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Abstract. We study two-player one-dimensional discrete Hotelling pure location games assuming
that demand f(d) as a function of distance d is constant or strictly decreasing. We show that this
game admits a best-response potential. This result holds in particular for f(d) = wd with 0 < w ≤ 1.
For this case special attention will be given to the structure of the equilibrium set and a conjecture
about the increasingness of best-response correspondences will be made.

Résumé. Nous étudions les jeux de localisation pure Hotelling discrets unidimensionnels à deux
joueurs en supposant que la demande f(d) en fonction de la distance d est constante ou strictement
décroissante. Nous montrons que ce jeu admet un potentiel de meilleure réponse. Ce résultat vaut
notamment pour f(d) = wd avec 0 < w ≤ 1. Dans ce cas, une attention particulière sera accordée
à la structure de l’ensemble d’équilibre et une conjecture sur la croissance de la correspondance de
meilleure réponse sera faite.

1. Introduction

In his seminal paper [6], Hotelling presents a location model of two competing retailers. Since then, this

model has triggered an increasing flow of research in industrial organization.1 The pure location part of that
model concerns a game in strategic form with a common real segment as strategy set (“Main Street” [6] ).
Normally demand is assumed to be inelastic (i.e. not dependant on the distance). The more general case,
allowing also for elastic demand, has been thoroughly studied in [2, 17]; we further refer to this location game
as the cHg (i.e., continuous Hotelling game).

In the cHg payoff functions are discontinuous. As far as we know there is no general result in terms of the
primitives of the game, like that in [10], that guarantees (Nash) equilibrium existence for the cHg. The proof of
equilibrium existence in [2] is “by hand”, by determining the equilibrium set. As shown in [8] a deeper reason
for the cHg to have an equilibrium is that this game is a potential game. To be more specific, if the demand
is highly elastic to the extent that the Principle of Minimum Differentiation fails, then it has a continuous
best-response potential; and if not that elastic it has a continuous quasi-potential. In the present article we deal
with the discrete variant of the cHg, which we shall refer to as discrete Hotelling game (dHg). Our main result
is that the dHg is always a best-response potential game, a stronger result compared to cHg. We also scrutinize
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1It may be good to note that this model also has its merits in the Hotelling-Downs model in voting theory (see, for instance, [4]).

Especially here a discrete setting is asked for, as it may not be appropriate to model the number of voters (which may be “very
finite”) by a continuum.
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the condition for the Principle to hold in a special subclass of dHg for which demand has the exponential form
f(d) = wd, since this Principle, which explains the tendency of agglomeration, is at the heart of location theory.

Now let us have a quick look to the literature for discrete Hotelling games. Contrary to the continuous
variant, this variant only got a little attention in the literature. As far as we know the first article to deal with
such a game was [16]. It deals with two players and considers inelastic as well as elastic demand; however, the
game deals with “relative payoffs” instead of the usual ones. Mixed Nash equilibria in case of inelastic demand
with three players are studied in [7]. Games on a network (also called “Voronoi games”) are studied in [5,14]. A
theory for games with a finite number of players and inelastic demand where consumers have strict preference
over the possible locations is developed in [12]. To our knowledge, [18] is the first article that theoretically
analyses2 Nash equilibria of two-player discrete Hotelling games under a setting of inelastic and elastic demand
by means of the demand function f(d) = wd where 0 < w ≤ 1; so inelastic demand if w = 1 and elastic
demand if w 6= 1. In [18] it was proven (again) “by hand” that this game has an equilibrium by determining the
equilibrium set. As we mentioned, our main result, i.e. Theorem 4.1, shows that the the dHg is a best-response
potential game.

The present article is concerned with two active areas of research in game theory: location games and games
having a (pure) Nash equilibrium. Although the former already has wide range of applications, and the latter
is being studied in more general frameworks, location games are one of major areas in which one still does not
have general results on the existence of equilibria. Our aim is to shed some new light on such a theoretical
aspect of location games.

The article is further organized as follows. In Section 2 we formally define the dHg. Section 3 makes some
useful observations about equilibria of games with location and player symmetry. In Section 4, we show among
other things that the dHg is a best-response potential game. Section 5 considers the structure of the equilibrium
set for the case f(d) = wd; in order to obtain this structure the main result in [18], giving explicit formulas
for the equilibrium set, is further studied. Section 6 deals for this case with a conjecture about best-response
correspondences. Finally, Section 7 compares results for the dHg with those of the cHg.

2. Setting

Let S denote an integer interval {0, 1, . . . ,m} where m is a positive integer and f : S → R a constant or
strictly decreasing positive function.

