significant fraction of free charges makes plasma electrically conductive.
In space plasmas temperature is relatively high and particle density low. Thus
interparticle collisions are rare and the classical collisional resistivity is very small.
If an external electric field is applied to the plasma, electrons are quickly rearranged
to neutralize the external field. As a consequence, no significant large-scale electric
fields exist in the rest frame of the plasma. Recall, however, that the electric
field is a coordinate-dependent quantity. The large-scale plasma motion across the
magnetic field corresponds to an electric field E = −V × B in the frame of
reference of the observer, e.g., in an Earth-centered non-rotating frame such as
the GSM coordinate system (Sect. 2.3). Another example of macroscopic electric
fields are those arising from magnetic field-aligned electric potential differences
above the auroral ionosphere related to the field-aligned electric currents coupling
the ionosphere and magnetosphere to each other.

Although plasma is neutral in large scales, deviations from charge neutrality
appear in smaller scales. Suppose that a positive test charge qT is embedded into
an otherwise quasi-neutral plasma. The Coulomb potential of the test charge is
ϕT = qT /(4πε0r), where r is the distance from qT . Electrons are attracted to
qT producing a localized polarization charge density ρpol that forms a neutralizing
cloud around qT . This is called Debye shielding.

The total charge density of the system is ρtot (r) = qT δ(r − rT ) + ρpol , where
rT is the location of the test charge and δ is the Dirac delta. The shielded potential
of qT is found by solving the Poisson equation

∇2ϕ = −ρtot(r)
ε0

(3.2)

with the boundary condition that ϕ → ϕT when r → rT .
Assuming that the plasma population α is in thermal equilibrium, the density is

given by the Boltzmann distribution

nα = n0α exp

(
− qαϕ

kBTα

)
, (3.3)

where kB is the Boltzmann constant, n0α the equilibrium number density in the
absence of qT , and Tα the equilibrium temperature. We will return to the concept of
plasma temperature in Sect. 3.2.2.

For a gas to be in the plasma state a sufficient amount of electrons and ions must
not be bound to each other. In other words, the random thermal energy must be
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much greater than the average electrostatic energy, kBTα � qαϕ. With this in mind
we can expand Eq. (3.3) as

nα � n0α

(
1 − qαϕ

kBTα

+ 1

2

q2
αϕ2

k2
BT 2

α

+ . . .

)
. (3.4)

The leading term of the polarization charge density now becomes

ρpol =
∑
α

nαqα ≈
∑
α

nα0qα0 −
∑
α

n0αq2
α

kBTα

ϕ = −
∑
α

n0αq2
α

kBTα

ϕ , (3.5)

where
∑

α nα0qα0 = 0 due to quasi-neutrality. Inserting (3.5) into the Poisson
equation (3.2) and solving the equation in spherical coordinates, the potential is
found to be

ϕ = qT

4πε0r
exp

(
− r

λD

)
, (3.6)

where λD is the Debye length

λ−2
D =

∑
α

λ−2
D,α = ε−1

0

∑
α

n0αq2
α

kBTα

. (3.7)

In many practical cases the thermal velocity of ions is much smaller than the
thermal velocity of electrons and it is customary to consider the electron Debye
length only. It can be estimated from

λD(m) ≈ 7.4

√
T (eV)

n(cm−3)
. (3.8)

Intuitively, λD is the limit beyond which the thermal speed of a plasma particle is
high enough to escape from the Coulomb potential of qT .

The Debye length gives us a convenient way of describing the plasma state. For
the collective phenomena to dominate the plasma behavior there must be a large
number of particles in the Debye sphere of radius λD : (4π/3)n0λ

3
D � 1. Because

plasma must also be quasi-neutral, its characteristic size L ∼ V 1/3, where V is the
volume of the plasma, must be larger than λD . Thus for a plasma

1
3
√

n0
 λD  L . (3.9)

Debye shielding is a property of the background plasma. The Debye sphere is
strictly spherical only for test particles at rest in the plasma frame. If the speed of
the test particle approaches the thermal speed of the surrounding plasma, the sphere
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becomes distorted. High-energy radiation belt particles move so fast through the
background that no Debye sphere is formed around them.

Large number of particles inside the Debye sphere further implies that plasma in
thermal equilibrium resembles an ideal gas. We discuss the interpretation of this in
collisionless plasmas in Sect. 3.2.2.

3.1.2 Plasma Oscillation

Much of our further discussion concerns the great variety of plasma waves. The
most fundamental wave phenomenon is the plasma oscillation, which is found by
considering freely moving cold (Te ≈ 0) electrons and fixed background ions in
a non-magnetized plasma. A typical first exercise problem in elementary plasma
physics course is to show that a small perturbation in the electron density leads to
a local electric field, which gives rise to a restoring force to pull the electrons back
toward the equilibrium. This results in a standing oscillation of the density at the
plasma frequency

ω2
pe = n0e

2

ε0me

. (3.10)

Note that the term “plasma frequency” is frequently used to refer to both the angular
frequency ωpe and the oscillation frequency fpe = ωpe/2π .

Plasma frequency is proportional to the square root of the density divided by the
mass of the oscillating particles. A useful rule of thumb to calculate the electron
oscillation frequency is

fpe(Hz) ≈ 9.0
√

n(m−3) . (3.11)

The plasma oscillation determines a natural length scale in the plasma known
as the electron inertial length c/ωpe, where c is the speed of light. Physically
it gives the length scale for attenuation of an electromagnetic wave with the
frequency ωpe penetrating to plasma. It is analogous to the skin depth in classical
electromagnetism.

Similarly, the ion plasma frequency is defined by

ω2
pi = n0e

2

ε0mi

. (3.12)

The corresponding ion inertial length is c/ωpi . Both ωpe and ωpi are important
parameters in plasma wave propagation (Chap. 4).
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3.2 Basic Plasma Theories

Depending on the temporal and spatial scales of the processes investigated different
theoretical approaches can be used. Every step from the motion of individual
particles toward statistical and macroscopic theories involves approximations that
must be understood properly.

3.2.1 Vlasov and Boltzmann Equations

We begin the discussion of statistical plasma physics by introducing the Vlasov
equation for the distribution function fα(r,p, t) of the particle species α. As the
background plasma in the magnetosphere is nonrelativistic, we set the Lorentz factor
γ = 1. The nonrelativistic distribution function fα(r, v, t) expresses the number
density of particles in a volume element dx dy dz dvx dvy dvz of a six-dimensional
phase space (r, v) at the time t . In the following we use the normalization

∫
Vps

fα(r, v, t) d3rd3v = N , (3.13)

where the integration is over the phase space volume Vps and N the number of all
particles in this volume.2 In the (r, v)-space the SI-units of f are m−6 s3. If the
distribution function is given in the (r,p)-space, as often is the case, its SI units are
m−6 kg−3 s3 .

Assuming that the only force acting on plasma particles is the Lorentz force, the
time evolution of the distribution function ∂fα/∂t is given by the Vlasov equation

∂fα

∂t
+ v · ∂fα

∂r
+ qα

mα

(E + v × B) · ∂fα

∂v
= 0 . (3.14)

The Vlasov equation actually states that in the six-dimensional phase space the total
time derivative of the distribution function is zero

dfα

dt
=
(

∂fα

∂t
+ r · ∇fα + a · ∇vfα

)
= 0 , (3.15)

2 In plasma theory the distribution function is often normalized to 1, when it describes the
probability of finding a particle in a given location of the phase space at a given time. This is
convenient when plasma is assumed to be homogeneous and the average density can be moved
outside of the velocity integrals. We will apply the normalization to unity in the derivation of
kinetic dispersion equations in Chaps. 4 and 5.
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where a is the acceleration due to the Lorentz force and ∇v is the gradient in the
velocity space. Consequently fα is often called the phase space density (PSD).3

The Vlasov equation is a conservation law for fα in the phase space. It is formally
similar to the continuity equation

∂n

∂t
+ ∇ · (nV) = 0 (3.16)

for particle density in three-dimensional configuration space.
In a collisionless plasma, which is a good first approximation for magnetospheric

plasma above the ionosphere, the Vlasov theory is a very accurate starting point.
Here “collisionless” means that head-on collisions between the plasma particles are
so infrequent that their contribution to the plasma dynamics vanishes in comparison
with the effect of long-range Coulomb collisions, which, in turn, give rise to the
Lorentz force term in the Vlasov equation.

However, there are some important collisional processes in the inner magne-
tosphere that break the conservation of fα . In particular, the charge exchange
collisions between ring current ions and exospheric neutrals contribute to the loss
of energetic current carriers and the decay of the ring current. In a charge exchange
collision the ring current ion captures an electron from a background atom. The
newly born neutral particle maintains the velocity of the energetic ion and becomes
an energetic neutral atom (ENA) that escapes unaffected by the magnetic field
far from ring current region. The newly ionized particle, in turn, has a much
lower energy and does not carry a significant amount of current. Using remote
observations of ENAs, images of the ring current and the plasmasphere can be
constructed. Charge exchange collisions have also a role in the energy loss of inner
belt protons but it is a very slow process at energies �100 keV.

Short-range collisions can be accommodated in the phase space description by
replacing the Vlasov equation by the Boltzmann equation

∂fα

∂t
+ v · ∂fα

∂r
+ qα

mα

(E + v × B) · ∂fα

∂v
=
(

dfα

dt

)
c

, (3.17)

where the collision term (dfα/dt)c typically is a complicated function of velocity
depending on the type of the particle interactions. In collisionless plasmas it is some-
times practical to separate the electromagnetic fluctuations from the background
fields and describe them formally as a collision term, as we will see in the context
of quasi-linear theory (Chap. 6).

In addition to conserving the number of particles N , the Vlasov equation has
several other important properties. For example, it conserves entropy defined by

S = −
∑
α

∫
fα ln fα d3r d3v , (3.18)

3 The same acronym is frequently used also for power spectral density. Both are important concepts
in radiation belt physics, but the risk of confusion is small.
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which is readily seen by calculating

dS

dt
= −

∑
α

∫ (
dfα

dt
ln fα + dfα

dt

)
d3r d3v = 0 . (3.19)

This is important when we discuss the important Landau damping mechanism in
Sect. 4.2.

Particularly important in space plasma physics is that the Vlasov equation has
many equilibrium solutions. In statistical physics of collisional gases Boltzmann’s
H-theorem states that there is a unique equilibrium in the collisional time scale, the
Maxwellian distribution. The relevant time scales in radiation belt physics are much
shorter than the average collision time and we can set ∂f/∂t|c → 0. Thus non-
Maxwellian distributions can survive much longer than the physical processes we
are investigating.

3.2.2 Macroscopic Variables and Equations

We define the macroscopic plasma quantities as velocity moments of the distribution
function

∫
f d3v ; ∫ v f d3v ; ∫ vv f d3v .

The average density in a spatial volume V is 〈n〉 = N/V . The particle density
n is, in turn, a function of space and time. It can be expressed as the zero order
velocity moment of the distribution function

n(r, t) =
∫

f (r, v, t) d3v . (3.20)

In a plasma different particle populations (labeled by α) may have different
distributions and thus have different velocity moments (nα(r, t), etc.). If the
particles of a given species have the charge qα , the charge density of the species
is

ρα = qαnα . (3.21)

The first-order moment yields the particle flux

Γα(r, t) =
∫

vfα(r, v, t) d3v . (3.22)
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Dividing this by particle density we get the macroscopic velocity

Vα(r, t) =
∫
vfα(r, v, t) d3v∫
fα(r, v, t) d3v

. (3.23)

With these we can write the electric current density as

Jα(r, t) = qαΓα = qαnαVα . (3.24)

The second order moment defines the pressure tensor

Pα(r, t) = mα

∫
(v − Vα)(v − Vα)fα(r, v, t) d3v , (3.25)

which in a spherically symmetric case reduces to the scalar pressure

Pα(r, t) = mα

3

∫
(v − Vα)2fα(r, v, t) d3v = nαkBTα . (3.26)

Here we have introduced the Boltzmann constant kB and the temperature Tα . In the
frame moving with the velocity Vα the temperature is given by

3

2
kBTα(r, t) = mα

2

∫
v2fα(r, v, t) d3v∫
fα(r, v, t) d3v

. (3.27)

For a Maxwellian distribution Tα is the temperature of classical thermodynamics.
In thermal equilibrium a plasma with a large number of particles in the Debye
sphere can be considered as an ideal gas with the equation of state given by (3.26).
In collisionless plasmas equilibrium distributions may, however, be far from the
Maxwellian making temperature a non-trivial concept in plasma physics.

The ratio of particle pressure to magnetic pressure (magnetic energy density,
B2/2μ0) is the plasma beta

β = 2μ0
∑

α nαkBTα

B2 . (3.28)

If β > 1, plasma governs the evolution of the magnetic field. If β  1, the magnetic
field determines the plasma dynamics. In the magnetosphere the smallest beta values
(β ∼ 10−6) are found on the auroral region magnetic field lines at altitudes of a few
Earth radii. In the tail plasma sheet β is of the order of one, but in the tail lobes some
4 orders of magnitude smaller.

The equations between the macroscopic quantities can be derived by taking
velocity moments of the Vlasov or Boltzmann equation. The procedure is described
in most advanced plasma physics textbooks (e.g., Koskinen 2011). The technical
details are of secondary interest for our subsequent discussion.
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The zeroth moment yields the equation of continuity

∂nα

∂t
+ ∇ · (nαVα) = 0 . (3.29)

The equation of continuity is an example of a conservation law

∂F

∂t
+ ∇ · G = 0 , (3.30)

where F is the density of a physical quantity and G the associated flux. Continuity
equations for charge or mass densities are obtained by multiplying (3.29) by qα or
mα, respectively.

The continuity equation contains Vα , which is the first-order velocity
moment of the distribution function. Calculating the first-order moment of the
Vlasov/Boltzmann equation leads to the continuity equation for macroscopic
momentum density ρmαVα , i.e., the macroscopic equation of motion, where ρmα

is the mass density. This equation contains the second-order moment, the pressure
tensor. By continuing the moment integration of the Boltzmann equation to the sec-
ond order we get an energy equation relating the temporal evolution of plasma and
magnetic field energy densities to divergence of the third moment of f , the heat flux.

This chain, where the conserved quantity depends on a quantity of a higher order,
continues ad infinitum. To obtain a tractable and useful macroscopic theory, the
chain of equations has to be truncated at some level. In the inner magnetosphere the
divergence of heat flux can be neglected. Thus we can replace the energy equation
by introducing an equation of state that relates the scalar pressure Pα to the number
density nα and temperature Tα as

Pα = nαkBTα . (3.31)

In thermal equilibrium this is the ideal gas law. As (3.31) contains three functions,
their mutual dependencies need to be given to reflect the actual thermodynamic
process. This can be done by specifying an appropriate polytropic index γp

P = P0

(
n

n0

)γp

; T = T0

(
n

n0

)γp−1

. (3.32)

For an adiabatic process in d-dimensional space γp = (d + 2)/d . In this form
the equation of state also applies to isothermal (γp = 1) and isobaric (γp = 0)
processes. In this sense collisionless magnetospheric plasma physics is simpler
than classical gas or fluid dynamics, where the moment calculations often must be
continued to higher orders.4

4 In the description of astrophysical plasma environments, including the Sun and its atmosphere,
thermal transport and radiative effects often are highly important.
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3.2.3 Equations of Magnetohydrodynamics

Above we have introduced separate macroscopic equations for each plasma species.
In the magnetosphere several plasma species co-exist; in addition to electrons and
protons, there may be heavier ions as well as neutral particles that interact with
charged particles. Sometimes it is also necessary to consider different populations of
identical particles as different species. For example, in a given spatial volume there
may be two electron populations of widely different temperatures or macroscopic
velocities. Depending on the temporal and spatial scales of the phenomena under
investigation the appropriate theoretical framework may be the Vlasov theory, a
multi-species macroscopic theory, the single-fluid magnetohydrodynamics (MHD),
or some combination of these. Examples of the combinations are hybrid approaches
where electrons are treated as a fluid in the configuration space and ions either as
(quasi-)particles or as a Vlasov fluid in phase space.

In MHD the plasma is considered as a single fluid in the center-of-mass
(CM) frame. The single-fluid equations are obtained summing up the macroscopic
equations of different particle species. A single-fluid description is a well-motivated
approach in collision-dominated gases, where the collisions constrain the motion
of individual particles and thermalize the distribution toward a Maxwellian. Single-
fluid MHD works remarkably well also in collisionless tenuous space plasmas, but
great care needs to be exercised with the validity of the approximations.

After a lengthy procedure of summing up the macroscopic equations for each
particle species and with several—not always quite obvious—approximations
(see, e.g., Koskinen 2011) we can write the MHD equations, supplemented with
Faraday’s and Ampère’s laws of electromagnetism in the form

∂ρm

∂t
+ ∇ · (ρmV) = 0 (3.33)

ρm

(
∂

∂t
+ V · ∇

)
V + ∇P − J × B = 0 (3.34)

E + V × B = J/σ (3.35)

P = P0

(
n

n0

)γp

(3.36)

∂B
∂t

= −∇ × E (3.37)

∇ × B = μ0J . (3.38)

Summing over charges of all particle species yields the continuity equation for
charge density

∂ρq

∂t
+ ∇ · J = 0 . (3.39)
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This equation is actually redundant because in the MHD approximation the
displacement current in the Ampère–Maxwell law is neglected and we need only
Ampère’s law (3.38), yielding ∇·J = 0 . Because the charge density is a coordinate-
dependent quantity, similarly as the electric field, this does not mean that ρq would
have to be zero in a given frame of reference. When needed, it can be obtained as
the divergence of the electric field calculated in the appropriate frame of reference.

The momentum equation (3.34) corresponds to the Navier–Stokes equation of
hydrodynamics. In the context of MHD the viscosity is neglected whereas the
Lorentz force is essential. Note that in the MHD approximation the electric force
ρqE is negligible compared to the magnetic force J × B .

In Ohm’s law (3.35) we have retained finite conductivity (σ ) although we
will mostly operate within the ideal MHD, where the resistivity is assumed zero,
corresponding to σ → ∞, and thus

E + V × B = 0 . (3.40)

This is the foundation of the frozen-in magnetic field concept, meaning that plasma
elements connected by a magnetic field line maintain the connection when plasma
moves with velocity V (Sect. 1.4.1).

In collisionless space plasmas the first refinement of the ideal Ohm’s law often is
the inclusion of the Hall electric field

E + V × B − 1

ne
J × B = 0 . (3.41)

The Hall term is particularly important in the presence of thin current sheets and
the current sheet disruption in the magnetic reconnection process. It decouples
the electron motion from the ion motion, after which the magnetic field becomes
frozen-in the electron flow E = −Ve × B. Another example of this decoupling will
be encountered in Sect. 4.4.1, where we discuss the splitting of the low-frequency
MHD shear Alfvén wave mode to the electromagnetic ion cyclotron and whistler-
mode waves at higher frequencies.

3.3 From Particle Flux to Phase Space Density

The function f (r,p, t) can be considered as the plasma theorist’s distribution
function whose first order velocity moment is the particle flux. However, the
distribution function cannot be measured directly. Instead, the observable is the
particle flux to a detector. The empirical approach is to determine the flux from
observations and thereafter relate the flux to the distribution function.

We start by defining the differential unidirectional flux j as the number of
particles dN coming from a given incident direction (unit vector i) that hit a surface
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of unit area dA, oriented perpendicular to the particles’ direction of incidence, per
unit time dt , unit solid angle dΩ and unit kinetic energy dW . Hence we write

dN = j dA dt dΩ dW . (3.42)

In ideal world the differential unidirectional flux

j = j (r, i,W, t) (3.43)

contains full information on the particles’ spatial (r), angular (i) and energy (W )
distribution at a given time. The flux j is a quantity measured by an ideal directional
instrument. It is commonly given in units cm−2 s−1 ster−1 keV−1, also in the
literature otherwise using SI-units. Depending on the energy range of observed
particles the energy scale may be sorted in keV, MeV, or GeV. Thus it is important
to pay attention to the powers of 10 in data presentations.

Real particle detectors are not planar surfaces. They may consist of a compli-
cated assembly of time-of-flight measuring arrangements, electric and magnetic
deflectors, stacks of detector plates, etc. Furthermore, real detectors do not sample
infinitesimal solid angles or energy intervals. Thus the conversion from the detector
counting rate to flux requires consideration of sensitivity, resolution and configura-
tion of the instrument, and of course careful calibration.

A real detector has a low-energy cut-off. If there is nothing that would limit the
higher energies to reach the detector, the flux is convenient to represent as an integral
directional flux as5

j>E =
∫ ∞

E

j dW . (3.44)

Other important concepts are the omnidirectional differential flux J defined by

J =
∫

4π

j dΩ (3.45)

and the corresponding omnidirectional integral flux

J>E =
∫ ∞

E

J dW . (3.46)

In radiation belts the particles are moving in the Earth’s magnetic field. Assume
that the particle distribution function is smooth in a locally homogeneous magnetic
field B. The magnetic field direction gives a natural axis for the frame of reference.
The direction of incidence i is given by the particle’s pitch angle α (2.6) and the

5 Here the flux of particles with so high energies, that they pass through the detector without leaving
a trace, is assumed to be negligible and the upper limit of integration can be set to infinity.
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azimuthal angle φ around B. If particles are uniformly distributed in the gyro
phase, i.e., the distribution is gyrotropic, the angle of incidence and j depend
directionally only on α. Considering particles, whose pitch angles lie within the
interval (α, α + dα), arriving from all azimuthal directions, the solid angel element
is dΩ = 2π sin αdα. The number of particles crossing a given point per unit time
per unit perpendicular area and energy, can now be expressed as

dN

dA dW dt
= 2πj sin α dα = −2πj d(cos α) . (3.47)

The flux is called isotropic if the number of incoming particles depends only
on the size of the solid angle of acceptance and is independent of the direction of
incidence, i.e., j is constant with respect to α

dN

d(cos α)
= const . (3.48)

Consequently, in an isotropic distribution equal numbers of particles arrive to the
detector from equal intervals of pitch angle cosines6

j = j (r, d(cos α),W, t) , (3.49)

the omnidirectional flux being

J = 4π

∫ 1

0
j d(cos α) = 4πj . (3.50)

In the absence of sources and losses Liouville’s theorem of statistical physics
states that the phase space density fp(r,p, t) is constant along any dynamical
trajectory in phase space

fp = dN

dx dy dz dpx dpy dpz

= const . (3.51)

Let the z axis be along the velocity vector. Then dx dy = dA, dz = v dt , and
dpx dpy dpz = p2 dp sin α dα dφ = p2 dp dΩ . Furthermore, v dp = dW , and
using (3.47) the relation of the differential unidirectional flux and the phase space
density is

fp = dN

p2 dA dt dΩ dW
= j

p2 . (3.52)

6 In the literature the notation μ = cos α is frequently used. As we have reserved μ for the
magnetic moment, we prefer to write d(cos α) here.
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For non-relativistic particles fp ≈ j/2mW . We retain the velocity space
distribution function of the previous sections by writing f = m3 fp, where m is
the mass of the particle. Thus in the velocity space we can write

j = v2

m
f (v) . (3.53)

3.4 Important Distribution Functions

While much of basic plasma theory is presented either at the limit of cold plasma
or in the MHD approximation for isotropic Maxwellian distribution functions
(Fig. 3.1) of the form

f (v) = n

(
m

2πkBT

)3/2

exp

(
− mv2

2kBT

)
, (3.54)

practical observations can only seldom be presented as such.
In any location there are particles with different past histories, carrying infor-

mation of their origin, of the acceleration processes they have experienced, etc.
In magnetized plasmas the magnetic field introduces anisotropy, as the particle
motion is different along the magnetic field and perpendicular to it. In radiation
belts the leakage of particles from the magnetic bottle leads to loss-cone features of
distribution functions.

Fig. 3.1 Isotropic Maxwellian velocity distribution function. The right-hand picture shows con-
tours of constant f in the two-dimensional velocity space
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3.4.1 Drifting and Anisotropic Maxwellian Distributions

In the case where the whole plasma population is moving with velocity V0 in the
frame of the observer, the three-dimensional Maxwellian distribution function is of
the form

f (v) = n

(
m

2πkBT

)3/2

exp

(
−m(v − V0)

2

2kBT

)
. (3.55)

A typical example of such a motion is the E×B drift, and the distribution is called
the drifting Maxwellian distribution.

Anisotropy introduced by the magnetic field can be illustrated by considering
an ideal non-leaking magnetic bottle, assuming that in the center of the bottle the
distribution is Maxwellian. If the bottle is contracted in the direction of the magnetic
field, the mirror points move slowly closer to each other. To conserve the second
adiabatic invariant (2.56), the decreasing field line length between the mirror points
means that parallel velocity must increase (i.e., the pitch angle must decrease),
corresponding to the Fermi mechanism (Sect. 2.4.4). The distribution is elongated
parallel to the magnetic field to a cigar-shaped distribution. In the opposite case,
where the bottle is stretched, the mirror points move away from each other and
the distribution is stretched perpendicular to the magnetic field forming a pancake
distribution.

In both cases the distribution remains Maxwellian both parallel and perpendicu-
lar to the magnetic field but with different temperatures T‖ and T⊥. As the parallel
space is one-dimensional and the perpendicular space two-dimensional, the total
bi-Maxwellian distribution function is

f (v⊥, v‖) = n

T⊥T
1/2
‖

(
m

2πkB

)3/2

exp

(
− mv2⊥

2kBT⊥
− mv2‖

2kBT‖

)
. (3.56)

Here the distribution has been assumed to be gyrotropic, i.e., it looks the same in all
perpendicular directions. In inhomogeneous plasmas this is not necessarily the case.

If the anisotropic Maxwellian plasma moves across the magnetic field, for
example, due to the E×B drift, the distribution is given by

f (v⊥, v‖) = n

T⊥T
1/2
‖

(
m

2πkB

)3/2

exp

(
−m(v⊥ − v0⊥)2

2kBT⊥
− mv2‖

2kBT‖

)
. (3.57)

The population may also have been accelerated along the magnetic field forming a
plasma beam

f (v⊥, v‖) = n

T⊥T
1/2
‖

(
m

2πkB

)3/2

exp

(
− mv2⊥

2kBT⊥
− m(v‖ − v0‖)2

2kBT‖

)
. (3.58)
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Fig. 3.2 Thermally
anisotropic pancake
distribution drifting
perpendicular to the magnetic
field

The distribution (3.57) is known as the drifting pancake distribution (Fig. 3.2). In
radiation belts drifting pancake distributions of electrons and protons are of particu-
lar interest. The plasma injected from the tail drifts toward increasing magnetic field
conserving the first two invariants. As a result the particles’ perpendicular energies
(W⊥) increase according to Eq. (2.69) at the expense of W‖. Although the distance
of the mirror points at the same time becomes shorter, which increases W‖, the
net result is pancake-shaped temperature anisotropy (T⊥ > T‖) because W⊥ scales
as B3 whereas the field line length scales as B. Anisotropic proton distributions
drive electromagnetic ion cyclotron waves and anisotropic electron distributions
drive whistler-mode chorus waves (Chap. 5), both of which have central roles in
acceleration and losses of radiation belt particles (Chap. 6).

The differences in E×B drifts of thermal ions and energy-dependent drifts of
suprathermal ions injected from the magnetotail can lead to formation of ring-
shaped distribution functions in the (v‖, v⊥)-space, known as ion ring distributions.
Furthermore, the charge-exchange collisions between the drifting ions and exo-
spheric neutrals can contribute to the development of the ring distribution by
depleting the small-velocity core of the distribution. These distributions lead to
instabilities that are able to drive, e.g., magnetosonic waves in the inner magne-
tosphere close to the equator (Sect. 5.3.2).

3.4.2 Loss Cone and Butterfly Distributions

In the real world all magnetic bottles are leaky due to the finite magnetic field
at the end of the bottle. In the absence of a mechanism that would replenish the
lost particles the distribution becomes the loss cone distribution where the loss
cone in the velocity space is around the direction of the background magnetic
field (Fig. 3.3). The half-width of the loss cone at the equator of a dipole field
varies within the radiation belts from 2◦ to 16◦ (Eq. (2.74)), resolving of which
experimentally requires very good angular resolution and precise alignment of the
detector in the direction of the magnetic field. Further away from the equatorial
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Fig. 3.3 Loss cone
distribution

plane the loss cone widens and becomes easier to detect (Fig. 2.6). The edges of
the loss cone are of particular importance because various plasma waves can scatter
particles into the loss cone. This is a key particle loss mechanism in the radiation
belts (Chap. 6).

The magnetopause shadowing caused by drift shell splitting (Sect. 2.6.2) can,
in turn, lead to loss of particles near 90◦ pitch angle. Combination of parallel
and perpendicular loss cones results in a velocity space distribution that resembles
the wings of a butterfly and is termed accordingly the butterfly distribution. Note,
however, that while the magnetopause shadowing takes place at the outskirts of
the radiation belts, butterfly distributions have also been observed inside L = 6
(Fig. 3.4), where the smaller flux around the perpendicular direction cannot be
explained by magnetopause loss, except during extreme dayside compression. If
the formation of butterfly distribution is not due to magnetopause shadowing, it
may result from wave–particle interactions that preferentially accelerate particles at
medium pitch angles. The high-resolution data from the Van Allen Probes has made
it possible to study this in detail (e.g., Xiao et al. 2015, and references therein).

Fig. 3.4 Time series of butterfly distribution of relativistic (3.6-MeV) electrons observed by the
REPT instrument of Van Allen Probe A on 29 June 2013. During the shown period the spacecraft
was moving outward close to L = 4.8. The flux maxima were in the pitch angle ranges 30◦–60◦
and 120◦–150◦ (From Xiao et al. 2015, Creative Commons Attribution 4.0 International License)
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3.4.3 Kappa Distribution

An important non-Maxwellian distribution in space plasmas is the kappa distribu-
tion. The observed particle spectra often are nearly Maxwellian at low energies but
have high-energy tails where the flux decreases more slowly. The tail is customarily
described by a power law in contrast to the exponential decay of the Maxwellian
distribution. The kappa distribution has the form

fκ(W) = n

(
m

2πκW0

)3/2
�(κ + 1)

�(κ − 1/2)

(
1 + W

κW0

)−(κ+1)

, (3.59)

where W0 is the energy at the peak of the particle flux and � is the gamma function
of mathematics. When κ � 1 , the kappa distribution approaches a Maxwellian.
When κ is smaller but yet >1 , the distribution has a high-energy tail. The smaller
κ , i.e., the less negative the power law index is, the harder the particle spectrum is
said to be.

Figure 3.5 illustrates the presentation of the distribution as a function of particle
energy instead of velocity. For a Maxwellian velocity distribution

f (v) = n

(
m

2πkBT

)3/2

exp

(
− W

kBT

)
(3.60)

the transformation to the energy distribution g(W) is given by

g(W) = 4π

(
2W

m3

)1/2

f (v) . (3.61)

Fig. 3.5 Maxwellian and kappa distributions as functions of energy. J is the omnidirectional
differential particle flux described in Sect. 3.5
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3.5 Action Integrals and Phase Space Density

In radiation belt studies it is common to express the phase space density as a function
of the action integrals discussed in Chap. 2

Ji = 1

2π

∮
(pi + qA) · dsi

with associated phase angles φi . For the set of integrals {μ, J,Φ} related to the
magnetic moment, the bounce motion and the magnetic flux enclosed by the
particle’s drift path, the phase angles are the gyro phase, the bounce phase, and
the drift phase.

If all action integrals μ, J and Φ are adiabatic invariants, the phase space density
can be averaged over the phase angles and the six-dimensional phase space reduces
to three-dimensional space with coordinates {μ, J,Φ}. Let us denote the phase
angle averaged phase space density, for the time being, by

f = f (μ, J,Φ; t) . (3.62)

The function f does not, in general, satisfy the Liouville theorem, i.e., it is
not constant along particle trajectories because it represents a phase average
over particles that have followed different dynamical trajectories to the point of
observation.

While the triplet {μ, J,Φ} may seem the most natural set of coordinates in the
nearly dipolar magnetic field of the inner magnetosphere, it is not always the most
practical. As discussed in Sect. 2.4.2, both μ and J depend on particle momentum.
It is customary to replace J by the purely field-geometrical quantity K (Eq. (2.57))

K = J√
8mμ

=
∫ s ′

m

sm

[Bm − B(s)]1/2 ds .

Furthermore, in radiation belt studies Φ is often replaced by L or L∗ (Eq. (2.85)).
Note, however, that L∗ depends on the dipole moment and thus evolves over long
time periods due to the slow, secular, variation of the geomagnetic field. This can be
seen in radiation belt data from the lifetime of long-lived satellites, e.g., SAMPEX,
which returned data from almost two full solar cycles 1992–2012. For this reason
the coordinates {μ,K,Φ} may be recommendable for radiation belt models (see,
e.g., Schulz 1996). In studies of individual events the triplet {μ,K,L∗} is fully
appropriate.

The phase space density (PSD) f (μ,K,L∗) is a powerful and widely used tool
in studies of particle acceleration and transport processes, in evaluation of magnetic
field models and also in cross-calibration of instruments. However, its accurate
determination from particle observations is far from trivial (see, e.g., Green and
Kivelson 2004; Morley et al. 2013). Incompletely observed fluxes, spatio-temporal



82 3 From Charged Particles to Plasma Physics

limitations of observations and inaccuracies of magnetic field models all contribute
to error bars and call for caution in the interpretation of the calculated PSDs. Of the
invariant coordinates only μ can readily be determined from in situ data, whereas
the calculation of K and L∗ requires the use of a magnetic field model.

From the observed flux as a function of kinetic energy, pitch angle, position
and time j (W, α, r, t) the phase space density f (μ,K,L∗, t) can be determined
through the following procedure:

1. The observed flux shall first be converted to the PSD as a function of {W,α, r, t}
as discussed in the derivation of Eq. (3.52)

f (W, α, r, t) = j (W, α, r, t)
p2 , (3.63)

where p is the relativistic momentum (A.16)

p2 = (W 2 + 2mc2W)/c2 .

2. The next step is to determine K(α, r, t). Using a magnetic field model the
pitch angles can be given as α(K, r, t). Here the accuracy of the applied model
becomes critical. After this step the PSD can be transformed to f (W,K, r, t).

3. The relativistic magnetic moment can be written as a function of the pitch angle
α(K) as

μ = p2 sin2 α(K)

2mB
, (3.64)

from which the kinetic energy can be derived as a function of μ and K using
(A.16). The PSD is now expressed as f (μ,K, r, t).

4. The last step is to replace r by L∗. The magnetic moment and K already contain
the information of gyro and bounce phase averaged position of the particle. Thus
the only missing piece of information is the drift shell. Again a magnetic field
model is needed to calculate the drift path of the particle around the Earth and
the enclosed magnetic flux Φ, from which L∗ is obtained as L∗ = 2πk0/(ΦRE).

In this procedure observational inaccuracies and deviations of the model mag-
netic field from the actual field are propagated from one step to the next, which
makes it difficult to estimate the error bars in the phase space density. Matching
phase space densities calculated from measurements of inter-calibrated instruments
with sufficient energy and pitch angle resolution and coverage, the errors due to
the used magnetic field can be estimated. Using observations of the two Van Allen
Probes during several L-shell conjunctions on 8–9 October 2012 Reeves et al.
(2013) concluded (in the supplementary material of their article) that most of the
PSD values were within a factor of 1.4 and all values matched better than a factor of
2. Furthermore, Morley et al. (2013) found that, of the several models they tested,
the TS04 model (Tsyganenko and Sitnov 2005) captured the inner magnetospheric
configuration best in the phase space matching procedure.
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Chapter 4
Plasma Waves in the Inner
Magnetosphere

Understanding the role of plasma waves, extending from magnetohydrodynamic
(MHD) waves at ultra-low-frequency (ULF) oscillations in the millihertz range to
very-low-frequency (VLF) whistler-mode emissions at frequencies of a few kHz, is
necessary in studies of sources and losses of radiation belt particles. In order to make
this theoretically heavy part of the book accessible to a reader, who is not familiar
with wave–particle interactions, we have divided the treatise into three chapters. In
the present chapter we introduce the most important wave modes that are critical to
the dynamics of radiation belts. The drivers of these waves are discussed in Chap. 5
and the roles of the wave modes as sources and losses of radiation belt particles are
dealt with in Chap. 6.

Basic plasma wave concepts such as dispersion equation, wave vector, index
of refraction, phase and group velocities, etc., are summarized in Appendices A.2
and A.3.

4.1 Wave Environment of Radiation Belts

We begin with ULF waves. They can be observed directly in space and as geo-
magnetic pulsations on the ground. The ground-based observations are particularly
useful when local space observations are not available or the low frequency of the
waves makes them difficult to identify by using instruments onboard fast moving
satellites. Ground-based magnetometers can also capture ULF waves more globally
through the wide longitudinal and latitudinal coverage of magnetometer stations.
On the other hand, not all ULF wave modes reach the ground and those that do so
may become distorted in the ionosphere.

In studies of geomagnetic pulsations the ULF waves are traditionally grouped as
irregular (Pi) and continuous (Pc) pulsations and further according to the observed

© The Author(s) 2022
H. E. J. Koskinen, E. K. J. Kilpua, Physics of Earth’s Radiation Belts,
Astronomy and Astrophysics Library, https://doi.org/10.1007/978-3-030-82167-8_4

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82167-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-82167-8_4


86 4 Plasma Waves in the Inner Magnetosphere

Table 4.1 Periods and frequencies of Pc1–Pc5 and Pi1 and Pi2 pulsations (for further details, see
Jacobs et al. 1964)

Pc1 Pc2 Pc3 Pc4 Pc5 Pi1 Pi2

Period (s) 0.2–5 5–10 10–45 45–150 150–600 1–40 40–50

Freq. (Hz) 5–0.2 0.2–0.1 0.1–0.02 0.02–0.007 0.007–0.0017 1–0.025 0.025–0.007

Fig. 4.1 Schematic map of the equatorial occurrence of the wave modes that are most important
to the radiation belt electrons. Note that the occurrence of different modes varies depending on the
magnetospheric activity and availability of free energy to drive the waves, and, e.g., chorus waves
and EMIC waves can be observed at all local times, although less frequently than in the domains
indicated here. More detailed empirical maps are presented in Chap. 5

periods. Table 4.1 summarizes the pulsation periods most frequently encountered in
magnetospheric physics.

In the radiation belt context the most important ULF waves have frequencies
in the ranges of Pc1, Pc4, and Pc5 pulsations. Pc4 and Pc5 waves are global-
scale magnetohydrodynamic waves (Sect. 4.4). Their role is particularly important
in radial diffusion and transport of radiation belt electrons (Chap. 6). The Pc1 range
includes electromagnetic ion cyclotron (EMIC) waves, also known as Alfvén ion
cyclotron waves, whose frequencies are below the local ion gyro frequency but
higher than those of Pc4 and Pc5 waves. The dispersion equation of EMIC waves
can be found by solving the cold plasma dispersion equation (Sect. 4.3), although
determining their growth and decay rates requires calculation based on Vlasov
theory. EMIC waves play an important role in the ring current and in the loss of
ultra-relativistic radiation belt electrons.

Figure 4.1 illustrates the most common equatorial domains of waves whose
interactions with charged particles can lead to acceleration, transport and loss of
radiation belt electrons. EMIC waves are predominantly observed in the afternoon
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sector close to the plasmapause and beyond. The next wave mode in the order
of increasing frequency is the equatorial magnetosonic noise, observed from a
few Hz to a few hundreds of Hz. Magnetosonic noise is found both inside and
outside the dayside plasmapause. The plasmaspheric hiss can be found all over the
plasmasphere with highest occurrence rates on the dayside as indicated in Fig. 4.1.
The frequency of hiss emissions extends to several kHz. However, their interaction
with radiation belt electrons is most efficient at frequencies below 100 Hz. The
highest-frequency waves in Fig. 4.1 are the VLF whistler-mode chorus emissions
from about 0.5 kHz to 10 kHz. They are observed outside the plasmasphere, most
commonly from the dawn sector to the dayside.

4.2 Waves in Vlasov Description

The basic characteristics of the most important wave modes in radiation belt
physics can be found from reduced plasma descriptions, such as cold plasma the-
ory (EMIC, whistler-mode chorus, plasmaspheric hiss) or magnetohydrodynamics
(ULF waves). However, these theories are not sufficient to describe how the waves
are driven nor how the waves accelerate, scatter and transport plasma particles. To
understand the source and loss mechanisms of energetic particles in radiation belts a
more detailed treatment is needed. For this reason we start our discussion of plasma
waves from the elements of Vlasov theory and move thereafter to the cold plasma
and MHD descriptions.

4.2.1 Landau’s Solution of the Vlasov Equation

The Vlasov equation for particle species α (3.14)

∂fα

∂t
+ v · ∂fα

∂r
+ qα

mα

(E + v × B) · ∂fα

∂v
= 0

is not easy to solve. It has to be done under the constraint that the electromagnetic
field fulfils Maxwell’s equations, whose source terms (ρ, J) are determined by the
distribution function, which, in turn, evolves according to the Vlasov equation.
When looking for analytical solutions the background plasma and magnetic field
must in practice be assumed homogeneous. In space physics this is a problem
at various boundary layers, where the wavelengths become comparable to the
thickness of the boundary. Furthermore, the force term in the Vlasov equation
is nonlinear and the Vlasov equation can be solved analytically only for small
perturbations when linearization is possible. This is sometimes a serious limitation
in radiation belts where the wave amplitudes are known to grow to the nonlinear
regime as will be discussed in the subsequent chapters.
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We start by writing the distribution function for plasma species α and the
electromagnetic field as sums of equilibrium solutions (subscript 0) and small
perturbations (subscript 1)

fα = fα0 + fα1

E = E0 + E1

B = B0 + B1

and linearize the Vlasov equation by considering only the first-order terms in
perturbations. The problem still remains difficult. For example, the general lin-
earized solution for homogeneous plasma in a homogeneous background magnetic
field was not presented until late 1950s by Bernstein (1958). Inclusion of spatial
inhomogeneities rapidly leads to problems that require numerical methods.

Lev Landau (1946) found the solution to the Vlasov equation in the absence
of background fields. At the first sight, this may seem irrelevant in the context
of radiation belts where particle dynamics is controlled by the magnetospheric
magnetic field. However, the wave–particle interactions described by Landau’s
solution are important also in magnetized plasma and lay the foundation for the
transfer of energy from plasma waves to charged particles, and vice versa.

Let us consider homogeneous plasma without ambient electromagnetic fields
(E0 = B0 = 0) in the electrostatic approximation, in which the electric field
perturbation is given as the gradient of a scalar potential E1 = −∇ϕ1 and the
magnetic field perturbation B1 = 0. The linearized Vlasov equation is now

∂fα1

∂t
+ v · ∂fα1

∂r
− qα

mα

∂ϕ1

∂r
· ∂fα0

∂v
= 0 , (4.1)

where

∇2ϕ1 = − 1

ε0

∑
α

nαqα

∫
fα1 d3v . (4.2)

Here it is convenient to normalize the distribution function to 1. As we assume the
plasma being homogeneous, the constant background density nα has in (4.2) been
moved outside the integral.

Vlasov tried to solve these equations at the end of the 1930s using Fourier
transformations in space and time. He ended up with the integral

∫ ∞

−∞
∂fα0/∂v

ω − kv
dv ,

which has a singularity along the path of integration. Vlasov did not find the way
how to deal with the singularity.
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Landau realized that, because the perturbation must begin at some point in time,
the problem should be treated as an initial value problem and, instead of a Fourier
transform, a Laplace transform is to be applied in the time domain. In this approach
the initial perturbations turned out to be transients that fade away with time and the
asymptotic solution gives the intrinsic properties of the plasma, i.e., the dispersion
equation between the frequency and the wave number. The Laplace transformation
makes the frequency a complex quantity ω = ωr + iωi , which, when inserted in the
plane wave expression exp(i(k · r − ωt)), leads to a term proportional to exp(ωi t)

that either grows (ωi > 0) or decays (ωi < 0) exponentially as a function of time.
After Fourier transforming in space and Laplace transforming in time the

perturbations fα1 and ϕ1, the asymptotic solution leads to the dispersion equation

K(ω,k) = 0 , (4.3)

where

K(ω,k) = 1 + 1

ε0

∑
α

nαq2
α

mα

1

k2

∫
k · ∂fα0/∂v
ω − k · v d3v . (4.4)

K is called the dielectric function because it describes the dielectric behavior of
the plasma, i.e., it formally relates the electric field to the electric displacement
D = Kε0E . Now the frequency is ω = ip, where p is the coordinate in Laplace
transformed time domain exp(−pt).

Because K(ω,k) contains the information of the relation between frequency and
wave vector, we do not usually need to make the inverse transformations back
to the (t, r)-space. However, it is important to know, how the inverse Laplace
transformation is to be done in order to correctly treat the pole in (4.4). This is a
non-trivial exercise in complex integration. The procedure can be found in advanced
plasma physics textbooks (e.g., Koskinen 2011). Here we skip the technical details.

Non-magnetized homogeneous plasma is essentially one-dimensional. We can
simplify the notation by selecting one of the coordinate axes in the direction of k
and write the one-dimensional distribution function as

Fα0(u) ≡
∫

fα0(v) δ

(
u − k · v

|k|
)

d3v , (4.5)

where δ(x) is Dirac’s delta.
Careful analysis of the inverse Laplace transform indicates that the integral in

(4.4) must be calculated along a contour that is closed in the upper half of the
complex plane and passes below the pole. The integration path is called the Landau
contour, denoted by

∫
L

, and the dispersion equation is

K(ω, k) ≡ 1 −
∑
α

ω2
pα

k2

∫
L

∂Fα0(u)/∂u

u − ω/|k| du = 0 . (4.6)
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The pole in the integral leads to a complex solution of (4.6)

ω(k) = ωr(k) + iωi(k) . (4.7)

If ωi < 0, the electrostatic potential ϕ1 is damped and the distribution function is
stable. If ωi > 0, ϕ1 grows corresponding to an instability.

Recall that this analysis is done by assuming small perturbations and the result is
valid at the asymptotic limit. Consequently, the solution is valid when |ωi |  |ωr |.
Such solutions are called normal modes. Larger |ωi | leads either to an overdamped
wave or to a perturbation growing to the nonlinear regime.

4.2.2 Landau Damping of the Langmuir Wave

The Landau integration can be performed analytically for some specific distribution
functions only. Already the Maxwellian distribution leads to technical complica-
tions.

