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Abstract. Fused Filament Fabrication (FFF) or Fused Deposition Modelling (FDM) or three-dimension (3D)
printing are rapid prototyping processes for workpieces. There are many factors which have a significant effect
on surface quality, including bed temperature, printing speed, and layer thickness. This empirical study was
conducted to determine the relationship between the above-mentioned factors and average surface roughness
(Ra). Workpieces of cylindrical shape were fabricated by an FFF system with a Polylactic acid (PLA) filament.
The surface roughness wasmeasured at five different positions on the bottom and top surface. A response surface
(Box-Behnken) method was utilised to design the experiment and statistically predict the response. The total
number of treatments was sixteen, while five measurements (Ra1, Ra2, Ra3, Ra4 and Ra5) were carried out for
each treatment. The settings of each factor were as follows: bed temperature (80, 85, and 90 °C), printing speed
(40, 80 and 120mm/s), and layer thickness (0.10, 0.25 and 0.40mm). The prediction equation of surface
roughness was then derived from the analysis. The same set of data was also used as the inputs for a machine
learning method, an artificial neural network (ANN), to construct the prediction equation of surface roughness.
Rectified linear unit (ReLU) was utilised as the activation function of ANN. Two training algorithms (resilient
backpropagation with weight backtracking and globally convergent resilient backpropagation) were applied to
train multi-layer perceptrons. Moreover, the different number of neurons in each hidden layer was also studied
and compared. Another interesting aspect of this study is that the ANN was based on a limited number of
training samples. Finally, the prediction errors of each method were compared, to benchmark the prediction
performance of the two methods: Box-Behnken and ANN.

Keywords: Artificial neural network / Box-Behnken design / Fused filament fabrication (FFF) /
Rectified linear unit (ReLU) / Resilient backpropagation with weight backtracking (RPROP+) /
Globally convergent resilient backpropagation (GRPROP) / Surface roughness
1 Introduction

Surface quality is an important characteristic of workpieces
fabricated by a Fused Filament Fabrication (FFF) system;
the lowest surface roughness is desirable. There are many
factors affecting the quality of the surface, e.g., bed
temperature, layer thickness, print speed, and raster width.
As a result, it is critical to numerically quantify the effect of
these factors on the surface roughness. According to the
literature, different methods have been used to study this
effect and experimental design was one of them. Another
method was the artificial neural network (ANN), which
was based on a machine learning algorithm. However, the
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challenging issue of the ANN application is the limited
number of training and testing data, since the data is
obtained from experiments which consume resources.
Another dilemma is the question regarding the number
of neurons in each hidden layer. Moreover, the right
selection of training algorithms also plays an important role
in prediction capability.

Therefore, the main aim of this study is the assessment
of surface roughness prediction by a response surface
method, Box-Behnken, and ANN method. Another objec-
tive is the performance comparison of two ANN training
algorithms: resilient backpropagation with weight back-
tracking (RPROP+) and globally convergent resilient
backpropagation (GRPROP). Finally, the utilisation of
different number of neurons in each hidden layer is also
studied and compared.
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2 Literature review

Several studies have focused on the application of different
training algorithms of the ANN method to model the
mechanical properties of workpieces fabricated by FFF
systems.

Mahapatra and Sood [1] applied ANN to determine the
relationship between five input factors (raster angle, raster
width, layer thickness, orientation, and air gap) while the
surface roughness at the top and bottom position were
measured. The algorithm used to train the neural network
was the Levenberg-Marquardt algorithm.

Sood, Ohdar, and Mahapatra [2] applied the ANN with
resilient backpropagation, to model the compressive
strength of specimens built by the FDM process. The
data set used to train the network was obtained from the
central composite design of the experiment.

Nagarajan et al. [3] had improved the product quality
of the FDM manufactured parts by introducing the
knowledge-based ANN, which was a combination of the
classical ANN and dimensional analysis conceptual
modelling (DACM). The classical ANN was based on
the Levenberg-Marquardt training algorithm. Jiang et al.
[4] utilised the Bayesian Regularization as the training
algorithm, to develop the neural network and predict the
printable bridge length (PBL) of specimens fabricated by
FDM.