In this article we understand by a discrete Hotelling game (dHg) a two-player game in strategic form, with
player set {1, 2}, common strategy set S and payoff functions ui : S × S → R given by

ui(x1, x2) :=
∑

y∈Vi(x1,x2)

f(|y − xi|) +
∑

y∈V0(x1,x2)

f(|y − xi|)
2

. (1)

Here V0(x1, x2) = {y ∈ S | |y−x1| = |y−x2|} and, with {i, j} = {1, 2}, Vi(x1, x2) = {y ∈ S | |y−xi| < |y−xj |}.
We refer to f as a demand function. The case where f is constant (not constant) also is referred to as inelastic
(elastic) demand. Note that the dHg is a symmetric game.

Short possible real-world interpretation: S represents a space of m+ 1 locations. Each location is occupied
by consumers. There are two players, being retailers, who independently and simultaneously choose a location
(may be the same). Next, the consumers of each location, say location x, will shop at a retailer who is located
on a for these consumers best location in the sense that it is a closest one. If this location is unique, say y, then
the consumers of location x contribute a payoff equal to f(|y−x|) to the retailer at y. If there are two locations
which are best, then both retailers receive a payoff equal to f(|y − x|)/2.

2However, [1] already provides simulation results.
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Define L,R : S → R and M : S × S → R by

L(a) :=

a∑
d=0

f(d), R(b) :=

m−b∑
d=0

f(d), M(a, b) :=

b |a−b|
2 c∑

d=1

f(d) +

b |a−b|−1
2 c∑

d=1

f(d),

where bxc denotes the largest integer not exceeding x.3 Using these expressions, the payoff functions can be
rewritten as follows:

ui(x1, x2) =


L(xi) + 1

2M(x1, x2) if xi < xj ,

R(xi) + 1
2M(x1, x2) if xi > xj ,

1
2

(
L(xi) +R(xi)− f(0)

)
if xi = xj .

As there are two players, the game can be represented in a natural way as a m ×m bi-matrix game; rows
and columns are numbered from 0 to m. A special case, extensively studied in [18] and reconsidered below, is
where the demand function f is

f(d) = wd,

with 0 < w ≤ 1; here we refer to w as distance factor. Here is a visualization in the case m = 7 and w = 1/2
for the situation of the strategy profile (2, 6):

Locations 0, 1, 2, 3 (in black) completely contribute to the payoff of player 1, locations 5, 6, 7 (in white)
completely to the payoff of player 2 and location 4 (in gray) is shared. The payoffs are u1(2, 6) = 1

4+ 1
2+1+ 1

2+ 1
8 =

11
8 and u2(2, 6) = 1

8 + 1
2 + 1 + 1

2 = 17
8 . And for m = 3 and general distance factor w this demand function gives,

in bi-matrix terms, for player 1 the payoffs
1+w+w2+w3

2 1 1 + w
2 1 + w

1 + w + w2 1+2w+w2

2 1 + w 1 + w + w
2

1 + w + w
2 1 + w 1+2w+w2

2 1 + w + w2

1 + w 1 + w
2 1 1+w+w2+w3

2

 . (2)

It will be convenient to let

p :=

{
m/2 if m is even,
(m− 1)/2 if m is odd.

Our interest is the set E of Nash equilibria of a dHg.

3. Games with player and location symmetry

In this section X = [0, L] where L is a positive real number (“continuous case”) or X = {0, 1, . . . ,m} with
m a positive integer (“discrete case”) and we consider a game in strategic form with two players 1 and 2, with
common strategy set X and with payoff functions u1, u2 : X ×X → R.

We assume player symmetry, i.e.

u2(x1, x2) = u1(x2, x1) (x1, x2 ∈ X),

and, denoting L and m also by v, location symmetry, i.e.

ui(x1, x2) = ui(v − x1, v − x2) (x1, x2 ∈ X).

3It is to be understood that the sum in the definition of M(a, b) is zero if the upper bound of the summation is less than unity.
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The cHg (see Section 7 for a formal definition) and the dHg are examples of such a game. Let E be the Nash
equilibrium set of the game.

For the cHg, there exists an interesting principle, the so called Principle of Minimum Differentiation. This
principle, coined in [3], comes for the standard interpretation down to that the retailers like to locate together
in the middle and formally that E = {(L/2, L/2)}. Note that in the discrete case there only is a middle if m is
even. It is reasonable to formalize this principle as follows:

Definition 3.1. a. In the continuous case the Principle of Minimum Differentiation holds if E = {(L/2, L/2)}.
b. In the discrete case the Principle of Minimum Differentiation holds if E = (p, p) if m = 2p and ∅ 6= E ⊆
{(p, p), (p+ 1, p+ 1), (p, p+ 1), (p+ 1, p)} if m = 2p+ 1. �
The player symmetry implies that4 the best-response correspondences B1, B2 : X ( X are identical:

B1 = B2 =: B. (3)

The location symmetry implies that for every x ∈ X

B(v − x) = {v} −B(x).