Assume again E0 = B0 = 0 and consider the one-dimensional Maxwellian

Fα0(u) =
√

mα

2πkBTα

exp(−u2/v2
th,α) , (4.8)

where the thermal speed vth,α is defined as

vth,α =
√

2kBTα

mα

. (4.9)

A difficulty, although manageable, with the Landau contour is the calculation of the
closure of the integration path of

∫
∂Fα0/∂u

u − ω/|k| du ∝
∫

uFα0

u − ω/|k| du

in the complex plane when u → ∞. The result is commonly expressed in terms of
the plasma dispersion function

Z(ζ ) = 1√
π

∞∫
−∞

exp(−x2)

x − ζ
dx ; Im(ζ ) > 0 (4.10)

and its derivatives. Z(ζ ) is related to the error function of mathematics and must, in
practise, be computed numerically.
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Considering the electron oscillations only, similar to the case of cold plasma
oscillation (Sect. 3.1.2) but assuming now a finite temperature, the dispersion
equation turns out to be

1 − ω2
pe

k2v2
th,e

Z′
(

ω

kvth,e

)
= 0 , (4.11)

where Z′ denotes the derivative of the plasma dispersion function with respect to its
argument.

For normal modes (|ωi |  ωr ) the dispersion equation can be expanded around
ω = ωr as

1 −
∑
α

ω2
pα

k2

(
1 + iωi

∂

∂ωi

)[
P
∫

∂Fα0/∂u

u − ωr/|k| du + π i

(
∂Fα0

∂u

)
u=ωr/|k|

]
= 0 .

(4.12)

Here P indicates the Cauchy principal value. The second term in the brackets
comes from the residue at the pole. Because the pole in this case is on the real
axis, the residue is multiplied by π i instead of 2π i. Using this expression we can
find solutions for the dispersion equation at long and short wavelengths. These
correspond to series expansions of the dispersion function Z for large and small
arguments, respectively. At intermediate wavelengths numerical computation of Z
cannot be avoided.

The most fundamental normal mode is the propagating variant of the fundamen-
tal plasma oscillation (Sect. 3.1.2), known as the Langmuir wave. It can be found as
the long wavelength (ω/k � vth) solution of (4.12). At this limit

− P
∫

∂Fα0/∂u

u − ωr/|k| du =
∫

∂Fα0

∂u

(
1

ω/|k| + u

(ω/|k|)2 + u2

(ω/|k|)3 + ...

)
du .

(4.13)

By using this expansion, considering electron dynamics only, and inserting a
Maxwellian electron distribution function, we find the dispersion equation for the
Langmuir wave. The real part of the frequency is

ωr ≈ ωpe(1 + 3k2λ2
De)

1/2 ≈ ωpe

(
1 + 3

2
k2λ2

De

)
(4.14)

and the imaginary part

ωi ≈ −
√

π

8

ωpe

|k3λ3
De|

exp

(
− 1

2k2λ2
De

− 3

2

)
. (4.15)
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The finite temperature of the Maxwellian distribution makes the standing cold
plasma oscillation to propagate. Furthermore, the negative imaginary part of the
frequency indicates that the wave is damped. This phenomenon is known as Landau
damping.

Landau damping is not limited to electrostatic waves. As will be discussed
in Chap. 6, it is also important in the context of electromagnetic waves causing
resonant scattering of electrons with pitch angles close to 90◦.

4.2.3 Physical Interpretation of Landau Damping

Landau’s solution was met with scepticism until it was experimentally verified in
laboratory experiments in the 1960s (Malmberg and Wharton 1964). The problem
was that the Vlasov equation conserves entropy, whereas the Landau solution does
not seem to do so. The electric field of the Langmuir wave interacts with electrons
accelerating those whose velocity is slightly less than the phase velocity of the
wave, and decelerating those that move a little faster. In a Maxwellian distribution
∂f/∂v < 0, meaning that there are more slower than faster electrons around the
phase velocity (Fig. 4.2). Figuratively speaking the wave forces the particles near
the phase velocity to “glide down” along the slope of the distribution function until
the population is warm enough to damp the oscillation below the observable level.
Thus, there is a net energy transfer from the wave to the particles.

Although Landau damping looks like a dissipative process, the entropy is
conserved in Vlasov theory and no information must be lost from the combined
system consisting of both the distribution function and the electrostatic potential.
The apparent contradiction can be resolved by carefully considering what happens
to the distribution function in the damping process (for a detailed discussion, see,

Fig. 4.2 In a Maxwellian plasma ∂f/∂v < 0 and there are more particles that are accelerated by
the Langmuir wave in the vicinity of the phase velocity vph than those that lose energy to the wave.
Thus the wave is damped and the electron population is heated
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e.g., Krall and Trivelpiece 1973). At the time-asymptotic limit an extra term appears
to the distribution function in the Fourier space

fαk = f̂αb exp(−ik · vt) +
∑
ωk

f̂αk exp(−iωkt) , (4.16)

where ωk are the solutions of the dispersion equation and f̂αb and f̂αk are time-
independent amplitudes. The terms in the sum over ωk are damped at the same
rate as the perturbed potential ϕk(t). In the first term on the RHS of (4.16) the
subscript b stands for ballistic. The ballistic term is a consequence of the Liouville
theorem, according to which the Vlasov equation conserves entropy. As the system
is deterministic, every particle “remembers” its initial perturbation wherever it
moves in the phase space.

When t increases, the ballistic term becomes increasingly oscillatory in the
velocity space and its contribution to ϕk(t) behaves at the limit t → ∞ as

k2ϕk = 1

ε0

∑
α

qαnα

∫
f̂αb exp(−ik · vt)d3v → 0 . (4.17)

That is, at the time-asymptotic limit the ballistic terms of each particle species
contain the information of the initial perturbation but they do not contribute to the
observable electric field.

The existence of ballistic terms leads to an observable nonlinear phenomenon
called the Landau echo. Assume that an initial perturbation took place at time t1
and its spectrum was narrow near wave number k1. Wait until the perturbation has
been damped below the observable limit and only the ballistic term superposed on
the equilibrium distribution remains. Then launch another narrow-band wave near
k2 at time t2 and wait until it also is damped. At time t = t3 defined by

k1(t3 − t1) − k2(t3 − t2) = 0 (4.18)

the oscillations in the ballistic terms interfere positively. This beating of the ballistic
terms of the first two perturbations produces a new observable fluctuation, which is
the Landau echo. Also the echo is transient because the condition (4.18) is satisfied
only for a short while and Landau damping acts on this fluctuation as well. The
effect has been verified in laboratories and shows that the Landau damping does not
violate the conservation of entropy in the timescale shorter than the collisional time.

As collisional timescales in tenuous space plasmas often are very long compared
to the relevant timescales of interesting plasma phenomena, the existence of Landau
echoes indicates that even in the case of small-amplitude perturbations there can be
nonlinear mixing of wave modes at the microscopic level. This is one viewpoint to
plasma turbulence.
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4.2.4 Solution of the Vlasov Equation in Magnetized Plasma

Magnetospheric plasma is embedded in a background magnetic field and we need
to look for a more general description including the background fields E0(r, t) and
B0(r, t). The linearized Vlasov equation is written as

[
∂

∂t
+ v · ∂

∂r
+ qα

mα

(E0 + v × B0) · ∂

∂v

]
fα1 = − qα

mα

(E1 + v × B1) · ∂fα0

∂v
.

(4.19)

This is possible to solve by employing the method of characteristics, which can
be described as “integration over unperturbed orbits”. Define new variables (r′, v′,
t ′) as

dr′

dt ′
= v′ ; dv′

dt ′
= qα

mα

[
E0(r′, t ′) + v′ × B0(r′, t ′)

]
, (4.20)

where the acceleration is determined by the background fields and the boundary
conditions are

r′(t ′ = t) = r

v′(t ′ = t) = v . (4.21)

Consider fα1(r′, v′, t ′) and use (4.19) to calculate its total time derivative

dfα1(r′, v′, t ′)
dt ′

= ∂fα1(r′, v′, t ′)
∂t ′

+ dr′

dt ′
· ∂fα1(r′, v′, t ′)

∂r′ + dv′

dt ′
· ∂fα1(r′, v′, t ′)

∂v′

= − qα

mα

[
E1(r′, t ′) + v′ × B1(r′, t ′)

] · ∂fα0(r′, v′)
∂v′ . (4.22)

The boundary conditions (4.21) imply that fα1(r′, v′, t ′) = fα1(r, v, t) at time t ′ =
t . Thus the solution of (4.22) at t ′ = t is a solution of the Vlasov equation. The point
of this procedure is that (4.22) can be calculated by a direct integration because its
LHS is an exact differential. The formal solution is

fα1(r, v, t) = − qα

mα

t∫
−∞

[
E1(r′, t ′) + v′ × B1(r′, t ′)

] · ∂fα0(r′, v′)
∂v′ dt ′

+ fα1(r′(−∞), v′(−∞), t ′(−∞)) . (4.23)

The procedure can be interpreted in the following way: The perturbation of the
distribution function fα1 has been found by integrating the Vlasov equation from
−∞ to t along the path in the (r, v)-space that at each individual time coincides
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with the orbit of a charged particle in the background fields E0 and B0. This, of
course, requires that the deviation from the background orbit at each step in the
integration is small. Consequently, the method is limited to linear perturbations.

From fα1 we can calculate nα1(r, t) and Vα1(r, t) and insert these in Maxwell’s
equations

∇ × E1 = −∂B1

∂t
(4.24)

∇ · E1 = 1

ε0

∑
α

qαnα1 (4.25)

∇ × B1 = 1

c2

∂E1

∂t
+ μ0

∑
α

qα(nαVα)1 . (4.26)

This set of equations can now (in principle) be solved as an initial value problem
in the same way as the Landau solution. Accepting that the Landau contour is the
correct way to deal with the resonant integrals, assuming that the waves are plane
waves E1(r, t) = Ekω exp(ik ·r− iωt), and fα1(r′, v′, t → −∞) → 0, the growing
solutions (Im(ω) > 0) are found to be

fαk = − qα

mα

0∫
−∞

(Ekω + v′ × Bkω) · ∂fα0(v′)
∂v′ exp[i(k · R − ωτ)] dτ , (4.27)

where τ = t ′ − t , R = r′ − r. The damped solutions (Im(ω) < 0) are found by
analytic continuation of fαk to the lower half-plane. By inserting this into Maxwell’s
equations in the (ω,k) space and eliminating Bkω we get the wave equation

K · E = 0 . (4.28)

Now the dielectric function is the dielectric tensor or dispersion tensor K. It is
even in a homogeneous background magnetic field a complicated function. Let us
start by considering the field-free isotropic case (E0 = B0 = 0 and f0 = f0(v

2)).
Define Fα0(u) = ∫

fα0 δ(u − k · v/|k|) d3v and denote the component of the wave
electric field in the direction of wave propagation by Ek = (k · E)/|k| and the
transverse component by E⊥ = (k × E)/|k| . The wave equation now becomes

⎡
⎣K⊥ 0 0

0 K⊥ 0
0 0 Kk

⎤
⎦
⎡
⎣E⊥1

E⊥2

Ek

⎤
⎦ = 0 , (4.29)
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where

K⊥ = 1 − k2c2

ω2 −
∑
α

ω2
pα

ω

∫
Fα0

ω − |k|u du (4.30)

Kk = 1 +
∑
α

ω2
pα

ω

∫
L

Fα0/∂u

ω/|k| − u
du . (4.31)

These give

electrostatic modes : Kk = 0 (E⊥ = 0)

electromagnetic modes : K⊥ = 0 (Ek = 0) .

The electrostatic solution is Landau’s solution familiar from above. The dispersion
equation for the electromagnetic modes is

ω2 = k2c2 +
∑
α

ω2
pα

∞∫
−∞

ωFα0

ω − |k|u du . (4.32)

This has propagating solutions if ω � kvth,e and we find the electromagnetic wave
in non-magnetized cold plasma

ω2 ≈ k2c2 + ω2
pe . (4.33)

The propagation is limited to frequencies higher than ωpe.
Include next a homogeneous background magnetic field B0 = B0ez , but keep the

background electric field E0 zero. Assume that the background particle distribution
function is gyrotropic but may be anisotropic fα0 = fα0(v

2⊥, v‖). Already in this
very symmetric configuration the derivation of the dielectric tensor is a tedious
procedure. A lengthy calculation, first presented by Bernstein (1958), leads to the
dielectric tensor in the form

K(ω,k) =
(

1 −
∑
α

ω2
pα

ω2

)
I −

∑
α

∞∑
n=−∞

2πω2
pα

nα0ω2 × (4.34)

∞∫
0

∞∫
−∞

v⊥dv⊥dv‖
(

k‖
∂fα0

∂v‖
+ nωcα

v⊥
∂fα0

∂v⊥

)
Snα(v‖, v⊥)

k‖v‖ + nωcα − ω
.
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I is the unit tensor and the tensor Snα is

Snα(v‖, v⊥) =

⎡
⎢⎢⎢⎢⎢⎣

n2ω2
cα

k2⊥
J 2

n

inv⊥ωcα

k⊥
JnJ

′
n

nv‖ωcα

k⊥
J 2

n

− inv⊥ωcα

k⊥
JnJ

′
n v2⊥J ′2

n −iv‖v⊥JnJ
′
n

nv‖ωcα

k⊥
J 2

n iv‖v⊥JnJ
′
n v2‖J 2

n

⎤
⎥⎥⎥⎥⎥⎦

. (4.35)

Here Jn are the ordinary Bessel functions of the first kind with the argument
k⊥v⊥/ωcα , and J ′

n = dJn/d(k⊥v⊥/ωcα) .
Finite B0 makes the plasma behavior anisotropic. The temperature may now

be different in parallel and perpendicular directions as, e.g., in the case of a bi-
Maxwellian distribution

fα0 = mα

2πkBTα⊥

√
mα

2πkBTα‖
exp

[
− mα

2kB

(
v2⊥
Tα⊥

+ v2‖
Tα‖

)]
. (4.36)

When this is inserted into the elements of K, the resonant integrals in the direction
of v‖ can be expressed in terms of the plasma dispersion function Z (4.10).

The wave modes are the non-trivial solutions of

K · E = 0 . (4.37)

The mode structure is now more complex than in non-magnetized plasma:

• The distinction between electrostatic and electromagnetic modes is no more
exact; there still are electrostatic modes fulfilling E ‖ k as an approximation
but also the electromagnetic modes may have an electric field component along
k.

• The Bessel functions introduce harmonic mode structure organized according to
ω = nωcα for each particle species α.

• The Landau resonance ω = k · v of the isotropic plasma is replaced by

ω − nωcα = k‖v‖ . (4.38)

Thus only the velocity component along B0 is associated with Landau damping
(n = 0) and only for waves with k‖ �= 0 .

Parallel Propagation

Let us first look at the solutions for wave modes propagating parallel to the
background magnetic field (k⊥ = 0). At the lowest frequencies (ω  ωci) we
find the parallel propagating Alfvén wave

ωr = k‖vA√
1 + v2

A/c2
, (4.39)
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where vA = B0/
√

ρmμ0 is the Alfvén speed. This is an MHD mode to be discussed
further in Sect. 4.4. Note that (4.39) contains a “cold plasma correction” (v2

A/c2)
in the denominator, which is not found in MHD. This due to the inclusion of the
displacement current into Ampère’s law in Vlasov and cold plasma descriptions, in
contrast to standard MHD. When the Vlasov equation is solved together with the
full set of Maxwell’s equations, the solutions include the cold plasma and MHD
approximations as limiting cases.

In Vlasov theory Alfvén waves are damped, which is not found in ideal MHD.
The damping rate is very small at low frequencies. When ω → ωci , the mode
approaches the ion gyro resonance (see Fig. 4.4 in the discussion of cold plasma
waves, Sect. 4.3), and the damping rate increases. At this limit the mode is the left-
hand (L) circularly polarized electromagnetic ion cyclotron (EMIC) wave, which
is damped not only by the resonant ions but also by relativistic electrons with
sufficiently large Lorentz factor γ and Doppler shift k‖v‖ of the frequency. This is an
important loss mechanism of ultra-relativistic radiation belt electrons (Sect. 6.5.4).

We return to the right-hand (R) and left-hand (L) circularly polarized electro-
magnetic modes in cold plasma theory (Sect. 4.3), where they can be described in
a more transparent manner. The most important right-hand polarized wave mode
in radiation belts is the whistler mode. Again Vlasov theory is needed to describe
the damping and growth of the whistler-mode waves leading to acceleration and
pitch-angle scattering of radiation belt electrons as discussed in Chap. 6. Near the
electron gyro frequency the whistler mode goes over to the electromagnetic electron
cyclotron wave.

In the linear approximation the parallel propagating electromagnetic waves do
not have harmonic structure. However, if the amplitude grows to nonlinear regime,
the representation of the wave, e.g., as a Fourier series contains higher harmonics.

Perpendicular Propagation

For perpendicular propagation (k‖ = 0) the wave equation reduces to

⎡
⎣Kxx Kxy 0

Kyx Kyy 0
0 0 Kzz

⎤
⎦ ·
⎡
⎣Ex

Ey

Ez

⎤
⎦ = 0 , (4.40)

where the z-axis is along the background magnetic field.
Assuming an isotropic background distribution function one component of the

dispersion equation is

Kzz = 1 − k2c2

ω2 − 2π

ω

∑
α

∑
n

ω2
pα

∞∫
−∞

dv‖
∞∫

0

J 2
n fα0v⊥

ω − nωcα

dv⊥ = 0 . (4.41)
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One solution of this equation is the so-called ordinary mode (O-mode), which is
also found in cold plasma approximation. Kzz = 0 furthermore gives a series of
modes with narrow bands slightly above the harmonics of the cyclotron frequency

ω = nωcα

{
1 + O

[
ω2

pα

k2c2 (krLα)2n

]}
, (4.42)

where rLα is the gyro radius of species α and O indicates terms of the order of
its argument, in this case small as compared to 1. These modes are electrostatic
cyclotron waves. Both electrons and all ion species have their own families of
electrostatic cyclotron modes.

The remaining perpendicular propagating modes are found from the determinant

∣∣∣∣ Kxx Kxy

−Kxy Kyy

∣∣∣∣ = 0 . (4.43)

This equation covers the electromagnetic modes for which |E · k|  |E × k|. They
are called extraordinary modes (X-modes), which are also found in cold plasma
theory.

At frequencies below the cold plasma lower hybrid resonance frequency ωLHR

(defined by Eq. 4.70 below) the X-mode is often called the magnetosonic mode.
It is an extension of the perpendicular propagating magnetosonic mode of MHD
(Sect. 4.4) from frequencies below the ion gyro frequency to higher frequencies.
In the finite-temperature Vlasov theory the X-mode has quasi-resonances, where
the group velocity of the wave (A.28) ∂ω/∂k → 0, at the multiples of the ion gyro
frequency nωci for n ≥ 1 up to ωLHR . This gives to the X-mode wave an observable
banded structure, an example of which is shown in Fig. 5.14. These bands were first
identified in Bernstein’s dielectric tensor (4.34) and they are, consequently, known
as Bernstein modes.

Another set of Bernstein-mode solutions of (4.43) is found at short wavelengths.
These modes are quasi-electrostatic (|E · k| � |E × k|) and they are found both
for electrons and all ion species. The exactly perpendicular modes are not Landau
damped. If the modes have finite k‖, they experience cyclotron damping when
n �= 0.

Propagation to Arbitrary Directions

A convenient way to illustrate the wave solutions at arbitrary directions of the
wave vector ω = ω(k‖, k⊥) is to represent them as dispersion surfaces in three-
dimensional (ω, k‖, k⊥)-space. An example of dispersion surfaces is given in
Fig. 4.3. The surface has been calculated by solving Eq. (4.37) for plasma param-
eters corresponding to the inner magnetosphere slightly outside the plasmapause
using the numerical dispersion equation solver WHAMP (Waves in homogeneous
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Fig. 4.3 The dispersion surface that contains the parallel propagating right-hand polarized
whistler mode and perpendicular propagating X-mode. The frequency on the vertical axis is
normalized to the local proton gyro frequency and the parallel and perpendicular wave numbers
are normalized to the proton gyro radius (Figure courtesy: Yann Pfau-Kempf)

anisotropic magnetized plasmas) originally written by Kjell Rönnmark.1 Figure 4.3
illustrates how the parallel propagating right-hand polarized whistler mode joins the
perpendicular propagating X-mode when the direction of the wave vector is rotated
from parallel toward perpendicular direction, For further examples of dispersion
surfaces, see, e.g., André (1985) or Koskinen (2011).

The growth/damping rate ωi varies from one point to another on a dispersion
surface and the solution may in some domains of the surfaces be strongly damped.
Depending on the local plasma parameters and characteristics of the particle
populations, there may be free energy to drive the instabilities leading to growing
solutions of the dispersion equation. These are discussed using practical examples
in Chap. 5.

1 WHAMP is available from GitHub: https://github.com/irfu/whamp.

https://github.com/irfu/whamp
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4.3 Cold Plasma Waves

While the Vlasov theory is necessary for the treatment of the growth and damping
of plasma waves, the real part of the dispersion equation for several of the most
important linear wave modes in radiation belt physics can be derived from the much
simpler cold plasma theory.

4.3.1 Dispersion Equation for Cold Plasma Waves in
Magnetized Plasma

From Maxwell’s equations and Ohm’s law J = σ ·E, where σ is generally a tensor,
it is straightforward to derive a wave equation in the form

k × (k × E) + ω2

c2 K · E = 0 , (4.44)

where

K = I + i

ωε0
σ (4.45)

is the dielectric tensor and I the unit tensor. K is a dimensionless quantity and we can
relate it to the electric permittivity of the dielectric medium familiar from classical
electrodynamics as

D = ε · E = ε0 K · E . (4.46)

In case of no background fields (E0 = B0 = 0) K reduces to a scalar

K = 1 − ω2
pe

ω2
≡ n2 , (4.47)

i.e., K is the square root of the refractive index n defined in Appendix A (A.24).
The wave equation has the already familiar solutions

k ‖ E ⇒ ω2 = ω2
pe longitudinal standing plasma oscillation

k ⊥ E ⇒ ω2 = k2c2 + ω2
pe electromagnetic wave in plasma

Consider small perturbations B1 to a homogeneous background magnetic field
B0 (B1  B0). In the cold plasma approximation all particles of species α are
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assumed to move at their macroscopic fluid velocity Vα(r, t). Thus the total plasma
current is

J =
∑
α

nαqαVα . (4.48)

Assuming that Vα(r, t) oscillates sinusoidally ∝ exp(−iωt) the first-order
macroscopic equation of motion is

− iωVα = qα(E + Vα × B0) . (4.49)

It is convenient to consider the plane perpendicular to B0 as a complex plane and
use the basis of unit vectors {√1/2(ex + iey),

√
1/2(ex − iey), ez} where B0 ‖ ez.

Denote the components in this basis by integers d = {−1, 1, 0} and express the
plasma and gyro frequencies as

Xα = ω2
pα

ω2 , Yα = sαωcα

ω
. (4.50)

Note that ωcα is an unsigned quantity and the sign of the charge is indicated by sα .
In this basis the components of the current are

Jd,α = iε0ω
Xα

1 − dYα

Ed (4.51)

and the dielectric tensor (4.45) is diagonal

K =

⎡
⎢⎢⎢⎣

1 −∑
α

Xα

1 − Yα

0 0

0 1 −∑
α

Xα

1 + Yα

0

0 0 1 −∑
α Xα

⎤
⎥⎥⎥⎦ . (4.52)

The components of the tensor are denoted by letters R, L and P :

R = 1 −
∑
α

ω2
pα

ω2

(
ω

ω + sαωcα

)
(4.53)

L = 1 −
∑
α

ω2
pα

ω2

(
ω

ω − sαωcα

)
(4.54)

P = 1 −
∑
α

ω2
pα

ω2
. (4.55)

The component R has a singularity when ω = ωce and sα = −1. At this
frequency the wave is in resonance with the gyro motion of the electrons. Thus
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R corresponds to the right-hand circularly polarized wave. Similarly L has a
resonance with positive ions and corresponds to the left-hand circularly polarized
wave. Recall that different from optics, where the handedness is given by the sense
of the rotation of the wave electric field approaching the observer, the left- and right-
handedness in magnetized plasmas correspond to the sense of the gyro motion of
charged particles around the background magnetic field in the frame of reference of
the guiding center. If the observer looks into the direction to which magnetic field
points, the left-hand polarized wave rotates in the same sense as the gyro motion
of positively charged particle. If the observer looks against the magnetic field, the
rotation of the wave appears right-handed.

The component P corresponds to a standing plasma oscillation in the cold
plasma approximation. As discussed in the context of Vlasov theory above, a finite
temperature makes the plasma oscillation a propagating Langmuir wave.

Transforming K back to the {x, y, z}-basis we get

K =
⎡
⎣ S −iD 0

iD S 0
0 0 P

⎤
⎦ , (4.56)

where S = (R + L)/2 and D = (R − L)/2.
The wave equation can be written in terms of the wave normal vector n = ck/ω

as

n × (n × E) + K · E = 0 . (4.57)

Recall that B0 is in the z-direction. Select the x-axis so that n is in the xz-plane. The
angle θ between n and B0 is the wave normal angle (WNA). In these coordinates
the wave equation is

⎡
⎣S − n2 cos2 θ −iD n2 cos θ sin θ

iD S − n2 0
n2 cos θ sin θ 0 P − n2 sin2 θ

⎤
⎦
⎡
⎣Ex

Ey

Ez

⎤
⎦ = 0 . (4.58)

The solutions of the wave equation are the non-trivial roots of the dispersion
equation

An4 − Bn2 + C = 0 , (4.59)

where

A = S sin2 θ + P cos2 θ

B = RL sin2 θ + PS(1 + cos2 θ) (4.60)

C = PRL .
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It is convenient to solve the dispersion equation (4.59) for tan2 θ as

tan2 θ = −P(n2 − R)(n2 − L)

(Sn2 − RL)(n2 − P)
. (4.61)

With this equation it is straightforward to discuss the propagation of the waves
to different directions with respect to the background magnetic field. The modes
propagating in the direction of the magnetic field (θ = 0) and perpendicular to it
(θ = π/2) are called the principal modes

θ = 0 : P = 0, n2 = R, n2 = L

θ = π/2 : n2 = RL/S, n2 = P .

These modes have cut-offs

n2 → 0 (vp → ∞, k → 0, λ → ∞)

P = 0, R = 0, or L = 0

and resonances

n2 → ∞ (vp → 0, k → ∞, λ → 0)

tan2 θ = −P/S (under the condition P �= 0) .

When the wave approaches a region where it has a cut-off (n2 → 0), it cannot
propagate further and is reflected. At a resonance the wave energy is absorbed by
the plasma.

4.3.2 Parallel Propagation (θ = 0)

Figure 4.4 presents the solutions of the cold plasma dispersion equation for parallel
propagation.

The resonance frequency of the right-hand polarized mode

n2
R = R = 1 −

∑
i

ω2
pi

ω(ω + ωci)
− ω2

pe

ω(ω − ωce)
(4.62)

is ω = ωce. The left-hand polarized mode

n2
L = L = 1 −

∑
i

ω2
pi

ω(ω − ωci)
− ω2

pe

ω(ω + ωce)
(4.63)
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Fig. 4.4 Parallel propagation in high plasma density approximation, which is a good approxima-
tion in the radiation belts. The red lines indicate the R-modes and the blue lines the L-modes.
Cut-offs are found where the dispersion curve meets the frequency axis (k = 0) and resonances at
the limit k → ∞

has resonances ω = ωci for each ion species of different masses.
The low-frequency branches of the left- and right-hand modes propagating below

their respective cyclotron frequencies are of particular importance in radiation belt
physics. At the low frequency limit (ω → 0) n2 → c2/v2

A and L- and R-
modes merge to parallel propagating MHD waves at the Alfvén speed vA = ω/k

(Sect. 4.4).
With increasing k the phase velocities of the L- and R-modes become different.

As a linearly polarized wave can be expressed as a sum of left- and right-hand
polarized components, this leads to the Faraday rotation of the polarization of
linearly polarized waves.

Electromagnetic Ion CyclotronWave

The parallel propagating left-hand polarized waves below ωci of each ion species
are the electromagnetic ion cyclotron (EMIC) waves. In the inner magnetosphere
the most important ion species are protons and singly charged helium and oxygen
ions, the last two being of ionospheric origin. Figure 4.5 is an example of
simultaneous observation of hydrogen and helium ion cyclotron waves in the
dayside magnetosphere.
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Fig. 4.5 Multi-band EMIC wave observation by Van Allen Probe A over a period of 30 min on 14
April 2014, in the noon sector (MLT ≈ 11 and L ≈ 5.7). The uppermost panel shows the magnetic
power spectrum in H+ and He+ bands. In the panel the He+ gyro frequency is indicated by the
red line. The middle and lower panels indicate that the waves are circularly polarized (ellipticity
close to 0) and propagating along the magnetic field (small WNA) (From Fu et al. 2018, reprinted
by permission from COSPAR)

Whistler Mode

The R-mode propagating at frequencies between ωci and ωce is known as the
whistler mode. If ωci  ω  ωce the dispersion equation can be approximated
by

k = ωpe

c

√
ω

ωce

(4.64)
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giving the phase and group velocities

vp = ω

k
= c

√
ωce

ωpe

√
ω (4.65)

vg = ∂ω

∂k
= 2c

√
ωce

ωpe

√
ω . (4.66)

The dispersive whistler mode was identified for the first time during the
First World War as descending whistling tones induced into telecommunication
cables in the frequency band around 10 kHz. The origin of the signals was not
understood until Storey (1953) suggested that the waves originated from wide-band
electromagnetic emissions of lightning strokes. A fraction of the wave energy is
ducted along the magnetic field as a whistler wave to the other hemisphere. The
time of arrival depends on the frequency as

t (ω) =
∫

ds

vg

=
∫

ωpe(s)

2c
√

ω ωce(s)
ds ∝ 1√

ω
(4.67)

implying that the higher frequencies arrive before the lower tones, resulting in
the whistling sound when replayed as an audio signal. This explanation was not
accepted immediately because it requires a higher plasma density in the inner
magnetosphere than was known at the time. Storey actually found the plasmasphere,
which has thereafter been thoroughly studied using radio wave propagation experi-
ments and in situ satellite observations.

There are all the time thunderstorms somewhere in the atmosphere and thus
the lightning-generated whistlers are continuously observed in the recordings
of ground-based VLF receivers. To avoid confusion, sometimes also misunder-
standing, it is advisable to dedicate the term “whistler” to the descending-tone
lightning-generated signals and call all right-hand polarized waves in this frequency
range generally “whistler-mode waves”. For example, the man-made VLF signals
from naval communication transmitters, which are known to affect the radiation
belts, do not whistle because they are narrow-band signals from the beginning.
Also the whistler-mode chorus (Sect. 5.2) and plasmaspheric hiss (Sect. 5.3) waves,
which are most important in radiation belt physics, are different from lightning-
generated whistlers. For example, the chorus is composed of rising tones, reflecting
the local nonlinear physics in the inner magnetosphere rather than long-distance
propagation.
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Fig. 4.6 Sketch of perpendicular propagating waves in cold plasma approximation. The red curve
is the O-mode, which is the same as the electromagnetic wave in cold non-magnetized plasma. The
X-mode has three different branches of which the lowermost is the most important in radiation belt
context

4.3.3 Perpendicular Propagation (θ = π/2)

The perpendicular propagating ordinary and extraordinary electromagnetic waves
were already introduced in Vlasov theory (Sect. 4.2.4).2 Figure 4.6 shows their
dispersion curves.

The ordinary (O) mode is the mode whose index of refraction is

n2
O = P = 1 − ω2

pi

ω2
− ω2

pe

ω2
≈ 1 − ω2

pe

ω2
. (4.68)

This is the same as the refractive index of an electromagnetic wave in isotropic
plasma (4.47). Its electric field is linearly polarized in the direction of the back-
ground magnetic field (E ‖ B0). For exactly perpendicular propagation the
dispersion equation does not contain the magnetic field. The mode has a cut-off
at ω = ωpe (Fig. 4.6).

The extraordinary (X) mode is the solution of n2
X = RL/S . With the trivial

approximation ωce � ωci two hybrid resonances are found (Fig. 4.6). The upper
hybrid resonance is

ω2
UHR ≈ ω2

pe + ω2
ce (4.69)

2 The modes are called ordinary and extraordinary for historical reasons although there is nothing
particularly ordinary or extraordinary with them.
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and the lower, written here for one ion species,

ω2
LHR ≈ ω2

ci + ω2
pi

1 + (ω2
pe/ω

2
ce)

≈ ωceωci

(
ω2

pe + ωceωci

ω2
pe + ω2

pi

)
. (4.70)

The upper hybrid resonance can be used to determine the plasma density from
wave observations if there is an independent way to determine the local magnetic
field. The waves propagating close to the lower hybrid resonance frequency are
important because they can resonate with both electrons and ions. In low-density
plasma (ωpe  ωce) ωLHR → ωci . When ωpe > ωce , as is the case close to the
equator within radiation belts, ωLHR ≈ √

ωceωci is a good approximation.
At the limit of low frequency

n2
X → 1 + ω2

pi

ω2
ci

= 1 + c2

v2
A

. (4.71)

This is the cold plasma representation of the MHD magnetosonic mode. In MHD
(Sect. 4.4) its dispersion equation is found to be

ω2

k2 = v2
s + v2

A , (4.72)

where vs is the speed of sound. In cold plasma vs is neglected (→ 0), whereas in
MHD the displacement current is neglected corresponding to the limit c → ∞. In
tenuous space plasmas vA can, however, be a considerable fraction of c. Combining
finite vs and the cold plasma solution the dispersion equation is

ω2

k2
= v2

s + v2
A

1 + v2
A/c2

. (4.73)

For increasing k⊥ the magnetosonic/X-mode branch approaches the lower hybrid
resonance.

4.3.4 Propagation at Arbitrary Wave Normal Angles

The propagation of plasma waves at wave normal angles between 0◦ and 90◦
depends on the local plasma parameters. In Chaps. 5 and 6 we present several
examples of obliquely propagating whistler- and X-mode waves in observations and
numerical analyses. As noted at the end of Sect. 4.2.4 the solutions of the dispersion
equation propagating at arbitrary WNAs can be represent as dispersion surfaces in
three-dimensional (ω, k‖, k⊥)-space.
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Figure 4.3 was an example of the surface containing the parallel and obliquely
propagating right-hand polarized whistler mode and the perpendicular propagating
linearly polarized magnetosonic/X-mode below the lower hybrid resonance fre-
quency. While both the whistler mode and the X-mode are observable at frequencies
below the lower hybrid resonance frequency, they can be distinguished if enough
components of the wave fields are measured to determine the wave polarization.

4.4 Magnetohydrodynamic Waves

The ULF Pc4 and Pc5 waves well below the ion gyro frequency in the magne-
tosphere belong to the family of magnetohydrodynamic or Alfvén waves. Their
wavelengths are comparable to the Earth’s radius and thus the dipole geometry
constrains the modes that can propagate in the inner magnetosphere. As will be
discussed in Chap. 6, these waves play a major role in the diffusive transport of
charged particles in the inner magnetosphere.

4.4.1 Dispersion Equation for Alfvén Waves

We start the discussion by introducing the linearized dispersion equation for Alfvén
waves in a homogeneous ambient magnetic field. Consider a compressible, non-
viscous, perfectly conductive fluid in a magnetic field described by the MHD
equations

∂ρm

∂t
+ ∇ · (ρmV) = 0 (4.74)

ρm

∂V
∂t

+ ρm(V · ∇)V = −∇P + J × B (4.75)

∇P = v2
s ∇ρm (4.76)

∇ × B = μ0J (4.77)

∇ × E = −∂B
∂t

(4.78)

E + V × B = 0 . (4.79)

In Eq. (4.76) we have taken the gradient of the equation of state and introduced the
speed of sound

vs = √
γpP/ρm = √

γpkB/m , (4.80)

where γp is the polytropic index and kB the Boltzmann constant.
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From this set of equations we can eliminate J, E, and P

∂ρm

∂t
+ ∇ · (ρmV) = 0 (4.81)

ρm
∂V
∂t

+ ρm(V · ∇)V = −v2
s ∇ρm + (∇ × B) × B/μ0 (4.82)

∇ × (V × B) = ∂B
∂t

. (4.83)

Assume that in equilibrium the density ρm0 is constant and look for the solution
in the rest frame of the plasma where V = 0. Furthermore, let the background
magnetic field B0 be uniform. By considering small perturbations to the variables

B(r, t) = B0 + B1(r, t) (4.84)

ρm(r, t) = ρm0 + ρm1(r, t) (4.85)

V(r, t) = V1(r, t) (4.86)

we can linearize the equations by picking up the first-order terms

∂ρm1

∂t
+ ρm0(∇ · V1) = 0 (4.87)

ρm0
∂V1

∂t
+ v2

s ∇ρm1 + B0 × (∇ × B1)/μ0 = 0 (4.88)

∂B1

∂t
− ∇ × (V1 × B0) = 0 . (4.89)

From these we find an equation for the velocity perturbation V1

∂2V1

∂t2
− v2

s ∇(∇ · V1) + vA × {∇ × [∇ × (V1 × vA)]} = 0 , (4.90)

where we have introduced the Alfvén velocity as a vector

vA = B0√
μ0ρm0

. (4.91)

By looking for plane wave solutions V1(r, t) = V1 exp[i(k · r − ωt)] we get an
algebraic equation

− ω2V1 + v2
s (k · V1)k − vA × {k × [k × (V1 × vA)]} = 0 . (4.92)



112 4 Plasma Waves in the Inner Magnetosphere

After straightforward vector manipulation this leads to the dispersion equation for
ideal MHD waves

−ω2V1 + (v2
s + v2

A)(k · V1)k +
+(k · vA)[((k · vA)V1 − (vA · V1)k − (k · V1)vA)] = 0 . (4.93)

Parallel Propagation

For k ‖ B0, the dispersion equation reduces to

(k2v2
A − ω2)V1 +

(
v2
s

v2
A

− 1

)
k2(V1 · vA)vA = 0 . (4.94)

This describes two different wave modes. V1 ‖ B0 ‖ k yields the sound wave

ω

k
= vs . (4.95)

The second solution is a linearly polarized transverse wave with V1 ⊥ B0 ‖ k. Now
V1 · vA = 0 and we find the Alfvén wave

ω

k
= vA . (4.96)

The magnetic field of the Alfvén wave is

B1 = − V1

ω/k
B0 . (4.97)

The wave magnetic and electric fields are perpendicular to the background field.
This mode does not perturb the density or pressure but causes shear stress on the
magnetic field (∇ · (BB)/μ0). Consequently, it is also called the shear Alfvén wave.

Parallel propagating linearly polarized waves can be decomposed to left- and
right-handed circularly polarized components. With increasing k the circularly
polarized components of the Alfvén wave split to two branches found in cold plasma
theory: the left-hand polarized electromagnetic ion cyclotron wave approaching the
ion cyclotron frequency from below and the right-hand polarized whistler mode
(Fig. 4.4). Physically, this splitting is due to the decoupling of the electron and ion
motions through the Hall effect (3.41).
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Perpendicular Propagation

Perpendicular propagation (k ⊥ B0) implies k ·vA = 0 , and the dispersion equation
(4.93) reduces to

V1 = (v2
s + v2

A)(k · V1)k/ω2 . (4.98)

Clearly k ‖ V1, and we have found the magnetosonic wave in the MHD
approximation.

ω

k
=
√

v2
s + v2

A . (4.99)

For a plane wave the linearized convection equation (4.89) becomes

ωB1 + k × (V1 × B0) = 0 , (4.100)

which yields the magnetic field of the wave

B1 = V1

ω/k
B0 . (4.101)

The wave magnetic field is in the direction of the background magnetic field B0.
The wave electric field is obtained from the ideal MHD Ohm’s law E1 = −V1 ×B0
and is perpendicular to B0 and we have obtained the same polarization as in the
cold plasma description. In MHD the wave is known as the compressional (or fast)
Alfvén (or MHD) wave.

Propagation at Oblique Angles

To find the dispersion equation at arbitrary wave normal angles insert θ into the
dot products of the dispersion equation. Selecting the z-axis parallel to B0 and the
x-axis so that k is in the xz-plane, the components of the dispersion equation are

V1x(−ω2 + k2v2
A + k2v2

s sin2 θ) + V1z(k
2v2

s sin θ cos θ) = 0 (4.102)

V1y(−ω2 + k2v2
A cos2 θ) = 0 (4.103)

V1x(k
2v2

s sin θ cos θ) + V1z(−ω2 + k2v2
s cos2 θ) = 0 . (4.104)

The y-component yields a linearly polarized mode with the phase velocity

ω

k
= vA cos θ . (4.105)
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This is the extension of the shear Alfvén wave to oblique directions. It does not
propagate perpendicular to the magnetic field, as there ω/k → 0.

The non-trivial solutions of the remaining pair of equations are found by setting
the determinant of the coefficients of V1x and V1z equal to zero

(ω

k

)2 = 1

2
(v2

s + v2
A) ± 1

2
[(v2

s + v2
A)2 − 4v2

s v
2
A cos2 θ ]1/2 . (4.106)

These modes are compressional. The plus sign gives the generalization of the fast
MHD mode. It can propagate to all directions with respect to the background
magnetic field. The magnetic field and density compressions of the fast mode
oscillate in the same phase. The solution with the minus sign is the slow MHD
mode. Its density and magnetic perturbations oscillate in opposite phases. The slow
mode is strongly damped through the Landau mechanism, the calculation of which
requires a kinetic approach.

The discussion above assumes homogeneous magnetic field and isotropic plasma
pressure. The simplest extension of MHD into anisotropic plasma is the double
adiabatic theory (Chew et al. 1956) with separate equations of state for parallel and
perpendicular pressures. This leads to the firehose mode in the direction parallel and
the mirror mode perpendicular to the background magnetic field (see, e.g., Koskinen
2011). The mirror mode is of interest in the inner equatorial magnetosphere with
anisotropic plasma pressure (P⊥ > P‖). Its density and magnetic field oscillate
in opposite phases3 similar to the slow-mode wave. Note that the mirror mode
propagates perpendicular to the background field, whereas the phase velocity of the
slow mode goes to zero when θ → 90◦. The lowest-frequency long-wavelength
ULF oscillations observed in the inhomogeneous magnetosphere can be either
slow-mode or mirror-mode waves (e.g., Southwood and Hughes 1983; Chen and
Hasegawa 1991).

The compressional MHD waves can steepen to shocks. Fast-mode shocks are
ubiquitous in the solar wind. They form when an obstacle moves faster than the
local magnetosonic speed, e.g., in front of planetary magnetospheres or when an
ICME is fast enough relative to the background flow. Also SIRs gradually develop
fast forward and fast reverse shocks, although mostly beyond the Earth orbit.
Compressional shocks hitting the magnetopause can launch ULF waves inside the
magnetosphere (Sect. 5.4).

Slow-mode shocks are strongly damped and thus difficult to observe. In the
magnetosphere they have been found in association with magnetic reconnection
where they have an important role decoupling the ion motion from the electron
plasma flow and accelerating inflowing ions to the outflow velocities.

3 This motivates the name of the mirror mode: The magnetic oscillation forms local magnetic
bottles with increased density in the center of the bottle.
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4.4.2 MHD Pc4–Pc5 ULF Waves

The wavelengths of magnetospheric MHD waves with periods in the Pc4–Pc5 range
(45–600 s, or 1.7–22 mHz) are very long. For example, assuming equatorial Alfvén
speed of 300 km s−1, a Pc5 wave with f = 2 mHz has the wavelength of about
10 RE , which is comparable to the size of the inner magnetosphere. In fact, the
frequency of about 1 mHz is in practice the lowest for which the oscillation can still
be described as a wave in the inner magnetosphere. At such long wavelengths the
assumption of a homogeneous background magnetic field B0 assumed in Sect. 4.4.1
is no more valid, nor can the fluctuations be considered as plane waves. The
solutions to the full set of coupled nonlinear hydromagnetic equations must be
sought using numerical methods. The boundary conditions are usually given at the
magnetopause and in the ionosphere.

The ULF waves in the quasi-dipolar inner magnetosphere retain the mode
structure of the MHD waves in a homogeneous magnetic field: the shear Alfvén
wave with the wave vector along the background magnetic field and the fast
compressional mode wave that can propagate to all directions. Because the Alfvén
speed in the inner magnetosphere is much larger than the sound speed, the phase
speed of the perpendicular propagating fast mode (4.106) can be approximated by
the Alfvén speed vA = B/

√
μ0ρm.

However, the polarization of the ULF waves becomes more complicated and
depends on the background field geometry. In the nearly dipolar inner magneto-
spheric field the electric and magnetic components of the ULF waves are useful to
give in local magnetic field-aligned coordinates. In the literature several different
notations are used. A well-motivated convention is to use the right-handed set of
unit vectors {eν, eφ, eμ}, where eμ is along the background magnetic field line, eφ

is in the azimuthal direction (eastward) and eν = eφ × eμ points radially outward in
the equatorial plane. The electric and magnetic field components in these directions
are often indicated using other subscripts, e.g., {r, a, p} for radial, azimuthal and
parallel.

The wave electric field E1 of the MHD waves is always perpendicular to the
background magnetic field and can thus have only two components δEν and δEφ .
The wave magnetic field B1 is perpendicular to E1 and can point to all directions.
The different polarizations are characterized according to the appearance of the
magnetic field fluctuations. The the wave with the magnetic field in the azimuthal
direction, i.e., B1 = δBφ is called the toroidal mode corresponding to the shear
Alfvén wave. The associated wave electric field must be in the radial direction
E1 = δEν . The poloidal mode, in turn, refers to the fast mode, which can propagate
at all wave normal angles. The perpendicular propagating (compressional) mode has
the wave magnetic field B1 = δBμ and the parallel propagating mode B1 = δBν .
The associated wave electric field is in both cases azimuthal E1 = δEφ . The
observed ULF waves usually contain a mixture of the different polarizations.

To keep the discussion simple, let us consider the different polarizations on the
dipole equator where eν is the radial unit vector er and we can use cylindrical
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coordinates. In the cylindrically symmetric geometry, the total electric field can be
expanded in cylindrical harmonics as

E(r, φ, t) = E0(r, φ) +
∞∑

m=0

δErm sin(mφ ± ωt + ξrm) er

+
∞∑

m=0

δEφm sin(mφ ± ωt + ξφm) eφ . (4.107)

Here E0(r, φ) is the time-independent convection electric field, m is the azimuthal
mode number, δErm are the amplitudes of the toroidal modes and δEφm of the
poloidal modes, and ξrm and ξφm represent their respective phase lags.

Note that the wave field is often expanded in terms of exponential basis functions
exp(i(mφ − ωt)). In such an expansion the azimuthal mode number m is an integer
from −∞ to ∞. Since φ increases eastward, negative m corresponds to a westward
and positive m to an eastward propagating wave phase. In the expansion (4.107) the
opposite propagation directions correspond to the two signs of ±ωt .