A neural network with multi-layer perceptrons was
used by Boschetto, Giordani, and Veniali [5] to predict the
surface roughness of test specimens made from Acryloni-
trile Butadiene Styrene (ABS). The experiment was
conducted to study the effect of different activation
functions and numbers of neurons. The accuracy of the
models was based on these indexes: root mean square error
(RMSE), mean absolute percentage error (MAPE), and
coefficient of determination (R2). Noriega et al. [6]
combined the ANN and optimisation method to determine
the optimal dimensional values of FDM-fabricated work-
pieces. The results point to the fact that the hybrid
approach leads to significant reductions in the external and
internal dimensions. Vijayaraghavan et al. [7] applied an
improved approach of multi-gene genetic programming
(Im-MGGP) to formulate the functional relationship
between input factors, layer thickness, orientation, raster
angle, raster width, air gap, and an output, wear strength.

Panda, Bahubalendruni and Biswal [8] compared two
soft computing methods, multi-gene genetic programming
(MGGP) and a general regression neural network
(GRNN), to find the relationship between three input
factors (layer thickness, orientation, and raster angle) and
an output (the compressive strength of an FDM fabricated
prototype). The study led to the conclusion that a model
generated by GRNN had a better fit than the MGGP
model. Bayraktar et al. [9] applied the ANN method to
optimise the tensile strength of test specimens fabricated
by the FDM method; a PLA filament was used as the
material. The training algorithm used was the back-
propagation (BP) with Levenberg–Marquardt algorithm
(LMA). The experiments were conducted using three melt
temperatures, four-layer thicknesses and three raster
pattern orientations. Vahabli and Rahmati [10] applied
the radial basis function neural network (RBFNN) to
estimate the surface roughness of specimens. The
imperialist competitive algorithm (ICA) was used to
optimise the effective parameters of the effective varia-
bles. The results signify that the prediction error (MAPE)
of the combined ICA-RBFNN was lower than that of
RBFNN alone.

Other machine learning algorithms (e.g., random
forests (RFs), support vector regression (SVR), ridge
regression (RR), and least absolute shrinkage and selection
operator (LASSO)), were utilised by Wu, Wei and
Terpenny [11] to accurately predict the surface roughness
of manufacturing parts. Li et al. [12] introduced the
ensemble learning algorithm to determine the predictive
model of surface roughness. There were two stages of
calculation: offline and online predicting. For the
offline, different learning algorithms, such as random
forests (RF), AdaBoost, classification and regression trees
(CART), SVR, RR, and random vector functional link
(RVFL) networks were utilised for training the model. The
model testing was conducted in this online stage. The input
data was temperature and vibration data collected from
the build-plate temperature and vibrations, the extruder
temperature and vibration, and the temperature of the
deposited material.

Jiang et al. [13] investigated the response of the FDM
process and printable bridge length (PBL), in test
specimens fabricated by the FDM method. The data set
to train the ANN network was obtained from the
experiment which followed the orthogonal analysis L32.
BP with Bayesian Regularization was used as the training
algorithm. According to the results, the application of
BPNN leads to the accurate prediction of a test specimen’s
PBL. Barrios and Romero [14] deployed the decision-tree
method, J48, random forest, and random tree, to predict
the surface roughness of FDM parts. The dataset was
categorised into two groups: training and testing. The
design matrix followed the Taguchi design, L27, and there
were five responses: layer height, print temperature, print
speed, print acceleration, and flow rate. Yadav et al. [15]
studied the relationship between three inputs (material
density, infill density, and extrusion temperature) and an
output (tensile strength). The material used was a polymer
blend between ABS and Polyethylene Terephthalate
Glycol (PETG). The ANN and genetic algorithm (GA)
were utilised to predict the tensile strength.

On the other hand, the response surface and design of
the experimental method were applied in order to screen
and optimise the surface roughness. Plaza et al. [16] studied
the effect of build orientation, feed rate, and layer thickness
on the surface roughness of workpieces fabricated from
PLA filament. The design of experiment method used was
the factorial design (3 levels for build orientation, 4 levels of
layer thickness, and 3 levels of feed rate). Three replica
workpieces were fabricated for each treatment. The results
showed that the layer thickness had a significant effect on
the surface roughness while the feed rate had no effect at
all. Moreover, the ANN, with feedforward BP (training
algorithm was LM), was applied to predict the surface



Fig. 1. Fabricated workpiece.

Fig. 2. Sample workpieces.
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roughness of workpieces. The central composite design
(CCD) method was utilised by Yang et al. [17], to optimise
the tensile strength, surface roughness, and build time of
fabricated workpieces. The results indicated that nozzle
diameter, filling velocity, and layer thickness had a
significant impact on the surface roughness. Kandananond
[18] applied the Box–Behnken design to optimise the
surface roughness of workpieces fabricated from ABS
filament. The optimal settings of the input factors, nozzle
temperature, bed temperature, and printing speed were
recommended, to minimise the surface roughness.