Player symmetry also implies for every (e1, e2) ∈ E that {(e1, e2), (e2, e1)} ⊆ E and location symmetry that
{(e1, e2), (v − e1, v − e2)} ⊆ E. Thus

(e1, e2) ∈ E ⇒ {(e1, e2), (e2, e1), (v − e1, v − e2), (v − e2, v − e1)} ⊆ E. (4)

This observation makes that we like to see (e1, e2), (e2, e1), (v−e1, v−e2), (v−e2, v−e1) as the same equilibrium.
We formalize this by defining on E the relation ∼ by

(e1, e2) ∼ (e′1, e
′
2) means: (e1, e2) ∈ {(e′1, e′2), (e′2, e

′
1), (v − e′1, v − e′2), (v − e′2, v − e′1)}.

It is straightforward to check that this relation is an equivalence relation. Denote by [E], the set of its equivalence
classes, to be called equilibrium classes, and by [(e1, e2)] the equilibrium class of (e1, e2) ∈ E. We have

[(e1, e2)] = {(e1, e2), (e2, e1), (v − e1, v − e2), (v − e2, v − e1)}.

By the multiplicity of an equilibrium we understand the number of elements of its equilibrium class. Of course,
if the game has a unique equilibrium, then there is just one equilibrium class consisting of this equilibrium and
this equilibrium has multiplicity 1. Note that with the action distance of an action profile (x1, x2) defined by
|x2 − x1|, each element of a given equilibrium class has the same action distance. Also note that (4) implies:

#E = 1 ⇔ E = {(v
2
,
v

2
)}.

Thus: if there is a unique equilibrium in the discrete case, then v is even. And: if there is a unique equilibrium,
then the Principle of Minimum Differentiation holds.

The following proposition is easy to prove:5

Proposition 3.2. Each equilibrium has multiplicity 1, 2 or 4. Even: for every (e1, e2) ∈ E

#[(e1, e2)] = 1 ⇔ e1 = e2 ∧ e1 + e2 = v;

#[(e1, e2)] = 2 ⇔ [e1 = e2 ∧ e1 + e2 6= v] ∨ [e1 6= e2 ∧ e1 + e2 = v];

#[(e1, e2)] = 4 ⇔ [e1 6= e2 ∧ e1 + e2 6= v]. �
4We denote a correspondence with the symbol (.
5Note that the three bi-implications in this statement imply that #[(e1, e2)] 6= 3.
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4. Potentials

4.1. Potential games

Consider a game in strategic form. Denote its player set by N := {1, . . . , n}, the strategy set of player i by
Xi and his payoff function by ui. We denote X := X1 × · · · ×Xn, Xı̂ := X1 × · · · ×Xi−1 ×Xi+1 × · · · ×Xn,
identify X with Xi ×Xı̂, and accordingly write x ∈ X as x = (xi; xı̂).

A function P : X1 × · · · ×Xn → R is called a

• exact potential ( [11] ) if for all i ∈ N , z ∈ Xı̂ and ai, bi ∈ Xi

ui(ai; z)− ui(bi; z) = P (ai; z)− P (bi; z).

• generalised ordinal potential ( [11] ) if for all i ∈ N , z ∈ Xı̂ and ai, bi ∈ Xi

ui(ai; z) < ui(bi; z) ⇒ P (ai; z) < P (bi; z).

• best-response potential ( [19] ) if for all i ∈ N and z ∈ Xı̂

Bi(z) = argmaxxi∈Xi
P (xi; z).

• quasi potential ( [15] ) if

E = argmaxP.

4.2. The dHg is a best-response potential game

In this subsection we show that the dHg is a best-response potential game in the sense of [19].6 This means
that there exists a best-response potential, i.e. a function P : S × S → R such that

B1(x2) = argmaxx1∈SP (x1, x2) (x2 ∈ S), B2(x1) = argmaxx2∈SP (x1, x2) (x1 ∈ S).

As (3) holds and the next theorem deals with a symmetric best-response potential P •, we have, with the
correspondence B• : S ( S defined by

B•(x2) := arg max
x1∈S

P •(x1, x2)

there to show that

B = B•. (5)

Define P̂ : S × S → R by

P̂ (x1, x2) :=

{
L(min{x1, x2}) +R(max{x1, x2}) + 1

2M(x1, x2) if x1 6= x2,

L(x1) +R(x1)− f(0) if x1 = x2.