The terminology varies in the literature. Often only the division to toroidal
and poloidal modes according to the electric field components is used and the
poloidal mode includes both compressional and non-compressional polarizations.
Sometimes the parallel propagating (non-compressional) poloidal mode is called
the poloidal Alfvén mode to distinguish it from the compressional oscillation.
Furthermore, since the observed oscillation typically has both toroidal and poloidal
electric field components and all three magnetic field components simultaneously,
the combination of toroidal electric field component δEν and compressional mag-
netic field component δBμ is sometimes considered as another compressional mode.
It is, however, a redundant combination of toroidal and compressional polarizations.

Figure 4.7 shows two examples of THEMIS-A satellite observations of Pc5
waves exhibiting all polarizations simultaneously. In both cases the fluctuations took
place following solar wind pressure enhancements. During Event A the spacecraft
was in the post-midnight sector (about 03 MLT) at L ≈ 10, during Event B on
the duskside flank (about 18 MLT) at L ≈ 9. Both events feature clear ULF range
fluctuations with all three polarizations superposed. The amplitude of the toroidal
mode was the largest during both events. This is consistent with the statistical result
of Hudson et al. (2004a), that the Pc5 waves in the dawn and dusk sectors are
preferentially toroidal.

ULF waves with small azimuthal mode number m have a predominantly toroidal
polarization, whereas waves with large m are primarily poloidal. For limiting cases
m = 0 and |m| → ∞, the ideal-MHD solution in a dipole field configuration
yields purely toroidal and purely poloidal modes, respectively. For finite m, different
polarizations are coupled and toroidal and poloidal waves can have both small and
large m.

The division of the ULF waves to toroidal, poloidal and compressional waves is
further complicated by the fact that the magnetic field and density oscillations are
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Fig. 4.7 Magnetic (blue) and electric field (red) components in magnetic field-aligned coordi-
nates. The data have been band-pass filtered to match the observed ULF wave frequencies in the
Pc5 range, 0.9–2.7 mHz (Event A) and 1.8–2.5 mHz (Event B). Here the components are: p is
directed along the background magnetic field, r points (nearly) radially outward and a is directed
azimuthally eastward (From Shen et al. 2015, reprinted by permission from American Geophysical
Union)

often found to be in opposite phases (e.g., Zhang et al. 2019, and references therein)
suggesting that they would be slow-mode waves or, in the case of anisotropic pres-
sure, mirror-mode waves as noted in Sect. 4.4.1. Empirical determination between
these is challenging because the direction and velocity of the wave propagation are
difficult to observe.

The magnetospheric magnetic field lines are connected to the ionosphere where
toroidal Alfvén waves are partially reflected and partially transmitted through the
neutral atmosphere to the ground. This allows for remote observations of mag-
netospheric ULF oscillations using ground-based magnetometers with appropriate
sampling rates. The ground-based measurements provide a wider latitudinal and
longitudinal coverage of a given wave event than single-point space observations.
For example, longitudinally separated magnetometers can be used to determine the
azimuthal wave number (m), provided that their distance is smaller than half of the
azimuthal wavelength of the oscillation. The waves are, however, attenuated when
propagating from the ionosphere to the ground, which obscures their properties.
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Let us assume, for illustration, that the ionosphere is a perfectly conductive
boundary at both ends of the dipole field flux tubes. Such a flux tube is a wave guide
for parallel propagating waves with conductive end plates known in electrodynamics
as a resonance cavity. The perfect conductivity implies that the wave electric field
vanishes at the end plates and thus only selected wavelengths fulfil Maxwell’s
equations. If the length of the field line from one hemisphere to the other is
l, the allowed wavelengths are λ‖ = 2l/n , where n is an integer. Thus the
eigenfrequencies of these field line resonances (FLRs) are

f = nvA

2l
. (4.108)

The lowest frequency (n = 1) corresponds to a half-wave that has maximum
amplitude at the dipole equator, as do the odd harmonics (n = 3, 5, . . . ) as well.
The even harmonics (n = 2, 4, . . . ) in turn have minima at the equator. Having
observations of the magnetic field and plasma density the eigenfrequencies can
be estimated and related to the observed frequency of the oscillation. The 90-
degree time lag between the radial electric component and azimuthal magnetic
component of the toroidal mode in Fig. 4.7 is an indication that the observed toroidal
oscillation was a standing field line resonance, as expected from the theory of
standing electromagnetic waves in resonant cavities.

Another resonance cavity may form for perpendicular propagating waves
between the dayside magnetopause and the near-equatorial ionosphere leading
to standing cavity mode oscillations (CMOs), again with vanishing electric field
at the boundaries. When compressional waves launched externally at the dayside
magnetopause propagate inward, they are attenuated. The cavity modes peak at
resonant L–shells where the frequency matches with the field line resonance of
the toroidal (shear) wave, and the shear mode is amplified at the expense of the
compressional mode (Kivelson and Southwood 1986).

4.5 Summary of Wave Modes

To keep track of the multitude of wave modes in the radiation belts, the most
important wave modes for our treatise are briefly summarized in Table 4.2.
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Table 4.2 Key wave modes in the inner magnetosphere relevant for dynamics of radiation belt
particles, their frequencies, polarization and dominant wave normal angles

Wave mode Frequency Polarization Wave normal angle

Whistler-mode
chorus

0.5–10 kHz
lower band:
0.1 fce–0.5 fce

upper band:
0.5 fce–1.0 fce

RH circular ∼ 0◦ near equator,
more oblique at higher latitudes

Plasmaspheric
hiss

� 100 Hza RH circular ∼ 0◦ near equator,
more oblique at higher latitudes

Magnetosonic From a few Hz
to a few 100 Hz

Linear X ∼ 90◦ confined near equator

EMIC 0.1–5 Hz
H+ band: < fcH+
He+ band: < fcHe+

LH circular H+ band: ∼ 0◦ near equator,
more oblique at higher latitudes;
He+ band: ∼ 30◦ near equator,
more oblique with increasing
latitude and L

Pc4 and Pc5
ULF waves

1.7–22 mHz mixture of
toroidal &
poloidal

from field-aligned toroidal to
perpendicular compressional
oscillations

a The higher-frequency hiss (from 100 Hz to several kHz) has low intensity and is less relevant for
radiation belt dynamics
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Chapter 5
Drivers and Properties of Waves
in the Inner Magnetosphere

How different wave modes are driven, is a central issue in space plasma physics.
A practical problem is that often only indirect evidence of the driver can be
identified in observations. The plasma environment is complex and variable and
already a small difference in background or initial conditions may lead to widely
different observable outcomes. In this chapter we discuss drivers of waves causing
acceleration, transport and loss of radiation belt particles, whereas Chap. 6 discusses
these effects in detail. We note that while this division is motivated in a textbook,
it is somewhat artificial and the growth of the waves and their consequences often
need to be studied together. For example, a whistler-mode wave can grow from
thermal fluctuations due to gyro-resonant interactions until a marginally stable state
is reached or nonlinear growth takes over. The growing wave starts to interact with
different particle populations leading to damping or further growth of the wave. The
fluxes of the higher-energy radiation belt particles are, however, small compared
to the lower-energy background population, which supports the wave. Thus their
effects on the overall wave activity usually remain small, although the waves can
have drastic effect on higher-energy populations. Consequently, these two chapters
should be studied together.

Our focus is on the waves that are most relevant to the evolution of radiation belts.
A reader interested in a more comprehensive discussion of space plasma waves and
instabilities is guided to general textbooks (e.g., Treumann and Baumjohann 1997;
Koskinen 2011).

5.1 Growth and Damping of Waves

In Sect. 4.2.2 we found that a small-amplitude electrostatic Langmuir wave in a
Maxwellian plasma is attenuated by heating the plasma population. We say that
such a plasma is stable against small perturbations in the particle distribution. To
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excite a plasma wave in the magnetosphere either an external source, e.g., a VLF
transmitter, lightning stroke or an interplanetary shock hitting the magnetopause, or
an internal plasma instability driven by an unstable particle distribution or magnetic
field configuration is required.

To drive plasma unstable the system must contain free energy to be transformed
to wave energy. The free energy may be stored in the magnetic field configuration
such as magnetic tension of a thin current sheet, in an anisotropic plasma pressure,
in the streaming of plasma particles with respect to each other, etc. Identification of
the free energy source is essential because different sources of free energy can lead
to widely different consequences.

The solution to the plasma dispersion equation, ω(k) = ωr(k) + iωi(k), where
ωr is the real part and ωi the imaginary part of the wave frequency, and k the
wave vector, depends on the local plasma parameters. In radiation belts the plasma
conditions vary both spatially and temporally, making the wave environment diverse
and complex.

In a stable plasma, the perturbations will eventually be damped (ωi < 0).
For a small damping rate (|ωi |  ωr ) the perturbation is a normal mode of the
plasma. Sometimes the damping is so strong that the oscillation is overdamped. The
fluctuation is still there but the wave energy is quickly absorbed by plasma particles.
A well-known example of this is the damped ion–acoustic mode in the ionosphere,
which determines the spectral shape of the received signal of incoherent scatter
radars.

If ωi > 0, the wave grows and we have an instability. Without doing actual
calculations it is impossible to say how large the wave amplitude can grow. This
is further complicated by the transport of wave energy from the position where the
growth rate is calculated and it is necessary to apply ray-tracing to follow the spatial
evolution of the wave mode (an example of a widely used ray-tracing procedure is
described in detail by Horne 1989). The wave growth in the inner magnetosphere is
often limited quasi-linearly by acceleration of particles. The growth may, however,
continue to a state where nonlinear effects begin to limit the growth rate. If nothing
quenches the growth, the system develops toward a major configurational change,
large-scale magnetic reconnection being an important example of such.

5.1.1 Macroscopic Instabilities

Macroscopic instabilities in the configuration space may be intuitively more com-
prehensible than velocity-space microinstabilities. For example, we can imagine
the Earth’s magnetic field lines as strings of a huge musical instrument. When an
external perturbation hits the system, it tries to restore its original configuration
launching a compressional magnetosonic mode, which in turn can excite field-
aligned shear Alfvén waves at the eigenfrequencies of the field lines known as field
line resonances (Sect. 4.4.2).
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However, a quantitive description of macroscopic instabilities is far from simple.
As stated by Krall and Trivelpiece (1973), “the fluid theory, though of great practical
use, relies heavily on the cunning of its user”. In collisionless space plasmas
the truncation of the moment equations leading, e.g., to magnetohydrodynamics,
involves several critical approximations (e.g., Koskinen 2011), which may not be
valid under unstable plasma conditions. A well-known phenomenon is the magnetic
reconnection, which in the magnetospheric context is an instability of a thin current
sheet. In collisionless space plasmas reconnection is often characterized as a tearing
of the current sheet in almost ideal MHD. However, the cutting and reconnecting of
the macroscopic magnetic field lines is essentially a microscopic process allowing
the “de-freezing” of the plasma particles and the magnetic field from each other.

Another example is the MHD version of the hydrodynamic Kelvin–Helmholtz
instability (KHI) occurring on the magnetopause. The instability is driven by the
velocity shear between the faster solar wind flow and the slower flow in the
magnetospheric side of the boundary leading to surface oscillations similar to those
caused by wind blowing over water. These oscillations may lead to a perturbation
that can propagate as an MHD wave into the magnetosphere. The macroscopic
process on the magnetospheric boundary requires some type of viscosity similar
to the drag in the viscous interaction model of magnetospheric convection proposed
by Axford and Hines (1961) already mentioned in Sect. 1.4.1. The viscosity under
the plasma conditions at the magnetopause cannot be collisional. Instead it must be
provided by wave–particle interactions, thus connecting the macroscopic instability
to a microscopic process.

5.1.2 Velocity-Space Instabilities

The discussion of velocity-space instabilities is instructive to start within the
linearized Vlasov theory of Sect. 4.2 in the electrostatic approximation. It is an easy
exercise to show that in this framework any monotonously decreasing (∂f/∂v < 0)
distribution is stable against small perturbations.

Figure 5.1 is a textbook example of a double-peaked distribution function known
as a gentle-bump distribution. It consists of a Maxwellian background (density n1,
temperature T1) and a Maxwellian beam (n2, T2) moving at velocity V0 with respect
to the background. We again consider electrons only and assume that the ions form
a cold background. The electron distribution function is now

fe0 = n1

ne

(
me

2πkBT1

)3/2

exp

(
− mev

2

2kBT1

)
+ n2

ne
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(
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×

1

2

{
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(
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2
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)
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(
me(vz + V0)

2

2kBT2

)}
. (5.1)
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Fig. 5.1 Gentle-bump distribution function with a potentially unstable region where ∂f/∂v >

0. In order to avoid a current driven by the bump the electron distribution has been assumed to
be symmetric about vz = 0, thus the velocity axis is v2

z . This way the example remains strictly
electrostatic

We further assume that ne = n1 + n2 � n2 , T2  T1 , V 2
0 � 2kBT1/me ,

i.e., the density and the temperature of the beam are much smaller than those of the
background and the beam is faster than the thermal velocity of the background.

In the absence of the bump the solution is the damped Langmuir wave. Now
the calculation of K(ω, k) is somewhat more tedious but still analytically doable
applying the same strategy as in Sect. 4.2.2. Due to the “gentleness” of the bump
(n1 � n2 and T1 � T2) the real part of the frequency can be approximated by the
frequency of the Langmuir wave

ωr ≈ ωpe(1 + 3k2λ2
De)

1/2 ≈ ωpe(1 + 3

2
k2λ2

De) . (5.2)

The imaginary part is modified from the Landau solution by a term depending on
the relative number densities and temperatures of the bump and the background
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The first term gives the Landau damping caused by the monotonously decreasing
background distribution. The second term is stabilizing (damping) to the right from
the bump (vz > V0), where the distribution is decreasing, but it may be unstable
(ωi > 0) to plasma oscillations on the ascending slope to the left from the bump.
The wave vector of the growing Langmuir wave is close to the direction of the
motion of the beam (z-axis), which in magnetized plasmas is typically along the
background magnetic field.

The instability requires that the contribution from the positive gradient due to the
beam overcomes the damping by the background. This is known as the gentle-bump
(or gentle-beam) instability. If the bump is too gentle, it is not powerful enough to
overcome the damping by the background and drive an instability. The only way to
find out whether the distribution is stable or unstable is to calculate the imaginary
part of the frequency. Recall that even if the wave remains damped (ωi < 0),
the normal mode is there. Its role is to transform kinetic energy of the beam to
temperature of the background and beam populations. This gradually leads to filling
of the trough between the background and the beam, forming a marginally stable
non-Maxwellian distribution.

Two more wave modes, whose growth rate can be found within the electrostatic
approximation, are worth of mentioning: the ion–acoustic wave (IAC), which is
a short-wavelength solution of (4.12), and the electrostatic ion cyclotron wave
(EIC). They can be driven unstable in a magnetized plasma by a magnetic field-
aligned current carried by a field-aligned electron beam, e.g., within and above the
auroral region. As these electrostatic modes are of lesser importance in radiation
belt physics, we refer to Chap. 7 of Koskinen (2011) for further discussion.

Similarly to the discussion of Landau damping in Sect. 4.2.3, the damping or
growth can be illustrated with particles gliding down the slopes of the distribution
function and either gaining energy from or losing it to the plasma wave. The
instability is enhanced if the number of particles in the bump is increased, if
the bump becomes narrower (colder) in the velocity-space, or if the speed of the
bump (V0) increases. In the latter two cases the process approaches the two-stream
instability of cold plasma theory.

In magnetized space plasmas important unstable distribution functions are loss
cone, ion ring, and butterfly distributions (Sect. 3.4), which have positive velocity
gradients perpendicular to the magnetic field (∂f/∂v⊥ > 0). A gyrotropic velocity
distribution f (v‖, v⊥) can also be given as a function of kinetic energy and pitch
angle f (W, α), and instabilities can be found if ∂f/∂W > 0 or ∂f/∂α > 0. For
example, at the edge of a loss cone the distribution function may have a strong
positive gradient ∂f/∂α. Figure 5.2 is a sketch of a potentially unstable butterfly
distribution as function of pitch angle. Note further that although an anisotropic
bi-Maxwellian pancake distribution has ∂f/∂v⊥ < 0, it can be unstable, because
∂f/∂α > 0. This is a key element of the discussion in Sect. 5.2.
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Fig. 5.2 A butterfly
distribution function as a
function of the pitch angle α,
where the shading indicates
the potentially unstable
(∂f/∂α > 0) pitch-angle
regimes. For a time series of
observed flux of
butterfly-distributed
relativistic electrons, see
Fig. 3.4

5.1.3 Resonant Wave–Particle Interactions

To illustrate the resonant interactions between radiation belt particles and electro-
magnetic plasma waves we investigate the resonance condition (4.38) found from
Vlasov theory written in relativistic form as

ω − k‖v‖ = nωcα

γ
. (5.4)

Here k‖ can be written as k cos θ , where θ is the wave normal angle (WNA), i.e.
the angle between the background magnetic field and the wave vector, and γ is the
Lorentz factor

γ = (1 − v2/c2)−1/2 = (1 − v2‖/c2 − v2⊥/c2)−1/2. (5.5)

Note that in the relativistic resonance condition the parallel velocity appears both in
the Doppler-shift term (k‖v‖) of the wave frequency and in the gyro-frequency term
through γ .

In (5.4) n is the order of the Bessel functions in the dielectric tensor of the
hot magnetized plasma (4.34) and runs from −∞ to +∞. Thus, both right- and
left-hand polarized waves can resonate with both positively and negatively charged
particles. n = 0 corresponds to the Landau resonance k‖v‖ = ω, whereas n �= 0
give the gyro resonances. Note that for a circularly polarized wave to be in Landau
resonance, the wave needs to have a finite WNA because only then the wave has an
electric field component parallel to the magnetic field that can accelerate/decelerate
the particle. The effect of Landau resonance thus becomes more important the more
obliquely the wave propagates.

Equation (5.4) shows that for a gyro resonance to take place the Doppler-shifted
frequency of the wave (ω − k‖v‖) has to match with the particle’s gyro frequency
ωcα/γ or its higher harmonic. If a particle is mirroring equatorially (v‖ = 0), and/or
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the wave propagates purely perpendicular to the background magnetic field (k‖ =
0), the wave frequency needs to match exactly with the particle’s gyro frequency.

The importance of the Doppler shift and the Lorentz factor in fulfilling the
resonance condition is obvious when we recall that the frequencies of whistler-mode
waves are below, and the frequencies of EMIC waves much below the local electron
gyro frequency, which in the outer electron belt is in the range 5–10 kHz. Note that
the Lorentz factor of ultra-relativistic electrons is of the order of 5, which alone is
not sufficient to shift the frequency to fulfil the resonance condition. Thus both the
Doppler shift and the Lorentz factor are essential, in particular, in the interaction of
electrons with EMIC waves.

We often need to find the velocities at which radiation belt particles can be in
resonance with a wave having a particular frequency and phase speed. Consider
waves with a fixed ω and k‖ that fulfil the dispersion equation of the wave mode in
question. The resonant velocity in the non-relativistic case is

v‖,res = (ω − nωcα)/k‖ . (5.6)

Thus the resonance picks up only the velocity component in the parallel direction.
The resonance condition does not constrain the perpendicular velocity (v⊥) and
the resonant particle can be anywhere on a straight line, called the a resonant line,
in the (v‖, v⊥)-plane, provided that the resonance condition is consistent with the
dispersion equation of the wave in question. Resonance is thus possible over a wide
range of particle energies.

For relativistic particles (given here for n = 1) the gyro-resonant velocity can be
solved from

v‖,res = − ω

k‖

(
1 − ωcα

ω

1

c

√
c2 − v2‖,res − v2⊥,res

)
(5.7)

and the parallel and perpendicular velocities are coupled. Instead of a straight
resonant line the relativistic resonance condition (5.7) defines a semi-ellipse in the
(v‖, v⊥)-plane, called a resonant ellipse, which constrains the resonant energies.
For a wave with a given frequency ω there is now a range of parallel resonant
velocities instead of a single v‖,res in the nonrelativistic case. Because natural
waves in radiation belts have finite frequency bandwidths, there is a finite volume of
resonant ellipses in the velocity space. In case of Landau interaction the resonance
condition is always v‖,res = ω/k‖, and the resonance is independent of v⊥ also in
case of relativistic particles.

Let us then consider the effect of several small resonant interactions between the
wave and particles, which can lead to damping or amplification of the wave. The
combined effect of the interactions is called diffusion of the particle distribution in
the velocity space.

Kennel and Engelmann (1966) introduced a simple graphical illustration of the
diffusion process of non-relativistic particles. Let �W = h̄ω be a quantum of energy
that a particle gains or loses during a brief interaction with the wave. The change
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of parallel momentum can be written as m�v‖ = h̄k‖ yielding �W = m�v‖ω/k‖.
One the other hand, assuming that the increment of energy from a single interaction
is small compared to the total energy of the particle, the change of energy can be
expanded as �W = m(v‖�v‖+v⊥�v⊥). Equating these two expressions for energy
change leads to

v‖�v‖ + v⊥�v⊥ = �v‖ ω/k‖ , (5.8)

the integral of which is

v2⊥ + (v‖ − ω/k‖)2 = constant . (5.9)

Equation (5.9) defines circles in the (v⊥, v‖)-plane. The circles are centered
at (0, ω/k‖) and have an increasing radius with increasing v⊥ for a given v‖,res .
For relativistic particles the corresponding equation again defines ellipses (for
details, see Summers et al. 1998). These circles (or ellipses) are called single-wave
characteristics. In Landau resonance the single-wave characteristic is a straight line
in the parallel direction.

The resonance occurs when the single-wave characteristic crosses the resonant
ellipse, or the straight resonant line in the nonrelativistic case. The characteristic
defines the direction of the particle’s motion at the time of interaction in the (v⊥, v‖)-
plane. In Landau resonance the diffusion is in the ±v‖ direction familiar from the
electrostatic Vlasov theory. In gyro resonances the particles move randomly in either
direction along the single-wave characteristics and the diffusion is in the direction
of the tangent of the single-wave characteristics. The resonant interactions can thus
change both the pitch angle and energy of the particles. The net flux of particles
is toward the direction of decreasing distribution function along the single-wave
characteristics. If the flux is toward increasing energy, as is the case, e.g., with
a Maxwellian distribution, the particles gain energy and the wave is damped. In
the opposite case, such as for the unstable distributions discussed at the end of
Sect. 5.1.2, the wave grows at the expense of particle energy.

Recall again that natural waves in radiation belts have finite frequency band-
widths. Thus there is a family of adjacent single-wave characteristics the particle
can resonate with even though it moves away from the single-wave characteristic of
the previous interaction. This formulation applies to small-amplitude (linear) waves
because �W at each interaction was assumed to be small.1

Figure 5.3 illustrates the diffusion due to resonant interaction of electrons with
whistler-mode waves in the near-equatorial region of the outer radiation belt.
The color-coded distribution function represents an anisotropic population injected
from the magnetotail. Due to pitch-angle anisotropy the particles on single-wave

1 The diffusion along the single-wave characteristics is analogous to the method of characteristics
used to solve the Vlasov equation in a magnetized plasma (Sect. 4.2.4). In both cases the changes
(either �W or �f ) at each step are assumed to be small.



5.2 Drivers of Whistler-Mode and EMIC Waves 129

Fig. 5.3 Illustration of resonant ellipses and single-wave characteristics of whistler-mode waves.
The dashed lines illustrate constant energy surfaces. The color shading represents a pancake
distribution function of thermal/suprathermal electrons. The red lines are resonant ellipses
corresponding to 0.1 fce (the narrower ellipse) and 0.5 fce (the wider ellipse). The displacement of
the ellipses to the right is due to the Doppler shift k‖v‖. The black lines are selected single wave
characteristics with arrows showing the direction of diffusion. (From Bortnik et al. 2016, reprinted
by permission from Oxford University Press)

characteristics labeled R1 crossing the resonant ellipse, corresponding to resonant
velocity vres‖,2, diffuse toward smaller pitch angles and lose energy. Thus the whistler-
mode wave is amplified as discussed in Sect. 5.2 below. At higher energies (�
300 keV), the distribution function is no more anisotropic and the particles on
characteristics labeled R2 diffuse toward larger energies, corresponding to whistler-
mode acceleration of radiation belt electrons to be discussed in Sect. 6.4.5.

5.2 Drivers of Whistler-Mode and EMIC Waves

The central role of electromagnetic right-hand polarized whistler-mode waves
and left-hand polarized EMIC waves driven by anisotropic velocity distribution
functions in the inner magnetosphere was understood already during the 1960s
(e.g., Kennel 1966; Kennel and Petschek 1966, and references therein). Those days
observations were limited but understanding of plasma theory made it possible to
reach results that have later been confirmed using much more extensive and detailed
observations.
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We discuss below how electron and proton anisotropies drive instabilities
generating whistler–mode chorus and EMIC waves in the background inner magne-
tospheric plasma. Anisotropic electron and proton distributions arise naturally as
the particles injected from the magnetotail during substorms move adiabatically
toward the stronger magnetic field in the inner magnetosphere. Conservation of
the magnetic moment (μ) leads to increase of W⊥ through the drift betatron
mechanism. At the same time the bounce paths between northern and southern
hemispheres become shorter and the conservation of the longitudinal invariant
(J ) leads to increase of W‖ through Fermi acceleration. In the nearly-dipolar
field B is proportional to L−3 whereas the length of the bounce motion is
proportional to L. Thus in the earthward motion the conservation of μ stretches
the distribution function in the perpendicular direction more than the conservation
of J in the parallel direction, and the result is a pancake-shaped distribution function
(T⊥ > T‖).

5.2.1 Anisotropy-Driven Whistler Mode Waves

We follow here the classic presentation of Kennel and Petschek (1966). We begin by
considering the cold plasma whistler-mode solution, i.e., the parallel propagating R

mode in the frequency range ωci  ω < ωce. In this approximation we can neglect
the ion contribution to Eq. (4.62). We are mainly interested in the outer radiation
belt domain where electron plasma frequency is larger than the cyclotron frequency
(e.g., at L = 5 the ratio ωpe/ωce is about 4). The real part of the frequency can
under these conditions be approximated as

c2k2‖
ω2 ≈ ω2

pe

ω(ωce − ω)
. (5.10)

To make the discussion simple we consider the interaction with the fundamental
(n = 1) harmonic of the gyro frequency in non-relativistic approximation (γ = 1).
Inserting (5.10) into the equation of resonant velocity v‖,res = (ω − ωce)/k‖ the
resonant energy becomes

We,res = 1

2
mev

2‖,res = WB
ωce

ω

(
1 − ω

ωce

)3

, (5.11)

where WB = B2/(2μ0 n0) is the magnetic energy per particle, i.e., magnetic energy
density divided by particle number density n0. Note that, as ω < ωce, the wave
needs to propagate toward the electrons yielding k‖v‖ < 0 in order the Doppler shift
to increase the wave frequency to match with ωce. In addition, (5.11) implies that
the resonant energies are largest at the lowest frequencies and decrease toward zero
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when ω → ωce. Under conditions typical in the inner magnetosphere the resonant
energies are in the range 1–100 keV.

Let Fe(v‖, v⊥) be the equilibrium distribution function normalized to 1. With
some effort the growth rate of the Vlasov theory solution at the resonant velocity
can be written as

ωi = πωce

(
1 − ω

ωce

)2

�e(v‖,res )
(
Ae(v‖,res ) − 1

(ωce/ω) − 1

)
(5.12)

where

�e(v‖,res ) = 2π
ωce − ω

k‖

∫ ∞

0
v⊥ dv⊥Fe(v⊥, v‖)

∣∣∣∣
v‖=v‖,res

(5.13)

and

Ae(v‖,res ) =

∫ ∞

0
v⊥ dv⊥
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∂Fe
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− v⊥

∂Fe
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v‖

2
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0
v⊥ dv⊥Fe
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0
v⊥ dv⊥ tan α

∂Fe

∂α

2
∫ ∞

0
v⊥ dv⊥Fe

∣∣∣∣
v‖=v‖,res

. (5.14)

The factor �e(v‖,res ) is a measure of the fraction of the total electron distribution
close to the resonance. Since ω < ωce, �e is always positive. Recall that while the
resonance picks up only one velocity component v‖,res in the parallel direction, the
electron can have any perpendicular velocity along the resonant line in the (v⊥, v‖)-
plane. This motivates the integration over all perpendicular velocities above. If the
wave has a wide frequency band, as is the case with naturally occurring whistler-
mode waves, a large part of the electron distribution can interact with the wave.

Ae is, in turn, a measure of the anisotropy. It depends on the gradient of Fe with
respect to the pitch angle at constant energy. For pancake, loss-cone, and butterfly
distributions there are domains of α where ∂Fe/∂α > 0.

Whether ωi is positive (growing) or negative (damping) depends on the sign of
the last term in brackets in the RHS of (5.12). The wave grows when

Ae >
1

(ωce/ω) − 1
(5.15)

and attenuates otherwise. This condition can also be expressed in terms of the
resonant energy

We,res >
WB

Ae(Ae + 1)2 . (5.16)
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In case of a bi-Maxwellian distribution (3.56) Ae is independent of v‖,res and
reduces to

Ae = T⊥ − T‖
T‖

. (5.17)

Assuming a pancake distribution with T⊥ > T‖, which is typically observed in
the radiation belt region outside of the plasmapause, the whistler mode grows if
the anisotropy is large enough and the condition given by (5.15) or (5.16) is met.
The minimum resonant energy can be determined from observations. The more
anisotropic the population is, the lower is the minimum resonant energy.

The instability condition for the whistler mode depends on the anisotropy Ae

only, but the actual growth or damping rate depends on both Ae and the fraction
of resonant electrons �e. Furthermore, (5.15) indicates that the closer to the gyro
frequency the wave frequency is, the stronger anisotropy is required to drive the
wave due to the increasing resonant damping when ω → ωce.

We have here considered only waves that propagate purely parallel to the
background magnetic field. As shown, e.g., by Kennel (1966) the growth rate of
the wave decreases with increasing wave normal angle. The generation of oblique
whistler-mode waves requires thus gyro resonances occurring for a long enough
time. At perpendicular propagation (WNA ≈ 90◦, i.e., the magnetosonic / X-
mode wave) the resonant energy goes to zero. As discussed in Sect. 5.3.2, the
magnetosonic mode can be driven unstable by proton ring distributions with free
energy in the perpendicular direction (∂f/∂v⊥ > 0).

5.2.2 Whistler-Mode Chorus

The observed whistler-mode waves outside the plasmapause are known as chorus
waves. They are different from the lightning-generated whistlers with decreasing
frequency–time spectra (Sect. 4.3.2). The chorus waves are composed of short,
mostly rising, right-hand polarized emissions in the kilohertz range. When played
through an audio loudspeaker, the signal resembles a “dawn chorus” of a rookery.
According to the appendix of Storey (1953), these dawn choruses had already been
heard in the 1930s.

By the early twenty-first century the chorus waves have been demonstrated to
be able to accelerate radiation belt electrons to relativistic energies and, on the
other hand, to scatter a fraction of the population to the atmospheric loss cone. The
acceleration and diffusion processes are dealt in Chap. 6. Here we discuss the main
observational features of the waves by walking through Fig. 5.4 reproduced from
Bortnik et al. (2016).

The sketch on the top left (Fig. 5.4a) indicates that the chorus emissions are
preferentially observed close to the equator outside the plasmasphere from around
midnight through the dawn sector to noon. This is consistent with the concept
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Fig. 5.4 Main observational features of chorus waves. (a) The waves appear predominantly close
to the equator from midnight through dawn to noon. (b) The waves propagate away from the
equator, but are attenuated before being reflected from the ionosphere. (c) The waves appear as
brief bursts in two distinct bands with a cap around 0.5 fce . (d) The individual bursts are composed
of short rising tones giving the emissions their chirping characteristics (From Bortnik et al. 2016,
reprinted by permission from Oxford University Press)

that they are driven by anisotropic electron populations in the energy range 1–
100 keV injected from the magnetotail, since these electrons drift eastward around
the plasmapause.

The waves have been found to propagate away from the equator (Fig. 5.4b), but
not back to the equator. This suggests that, unlike shear Alfvén waves, the chorus
waves do not reflect back from the ionosphere but are attenuated by wave–particle
interactions not too far from the equator.

The damping and growth of the waves depend on the wave normal angle.
Figure 5.5 based on Cluster observations (left) and ray-tracing analysis (right)
shows that near the equator the chorus waves propagate parallel or nearly parallel
to the background magnetic field, while the obliquity increases with increasing
geomagnetic latitude. The generation region close to the equatorial plane can be
understood since most of the free energy is concentrated close to the equator, where
∼ 90◦ electrons are trapped and the anisotropy is strongest, which maximizes
the gyro-resonant growth of parallel propagating waves. The main attenuation
mechanism is likely Landau damping by suprathermal electrons around 1 keV as
demonstrated in the ray-tracing study by Bortnik et al. (2007). The attenuation
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Fig. 5.5 Probability distribution functions (PDF) from Cluster observations (left) and three-
dimensional ray-tracing (right) of chorus waves as a function of the wave normal angle θ and
geomagnetic latitude λ. The observed WNAs are mostly < 45◦ (tan θ < 1). (From Breuillard et al.
2012, Creative Commons Attribution 3.0 License)

increases with increasing latitude since the Landau damping is more effective at
higher obliquity.

The spectrograms (c) and (d) of Fig. 5.4 illustrate the observed characteristics
of the chorus emissions. There are two distinct frequency bands: the lower band
in the range 0.1 fce < f < 0.5 fce and the less intense higher-frequency band
0.5 fce < f < fce. The upper spectrogram indicates that the emissions appear in
short bursts of about 10–20 s, whereas the lower spectrogram shows how a single
burst is composed of upward chirping signals shorter than a second, which give the
chorus-like tone to the emission.

5.2.3 Two-Band Structure of the Chorus

The splitting of the chorus emission to two frequency bands (Fig. 5.4) has been a
longstanding problem since the OGO 1 and OGO 3 satellite observations during the
second half of the 1960s (Burtis and Helliwell 1969, 1976). Several explanations
have been proposed ranging from different drivers for each band to nonlinear wave–
particle or wave–wave coupling phenomena (see Li et al. 2019, and references
therein). The growth of two-band whistler-mode wave with a gap in amplitude at
0.5 fce has been demonstrated using particle-in-cell plasma simulations assuming
the presence of two different anisotropic hot electron distributions (Ratcliffe and
Watt 2017), but it is not clear how these two populations would form.

A possible and quite simple scenario to generate electron anisotropy in two
distinct energy domains is based on the interplay of the first order gyro resonance
ω−k‖vc = ωce and the Landau resonance ω−k‖vL = 0 , where vc and vL represent
the gyro- and Landau-resonant parallel velocities. At ω = 0.5 ωce both conditions
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Fig. 5.6 A scenario of the exitation of lower and upper band chorus waves based on Van Allen
Probes measurements and numerical simulations. Note that the spectrograms in (b) and (d)
were taken at different periods separated by about 2 hours, when the spacecraft was moving
toward a larger distance from the Earth. (From Li et al. 2019, Creative Commons Attribution 4.0
International License)

are fulfilled if vc and vL have the same magnitude but are in opposite directions.
Thus electrons that should drive the whistler-mode growth actually Landau damp
the waves at ω = 0.5 ωce. The damping accelerates electrons in the direction of
the background magnetic field reducing the electron anisotropy around the Landau-
resonant energy.

Li et al. (2019) studied this mechanism using numerical simulations consistent
with Van Allen Probes electron and high-resolution wave observations. During the
investigated event the electron data indicated two anisotropic electron distributions:
one in the range 0.05–2 keV and another > 10 keV. The initial source of free energy
in the simulation was an unstable pancake electron distribution injected from the
plasma sheet (Fig. 5.6a). First a single-band whistler mode starts growing (Fig. 5.6b)
but the Landau damping at ω = 0.5 ωce quickly sets in and two different anisotropic
distributions start forming (Fig. 5.6c). In the simulation the gyro resonance occurred
in the energy range 0.22–24 keV, while the Landau-resonant energy was in the range
1.3–2.1 keV. After their formation the two anisotropic populations act separately:
the lower energy electrons drive the upper band whistler mode and the upper energy
population the lower band (Fig. 5.6d) consistent with the relation of resonant energy
and frequency (5.11). Two separate processes are further supported by the common
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observation of independent evolution of the upper and lower bands, in particular the
different appearance of the rising chirps.

5.2.4 Formation and Nonlinear Growth of the Chirps

The linear theory discussed in Sect. 5.2.1 does not explain the formation of the
characteristic rising-tone chirps of the chorus emissions. Their short time scales
and large amplitudes point to a nonlinear process.

Omura et al. (2013) reviewed theories and simulations based on nonlinear
formation of electron holes in phase space. Once an anisotropy-driven coherent
wave grows to a finite amplitude, the wave potential around the resonant velocity
is able to trap a fraction of the resonant electrons and distort the trajectories of
non-trapped resonant electrons. Consequently a hole or a hill forms in the (r, v)
phase space (Fig. 5.7). The deformed electron trajectories correspond to resonant
currents that modify the wave field with components: JE in the direction of the
wave electric field and JB in the direction of the wave magnetic field. It turns out
that JE is responsible for the growth of the wave amplitude whereas JB leads to the
drift in the frequency and the rising tones of the chorus elements. For the detailed
calculations we refer to Omura et al. (2013) and references therein.

The continuous filter bank data from the EFW instrument of Van Allen Probes
has offered the opportunity to reconstruct the frequency and amplitude of large-
amplitude whistler-mode waves. Tyler et al. (2019) performed the first statistical
analysis based on 5 years of Van Allen Probes data. They looked for amplitudes
> 5 mV m−1, which are 1–2 orders of magnitude larger than average chorus wave
amplitudes. This threshold avoided the risk of contaminating the data set with much
smaller-amplitude plasmaspheric hiss emissions. Large-amplitude whistler waves
exceeding this level were observed to occur 1–4% of the time from pre-midnight
through dawn to noon, mostly between 0–7 MLT, typically above L = 3.5. This
distribution of the observed wave-packets is consistent with the assumption that
they grow from initially anisotropy-driven linear whistler-mode waves.

The nonlinear growth of the chorus elements can continue to very large ampli-
tudes. For example, exceptionally strong electric fields of whistler-mode emissions,
about 240 mV m−1, were observed by the S/WAVES instruments on the STEREO
spacecraft when they passed through the radiation belts on their way to their final
orbits (Cattell et al. 2008).

Detailed investigation of the large-amplitude wave packets requires high sam-
pling rate in the time domain and transmission of the waveform to the ground.
Thus the relevant observations in any particular region of the magnetosphere have
been sparse. Figure 5.8 shows another example of large whistler wave packets in
the inner magnetosphere, captured by the Time Domain Sampler onboard the Wind
spacecraft. The waveform illustrates that the amplitude grows and damps within tens
of milliseconds, which makes direct comparisons with local electron data difficult
because the particle instruments usually do not have so good time resolution.
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Fig. 5.7 Sketch of the formation of electron holes and hills (a) in one-dimensional distribution
function F(v‖) and (b) in the phase space (v‖, ξ), where ξ is the angle between the perpendicular
velocity of a resonant electron and the wave magnetic field (From Omura et al. 2015, reprinted by
permission from American Geophysical Union)
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Fig. 5.8 An example of large-amplitude whistler wave packets observed by the Wind spacecraft
during its passage through the magnetosphere. (From Kellogg et al. 2011, reprinted by permission
from American Geophysical Union)

5.2.5 Spatial Distribution of Chorus Waves

Figure 5.9 shows maps of the average intensity of upper- and lower-band chorus
waves compiled from several satellite data sets close to the equator at L∗ ≤ 10
(Meredith et al. 2012, 2020). The low-altitude limit of chorus emissions coincides
with the plasmapause and the waves have been observed all the way to the outer
rims of the outer belt. As the emissions are driven by anisotropic electrons injected
from the plasma sheet during storms and substorms, the occurrence and intensity
have strong dependence on magnetospheric activity, which in Fig. 5.9 is represented
by the AE index. It is evident that the upper-band chorus waves are limited to
a narrower L-range than the lower-band waves. The upper-band emissions also
have, on average, significantly smaller peak intensities, typically a few hundred pT2

compared to lower band chorus with peak intensities of the order of 2000 pT2.
While chorus waves, in particular the lower-band emissions, are observed at

all MLTs, their intensity shows clear MLT-dependence, which becomes more
pronounced with increasing geomagnetic activity. The wave occurrence and inten-
sities are strongest from pre-midnight, about 23 MLT, to noon. The database of
Meredith et al. (2020) also demonstrates that chorus waves occur considerably more
frequently and have larger intensities close to the equator than at higher magnetic
latitudes. The trend is particularly clear for the upper-band chorus waves that are
rarely detected at higher latitudes. Observations and ray-tracing studies (Bortnik
et al. 2007) also show that at the dawn sector chorus waves can propagate to higher
latitudes, reaching in the dayside 25◦–30◦, or above, compared to only 10◦–15◦ in
the nightside.
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Fig. 5.9 Global maps of the average intensity of upper- and lower-band chorus waves close to the
equator |λm| < 6◦ as a function L∗ and MLT. The small maps show the sampling distributions. The
database from which the maps were calculated is a combination of observations from Dynamics
Explorer 1, CRRES, Cluster, Double Star TC1, THEMIS and Van Allen Probes (From Meredith
et al. 2020, reprinted by permission from American Geophysical Union)

These features can be explained by combination of Landau damping by electrons
in the keV range and gyro-resonant amplification, which is dominated by tens
of keV electrons. The intensification of chorus with geomagnetic activity close
to midnight is explained by enhanced substorm injections and strengthening of
the earthward convection, both key mechanisms creating the anisotropic electron
population to excite chorus waves. The magnetospheric convection also transports
the electrons responsible for the Landau damping restricting the propagation of
chorus to higher magnetic latitudes. As these electrons drift toward the dayside,
they get scattered by wave–particle interactions and the lower-energy electrons
scatter faster than higher-energy electrons. As a consequence, closer to noon, chorus
waves can propagate to higher latitudes due to smaller amount of Landau-resonant
electrons.

A fraction of high-latitude chorus may also be generated locally, e.g., by wave–
particle interaction processes with low-energy electrons (from a few hundred eV to a
few keV), electron beams or nonlinear wave–wave coupling processes. Furthermore,
the scattering of electrons to the atmospheric loss cone, during the drift from
midnight toward the noon, can increase the anisotropy and lead to local generation
of dayside chorus.
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5.2.6 Anisotropy-Driven EMIC Waves

The derivation of the growth rate for left-hand polarized EMIC waves driven by
anisotropic ions is similar to that of anisotropic electron-driven whistler-mode
waves discussed in Sect. 5.2.1. We start with a single ion species. We focus here
on the frequencies close to but below the ion gyro frequency ωci , which requires an
approximation of the dispersion equation different from (5.10)

c2k2‖
ω2

≈ ω2
pi

ωci(ωci − ω)
. (5.18)

The multiplication by ωci in the denominator instead of ω as in (5.10) is due to the
approximation ω ≈ ωci . Inserting this again in the expression of resonant velocity,
the resonant energy is found to be
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and the growth rate is
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where �i and Ai are defined in the same way as in Sect. 5.2.1. The main difference
to the electron case is the narrower frequency range close to the ion gyro frequency
where the ions can cause significant wave growth. The threshold resonant energy
for the EMIC wave is

Wi,res >
WB

A2
i (Ai + 1)

. (5.21)

In the inner magnetosphere the frequencies of the chorus waves are a few kHz
and of EMIC waves � 1 Hz. Once generated by the anisotropic suprathermal
anisotropic electrons the chorus waves can be in resonance with radiation belt
electrons of energies � 30 keV, whereas gyro-resonant interaction of electrons with
EMIC waves requires MeV energies. These interactions can lead to both damping
or further growth of the waves depending on the actual shape of the distribution
function of the high-energy population as discussed in Chap. 6.
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5.2.7 Multiple-Ion Species and EMIC Waves

The inner magnetospheric plasma contains a variable mixture of protons and
He+ and O+ ions. The multi-ion dispersion equation has resonances at the gyro
frequencies of each species. Consequently, the EMIC waves appear in separate
frequency bands: Hydrogen band emission occurs between helium and proton gyro
frequencies and the helium band between oxygen and helium gyro frequencies
(Fig. 4.5). Sometimes an oxygen band below the oxygen gyro frequency is also
observed.

The presence of cold ions of ionospheric origin lowers the threshold for the
excitation of EMIC waves and enhances the wave growth. Cold ions are indeed
sometimes referred to as “generation catalyst” for EMIC waves (Young et al.
1981). EMIC waves are excited in the regions of minimum magnetic field of a
given magnetic flux tube close to the equator, where the hot anisotropic ions are
concentrated. After generation the waves propagate along the magnetic field toward
the increasing field. Ray-tracing studies further show that the growth rates of EMIC
waves are considerably larger outside than inside the plasmasphere.

Keika et al. (2013) conducted a comprehensive statistical analysis of EMIC wave
observations by AMPTE/CCE from years 1984–1989. As shown in Fig. 5.10, EMIC
waves were observed mostly beyond L = 4 at all local times and preferentially in
the noon–afternoon sector beyond L = 6. Similar results were obtained by Meredith
et al. (2003) using CRRES observations and by Chen et al. (2019) who analyzed 64
months of Van Allen Probes observations, the latter of which do not reach as far out
as AMPTE/CCE but allow for more detailed analysis of wave properties.

Keika et al. (2013) found that, similar to chorus waves, the MLT distribution of
EMIC waves depends on geomagnetic activity. During quiet times EMIC waves are
distributed more symmetrically and their occurrence peaks close to noon. During
geomagnetically active conditions the occurrence is most frequent near noon and in
the dusk sector, where waves in the He+ band have the strongest concentration. The
plasmaspheric plume with cold ions at afternoon hours (Sect. 1.3.2) overlaps with
the region of anisotropic hotter ring current ions. In other words, in the afternoon

Fig. 5.10 Occurrence rates of all EMIC wave events (left), hydrogen band events (middle) and
helium band events during 4.5 years of AMPTE/CCE data. Note that different to Fig. 5.9 noon is
to the left. (From Keika et al. 2013, reprinted by permission from American Geophysical Union)
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sector hot and cold ion populations coexist. The hot population provides free energy
to excite the waves and the cold population enhances the growth. The amplitude
of EMIC waves also increases with geomagnetic activity and shows a similar MLT
trend as the occurrence rate. The wave amplitudes are strongest in the He+ band.

Based on their statistical results Keika et al. (2013) suggested that the helium
band would be more sensitive to ion injections, whereas the hydrogen band would
benefit from solar wind compression of the magnetosphere. The compression
enhances drift shell splitting and formation of Shabansky orbits (Sect. 2.6.2), which
both can lead to temperature anisotropy (T⊥ > T‖) and drive EMIC waves locally
on the dayside (e.g., Usanova and Mann 2016, and references therein).