The response surface method (RSM) and machine
learning were also utilised to study the relationship
between inputs and other outputs of the FDM system.
The comparison study of RSM and machine learning
method, ANN and fuzzy inference system (FIS), as well
as GA, was conducted by Peng, Xiao and Yue [19] to
benchmark the prediction accuracy of the dimensional
error, warp deformation, and built time when the inputs
were: line width compensation, extrusion velocity, filling
velocity, and layer thickness. Mohamed, Masood, and
Bhowmik [20] compared the performance of two methods
(the definitive screening design and ANN), to predict two
parameters, creep compliance and recoverable compliance,
of the FDM fabricated test specimens. The model of ANN
used was multi-layer perceptron. The performance of
ANN method was measured by the prediction error.
3 FFF system and workpiece model

The FDM or FFF unit used is a consumer-grade system
equipped with a single nozzle, which has a maximum
extrusion temperature of 220 °C and maximum bed
temperature of 90 °C. The highest printing speed is
120mm/s. The shape of the workpiece in this study was
cylindrical and the dimensions were as follows: diameter=
40mm and height=10mm (adapted from the work by
Pérez et al. [21]). The infill density was ten percent and the
structure was honeycomb. The material used was PLA
filament, which is naturally degradable. Regarding the
workpiece, the raster angle was set at 45° and the pattern
was rectilinear. The solid model and its dimensions are
shown in Figure 1 and the sample workpiece is depicted in
Figure 2.



Fig. 3. Workpiece andmeasured position (top view of print bed).

Table 1. Input factors and their levels.

Factor Coded level

�1 0 1

Bed Temperature (°C) 80 85 90
Print Speed (mm/s) 40 80 120
Layer Thickness (mm) 0.1 0.25 0.4

Fig. 4. Graphical representation of Box-Behnken design points.
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The surface roughness was measured at the top and
bottom surface. At each surface, the measurement of
surface roughness was conducted at five different locations
(as shown in Fig. 3), four positions with a 90° separation
and the centre of the workpiece. The average surface
roughness at these locations was denoted Ra1, Ra2, Ra3,
Ra4, and Ra5. The surface roughness tester was used to
measure the surface roughness.

4 Experimental design

In this study, the Box–Behnken design was applied to
create the design matrix. As a result, the levels of
treatments were divided into three levels. There are three
input factors, bed temperature, print speed, and layer
thickness, while the output is surface roughness. The bed
temperature is the heating temperature of the print bed, so
the filament material from the extruder is slowly cooled.
The lowest bed temperature for this experiment was 80 °C
and it increased by five degrees, so the second and third
levels were 85 and 90 °C. The printing speed indicates how
fast the workpiece is fabricated, the slowest speed was
40mm/s. The second level of printing speed was 80mm/s,
which is a moderate speed, and the fastest speed was
120mm/s. The layer thicknesses were the layer heights of
each successive addition of material, which were stacked.
The thinnest layer was 0.1mm, while the thickest was
0.4mm. For the Box–Behnken design, the designated levels
are categorised as coded levels (�1= low, 0=middle and
1=high). The experimental factors and their levels, in the
form of actual and coded values, are shown in Table 1.

Because the measurements were conducted at five
positions, the response at each position can be considered
as a block. As a result, the blocking effect is also quantified
and analysed in this study.
5 Results

Since the Box–Behnken design is based on the three levels
of each factor, this design requires sixteen design points.
At each design point, there are five measurements at
different positions, expressed as Ra1–Ra5 (mm). The results
are divided into two cases: top and bottom surface, as
shown in Tables 2 and 3.

5.1 Top surface

The top surface roughness of the workpieces was measured
and is presented in Table 2.

5.2 Bottom surface

The bottom surface roughness of workpieces and their
design matrix are shown in Table 3.

6 Analysis

Two prediction methods, Box–Behnken RSM and ANN,
were applied to quantify the effect of each input factor and
analyse the relationship between input factors and surface
roughness. Afterwards, the prediction equation was
derived to determine the surface roughness.

6.1 Box–Behnken RSM

Box–Behnken is an RSM focusing on the optimisation of
the response. This method was introduced by Box and
Behnken [22]. To achieve the desired target, the experi-
ment was conducted to collect the data at different
treatments including low, middle, and high levels.
Moreover, the response data at the centre points was also
collected, to test the lack-of-fit. Some design points of this
response surface design are graphically represented in
Figure 4.