Of course P̂ (x1, x2) = P̂ (x2, x1) holds. Noting the formulas L(m− a) = R(a) and M(m− a,m− b) = M(a, b),

we also see that P̂ (m− x1,m− x2) = P̂ (x1, x2).

Theorem 4.1. The discrete Hotelling game is a best-response potential game. Moreover,

6For potential games we refer to [11,13] and references therein.
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(1) if f is strictly decreasing, then P • : S × S → R defined by

P •(x1, x2) :=

{
P̂ (x1, x2) if (x1, x2) 6= (m

2 ,
m
2 ),

P̂ (x1, x2) + 1
2f(0) if (x1, x2) = (m

2 ,
m
2 )

is a best-response potential.
(2) if f is constant, say f = c, then P • : S × S → R defined by

P •(x1, x2) := P̂ (x1, x2)− rmin
{∣∣∣m

2
− x1

∣∣∣ , ∣∣∣m
2
− x2

∣∣∣} ,
where r is any constant such that 0 < r < c

2 , is a best-response potential. �

Proof. We have to show that (5) holds. As P •(x1, x2) = P •(m−x1,m−x2), it suffices to show B(x2) = B•(x2)
for x2 ≤ m

2 .
(1). We distinguish two cases.
Case x2 <

m
2 : first, if x1 < x2, then for x′1 = 2x2 − x1, M(x1, x2) = M(x2, x

′
1). Noting that P •(x1, x2) =

P̂ (x1, x2) for any x1 ∈ S,
u1(x′1, x2)− u1(x1, x2) = R(x′1)− L(x1)

> P •(x′1, x2)− P •(x1, x2) =
(
L(x2) +R(x′1)

)
−
(
L(x1) +R(x2)

)
=

(
x2∑
z=0

f(z)−
x1∑
z=0

f(z)

)
+

m−x′1∑
z=0

f(z)−
m−x2∑
z=0

f(z)


=

x2∑
z=x1+1

f(z)−
m−x2∑

z=m−x′1+1

f(z) > 0,

where the first inequality is obtained from L(x2) < R(x2), and the last by x1 + 1 < m − x′1 + 1 and x2 −
(x1 + 1) = (m − x2) − (m − x′1 + 1). Hence x1 ≥ x2 if x1 ∈ B(x2) ∪ B•(x2). Second, if x1 = x2, then
M(x2, x1) = M(x2, x1 + 1) = 0, and

2
(
u1(x1 + 1, x2)− u1(x1, x2)

)
= 2R(x2 + 1)−

(
L(x2) +R(x2)− f(0)

)
≥ P •(x1 + 1, x2)− P •(x1, x2) = L(x2) +R(x2 + 1)−

(
L(x2) +R(x2) + f(0)

)
=

m−x2−1∑
z=0

f(z)−
m−x2∑
z=0

f(z) + f(0) = −f(m− x1) + f(0) > 0,

where the first weak inequality is byR(x2+1)−L(x2) =
∑m−x2−1

z=0 f(z)−
∑x2

z=0 f(z) ≥ 0 due tom−x2−1 ≥ x2.
Hence x1 > x2 if x1 ∈ B(x2)∪B•(x2). Then B(x2) equals the set of maximizers of u1(·, x2) = R(·) + 1

2M(·, x2)

over x1 > x2, and B•(x2) equals the set of maximizers of P •(·, x2) = L(x2) + R(·) + 1
2M(·, x2) over x1 > x2.

Since L(x2) is a constant, B(x2) = B•(x2).
Case x2 = m

2 : in this case B(x2) and B•(x2) are symmetric in that y ∈ B(x2) ⇔ m − y ∈ B(x2) and
y ∈ B•(x2) ⇔ m − y ∈ B•(x2). Hence B(x2) ∩ [x2,m] 6= ∅ and B•(x2) ∩ [x2,m] 6= ∅. We are done if
B(x2) ∩ [x2,m] = B•(x2) ∩ [x2,m] is shown. Now, observe:

u1(x1, x2) =

{
R(x1)− 1

2f(0) and P •(x1, x2) = L(x2) +R(x1)− 1
2f(0) if x1 = x2,

R(x1) + 1
2M(x1, x2) and P •(x1, x2) = L(x2) +R(x1) + 1

2M(x1, x2) if x1 > x2.

Thus P •(x1, x2) = u1(x1, x2) + L(x2) for all x1 ≥ x2, and arg maxx1≥x2 P
•(x1, x2) = arg maxx1≥x2 u1(x1, x2)

since L(x2) is constant. Hence B(x1, x2) ∩ [x2,m] = B•(x1, x2) ∩ [x2,m].
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(2). Note that G is c(m+ 1)-sum and

P̂ (x1, x2) =

{
c(m+ 1− 1

2 (|x2 − x1| − 1)) if x1 6= x2

c(m+ 1) if x1 = x2.