5.3 Plasmaspheric Hiss and Magnetosonic Noise

Inside the plasmasphere the main wave modes affecting electron dynamics are
plasmaspheric hiss and equatorial magnetosonic noise. Hiss is of key importance
to scattering electrons to the atmospheric loss cone at wide range of energies and
forming the slot region, while magnetosonic waves can resonate with energetic
electrons and transfer energy from ring current protons to radiation belt electrons.
While the hiss is confined within the plasmasphere, the magnetosonic noise can
occur both inside and outside the plasmapause.

5.3.1 Driving of Plasmaspheric Hiss

The plasmaspheric hiss is a whistler-mode emission that derives its name from
the early observations of structureless spectral properties that resemble audible
hiss found at all magnetic local times in the plasmasphere (Thorne et al. 1973).
The frequencies of the emissions extend from a few tens of Hz to a few kHz,
which is well below the local electron gyro frequency of more than 10 kHz.
The high time-resolution observations with the EMFISIS instrument of the Van
Allen Probes (Summers et al. 2014) have, however, shown that the hiss is not
quite as structureless as previously thought but contains quasi-coherent rising and
descending tones similar to the whistler-mode chorus wave packets outside the
plasmapause (Sect. 5.2.2).

Figure 5.11 shows the distribution of plasmaspheric hiss based on more than two
years of Van Allen Probes data. Hiss occurs at all MLTs, but the amplitudes are
clearly largest on the dayside. The wave amplitudes on the dayside also increase
considerably with the level of geomagnetic activity. During geomagnetically quiet
periods the amplitudes range from a few pT to a few tens of pT, whereas
during magnetic storms the amplitudes increase to 100–300 pT. Figure 5.11 also
demonstrates that hiss waves propagate predominantly parallel to the magnetic field
at low magnetic latitudes becoming more oblique at higher latitudes.
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Fig. 5.11 Distribution of hiss amplitude and wave normal angles as observed by Van Allen Probes
in the range from 10 Hz to 12 kHz for different geomagnetic activity conditions in terms of the AE

index. The uppermost row indicates the median wave magnetic field amplitude in picoteslas and the
second row the median wave normal angle at magnetic latitudes close to the equator (λ ≤ 10◦). The
third and fourth rows are the corresponding quantities at higher magnetic latitudes. The small maps
give the distribution of the samples in each picture. (From Yu et al. 2017, reprinted by permission
from American Geophysical Union)

The origin of plasmaspheric hiss remains unclear. Suggested generation mecha-
nisms include triggering through terrestrial lightning strikes, local generation within
the plasmasphere, and penetration of chorus waves into the plasmasphere.

The occurrence and geographic distribution of the higher-frequency part of hiss
(1–5 kHz) correlate with lightning strikes (Meredith et al. 2006), while at lower
frequencies (0.1–1 kHz) no such correlation has been found. Furthermore, lightning
is not related to magnetospheric activity whereas plasmaspheric hiss is. The wave
power of the higher-frequency hiss is about an order of magnitude smaller than the
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power of the lower-frequency hiss. Consequently, lightning-induced hiss emissions
likely are of minor importance to radiation belt dynamics.

Because early ray-tracing studies had indicated that there could be no significant
penetration of whistler-mode chorus waves through the plasmapause, Thorne et al.
(1973) advocated local generation through a similar gyro-resonant instability as the
growth of whistler-mode emissions outside the plasmapause (Sect. 5.2.1). However,
the anisotropic suprathermal plasma does not penetrate to the plasmasphere and later
studies have shown that the linear growth rates remain small in the plasmasphere.

While the linear growth seems less likely, the high-resolution vector waveform
samples of the Van Allen Probes EMFISIS observations (Fig. 5.12) have revealed
that hiss features complex quasi-coherent fine-structures with discrete rising and
falling tones. The spectral intensities peak at lowest frequencies, decreasing in
amplitude with increasing frequency. The structures resemble the chirps of the
whistler-mode chorus emissions outside the plasmapause, but they persist only a few
milliseconds, which corresponds to about 10 wave periods, whereas the timescale
of chorus chirps is of the order of 100 wave periods.

The quasi-coherent structures may be explainable by a similar nonlinear growth
mechanism as was discussed in the context of chorus wave chirps in Sect. 5.2.4
(Omura et al. 2015; Nakamura et al. 2016). When a critical wave amplitude is
exceeded due to resonant electrons’ interaction with the waves, electron hills and
holes form in the velocity space (Fig. 5.7), which give rise to falling and rising tones.
The different coherent tones in hiss correspond to waves at different frequencies
associated with different resonant velocities. The seed waves subject to nonlinear
growth could originate from any of the sources mentioned above or from local
thermal fluctuations. Since the nonlinear growth rate is much larger than the linear,
local generation of hiss in the plasmasphere may be a viable option.

The observations of hiss fine structure do not preclude the chorus–hiss con-
nection, of which there is circumstantial evidence in satellite observations (e.g.,
Santolík et al. 2006; Bortnik et al. 2008b, and references therein). The hypothesis
of chorus wave penetration was revived by ray-tracing studies of Bortnik et al.
(2008b). Figure 5.13 illustrates an example of tracing of waves launched at L = 5
at the equator in the lower end of the chorus frequency range. The initial wave
normal angles extended from −70◦ to +20◦ with negative angles corresponding to
earthward inclination. The waves with negative WNAs of a few tens of degrees on
the nightside were found to be able to penetrate to the plasmasphere, while on the
dayside this may occur over a wider range of WNAs, from approximately −60◦ to
−30◦. This is due to significantly smaller dayside fluxes of about 1 keV-electrons
that would Landau-damp the waves. Inside the plasmasphere the waves reflect at
higher latitudes (λ ≈ 30–40◦) closer to the Earth, where their frequency becomes
less than the local cut-off frequency.

The chorus waves have specific entry points into the plasmasphere but they
become quickly randomized after a few cycles of reflections. This is consistent with
the unstructured appearance of hiss in low-resolution observations as illustrated in
the bottom panels of Fig. 5.13. The figure also shows that chorus waves outside the
plasmapause have larger wave power than hiss in the plasmasphere.
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Fig. 5.12 An example of plasmaspheric hiss consisting of coherent rising and falling tones (From
Summers et al. 2014, reprinted by permission from American Geophysical Union)
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Fig. 5.13 (a) Ray-tracing results of chorus waves launched from the equator with different wave
normal angles ψ0 (negative values correspond to earthward propagation) at 0.1 fce. Bottom panels
show the typical examples of intensities of (b) chorus on the dayside outside the plasmasphere and
(c) hiss on the nightside inside the plasmasphere from Cluster observations. (From Bortnik et al.
2008b, reprinted by permission from SpringerNature)

Once the waves have penetrated to the plasmasphere, they refract from the large
density gradient at the plasmapause and become trapped inside the plasmasphere.
In contrast to chorus waves outside the plasmapause, Landau damping of the hiss
waves in the plasmasphere is weak due to the high number density of cold electrons
and small flux of Landau-resonant electrons. The waves can thus propagate over
long time periods passing repeatedly through the equatorial region. The waves
become more field-aligned, as they approach the equator, where they can get
gradually amplified by gyro resonance with electrons.

The day–night asymmetry of hiss amplitudes (Fig. 5.11) agrees with the ray-
tracing results and the chorus penetration hypothesis as the origin of hiss. This is
also consistent with hiss intensifying with geomagnetic activity, similarly to chorus
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waves. Furthermore, the compression of the dayside magnetosphere creates local
magnetic field minima away from the equator (Fig. 2.9) where the growth rate of
chorus waves increases and from where they have a shorter distance to propagate to
the plasmapause, minimizing the Landau damping before entering the plasmasphere
(Tsurutani et al. 2019).

The penetration of chorus waves through the plasmapause depends on both the
WNA and the inclination of the wave vector, of which the latter must naturally be
toward the Earth. Using Van Allen Probes EMFISIS data Hartley et al. (2019) inves-
tigated how often the observed wave vectors of chorus emissions are in favorable
direction for penetration. They found that the inclination is actually predominantly
oriented in the anti-earthward direction. Their ray-tracing computations indicated
that only a very small fraction of wave power, typically less than 1%, would
propagate to the plasmasphere. The only exception were waves that were emitted
very close to the morning sector plasmaspheric plume, located in their model at
L = 5 and MLT = 14. In the plume region about 90% of the lower-band chorus
power was found to propagate into the plasmasphere. In another study Kim and
Shprits (2019) showed, based on four years of Van Allen Probes observations, that
similar to hiss in the plasmasphere proper, the hiss in the plume has amplitudes from
a few pT to more than 100 pT. In fact, the plume may provide an efficient entrance
for the hiss to penetrate to the plasmasphere, but whether it is enough, remains
unclear.

Further indication of chorus–hiss connection was found by Agapitov et al. (2018)
in an extensive correlation analysis of THEMIS observations of lower-band chorus
and hiss waves during 2007–2017 at times when one of the spacecraft was in the
plasmasphere and another outside the plasmapause. They considered 2-min intervals
of events where the wave amplitude was required to be larger than 1 pT and the
distance between the spacecraft more than 2 RE but less than 3 h in MLT. The
correlations were calculated when chorus waves were observed within 10 s before
hiss or hiss during 10 s following the chorus observation. They found 71,000 time
intervals when the correlation coefficient between chorus and hiss wave power
dynamics was larger than 0.5, often larger than 0.7. The best correlations were in
the noon to afternoon sector consistent with favorable penetration of chorus waves
to the plasmasphere in the sector of the plasmaspheric plume. Even if the amount of
penetrating wave energy may be small, Agapitov et al. (2018) argued that it may
form an embryonic source for local amplification by, e.g., the above mentioned
nonlinear mechanism.

5.3.2 Equatorial Magnetosonic Noise

Perpendicular propagating waves in the frequency range between the proton gyro
frequency (ωcp) and the lower hybrid resonance frequency (ωLHR ≈ √

ωceωcp)
confined within a few degrees from the Earth’s magnetic equator were first identified
in the OGO 3 satellite observations and were named equatorial noise (Russell et al.



148 5 Drivers and Properties of Waves in the Inner Magnetosphere

Fig. 5.14 Example of fine-structured magnetosonic waves from Cluster observations. The fre-
quency bands are separated by the local proton gyro frequency. The descending trend if the stripes
is due to the motion of the spacecraft in the direction of decreasing magnetic field (From Balikhin
et al. 2015, Creative Commons Attribution 4.0 International License)

1970). This emission features distinct bands of ion Bernstein modes organized
by multiples of the proton gyro frequency (Fig. 5.14). The wave mode is the hot
plasma equivalent of the linearly polarized cold plasma X-mode that propagates
almost perpendicular (WNA ≈ 89◦) to the background magnetic field. The mode
is an extension of the MHD fast magnetosonic mode above ωcp (Fig. 4.6) and the
observed emission is commonly called equatorial magnetosonic noise. While these
waves evidently are related to ion dynamics, they are also of significant interest
for radiation belt electrons, as they can resonate with energetic electrons through
Landau, gyro and bounce resonances as discussed in Chap. 6.

Let us briefly discuss the generation of magnetosonic waves following Horne
et al. (2000) and Chen et al. (2010). The instability is expected to be caused by the
proton ring distribution (e.g., Thomsen et al. 2017, and references therein) with a
positive slope perpendicular to the magnetic field around 10 keV (Fig. 5.15). In the
linear regime the growth rate is proportional to the sum of all harmonic resonant
interactions between the wave and the protons

ωi ∝
∑
n

∫ ∞

0

(
J 2

n (x)
∂f (v‖, v⊥)

∂v⊥

) ∣∣∣
v‖=v‖res

dv⊥ , (5.22)

where Jn(x) are the Bessel functions of order n, x = k⊥v⊥/ωcp, and f (v‖, v⊥) is
the proton distribution function (for a detailed calculation, see Chen et al. 2010).
The integral is evaluated at the resonant velocity v‖res given by

v‖res = ω

k‖

(
1 − nωcp

ω

)
. (5.23)

The instability requires that ∂f/∂v⊥ > 0. The positive gradient maximizes
when v‖ is small because f decreases with increasing v‖. The corresponding
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Fig. 5.15 Proton ring distribution. The velocity scales on all axes are the same as on the left
vertical axis. The gradient (∂f/∂v⊥) of the phase space density of the ring is positive on the dayside
(on the left and in the middle), whereas on the nightside (right) the gradient is positive only at the
edge of the atmospheric loss cone (From Chen et al. 2010, reprinted by permission from American
Geophysical Union)

perpendicular velocity is called the ring velocity. Magnetosonic waves have very
small k‖ and, in order to have small enough resonant velocities, dominant resonances
occur at high multiples of proton gyrofrequency ω ≈ nωcp.

With increasing k⊥ the magnetosonic mode approaches the lower hybrid reso-
nance frequency where ω/k⊥ decreases. The effective growth of the magnetosonic
wave further requires that the Bessel function Jn maximizes in the region where
∂f/∂v⊥ is positive. The argument of Jn can be written as

x = ω

ωcp

v⊥
vA

, (5.24)

where vA is the local Alfvén velocity. At high harmonics (n � 10) Jn maximizes
when x ≈ n corresponding to the perpendicular velocity close to the Alfvén
velocity. If the ring velocity is larger than vA, the wave can grow. For smaller n

the Bessel function peaks instead in a region where ∂f/∂v⊥ < 0 and the wave is
damped. For a growing solution at smaller harmonics the ring velocity must exceed
the Alfvén velocity with a larger margin. An important factor controlling the growth
of the magnetosonic wave is thus the ratio of the ring velocity to the Alfvén velocity.

The energetic proton phase space densities shown in Fig. 5.15 are simulation
results of the main phase of the geomagnetic storm on 22 April 2001 calculated at
L = 5. On the nightside (right) the distribution is bi-Maxwellian with a loss cone.
On the dayside (left) the distribution illustrates a ring with a clear peak at about
20 keV. A schematic of typical ring-like phase space density as a function of the
perpendicular velocity, indicating velocities at which the phase space density peaks
(the ring velocity) and has a minimum (dip velocity), is shown in the middle.

The formation of ion ring distribution can be understood as follows: Lower-
energy protons in the nightside plasma sheet E×B drift as shown in Fig. 2.3.
Higher-energy protons (� 10 keV) are affected by the gradient and curvature effects
and drift from the tail predominantly around the dusk toward the dayside. The
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Fig. 5.16 Global distribution of occurrence of proton rings, and occurrence and intensity of
magnetosonic waves inside and outside the plasmasphere over 3 years of Van Allen Probes
observations. (From Kim and Shprits 2018, reprinted by permission from American Geophysical
Union)

gradient and curvature drift rates are proportional to the proton energy, enhancing
at dusk and noon the phase space density of higher-energy protons compared to
lower energies. In addition, lower-energy protons are subject to charge exchange
collisions with exospheric neutrals depleting the core of the proton distribution. The
sketch in the middle of Fig. 5.15 demonstrates that below the ring velocity ∂f/∂v⊥
is positive. Thus there is free energy available for the excitation of magnetosonic
waves. The negative gradients above the ring velocity and below the velocity at the
trough of the distribution function can contribute to the damping of the waves. The
natural place for the generation of magnetosonic waves is thus close to the magnetic
equator where pitch angles are close to 90◦ and thus v‖ is small to maximize the
positive gradient of f .

Figure 5.16 shows global spatial distributions of the occurrence of proton rings,
and the occurrence and intensity (wave amplitude) of magnetosonic waves inside
and outside the plasmapause in Van Allen Probes observations. Proton rings and
magnetosonic waves are observed over a relatively wide L-range throughout the
dayside magnetosphere, both in and outside the plasmasphere. The occurrence of
rings and most intense waves is strongest and the L-coverage widest from noon
to dusk hours. An exception is outside the plasmasphere in the pre-noon sector at
low L-values. The waves are likely generated outside the plasmapause, since in the
plasmasphere the Alfvén velocity is well below the ring velocity.
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5.4 Drivers of ULF Pc4–Pc5 Waves

While the microscopic instabilities driving whistler-mode, EMIC, and X-mode
waves can often be attributed to specific properties of the particle distribution
functions, the question of driving ULF waves in the Pc4–Pc5 range is more
complicated.

5.4.1 External and Internal Drivers

Magnetospheric ULF waves can be generated both externally by solar wind–
magnetopause interactions and internally inside the magnetosphere over a wide
range of frequencies. The frequencies of Pc5 oscillations correspond to the longest
wavelengths that can be described as propagating or standing waves in the quasi-
dipolar domain of the inner magnetosphere. Excitation mechanisms affect the
polarization, azimuthal mode number (m), amplitude and frequency of the ULF
waves. Azimuthally large-scale (small m) waves are thought to arise primarily from
external sources, while azimuthally smaller-scale (large m) waves are more likely
excited by internal mechanisms. This division does, however, not always apply (e.g.,
James et al. 2016, and references therein).

A thorough discussion of external drivers is beyond the scope of this book
(for a review, see Hwang and Sibeck 2016, and the extensive set of references
therein). In fact, many different perturbations in the upstream solar wind and in the
magnetosheath can shake the magnetospheric magnetic field leading to propagating
or standing ULF oscillations in the magnetosphere. Obvious candidates are solar
wind pressure pulses hitting the magnetopause, the Kelvin–Helmholtz instability
(KHI) caused by large enough velocity shear across the magnetopause at the
flanks of the magnetosphere (Chen and Hasegawa 1974), and Flux Transfer Events
(FTE) through the dayside magnetopause (Russell and Elphic 1979). Furthermore,
the magnetosheath and the foreshock region upstream of the magnetosheath host
several plasma instabilities from ion gyro-scale kinetic to large-scale mirror-mode
instabilities, which may lead to waves penetrating to the magnetosphere.

Correlating different solar wind perturbations with magnetospheric fluctuations
is obscured by the interdependence between upstream parameters (e.g., Bentley
et al. 2018). Moreover, the dayside magnetopause acts as a low-pass filter suppress-
ing large-amplitude transient pressure pulses in the magnetosheath in timescales
shorter a few minutes (Archer et al. 2013). Thus several different effects can
result in similar toroidal, poloidal, or compressional ULF waves launched from the
magnetopause inward (Fig. 5.17).

A basic scenario of how a perturbation proceeds from the dayside magnetopause
inward, is sketched in Fig. 5.18. The inward propagating fast compressional magne-
tosonic wave launched by an upstream solar wind perturbation encounters increas-
ing Alfvén speed. When the frequency of the wave matches the eigenfrequency
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Fig. 5.17 A sketch of different mechanisms on the magnetopause that can drive global mag-
netospheric ULF oscillations in the Pc4–Pc5 range. Panels (a)–(d) illustrate the deepening of
Kelvin–Helmholtz surface waves to nonlinear vortices, panel (e) a solar wind pressure pulse and
(f) a flux tube pressing the magnetopause (From Bentley et al. 2018, reprinted by permission from
American Geophysical Union)

Fig. 5.18 A sketch of the coupling of a fast compressional magnetosonic wave launched at the
dayside magnetopause to a toroidal shear Alfvén wave forming field line resonances
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f = nvA/(2l) (Eq. 4.108) of the field line, the wave couples to a toroidal-mode
shear Alfvén wave. This leads to a field line resonance (FLR) in the wave guide with
reflecting boundaries in the northern and southern ionospheres (Sect. 4.4.2). As the
length of the field line (l) is proportional to L, the eigenfrequencies increase with
decreasing L-shells. When the compressional mode feeds the toroidal oscillation it
gets gradually damped. A similar scenario also applies to the dawn and dusk sectors
where the initial perturbation is more likely due to KHI, which may also drive the
toroidal mode directly.

The solar wind perturbations can also result in cavity mode oscillations (CMO) of
compressional waves in the radial direction (Sect. 4.4.2), although the eigenfrequen-
cies of the cavity modes and their harmonics are rather in the Pc3–Pc4 frequency
range than at Pc5 frequencies (e.g., Takahashi et al. 2018).

The largest amplitude ULF waves are associated with the strongest interplanetary
shocks (e.g., Hao et al. 2014). The waves can occur over a wide range of L-shells
and frequencies and thus affect radiation belt electrons of various energies. The
shock-induced ULF waves, however, are quickly damped, most likely via Landau
damping with ions of energies of a few keV (e.g., Wang et al. 2015).

Solar wind dynamic pressure oscillations can also directly drive oscillations in
the Earth’s magnetosphere. The magnetopause responds by contracting and relaxing
which leads to compressional magnetic field oscillations in the magnetosphere. This
scenario is supported by correlations between fluctuation power in the ULF Pc5
range in the solar wind density/dynamic pressure and in magnetospheric magnetic
field found in several experimental studies as well as in simulations showing FLRs
when the frequency of solar wind dynamic pressure oscillations matches the local
eigenfrequency of the geomagnetic field line (e.g., Claudepierre et al. 2010). If
the period of the upstream oscillation is longer than the Alfvén wave travel time
through the inner magnetosphere (about 3 min) and the time it takes for a pressure
disturbance to propagate past Earth (about 5 min), the perturbation inside the
magnetosphere is quasi-static resulting in a phenomenon called forced breathing
of the magnetosphere (Kepko and Viall 2019).

Internally driven Pc5 waves are commonly ascribed to instabilities due to
westward drifting ring current ions and ions injected by substorm dipolarizations
or bursty bulk flows from the magnetotail. A possible instability mechanism is the
bounce–drift resonance between the ions and the ULF wave mode

ω − lωbi − mωdi = 0 , (5.25)

where ωbi and ωdi are the bounce and drift frequencies of the ions, l the longitudinal
and m the azimuthal mode number of the wave (Southwood et al. 1969).2

2 In Chap. 6 we discuss the bounce and drift resonances in the context of electron diffusion and
transport.
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Note that the suprathermal ion populations that drive Pc5 waves are the same
ions as those driving EMIC waves and may have substantial anisotropies (T⊥ > T‖
or P⊥ > P‖), being capable to drive mirror mode waves with magnetic field and
density oscillations in opposite phases to each other (Sect. 4.4.1). The threshold for
the mirror mode instability must be calculated from kinetic theory resulting in

∑
α

β2
α⊥

βα‖
> 1 +

∑
α

βα⊥ . (5.26)

where βα are the beta parameters, i.e., the ratios of the plasma and magnetic
pressures, for each plasma species. Chen and Hasegawa (1991) conducted a the-
oretical kinetic treatment in realistic magnetospheric plasma conditions assuming a
core (∼ 100 eV) and energetic (∼ 10 keV) components and concluded that mirror
instability is an important internal mechanism to drive ULF waves. Consequently,
the local instability can support a slow mode ULF oscillation against its damping
through the Landau mechanism.

Figure 5.19 shows an example of an observed ULF wave event during a weak
storm on 6 July 2013 investigated by Xia et al. (2016). At the time indicated by the
vertical dashed lines in the figure the Van Allen Probe B was in the evening sector
(MLT ≈ 21:40) at L ≈ 5.5 close to magnetic equator. At this time there was a clear
pressure anisotropy (P⊥ > P‖) and the total magnetic field and the plasma density
oscillated in opposite phases. As usual the wave had mixed polarization. The parallel

Fig. 5.19 Van Allen Probe B observation of a poloidal mode ULF wave with magnetic and density
fluctuations in opposite phases. The top panel shows the density fluctuation, the center panel
the magnetic field components in field-aligned coordinates (blue: radial, green: azimuthal, red:
parallel). In the bottom panel the black line shows the magnetic pressure which is clearly in
opposite phase to parallel (blue) and perpendicular (red) plasma pressures. the dashed vertical
lines are there to guide the eye (From Xia et al. 2016, reprinted by permission from American
Geophysical Union)
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(poloidal) component was larger than the radial (compressional) component and the
azimuthal component of the waves was smallest. Thus the wave was a dominantly
poloidal mode with mirror-mode type compression consistent with the anisotropy-
driven drift-mirror instability.

James et al. (2016) investigated substorm-associated ULF waves using obser-
vations of the far-ultraviolet imager of the IMAGE satellite, several ground-based
magnetometer arrays and the SuperDARN network of coherent ionospheric radars.
The advantage of the radars is that they measure large-scale plasma fluctuations in
the ionosphere whereas only a fraction of the wave power is transmitted through the
ionosphere to ground. In the three events studied in detail by James et al. (2016)
the properties of the waves varied widely both within and between the events,
being different at different distances from the ionospheric location of the substorm.
The waves were found to be poloidal modes with azimuthal wave numbers from
−9 to −44, indicating that the phase of the waves propagated westward, which is
consistent with westward drifting protons as wave drivers in the magnetosphere.
The energies of the protons were estimated from the resonance condition to be in
the range 2–66 keV.

The determination of the azimuthal mode number from spacecraft observations
is notoriously difficult. The measurements need to be performed at the same L-
shell by at least two spacecraft close enough to each other in order to avoid the
2π ambiguity (aliasing) in the calculation of the phase difference between the
observed oscillations. Murphy et al. (2018) performed a detailed analysis of ULF
Pc4–Pc5 wave observations of the closely-spaced MMS spacecraft during a period
of solar wind high-speed stream between 25 September and 10 October 2016. Due
to the highly-elliptical orbit the velocity of the satellites close to the perigee of the
constellation (1.2 RE) was so high that the analysis was limited outside 4 RE but
reaching up to the magnetopause in the evening sector where the apogee was at the
time of the observations. The ULF wave power peaked close to the magnetopause
and in the inner magnetosphere at equatorial distances 6–8 RE .

Murphy et al. (2018) calculated the azimuthal mode numbers for discrete ULF
waves observed during the investigated period. The distribution of m at distances
4–14 RE is shown in Fig. 5.20. The mode numbers were found to be both positive
(indicating eastward propagation of the wave) and negative (indicating westward
propagation of the wave) reaching up to ±100 but preferentially within |m| < 20.
At equatorial distances up to 8 RE the mode numbers were predominantly positive
and < 20, between 8 and 11 RE predominantly between −5 and −40 and close
to the magnetopause beyond 13 RE again mostly positive and < 20. The positive
mode numbers were interpreted to indicate an external driver and the negative ones
an internal driver. The latter is consistent with the internal driver being protons
passing the Earth on the evening side and driving westward propagating ULF waves
similarly to the above mentioned results of James et al. (2016).
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Fig. 5.20 Left: the distribution of azimuthal mode numbers; middle: the histogram of the
distribution; right: the probability distribution. The horizontal axis is the Earth-centered distance
in RE (From Murphy et al. 2018, Creative Commons Attribution License)

5.4.2 Spatial Distribution of ULF Waves

The wide spatial range of ULF oscillations from the magnetopause to the ionosphere
and the great variability of the wave properties under different solar wind conditions
and magnetospheric activity pose challenges to the production of comprehensive
maps of the distribution of the waves. Furthermore, a reliable determination of the
polarization requires simultaneous observation of a sufficient number of electric and
magnetic field components, preferentially all of them. Measuring the magnetic field
components often is sufficient, but the polarization of the electric field is needed,
in particular, close to the equator where the magnetic field of the fundamental
(n = 1) FLR has a node yielding a weak magnetic field signature in the
observation. Consequently, different studies based on different satellite and ground-
based observations have led to different, sometimes contradictory, conclusions.

Hudson et al. (2004a) investigated ULF oscillations in the range L = 4 − 9 over
14 months of CRRES observations, which took place close to the maximum of Solar
Cycle 22. Toroidal Pc5 oscillations were found on the dusk and dawn flanks of the
magnetosphere inside L = 8, preferentially at the higher end of the L-shells. Based
on the observed local plasma frequency the waves were found to be standing FLRs at
the fundamental frequency f = vA/(2l). Poloidal (including compressional) modes
were found to occur in the dusk-to-midnight sector mostly from L = 5 to L = 8.
This is consistent with above discussed instability driven by ions injected from the
magnetotail. The orbit of CRRES did not allow sufficient sampling on the dayside
and thus the important dayside compressional modes were not covered in the study.

The most comprehensive picture of Pc4–Pc5 oscillations has been obtained from
the THEMIS mission. As already illustrated in Fig. 4.7, the magnetometer and the
electric field instrument of THEMIS have made possible a complete characterization
of different polarization components. Furthermore, after October 2007 the orbital
configuration of the spacecraft allowed a full nearly-equatorial coverage of all local
times in 13 months reaching out to about 10 RE .

Liu et al. (2009) performed a statistical study of Pc4–Pc5 events observed from
November 2007 to December 2008. The total observation time was more than
3000 h. Of the identified wave events 9805 were in the Pc4 range and 50,184 in
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Fig. 5.21 Spatial distribution of the occurrence rates of poloidal and toroidal ULF Pc4 and Pc5
events. The bins are 0.5 RE wide in the radial direction from 4 to 9 RE and 15 min in the local
time. (From Liu et al. 2009, reprinted by permission from American Geophysical Union)

the Pc5 range. In both frequency ranges the number of toroidal events was a little
larger than the number of poloidal events (Pc4: 51%, Pc5: 59%).

The spatial distribution of the occurrence rates of poloidal (including the
compressional) and toroidal modes are shown in Fig. 5.21. Pc4 events were most
frequent at radial distances 5–6 RE form the post-midnight (mostly toroidal) to noon
(mostly poloidal), whereas Pc5 events were most frequent at distances 7–9 RE . That
poloidal events occur mostly on the dayside is consistent with upstream solar wind
perturbations. The enhancement of poloidal Pc5 events on the dusk flank is, in turn,
consistent with the internal driving through bounce–drift resonance with ring current
ions and/or ions freshly injected from the tail.

The different radial distributions of the toroidal Pc4 and Pc5 modes are likely
related to the inverse dependence of the FLR frequency on the length of the field
line. The high occurrence rates of toroidal Pc5 events close to the dawn and dusk
sectors is an indication that the waves may be driven directly by the Kelvin–
Helmholtz instability on the flanks of the magnetosphere. Liu et al. (2009) suggested
that the relatively low occurrence rates of both poloidal and toroidal Pc4 events in
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the dusk sector would be due to the extension of the plasmapause further out during
low magnetospheric activity.

Liu et al. (2009) also investigated the distribution of wave power. Overall the
wave power was higher in the Pc5 than the Pc4 band. In both frequency bands the
power decreased with decreasing radial distance from the Earth.
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Chapter 6
Particle Source and Loss Processes

The main sources of charged particles in the Earth’s inner magnetosphere are the
Sun and the Earth’s ionosphere. Furthermore, the Galactic cosmic radiation is an
important source of protons in the inner radiation belt, and roughly every 13 years,
when the Earth and Jupiter are connected via the interplanetary magnetic field,
a small number of electrons originating from the magnetosphere of Jupiter are
observed in the near-Earth space. The energies of solar wind and ionospheric plasma
particles are much smaller than the particle energies in radiation belts. A major
scientific task is to understand the transport and acceleration processes leading to the
observed populations up to relativistic energies. Equally important is to understand
the losses of the charged particles. The great variability of the outer electron belt
is a manifestation of the continuously changing balance between source and loss
mechanisms, whereas the inner belt is much more stable.

In the preceding chapters we already have encountered various aspects of
acceleration and loss of charged particles, e.g., betatron and Fermi acceleration
(Sect. 2.4.4), bounce and drift loss cones (Sect. 2.6.1), magnetopause shadowing
(Sect. 2.6.2), as well as the basics of growth and damping of waves in Chaps. 4
and 5. In this chapter we present the general framework of quasi-linear theory
of diffusion and transport, and discuss the sources and losses of different particle
species in more detail. At the end of the chapter (Sect. 6.7) we point out that the
different mechanisms do not only affect the radiation belt particles additively but
also synergistically, e.g., through nonlinear modulation of whistler-mode or EMIC
waves by large-amplitude ULF waves.
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6.1 Particle Scattering and Diffusion

The response of charged particles to temporally and spatially variable electric and
magnetic fields is deterministic and, according to Liouville’s theorem of statistical
physics, in absence of external sources and losses the phase space density is
conserved along the dynamical trajectories of the particles. However, the empirical
determination of temporal evolution of the phase space density ∂f/∂t in any given
location is limited by imperfect observations of electromagnetic fields and waves
and the particle populations. The finite angular, energy, and temporal resolution of
particle instruments makes them insensitive to phase mixing.1 Consequently, we are
not able to observationally distinguish individual particles with different phases in
their gyro, bounce, or drift motions and the empirical information is in most cases
limited to phase-averaged description of the radiation belts. On the other hand, the
phase mixing makes the theoretical description much more tractable allowing the
use of diffusion formalism to describe the time evolution of particle distributions. As
stated by Schulz and Lanzerotti (1974): “Thus, the ultimate inability to distinguish
particle phases by observations is a simplifying virtue”.

Diffusion is a statistical concept to describe the evolution of the phase space
density. It was already encountered in Sect. 5.1.3 as random walk of particles along
single-wave characteristics. Although it is customary to talk about particle diffusion,
individual particles actually do not diffuse. They are scattered in the phase space by
spatial and temporal inhomogeneities, wave–particle interactions and collisions. In
wave–particle interactions the resonant scattering is the most efficient, but not the
only, cause of diffusion.

Wave–particle interactions can act both as sources and losses of particles in the
belts. For example, acceleration of lower-energy electrons can be considered as a
source of higher-energy electrons. The losses through wave–particle interactions
are due to lowering the particles’ pitch angles small enough to precipitate into the
atmosphere.

In Chap. 5 we have discussed the growth and decay of waves in Landau and
gyro resonances ω − k‖v‖ = nωcα/γ with the particles. The Landau resonance
(n = 0) either increases or decreases the parallel energy of the particles depending
on the shape of the particle distribution function close to the resonant velocity
v‖,res = ω/k‖, which leads to energy and pitch-angle diffusion of the phase space
density. The perpendicular momentum does not change in Landau resonance and
thus the first adiabatic invariant μ = p2⊥/(2mB) is conserved but not the second
J = ∮

p‖ ds.
The gyro resonance (n �= 0) breaks the invariance of μ and, consequently, the

invariance of J and Φ, and leads again to pitch-angle and energy diffusion. Since
the gyro resonance takes place in much smaller temporal and spatial scales than
the azimuthal drift, its effect on Φ (or on L∗) of the particle remains practically

1 Phase mixing is analogous to the hiding of the initial perturbation in the ballistic term in the
Landau damping process (Sect. 4.2.3).
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negligible, and thus does not need to be taken into account in pitch-angle diffusion
calculations.

In radiation belts gyro-resonant interactions with whistler-mode chorus waves
and plasmaspheric hiss at kHz frequencies and with EMIC waves around 1 Hz are
the most efficient mechanisms to scatter charged particles toward the atmospheric
loss cone. A single wave–particle interaction does not change much the pitch angle
and energy, unless the wave amplitude grows to nonlinear regime (see the discussion
in Sect. 6.4.4, Fig. 6.4). As the width of the equatorial loss cone in radiation belts is
only a few degrees (Fig. 2.6), particles at large equatorial pitch angles must scatter
numerous times before they approach the edge of the loss cone and can precipitate
to the atmosphere. Consequently, the pitch-angle scattering often is a slow process
depleting the radiation belts in timescales of days to hundreds of days, depending on
the wave mode and particle energy. Furthermore, for the whistler-mode waves with
ω < ωce the resonance vanishes when v‖ → 0. Thus, in order to limit a larger than
observed excess of close-to-equator mirroring electrons additional mechanisms are
needed to scatter the electrons to smaller pitch angles. The same is true for scattering
of radiation belt and ring current ions with EMIC waves.

In theoretical investigations it is common to consider particles mirroring exactly
at the equator (α = 90◦), as is frequently done also in this book. For such particles
there is no bounce motion and J = 0.2 This is a bit of a singular special case because
the inner magnetosphere never is so symmetric that the motion of the particles
would remain strictly perpendicular. Due to finite temperature there are thermal
velocities and fluctuations in the parallel direction, and once a particle gets parallel
momentum, it will be affected by the mirror force. However, this does not solve the
problem of finding efficient enough scattering mechanism for almost equatorially
mirroring particles.

A mechanism that has been invoked to scatter electrons from nearly 90◦ pitch
angles toward larger parallel velocity, where the whistler-mode scattering can
take over, is resonance between the electron bounce motion and the equatorial
magnetosonic noise introduced in Sect. 5.3.2. The bounce motion requires, by
definition, that μ is conserved and the bounce frequency ωb must be lower than
ωce. If the wave frequency matches with a multiple of ωb , the resonance can break
the invariance of J and lead to scattering in pitch angle and energy.

The bounce-resonant scattering can be investigated by supplementing the parallel
equation of motion with a time-dependent force field F‖(s, t), where s is the
coordinate along the magnetic field line

dp‖
dt

= −μ

γ

∂B(s)

∂s
+ F‖(s, t) , (6.1)

2 Recall that the bounce time is well-defined and finite also for “equatorially mirroring” particles,
as discussed in Sect. 2.4.2.
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where μ is the relativistic adiabatic invariant p2⊥/(2mB) (e.g., Shprits 2016, and
references therein). The parallel force F‖ can be due to an electrostatic wave or,
in the case of equatorial magnetosonic noise, due to the parallel electric field
component of an oblique (WNA ≈ 89◦) X-mode wave.

Another mechanism to break the invariance of J may arise from compressional
ULF fluctuations that affect the length of the bounce path. The net parallel
acceleration can in this case be described as Fermi acceleration due to the mirror
force oscillating in resonance with the bounce motion. As pointed out by Dungey
(1965), the bounce motion is associated with the azimuthal drift. Expanding the
azimuthal fluctuation as exp(−iωt + imφ) the resonance condition can be expressed
in terms of bounce and drift frequencies as

ω − lωb − mωd = 0 , (6.2)

where l is the longitudinal mode number and m the azimuthal mode number of the
wave.

We can consider the bounce-resonance associated with a ULF wave mode of a
given m. Let ϑ be the co-latitude of spherical coordinates, which at the equator is
by definition 90◦. Defining the azimuthal wave number as kφ = m/(r sin ϑ) and
bounce-averaged drift velocity as vφ = ωd r sin ϑ at given radial distance r and co-
latitude, the resonance condition can be rewritten analogous to the gyro resonance
as

ω − kφvφ = lωb , (6.3)

where kφvφ takes the role of the Doppler shift k‖v‖ in gyro-resonant interactions.
As co-latitude cancels from the equation, the resonance condition is independent of
latitude.

Finally, the third invariant Φ, which is inversely proportional to L∗, is violated
by the bounce-averaged drift resonance

ω − mωd = 0 . (6.4)

The drift resonance is associated with cross-field motion of trapped particles
when the first two adiabatic invariants are conserved. This leads to changes in
particle energy and to spreading of the particle distribution to different drift shells,
which is commonly referred to as radial diffusion (for a review, see Lejosne
and Kollmann 2020, and references therein). The concept of radial diffusion was
introduced already during the early days of radiation belt research to explain the
existence of the outer radiation belt (e.g., Parker 1960). The attribute “radial” is a
bit misleading because L∗ is not a spatial coordinate but inversely proportional to the
magnetic flux enclosed by the particle’s drift shell, corresponding to the equatorial
radial distance LRE in a purely dipolar field only. The drift resonance needs low
enough wave frequency to match with the timescale of electron’s drift motion.
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Table 6.1 Summary of different resonances between the waves in the inner magnetosphere and
radiation belt particles

Resonance Description

Gyro resonance
(Eq. (5.4), n �= 0)

Resonance with the particle’s gyro motion changes the particle’s
momentum along the single-wave characteristic.

Nonrelativistic : resonance depends on the parallel velocity of the
particle only; straight resonant line in (v‖, v⊥)-space

Relativistic : resonance depends on both parallel and perpendicular
velocities through the Lorentz factor; resonant ellipse in (v‖, v⊥)-space

Landau resonance
(Eq. (5.4), n = 0)

Electric field parallel to the magnetic field accelerates/decelerates a
particle and increases/decreases its parallel energy/velocity.

Requires a finite wave normal angle, and becomes more effective with
increasing wave obliquity.

Bounce resonance
(Eq. (6.3))

Resonance with multiples of the particle’s bounce frequency.

Drift resonance
(Eq. (6.4))

Resonance with multiples of particle’s drift frequency around the Earth.

Comparison of Tables 2.2 and 4.1 indicates that ULF Pc4–Pc5 waves can interact
resonantly with electrons from about 1 MeV upward. Resonance with lower energy
electron populations is also possible, but requires high azimuthal wave numbers.
This is the case usually with externally excited poloidal waves (Sect. 5.4.1). We
discuss the radial diffusion further in Sect. 6.4, including other ways to transport
particles across the drift shells, e.g., inductive electric fields related to shock driven
compressions of the dayside magnetopause or to substorm expansive phases.

Table 6.1 summarizes the main features how different waves discussed in
Chap. 5, can be in resonance with radiation belt charged particles. These waves often
co-exist in the inner magnetosphere and affect the particle populations in multiple
ways. For example, some of the resonances increase/decrease the perpendicular
energy of the particle (gyro and drift resonances), while others (Landau and bounce
resonances) increase/decrease the parallel energy and velocity of electrons. To have
higher order (|n| > 1) gyro resonances the Doppler-shifted wave frequency ω−k‖v‖
must not become so large that the dispersion equation would no more be fulfilled in
the plasma conditions of the inner magnetosphere.

6.2 Quasi-Linear Theory of Wave–Particle Interactions

The time evolution of the phase space density is commonly described using the
diffusion equation that can also include effects beyond wave–particle interactions
or Coulomb collisions. In this Section we introduce the diffusion equation in
the framework of quasi-linear theory, which is a standard approach in numerical
simulation and modeling studies addressing the wave–particle interactions in the
inner magnetosphere. An important element is to find the properties of the waves
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related to wave–particle interactions (e.g. amplitude, wave normal angle, intensity
and MLT distribution). These must often be estimated empirically from various
observations.

Quasi-linear theory is a theoretical framework in the domain between the
linearized Vlasov theory (Sect. 4.2) and nonlinear plasma physics of shocks,
large-amplitude waves, wave–wave couplings, strong plasma turbulence, etc. In
quasi-linear theory the wave modes are those of the linear plasma theory, but the
slow temporal evolution of particle distribution functions is taken into account. The
restriction to linear waves is an evident limitation and cannot rigorously address the
problem of plasma perturbations growing to large amplitudes. The practical limits of
the validity of quasi-linear computations are difficult to assess. For example, it is not
clear what is the effect of small-scale nonlinear chorus elements of whistler-mode
waves on the larger-scale diffusion process.

As always, there are no general methods to deal with nonlinear plasma equations
and nonlinear processes must in practice be considered on a case-by-case basis.
Often the best that can be done is to compute the orbits of a large number
of randomly launched charged particles in the presence of prescribed nonlinear
fluctuations. If it is possible to determine the diffusion coefficients from, e.g.,
numerical simulations or empirically from observations, they can be inserted in the
diffusion equation and used in computation of the temporal evolution of the phase
space density, even if the underlying particle scattering would be due to nonlinear
interactions.

6.2.1 Elements of Fokker–Planck Theory

The fundamental task is to find a description for the temporal evolution of the
charged particle distribution function ∂f/∂t at a given location in the phase space
in the presence of plasma waves, including inter-particle collisions when needed.
While the inner magnetospheric plasma is almost collisionless, in addition to various
wave–particle interactions, Coulomb and charge-exchange collisions often need to
be included in computations of the ring current and radiation belt dynamics. This can
formally be done by introducing a collision term (∂f/∂t)c on the right-hand side of
the Vlasov equation and rewriting it as the Boltzmann equation (3.17). The Fokker–
Planck approach is a common, although not the only, method to determine the
frictional and diffusive effects arising from the RHS of the Boltzmann equation and
it can also be applied to “collisions” between plasma waves and charged particles.

To formally introduce the Fokker–Planck approach let us consider the function
ψ(v,�v) that gives the probability that a particle’s velocity v is deflected, or
scattered, by a small increment �v due to a collision or to an interaction with a
wave electric field. Integrating over all possible deflections that may occur during a
period �t before the time t gives the distribution function

f (r, v, t) =
∫

f (r, v − �v, t − �t) ψ(v − �v,�v) d(�v) . (6.5)
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In the Fokker–Planck approach ψ is assumed to be independent of t . Thus, the
scattering process has no memory of earlier deflections and the process can be
characterized as a Markovian random walk in the phase space.

Next Taylor expand the integral in (6.5) in powers of the small velocity changes
�v

f (r, v, t) =∫
d(�v)

[
f (r, v, t − �t) ψ(v,�v) − �v · ∂

∂v
(f (r, v, t − �t) ψ(v,�v))

+ 1

2
�v�v : ∂2

∂v∂v
(f (r, v, t − �t) ψ(v,�v)) + . . .

]
, (6.6)

where : indicates scalar product of two dyadic tensors aa : bb = ∑
ij aiaj bibj .

The total probability of all deflections is unity
∫

ψ(�v) d(�v) = 1 and the rate of
change of f due to collisions is

(
∂f

∂t

)
c

≡ f (r, v, t) − f (r, v, t − �t)

�t
(6.7)

≈ − ∂

∂v
·
( 〈�v〉

�t
f (r, v, t)

)
+ 1

2

∂2

∂v∂v
:
( 〈�v�v〉

�t
f (r, v, t)

)
,

where the averages 〈�v〉 and 〈�v�v〉 are defined as

〈. . . 〉 =
∫

ψ(v,�v)(. . . )d(�v) (6.8)

and the terms of the second and higher orders in �t have been dropped. Note that
the denominator in both terms on the RHS of (6.7) is �t . In random walk the mean
square displacements increase linearly with time.

By inserting (6.7) as the collision term to the Boltzmann equation we have
arrived to the Fokker–Planck equation. The first term on the RHS of (6.7) describes
the acceleration/deceleration (∝ 〈�v〉/�t) of particles due to collisions, which in
classical resistive media corresponds to dynamical friction. The second term is the
diffusion term, containing the diffusion coefficient Dvv ∝ 〈�v�v〉/�t . Note that
diffusion can change both the absolute value and the direction of the velocity of
the particles. The former corresponds to energy diffusion, the latter, in magnetized
plasma, to pitch-angle diffusion.

The SI units of Dvv are m2 s−3 because the diffusion takes place in the velocity
space. In radiation belt diffusion studies the mostly used coordinates are the
drift shell, momentum and pitch angle, which have different units. The diffusion
equations are commonly normalized so that all diffusion coefficients are given in
same units, e.g., momentum2 s−1 or s−1.



166 6 Particle Source and Loss Processes

Thus far we have nothing more than a formal equation and the hard task is to
determine the correct form of the probability function ψ . The diffusion through
Coulomb collisions is treated in several advanced plasma physics textbooks (e.g.,
Boyd and Sanderson 2003) and we skip the technical details. Our focus is on the
diffusion resulting from wave–particle interactions and large-scale inhomogeneities
of the magnetic field.

6.2.2 Vlasov Equation in Quasi-Linear Theory

Although the Fokker–Planck theory is fundamentally a collisional theory, also
wave–particle interactions can be cast to the same formulation within the framework
of the quasi-linear approach. The method is to consider the slowly evolving and
fluctuating parts of the distribution function separately.