We distinguish three cases.
Case x2 ≤ m

2 − 1: here we can verify that B(x2) = {x2 + 1}. Notice that P̂ (x2, x2) = P̂ (x2 + 1, x2) and

rmin{m2 −x2,
m
2 −x2} > rmin{m2 − (x2 +1), m2 −x2}, i.e., P •(x2, x2) < P •(x2 +1, x2); and P̂ (x1, x2) ≤ P̂ (x2 +

1, x2) and rmin{m2 −x1,
m
2 −x2} > rmin{m2 − (x2 +1), m2 −x2} for all x1 < x2, i.e., P •(x1, x2) < P •(x2 +1, x2)

for all x1 < x2 + 1.
Also,

P •(x1, x2) < P •(x2 + 1, x2) for all x1 > x2 + 1.

To see this, note that P̂ (x1, x2)− P̂ (x2 + 1, x2) = − c
2 (x1− x2− 1) for all x1 > x2 + 1, and rmin{|m2 − x1|,

m
2 −

x2} − rmin{m2 − (x2 + 1), m2 − x2} = −r(x1 − x2 − 1) if x1 ≤ m− x2, and zero if x1 > m− x2. In either case

their sum P̂ (x1, x2) − P̂ (x2 + 1, x2) is negative (note that − c
2 + r < 0). Hence B•(x2) = B(x2) = {x2 + 1} if

x2 ≤ m
2 − 1.

Case m
2 − 1 < x2 <

m
2 : now m is odd and x2 = m−1

2 . We can see that

B(x2) = {x2, x2 + 1}.

Since P̂ (x2, x2) = P̂ (x2 + 1, x2) > P̂ (x1, x2) for all x1 6∈ {x2, x2 + 1} and rmin{m2 − x2,
m
2 − x2} = rmin{m2 −

(x2 + 1), m2 − x2} = rmin{|m2 − x1|,
m
2 − x2} for all x1 6∈ {x2, x2 + 1}, we have B•(x2) = B(x2) = {x2, x2 + 1}

if m
2 − 1 < x2 <

m
2 .

Case x2 = m
2 : in this case we can see that B(x2) = {x2}. Since P̂ (x2, x2) > P̂ (x1, x2) and rmin{m2 −x2,

m
2 −

x2} = rmin{|m2 − x1|,
m
2 − x2} for all x1 6= x2, we have B•(x2) = B(x2) = {x2} if x2 = m

2 . �

4.3. Other potentials

Having Theorem 4.1, the question may arise whether a dHg admits another type of potential, like an exact
potential or a generalized ordinal potential game.

If m = 1, then u1 = u2, i.e. the game is an identical interest game and therefore an exact potential game.
The following proposition shows that our class of dHg is neither contained in the class of exact potential games
nor in the class of generalized ordinal potential games.

Theorem 4.2. Consider the dHg with f(d) = wd and m = 3.

(1) The game is for no w an exact potential game.
(2) For w > 1

2 the game is not a generalized ordinal potential game. �

Proof. Consider the cyclic path of length 4

γ := (x(1),x(2),x(3),x(4),x(5)) = ((2, 0), (1, 0), (1, 3), (2, 3), (2, 0)).

This cyclic path is simple, i.e. x(r) 6= x(s) (1 ≤ r < s ≤ 4).
(1). Using the bi-matrix (2), we obtain

(u1(x(2))− u1(x(1))) + (u2(x(3))− u2(x(2))) + (u1(x(4))− u1(x(3))) + (u2(x(5))− u2(x(4)))

= (u1(1, 0)− u1(2, 0)) + (u1(3, 1)− u1(0, 1)) + (u1(2, 3)− u1(1, 3)) + (u1(0, 2)− u1(3, 2))

= (1 + w + w2)− (1 + w + w
2 ) + (1 + w

2 )− 1 + (1 + w + w2)− (1 + w + w
2 ) + (1 + w

2 )− 1

= 2w2 6= 0.
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As explained in [11], this calculation implies that the game is not an exact potential game.
(2). By definition γ is an improvement path if and only if u1(2, 0) < u1(1, 0)∧u2(1, 0) < u2(1, 3)∧u1(1, 3) <

u1(2, 3) ∧ u2(2, 3) < u2(2, 0). So γ is an improvement path

⇔ u1(2, 0) < u1(1, 0) ∧ u1(0, 1) < u1(3, 1) ∧ u1(1, 3) < u1(2, 3) ∧ u1(3, 2) < u1(0, 2)

⇔ [
w

2
< w2 ∧ 0 <

w

2
∧ w

2
< w2 ∧ 0 <

w

2
]⇔ 1

2
< w.

If the game has a generalized ordinal potential then it cannot have a non-trivial cyclic improvement path ( [11]).
Thus for w > 1/2 the game is not a generalized ordinal potential game. �

5. Structure of the equilibrium set in case f(d) = wd

We have seen that the dHg has an equilibrium. However, one may wish to have more insight in the structure
of its equilibrium set E.

Below we present for the case f(d) = wd, where 0 < w ≤ 1, some results concerning the structure of E.
These results will be proved by a straightforward inspection of the explicit formulas in Theorems 1 and 2 in [18].
Obtaining these formulas (for w 6= 1) was quite complicated: 10 cases were distinguished.

The analysis of the case of inelastic demand, meaning that w = 1, is simple: for the best-response correspon-
dence B = B1 = B2 we have

B(x) =

 {x+ 1} if x < p,
{x} if x = p,
{x− 1} if x > p

if m is even, (6)

B(x) =


{x+ 1} if x < p,
{x, x+ 1} if x = p,
{x− 1, x} if x = p+ 1,
{x− 1} if x > p+ 1,

if m is odd. (7)

This implies for w = 1:

E =

{
{(p, p)} if m is even,
{(p, p), (p+ 1, p+ 1), (p, p+ 1), (p+ 1, p)} if m is odd.

(8)

So for w = 1 the Principle of Minimum Differentiation holds. Concerning equilibrium classes for w = 1, note that
if m is even, then [E] = {{(p, p)}} and if m is odd, then [E] = {{(p, p), (p+ 1, p+ 1)}, {(p, p+ 1), (p+ 1, p)}}.

As Propositions 5.1 and 5.2 make crystally clear, the following value of the distance factor plays an important
role:7

wc :=

{
2−1/p if m is even,
2−1/(p−1) if m is odd.

Proposition 5.1. (1) Suppose m is even.
(a) If w > wc, then E = {(p, p)}.
(b) If w = wc, then E = {(p, p), (p− 1, p), (p, p− 1), (p+ 1, p), (p, p+ 1)}.
(c) If w < wc, then the action distance of each equilibrium is at least 1.

(2) Suppose m is odd with w 6= 1.
(a) If w > wc, then E = {(p, p+ 1), (p+ 1, p)}.
(b) If w = wc, then E = {(p− 1, p+ 1), (p+ 1, p− 1), (p+ 2, p), (p, p+ 2), (p+ 2, p− 1),

(p− 1, p+ 2), (p, p+ 1), (p+ 1, p)}.
(c) If w < wc, then the action distance of each equilibrium is at least 3. �

7Here 2−1/(p−1) with p = 1 or p = 0 has to be interpreted as 0.
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Proof. (1a). By Theorems 1 and 2(Ie) in [18].
(1b). By Theorems 1 and 2(Id) in [18].
(1c). By Theorems 1 and 2(I) in [18].
(2a), (2b). By Theorems 1 and 2(IId) in [18].
(2c). By Theorems 1 and 2(II) in [18]. �

Proposition 5.1(1) implies that for m even: there exists a symmetric equilibrium if and only if w ≥ wc. With
Proposition 5.1(2) we see that for m odd: there exists a symmetric equilibrium if and only if w = 1.

Proposition 5.2. The Principle of Minimum Differentiation holds if and only if w > wc. �

Proof. By Proposition 5.1 and (8), this is clear if m is odd, or if m is even and w ≥ wc. Now suppose m is even
and w < wc. Since m is even, by definition, the Principle holds if and only if E = {(p, p)}. But by w < wc the
action distance is at least 1, so E 6= {(p, p)}; the Principle does not hold. �

The inequality w > wc may be interpreted as “f is ‘sufficiently inelastic”. Note that w > 2−1/p ⇔ f(p) >
1
2f(0) and w > 2−1/(p−1) ⇔ f(p− 1) > 1

2f(0).
Now let us consider the equilibrium classes. First suppose m is even. Then if w > wc, Proposition 5.1(1)

shows that there is 1 equilibrium class and if w = wc, there are 2 equilibrium classes. For w < wc the situation
is more complicated. Next suppose m is odd. Then, if wc < w < 1, Proposition 5.1(2) shows that there is 1
equilibrium class and if w = wc there are three equilibrium classes. Again, if w < wc, the situation is more
complicated. However, Proposition 5.3(4) holds.