Diffusion Equation in Electrostatic Approximation

The critical assumption of quasi-linear theory is that the temporal evolution of the
distribution function f (r, v, t) takes place much more slowly than the oscillations
of the waves interacting with the particles. The separation is most transparent for
electrostatic waves in non-magnetized plasma familiar from the Landau solution of
the Vlasov equation in Sect. 4.2.

Let us consider f as a sum of a slowly varying part f0, which is the average of f

over the fluctuations, and of a fluctuating part f1. For simplicity, we further assume
that f0 is spatially uniform and write

f (r, v, t) = f0(v, t) + f1(r, v, t) . (6.9)

Now the Vlasov equation is

∂f0

∂t
+ ∂f1

∂t
+ v · ∂f1

∂r
− e

m
E · ∂f0

∂v
− e

m
E · ∂f1

∂v
= 0 , (6.10)

where the charge density fluctuations are related to the fluctuating electric field
through the Maxwell equation

∇ · E = − e

ε0

∫
f1 d3v . (6.11)

Assuming that the fluctuations in f1 and E are nearly sinusoidal waves, the
averages of functions linear in f1, including E, over the fluctuation period vanish.
The average of (6.10) denoted by 〈. . . 〉 is thus

∂f0

∂t
= e

m

〈
E · ∂f1

∂v

〉
. (6.12)
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This equation describes the temporal evolution of f0.
By subtracting (6.12) from (6.10) we get an equation for the rapid variations of

f1

∂f1

∂t
+ v · ∂f1

∂r
− e

m
E · ∂f0

∂v
= e

m

(
E · ∂f1

∂v
−
〈
E · ∂f1

∂v

〉)
. (6.13)

In the quasi-linear approximation we neglect the second order nonlinear terms on
the RHS as smaller than the linear terms on the LHS, which leads to

∂f1

∂t
+ v · ∂f1

∂r
− e

m
E · ∂f0

∂v
= 0 . (6.14)

This is formally the same as the linearized Vlasov equation (4.1) with the exception
that now, according to (6.12), f0 is time-dependent.

From here on we continue in the same way as in the derivation of the Landau
solution. Assuming, for simplicity, that there is only one pole in the complex
Laplace-transformed time domain, corresponding to the complex frequency ω0, we
find the fluctuating part of the distribution function in the k-space

f1(k, v, t) = ieE(k, t)

m(ω0 − k · v) · ∂f0

∂v
, (6.15)

where

E(k, t) = ie k exp(−iω0t)

ε0k2(∂K(k, ω)/∂ω)|ω0

∫
f1(k, v, 0)

(ω0 − k · v) d3v . (6.16)

In this expression K(k, ω) is the dielectric function of Vlasov theory (4.4).
Finally, by substituting (6.15) and (6.16) to (6.12) and making the inverse Fourier

transformation back to the r-space the temporal evolution of f0 is found to be given
by the diffusion equation

∂f0

∂t
= ∂

∂vi

Dij
∂f0

∂vj

, (6.17)

where the subscripts {i, j } refer to the cartesian components of the velocity vector
and to the elements of the diffusion tensor D. Here summing over repeated indices
is assumed. The tensor elements Dij are the diffusion coefficients

Dij = lim
V →∞

ie2

m2V

∫ 〈Ei(−k, t)Ej (k, t)〉
(ω0 − k · v) d3k , (6.18)

where 〈Ei(−k, t)Ej (k, t)〉/V is the spectral energy density of the electrostatic field
and V denotes the volume of the plasma.
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Note that the components of the electric field in (6.18) are given in Fourier-
transformed configuration space. In the following we often express the phase space
density in other than cartesian velocity coordinates, e.g., as f (p, α) or f (μ,K,L∗).
In practice the diffusion coefficients must be calculated from the observed or
modeled amplitude and polarization of the electric field in the r-space and transform
thereafter the diffusion equation into the appropriate coordinate system.

Now we have a recipe to calculate the diffusion of the distribution function f0 in
the velocity space if we can determine the spectrum of electric field fluctuations for
a given wave mode (ω0,k).

Diffusion Equation for Magnetized Plasma

The inner magnetospheric plasma is embedded in a magnetic field and the fluctu-
ations are electromagnetic, which makes the treatment of the diffusion equation
technically more complicated than in the electrostatic case. The fundamental
quasi-linear theory of velocity space diffusion due to small-amplitude waves in a
magnetized plasma was presented by Kennel and Engelmann (1966) and has been
discussed thoroughly in the monographs by Schulz and Lanzerotti (1974) and Lyons
and Williams (1984).

Kennel and Engelmann (1966) derived the diffusion equation for f0 due to
electromagnetic waves into the form

∂f0

∂t
= ∂

∂v
·
(
D · ∂f0

∂v

)
, (6.19)

where the diffusion tensor D is defined as

D = lim
V →∞

1

(2π)3V

∞∑
n=−∞

q2

m2

∫
d3k

i

ωk − k‖v‖ − nωc
(an,k)

∗(an,k) . (6.20)

Here V is the volume of the plasma, the sum is over all harmonic numbers, the
vectors an,k contain information on the amplitude and polarization of the wave
electric field, the asterisk indicates the complex conjugate, ωk is the complex
frequency corresponding to the wave vector k, and ‖ refers to the direction of the
background magnetic field. It is evident that accurate empirical determination of the
amplitude and polarization is essential for successful numerical computation of the
components of the diffusion tensor.

Kennel and Engelmann (1966) further showed that diffusion brings the plasma to
a marginally stable state for all wave modes. In the proof no assumption of a small
growth rate was made. Thus the conclusion applies to both non-resonant adiabatic
diffusion, e.g., large-scale fluctuations of the magnetospheric magnetic field, and to
resonant diffusion at the limit where the imaginary part of the frequency ωki → 0.
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At the limit of resonant diffusion the singularity in the denominator of (6.20) is
replaced by Dirac’s delta that picks up the waves for which

ωkr − k‖v‖ − nωc = 0 (6.21)

for an integer n. This is the resonance condition familiar from Chap. 5. The theory
describes the diffusion resulting from both Landau (n = 0) and gyro-harmonic
(n �= 0) resonances assuming that the conditions of quasi-linear approach are met.

In radiation belts the particle distribution functions are safe to assume gyrotropic,
which motivates formulation of the quasi-linear theory in two-dimensional (v⊥, v‖)
velocity space. It is a straightforward exercise in coordinate transformations (e.g.,
Chap. 5 of Lyons and Williams 1984) to write the diffusion equation in the (v, α)-
space as

∂f

∂t
= ∇ · (D · ∇f )

= 1

v sin α

∂

∂α
sin α

(
Dαα

1

v

∂f

∂α
+ Dαv

∂f

∂v

)
(6.22)

+ 1

v2

∂

∂v
v2
(

Dvα
1

v

∂f

∂α
+ Dvv

∂f

∂v

)
,

where the subscript 0 has been dropped and the slowly3 evolving velocity distri-
bution function is denoted by f . Note that here the diffusion equation is written
in a form where all diffusion coefficients are given in units of velocity2 s−1. The
non-relativistic equation (6.22) can be formulated relativistically by replacing v

with p = |p| = γmv. Formally the Lorentz factor only appears as a relativistic
correction to the gyro frequency in the calculation of the diffusion coefficients. The
relativistic calculations are, however, more complicated because the resonant lines
become resonant ellipses as discussed in Sect. 5.1.3.

The diffusion equation (6.22) expresses the already familiar fact that wave–
particle interactions can cause diffusion both in the absolute value of the velocity
(or kinetic energy W = mv2/2) and in pitch angle. Kennel and Engelmann (1966)
pointed out that the particles scatter primarily in pitch angle. Only for particles
whose velocities are of the order of or slightly below the wave phase velocity is
the energy scattering rate comparable to the rate of pitch-angle scattering.

The direction of the diffusion depends on the shape of the particle distribution
function close to the velocity of the particle. For example, when the anisotropy
of suprathermal electron distribution amplifies whistler-mode waves in the outer
radiation belt (Sect. 5.2.1), the suprathermal electrons scatter toward smaller pitch
angles and lower energy. On the other hand the velocity distribution of radiation belt

3 Recall that “slowly” refers to slow compared to the wave oscillation.
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electrons (100 keV and above) is more isotropic with ∂f/∂W < 0 and the scattering
in energy leads to electron acceleration at the expense of wave power.

6.2.3 Diffusion Equation in Different Coordinates

In radiation belt physics the phase space density in six-dimensional phase space
f (r,p, t) is often given as a function of the action integrals {Ji} = {μ, J,Φ} and
the corresponding gyro-, bounce- and drift-phase angles {ϕi}. If an action integral is
an adiabatic invariant, the corresponding phase angle is a cyclic coordinate and the
phase space density is independent of that angle. In a fully adiabatic case, where all
action integrals are conserved, the phase space is three-dimensional and f (μ, J,Φ).

When the adiabatic invariance of one or several action integrals is broken,
particles with different phase angles respond differently to the perturbation. For
example, gyro-resonant electrons in the same phase as the electric field of a
whistler-mode wave are scattered most efficiently leading to gyro-phase bunching
of scattered electrons. However, within the quasi-linear approximation, the random
walk of the particles in the phase space leads to phase mixing and after a few
oscillation periods the individual phases are no more possible to distinguish in
observational data. In the case of whistler-mode waves the phase mixing randomizes
the phase angles within a few milliseconds, which is well below the temporal
resolution of most particle instruments.

The phase mixing is much slower in the drift motion around the Earth. For
example, substorm related particle injections from the magnetotail into the inner
magnetosphere and abrupt energization due to interplanetary shocks hitting the
dayside magnetopause take place much faster than the drifts around the Earth
and break the third adiabatic invariant. The drift periods are from a few minutes
to several hours (Table 2.2) and the bunches of energetic particles are readily
observable in particle spectra as drift echoes. Figures 7.6 and 7.8 in Chap. 7 are
two illustrative examples of drift echoes after shock-driven acceleration.

The phase mixing facilitates the use of phase-averaged phase space density
f ({Ji}, t) in diffusion studies. As the phase information is lost in the averaging, f

is not consistent with the Liouville theorem in case of broken adiabatic invariance.
However, the Fokker–Planck equation can still be applied in the quasi-linear
approximation. Now the kinetic equation, supplemented with external sources and
losses, can be written as

∂f

∂t
+
∑

i

∂

∂Ji

[〈
dJi

dt

〉
ν

f

]
=
∑
ij

∂

∂Ji

[
Dij

∂f

∂Ji

]
− f

τq

+ S , (6.23)

where 〈dJi/dt〉ν are the frictional transport coefficients and Dij the elements of
the diffusion tensor. The loss and source terms (f /τq and S) represent the average
lifetime of immediate loss processes (e.g., magnetopause shadowing or charge
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exchange) and the drift-averaged external sources of f . From here on we simplify
the notation by dropping the bars above f and S.

It is customary to write the kinetic equation in some other coordinates {Qi} than
the basic action integrals {Ji}. In radiation belt studies J is frequently replaced by K

and Φ by L (or L∗). The general coordinate transformation of the kinetic equation
is

∂f

∂t
+ 1

J

∑
i

∂

∂Qi

[
J

〈
dQi

dt

〉
ν

f

]
= 1

J

∑
ij

∂

∂Qi

[
J D̃ij

∂f

∂Qj

]
− f

τq

+ S ,

(6.24)

where J = det{∂Jk/∂Ql} is the Jacobian determinant of the transformation from
coordinates {Jk} to coordinates {Ql} and D̃ij denotes the transformed diffusion
coefficients. For example, the Jacobian for the transformation from {Ji} = {μ, J,Φ}
to {Qi} = {μ,K,L} is J = (8mμ)1/2(2πBER2

E/L2) , where BE is the equatorial
magnetic field on the surface of the Earth.

Let us neglect the frictional term. Assuming that μ and K are constant, J ∝
L−2. This way we obtain the important radial diffusion equation

∂f

∂t
= L2 ∂

∂L

(
DLL

L2

∂f

∂L

)
+ S − f

τq

. (6.25)

Radial diffusion refers in this context to the statistical effect of the motion of
radiation belt particles across the drift shells while conserving the first two adiabatic
invariants.

In radiation belt studies the phase space density is often considered as a function
of pitch angle, momentum and drift shell. In this case the detailed formulation of
the diffusion equation is a bit more complicated (e.g., Schulz and Lanzerotti 1974)

∂f

∂t
= L2 ∂

∂L

∣∣∣
α,p

(
DLL

L2

∂f

∂L

∣∣∣
α,p

)

+ 1

G(α)

∂

∂α

∣∣∣
p,L

G(α)

(
Dαα

∂f

∂α

∣∣∣
p,L

+ p Dαp
∂f

∂p

∣∣∣
α,L

)
(6.26)

+ 1

G(α)

∂

∂p

∣∣∣
α,L

G(α)

(
p Dαp

∂f

∂α

∣∣∣
p,L

+ p2 Dpp
∂f

∂p

∣∣∣
α,L

)
+ S − f

τq

.

Here α is the pitch angle at equator, G = p2T (α) sin α cos α, and T (α) the bounce
function (Eq. (2.76) or (2.77)). DLL is the diffusion coefficient in L∗ (the asterisk
has been dropped for clarity). Dαα , Dαp and Dpp are the diffusion coefficients in
pitch angle, mixed pitch angle–momentum, and momentum. In (6.26) all diffusion
coefficients are given in units of s−1. Due to vastly different temporal and spatial
scales the cross diffusion between L and (α, p) has been neglected. As the gyro-
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and Landau-resonant processes scatter particles both in momentum and pitch angle,
there is no reason to diagonalize the diffusion coefficients in the (α, p)-space.

The determination of the diffusion coefficients is the most critical part in studies
of transport, acceleration, and loss of radiation belt particles. We discuss the
procedures in the context of radiation belt electrons in Sect. 6.4.

6.3 Ring Current and Radiation Belt Ions

There are two partially spatially overlapping energetic ion populations in the inner
magnetosphere. The strongly time-variable ring current is carried primarily by
westward drifting ions in the energy range 10–200 keV, peaking at geocentric
distances 3–4 RE and reaching roughly to 8 RE . The much less variable proton
population of the inner radiation belt is located earthward of 3 RE . It consists mainly
of 0.1–40-MeV protons with a high-energy tail up to relativistic energies of 1–
2 GeV.

Although the ring current is not the main focus of our book, the basic dynamics of
the current-carrying ions is similar to the dynamics of radiation belt particles. Thus
we start this Section with a brief review of the characteristics of the ring current. As
noted in Chap. 1, the ring current is the main, but not the only, cause of temporal
perturbations in the north component of the equatorial magnetic field on ground.
These perturbations are used to calculate the Dst and SYM-H indices, which, in turn,
are commonly used measures of the strength of the storms in the magnetosphere.
As the energy density of ions is much larger than that of electrons, the net current
is carried mostly by the westward drifting ions. The variability of Dst and SYM-H
during magnetospheric storms is a signature of the variability in the energy density
of the current carriers.

6.3.1 Sources of Ring Current Ions

The ultimate sources of the ring current are the ionosphere and the solar wind. The
main carriers of the current are energetic protons and O+ ions. While singly-charged
oxygen must be of ionospheric origin, the protons may come from both sources.
Table 6.2 summarizes the relative abundances of ring current ions during quiet and
storm-time conditions based on AMPTE/CCE and CRRES satellite observations.
The data were gathered during a relatively small number of storm-time observations
and the numbers shall be taken as indicative. As always, individual storms exhibit
large deviations from typical values.

The ion energies in the ionosphere and the solar wind are smaller than the
energies of the ring current carriers. While the solar wind proton population already
is in the keV-range, the ionospheric plasma has to be accelerated all the way from
a few eV. The main ion outflow from the ionosphere takes place in auroral and
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Table 6.2 Relative abundances of different ion species and total ion energy density at L = 5
in the ring current during quiet times and under different levels of storm activity based on
AMPTE/CCE and CRRES observations (Daglis et al. 1999)

Small &

Quiet medium Intense

Source and species times storms storms

Solar wind H+ (%) �60 ∼50 �20

Solar wind He++ (%) ∼2 �5 �10

Ionospheric H+ (%) �30 ∼20 �10

Ionospheric O+ (%) �5 ∼30 �60

Solar wind total (%) ∼65 ∼50 ∼30

Ionosphere total (%) ∼35 ∼50 ∼70

Total energy density (keV cm−3) ∼10 �50 �100

polar cap latitudes. The ions are first transported to the magnetospheric tail and only
thereafter to the inner magnetosphere, being meanwhile gradually energized.

The acceleration and heating of the outflowing ionospheric plasma takes place
in several steps (for a review, see Chap. 2 of Hultqvist et al. 1999). Enhanced
O+ ion outflows are observed during substorm growth and expansion phases in
the ionosphere by ground-based radars and by satellites traversing the auroral
field lines. Thus the observed large storm-time fluxes of O+ in Table 6.2 are not
surprising. Some amount of heating by fluctuating electric fields already takes
place in the ionosphere. The more energy the ions gain, the more efficiently the
mirror force pushes them up. Further acceleration is provided by the magnetic field-
aligned electric potential structures of the order of 1–10 kV, which accelerate auroral
electrons downward and ions upward. As different particle species move up and
down along the magnetic field and drift across the field, the regions above the auroral
zones host a large variety of plasma waves, many of which can contribute to the
energization of the ionospheric plasma to the keV-range.

In the magnetotail current sheet J·E > 0, which according to Poynting’s theorem
of electrodynamics implies energy transfer from the electromagnetic field to the
charged particles. Ions crossing the current sheet with a finite but small magnetic
field component normal to the sheet (Bn) are transported for a short while in the
direction of the electric field and gain energy (see, e.g., Lyons and Speiser 1982).
This is an example of non-resonant diffusion in pitch angle and energy, which is due
to the breaking of the first adiabatic invariant and results in chaotization of particle
motion (e.g., Chen and Palmadesso 1986; Büchner and Zelenyi 1989).

Figure 6.1 illustrates how a low-energy ion entering the nightside magnetosphere
from the high-latitude mantle is transported first to the distant tail and from there
earthward with the large-scale convection while bouncing between the magnetic
mirrors. The closer to the Earth the particle comes, the more frequently it crosses
the current sheet. Because the stretching is strongest in the distant tail, the particle
motion is most chaotic there and, consequently, the acceleration is most efficient for
particles entering the plasma sheet far in the tail. Numerical test-particle simulations
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Fig. 6.1 Schematic picture of transport of two solar wind particles with slightly different initial
conditions entering to the magnetosphere through the high-latitude mantle to the inner plasma
sheet. The difference in the particle trajectories illustrates the sensitivity to the initial conditions,
which is characteristic to chaotic motion. The X line is the distant reconnection line of the Dungey
cycle (Sect. 1.4.1). The abbreviations CPS and PSBL refer to central plasma sheet and plasma
sheet boundary layer (From Ashour-Abdalla et al. 1993, reprinted by permission from American
Geophysical Union)

by Ashour-Abdalla et al. (1993) indicated that a particle encountering the current
sheet for the first time beyond 80 RE in the tail with the energy of 0.3 keV can gain
energy by a factor of 50 through this process alone.

The north component of the magnetic field in the current sheet increases toward
the Earth and the current sheet heating becomes less efficient in the near-Earth space.
The particles advecting adiabatically to the inner magnetosphere also gain energy
through the drift betatron mechanism (Sect. 2.4.4). However, this is not sufficient
to account for ion energies above 100 keV, and wave–particle interactions are called
for. Advanced diffusion codes must deal with both resonant and non-resonant source
and loss processes (e.g., Jordanova et al. 2010, and references therein).

Substorm dipolarizations can also contribute to ion acceleration through transient
inductive electric fields, whose role in reaching 100-keV energies may be important
(e.g., Pellinen and Heikkila 1984; Ganushkina et al. 2005). The inductive electric
fields can lead to preferential acceleration of O+ over H+ because all adiabatic
invariants of O+ can be violated while the magnetic moment of H+ remains
conserved as has been demonstrated in test-particle simulations (e.g., Delcourt et al.
1990).
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6.3.2 Loss of Ring Current Ions

The intensity of the ring current is determined by the balance between the sources
and losses of the current carriers. The losses are taking place all the time, but during
the storm main phase they are overshadowed by the injection of new current carriers.
The enhancement of the ring current is a relatively fast process, whereas the losses
take more time. This is evident in the rapid negative evolution of the Dst index
during the storm main phase and much slower decay of the current during the
recovery phase (Fig. 1.7).

The main loss of energetic ions, originally suggested by Dessler and Parker
(1959), is due to charge-exchange collisions between the ring current ions and
the neutral hydrogen atoms in the extension of the Earth’s collisionless exosphere
known as geocorona. A typical charge-exchange process is a collision between a
positively charged ion and a neutral atom, in which the ion captures an electron
from the atom. After the process the charge state of the ion is reduced by one and
the neutral particle becomes positively charged

Xn+ + Y → X(n−1)+ + Y+ . (6.27)

At ring current altitudes the geocorona consists almost purely of hydrogen atoms,
but for ions mirroring at low altitudes also the charge exchange with heavier atoms
needs to be included in detailed calculations.

The temperature of the neutral geocorona is of the order of 0.1 eV. Thus after a
charge exchange with a ring current ion, the emerging particles are an ion of very
low energy and an energetic neutral atom (ENA). The ENA moves to the direction
of the incident ion at the time of the collision and leaves the ring current region.
The charge exchange does not directly decrease the number of current carriers, but
transfers the charge from fast to very slowly drifting ions. These ions are no more
efficient current carriers, instead they become a part of thermal background plasma.

The efficiency of charge exchange as a loss mechanism depends on the lifetimes
of the current carriers, which are inversely proportional to the charge-exchange cross
sections. The cross sections cannot be calculated theoretically and their empirical
determination is difficult because the exosphere is a much better vacuum than can
be created in laboratories. Furthermore, the density profile of the geocorona as
well as the L-shells and pitch angles of the incident ions need to be taken into
account because ions mirroring at different altitudes encounter different exospheric
densities.

Also Coulomb collisions and wave–particle interactions have a role in removing
ring current carriers. The Coulomb collisions are most efficient at lower energies
(<10 keV). However, charge exchange and Coulomb collisions jointly do not
remove enough ions with energies larger than a few tens of keV, and above 100 keV
they lead to flatter pitch-angle distributions (smaller loss cones) than observed (Fok
et al. 1996). On the other hand the ring current is embedded in a domain populated
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by EMIC waves, plasmaspheric hiss and equatorial magnetosonic waves, which can
scatter the higher-energy ring current ions to the atmospheric loss cone.

A challenge in inclusion of wave–particle interactions in numerical ring current
models is that both the growth and decay of the waves must be modeled self-
consistently with the evolution of the particle populations. For example, the growth
rate of EMIC waves needs to be calculated solving the hot plasma dispersion
equation simultaneously with the kinetic equation. From the growth rate the wave
amplitudes are estimated using empirical relations. The effect of wave–particle
interactions on the ions is thereafter treated as a diffusion process where the
diffusion coefficients are determined using the calculated wave amplitudes (e.g.,
Jordanova et al. 2010, and references therein).

6.3.3 Sources and Losses of Radiation Belt Ions

The inner radiation belt is relatively stable against short timescale perturbations.
The energetic particle content of the inner belt is dominated by protons at MeV
energies extending up to a few GeV. For higher energies the gyro radii become
comparable to the curvature radius of the background magnetic field and particles
cannot any more be trapped in the magnetic bottle. The residence times of protons
are long, from years close to the atmospheric loss cone (large adiabatic index K)
to thousands of years for equatorially mirroring particles (K ≈ 0). The particle
spectra display variations in decadal (solar cycle) to centennial (secular variation of
the geomagnetic field) timescales (e.g., Selesnick et al. 2007).

While the spectrum of trapped ions at energies larger than 100 keV appears to
turn quite smoothly from ring current to radiation belt energies, the histories of the
ions are different. Ring current carriers up to energies of 100–200 keV originate
from the much lower-energy ionosphere and the solar wind being accelerated and
transported by various magnetospheric processes. Different mechanisms are needed
to produce the radiation belt ions up to tens or hundreds of MeV.

The two main sources of inner radiation belt protons are solar energetic particle
(SEP) events and the cosmic ray albedo neutron decay (CRAND) mechanism.
Below energies of 100 MeV and for L � 1.3 the solar source dominates, whereas
below altitudes of 2000 km and at higher energies CRAND is the dominant source.

The solar flares and CMEs produce large fluxes of energetic protons, of which
most are shielded beyond L ≈ 4 by the geomagnetic field. SEPs arriving to the
magnetosphere with pitch angles already within the atmospheric loss cone are lost
directly, whereas most ions are just deflected by the magnetic field and escape from
the near-Earth space. During strong solar particle events solar protons and heavier
ions have been found to be injected to L-shells 2–2.5 (e.g. Hudson et al. 2004b, and
references therein), from where they are transported inward through radial diffusion.
However, the trapped orbits in the innermost magnetosphere are equally difficult to
enter into as to escape from, and only a small fraction of incoming protons become
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trapped. At L = 2 the trapping efficiency of 10-MeV protons has been estimated to
be of the order of 10−4 and of 100-MeV protons only 10−7 (Selesnick et al. 2007).

Solar storms have a twofold role in the radiation belt ion dynamics. They provide
intermittent source populations and drive perturbations in the magnetosphere that
are necessary for particle trapping. However, the energetic solar particles from solar
eruptions arrive to the Earth faster than the associated ICME. Thus the trapping is
more efficient if the magnetosphere at the time of SEP arrival is perturbed, e.g., by
a former ICME or a fast solar wind stream.

Decadal to centennial time series of fresh solar proton injections have been
derived from enhancements of the NO3-rich layers in Arctic and Antarctic ice.
Protons with energies larger than 30 MeV penetrate to the Earth’s atmosphere and
enhance the production of odd nitrates (including NO3) in the troposphere. The
molecules thereafter precipitate to ground and become archived in the polar ice
(McCracken et al. 2001, and references therein).

The CRAND mechanism as a source of inner belt protons was suggested by
Singer (1958) soon after the early observations of trapped radiation. It results from
Galactic cosmic ray bombardment in the atmosphere, which produces neutrons that
move to all directions. While the average neutron lifetime is 14 min 38 s, during
which a multi-MeV neutron hits the ground or escapes far from the Earth, a small
fraction of the neutrons decay to protons while still inside the magnetosphere.
Because the Galactic cosmic ray spectrum is hard and temporally constant, the
CRAND mechanism produces a hard and stable spectrum.

At energies below 50 MeV the observed proton spectra are too intense and
variable to be explained by the CRAND mechanism. Figure 6.2 illustrates results
of a model study by Selesnick et al. (2007), in which the main source and loss
terms were integrated over 1000-year timescales. The proton fluxes at L = 1.2 and
L = 1.7 are computed for several values of the adiabatic invariant K . The fluxes
are highest for the protons mirroring closest to the equator (smallest K), where the
trapping times are longest. At L = 1.2 the fluxes are several orders of magnitude
smaller at all energies than at L = 1.7 and the spectrum is completely dominated by
CRAND-produced protons. At L = 1.7 the softer solar proton spectrum becomes
visible below 100 MeV.

The main energy loss mechanisms of the proton belt are the charge exchange
and inelastic nuclear reactions with neutral exospheric atoms as well as Coulomb
collisions with ionospheric and plasmaspheric charged particles. Furthermore,
although small, the adiabatic compression or expansion of the drift shells related
to the solar cycle and the secular variation of the geomagnetic field affect the proton
energies during their long residence in the inner belt.

The charge exchange cross sections decrease rapidly at energies above 100 keV
and the mechanism is a much slower loss process in the inner proton belt than in
the ring current. Coulomb collisions and nuclear reactions slowly decrease the ion
energy from hundreds of MeV to levels where the ENA production finally can take
over the role as a loss process.
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Fig. 6.2 Model calculations of energetic proton spectra at L = 1.2 (top) and L = 1.7 (bottom).
The colors correspond to different values of the adiabatic index K . The uppermost curves are for
equatorially mirroring particles (K ≈ 0). The largest K in the upper picture is 0.09 G1/2RE , in the
lower 0.58 G1/2RE , each corresponding to the value for which the mirror points of the entire drift
shell are above the Earth’s atmosphere. Note different scales on vertical axes in the panels (From
Selesnick et al. 2007, reprinted by permission from American Geophysical Union)
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6.4 Transport and Acceleration of Electrons

During and after the Van Allen Probes mission the dynamical evolution of the
energetic electron populations, in particular of the relativistic and ultra-relativistic
electrons, has been in the focus of radiation belt research. This has a strong
practical motivation because some of the most serious spacecraft anomalies have
been addressed to large fluxes of relativistic “killer electrons”. In this section we
discuss the physical mechanisms of electron acceleration and transport. Electron
losses are the topic of Sect. 6.5.

6.4.1 Radial Diffusion by ULF Waves

The traditional theory of the electron belt formation, introduced in the 1960s, is
based on inward radial diffusion due to low-frequency electromagnetic fluctuations
in asymmetric quasi-dipolar magnetic field. The fluctuations are assumed to con-
serve the first and second adiabatic invariants but break the third, which in radiation
belt studies is usually represented by L∗. In the following discussion we drop the
asterisk for clarity and write the diffusion equation (6.25) without external source
and loss terms

∂f

∂t
= L2 ∂

∂L

(
DLL

L2

∂f

∂L

)
, (6.28)

where electromagnetic fluctuations determine the radial diffusion coefficient DLL.
When the seed population is transported from the tail toward larger magnetic field,
the particles gain energy due to the conservation of the magnetic moment μ =
p2⊥/(2meB) and, in the presence of ULF waves, by resonant interactions between
the waves and the azimuthal drift motion of the electrons.

The practical challenge is to determine the diffusion coefficient DLL. In theo-
retical analysis one has to make quite a few simplifying assumptions and approx-
imations. Already a slightly distorted dipole field geometry together with standard
convection electric field models leads to complications. Furthermore, the intensity
of the electromagnetic fluctuations is different at different magnetic local times and a
function of magnetospheric activity. On the other hand, the empirical determination
of the diffusion coefficients is severely constrained by available observations and
different studies have led to different, sometimes contradictory, results (e.g., Ali
et al. 2016, and references therein).

Based on purely theoretical arguments Fälthammar (1965) demonstrated that the
diffusion coefficient from magnetic field perturbations for equatorially mirroring
particles Dem

LL,eq is proportional to L10. He considered small time-dependent
perturbations of the magnetic field assuming that the spatial asymmetry of the
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perturbation was a stationary stochastic process. Lejosne (2019) re-derived the
coefficient in the form

Dem
LL,eq = 1

8

(
5

7

)2 (
RE

BE

)
L10ω2

dPA(ωd) , (6.29)

where BE is the terrestrial magnetic field at equator, PA(ωd) the power spectral
density of the asymmetric compressional magnetic fluctuation and ωd the angular
drift frequency. DLL decreases with decreasing equatorial pitch angle and is at
the edge of the atmospheric loss cone reduced to about 10% of the coefficient for
equatorially mirroring particles.

For compressional perturbations the diffusion coefficient is determined by the
azimuthal component of the inductive electric field (∇×E = −∂B/∂t). Fälthammar
(1965) considered electrostatic (∇ × E = 0) perturbations separately, for which he
found the diffusion coefficient

Des
LL = 1

8R2
EB2

E

L6
∑
n

PE,n(nωd) , (6.30)

where PE(nωd) is the power spectral density of the nth harmonic of the electric
field fluctuation at the drift resonant frequency ω = nωd . In the electrostatic
approximation the magnetic field lines are electric equipotentials and the expression
is valid for all pitch angles. The SI unit of the ratio of power spectral densities
PE/PA is that of velocity squared (m2 s−2). Thus both expressions (6.29) and (6.30)
have the same physical dimension (SI unit s−1).

The division of electromagnetic fluctuations to inductive and electrostatic dis-
turbances can be theoretically justified due to their different sources. However,
these are difficult to distinguish in satellite observations. Another approach is to
calculate a “pure” magnetic diffusion coefficient Db

LL and combine the electrostatic
and inductive electric fields into an electric diffusion coefficient De

LL. This approach
was taken by Fei et al. (2006), who developed further the earlier calculations of
Elkington et al. (2003). They assumed the electric and magnetic perturbations to be
those of compressional Pc5 ULF waves in an asymmetric quasi-dipolar magnetic
field in the equatorial plane

B(r, φ) = B0R
3
E

r3 + b1(1 + b2 cos φ) , (6.31)

where b1 describes the global compression of the dipole field and b2 is the azimuthal
perturbation.4

4 This model is a simplification of the Mead (1964) model (1.15), as there is no radial dependence
in the non-dipolar terms of the magnetic field.
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The calculation of Fei et al. (2006) was relativistic, which is important because
radial diffusion is often applied to relativistic electrons. They found the diffusion
coefficients

Db
LL = μ2

8q2γ 2B2
ER2

E

L4
∑
m

m2PB,m(mωd) (6.32)

De
LL = 1

8B2
ER2

E

L6
∑
m

PE,m(mωd), (6.33)

where m is the azimuthal mode number and PB,m and PE,m are the power spectral
densities of the compressional component of the magnetic field and the azimuthal
component of the electric field. De

LL has the same form as Fälthammar’s Des
LL (6.30)

but the power spectral densities are different. Here the PE,m includes the spectral
power of the entire electric field, whereas in (6.30) PE,n represents the electrostatic
fluctuations only.

Fei et al. (2006) claimed that their coefficients reduce to those of Fälthammar
(1965) in the nonrelativistic limit and taking the different treatment of the electric
field into account. However, as pointed out by Ali et al. (2016) and Lejosne (2019)
the sum of De

LL and Db
LL is about a factor of 2 smaller than Dem

LL. The reason is
the assumption of Fei et al. (2006) that the electric and magnetic field perturbations
are independent of each other. As demonstrated by Perry et al. (2005), the azimuthal
component of the electric field Eφ and the time derivative of the poloidal component
of the magnetic field ∂Bθ/∂t are anticorrelated in the model magnetic field (6.31),
as they should be according to Faraday’s law (∇ × E = −∂B/∂t).

The factor of 2 difference in Fei’s and Fälthammar’s diffusion coefficients may
be a somewhat academic problem in practical diffusion studies, which often involve
magnetospheric storms. In such cases the magnetic field model (6.31) is too simple
and very different empirically determined diffusion coefficients have been found
in different studies. In addition to the compression and stretching of the magnetic
field, the time evolving ring current affects the electromagnetic field. For application
of different empirically derived diffusion coefficients we refer to the investigation
by Ozeke et al. (2020) of the two Saint Patrick’s Day (March 17) storms in 2013
and 2015. An example of the practical difficulties is that while most of the time
Db

LL  De
LL, during the storm main phase this relationship can be the reverse.

Due to the great variability of inner magnetospheric conditions the empirical
determination of the diffusion coefficients on the case by case basis may be the only
way of finding diffusion rates consistent with particle observations. For a given DLL

the diffusion equation (6.28) is fast to compute numerically, which makes it possible
to look for an optimal coefficient as a function of appropriate magnetospheric
parameters. A widely-used parameterization is that of Brautigam and Albert (2000)
based on observations of the magnetospheric storm on 9 October 1990. They used
the Kp-index as a parameter and found the diffusion coefficient

DLL(L, t) = a Lb 10cKp(t) (6.34)
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with coefficients a = 4.73 × 10−10, b = 10, and c = 0.506. More empirical
event-based parameterizations can be found, e.g., in the above cited publications by
Elkington et al. (2003), Ali et al. (2016) and Ozeke et al. (2020), and in articles cited
therein. It is clear that event-based derivations using different parameters lead to
different results but the critical L-dependence is in most cases close to Fälthammar’s
original L10.

6.4.2 Electron Acceleration by ULF Waves

We illustrate the drift resonant acceleration of electrons by discrete ULF wave
modes following Elkington et al. (2003). They considered equatorial electrons
in the model magnetic field of Eq. (6.31). The drift contours (2D drift shells)
are determined by the constant magnetic field strength, where the L-parameter is
replaced by

L =
(

R3
E

r3 + b1b2

B0
cos φ

)−1/3

. (6.35)

For small perturbations (b1  B0), L ≈ L within the radiation belts.
The electric field of the ULF waves in the equatorial plane was given in

Eq. (4.107) as

E(r, φ, t) = E0(r, φ) +
∞∑

m=0

δErm sin(mφ ± ωt + ξrm) er +

+
∞∑

m=0

δEφm sin(mφ ± ωt + ξφm) eφ .

Here E0(r, φ) is the time-independent convection electric field. δErm are the electric
field amplitudes of the toroidal modes and δEφm of the poloidal modes, and ξrm and
ξφm represent their phase lags.

For radial diffusion to be efficient the fluctuations should be global and resonate
with a multiple of the angular drift frequency of the electrons

ω − (m ± 1) ωd = 0 . (6.36)

In the outer radiation belt the m = 2 mode fulfils the resonance condition at the
fundamental drift frequency (ω = ωd ) of relativistic electrons. At L = 6 the
drift periods of 1–5-MeV electrons are 2.7–12.3 min (Table 2.2), matching with the
period range of Pc5 waves. Resonance with the higher-frequency Pc4 oscillations is
possible for larger azimuthal mode numbers. For a few tens to a few hundred keV
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Fig. 6.3 Illustration of drift resonance of an electron with m = 2 toroidal (left) and poloidal (right)
mode wave electric field. Noon is to the right

electrons (drifting around the Earth at L = 6 in timescales of an hour to about ten
hours) to be in drift resonance with Pc4–Pc5 waves the azimuthal mode numbers
have to be very large (∼10–100). In summary, global large-amplitude ULF waves
in the Pc4–Pc5 frequency band are natural agents of radial diffusion.

According to (2.68) the adiabatic (μ conserving) acceleration of equatorial
electrons is given by

dW

dt
= qE · vd + μ

∂B

∂t
, (6.37)

where vd is the electron drift velocity around the Earth. The magnetic perturbation
of the toroidal mode δBφ and the dominant magnetic field component of the poloidal
mode δBr both have a node at the equator. In both cases the electric field of the ULF
wave has a component along the direction of the of the electron’s GC drift velocity
in certain parts of drift path around the Earth resulting in drift-betatron acceleration.
The compressional component δB‖ of the poloidal mode is assumed to be so small,
that the gyro-betatron acceleration μ ∂B/∂t can be neglected and the energization
is due to the drift-betatron effect only. In the toroidal mode δB‖ = 0 by definition.
Figure 6.3 illustrates how a drift resonant (ω = ωd ) electron is accelerated by the
toroidal (left) and poloidal (right) m = 2 ULF wave in a distorted dipole.

Let us first consider an electron interaction with the toroidal mode (Fig. 6.3, left).
Start from the point in the dusk sector where the radial component of the electron
velocity vr reaches a maximum in inward direction. Here the electron encounters
an outward electric field δEr . Thus dW/dt = qδErvr > 0 , and the electron is
accelerated. Half a drift period later the electron is in the dawn sector, where it has
a maximal outward velocity component and encounters an inward electric field, and
is accelerated again. The dawn and dusk sectors are in this case regions of maximal
energy gain. The electron actually gains energy throughout of the orbit around the
Earth, except at noon and midnight where vr = 0. The asymmetric compression
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of the magnetic field is an important factor in the process. Increasing distortion
increases vr in the dawn and dusk sectors and thus increases the energy gain.

Efficient drift acceleration can also occur from the resonance with the poloidal
mode δEφ , where the electric field perturbation δEφ is in the azimuthal direction
(Fig. 6.3, right). The electron on the nightside encounters an electric field that is
in the direction opposite to its velocity and is accelerated. On the other hand, if
the electron is in drift resonance with the wave, it encounters on the dayside an
electric field that is in the direction of the drift motion and loses energy. In the
compressed dipole configuration |δEφvφ | is, however, smaller on the dayside than
on the nightside. Thus the electron gains net energy over the drift period around the
Earth. Adding a static convection electric field E0 weakens the net acceleration by
the poloidal mode of this particular electron, because E0 is in the same direction as
δEφ when the electron moves on the nightside and on the nightside dayside.

It is important to realize that the two examples in Fig. 6.3 describe only one
electron in drift resonance with a discrete single-frequency wave. Considering
electrons in different drift phases with respect to the phase of the wave, some
electrons gain, some others lose energy. Some of them are pushed closer to the
Earth, others further away from the Earth. The net result is both radial and energy
diffusion (see also the discussion by Lejosne and Kollmann 2020).

If the poloidal modes are distributed over a range of frequencies, or a non-static
convection field is acting on the electron, the dominant component of the electron’s
drift velocity in the azimuthal direction may permit even more efficient acceleration
than the interaction with purely toroidal modes of the same amplitude. Based on
numerical calculations with a continuum of frequencies Elkington et al. (2003)
concluded that the resonant mechanism can lead to very efficient inward diffusive
radial transport of electrons and their acceleration from 100 keV to MeV energies.

It is evident that the radial transport and acceleration by ULF Pc4–Pc5 waves are
closely related to each other. While the diffusive transport is generally considered as
a relatively slow process (of the order of days) the ULF waves may also lead to fast
radial diffusion. Jaynes et al. (2018) studied radiation belt electron response during
the magnetic storm on 17 March 2015. The electron fluxes from a few hundred
keV to relativistic energies recovered soon after the peak of the storm, while ultra-
relativistic electron fluxes stayed low for a few days. While the energization up to
relativistic energies could have been related to enhanced chorus wave activity to be
discussed in Sect. 6.4.5, the reappearance and inward transport of ultra-relativistic
electrons (up to 8 MeV) occurred when the observed chorus activity had already
subsided, whereas empirical estimates of radial diffusion coefficients suggested
fast diffusion. Because empirical diffusion coefficients are event-specific, also the
amounts of radial diffusion and acceleration are event-specific.
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6.4.3 Diffusion Coefficients in the (α, p)-Space

The challenges in the determination of diffusion coefficients in the pitch-angle–
momentum space are different from those of DLL. The diffusion tensor is given
by Eq. (6.20) but the calculation of its elements requires the use of an appropriate
approximation of the dispersion equation and knowledge of the amplitude and
polarization of the waves interacting with particles. In practical computations one
needs to use realistic models of the spatial distribution and properties of the waves.

We consider the relativistic formulation of the diffusion equation (6.22) without
external sources and losses following Lyons and Williams (1984)

∂f

∂t
= 1

p sin α

∂

∂α
sin α

(
Dαα
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)
. (6.38)

Here Dαα , Dαp = Dpα and Dpp are the drift- and bounce-averaged diffusion
coefficients
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Dpp = 1
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〉
.

The multiplicative factors p2/2, p/2 and 1/2 normalize the units of all coefficients
to momentum2 s−1. These coefficients can be computed from coefficients for given
harmonic number n and perpendicular wave number k⊥ as integrals over all wave
numbers and sums over all harmonics as

Dαα =
∞∑

n=−∞

∫ ∞

0
k⊥ dk⊥ Dnk⊥

αα

Dαp =
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0
k⊥ dk⊥ Dnk⊥

αp (6.40)

Dpp =
∞∑

n=−∞

∫ ∞

0
k⊥ dk⊥ Dnk⊥

pp .

The integrals are calculated over perpendicular wave vectors only, as the resonance
condition yields Dirac’s delta in the parallel direction.
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The expressions (6.40) are the components of the diffusion tensor (6.20) origi-
nally derived by Kennel and Engelmann (1966) in the non-relativistic approximation
and generalized to relativistic particles by Lerche (1968). The diffusion coefficients
for given n and k⊥ are related to the pure pitch-angle diffusion coefficients, which
after a lengthy calculation turn out to be

Dnk⊥
αα = lim

V →∞
q2
j

4π V

(
− sin2 α + nωcj /(γω)

cos α

)2
Θnk

|v‖ − ∂ω/∂k‖| (6.41)

for a given particle species j . Here V is the plasma volume, and the derivative
∂ω/∂k‖ is to be evaluated at the resonant parallel wave number

k‖,res = (ω − nωcj /γ )/v‖ . (6.42)

The function Θnk contains the information of the amplitude and polarization of the
wave electric field

Θnk =
∣∣∣∣Ek,L Jn+sj + Ek,R Jn−sj√

2
+ sj

v‖
v⊥

Ek,‖ Jn

∣∣∣∣
2

. (6.43)

Here L, R, and ‖ refer to the left-hand, right-hand and parallel polarized components
of the wave electric field for a given wave vector. The argument of the Bessel
functions Jn is (k⊥v⊥γ /ωcj ) and sj is the sign of the particle species j . Finally,

D
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)2

. (6.45)

The terms multiplying D
nk⊥
αα in these equations are smaller than 1, which is

consistent with the conclusion of Kennel and Engelmann (1966) that pitch-angle
diffusion dominates over diffusion in energy (or in the absolute value of momentum)
as noted in Sect. 6.2.2.

In practical computations the distribution of the wave power as a function of
frequency is often approximated by a Gaussian as

B2(ω) = A2 exp

(
−
(

ω − ωm

δω

)2
)

. (6.46)
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Here A is a normalization constant and ωm and δω are the frequency and band-
width of the maximum wave power. However, the determination of the diffusion
coefficients for waves fulfilling the electromagnetic dispersion equation is still a
formidable technical task requiring heavy numerical computations (e.g., Glauert
and Horne 2005). Restricting the analysis to parallel propagating (k⊥ = 0) whistler-
mode and EMIC waves, the integrals assuming Gaussian distribution in frequency
can be expressed in closed form (Summers 2005). This speeds up the computations
significantly but means a neglection of effects of obliquely propagating waves,
which are critical to the dynamics of radiation belts.

As will be discussed in Sect. 6.5, wave–particle resonances with the electron
bounce motion also result in pitch-angle diffusion, which is found to be important
for nearly equatorially mirroring particles. In that case the diffusion coefficients
must be calculated without bounce-averaging. Detailed calculations of such dif-
fusion coefficients have been presented by Tao and Li (2016) for equatorial
magnetosonic waves, by Cao et al. (2017a) for EMIC waves and by Cao et al.
(2017b) for the low-frequency plasmaspheric hiss.

6.4.4 Diffusion due to Large-Amplitude Whistler-Mode and
EMIC Waves

When whistler-mode or EMIC waves grow to large amplitudes, the quasi-linear
approach to calculate diffusion coefficients becomes invalid. Different schemes to
estimate the diffusion by nonlinear wave–particle interactions have been introduced
in the literature, e.g., the formation of electron phase-space holes discussed in
Sect. 5.2.4 (Omura et al. 2013) and the dynamical systems approach (Osmane
et al. 2016, and references therein). Here we present a straightforward approach
to numerically integrate the equation of the electron motion in a wave field
(Ew(r, t),Bw(r, t)) determined from observations or theoretical arguments. The
relativistic equation of motion in a latitude-dependent background magnetic field
B0(λ) is

dp
dt

= −e

(
Ew + 1

γme

p × Bw

)
− e

γme

p × B0(λ) . (6.47)

By launching a large number of electrons with different initial conditions represent-
ing the original f (α, p), it is possible to estimate the diffusion coefficients (6.39)
from �α and �p averaged over a time period �t .