Proposition 5.3. (1) The game has a unique equilibrium if and only if m is even and w = 1.
(2) If (e1, e2) ∈ E

(a) and m is even, then e1 + e2 ∈ {m− 1,m,m+ 1};
(b) and m is odd then e1 + e2 ∈ {m− 2,m− 1,m,m+ 1,m+ 2}.

(3) 1 ≤ #E ≤ 8.
(4) There are at most 3 equilibrium classes. �

Proof. By Theorems 1 and 2 in [18]. �

An example with 3 equilibrium classes is (as follows from Theorems 1 and 2(II) in [18]): m = 11 and
w = 2−1/2. Then (p = 5 and) [E] = {{(p − 2, p + 2), (p + 2, p − 2), (p + 3, p − 1), (p − 1, p + 3)}, {(p − 1, p +
2), (p+ 2, p− 1)}, {(p− 2, p+ 3), (p+ 3, p− 2)}}.

A question for further research: what remains of these results for a general dHg?

6. A conjecture

Various classes of finite games in strategic form that have a (pure) equilibrium are identified. We mention
here: potential games, supermodular games, symmetric games with integrally concave payoffs ( [9]) and games
with increasing best-response correspondences.

In [18] it has been shown that a dHg may not be a supermodular game and that a dHg may not have integrally
concave payoffs. In the present article we have shown that the dHg is a best-response potential game. Below
we look to increasing best-response correspondences in case of the demand function f(d) = wd.

So consider the best-response correspondence B = B1 = B2 : S ( S. For w = 1 it is from (6) and (7)
easy to check that B has an increasing selection. However this does not hold for all m and w: indeed, the next
proposition implies that for m odd and w 6= 1 it holds that B(p) ⊆ {p+ 1, . . . ,m} and B(p+ 1) ⊆ {0, . . . , p}.

Proposition 6.1. Suppose w 6= 1 or m is even.

(1) If x > m/2, then B(x) ⊆ {0, 1, . . . , x− 1}.
(2) If x < m/2, then B(x) ⊆ {x+ 1, x+ 2, . . . ,m}. �

Proof. By Proposition 3 in [18]. �
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In particular B does not have an increasing selection in case m = 7 and w = 1/2. Then the bi-matrix game is
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.

Thus the set [E] of equilibrium classes equals {{(1, 4), (4, 1), (3, 6), (6, 3)}, {(2, 5), (5, 2)}} and for the best-
responses we have B(0) = {4, 5}, B(1) = {4, 5}, B(2) = {5}, B(3) = {5, 6}, B(4) = {1, 2}, B(5) = {2}, B(6) =
{2, 3}, B(7) = {2, 3}.

As a dHg is a symmetric game in strategic form with two players we have, letting B2 = B ◦B,

there exists a Nash equilibrium ⇔ B2 has a fixed point.

And by virtue of Tarski’s fixed point, we have

B2 has an increasing selection ⇒ B2 has a fixed point.

Thus sufficient for a dHg to have an equilibrium is that the correspondence B2 has an increasing selection.
As in the above exampleB2(0) = {1, 2}, B2(1) = {1, 2}, B2(2) = {2}, B2(3) = {2, 3}, B2(4) = {4, 5}, B2(5) =

{5}, B2(6) = {5, 6}, B2(7) = {5, 6}, we see that in this example B2 has an increasing selection. This seems to
be true for each dHg with demand function f(d) = wd:

Conjecture 6.1. If f(d) = wd, then the correspondence B2 : S ( S has an increasing selection. �

We have checked this conjecture for many values ofm and w with Maple. So also the correctness of the conjecture
implies that the discrete Hotelling game with f(d) = wd has a Nash equilibrium. It may be interesting to identify
a deeper reason for its validity.

Proposition 6.3 below may be helpful in a further study of the conjecture. It implies that B has an increasing
selection on the set S− := {x2 ∈ S | x2 < m

2 } and on the set S+ := {x2 ∈ S | x2 > m
2 }.

For x2 ∈ S, the conditional payoff function u
(x2)
1 : S → R of player 1 is defined by u

(x2)
1 (x1) = u1(x1, x2).

Lemma 6.2. (1) Let qi;j := wi − 1
2w
b j−i+1

2 c. If 0 < x1 < x2, then8 ∆u
(x2)
1 (x1) = qx1;x2

.
(2) If m ≥ 3, then B(x) ⊆ {1, . . . ,m− 1}.
(3) Suppose i, j ∈ S with 0 < i < j.

(a) If qi;j ≤ 0, then qk;j < 0 for i < k < j.
(b) If qi;j ≥ 0, then ql;j > 0 for 0 < l < i.