In practical computations (6.47) is convenient to transform to coupled differential
equations for momentum parallel (p‖) and perpendicular (p⊥) to B0 and for the
phase angle η between the perpendicular velocity of the electron v⊥ and the
perpendicular component of the wave magnetic field Bw⊥. After gyro-averaging,



188 6 Particle Source and Loss Processes

neglecting second order terms, and assuming parallel propagating (k = k‖) waves
the relativistic equations are (Albert and Bortnik 2009)

dp‖
dt

=
(

eBw

γme

)
p⊥ sin η − p2⊥

2γmeB0

∂B0

∂s

dp⊥
dt

= −
(

eBw

γme

)(
p‖ − γmeω

k‖

)
sin η + p⊥p‖

2γmeB0

∂B0

∂s
(6.48)

dη

dt
=
(

k‖p‖
γme

− ω + nωce

γ

)
−
(

eBw

γme

)(
p‖ − γmeω

k‖

)
cos η

p⊥
.

Here s is the coordinate along the magnetic field, the gradient (∂B0/∂s) represents
the mirror force, ωce is the electron gyro frequency in the background field B0
and n the harmonic number. The velocity along the magnetic field is given by
ds/dt = p‖/(γme) (For corresponding non-relativistic equations, see Dysthe 1971;
Bell 1984). This formulation is applicable to both whistler-mode waves (n ≥ 1)
(e.g., Bortnik et al. 2008a) and EMIC waves, in which case it is sufficient to consider
the first order resonance (n = −1) only (e.g., Albert and Bortnik 2009).

Because the electron gyro frequency is higher than the wave frequency, in case
of EMIC waves much higher, the terms relative to sin η and cos η average to zero
for small-amplitude waves after a few gyro periods and dη/dt can be approximated
as

dη

dt
= k‖p‖

γme

− ω + nωce

γ
, (6.49)

In resonant interaction η is practically constant over a short period �t and (6.49)
reduces to the familiar resonance condition. As long as �v‖ remains small compared
to the adiabatic motion, the interaction can be described using resonant ellipses
(Sect. 5.1.3).

However, if Bw grows large enough, the nonlinear terms (∝ sin η) are no more
negligible and the scattering can be quite different. To understand the nonlinear
resonant interaction in case of large-amplitude wave field, take the second time
derivative of the last equation of (6.48) and insert dv‖/dt from the first. This gives
an equation for a nonlinear driven oscillator, assuming here, for simplicity, non-
relativistic motion (γ = 1)

d2η

dt2 + k

(
eBw

me

)
v⊥ sin η =

(
3

2
+ ωce − ω

2ωce

tan2 α

)
v‖

∂ωce

∂s
, (6.50)

where the terms of smaller orders have been neglected (Bortnik et al. 2016).
The type of interaction depends on the relative effect of the nonlinear term on

the LHS and the driving term on the RHS of (6.50). In addition to the amplitude
of the wave the result depends on the particle’s pitch angle (α) and on the latitude
where the interaction takes place through the latitude-dependence of the mirror force
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Fig. 6.4 Test-particle simulations of electron interaction with a whistler-mode wave packet.
Small/large A refers to the wave amplitude and λ is the magnetic latitude. The spreading in the
equatorial pitch angle (αeq ) and energy (E) is caused by the different phases of the particles when
they interact with the wave packet. The oscillatory behavior of pitch angle and energy is due to their
η-dependence close to the resonance dη/dt ≈ 0 and decays when the particle moves further away
from the site of the resonance (from Bortnik et al. 2008a, reprinted by permission from American
Geophysical Union)

∝ ∂ωce(λ)/∂s. If the driving term dominates, the interaction remains linear. Note
that at equator ∂B0/∂s → 0 and the nonlinear interaction can become important
also for small Bw (see also discussion at the end of Sect. 6.5.4).

Bortnik et al. (2008a) applied this method to whistler-mode chorus waves using
both typical and very large amplitudes. They launched 24 test particles with initial
phases η0 distributed uniformly between 0 and 2π to move through a whistler-mode
wave packet. The frequency of the wave packet representing the whistler-mode
chorus elements was 2 kHz and the wave propagated away from the equator at L = 5
in the geomagnetic dipole field (Fig. 6.4).

In cases A and B of Fig. 6.4 the initial energy of the particles was 168 keV and
the equatorial pitch angle αeq = 70◦. The parameters of the particles were selected
so that they started at the latitude λ = −9◦ and were in resonance with the wave at
λ ≈ −5◦ (case A) and λ ≈ −6.5◦ (case B). The interaction time �t with a single
wave packet was about 10–20 ms.

In case A the wave amplitude was 1.4 pT. The scattering from a single wave
packet remained small as expected: in equatorial pitch angle about 0.03◦–0.04◦ and
in energy 30–40 eV. After several encounters with similar wave packages the result
would be similar to quasi-linear diffusion.

In case B the interaction of the same particles with a large-amplitude wave Bw =
1.4 nT, corresponding to observations by Cattell et al. (2008), was quite different.
The equatorial pitch angles of all particles dropped about 5◦ and the energies by
5 keV. In this case the initially uniform phases η became bunched by the wave at the
time of interaction. Such a non-linear behavior is known as phase bunching.
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In case C the initial energy was 500 keV and the initial equatorial pitch angle
20◦. The particles were launched from λ = −30◦ and they resonated at λ ≈ −23◦
with a large-amplitude (Bw = 1.4 nT) wave with WNA 50◦. In this case a large
fraction of the particles were again phase bunched with decrease in pitch angle and
energy, whereas some of them scattered to larger pitch angles and energy. One of
the particles (the red track in Fig. 6.4) became trapped in the wave potential and the
particle remained trapped in the constant phase of the wave electric field for a longer
time period. Consequently, the particle wandered to a much larger pitch-angle and
the total energy gain was 300 keV at the time the particle met the boundary of the
simulation. This behavior is known as phase trapping.

Trapping of electrons in the nonlinear wave potential is an essential result also in
the above mentioned theories by Omura et al. (2013) and Osmane et al. (2016).
As discussed at the end of the next section, efficient acceleration of relativistic
electrons by nonlinear whistler-mode wave packets is consistent with wave and
particle observations of Van Allen Probes (Foster et al. 2017).

6.4.5 Acceleration by Whistler-Mode Chorus Waves

Electron acceleration by chorus waves is different from the drift-resonant accelera-
tion by ULF waves. It takes place through the gyro resonance between the waves and
the electrons breaking the first adiabatic invariant. The right-hand polarized chorus
waves interact with a fraction of energetic electrons through the Doppler-shifted
gyro resonance ω−k‖v‖ = nωce/γ . Variables ω, v‖ and, ωce can often be measured
but k‖ must, in practice, be determined by solving the dispersion equation, which
in turn depends on plasma density and composition. As discussed in Sect. 5.1.3, the
resonance with a wave of a particular ω and k‖ defines a resonant ellipse in the
(v⊥, v‖)-plane, which reduces to a resonant line in nonrelativistic case when the
resonant condition depends only on electron’s parallel velocity.

The chorus is a wide-band emission, so there is a continuum of resonant ellipses
and, consequently, there is a finite volume in the velocity space intersected by single-
wave characteristics (Eq. (5.9)). Thus a large number of electrons are affected as
long as they fulfil the resonance condition. The resonant diffusion curves illustrate
that gyro-resonant interactions with whistler-mode chorus waves can efficiently
energize electrons from a few hundred keV to MeV energies (Summers et al. 1998).
The energization takes place near the equator where chorus waves propagate almost
parallel to the background magnetic field (small WNAs). This is important to the
Doppler shift term k‖v‖ that must be large enough for the wave frequency and
particle’s (relativistic) gyro frequency to match.

An example of strong and rapid local acceleration of electrons in the heart of
the outer radiation belt via interaction with whistler-mode waves was presented by
Thorne et al. (2013b). They studied the geomagnetic storm on 9 October 2012 in the
early phase of the Van Allen Probes mission. Intense chorus activity was observed
from the dawn to dayside sector. The electron diffusion was calculated solving
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the Fokker–Planck equation (6.26) in the pitch-angle–momentum (α, p) space. The
results of the diffusion calculations were consistent with Van Allen Probes data. The
authors, however, noted that a definitive conclusion about the relative importance
of chorus waves vs. other processes was not possible to give due to observational
limitations.

Similarly to diffusion caused by ULF waves the critical issue is the determination
of the diffusion coefficients, now in pitch angle and momentum. The procedure
has to be based on empirical or modelled plasma and wave properties. The drift
averaging is needed in practice although the wave distribution in local time is
inhomogeneous and varies from one event to another. Thus the estimation of net
acceleration is a challenge.

An example of determining the diffusion coefficients from several sources as the
input to the analysis of the electron acceleration during the so-called Halloween
storm in autumn 2003 was published by Horne et al. (2005). The interaction
with chorus waves is most efficient when ωpe/ωce is relatively small (�4), which
is the case outside the plasmapause. On 31 October 2003, this condition was
met, as the high-density plasmasphere was confined inside L = 2 and remained
inside L = 2.5 in the pre-noon sector (06–12 MLT) until November 4. In their
numerical calculations the authors used relativistic electron data from the SAMPEX
satellite, Kp and Dst indices, ground-based ULF observations and kHz-range wave
observations from the Cluster spacecraft. They argued that the radial diffusion due
to the ULF waves could not explain the strong increase of 2–6-MeV electron fluxes
between L shells from 2 to 3 in the late phase of the storm after 1 November
2003. Instead, the Fokker–Planck calculations, based on diffusion rates calculated
for chorus wave amplitudes measured by Cluster at somewhat higher drift shell
(L = 4.3), suggested that the gyro-resonant interaction was sufficient to explain the
establishment of very high electron fluxes in the slot region during this exceptionally
strong storm period. We will discuss the slot region and the Halloween storm more
thoroughly in Sect. 7.4.

While quasi-linear diffusion computations assuming linear whistler-mode waves
seem to be able to produce observed acceleration of MeV electrons, the role of
the large-amplitude rising-tone whistler elements (Sect. 5.2.4) raises interesting
questions. For example, how well does a quasi-linear diffusion model represent the
collective effect of nonlinear wave–particle interactions?

Foster et al. (2017) investigated the recovery of 1–5-MeV electrons after they
had become depleted during the main phase of the storm on 17–18 March 2013.
The recovery of MeV electrons was preceded by the occurrence of electrons in the
energy range from a few tens to hundreds of keV that were injected by substorms in
the storm recovery phase. Foster et al. (2017) used Van Allen Probes observations
of the rising-tone whistler-mode wave packets to compute electron energization in
the theory of Omura et al. (2015, and references therein, see Sect. 5.2.4). Figure 6.5
summarizes their results, according to which the nonlinear interaction turned out to
be very efficient. For example, resonant 1-MeV electrons were found to be able to
gain 100 keV in a single interaction with a wave packet of 10–20 ms duration. The
observed wave packets had oblique WNAs from 5◦ to 20◦, which was taken into
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Fig. 6.5 The energy gain at different initial energies due to observed rising-tone whistler-mode
wave packets. The upper panel shows the acceleration by gyro resonance and the lower panel by
Landau resonance for different initial energies. The black lines indicate acceleration summed over
all wave packets, the red lines the maximum energization by a single wave packet. The blue curve
shows the most probable acceleration at pitch angles >87◦ (From Foster et al. 2017, reprinted by
permission from American Geophysical Union)

account in the analysis, and both gyro and Landau resonances were accounted for.
The Landau resonance was effective at energies below 1 MeV and comparable to
the gyro resonance below 100 keV.

6.5 Electron Losses

In this section we discuss the basic features of electron loss processes from the
outer radiation belt. The complexity of the dynamics of the belt is further discussed
in Chap. 7 in the light of recent observations.

The main loss mechanisms of radiation belt electrons are magnetopause shad-
owing and pitch-angle scattering to the atmospheric loss cone via wave–particle
interactions. Observations indicate that the electron flux in the belts can be strongly
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depleted in timescales of days or hours, sometimes even minutes. Also Coulomb
collisions cause pitch-angle scattering, but they are much less efficient. For example,
the lifetimes against Coulomb collisions of 100-keV electrons exceed one year
beyond L = 1.8 and is about 30 years at L = 5 (Abel and Thorne 1998).

Practically all wave modes discussed in Chap. 5 can contribute to the losses of
the outer belt electrons. What is the dominant scattering mechanism, depends on
the electron energy and equatorial pitch angle. To remove an electron away from
the belt it needs to be close to the loss cone, which is at the equator only a few
degrees. Furthermore, gyro-resonant interactions are inefficient at equatorial pitch
angles close to 90◦, where Landau- and bounce-resonant processes turn out to be
important in scattering the electrons to smaller pitch angles where the gyro-resonant
interactions can take over. Because a single interaction in the quasi-linear domain
changes the pitch angle only by a very small amount (Sect. 6.4.4), a large number of
interactions are needed to change the electron’s pitch angle so much that it moves to
the loss cone. Nonlinear interactions with large-amplitude waves can, however, lead
to significant changes of pitch angle even in one interaction. If the electron interacts
with a wave at higher latitude, where the loss cone width is much wider, it is easier
to nudge it out of the belt.

6.5.1 Magnetopause Shadowing

Losses through magnetopause shadowing occur when the drift paths of electrons
touch the magnetopause. Due to their large gyro radii the high-energy radiation
belt electrons can cross the magnetopause even if the background plasma remains
frozen-in the magnetospheric magnetic field. Figure 6.6 illustrates different factors
contributing to the shadowing.

The nominal distance to the subsolar magnetopause during magnetospheric
quiescence is about 10 RE , which is well beyond the typical radiation belt electron
drift shells (Fig. 6.6, left). Local inward ripples and excursions in the magnetopause
can, however, allow electrons’ drift paths to cross the magnetopause although the
nominal distance would be beyond the drift shell. For example, during relatively
quiet conditions Kelvin–Helmholtz vortices and/or flux transfer events at the
magnetopause can cause such local inward excursions leading to losses.

During periods of large solar wind dynamic pressure the subsolar magnetopause
can be compressed inside the geostationary distance (6.6 RE) as illustrated in the
middle of Fig. 6.6. The compression enhances the shadowing losses as does the
erosion of the magnetic field due to dayside reconnection. During the main phase
of geomagnetic storms the ring current is enhanced, which leads to decrease of the
equatorial magnetic field earthward of the current and on the surface of the Earth.
Outside of the peak current on the equatorial plane the magnetic field is inflated.
To conserve the third adiabatic invariant electrons move outward so that their drift
shells enclose the same flux inside their drift paths illustrated on the right of Fig. 6.6.
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Fig. 6.6 Schematics of magnetopause shadowing during nominal (left) and strongly compressed
(middle) magnetosphere as well as the inflated drift shells during the main phase of magnetospheric
storms (right). The picture on the left reminds that also local perturbations of the magnetopause,
such as Kelvin–Helmholtz instabilities and flux transfer events, can let radiation belt electrons to
escape from the magnetosphere. The blue trace indicates the drift shell of a particle that crosses the
magnetopause. The figure is a simplification of a similar picture in Turner and Ukhorskiy (2020)

As discussed in Sect. 2.6.2, the drift shell splitting due to the dayside compression
of the magnetosphere shifts the electrons with large pitch angles furthest out.
Consequently, such particles are lost most efficiently, which leads to butterfly-type
of electron distribution function at large L. The electron energy also affects how
effective shadowing losses are MeV electrons drift around the Earth in minutes
(Table 2.2) and can get lost even in the case of a short time inward magnetopause
excursion. The drift periods of lower-energy electrons can be hours and if the
disturbance is short-lived, it can remove only a small fraction of the population.

6.5.2 Losses Caused by Whistler-Mode Waves in Plasmasphere

Interaction of electrons with whistler-mode waves scatters electrons both in energy
and pitch angle. Whether this leads to acceleration or loss of radiation belt electrons
depends on the shape of the particle distribution function close to the resonant
velocity. It is important to keep in mind that in numerical and theoretical studies the
detailed results depend on the chosen models of frequencies and WNA distributions
of the wave amplitudes and on the properties of background plasma and magnetic
field. For example, the frequency of the plasmaspheric hiss is less than 0.1 times
the local electron gyro frequency, whereas outside the plasmapause, where the
gyrofrequency is smaller, the frequencies of chorus waves are in the range 0.1 ωce <

ω < 1.0 ωce. Thus different approximations of the dispersion equation need to be
used in wave–particle interaction calculations if the complete dispersion equation is
numerically too demanding to apply.

Plasmaspheric hiss plays a central role in the loss of electrons from the inner
parts of the outer radiation belt and in the formation of the slot region between the
inner and outer belts. Lyons et al. (1972) calculated diffusion coefficients based on,
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at time still relatively limited, observations. They were able to demonstrate that the
core of the inner belt is not affected much by hiss-induced diffusion but its outer
edge, i.e., the inner edge of the slot, is energy dependent, being closest to the Earth
at highest energies, which is consistent with modern observations to be discussed
more thoroughly in in Sect. 7.2 (see, Fig. 7.2).

The diffusion coefficients are proportional to the wave power, i.e., the square of
the wave amplitude (6.41), and the estimated lifetimes depend on the distribution
of wave power along the orbits of the particles. Lyons et al. (1972) used the
amplitude of Bw = 35 pT and found electron lifetimes within the slot to be 1–
10 days, increasing with increasing energy up to 2 MeV. Using a smaller hiss
amplitude of Bw = 10 pT Abel and Thorne (1998) found electron lifetimes in the
energy range 100 keV–1.5 MeV to be of the order 100 days, which they found to
be consistent with several satellite observations in the outer electron belt but yet
inside the plasmasphere. As shown in Fig. 5.11 the hiss amplitudes vary from a few
to a few to a few tens of pT during quiet magnetospheric conditions to 100–300 pT
during storms, resulting in large variations of radiation belt electron lifetimes in the
plasmasphere.

Lyons et al. (1972) pointed out that to obtain correct electron lifetimes, in
addition to the sum over a sufficient number of harmonic gyro-resonant (n �= 0)
terms, it is necessary to include the Landau resonance (n = 0) in the calculation of
the diffusion coefficients. This is because for large WNA, where the whistler mode
turns to the magnetosonic/X-mode (Fig. 4.3), the minimum gyro-resonant velocity
v‖,res = nωce/k‖ becomes larger than the velocity of the particles and the Landau
resonance starts to dominate the scattering process. These conclusions have been
confirmed and refined in several later investigations taking advantage of much more
detailed and extensive modern observations (e.g., Ni et al. 2013; Thorne et al. 2013b,
and references therein).

Ni et al. (2013) investigated the effects of gyro- and Landau-resonant terms on
electron lifetimes up to ultra-relativistic energies for plasmaspheric hiss and oblique
magnetosonic/X-mode waves. Figure 6.7 illustrates the diffusion coefficients. The
green curves were calculated assuming quasi-parallel propagating whistler mode,
the red curves with a model including a latitude-dependent WNA, to represent the
observations that the WNA of the whistler mode is more oblique at higher latitudes
(Chap. 5), and the blue curves indicate the diffusion caused by the magnetosonic/X-
mode waves.

A striking feature in Fig. 6.7 is the so-called “bottleneck” of very small pitch-
angle diffusion coefficients between nearly-perpendicular and smaller equatorial
pitch angles. It is due to that gyro-resonant scattering, which dominates at small
and intermediate pitch angles, is not efficient at αeq ≈ 90◦, where the Landau
resonance takes over. Thus, the bottleneck slows down their transport from very
large pitch angles toward the atmospheric loss cone. This problem was already
recognized by Lyons et al. (1972) who pointed out that the combined gyro- and
Landau-resonant interactions are not efficient enough to scatter electrons from large
to the intermediate pitch angles. This results in larger non-relativistic electron fluxes
at nearly-equatorial pitch angles than observed.
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Fig. 6.7 Examples of pitch-angle diffusion coefficients at L = 3.2. The colors correspond
to different propagation directions of plasmaspheric hiss: The green curves represent a model
of quasi-parallel propagation of the whistler mode, the blue highly oblique propagation in the
magnetosonic/X mode. The red curves are calculated using a model where the WNA of the whistler
mode increases with increasing latitude. The “bottleneck” discussed in the text is the drop in the
diffusion rates between gyro-resonant interaction at smaller equatorial pitch angles and Landau
interaction close to 90◦ (From Ni et al. 2013, reprinted by permission from American Geophysical
Union)

According Ni et al. (2013) the drop between the gyro-resonant and Landau-
resonant diffusion is energy-dependent and extends also to relativistic energies.
They found that below 2 MeV (top three panels of Fig. 6.7) the inclusion of the first-
order gyro and Landau resonances and quasi-parallel propagation is an equally good
approximation as calculations including higher-order terms. At ultra-relativistic
energies realistic latitude-dependent WNAs and higher harmonics need to be taken
into account. Ni et al. (2013) noted that above 3 MeV the higher harmonics even
become dominant at intermediate pitch angles. The diffusion due to the nearly-
perpendicular propagating magnetosonic/X-mode waves (blue curves in Fig. 6.7)
was found to be weaker at all pitch angles, being most notable for lower-energy
(<1 MeV) electrons at both small (�40◦) and large (�80◦) pitch angles.

Ni et al. (2013) estimated the lifetimes of equatorially mirroring electrons to be
days at 500 keV, a few tens of days at 2 MeV and more than 100 days at 5 MeV. Thus,
in those rare cases where ultra-relativistic electrons get access to the slot region as
a result of strong magnetospheric perturbations, they can remain trapped for weeks
or months as will be discussed in Sect. 7.4.

A possible way to overcome the bottleneck is the pitch-angle scattering due to
resonance with the bounce periods of the electrons (Sect. 6.1). Because the electron
bounce frequencies in the plasmasphere are of the order of a few Hz (Table 2.2),
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which are smaller than the lowest observed hiss frequencies of a few tens of Hz, the
interaction can only take place at high multiples of the (angular) bounce frequency
ω = lωb . Cao et al. (2017b) calculated the diffusion coefficients including bounce
terms up to l = 50 in the L-range 4–5. They found the diffusion rates to be
comparable with the Landau resonance at energies below 0.5 MeV. At energies
above 1 MeV the bounce resonance exceeds the Landau resonance in particular
at intermediate pitch-angles �50◦. They concluded that the Landau and bounce
resonances are critical to move electrons from αeq ≈ 90◦ to smaller pitch angles.

The different electron lifetimes due to scattering by plasmaspheric hiss are
demonstrated in high-resolution observations by Van Allen Probes. Zhao et al.
(2019b) studied the high-energy electron spectra beyond L ≈ 2.6 and found that
instead of decreasing monotonically as a function of energy they tend to peak around
2 MeV. They called these reverse or bump-on-tail spectra similar to the familiar
gentle-bump of the elementary Vlasov theory (Fig. 5.1). In the plasmasphere the
energy density of relativistic particles is, however, much smaller than that of the
dense and massive background plasma and the bump is too gentle to drive an
instability, being a consequence rather than a driver of plasma waves. The reverse
high-energy spectra form during a few days after the storm main phase when
the plasmaspheric hiss scatters electrons of a few hundred keV to 1 MeV to the
atmospheric loss cone followed by slow inward transport of >1-MeV electrons.
Hiss scatters also >1-MeV electrons, but very slowly. Numerical simulation of the
spectral evolution solving the diffusion equation (6.39) following the big (Dstmin =
−222 nT) Saint Patrick’s day storm on 17 March 2015 was found to reproduce the
observations very well (Fig. 6.8).

Other whistler-mode waves potentially leading to pitch-angle diffusion in the
plasmasphere are lightning-generated whistlers and emissions from ground-based
VLF transmitters. The lightning-generated whistlers have maximum amplitudes
at frequencies 3–5 kHz, which are higher than the typical plasmaspheric hiss
frequencies. Meredith et al. (2009) added a model of lightning-generated whistler
spectra to their diffusion calculations and found that they introduce a possible way
to overcome the bottleneck by resonating with high pitch-angle ultra-relativistic
electrons (2–6 MeV) and scattering them to lower pitch angles.

The strongest artificial signals propagating in the whistler mode to the inner
magnetosphere arise from U.S. Naval communication transmitters at frequencies
around 25 kHz. As to be discussed in Sect. 7.4.2, the emissions form a radio bubble
around the Earth, which has been proposed as an explanation why ultra-relativistic
electrons only seldom penetrate to the L-shells below 2.8.

6.5.3 Losses due to Chorus Waves and Electron Microbursts

Outside the plasmapause the whistler mode appears as chorus emissions. The
basic wave–particle interactions with radiation belt electrons are similar to those
in the plasmasphere but here the background plasma is both hotter and much more
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Fig. 6.8 Comparison of the evolution of observed and simulated spectra during 20–29 March
2015. The upper panels show the Van Allen Probe A MagEIS and REPT spectra and the
lower panels the Fokker-Planck simulation of equatorially trapped electrons using a time-varying
plasmaspheric hiss model. The colors indicate the time from 20 March (blue) to 29 March (red)
(From Zhao et al. 2019b, reprinted by permission from Springer Nature)

tenuous, and the frequencies of chorus waves are closer to the local electron gyro
frequency than in the plasmasphere. All these factors affect the propagation char-
acteristics of the waves and how they interact with electrons of different energies
and pitch angles. When suprathermal electrons advect from the magnetospheric tail,
their distribution function becomes anisotropic in the velocity space, which leads to
instability and energy transfer from the electrons to the whistler-mode chorus waves
(Sect. 5.2). At higher energies chorus waves are considered as efficient accelerators
of electrons up to relativistic energies (Sect. 6.4.5).

The chorus emissions are also important agents of pitch-angle diffusion toward
the atmospheric loss cone, because the pitch-angle diffusion coefficients are larger
than the energy diffusion coefficients (Eq. (6.40)). While the scattering of �100 keV
electrons is efficient near the equator, the chorus-wave losses of MeV electrons is
most efficient at higher latitudes (λ � 15◦), where the waves propagate increasingly
obliquely (e.g., Thorne et al. 2005, and Fig. 5.5).

A specific feature of chorus waves, in particular of the lower-band chorus
below 0.5 fce, is that they are composed of short nonlinear rising-tone emissions
in frequency (Sect. 5.2.4). These large-amplitude wave packets may lead to the brief
electron microbursts. The microbursts were originally identified in balloon-borne
observations as X-ray bremsstrahlung of �200-keV electrons precipitating into the
atmosphere (Anderson and Milton 1964). The microbursts have later been observed
with instruments on several high-altitude balloons and sounding rockets and using
fast-sampling electron detectors looking upward into the atmospheric loss cone
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onboard spacecraft traversing the high-latitude ionosphere at low altitudes where
the loss cone is wide.

The microbursts occur in timescales of milliseconds and they are observed in
the energy range from a few tens of keV to several MeV. At lowest energies they
are related to the generation of chorus waves, while at higher energies microbursts
have been shown to be able to empty the outer radiation belt in a timescale of
one day. Both quasi-linear gyro-resonant interaction with small-amplitude chorus
waves and nonlinear interaction with large-amplitude chorus wave packets have
been suggested to cause the very rapid pitch-angle scattering of electrons, even
from a brief interaction with a single chorus wave packet (Bortnik et al. 2008a). In
addition, the nonlinear Landau trapping by large-amplitude oblique whistler-mode
chorus at high geomagnetic latitudes has been suggested to play a significant role in
losses as they increase efficiently the parallel energy of electrons in a region where
the loss cone is relatively wide (e.g., Osmane et al. 2016, and references therein).

The number of events with simultaneous high-resolution observations of large-
amplitude chorus emissions and microburst precipitation in close magnetic field
conjunction is limited. Mozer et al. (2018) investigated an event on 11 December
2016 when high-resolution wave data from Van Allen Probes B was available. The
observed wave amplitude exceeded occasionally 1 nT, being in the nonlinear regime.
The cross-correlation between 1-s averaged precipitating electron flux observed
with the low-altitude AeroCube 6B microsatellite and the Van Allen Probes wave
magnetic field was close to 0.9, which is an exceptionally high correlation in this
context.

Mozer et al. (2018) calculated the standard bounce-averaged quasi-linear pitch-
angle diffusion coefficient for an average amplitude of 100 pT. They found that the
observed precipitating electron flux corresponded remarkably well to the estimated
flux from quasi-linear diffusion once the data was averaged over 1 s, which extends
over several periods of both chorus elements and microbursts. This result suggests
that, on the average, the Fokker–Planck approach may describe quite well the
pitch-angle scattering although the underlying scattering process may be nonlinear
interaction with high-amplitude elements of whistler-mode chorus waves.

Another interesting conjugate event occurred on 20 January 2016. The CubeSat
FIREBIRD II observed microbursts of 200-keV to 1-MeV electrons, and Van Allen
Probe A detected lower band chorus of similar cadence and duration (Breneman
et al. 2017). As microbursts were dispersionless, the scattering was considered to
be a nonlinear first-order gyro resonance. AeroCube and FIREBIRD observations
illustrate that even CubeSat-class satellites can have great scientific value.

The Japanese Arase satellite, launched in December 2016, made it possible to
conduct. together with Van Allen Probes, high-resolution magnetically conjugate
wave and particle observations simultaneously close to the equator and at higher
magnetic latitudes. An example of conjugate observations between Arase and
Van Allen Probes A on 21 August 2017 was published by Colpitts et al. (2020)
(Fig. 6.9). This was the first time when the propagation of individual whistler-mode
wave packets from the lower (12◦) to higher (21◦) magnetic latitude was directly
observed.
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Fig. 6.9 Observations of the propagation of whistler-mode wave packets from magnetic latitude
λ = 12◦ (Van Allen Probes A) to λ = 21◦ (Arase) over a period of 10 s. The top four panels show
the Van Allen Probes A power spectral density (here PSD does not mean phase space density!) and
wave normal angle (WNA), Arase PSD and WNA, all these in the frequency range 5.8–7.3 kHz,
i.e., in the lower-band whistler mode (fce/2 ≈ 7.9 kHz). The lowest panel shows the magnetic
field-aligned component of the Poynting vector calculated from Van Allen Probes A electric and
magnetic field data (From Colpitts et al. 2020, reprinted by permission from American Geophysical
Union)
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Figure 6.9 shows a few chorus elements of the lower-band whistler mode
observed by both satellites. The Poynting vector in the bottom panel indicates that
wave energy was propagating at the location of Van Allen Probes A (λ = 12◦)
toward the higher latitude. The dashed vertical line indicates the time when the
first chorus element arrived at Van Allen Probes A. The same element arrived 0.2 s
later at Arase at λ = 21◦, consistent with a ray-tracing study presented by Colpitts
et al. (2020). The wave normal angle became increasingly oblique while the wave
propagated to the higher latitude, thus making the wave more efficient to scatter the
relativistic electrons toward the loss cone.

Due to observational limitations it is difficult to answer the question how large
fraction of the total electron precipitation losses beyond the plasmapause are in
the microbursts. Greeley et al. (2019) investigated their role during storm recovery
phases using SAMPEX observations from 1996 to 2007. They found that the
microburst losses had a high correlation with the global loss of 1–2 MeV electrons,
in particular during storms driven by interplanetary coronal mass ejections (ICME),
when the microbursts may even be the main loss process. The correlation was
weaker for stream interaction region (SIR) driven storms. (For further discussion
of the different storm drivers, see Sect. 7.3.)

6.5.4 Losses Caused by EMIC Waves

The quasi-linear pitch-angle diffusion of relativistic electrons due to whistler-mode
chorus waves is a relatively slow process. On the other hand, electromagnetic ion
cyclotron waves have been found to lead to enhanced electron losses at L-shells
close to the plasmapause where the waves are frequently observed, in particular
during storm-time conditions. Summers et al. (1998) demonstrated that EMIC
waves lead to almost pure pitch-angle diffusion. Contrary to chorus, the EMIC
waves are not efficient electron accelerators.

According to the resonance condition ω−k‖v‖ = nωce/γ , in which n can be both
a positive and negative integer (or zero), both right-hand and left-hand polarized
waves can be in resonance with right-hand gyrating electrons. The whistler-mode
resonances correspond to n ≥ 1. For the resonance with left-hand polarized EMIC
waves it is, in practice, sufficient to consider the lowest order term (n = −1) only,
due to much smaller wave frequency compared to the electron gyro frequency. The
relative direction of the wave propagation and the parallel electron velocity must,
of course, be such that in the electron’s guiding center frame the wave rotates in
the same sense as the electron. Furthermore, the resonance condition requires that
the energy of the electron is sufficiently high. Not only the Lorentz factor γ has
to be large but also the parallel velocity must be large enough to Doppler shift the
wave frequency close to ωce/γ . The minimum resonant energies are of the order
of 1 MeV or larger, assuming that the plasma frequency is considerably higher than
the electron gyrofrequency (ωpe/ωce ≥ 10) (Summers and Thorne 2003). This
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condition is met close to the plasmapause in the afternoon sector where the EMIC
waves are frequently observed.

In numerical diffusion studies it is essential to apply an appropriate background
plasma model. An example is the investigation by Jordanova et al. (2008) of the
intense storm on 21 October 2001. The model included all major loss processes and
was coupled with a dynamic plasmasphere model with 77% H+, 20% He+ and 3%
O+. The EMIC wave amplitudes were calculated self-consistently with evolving
plasma populations, resulting to He+ band amplitudes Bw ≈ 5 nT at L = 4.5 and
Bw ≈ 10 nT at L = 6.25. The analysis was performed considering separately EMIC
scattering alone, all processes except EMIC waves, and all scattering processes
including EMIC waves. The highest pitch-angle diffusion coefficients for relativistic
electrons were found to be in the range 0.1–5 s−1 and limited to equatorial pitch
angles �60◦. Considering that the applied He+ band frequencies were below 1 Hz,
so strong diffusion is at the limit of the quasi-linear approach. Jordanova et al. (2008)
concluded that scattering by EMIC waves enhances the loss of >1-MeV electrons
and can cause significant electron precipitation during the storm main phase. This
conclusion has been verified observationally during the Van Allen Probes era when
phase space densities have been possible to calculate with better accuracy than
before (e.g., Shprits et al. 2017, and references therein).

In theoretical calculation of the resonant energy for interaction of EMIC waves
with electrons both electron and ion terms in (4.63) must be retained and the
derivation is a bit more complicated than the derivation of the ion resonant energy
(5.19) (e.g., Summers and Thorne 2003; Meredith et al. 2003). Considering nearly
parallel propagating hydrogen band EMIC waves and assuming small He+ (<10%)
and O+ (<20%) concentrations Mourenas et al. (2016) derived a simplified equation
for the minimum resonant energy of the electrons

Wres,min ≈
√

1 + K − 1

2
, (6.51)

where

K = 1

cos2 αeq

ω2
ce,eq

ω2
pe,eq

ω2
cp,eq(1 − ω/ωcp,eq)(mp/me)

ω2(1 − ωcp,eq(1 − ηp)/ω)
. (6.52)

Here the electron pitch angle and electron and proton gyro and plasma frequencies
are given at equator and ηp is the proton concentration (typically ηp > 0.7).
The main message of these equations is that the minimum resonant energy is
approximately proportional to B/

√
ne and inversely proportional to cos αeq and to

the wave frequency ω.
Based on CRRES observations Meredith et al. (2003) concluded that minimum

energy conditions of 1–2 MeV electrons was met during about 1% of the electron
drift motion around the Earth. They noted that while 1% may sound small, it actually
is enough to keep diffusion significant and, at the same time, loss timescales in the
range of hours to one day. If the interaction would take place within a much wider
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part of the drift motion, the electrons would disappear too fast compared to the
observations.

During favorable conditions the electron loss may also be faster. Kurita et al.
(2018) analyzed Van Allen Probes and Arase observations following each other
during moderate substorm activity on 21 March 2017. They concluded that the
relativistic electrons where lost in the L-shell range 4–5 in a timescale of 10 min or
even faster, which corresponds to only a couple of drift periods. From the satellite
and ground-based observations the EMIC wave activity was estimated to occur
within a few-hour period around the magnetic midnight. It is possible that in this
particular case the interaction took place during a much longer fraction of the drift
path than estimated by Meredith et al. (2003).

Similar to the whistler-mode waves, the gyro-resonant scattering due to EMIC
waves is limited to small and intermediate pitch angles because the minimum
resonant energy increases beyond the electron energies when αeq → 90◦. The
WNAs of the waves are �30◦, but if the wave amplitude is large enough, the
parallel component of the wave electric field may be sufficient to lead to pitch-
angle scattering of the electrons through the bounce resonance. The H+ band waves
can fulfil the resonance condition ω = lωbe at low resonant numbers in the outer
radiation belt up to L � 6. Cao et al. (2017a) calculated pitch-angle diffusion
coefficients at energies >100 keV using oblique EMIC waves with the amplitude
of 1 nT. They found that at equatorial pitch angles >80◦, where the gyro-resonant
diffusion became weak, the bounce-resonant diffusion took over and exceeded
10−3 s−1 close to 90◦. At L = 3 the dominant bounce harmonic number was l = 2,
whereas l = 1 dominated at L = 4 − 5.

Using typical plasma, wave and particle observations from the Van Allen Probes
Blum et al. (2019) demonstrated that 50–100 keV electrons can be scattered effi-
ciently by bounce-resonant interaction with both He+ and H+ band EMIC waves.
They found pitch-angle diffusion coefficients exceeding 10−3 s−1 for electrons with
equatorial pitch angles approaching 90◦.

The nonlinear interaction between EMIC waves and electrons can result in
resonant pitch-angle scattering of αeq = 90◦ electrons (with v‖ = 0) at the equator
even in case of an exactly parallel propagating wave. To see this, write the electron’s
equation of motion in the wave field (Ew,Bw) in the form (6.47). The Lorentz force
due to the wave magnetic field ∝ p×Bw has a component parallel to B0. According
to Eq. (6.48) the acceleration due to the nonlinear term is proportional to Bw sin η,
where η is the phase angle between the perpendicular velocity of the electron v⊥ and
Bw⊥. Because the gyro frequency is much higher than the frequency of the wave,
η is highly oscillatory. For a small-amplitude wave the nonlinear term averages out
rapidly and its effect is negligible causing just a small oscillation of α around 90◦.
But for larger amplitudes the small oscillation may hit the bounce resonance and
scatter the electron to off-equatorial motion.

Lee et al. (2020) performed test-particle simulations of 5-MeV electrons with an
initial αeq = 90◦ and different phase angles η integrating Eq. (6.47) in a dipolar
B0(λ). In case of Bw/B0 = 0.05 and wave normal angle 0◦ the diffusive effect
on the pitch angle remained small (about 5◦) and constant during the length of the
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simulation (1600 gyro periods). Increasing the wave amplitude to Bw/B0 = 0.1
increased the diffusive �α to about 20◦. Increasing the wave normal angle, when
also the wave electric field causes a parallel force, led to rapid growth of the pitch-
angle scattering. Consequently, the interaction with large-amplitude EMIC waves
can contribute to the pitch-angle diffusion of equatorial and nearly equatorial ultra-
relativistic electrons.

6.6 Different Acceleration and Loss Processes Displayed in
Phase Space Density

It is likely that both local acceleration by whistler-mode chorus waves and ULF
wave driven inward radial transport contribute to electron energization. Both wave
modes can be significantly enhanced during geomagnetically active periods, but
there is no one-to-one correlation between them making individual events different
from each other. An important aspect is also the energy-dependence of acceleration
to the highest energies. A plausible scenario is that electrons are first accelerated to
MeV energies by chorus waves and then further to ultra-relativistic energies through
inward transport by ULF waves (e.g., Jaynes et al. 2018; Zhao et al. 2019a).

Which one of these mechanisms is more important, and under which conditions,
has, however, remained a highly controversial subject where new observations and
refined computer simulations have been found to be in favor of one or the other.
In cases when the phase space density (PSD, Sect. 3.5) as a function of adiabatic
integrals f (μ,K,L∗) can be determined from multisatellite observations with
sufficient accuracy and wide enough coverage, its temporal evolution can be used
to investigate the relative roles of the mechanisms that are fully adiabatic (e.g., the
Dst effect, Sect. 2.7) and processes that break one or more adiabatic invariants.

The method is illustrated schematically in Fig. 6.10, in which the temporal
evolution of PSD as a result of different processes is sketched as a function of L∗ for
a given μ. In a fully adiabatic process conserving all adiabatic invariants the PSD
does not change. Radial transport and local acceleration/losses show different time
evolution of the PSD.

In the case of inward radial transport alone the source is typically at large radial
distances, and a wide range of energies over a wide domain in L∗ is affected
(Fig. 6.10, top left). The PSD increases with time at all drift shells and maintains
its monotonous gradient ∂f/∂L∗ > 0 during the transport toward the Earth. Since
the inward transport brings new electrons into the radiation belt region from larger
distances, the PSD increases in absolute sense, as indicated by the upward arrow.

The local acceleration through wave–particle interactions, in turn, enhances the
PSD within a limited radial distance leading to a temporally growing peak as a
function of L∗ (Fig. 6.10, top middle). The subsequent radial diffusion spreads the
peak to both directions. Note, however, that a local peak (Fig. 6.10, top right) may
also appear after the radial transport has first enhanced the PSD (time t0 to t1) and
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Fig. 6.10 Illustration of how temporal evolution of the phase space density can be used to
distinguish between acceleration by radial diffusion or an internal mechanism. See the text for
explanation (The figure is drafted following similar pictures of Chen et al. 2007; Shprits et al.
2017)

then magnetopause shadowing (Sect. 6.5.1) removes electrons from the outer parts
of the belts (time t1 to t2).

Similarly, it is possible to distinguish between different loss mechanisms in
the the temporal evolution of the PSD. The sketch in the bottom left of Fig. 6.10
illustrates the gradual loss due to pitch-angle scattering to the atmospheric loss cone
through interaction with plasmaspheric hiss and whistler-mode chorus waves at a
wide range of L-shells. The picture in the bottom middle describes outward radial
diffusion and subsequent loss to the magnetopause. The time evolution of the PSD
on the bottom right illustrates fast local loss by the EMIC waves.

It is important to understand that the PSD is not a magic wand. The method
is constrained by the resolution and spatial coverage of the observations and, in
particular, by the accuracy of the applied magnetic field model in the process to
convert particle fluxes to PSD (Sect. 3.5).

The importance of wide enough L∗ coverage was emphasized by Boyd et al.
(2018) who combined Van Allen Probes and THEMIS observations. Of the 80 events
they investigated only 24 featured a clear peak in the PSD as a function of L∗
when the PSD was calculated from Van Allen Probes data alone. However, when
THEMIS data from larger distances were included in the analysis, 70 of the 80
events indicated local acceleration.

Figure 6.11 shows two examples of the Boyd et al. (2018) study. The event on
13–14 January 2013 was one where the gradient was clearly positive as a function
of L∗ in the Van Allen Probes data but turned negative at larger distances and there
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Fig. 6.11 Evolution of the phase space densities combined from Van Allen Probes and THEMIS
observations on 13–14 January 2013 (top) and on 6–8 December 2014 (bottom). The different
times are given with different colors increasing from blue to red (From Boyd et al. 2018, Creative
Commons Attribution-NonCommercial-NoDerivs License)

was a clear growing peak from L∗ ≈ 4.3 to at least L∗ ≈ 7.5, when THEMIS data
were included. The PSD from Van Allen Probes observations alone thus suggested
radial transport but the wider radial coverage supported the interpretation that local
acceleration was the dominant one.

The event on 6–8 December 2014 was different. In that case the Van Allen
Probes data hint a local peak slightly earthward of the apogee of the spacecraft.
However, there was no clear negative gradient in the PSD calculated from THEMIS
observations.

6.7 Synergistic Effects of Different Wave Modes

In the previous sections we have mostly considered the source and loss effects of
various wave modes one at a time. In reality the picture is more complicated. During
its drift motion an individual electron encounters different wave environments
at different MLT sectors. For example, whistler-mode chorus can accelerate the
electron in the dawn side and the same electron may be scattered toward the loss
cone by EMIC waves in the afternoon sector. Note also that these emissions are not
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strictly limited to these sectors and, as discussed in Chap. 5, may occasionally be
observed at all local times, also simultaneously in the same location.

As discussed earlier, the combined effect of different wave modes on charged
particles can be additive. Examples of this are processes in which a bounce
resonance may first move electrons from large equatorial pitch angles to smaller
pitch angles, where gyro resonance can take over, or in which the electrons are first
accelerated to MeV energies by chorus waves, whereafter ULF waves may take care
of the acceleration to ultra-relativistic energies.

The effect of wave modes can also be synergistic, where nonlinear interaction
between the waves modifies the properties of the wave that scatters the particles
either in energy or pitch angle. In particular, large-amplitude ULF waves have been
found to modulate the key parameters of particle interactions with EMIC, chorus
and plasmaspheric hiss emissions.

An early suggestion that ULF oscillations might modulate the electron scattering
by whistler-mode waves was presented by Coroniti and Kennel (1970). They found
that such modulations ought to be found in a wide range of periods 3–300 s. This
corresponds to observed precipitation pulsations with periods 5–300 s in X-ray
emissions and riometer absorptions caused by >30-keV electrons.

Modern observations of poloidal mode ULF oscillations with mirror-like mag-
netic and density oscillations were illustrated in Fig. 5.19. Xia et al. (2016) found
that the ULF modulation strengthened both upper- and lower-band chorus emissions
in the troughs of the magnetic fluctuation, whereas chorus waves weakened at
the crests of the fluctuation. Careful analysis of electron and proton pitch-angle
distributions suggested that the chorus emissions below 0.3 fce were consistent with
linear growth by enhanced low-energy electrons, whereas some, likely nonlinear,
mechanism may be required to excite the chorus at higher frequencies, perhaps
similar to the formation of the chirping emissions discussed in Sect. 5.2.4.

The mirror-type appearance can also affect the minimum resonant energy of
electrons with EMIC waves. According to (6.51) the minimum resonant energy
depends on the background magnetic field and plasma density as

Wres,min ∝ ωce

ωpe

∝ B√
ne

. (6.53)

Consequently, during the half period of the ULF wave, when the oscillation reduces
the magnetic field and enhances the plasma density, Wres,min is reduced from the
constant background level. In order this to be effective requires, of course, that the
amplitude of the modulating wave is large enough.

Using THEMIS (in 2007–2011) and Van Allen Probes (in 2012–2015) observa-
tions Zhang et al. (2019) investigated in total 167 large-amplitude ULF wave events
colocated with hydrogen-band EMIC waves in the L-shell range 4–7. The events
were found at all MLTs, mostly in the evening sector. The magnetic fluctuations
were in the range 0.01 < �B/B < 2 and the density fluctuation was in most cases
even larger. Under the background conditions 5 < ωpe0/ωce0 < 25 the average
fluctuation ratio (�ne/ne)/(�B2/B2) was in the range 1–3.
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Theoretically these levels of ULF fluctuations could reduce Wres,min up to about
30% from the constant background level. Thus assuming that the background
plasma conditions without the ULF fluctuation would suggest minimum resonant
energy of 1 MeV, the presence of such fluctuations would reduce it to 0.7 MeV.
Zhang et al. (2019) also noted that their event selection criteria limited the frequency
range of the ULF waves to higher than 5 mHz in THEMIS observations and higher
than 10 mHz in Van Allen Probes observations, thus missing the lowest-frequency
end of Pc5 waves where �B/B can be expected to be larger facilitating scattering
of electrons of even smaller energy.