(4) Suppose x1, x2 ∈ S with 0 < x1 < m, then x1 ∈ B(x2) ⇒ ∆u
(x2)
1 (x1 + 1) ≤ 0 ≤ u(x2)

1 (x1). �

Proof. For these results, respectively see in [18]: Proposition 2, Proposition 4, Lemma 1 and formula (8). �

Proposition 6.3. The functions max(B) and min(B) are increasing on S+ and increasing on S−. �

8∆u
(x2)
1 : S \ {0} → R is defined by ∆u

(x2)
1 (x) := u

(x2)
1 (x1)− u

(x2)
1 (x1 − 1).
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Proof. (6) and (7) show that the statements hold for w = 1. If m = 1 or m = 2, then #S− = #S+ = 1 and so
the statements are trivial. As, for x2 ∈ S, B(m− x2) = {m} −B(x2) the correctness of the statements for S−
follows from those for S+. Now suppose w 6= 1 and m ≥ 3; we prove the statements for S+.

First we prove that min(B) is increasing on S+. So fix x2, x
′
2 ∈ S+ with x2 < x′2 and let x1 = minB(x2) and

x′1 = minB(x′2). As m ≥ 3, we have by Lemma 6.2(2)

0 < x1 < m and 0 < x′1 < m.

By Lemma 6.2(4), ∆u
(x2)
1 (x1) = u

(x2)
1 (x1)−u(x2)

1 (x1−1) ≥ 0 and ∆u
(x′2)
1 (x′1+1) ≤ 0. As x2 >

m
2 , Lemma 6.1(1)

guarantees

x1 < x2.

Since x1 = minB(x2), we have u
(x2)
1 (x1) 6= u

(x2)
1 (x1 − 1) and therefore ∆u

(x2)
1 (x1) > 0. By Lemma 6.2(1),

qx1,x2
> 0. As 0 < w < 1 and x2 < x′2, we obtain 0 < qx1,x2

≤ qx1,x′2
. Thus qx1,x′2

> 0. By Lemma 6.2(1),
qx′1+1,x′2

≤ 0. Lemma 6.2(3) implies x′1 + 1 > x1 and therefore, as desired, x′1 ≥ x1.
With an analogous proof one shows that max(B) is increasing on S+. �

7. Comparing the dHg with the cHg

The cHg, i.e. the continuous Hotelling game, is the game that we obtain by replacing the formula (1) by

ui(x1, x2) :=

∫
Vi(x1,x2)

f(|y − xi|)dy +

∫
V0(x1,x2)

f(|y − xi|)
2

dy, (9)

where now S is a proper real interval [0, L].
Below we quickly compare results for the dHG and the cHg. As for the dHg general results for the structure

of the equilibrium set only are available for the demand function f(d) = wd (0 < w ≤ 1), we do this for this
demand function.9

A new notion: the function σ : E → R defined by σ(e1, e2) = e1 + e2 is referred to as Nash sum.
The next table compares some of the above results with those in [8, 17]:

property/game cHg dHg
# equilibria 1, 2 1,2, . . . , 8

multiplicity of equilibrium 1 or 2 1, 2, 4
Nash sum L m-2, m-1, . . . , m+2

# equilibrium classes 1 1, 2 or 3
potential continuous quasi best-response

More detailed results for the cHg are contained in [8] and [17]. For example, the cHg has a continuous
best-response potential if and only if w ≤ 2−2/L.

A final remark: as P • in Theorem 4.1 is a best-response potential for the dHg, it is well-known that a
maximiser of P • is a Nash equilibrium. However it turns out that a Nash equilibrium may not be a maximiser
of P •, i.e. P • may not be a quasi-potential. That this is true can be checked by an explicit calculation: for the
concrete bi-matrix game (with m = 7) in Section 6 the set of maximisers of P • equals {(2, 5), (5, 2)}; however,
the Nash equilibrium set is larger.

9For the cHg, in [8] and [17] results can be found for a general (so even not necessarily continuous) f .



174 ESAIM: PROCEEDINGS AND SURVEYS

References

[1] N. Abudaldah, W. Heijman, and P. Heringa. Return of the icecream men. Romanian Journal of Regional Science, 9(2):39–48,

2015.
[2] S. P. Anderson, A. de Palma, and J.-F. Thisse. Discrete Choice Theory of Product Differentiation. MIT Press, Cambridge,

1992.

[3] K. Boulding. Economic Analysis: Microeconomics, volume I. Harper & Row, New York, 3 edition, 1955.
[4] S. Brusco, M. Dziub́ınski, and J. Roy. The hotelling-downs model with runoff voting. Games and Economic Behavior, 74:447–

469, 2012.
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