How important this mechanism is to the loss of sub-MeV electrons remains
unclear. The occurrence rate of the events with simultaneous EMIC and ULF
oscillations studied by Zhang et al. (2019) was not very large. It peaked at L-shells
5.5–6, where it was (3 ± 1) × 10−3.

Also plasmaspheric hiss has been found to be modulated by ULF fluctuations.
Breneman et al. (2015) investigated global-scale coherent modulation of the electron
loss from the plasmasphere using Van Allen Probes hiss observations, balloon-borne
X-ray counts due to precipitating electrons in the energy range 10–200 keV, and
ground-based ULF observations. The intensity of the hiss emission was modulated
by the ULF oscillation and there was an excellent correspondence between hiss
intensity and electron precipitation during the two in detail analyzed events on 3 and
6 January 2014. Thus the global-scale forcing of the plasmasphere by ULF waves
can lead to enhanced hiss emission and consequent scattering of plasmaspheric
electrons to the atmospheric loss cone.

Simms et al. (2018) performed an extensive statistical analysis of the effects
of ULF Pc5, lower-band VLF chorus, and EMIC waves on relativistic and ultra-
relativistic electron fluxes in four energy bands (0.7–1.8 MeV, 1.8–4.5 MeV, 3.5–
6.0 MeV and 6.0–7.8 MeV) observed at geostationary orbit during 2005–2009. They
used autoregressive models where the daily averaged fluxes were correlated with the
fluxes and wave proxies observed in the previous day. The models were constructed
separately for different pairs of the wave modes including both linear and quadratic
terms of each wave, and a cross-term of the waves to represent the synergistic
effects.

The regression coefficients contain a lot of information about linear and nonlinear
influences of the individual modes and of their mutual interactions, thorough
discussion of which is beyond the scope of this book. Here we focus on the
synergetic effects suggested by the analysis.

The influence of Pc5 waves was found to be largest at midrange power and
decreased due to the negative effect of the nonlinear term, and this was more
pronounced when Pc5 waves were paired with VLF chorus. The synergistic
interaction of Pc5 and chorus emissions was found to mutually increase their effects
being statistically significant at higher energies. This is consistent with the idea that
both Pc5 and chorus waves contribute to the electron acceleration to relativistic
and ultra-relativistic energies and that the combined effect is not only additive but
also synergistic. Simms et al. (2018) suggested that the nonlinearity of the Pc5
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influence may be responsible for different conclusions found in different studies
of its effectiveness relative to VLF chorus.

The EMIC waves had a negative effect on electron fluxes, in particular, at the
highest energy ranges. This is consistent with the fact that the electron energy must
exceed the minimum resonant energy. The negative effect was enhanced when both
the EMIC waves and either Pc5 or chorus waves were at high levels, and again there
was clear indication of synergistic interaction.

6.8 Summary of Wave-Driven Sources and Losses

Table 6.3 summarizes the sources and primary regions of occurrence (MLT, L-shell
and latitude) of the wave modes presented in the previous sections as well as the
resonances of radiation belt electrons with different wave modes.

Because radiation belt electron gyro frequencies are higher than the wave
frequencies, the electron energies and the Doppler-shift of the wave frequency
k‖v‖ must be large enough to fulfil the resonance condition. Near the equator
most of the relevant wave modes (hiss, chorus, EMIC) propagate indeed quasi-
parallel to the background magnetic field with small wave normal angles (Table 4.2).
The requirement for high v‖ implies that resonance occurs mostly from small to
intermediate pitch angles (up to 60–70◦).

Chorus waves can resonate with a wide range of equatorial pitch angles of the
electrons (up to nearly 90◦) and over wide range of energies due to their wide range
of frequencies. The gyro resonances with lower-frequency hiss and EMIC waves
are, in turn, limited to lower/intermediate pitch angles and to the highest energies.
Landau and bounce resonances may work from intermediate to 90◦ pitch angles.

Additionally, nonlinear interactions with large-amplitude waves can lead to rapid
acceleration and scattering losses. The waves often propagate obliquely, typically at
high-latitudes where they can most efficiently scatter electrons close to the loss cone.

Recall that the relation of wave frequency and parallel wave number depends on
the dispersion equation. For example, Eq. (5.11) indicates that the resonant energy
of whistler-mode waves is inversely proportional to the wave frequency.

It is, in general, a highly important but complex question on what timescales
electrons are lost from the belts due to wave–particle interactions. But on the
other hand, observed loss timescales can give insight to the scattering wave mode.
Particularly interesting are the cases where the whole high-energy belt population
is lost as fast as in ten minutes at low L-shells where the magnetopause shadowing
is unlikely to occur. Hiss, chorus and magnetosonic waves all scatter relativistic
electrons, but in timescales from a day to months. Even in case of nonlinear and
strong interaction with large-amplitude waves the effect to the whole population is
expected to take time. The most plausible cause for the fast wave–particle scattering
are EMIC waves. Another possible cause for fast depletions is magnetopause
shadowing and drift shell splitting.
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Table 6.3 A summary of sources, dominant regions of occurrence, and possible resonances,
including the approximate ranges of energies and equatorial pitch angles αeq of electrons
interacting with different wave modes in the inner magnetosphere

Wave Source Regiona Possible resonances

Chorus Anisotropic velocity
distributions of
1–100 keV electrons

Midnight to early dusk
(strongest dawn),
outside the
plasmasphere up to
magnetopause

Gyro: 30 keV to MeVs, wide αeq

range. Near the equator scatter
�100 keV electrons and
accelerate higher energy
electrons, at high latitudes scatter
MeV electrons

Landau: 30 keV to MeVs.

At high latitudes microburst
losses by non-linear trapping by
large-amplitude oblique chorus.

EMIC Anisotropic velocity
distributions of
1–100 keV protons

Noon to dusk H+ band,
also dawn outside the
plasmasphere up to
magnetopause

Gyro: �1–2 MeV, intermediateb

and small αeq (non-linear
trapping can affect also sub-MeV
electrons)

Landau: 30 keV to MeVs, large
αeq(�85◦)
Bounce: 50–100 keV, large αeq

Hiss Local generation &
non-linear growth,

Dawn to post-noon,
inside plasmasphere

Gyro: ∼100 keV to MeVs,
intermediate and small αeq

penetration of
chorus

Landau: 100s keV, intermediate
and large αeq ,

Bounce : �1 MeV, intermediate
and large αeq

Magneto-
sonic/X-

Ion ring distributions Noon to dusk, both
inside and outside the

Landau: ∼30 keV–1 MeV,
intermediate and large αeq

mode plasmasphere, confined
close to equator (λ � a
few degrees)

Bounce: ∼100 keV to MeVs, wide
αeq range

Pc5 Solar wind drivers
(e.g., KHI, FTE,
pressure pulses), RC
ions and ion
injections from tail

Global, most frequent
dawn and dusk sectors

Drift: small m: MeV electrons
large m: 10s to 100s keV electrons
(m is the azimuthal wave number)

a Information on typical geomagnetic latitudes λ is limited due to the lack of high latitude
observations. Most wave modes are found close to the equator, but extend to at least 20◦–30◦

b Intermediate pitch angle defined here 30◦ � αeq � 70◦
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Chapter 7
Dynamics of the Electron Belts

In this chapter we discuss the overall structure and dynamics of the electron
belts and some of their peculiar features. We also consider the large-scale solar
wind structures that drive geomagnetic storms and detail the specific responses of
radiation belts on them. Numerous satellite observations have highlighted the strong
variability of the outer electron belt and the slot region during the storms, and the
energy and L-shell dependence of these variations. The belts can also experience
great variations when interplanetary shocks or pressure pulses impact the Earth,
even without a following storm sequence.

We start by describing the main electron populations in the belts and then cover
the nominal quiet- and storm-time structure of the belts. Then, we move on to
describe the penetration of the electrons at different energies into the slot region
and the inner belt, including the seemingly impenetrable barrier for ultra-relativistic
electrons, storage ring and three-part radiation belt configuration. We conclude the
chapter with a brief discussion of consequences of energetic electron precipitation
to the upper atmosphere.

7.1 Radiation Belt Electron Populations

Radiation belt electron populations can be divided into the inner belt electrons and
to four different energy ranges of outer belt electrons (Table 7.1) that reflect different
sources and different responses to magnetospheric perturbations and plasma waves.
Also, the technical hazards of these populations differ. Although the number density
of highest-energy electrons is small, even a single electron can have harmful effects
to sensitive satellite electronics. The highest-energy electrons are sometimes called
“killer electrons” because their increased fluxes have been associated with some of
the serious satellite failures. Also lower-energy electrons can have adverse effects
since they contribute to charging of spacecraft surfaces and solar panels.

© The Author(s) 2022
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Table 7.1 Main electron populations in the radiation belts and their key sources. The energy
ranges are indicative and vary among different studies. All populations can be lost due to
magnetopause shadowing and through wave-particle interactions with chorus, EMIC, hiss, and
ULF waves. For details of the source loss processes, see Chap. 6

Population Energy range Sources

Source 30 keV–200 keV Substorm injections, global convection

Seed 200 keV–500 keV Substorm injections, global convection,
acceleration by chorus

Relativistic, core 500 keV–2 MeV Acceleration by chorus,
inward transport by ULF waves

Ultra-relativistic >2 MeV Acceleration by chorus,
inward transport by ULF waves

The suprathermal electrons with energies from a few tens of keV to about
200 keV are called the source population. They can equally well be identified as
ring current electrons although they contribute to the net electric current much
less than ring current ions due to their much smaller energy density. The source
electrons originate mostly from substorm injections and large-scale magnetospheric
convection transporting electrons from the tail closer to the Earth and energizing
them through adiabatic heating. The paramount importance of the 30–200 keV
suprathermal electrons to the radiation belt dynamics is that they provide source
of free energy to whistler-mode chorus waves (Sect. 5.2), which motivates them
to be characterized as a source population. When they give rise to the chorus
waves primarily through gyro resonance, they scatter toward the atmospheric loss
cone. They are also scattered by Landau and bounce resonances with EMIC and
magnetosonic/X-mode waves.

The seed population is in the medium energy range up to several hundred keVs.
They also originate primarily from the substorm injections and inward transport
by global convection. Seed electrons are further accelerated to higher energies by
the chorus waves (Sect. 6.4.5) generated by the source population and by large-
scale ULF Pc4–Pc5 waves (Sect. 6.4.1). Because substorms or global convection
are not able to directly inject MeV electrons into the inner magnetosphere, the few
hundred keV population acts as the crucial seed to the highest energy population.
They scatter toward the atmospheric loss cone primarily due to interactions with
hiss waves in the plasmasphere and by gyro resonance with chorus waves outside
the plasmasphere.

The highest-energy electrons are relativistic. The energies of the core population
reach from about 500 keV to 2 MeV with Lorentz factors 2–5. We call electrons,
whose kinetic energy exceeds 2 MeV, ultra-relativistic. Their γ > 5, which implies
that their velocities are larger than 98% of the speed of light.

The acceleration of the core and ultra-relativistic electrons is among the most
important questions in radiation belt physics. The acceleration proceeds gradually
first from seed to relativistic energies, and then further to ultra-relativistic energies.
Throughout the process both local acceleration by chorus and energization related
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to the inward radial transport via Pc4–Pc5 ULF waves are viable mechanisms.
Chorus waves can be in resonance with electrons of large range of energies. The
drift resonance of ULF waves with seed electrons requires that the wave azimuthal
mode number m has to be large, while for the highest energies resonance occurs
with lower m. However, the relative roles of these processes remain unclear at the
time of writing this book.

7.2 Nominal Electron Belt Structure and Dynamics

The structure and dynamics of the electron belts are continuously driven by
variations in the solar wind and the consequent changes in the magnetic field, plasma
and plasma wave conditions in the inner magnetosphere. While the observations
indicate widely different properties of the belts under different conditions, certain
nominal features and typical storm-time responses can be identified.

The location of the plasmapause plays an important role in the structure of the
outer electron belt. During quiet times the plasmasphere extends up to L = 4–5
(Fig. 1.4), and thus, a significant part of the outer belt is embedded in high-density
low-energy plasma being under the influence of plasmaspheric hiss waves. When
the geomagnetic activity increases, the plasmasphere shrinks and most of the outer
belt remains outside the plasmasphere, where chorus and EMIC waves have the
main influence on the electron dynamics. As a consequence of the plasmaspheric
plume (Sect. 1.3.2) in the afternoon sector the drift shells of the outer belt electrons
can cross regions both inside and outside of the plasmasphere.

During geomagnetic activity a large number of fresh particles are brought from
the magnetotail to the outer belt region and energized. In the storm main phase,
during the rapid enhancement of the ring current (decrease of the Dst index),
sustained convection, substorm injections and inward radial diffusion driven by
ULF Pc5 waves can all contribute to the enhancement of radiation belt populations.
In the recovery phase the adiabatic convection weakens, but substorm injections
and inward radial transport can still replenish the high-energy particle population.
Furthermore, even in the absence of strong large-scale convection and related ring
current enhancement, relatively strong auroral storms, displayed in the AE index,
can take place in association with intense substorms.

At the same time when fresh particles are injected and energized during the
storm main phase, different loss processes are in action. The dayside magnetopause
often gets eroded and/or compressed earthward. Simultaneously, electron drift shells
expand outward because the geomagnetic field is weakened by the enhanced ring
current, leading to enhanced magnetopause shadowing (Sects. 2.6.2 and 6.5.1).
Simultaneously EMIC and chorus waves scatter electrons into the atmospheric
loss cone. Indeed, the main enhancements of relativistic electrons are usually not
observed before the storm recovery phase, when the loss processes weaken but
efficient acceleration via chorus waves and inward radial transport by Pc5 waves
continues, often over extended periods.
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The expansion of drift shells due to enhanced ring current in the storm main
phase often appears to cause a disappearance of electrons in satellite data. However,
the electrons are not necessarily lost from the inner magnetosphere but only move
outward, gaining energy, and return back during the recovery phase when the ring
current weakens, losing the same amount of energy. This essentially adiabatic
process is the Dst effect introduced in Sect. 2.7.

Figure 7.1 illustrates the statistical response of radiation belt electrons to 110
geomagnetic storms observed by Van Allen Probes. Let us walk through the Figure
starting from the typical quiet-time structure of the belts about 12 h before the zero
epoch time at the peak storm activity in the center of each panel. Following clear

Fig. 7.1 Statistical response of the outer radiation belt for 110 geomagnetic storms observed with
Van Allen Probes. Zero epoch time indicated by the dashed vertical line corresponds to the peak
of the storm determined from the minimum of the SYM-H index. The dash–dotted vertical lines
are 12 h before and after the epoch time. The fluxes are shown for four energies representing
source (55 keV), seed (237 keV), core (897 keV) and ultra-relativistic (3400 keV) populations. The
four panels at each energy show the upper, mean, median, and the lower quartile of the fluxes.
Note that because the lowest L-shell in the Figure is 2.5, the outer boundary of the inner belt is
visible only at source and seed energies (From Turner et al. 2019, Creative Commons Attribution-
NonCommercial-NoDerivs License)
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trends can be discerned: At source (top four panels on the left) and seed (top four
panels on the right) energies the inner belt extends to L ≈ 3. Their fluxes are
also enhanced at the highest L-shells shown, in particular this trend is clear for
the seed population (top right). The core electrons (897 keV; bottom left panels)
are found to peak at L ≈ 5, whereas ultra-relativistic electrons (3400 keV; bottom
right) peak at slightly lower L-shells (L ≈ 4.5). The L-shell range where ultra-
relativistic electrons are enhanced is also wider and extends to lower L-shells. While
the relativistic electrons may disappear completely from the outer belt, some amount
of lower-energy electrons remain there even during quiet times. The slot between
the inner and outer belts is, however, clear from seed to ultra-relativistic energies,
but its location and range in L are energy-dependent.

During the storm main phase, source electrons flood rapidly to the outer belt and
the slot region due to enhanced magnetospheric convection and substorm injections.
Thereafter the source electron fluxes decay relatively quickly. This is attributed to
the weakening convection and the consequent expansion of the plasmapause. The
hiss waves in the plasmasphere now rapidly scatter trapped low-energy electrons
toward the atmospheric loss cone. The post-storm fluxes, however, stay elevated
compared to the pre-storm fluxes due to injections related to substorms, which can
be frequent during the storm recovery phase.

Seed electrons enhance in the heart of the outer belt after the peak of the storm.
Substorm injections, inward ULF wave-driven transport and acceleration by chorus
waves may all contribute to this enhancement. As the recovery phase progresses,
the band of enhanced seed electron fluxes weakens and narrows, and its peak
moves to higher L-shells (L > 5). This behavior is consistent with observations
that substorm injections and associated chorus waves move to higher L-shells
in the storm recovery phase (Turner et al. 2013). The reformation of the slot at
seed energies is also clear as the plasmaspheric hiss-related scattering gradually
becomes effective. The peak flux of seed electrons is, however, larger and the slot
narrower than before the storm, but the peak narrows and the slot widens as the time
progresses.

The core and ultra-relativistic electrons, in turn, feature a clear depletion in
the storm main phase followed by an enhancement in the recovery phase. Losses
in the main phase can occur due to magnetopause shadowing and wave–particle
interactions, the former of which is strengthened due to the inflation of drift shells
and outward radial transport. In some cases the apparent depletion can also be
mostly due to the adiabatic Dst effect, i.e., no true losses to the magnetopause or to
the atmospheric loss cone occur and the particles return to their original domain after
the inflation of the drift shells is over. The reason, why source and seed electrons do
not show strong depletion in the main phase, is that a large amount of fresh electrons
are injected to the inner magnetosphere already during the main phase. In addition,
they drift more slowly around the Earth (Fig. 2.7), and therefore, any short-time
inward magnetopause incursion removes more efficiently higher-energy electrons.
The plasmasphere is also typically confined close to the Earth in the main phase
and thus electrons are not affected by hiss that could rapidly scatter lower-energy
electrons. Neither do EMIC waves resonate with lower-energy electrons.
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Figure 7.1 shows that the time when the recovery phase enhancement of particle
fluxes begins depends on electron energy; seed electrons enhance first, followed by
core and finally by ultra-relativistic electrons. The peak of the core electron flux
also widens and moves to slightly lower L-shells when compared to the pre-storm
flux. These features are in agreement with the progressive acceleration scheme
(e.g., Jaynes et al. 2018), according to which the chorus-wave acceleration of seed
electrons is responsible for the inward widening of the relativistic electron fluxes.
The peak flux of ultra-relativistic electrons, in turn, moves to slightly higher L-shells
when compared to the pre-storm flux, but the inner boundary of enhancement stays
at approximately the same L. Statistically both core and ultra-relativistic electron
fluxes stay stable during the 4-day period after the peak of the storm according to
Fig. 7.1. This reflects the slower timescales of hiss waves in scattering high-energy
electrons and the lack of electron loss processes in the outer parts of the outer belt
during quiet periods.

Further insight into the differences in the structure of the electron belts during
quiet and active magnetospheric conditions is illustrated in Fig. 7.2, where electron
fluxes from two orbits of Van Allen Belt Probes are presented. During the geomag-
netically quiet-time orbit (Fig. 7.2, left) the inner and outer belts are separated by a
clear slot region, featured by distinct decreases in electron fluxes over a wide range
of energies. The inner boundary of the outer belt (i.e., the outer boundary of the
slot) is at roughly similar L-shells (L ≈ 4.5) for all energies. The outer boundary
of the inner belt (i.e., the inner boundary of the slot) exhibits, in turn, clear energy
dependence, moving to higher L with decreasing energy. For instance, at the lowest
energies (37- and 57-keV channels; yellow curves on the top) the outer edge of the
inner belt reaches to L ≈ 4, while at 400–500 keV (blue curves) the boundary is
much closer to the Earth, at L ≈ 2–2.5. In other words, the slot region widens with
increasing electron energy, and finally, the inner belt is almost completely void of
core and relativistic electrons.

Fig. 7.2 Electron fluxes at different energies during two Van Allen Probes orbits featuring
geomagnetically quiet (left) and active (right) times as a function of L-shell and energy. HOPE
and MAGEIS data are combined from 1 keV to 4 MeV between L � 1.5–6 RE (From Reeves et al.
2016, Creative Commons Attribution-NonCommercial-NoDerivs License)
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During the active-time orbit (Fig. 7.2, right) the slot region is flooded by low-
energy (source) electrons. At energies above a few hundred keV the slot still exists
but is confined to a considerably narrower L-range when seed- and core-energy
electrons penetrate closer to the Earth. Now also the inner boundary of the outer
belt shows a clear energy-dependence; the electrons penetrate to lower the L-shells
with decreasing energy.

The overall flux variations as response to storms are featured in Fig. 7.3 based on
the same set of 110 storms as Fig. 7.1. The response is determined by comparing the
maximum fluxes from the 3-day intervals before and after the storm SYM-H peak,
excluding a 1-day interval around the peak of the storm. “Enhancing” events are
characterised by at least a factor of two increase from pre- to post-storm maximum
fluxes, while in “depleting” events there is at least a factor of two decrease. The
strategy is the same as that of Reeves et al. (2003) who, using geostationary
measurements, found that the likelihoods of electron fluxes to enhance, experience
no-change or deplete are approximately equal (33%, 30% and 37%, respectively).
Now, however, the Van Allen Probes data allow investigating how the overall
response depends on energy and L-shell.

Figure 7.3 shows that depleting events are rare at source and seed energies. In the
outer belt, seed and source populations typically show enhancement or no-change,
consistent with Fig. 7.1. Substorm injections refill the belts in the recovery phase
despite losses by wave scattering into the atmospheric loss cone. Seed electrons
feature enhancements in the majority of cases (75%) in the heart of the belt, also
in agreement with the previous discussion that their enhancement in the storm
recovery phase can be attributed to chorus acceleration. Enhancing events are also
observed in the slot and the inner belt at source and seed energies. Figure 7.3
showcases the overall stability of the inner belt and the slot region as no-change
events clearly dominate at L � 3 at most of the shown energies. At core energies at
the lower L-shells (L � 3.5) no-change events clearly dominate. At higher L-shells
core electrons, in turn, typically either enhance (approximately half of the cases)
or deplete (approximately one third of the cases). The highest-energy electrons
(>5 MeV), however, most often experience no change at all.

One should, however, keep in mind that the overall statistical response described
here ignores strong variations in electron fluxes that may occur during the storm
period itself.

7.3 Solar Wind Drivers of Radiation Belt Dynamics

The large-scale heliospheric structures that drive magnetospheric storms were
briefly introduced in Sect. 1.4. They are the interplanetary coronal mass ejections
(ICMEs), including their shocks and sheath regions, slow–fast stream interaction
regions (SIRs), and fast solar wind streams with Alfvénic fluctuations. Examples
of typical ICME and SIR events are sketched in Fig. 7.4. Table 7.2 summarizes
solar wind drivers, their typical durations, solar wind conditions and radiation belt
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Fig. 7.3 The statistical overall response of the electron fluxes to storms. The panels show the
events that enhanced (top), depleted (middle), or caused less than a factor of two change in
the fluxes (bottom) (From Turner et al. 2019, Creative Commons Attribution-NonCommercial-
NoDerivs License)
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Fig. 7.4 Sketches of an ICME, shock and sheath (left) slow and fast solar wind streams with an
SIR in between (right). DFS indicates the fast shock ahead the stream interface and DRS the reverse
shock propagating backward in the solar wind frame (Modified from a figure published earlier by
Kilpua et al. 2017)

Table 7.2 Large-scale solar wind drivers affecting the belts, their typical durations, solar wind
conditions and outer radiation belt electron responses. These structures can occur isolated (except
the combination of shock and sheath), but they often come in sequences, e.g., ejecta following
shock and sheath, and a considerable fraction of ejecta is followed by a SIR/fast stream. Note also
that not all SIRs are followed by a fast stream

Driver Duration Solar wind conditions Typical outer belt relativistic
electron response

Shock Instantaneous Jump in plasma and field
parameters

Rapid acceleration in the heart
of the belt (L ≈ 4)

Sheath ∼8–9 h High dynamic pressure, large-
amplitude IMF variations,
high variability (compressive)

Sustained and deep depletions
at wide range of energies and L

Ejecta
(flux rope)

∼1 day Low dynamic pressure,
smooth field rotation, low
variability

Both deplete (at high L-shells)
and enhance (in particular in
the heart of the outer belt, L ≈
4)

SIR ∼1 day High dynamic pressure,
intermediate-amplitude IMF
fluctuations, high variability,
gradually increasing speed
(compressive)

Depletions

Fast
stream

Days Low dynamic pressure,
Alfvénic fluctuations
(relatively lower
amplitude and faster),
high speed

Enhancements (in particular at
high L-shells)
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responses. (For comprehensive reviews see, e.g., Kilpua et al. 2017; Richardson
2018.) Here we focus on the most relevant factors of their ability to disturb the
geospace and affect the radiation belt environment.

7.3.1 Properties of Large-Scale Heliospheric Structures and
Their Geomagnetic Response

A geoeffective ICME has typically three distinct components: the shock, the sheath
and the ejecta. The ejecta corresponds to a magnetic flux rope unleashed from
the Sun in the CME eruption. Flux ropes are force-free (J × B = 0) helical
structures where bundles of magnetic field lines wind about a common axis. They
are commonly believed to be a part of all CMEs near the Sun. However, only in
about one-third of ICMEs a clear flux rope structure is identified near the Earth
orbit. This is due to evolution, deformations and interactions that the CME/ICMEs
experience while they travel from the Sun to the Earth. Furthermore, the observing
spacecraft may sample only the outskirts of the ICME missing a clear signature
of the flux rope. Those ICMEs that show flux rope signatures are commonly
called magnetic clouds. Their key defining characteristics in in situ observations
are a smooth and coherent rotation of the magnetic field direction over a large
angle during an average passage of the ICME lasting about 1 day, magnetic field
magnitude considerably larger than nominally in the solar wind and a low plasma
beta. The smooth rotation of the field and enhanced field magnitude are clear in the
sample ICME in Fig. 7.5.

A leading shock forms when the ICME propagates so fast that its speed
difference with respect to the ambient solar wind exceeds the fast magnetosonic
speed, whereas the MHD perturbations cannot propagate upstream faster than the
ICME. ICME-driven shocks are relatively weak in astrophysical context, their
average Mach numbers being 1.89 ± 0.98 (fast forward shocks observed between
1995 and 2017 in the Heliospheric Shock Database1 maintained at the University of
Helsinki).

The sheath is a turbulent region that forms between the shock and the leading
edge of the ICME ejecta. In some cases the only observed signatures of a CME in
the solar wind are the shock and the disturbed IMF trailing the shock. This is because
the shock has a considerably wider extent than the driving ejecta. ICMEs that are
not fast enough to develop a shock but propagate faster than the ambient solar wind
also perturb the upstream plasma flow and the IMF. However, the perturbed regions
are less turbulent than the sheaths behind the shocks but can nevertheless cause
magnetospheric disturbances.

A stream interaction region (SIR) is a compression region that forms when a
high-speed stream from the Sun catches a slower stream ahead, as depicted in the

1 http://ipshocks.fi.

http://ipshocks.fi
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Fig. 7.5 Solar wind plasma conditions during an ICME (left) and SIR with a fast stream (right).
The panels give the (a) magnetic field magnitude, (b) magnetic field components in GSM
coordinates, (c) 1-min root-mean-square field variations, (d) solar wind speed, (e) solar wind
density and (f) subsolar magnetopause position determined using the Shue et al. (1998) model
(Data source: CDAWeb, https://cdaweb.gsfc.nasa.gov/index.html/)

right-hand panels of Fig. 7.5. Unlike fast ICMEs, most SIRs are not associated with
shocks at the Earth orbit. SIRs can develop fast forward–fast reverse (forward and
reverse in the solar wind frame) shock pairs, but typically only when they have
propagated at heliospheric distances larger than 1 AU. Figure 7.5 shows that the
solar wind speed increases gradually within an SIR and reaches about 750 km s−1

in the fast stream. Although there is a positive velocity gradient across an SIR, not
all of them are trailed by a particularly fast stream. The stream interface separates
the denser and slower solar wind from the faster and more tenuous solar wind.

The average properties of ICMEs and SIRs near the Earth orbit vary considerably
from event to event. The magnetic field in ICMEs ranges from only a few nanoteslas
to about 100 nT and their speeds from that of the slowest solar wind of about
300 km s−1 to 2000–3000 km s−1. In SIRs the magnetic field can reach up to about
30 to 40 nT and the peak speed to about 800 km s−1. The internal magnetic field

https://cdaweb.gsfc.nasa.gov/index.html/
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structure of ICMEs also varies significantly. In magnetic clouds the magnetic field
orientation rotates smoothly, while in complex ejecta, e.g., in the mergers of two
consecutive CMEs launched from same active region on the Sun, the field configu-
ration can be very disorganized. The key interest from the magnetospheric dynamics
viewpoint is in the behavior of the north-south magnetic field component (BZ),
as its direction controls reconnection at the dayside magnetopause (Sect. 1.4.1). In
magnetic clouds with the axis of the flux rope lying close to the ecliptic plane, BZ

rotates either from the south at the leading edge to the north at the trailing edge, or
vice versa. In clouds whose axis is highly inclined with respect to the ecliptic plane,
BZ can maintain its sign being either positive or negative during the entire passage
of the cloud. In the ICME shown in Fig. 7.5 BZ rotated in such a way that it was
dominantly northward during the main part of the magnetic cloud.

The SIR and ICME occurrence rates and properties vary with the solar activity
cycle. High-speed streams and SIRs are most frequent in the declining and minimum
activity phases when the global solar magnetic field is dominated by two large
polar coronal holes. ICMEs are clearly more frequent, stronger in terms of the
magnetic field and faster during high solar activity. They also drive shocks clearly
more frequently than slower ICMEs during low solar activity periods. At solar
minimum CMEs of significant size leave the Sun approximately once per week,
at solar maximum several big CMEs may erupt every day.

Typical solar wind properties of large-scale heliospheric structures differ signif-
icantly; sheaths and SIRs are compressive structures and associated with relatively
large solar wind density, dynamic pressure and temperature, typically embedding
magnetic field with large-amplitude and relatively rapid fluctuations. In turn, the
ejecta—in particular magnetic clouds—show smoother variations in their magnetic
field and plasma parameters. The ejecta also tend to have clearly lower solar
wind density and dynamic pressure than sheaths and SIRs because CMEs expand
significantly after being released from the Sun. The fluctuations in fast streams are
Alfvénic, but the associated magnetic field amplitudes are typically smaller than
those in sheaths and SIRs, and their temporal variations are faster. Fast streams have
low density and generally also low dynamic pressure. Due to high dynamic pressure,
the magnetopause is typically strongly compressed during the sheaths and SIRs, but
is closer to its nominal position during the ICME ejecta and fast streams. During
ICME ejecta, however, the magnetopause can erode significantly due to enhanced
magnetic reconnection if interplanetary magnetic field is southward for extended
periods, even though dynamic pressure would not be particularly large.

Nearly all intense and big geomagnetic storms (Dstmin < −100 nT) are caused
by ICMEs, and can be driven by both sheaths and ejecta, or a combination of them.
The most geoeffective ICMEs are those that drive shocks and contain a flux rope.
Shock-driving ICMEs are typically fast with a strong magnetic field, and both the
sheath and the ejecta can contribute to a geomagnetic storm. The enhanced magnetic
field and smoothly rotating flux ropes can, in turn, provide sustained periods of
strongly southward IMF. The geoeffectiveness of an ICME is further strengthened
when it is followed by a fast solar wind stream. Fast trailing wind increases the
speed of the ICME and compresses its rear part leading to increased field magnitude
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and plasma density. This can, in particular, enhance geoeffectiveness of a magnetic
cloud, whose magnetic field rotates from north to south. Furthermore, the trailing
fast stream typically prolongs the storm recovery phase. Slow ICME ejecta that have
mainly northward field may, in turn, pass the Earth almost unnoticed.

ICME-driven storms are often preceded by a clear storm sudden commencement
(Sect.1.4.2) due to the shock wave compression of the magnetosphere. The initial
phase before the main phase may be prolonged if the high dynamic pressure sheath
has mainly northward magnetic field.

An SIR followed by a fast stream leads usually to a weak or moderate storm
followed by a long recovery phase, sometimes lasting up to a week. The long
recovery phase can be attributed to Alfvénic fluctuations in fast streams, which lead
to sustained substorm activity.

Interacting ICMEs are particularly challenging objects of study, as interactions
between the ICMEs can result in widely different structures (Manchester et al. 2017;
Lugaz et al. 2017). The outcome depends on the relative speed, on the internal
magnetic field direction and orientation, and on the structure of the CMEs involved.
If the magnetic fields of the consecutive CMEs have opposite orientations at their
interface, a magnetic reconnection can lead to merging of the CMEs, resulting in a
complex structure at the Earth orbit where individual characteristics of the original
eruptions are no more discernible. If the fields on the interface are in the same
direction, the leading ICME is compressed by the following ICME, forming two
separate but closely spaced each other following ejecta where the first ejecta can
maintain strong magnetic field and high speed. Such cases can lead to particularly
strong southward fields and dynamic pressure, and consequently to most extreme
geomagnetic storms. At angles between parallel and opposite directions of the
magnetic fields, the efficiency of merging varies analogous to the solar wind–
magnetosphere interaction at different clock-angles of the interplanetary magnetic
field.

7.3.2 Typical Radiation Belt Responses to Large-Scale
Heliospheric Transients

As described above, different large-scale heliospheric structures have widely dif-
ferent properties. They put the magnetosphere under variable forcing that affects
the resulting magnetospheric activity and conditions in the inner magnetosphere,
and consequently, also the electron flux response in the radiation belts. On average,
storms driven by SIRs are considered more effective in generating MeV electrons
at the geostationary orbit than storms driven by ICME-related southward BZ , a
concept introduced by Paulikas and Blake (1976) based on geostationary obser-
vations. After ICME-associated storms it takes a longer time (about 2 days) for the
fluxes to recover to pre-storm levels than after SIR-associated storms (about 1 day)
(Kataoka and Miyoshi 2006). The picture is, however, more complicated. A Van
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Allen Probes study by Shen et al. (2017) found that within L∗ = 3.5–5.5 fluxes of
>1-MeV electrons enhance more during ICME-driven than SIR-driven storms. At
lower energies (<1 MeV) ICME-driven storms resulted in larger flux enhancements
at lower L-shells (L∗ = 2.5–3.5), while SIR-driven storms generated more flux
enhancements in the outer parts of the outer belt.

The impact of an interplanetary shock causes an abrupt and global compression
of the dayside magnetosphere and launches a compressional magnetosonic impulse
that propagates radially inward and azimuthally around the Earth. This compres-
sional disturbance has an azimuthal electric field (Sect. 4.4.2), which extends from
the dayside to the nightside and can lead to a rapid (1 min timescale) acceleration
and inward transport through breaking the third adiabatic invariant of drift-resonant
electrons (Foster et al. 2015; Kanekal et al. 2016). Primarily MeV electrons are
accelerated in the heart of the belt at L ≈ 4, as their drift times around the Earth
match the frequency of the electric field impulse and they can thus experience
acceleration over a significant part of their orbit. Low-energy electrons cannot be in
resonance, because they drift slowly compared to the timescale of the accelerating
electric field. Relativistic electrons, in turn, drift so fast that they can encounter
shock-induced azimuthal electric field during multiple orbits that leads to effective
acceleration. Drift echos of electrons bunched in the same drift phase can be
observed several times before the phase mixing redistributes the particles over
different drift phases.

An example of an abrupt enhancement of ultra-relativistic electrons measured
by the Van Allen Probe A as a response to an interplanetary shock impact on the
Earth on 8 October 2013 is shown in Fig. 7.6. Since the drift period depends on
particle energy, drift echoes appear with different time lags for particles of different
energies. The observed spectra also change with the magnetic field magnitude
because the spacecraft moves to a larger radial distance from the Earth during the
event. The amplitudes of the electric field impulse in the inner magnetosphere are
typically a few mV m−1 (Zhang et al. 2018), but during particularly strong shocks
much larger amplitudes have been observed. For example, the shock on 24 March
1991, discussed in Sect. 7.4.2 below, caused an electric field impulse of an order of
magnitude stronger, approximately 40–80 mV m−1 (Blake et al. 1992; Wygant et al.
1994).

The passages of sheath regions cause deep and sustained depletions of relativistic
and ultra-relativistic electrons from the radiation belts over a wide range of L-shells
(Hietala et al. 2014; Kilpua et al. 2015). Therefore, if high-energy electrons are
accelerated due to the shock impact as discussed above, they get quickly lost when
the sheath arrives. Strong depletions during sheath regions can be explained through
various loss processes acting in concert. First, the sheath strongly compresses the
dayside magnetosphere due to its high dynamic pressure. Second, the wave activity
in the inner magnetosphere is enhanced during the sheath (Kalliokoski et al. 2020).
Resulting wave–particle interactions with EMIC, hiss and chorus waves can scatter
the electrons to the loss cone over a wide range of energies, whereas Pc5 ULF waves
can transport them radially outward. As the dayside magnetopause is compressed,
diffusion to higher L-shells leads to effective magnetopause shadowing losses. The
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Fig. 7.6 Response of ultra-relativistic electrons to an impact of an interplanetary shock on 8
October, 2013 as detected by Van Allen Probe A. The solid vertical line shows the time of the shock
impact (From Foster et al. 2015, reprinted by permission from American Geophysical Union)

inflation of drift shells can further enhance the shadowing losses in case the sheath
causes a geomagnetic storm but also non-geoeffective sheaths can cause drastic
responses. Large-amplitude magnetic field and dynamic pressure variations typical
to sheaths trigger substorms which, in turn, lead to the enhancement of source
and seed electrons. As the sheath passages are relatively short (on average 8–
9 h) and during them loss processes of relativistic electrons dominate, progressive
acceleration of seed electrons to MeV energies does not typically occur during the
sheath passages.

Also the ICME ejecta often deplete the relativistic electron fluxes, but not as
efficiently as sheaths, and the depletions are expected to be confined to higher
L-shells. While sustained southward field in the ejecta can erode the dayside
magnetopause inward, the ejecta have significantly lower dynamic pressure than
the sheaths and, consequently, the magnetopause stays further away from the Earth.
The inner magnetospheric wave activity, in particular ULF Pc5 and EMIC waves,
is present during the ejecta, but is, on average, weaker than during sheaths. These
properties imply that both magnetopause shadowing and precipitation losses are, on
average, less effective during ICME ejecta than sheath passages.
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The effect of an ICME ejecta strongly depends on its magnetic structure. If the
magnetic field points northward throughout the passage, the ejecta typically does not
induce any significant effects on the radiation belt electron fluxes. The distribution
of the southward field within the CME ejecta, i.e., whether the field is southward at
the leading or trailing part of the ejecta, or within the whole ejecta, may also affect
electron acceleration and losses, in particular when combined with the effects taking
place during the sheath passage and the following solar wind structures.

Similar to sheaths, SIRs also cause depletions, although less pronounced. This
is expected because SIRs are also compressed and turbulent structures. Figure 7.5
above illustrates the internal structure of SIRs. For example, the highest densities
are observed ahead the stream interface, while the highest speeds occur after the
interface. The frequency of fluctuations and the magnetic field magnitude in the
SIR of Fig. 7.5 increase after the stream interface.

The fast solar wind streams are key structures associated with MeV electron
enhancements, but not all fast streams lead to such enhancements. Their effective-
ness to energize electrons is connected to their velocity and the IMF north-south
component. The statistical study over a solar cycle by Miyoshi et al. (2013)
showed that fast streams embedding Alfvénic fluctuations and being dominated by
southward BZ were associated with intense fluxes of 30-keV (source) electrons,
intense whistler-mode waves in the inner magnetosphere and enhancement of �2.5-
MeV electron fluxes, whereas streams dominated by northward BZ lacked all these
properties. Enhancements of relativistic electrons during fast streams can also occur
due to inward radial transport by ULF Pc5 waves strengthened by increased Kelvin–
Helmholz instability at the magnetopause.

It is noteworthy that fast streams lack properties that would cause effective losses
(Kilpua et al. 2015). Due to their low dynamic pressure and lack of sustained
and strong southward magnetic field, the magnetopause is close to its nominal
position. The lack of strong ring current enhancement means that the Dst effect
is not significant. The EMIC wave activity and associated scattering losses are also
expected to be relatively weak due to weak ring current and lack of dynamic pressure
variations exciting the waves. However, the plasmapause is expected to reach higher
L-shells due to weakening global convection. This means that outer belt electrons
at wider L-range can be subject to scattering by hiss waves. For relativistic and
ultra-relativistic energies the scattering timescales by hiss are, however, long.

ICMEs interacting with SIRs and fast streams can lead to a variety of responses
that depend on the characteristics of individual structures composing these complex
events. The interacting events have regularly sheath-like structures that consist of
both disturbed solar wind and ICME-related plasma. Such events can cause drastic
changes in radiation belts over intervals of a few days. Another interesting scenario
is the case where the shock of an ICME propagates within a previous ICME and
enhances the magnetic field within. Such cases have been found to effectively
deplete the outer belts from MeV electrons (Lugaz et al. 2015; Kilpua et al. 2019).
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7.4 The Slot Between the Electron Belts

The slot between the inner and outer electron belts is an intriguing region. While
it is clear that the loss of electrons from the slot must be due to wave–particle
scattering to the atmospheric loss cone, its temporal and spatial evolution pose
several unanswered questions.

7.4.1 Injections of Source and Seed Electrons into the Slot

As discussed Sect. 7.2, the location, width and particle content of the slot strongly
depends on the electron energy and geomagnetic activity. This implies that also
the dominant mechanisms that inject electrons into and remove them from the slot
depend on electron energy. During geomagnetic storms the slot is commonly filled
with electrons up to a few hundred keV and it gradually reforms when the storm
subsides.

One possible way to energize electrons and bring them closer to Earth is the ULF
Pc4–Pc5 driven inward radial transport. For seed electrons the drift resonance is met
only in the case of a wave with high azimuthal mode number m. This is because their
drift periods at the distance of the slot are of the order of hours (Table 2.2), i.e., much
longer than the oscillation periods of ULF Pc4–Pc5 waves, which are shorter than
10 min.

Substorms inject source and seed electrons into the inner magnetosphere, but
typically at distances much larger than the slot region. The injections are related
to earthward propagating dipolarization fronts launched by the near-Earth recon-
nection process (Sect. 1.4.3). The dipolarization front is associated with sharp and
large-amplitude electric field variations up to several mV m−1, which is capable of
accelerating particles to high energies and transporting them simultaneously closer
to the Earth. Dipolarization fronts can propagate from the tail to geostationary
distance, or somewhat closer to the Earth, and the related acceleration/transport
results in dispersionless injections where all energies arrive to the observation point
at the same time. The injections are relatively localized azimuthally, spanning about
1–3 h in MLT, beyond which the energy-dependent gradient and curvature drifts
introduce dispersion to the observed spectra.

Turner et al. (2015) studied 47 events during the Van Allen Probes era when the
source and seed electron (<250 keV) injections were observed inside L = 4, all
the way down to L = 2.5, a phenomenon known as Sudden Particle Enhancement
at Low L Shells (SPELLS). The injections were preceded by significant substorm
activity and the authors suggested that injections to the slot region resulted from
interaction of electrons with compressional magnetosonic waves launched by the
braking of the dipolarization front. As the observed wave periods were of the order
of 100 s (Pc4 range), the waves cannot be in drift resonance with the electrons,
unless the azimuthal mode number is very large (m ∼ 30). However, as originally
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suggested by Southwood et al. (1969), a fraction of electrons in this energy
range can be in bounce–drift resonance with the compressional waves (Eq. (6.2))
depending on their equatorial pitch angles.

Another mechanism commonly invoked to allow source and seed electron
penetration into the slot is the inward radial transport driven by the global convective
electric field. During enhanced convection the Alfvén layers (Sect. 2.3) shrink allow-
ing electrons to access lower L-shells. The stronger the geomagnetic storm is, the
closer to the Earth charged particles from the tail can enter. This convective transport
is efficient only for lower energy electrons because the motion of higher energy
electrons (�100 keV) is controlled by gradient and curvature drifts (Eq. (2.30)). The
lower energy electrons are also energized by the drift-betatron acceleration during
convective transport toward stronger geomagnetic field (Eq. (2.69)). Based on Van
Allen Probes data and modeling of the intense magnetic storm on 14 February 2014
Califf et al. (2017) showed that the inward radial transport by the observed global
convection electric field of the order of 1–2 mV m−1 was sufficient to explain the
enhancements of 100–500-keV electrons in the slot region at L < 3.

Seed electron fluxes in the slot region may also enhance if the lower-energy
electrons in the slot were accelerated locally by chorus waves. It is, however, not
clear if chorus waves can accelerate about 100-keV electrons or do the waves mainly
cause electron scattering toward the loss cone.

7.4.2 Impenetrable Barrier

The access of MeV electrons to low L-shells is more limited than the access of
seed and source populations. In particular, ultra-relativistic electrons are only very
rarely observed in the slot region. Baker et al. (2014) noted that ultra-relativistic
electrons (>2 MeV) were not observed inside L = 2.8 during the first 20 months of
Van Allen Probe measurements. Although this period coincides with Solar Cycle
24 maximum, it was a geomagnetically relatively quiet period and void of big
storms. The existence of this (almost) impenetrable barrier has been confirmed in
subsequent studies (e.g., Ozeke et al. 2018).

Figure 7.7 from Baker et al. (2014) illustrates the barrier against 7.2-MeV (6.5–
7.5 MeV) electrons seen in observations of the Van Allen Probes REPT instrument.
The inner boundary of the ultra-relativistic electrons stayed strikingly clear and
stable near L = 3. The most notable features in the figure are a depletion of fluxes
on 1 October 2012 and another associated with a slight earthward movement of the
barrier to L = 2.8 on 1 October 2013.

Due to the relative geomagnetic quiescence the plasmapause was most of the
time beyond L = 4 and never inside L = 3. Thus, the plasmapause and the
impenetrable barrier usually were not co-located and the barrier resided well within
the plasmasphere. The existence of a steep and stable inner boundary not co-
located with the plasmapause is an outstanding question. Doppler-shifted cyclotron
resonances of trapped radiation belt electrons with VLF electromagnetic waves from
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Fig. 7.7 Electron fluxes at 7.2 MeV (6.5–7.5 MeV) during three selected periods from 1 Septem-
ber 2012 to 31 October 2013. The plot combines REPT instrument data from both Van Allen Probes
(From Baker et al. 2014, reprinted by permission from Springer Nature)

ground-based radio transmitters could cause precipitation to the atmosphere, but this
process has been expected to occur only at lower energies (<500 keV) (e.g., Koons
et al. 1981; Abel and Thorne 1998).

Foster et al. (2016) argued, however, that VLF waves could play a crucial role
in shaping the impenetrable barrier during strong geomagnetic storms when the
VLF bubble extends beyond the contracted plasmapause. The high-energy electrons
become thus exposed to VLF waves outside the plasmasphere where significantly
lower densities increase the resonant energies. As a consequence, relativistic and
ultra-relativistic electrons could be in resonance with the VLF waves and be lost to
the atmosphere. Foster et al. (2016) also noted that during the 17 March 2015 big
geomagnetic storm the outer edge of the VLF wave bubble matched very closely
with the inner edge of ultra-relativistic radiation belt electrons. Since energetic
electrons can access low L-shells during geomagnetically very disturbed times only,
the barrier stays there when geomagnetic storm subsides and plasmapause extends
back beyond the VLF bubble.

Another suggested mechanism for the sharp barrier is the balance between slow
radial diffusion by the ULF waves and faster scattering by hiss waves (Ozeke et al.
2018). This would, however, imply that a true barrier would not really exist.

Because the slot region is not void of source and seed electrons, the barrier is
not impenetrable to non-relativistic electrons. It is not completely impenetrable to
relativistic electrons either, and there have been a small number of events when
even ultra-relativistic electrons have been found inside L = 2.8. Such events have
been associated with very strong magnetospheric storms. One example is the so-
called Halloween storm in October–November 2003 that was caused by a series of
successive interacting ICMEs driving strong magnetospheric activity (Baker et al.
2004). During the Halloween storm electrons in the range 2–6 MeV filled the whole
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slot region and remained there for several weeks. Also the inner belt was filled
with high-energy electrons. This event was unique during the period of almost two
solar cycles of SAMPEX observations. Extreme ultraviolet images taken by the
IMAGE spacecraft showed that the plasmapause was contracted inside L = 2 and
the plasmapause location matched well with the inner boundary of the multi-MeV
outer belt.

The Halloween storm was stronger (Dstmin = −383 nT) than any storm during
the Van Allen Probes era. It also illustrates that once ultra-relativistic electrons get
access to low L-shells, they stay there for long time periods. The presence and
energization of ultra-relativistic electrons so close to the Earth remain, however,
enigmatic. The global convective electric field, which is one of the dominant
causes for the source and seed electron injections, cannot energize electrons to
MeV energies through adiabatic heating and the quasi-static field does not affect
efficiently the already existing relativistic population, as the electrons drift fast, in
less than 10 min, around the Earth. The mechanisms that have been suggested to
be the source of relativistic and ultra-relativistic electrons close to the Earth are
local acceleration by chorus waves, when the plasmasphere is highly compressed
(e.g., Baker et al. 2014), and radial inward transport by ULF Pc5 waves and related
energization (e.g., Ozeke et al. 2018), or a combination of these (e.g., Zhao et al.
2019a).

None of these mechanisms may not be efficient enough to inject relativistic
electrons to so low L-shells. The impact of a strong interplanetary shock to the
magnetosphere (Sect. 7.3.2) can also create particularly large electric field impulses
that reach low L-shells and may rapidly energize electrons to ultra-relativistic
energies. Li et al. (1993) suggested this to have been the source of ultra-relativistic
electrons inside L = 2.8 during the famous storm on 24 March 1991, when a strong
interplanetary shock driven by an ICME impacted the Earth.

The left panel in Fig. 7.8 shows how the CRRES satellite, traversing through
the slot region at the time of the shock arrival, observed multiple peaks of ultra-
relativistic electrons. This feature would suggest an initial injection/acceleration of
these extremely energetic electrons, followed by their drift echos. The figure shows
that the counting rates of all three energy channels exhibit very similar behavior.
Further investigation of the data after conversion from the count rates to electron
fluxes (Blake 2013) revealed that curves lied on top of each other (right panel of
Fig. 7.8), implying that all channels measured ultra-relativistic electrons >15 MeV,
whereas there were no electrons in the range 6–15 MeV. The drift echoes indicate a
drift period of 2 min, which is the drift period of 17-MeV electrons at L = 2. The
ultra-relativistic electrons remained trapped in the nominal slot region over several
months. To explain the acceleration of electrons to so high energies is evidently a
major challenge.

The access of 1-MeV electrons to low L-shells is more common than the
penetration of ultra-relativistic electrons. The strongest storms during Solar Cycle
24 when Van Allen Probes were in operation occurred on 17 March 2015 (Dstmin =
−222 nT) and 23 June 2015 (Dstmin = −204 nT). During these events no multi-
MeV electrons were observed inside the impenetrable barrier, but 1-MeV electrons
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Fig. 7.8 CRRES spacecraft observations of ultra-relativistic electrons in three energy channels
when the spacecraft was traversing through the slot region (roughly from L = 2.5 to L = 2). Left:
Observed data in counts. Right: Counts converted to fluxes (note erroneous text on the vertical axis
as in the original figure) (From Blake 2013, reprinted by permission from American Geophysical
Union)

entered the slot and the inner belt (Claudepierre et al. 2017; Hudson et al. 2017).
The energization in these cases has again been attributed to the impact of strong
interplanetary shocks. A similar example was the so-called Bastille Day storm
(Dstmin = −300 nT) on 15–16 July 2000 when 1-MeV electrons were first injected
to L = 2.5 from where they slowly diffused to L = 2.

7.5 Storage Ring and Multiple Electron Belts

Soon after the Van Allen Probes were launched on 30 August 2012, an interesting
discovery was made (Baker et al. 2013). The striking feature was a three-part
energetic electron belt structure that persisted for about a month. The inner electron
belt (L∗ � 2.5) remained stable, but the outer belt was divided into two distinct parts
with a newly formed gap in between. Figure 7.9 reproduces the ultra-relativistic
(3.4 MeV) electron fluxes from the period 3–15 September 2012 using data from
the Van Allen Probes REPT instrument, taken from CDAWeb.2

The event commenced with an abrupt removal of electrons from the outer belt
as a consequence of a passage of an interplanetary shock wave. In particular, the
energetic electrons at the outer L-shells of the outer belt were almost completely
removed. Only a relatively thin band of energetic electrons remained in the outer
belt around 3 < L∗ < 3.5. This period coincided with the main phase of a magnetic
storm. About 2 days later energetic electrons reappeared at L∗ � 4, but the zone
3.5 < L∗ < 4 remained void of ultra-relativistic electrons. While the electron

2 https://cdaweb.gsfc.nasa.gov/index.html/.

https://cdaweb.gsfc.nasa.gov/index.html/
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Fig. 7.9 Three-part radiation belt structure during the first half of September 2012. The color scale
of electron fluxes (cm−2 s−1 sr−1 MeV−1) is logarithmic. The “intermittency” of the inner belt flux
is due to the 9-h orbits of the Van Allen Probes, of which only a fraction was spent earthward of
L = 2.5 (Data source: CDAWeb)

population at L∗ � 4 experienced some variations over the following weeks, the
gap between 3.5 < L∗ < 4 and the narrow belt at 3 < L∗ < 3.5, called the storage
ring or remnant belt, experienced very little variations. During the period when the
three-part belt structure was observed, the plasmasphere extended beyond L∗ = 4.

The three-belt structure illustrates the importance of making high-resolution
observations in the right place. Namely, afterwards the three-part belt structure has
actually been found to be a relatively common phenomenon, and even four-belt
structure, where the outermost of the three belts exhibits two distinct bands, has
been identified (A talk by A. Jaynes et al. at the AGU Fall Meeting, 2019).

A statistical study by Pinto et al. (2018) covering 5 years of Van Allen Probe data
found in total 30 three-belt events. This configuration was observed most frequently
at electron energies 3.4–5.2 MeV, but occurred over a wider range of relativistic and
ultra-relativistic energies as well. The three-part belt structure emerged during both
geomagnetic storms and quieter conditions. About 18% of all geomagnetic storms
featured this configuration. The largest fraction of three-belt events was caused
exclusively by SIRs and fast streams (76%), while the rest occurred during pure
ICMEs (17%) or during a combination of an ICME and SIR/fast stream (7%). Due
to the small number of events these percentages are just indicative.

The essential feature of the formation of the three-belt structure is the removal
of most of the outer belt. Suggested mechanisms include pitch-angle scattering by
EMIC waves (Shprits et al. 2018) and the magnetopause shadowing due to inward
magnetopause excursion with simultaneous outward radial transport by ULF waves
(Mann et al. 2016). Both mechanisms can cause permanent losses of electrons from
the radiation belts, after which new high-energy electrons are needed to appear into
the outer parts of the outer belt. These new electrons cannot, however, penetrate
too deep, otherwise the gap would not remain between the storage belt and outer
parts. This may be the reason why most three-belt events are associated to SIRs.
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The ICME related storms are known to result enhancements of MeV electrons
deeper in the outer belt than SIR related storms (Sect. 7.3.2). Mann et al. (2016)
suggested that radial inward transport with associated energization could account
for the reappearance of high-energy electrons and final formation of the three-belt
structure. As the three-belt configuration is not uncommon, it is possible that several
mechanisms can lead to its formation and may act in concert.

The stability of the storage ring over long time periods has been associated
with the expanded plasmasphere and slow losses due to hiss-induced scattering at
relativistic energies. This, however, requires that the storage ring stays inside the
plasmasphere and is not exposed to the faster loss processes outside the plasmas-
phere. Considering the dependence of the plasmapause on the geomagnetic activity,
the storage ring is expected to prevail through weak and moderate geomagnetic
conditions, but be erased relatively rapidly during intense geomagnetic storms when
the plasmapause is pushed closer to the Earth. Pinto et al. (2018) calculated the
empirical lifetimes of the storage rings in the above mentioned three-belt events. The
lifetimes increase with increasing energy, being on average a few days at energies
of 1.8 MeV and several months at energies of 6.3 MeV. This is consistent with the
decrease of pitch-angle diffusion rates due to plasmaspheric hiss with increasing
energies (Thorne et al. 2013a).

In summary, the three-belt structure is formed by first removing the outer belt
electrons leaving only a narrow storage ring at low L-shells (L∗ � 3.5) followed
by a recovery of electrons at the outer parts of the belt (L∗ � 4). The processes
can occur both temporally very close to each other or have longer time periods in
between. The remnant belt may also be pre-existing or created during the event due
to inward movement of the peak of the flux (Pinto et al. 2018).

7.6 Energetic Electron Precipitation to Atmosphere

Scattering of outer radiation belt electrons to the atmospheric loss cone leads to
observable effects in the middle and upper atmosphere. The middle atmosphere
consists of the stratosphere and the mesosphere. In polar regions the stratosphere
extends approximately from 8 to 50 km. Above the stratosphere the mesosphere
reaches to the mesopause at about 80–100 km. Above the mesopause begins the
upper atmosphere consisting of the thermosphere up to about 600 km, beyond which
the collisionless neutral gas is called the exosphere. The ionosphere is the partly
ionized lower part of the upper atmosphere.

Radiation belt electrons with energies �30 keV can penetrate down to altitudes
of 50–90 km. This energetic electron precipitation (EEP; often referred to as
energetic particle precipitation, EPP, when also proton precipitation is included) can
lead to significant ionization of the neutral atmosphere and, consequently, affect
atmospheric chemical composition and dynamics, leading ultimately to regional
climate forcing. Most importantly, the energetic particle precipitation adds to the
solar EUV and soft X-ray generation of odd nitrogen and odd hydrogen (NOx and
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HOx) molecules in the polar atmosphere. These molecules have a crucial role in
the ozone balance in the middle atmosphere via catalytic ozone destruction (e.g.
Verronen et al. 2011; Seppälä et al. 2014). NOx molecules are produced by EEP in
the upper polar atmosphere, from where they are transported to lower stratospheric
altitudes within the winter-time polar vortex. The effects of EEP generated HOx
molecules are, in turn, direct in the mesosphere.3

Short-term ozone depletions related to EEP can be quite dramatic. Almost all
ozone can be locally wiped away at altitudes 70–80 km. Figure 7.10 shows the
effects on mesospheric ozone of three strong EEP events in which depletions
reached as far down as 60 km. The individual EEP events last typically only a few
days, but during times of high solar activity they can occur frequently and cause
longer lasting effects. In particular, direct ozone effects of EEP generated HOx are
observable on solar cycle timescales, accounting approximately to a few tens of
percent of the variations.

Precipitating electrons can be measured either directly by using spacecraft
orbiting the Earth on polar orbits at altitudes of about 700–800 km, or indirectly
by X-ray detectors on stratospheric balloons. Another method is to observe the
ionization due to the precipitation in the D-layer (60–90 km) of the atmosphere using
ground-based riometers and incoherent scatter radars. Incoherent scatter radars
measure the electron density in the ionosphere, whereas riometers record cosmic
radio noise that reaches the ground. When ionization in the D-layer is enhanced
during an EEP event, the absorption of cosmic noise increases. Subtracting the quiet
day curve from the riometer recordings gives the cosmic noise absorption (CNA),
which is proportional to the enhanced D-layer electron column density. Ground-
based information of EEP energies and fluxes remains, however, limited compared
to direct satellite observations of precipitating electrons.

Energetic electron precipitation originates both from scattering of stably-trapped
radiation belt electrons and from freshly injected quasi-trapped electrons before
they have completed a full drift around the Earth. The efficiency of EEP is strongly
connected to the presence and intensity of plasma waves in the inner magnetosphere
that can scatter electrons via wave–particle interactions. All wave modes discussed
in the context of electron scattering in Chap. 6 may contribute to the precipitation,
but their relative importance in different situations remains currently an open issue.

Precipitation of electrons from a few tens to a few hundred keV, which in the
ionosphere cause diffuse aurora, is considered to be predominantly due to resonant
interactions with upper-band whistler-mode waves driven by low-energy electrons
(Sect. 5.2.3). Precipitation in this energy range may also result when the electrons
drive the lower-band chorus losing their perpendicular momentum to the waves.
Relativistic electrons can, in turn, experience abrupt (<1 s) scattering into the loss
cone as electron microbursts due to their nonlinear interactions with large-amplitude

3 For more comprehensive information on the chemistry of the upper atmosphere we refer to the
web-site of the Chemical Aeronomy in the Mesosphere and Ozone in the Stratosphere (CHAMOS)
collaboration: http://chamos.fmi.fi.

http://chamos.fmi.fi
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elements of the lower-band chorus (Sect. 6.5.3). Relativistic electron microbursts
have been related to strong enhancements of HOx and NOx in the atmosphere and
with significant short- and long-term effects on mesospheric ozone accounting to
about 10–20% of the total losses (Seppälä et al. 2018).

The effectiveness of precipitation also correlates positively with ULF Pc4–
Pc5 wave activity in the inner magnetosphere and on ground (e.g., Spanswick
et al. 2005). This connection is traditionally linked to an indirect effect: ULF
waves enhance the growth rate of chorus waves (Coroniti and Kennel 1970) and
consequently EEP (Sect. 6.7). A direct effect to EEP has additionally been estab-
lished by localized compressional ULF waves modulating the equatorial bounce
loss cone (Rae et al. 2018). Global ULF waves, furthermore, displace electrons
radially inward, bringing them closer to the Earth where equatorial geomagnetic
field is stronger and thus the loss cone wider (Brito et al. 2015). As different wave
modes in the inner magnetosphere have distinct MLT dependences, the precipitation
signatures also show clear MLT dependence as demonstrated by Grandin et al.
(2017), who also found that the substorm-related events peaked strongly close to
midnight, while ULF-associated events peaked close to noon.

The inner magnetospheric wave activity is controlled by solar wind driving and
consequent magnetospheric activity conditions, and the occurrence and magnitude
of EEP also depend on these factors. Precipitation as estimated using riometer CNA
recordings is generally more intense during ICME-related storms than during SIR-
related storms, but remains elevated for considerably longer periods during SIR-
driven storms (Longden et al. 2008), likely due to sustained chorus activity often
related to high-speed streams following the SIR.

Figure 7.11 shows the contribution of different types of solar wind streams to
POES satellite observations of electron fluxes and average fluxes at three different
energies (>30 keV, >100 keV, and >300 keV) over three solar cycles from 1979 to
2013. The solar wind streams are categorized as high-speed streams (including the
SIR contribution), ICMEs, and slow solar wind (including unclear cases). High-
speed streams clearly dominate the contribution to precipitation at all energies
during all solar cycle phases except near solar maximum, while the largest average
fluxes are observed during ICMEs. The frequency and amplitude of precipitation
are largest during the declining solar cycle.

Finally, we note that while the effects of energetic electron precipitation are
important in the middle and upper atmosphere, the actual significance of the
precipitation to the intensity of the radiation belt electrons is not clear (e.g., Turner
et al. 2013; Gokani et al. 2019). However, while at higher L-shells magnetopause
shadowing can dominate the losses, at the lower L-shells (�4), wave–particle
scattering should be the most important loss process.
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Fig. 7.11 Annual contribution to total electron fluxes (black) from
high-speed streams/SIRs (blue), ICMEs (red) and slow/undefined
events (green). The thick lines show fluxes computed including data points with missing
solar wind data, whereas these are excluded from the thin lines. The error bars of the thin lines
give the standard error of mean for the annual contributions. The sunspot number is shown by
the grey shading (From Asikainen and Ruopsa 2016, reprinted by permission from American
Geophysical Union)
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Appendix A
Electromagnetic Fields and Waves

We summarize here some basic concepts of elementary electrodynamics. This also
serves as an introduction to the notations and units used in the book.

A.1 Lorentz Force and Maxwell Equations

The motion of charged particles in the electric (E) and magnetic fields (B) is
governed by Newton’s second law where the force is the Lorentz force

dp
dt

= F = q(E + v × B) (A.1)

acting on a particle with charge q and velocity v. The electric and magnetic fields
fulfil the Maxwell’s equations, which we write in SI units as

∇ · E = ρ/ε0 (A.2)

∇ · B = 0 (A.3)

∇ × E = −∂B
∂t

(A.4)

∇ × B = μ0J + 1

c2

∂E
∂t

, (A.5)

where the charge (ρ) and current densities (J) are determined by the particle
distribution functions (Chap. 3). Their SI units are [ρ] = A s m−3 = C m−3 and [J] =
A m−2.
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The SI unit of the electric field is [E] = V m−1 and of the magnetic field [B] =
V s m−2 ≡ T. B can be described as the density of magnetic flux through an area S

Φ =
∫

S

B · dS . (A.6)

The natural constants in Maxwell’s equations are in SI units

ε0 ≈ 8.854 × 10−12 A s V−1 m−1 , vacuum permittivity
μ0 = 4π × 10−7 V s A−1 m−1 , vacuum permeability
c = 1/

√
ε0μ0 = 299 792 458 m s−1 , definition of the speed of light.

The electric and magnetic fields are often convenient to express in terms of the
scalar (ϕ) and vector potentials (A) as

E = −∂A
∂t

− ∇ϕ (A.7)

B = ∇ × A . (A.8)

The vector potential has a central role in the definition of the action integrals and
adiabatic invariants in Chap. 2.

Maxwell’s equations form a set of 8 partial differential equations. If we know
the source terms, we have more than enough equations to solve the six unknown
field components. If we, however, want to treat all 10 functions (E, B, J, ρ) self-
consistently, we need more information of the medium. In a conductive medium it
is customary to use Ohm’s law

J = σ · E , (A.9)

where the conductivity σ ([σ ] = A (V m)−1 = (Ω m)−1) is, in general, a tensor and
may in nonlinear media also depend on E and B.

Ohm’s law is not a fundamental law of nature in the same sense as Maxwell’s
equations. It is an empirical relationship to describe the conductivity of the medium
similar to the constitutive relations for the electric displacement (D) or the magnetic
field intensity (electrical engineer’s magnetic field, H) given by D = ε · E and
B = μ ·H where the permittivity and the permeability of the medium, ε and μ, are,
in general, tensors.

The medium is called linear if ε, μ, and σ are scalars and constant in space
and time. Note that they usually are, also in linear media, functions of the wave
number and frequency of electromagnetic waves propagating in the medium. Much
of plasma physics deals with the properties of ε(ω,k), for example, our discussion
of magnetospheric plasma waves and their interaction with radiation belt particles
in Chaps. 4–6.
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A large fraction of energetic electrons in the Earth’s radiation belts and the most
energetic inner-belt protons are relativistic and the equation of motion must be
written relativistically

d

dτ
pμ = Kμ , (A.10)

where pμ is the four-momentum, Kμ the electromagnetic four-force, τ the proper
time and μ = {0, 1, 2, 3} are the coordinates of the Minkowski space. The space
components of the four-momentum form the momentum vector p = γmv, and the
equation of motion is

d

dt
(γmv) = q(E + v × B) , (A.11)

where γ = (1 − β2)−1/2 is the Lorentz factor and β = v/c.
The time component of (A.10) gives the rate of change of energy W performed

by the electromagnetic field on the charged particles

dW

dt
= d

dt
(γmc2) = qE · v . (A.12)

Thus, in absence of external forces, only the electric field can change the energy of
charged particles, as

v · F = q(v · E + v · v × B) = q(v · E) . (A.13)

Note that we write p = γmv, where m is the mass of the particle measured
in its rest frame (e.g., electron mass me = 511 keV c−2 and proton mass mp =
931 MeV c−2). We prefer to avoid using the concepts of “rest mass” or “relativistic
mass” and simply replace m by γm in case of relativistic motion.

Here it is also useful to recall the expression for relativistic kinetic energy

W = mc2(γ − 1) (A.14)

i.e., the total energy minus the rest energy mc2. This formula provides an easy tool
to calculate the velocity of a relativistic particle. For example, for a 1-MeV electron
γ ≈ 3, from which v2 = (8/9)c2 ⇒ v = 0.94 c.

Sometimes the Lorentz factor is useful to express in terms of momentum

γ =
√

1 +
( p

mc

)2
. (A.15)

From (A.14) and (A.15) we get the relationship of relativistic momentum and energy

c2p2 = W 2 + 2mc2W , (A.16)
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which is useful, e.g., in calculation of the charged particle’s rigidity (Sect. 2.5) or
the phase space density from observed particle flux (Sect. 3.5).

A.2 Electromagnetic Waves in Linear Media

To introduce the electromagnetic waves let us start with waves in vacuum where the
charge and current densities ρ and J are zero. From Maxwell’s equations we get

∇2H − 1

c2

∂2H
∂t2

= 0 (A.17)

∇2E − 1

c2

∂2E
∂t2 = 0 , (A.18)

where we write H = B/μ0 for notational convenience.
The solutions of these equations give the waves propagating at the speed of light.

Most of our treatise deals with plane waves, for which there is a plane where
the electric field of the wave is constant. An important exception are the large-
scale ULF waves in the quasi-dipolar magnetic field, which cannot be described
as plane waves. A plane wave propagating in the z-direction can be represented by
a sinusoidal function

Ex(z, t) = E0 cos(kz − ωt) , (A.19)

where E0 is the amplitude, ω = 2πf the angular frequency, and k = 2π/λ the
wave number. f denotes the oscillation frequency and λ the wavelength. The phase
velocity of the wave is ω/k = c.

Note that it is common to use just the word “frequency” to refer to both ω and f .
The theoretical treatment is more logical to write in terms of the angular frequency,
whereas the oscillation frequency is used to represent the observations. Thus one
should be careful with the factor of 2π . We use the SI unit s−1 for the angular
frequency and hertz (Hz) for the oscillation frequency.

In the vector form the wave electric field is

E(r, t) = E0 cos(k · r − ωt) , (A.20)

where k is the wave vector that points to the direction of wave propagation.
Throughout this book we use the complex notation for plane waves with the
following sign convention for the argument of the exponential function:

E = E0 ei(k·r−ωt) ; B = B0 ei(k·r−ωt) . (A.21)
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When E0 and B0 are constant, the temporal and spatial dependencies are said
to be harmonic and Maxwell’s equations, including the source terms, can be
transformed to an algebraic form

ik · D = ρ

k · B = 0
k × E = ωB

ik × H = J − iωD ,

(A.22)

where we have introduced the electric displacement D = ε · E in order to have the
equations applicable to dielectric media. Recall that in a general dielectric medium
ε is a tensor. From (A.22) it is clear k ⊥ E, k ⊥ H, and E ⊥ H. Such a wave
is called transverse. In plasmas also longitudinal (k ‖ E) electrostatic waves can
propagate (Sect. 4.2).

Assume next that ρ = 0, J = 0, σ = 0, and ε and μ are constant scalars, but not
necessarily equal to ε0 and μ0. Now the phase velocity of the electromagnetic wave
becomes vp = 1/

√
εμ instead of the speed of light in vacuum. ω and k are related

through a dispersion equation (or dispersion relation)

k = ω

vp

= √
εμ ω = n

c
ω , (A.23)

where

n =
√

εμ

ε0μ0
(A.24)

is the refractive index of the medium. In tenuous space plasmas μ ≈ μ0 is a very
good approximation and we can write n = √

ε/ε0. As the dielectric function ε(ω,k)

describes the response of the medium to wave propagation, it is customary to speak
of index of refraction of the wave in question.

The group velocity of the wave is defined by

vg = ∂ω

∂k
. (A.25)

In this special case vg = vp = c/n and independent of frequency and wave number.
Thus the medium is not dispersive. Plasma, in turn, is a dispersive medium with
more complicated dispersion equations (Chap. 4).

In three-dimensional space the phase and group velocities are vector quantities.
We write the wave vector as k = k en, where en is the unit vector defining the
direction of the wave normal, which is perpendicular to the surface of constant wave
phase. The wave normal direction is the direction of wave propagation, which is the
direction of the phase velocity as a vector

vp = ω

k
n . (A.26)
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In isotropic media the direction of wave propagation is the same as the direction of
energy flux expressed by the Poynting vector

S = 1

2
E × H∗ , (A.27)

where ∗ denotes the complex conjugate.
The background magnetic field makes magnetospheric plasma anisotropic. In

anisotropic media the wave electric field may have a component ‖ k, implying that
S ∦ k. Ray-tracing is a method of following the ray of the wave in order to find the
direction of energy and information propagation. The term “ray” derives from the
light ray in optics. The propagation velocity of the ray is the group velocity

vg = ∂ω

∂k
, (A.28)

i.e., the gradient of the frequency in the k-space. Various results of ray-tracing are
discussed in Chap. 5.

A.3 Dispersion Equation in Cold Non-magnetized Plasma

From the full set of Maxwell’s equations (A.22) together with Ohm’s law we can
derive the dispersion equation for plasma waves in cold plasma approximation.
This approximation can be used when the phase velocity of the wave is much
larger than the thermal velocity

√
2kBT/m in the plasma (kB = 1.38065 ×

10−23 m2 kg s−2 K−1 is the Boltzmann constant).
Consider the motion of an electron in the electric field of a plane wave. As the

time dependence of plane waves electric field is harmonic, we can assume the same
for the electron velocity and replace d/dt by −iω. Thus the equation of motion
becomes

me
dv
dt

= −iωmev = −eE . (A.29)

The velocity is related to the electric current as

J = −neev = ω2
pe

ω2 iωε0E , (A.30)

where ne is the electron number density and we have introduced the electron plasma
frequency (Sect. 3.1.2)

ω2
pe = nee

2

ε0me

. (A.31)
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Interpreting (A.30) in terms of Ohm’s law the expression for the conductivity is

σ = ω2
pe

ω2 iωε0 . (A.32)

Assume that, except for conductivity, the medium has the electromagnetic
properties of vacuum (ε = ε0 and μ = μ0). The Ampère–Maxwell law can now be
written as

ik × H = ω2
pe

ω2 iωε0E − iωε0E = −iω

(
1 − ω2

pe

ω2

)
ε0E . (A.33)

Thus the medium looks like a dielectric with permittivity

ε =
(

1 − ω2
pe

ω2

)
ε0 . (A.34)

Note that opposite to the ordinary dielectrics, where electrons are bound to nuclei,
in a plasma of free electrons ε < ε0.

In plasma physics we often write ω2
pe/ω

2 ≡ X. The refractive index (A.24) is
thus

n = √
1 − X . (A.35)

This is the dispersion equation relating ω and k

c = ω

k

√
1 − X . (A.36)

The phase and group velocities are

vp = ω

k
= c√

1 − X
(A.37)

vg = ∂ω

∂k
= c

√
1 − X . (A.38)

In this case the phase velocity is larger than the speed of light in vacuum. Because
the group velocity is the velocity of energy propagation, it cannot exceed the speed
of light.
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When k increases (short wavelengths), the dispersion equation approaches that of
an electromagnetic wave in free space ω = ck , because the response of the electrons
at high frequencies weakens due to their finite inertia.1

At the long wavelength limit (k → 0) we find the standing plasma oscillation
ω = ωpe. If the frequency becomes smaller than the local plasma frequency
(X > 1), the frequency becomes imaginary. The wave cannot propagate into
such a domain and is reflected. The plasma frequency is said to be a cut-off for
this wave, below which the wave becomes evanescent.2 Cold plasma waves in a
background magnetic field are discussed in Sect. 4.3 and used thereafter extensively
in discussion of wave–particle interactions.

1 Even at frequencies much higher than the electron plasma frequency the electromagnetic waves
interact, although weakly, with electrons through Thomson scattering. Thomson scattering is the
fundamental mechanism behind the widely used ionospheric incoherent scatter radars.
2 Also the cut-off phenomenon is utilized in ionospheric physics. Ionosondes, which transmit
signals with increasing frequency are used to determine the altitude profile of ionospheric plasma
density by measuring the time delay of the signals of different frequencies reflected back from
different altitudes.
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Satellites and Data Sources

This appendix is a brief introduction to spacecraft that have been mentioned in the
text. The list is not exhaustive and several other satellites have made important
contributions to the physics of the radiation belts. While the links listed here
will some day become inactive, information of different satellite missions, their
instruments and data bases are easy to find in the internet.

When looking for data obtained with various satellites, a recommendable starting
point is the Coordinated Data Analysis Web (CDAWeb)1 maintained at the Goddard
Space Flight Center of NASA (National Aeronautics and Space Administration).
In addition to spacecraft data CDAWeb contains a wealth of ground-based data and
various supplementary products, e.g., pre-generated data and orbit plots. However, it
is always important to contact the original data sources before rushing into scientific
conclusions.

While the second Soviet satellite Sputnik 2 had in November 1957 carried,
in addition to the famous dog Laika, radiation detectors to a Low-Earth Orbit
(LEO), the seminal observations of radiation belt particles were made in 1958
with—according to the present standards—simple radiation detectors based on
Geiger–Müller tubes onboard Explorer I and III, and Pioneer III2 by James A. Van
Allen and his team in Iowa. The monograph Origins of Magnetospheric Physics
by Van Allen (1983) contains a detailed description of the instrument development
and data analysis leading to these observations and also includes a discussion of the
early Soviet experiments. Explorer I and III were on LEO whereas Pioneer III was
an unsuccessful Moon mission, whose main contribution came from crossing the
radiation belts both when going up and falling down.

1 https://cdaweb.gsfc.nasa.gov/index.html/.
2 Whether the names of spacecraft are capitalized or not varies from one source to another, even
different co-investigators of a joint mission do not always follow the same conventions. This
applies also to roman or arabic numbering of satellites of the same family.
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During the 1960s a large number of satellites contributed to the increasing
observational basis of energetic particles, plasmas and plasma waves in the magne-
tosphere. Particularly important for radiation belt studies was the series of Orbiting
Geophysical Observatories, of which OGO 1 and 3 are referred to in Chap. 5.

OGO 1 was launched in September 1964 and made observations until November
1969. Its initial orbit was highly elliptical (HEO) with the initial perigee of 281 km,
the apogee of 149,385 km (about 24.5 RE geocentric) and inclination of 31◦. The
satellite was equipped with 20 different instruments with the main focus on the
radiation belts. It, however, suffered from serious technical problems and the data
set remained limited.

Also OGO 3 was launched to HEO (295 × 122,291 km, with inclination of 31◦)
in June 1966. Its instruments and objectives were the same as those of OGO 1. It
was much more successful and provided a wealth of high-quality data and its routine
operations continued until December 1969. The mission was terminated in February
1972.

The geostationary orbit (GEO, 6.6 RE) close to the geographic equator has been
populated by numerous satellites—mostly commercial but also scientific—since the
early space age. The satellites have made significant contributions to the knowledge
of radiation belts. Particularly important has been the joint NASA and NOAA
(National Oceanic and Atmospheric Administration) Geostationary Operational
Environmental Satellite Program (GOES). The first GOES satellite was launched
in October 1975. Currently there are always two GOES satellites in operation: one
above the east coast and another above the west coast of the United States. Their
main objective is atmospheric research and meteorology but most of them have
carried scientific magnetometers and energetic particle detectors enabling also long-
term studies of plasma waves, in particular in the ULF range, and variations in
particle fluxes. Data products are available at the Space Weather Prediction Center3

of NOAA.
The Active Magnetospheric Particle Tracer Explorer (AMPTE) was an Inter-

national (Germany, UK, US) three-satellite mission launched in August 1984. Its
goals were to study the access of solar wind ions to the magnetosphere and the
transport and energization of magnetospheric particles. It consisted of a German
Ion Release Module (AMPTE/IRM), an American Charge Composition Explorer
(AMPTE/CCE) and a UK-provided sub-satellite called AMPTE/UKS following
close to AMPTE/IRM. The perigee of AMPTE/CCE was about 1100 km and the
(geocentric) apogee 8.8 RE with a low (4.8◦) inclination. AMPTE/CCE provided a
wealth of radiation belt and ring current data until its failure in 1989 (examples are
discussed in Chaps. 5 and 6).

The U.S. Air Force Combined Release and Radiation Effects Satellite (CRRES),
although short-lived, was a major radiation belt satellite. It was launched in July
1990 to the geosynchronous transfer orbit (GTO) with perigee of 347 km and
(geocentric) apogee 6.2 RE . The inclination of the orbit was about 18◦ and it reached

3 https://www.swpc.noaa.gov.

https://www.swpc.noaa.gov
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maximally to L ≈ 9. In addition to radiation belt studies the spacecraft was used to
measure radiation effects on state-of-the-art electronics devices. The mission ended
prematurely after only 14 months of operations probably due to a failure of onboard
battery. Despite its short lifetime the satellite has provided material for numerous
important radiation belt studies. Particularly interesting was the strong storm on
24 March 1991 when the slot region became filled with ultra-relativistic electrons.
Examples of CRRES contributions are in Chaps. 5, 6, and 7.

The longest (almost) continuous radiation belt data set is available from NASA’s
Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX, Baker et al.
1993). It was launched to an almost circular LEO (520 × 670 km) polar (inclination
82◦) orbit in July 1992. The advantages of polar orbits compared to near-equatorial
orbits are the sampling of wide range of L-shells up to the polar cap, where the L-
shell is not defined, and observing particles at the edge and inside the atmospheric
loss cone. The satellite was designed for only three years lifetime but it survived
over 20 years. The official mission ended in June 2004, but data were collected until
the re-entry to the atmosphere in November 2012 (e.g., Fig. 1.6).

The observational basis of radiation belt studies was revolutionized by NASA’s
twin Radiation Belt Storm Probes (RBSP) mission, named after the launch as Van
Allen Probes (Mauk et al. 2013).4 The satellites were launched at the end of August
2012 and deactivated in July and October 2019. The initial perigees of the highly
elliptical orbits were at 618 km and apogees at 30,414 km (geocentric altitude of
5.7 RE) with inclination of 10.2◦ and orbital period of 9 hours. Thus the satellites
travelled from the inner belt through the heart of the outer radiation belt several
times each day. Numerous examples of Van Allen Probes observations can be found
in Chaps. 5, 6, and 7. Detailed information on the satellites, their instrumentation,
and an updated list of publications are available on the mission-specific web-site of
the Applied Physics Laboratory of Johns Hopkins University.5

The orbits of the Van Allen Probes limited the observations inside of L ≈ 6.
However, as discussed in Sect. 6.6, a wider view of radiation belt evolution (e.g.,
Fig. 6.11) has been possible to obtain with joint analysis of observations with
NASA’s Time History of Events and Macroscale Interactions during Substorms
(THEMIS, Angelopoulos 2008). The initial THEMIS constellation consisted of
five small satellites launched to a HEO (470 × 87,300 km) with an inclination
of 16◦ in February 2007. During the first half year the spacecraft followed
each other in a string-of-pearls configuration. During autumn 2007 the spacecraft
were moved to a constellation optimal for substorm studies in the magnetotail.
Furthermore, THEMIS has provided the most comprehensive coverage of Pc4–Pc5
ULF waves (Sect. 5.4). In 2010 two of the five units were redirected to the Moon
and renamed Acceleration, Reconnection, Turbulence and Electrodynamics of the
Moon’s Interaction with the Sun (ARTEMIS). At the time of writing this book the
remaining three THEMIS satellites continue to produce important magnetospheric

4 https://www.nasa.gov/van-allen-probes.
5 http://vanallenprobes.jhuapl.edu.
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observations. Details of the mission can be found on the THEMIS web-site at the
Space Sciences Laboratory of the University of California, Berkeley.6

The Magnetospheric Multiscale mission (MMS, Burch et al. 2016) of NASA was
launched in March 2015 to HEO, initially 2550 × 70,080 km with the inclination
28.0◦. In the second phase of the mission the apogee was lifted to 152,900 km (about
25 RE geocentric). It is a constellation of four identical satellites moving at variable
distances from each other with the goal of understanding the reconnection process
at the magnetopause and in the tail current sheet. As discussed in Sect. 5.4.1 the
close constellation has provided unique opportunity to investigate the ULF waves
up to large azimuthal mode numbers. Details of MMS and its instruments are on
the NASA mission web-site.7 The MMS science data center is at the Laboratory of
Atmospheric and Space Physics of the University of Colorado, Boulder.8

The four-satellite constellation mission Cluster9 has been ESA’s (European
Space Agency) workhorse in magnetospheric physics since the spacecraft were
launched in 2000. The mission is sometimes referred to as Cluster 2, because
the first set of four satellites were lost in a launch failure in 1996. The original
orbit was an elliptical (19,000 × 119,000 km) high-inclination (135◦) orbit with
an orbital period of 57 h. The inter-spacecraft distances have been adjusted several
times during the mission to optimize the configuration for different domains of the
magnetosphere and its boundary layers. Most of the satellites’ instruments are still
returning valuable data at the time of writing this volume (examples in Chaps. 5
and 6).

The Japanese Arase10 satellite, formerly known as Exploration of Energization
and Radiation in Geospace (ERG), was launched in December 2016 to a 440 ×
32,000-km orbit with inclination of 32◦ and orbital period of 9.4 h. The higher
inclination complemented the orbital coverage of Van Allen Probes during the last
two and half years of the latter, as exemplified in Chap. 6 (Fig. 6.9).

Numerous spacecraft with different main scientific objectives have also been very
useful to radiation belt studies. Examples of these are:

• Imager for Magnetopause-to-Aurora Global Exploration (IMAGE)11 (Chaps. 1
and 7)

• Geotail12 (Chap. 5)
• Solar Terrestrial Relations Observatory (STEREO)13 (Chap. 5)

6 http://themis.ssl.berkeley.edu/index.shtml.
7 https://www.nasa.gov/mission_pages/mms/index.html.
8 https://lasp.colorado.edu/mms/sdc/public/.
9 https://sci.esa.int/web/cluster.
10 https://ergsc.isee.nagoya-u.ac.jp.
11 https://image.gsfc.nasa.gov.
12 https://www.isas.jaxa.jp/en/missions/spacecraft/current/geotail.html.
13 https://stereo.gsfc.nasa.gov.
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• Wind14 (Chap. 5)
• Dynamics Explorer15 and Double Star16 (Chap. 5)

During the time of writing this book the also the very small satellites in the
CubeSat class have gained importance in space physics, including the radiation
belts. Two examples of these are found in Chap. 6 are AeroCube 6B17 and
FIREBIRD II.18

In Sect. 7.6 data from a number of Earth Observing spacecraft are cited: Polar
Orbiting Environmental Satellites (POES),19 Envisat,20 Thermosphere Ionosphere
Mesosphere Energetics and Dynamics (TIMED),21 and Earth Observing System—
Aura (EOS—Aura).22

14 https://wind.nasa.gov.
15 https://lasp.colorado.edu/timas/info/DE/DE_home.html.
16 http://english.nssc.cas.cn/missions/PM/201306/t20130605_102885.html.
17 https://www.nanosats.eu/sat/aerocube-6.
18 https://ssel.montana.edu/firebird2.html.
19 https://www.ngdc.noaa.gov/stp/satellite/poes/.
20 https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat.
21 https://www.nasa.gov/timed.
22 https://aura.gsfc.nasa.gov.
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Boltzmann
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charge exchange, 68, 164, 175
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magnetic energy, 70
particle, 69

Dielectric
function, 89
tensor, 95, 101

Diffusion, 127, 160
coefficient, 165
energy, 165
equation, 167
nonlinear, 187
non-resonant, 173
pitch-angle, 165
radial, 60, 162, 179
resonant, 168
tensor, 167

Dispersion
equation, 89, 245
surfaces, 99, 109

Distribution
bi-Maxwellian, 77, 97
Boltzmann, 64
butterfly, 79
drifting pancake, 78
function, 67
gentle-bump, 123
gyrotropic, 75, 77
ion ring, 78, 148
kappa, 80
loss cone, 78
Maxwellian, 69, 76

Doppler shift, 98, 126
Drift

curvature, 33
echo, 226
electric, 30
equatorial, 35
gradient, 31
period, 45

Drift shell, 53
degeneracy, 55
splitting, 55

Dst effect, 59, 216
Dungey cycle, 19

E
Electric field, 241

convection, 34
corotation, 34
Hall, 73

Electron microburst, 198
Electron population

core, relativistic, 214
seed, 214

source, 214
ultra-relativistic, 214

Energetic electron precipitation, 235
Energetic neutral atom (ENA), 68, 175
Entropy, 68
Equation of

continuity, 71
motion, 71
state, 71

F
Field line resonance (FLR), 118, 153
Flux transfer event (FTE), 151
Fokker–Planck equation, 165
Free energy, 122
Frequency

gyro, cyclotron, Larmor, 28
lower hybrid resonance, 99
plasma, 66

Frozen-in field lines, 19, 73

G
Geomagnetic activity index

AE ,AL ,AU , 12
Dst , 11
Kp, 12
SYM–H, 11
pressure corrected Dst , 12

Geomagnetic pulsations, 85
Group velocity, 245
Guiding center approximation, 29

I
ICME, 222
Impenetrable barrier, 230
Inertial length

electron, 66
ion, 66

Injection
dispersionless, 229

Instability
gentle-bump, 125
Kelvin–Helmholtz, 123, 151

Ionosphere, 9

J
Jacobian, 171
Jovian electrons, 17

K
Killer electrons, 179
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L
Landau

contour, 89
damping, 92
echo, 93

Liouville’s theorem, 75
Lorentz

factor, 27, 243
force, 27, 241

Loss cone, 42
bounce, 54
drift, 55
width at equator, 49

L–parameter
McIlwain, 6
Roederer, 54

M
Macroscopic velocity, 70
Magnetic

bottle, 42
cloud, 222
energy density, 70
flux, 242
flux rope, 222
moment, 29
reconnection, 19

Magnetic field, 241
dipolarization, 24
dipole, 4
interplanetary (IMF), 9

Magnetic local time (MLT), 5
Magnetohydrodynamics (MHD), 72

ideal, 73
Magnetopause shadowing, 55, 193
Magnetosheath, 9, 13
Magnetosphere, 7

convection/advection, 18
magnetopause, 8
magnetotail, 9
plasmapause, 14
plasma sheet, 9
plasmasphere, 14
plasmaspheric plume, 15
polar cusps, 9
radiation belts, 1
tail lobes, 9

Maxwell’s equations, 241
Mirror

field, 42
force, 42
mode, 114

Models
IGRF, 7
magnetospheric magnetic field, 10
radiation belts, 3

N
Normal mode, 90

P
Particle

density, 69
differential flux, 73
flux, 69
integral flux, 74

Period
bounce, 43
drift, 45
gyro, cyclotron, Larmor, 28

Phase
bunching, 189
mixing, 160, 170
trapping, 190
velocity, 244

Phase space, 67
density, 46, 68, 75, 204
holes, 136

Pitch angle, 28
Plasma, 63

beta, 13, 70
dispersion function, 90
oscillation, 66
temperature, 70

Pressure
magnetic, 70
scalar, 70
tensor, 70

Q
Quasi-linear theory, 163

R
Radius

curvature, 6, 33
Earth, 2
gyro, cyclotron, Larmor, 28

Ray-tracing, 122, 246
Refractive index, 245
Resonance, 104

bounce, 161
bounce-averaged drift, 162
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bounce–drift, 153, 162
gyro, 126
Landau, 126
lower hybrid, 109
upper hybrid, 108

Resonant
ellipse, 127
energy, 130
velocity, 127

Rigidity, 48

S
Shabansky orbits, 57, 142
Single-wave characteristic, 128
Slot region, 2, 217, 229
Solar energetic particle (SEP), 176
Solar wind, 18

coronal mass ejection (CME/ICME), 18
shock, 18
stream interaction region (SIR), 18

Sound wave, 112
South Atlantic Anomaly (SAA), 4
Storage ring, 234
Storm

geomagnetic, magnetic, magnetospheric,
11

initial phase, 22
main phase, 22
moderate, intense, big, 11
recovery phase, 23
sudden commencement (SSC), 20

Stream interaction region (SIR), 222
Substorm, 17, 23

dipolarization, 24
injection, 25

Sudden impulse (SI), 21

T
Thermal speed, 90
Three-part electron belt, 233

V
Velocity moment, 69
Vlasov equation, 67

W
Wavelength, 244
Waves

Alfvén, 97
Bernstein modes, 99
compressional, 113
electromagnetic electron cyclotron, 98
electromagnetic ion cyclotron (EMIC), 86,

98, 105
electrostatic cyclotron, 99
fast Alfvén, 113
fast MHD, 113
Langmuir, 91, 124
left-hand circularly polarized, 103
lightning-generated whistler, 107
longitudinal, 245
magnetohydrodynamic (MHD), 112
magnetosonic, 99, 109, 113, 148
magnetosonic noise, 87
normal, 245
normal angle (WNA), 103
normal vector, 103
number, 244
O-mode, 99, 108
Pc4–Pc5, 151
plasmaspheric hiss, 87, 142
poloidal, 115
right-hand circularly polarized, 103
shear Alfvén, 112, 114
slow MHD, 114
sound, 112
toroidal, 115
transverse, 245
ULF, 183
vector, 244
whistler mode, 98, 106
whistler-mode chorus, 87, 132
X-mode, 99, 108
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