Table 2. Design matrix of top surface roughness.

Standard order Bed temp Print speed Layer thickness Ra1 Ra2 Ra3 Ra4 Ra5

1 80 40 0.25 5.71 5.74 5.27 5.43 5.92
2 90 40 0.25 2.59 2.4 2.32 2.57 2.2
3 80 120 0.25 6.28 7.6 6.85 6.53 6.68
4 90 120 0.25 1.36 2.51 2.02 2.03 2.9
5 80 80 0.1 0.78 0.66 0.88 1.05 0.87
6 90 80 0.1 1.56 1.25 1.42 1.91 1.29
7 80 80 0.4 3.57 3.79 3.9 4.84 4.76
8 90 80 0.4 2.68 1.88 3.08 2.92 2.02
9 85 40 0.1 5.65 5.44 5.23 5.72 5.54
10 85 120 0.1 1.23 1.38 1.28 1.54 1.09
11 85 40 0.4 8.68 8.98 8.42 8.47 8.85
12 85 120 0.4 9.49 8.76 9.07 9.07 9.27
13 85 80 0.25 5.49 5.42 4.57 5.33 3.58
14 85 80 0.25 3.41 3.09 3.85 4.64 4.5
15 85 80 0.25 4.92 4.93 4.24 4.2 5.14
16 85 80 0.25 5.12 5.65 5.6 3.81 3.35

Table 3. Design matrix of bottom surface roughness.

Standard order Bed temp Print speed Layer thickness Ra1 Ra2 Ra3 Ra4 Ra5

1 80 40 0.25 2.97 1.85 2.58 2.64 2.8
2 90 40 0.25 2.09 1.98 1.82 2 2.05
3 80 120 0.25 2.55 2.08 2.18 2.26 2.13
4 90 120 0.25 4.56 6.9 3.6 4.22 5.3
5 80 80 0.1 5.39 4.28 4.09 4.34 4.63
6 90 80 0.1 2.82 2.22 1.25 2.66 1.93
7 80 80 0.4 8.07 8.92 8.61 8.65 8.45
8 90 80 0.4 7.02 8.23 5.3 6.34 6.72
9 85 40 0.1 5.22 5.21 5.94 5.3 5.77
10 85 120 0.1 2.56 2.38 2.76 2.83 2.48
11 85 40 0.4 5.96 6.71 6.99 6.42 6.96
12 85 120 0.4 0.62 1.45 1.35 1 1.63
13 85 80 0.25 6.44 5.51 5.59 6.7 5.47
14 85 80 0.25 3.63 4.82 3.5 4.18 4.3
15 85 80 0.25 5.17 5.36 7.93 5.82 6.22
16 85 80 0.25 4.49 3.63 4.16 3.49 4.85
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6.2 Artificial neural network (ANN)

Normally, after the experiment was carried out, the
obtained data was used to train and test the network.
The structure of the network consists of the input and
output layers, while the hidden layer connects both layers
together. In this study, the training inputs are bed
temperature, printing speed, and layer thickness while
the training output is surface roughness. The structure of
neural network is illustrated in Figure 5. The algorithms,
RPROP+ and GRPROP, were utilised to achieve the
optimal weight so that the neural network was trained to
appropriately map inputs to an output. According to the
ANN structure, the inputs were fed into each hidden
neuron. At each hidden neuron, the weighted sum of the
inputs, including bias, were added together. The summa-
tion of weighted inputs and bias to the hidden neuron h11 is
shown in equation (1).

Inputh11 ¼ w11 � bed tempþ w21 � print speed

þw31 � layer thicknessþ b11 ð1Þ
where Inputh11 is the summation of the product of the
weight and inputs to the hidden neuron h11, including bias;
w11 is the weight of the first input to the hidden neuron h11;



Fig. 5. ANN structure.

Fig. 6. Graphical representation of activation function (ReLU).
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w21 is the weight of the second input to the hidden neuron
h11;w31 is the weight of the third input to the hidden neuron
h11; b11 is the bias to the hidden neuron h11.

Next, the weighted sum was then passed through the
activation function to limit the amplitude of the output. In
this study, the activation function was set at ReLU as
elaborated in equation (2). The activation function is a
function that is applied to smooth the product of the
weights and inputs including bias. Afterwards, the
available data is divided into two groups for training
and testing purposes. The training dataset is a set of
examples used to fit the parameters of the model (e.g., the
weights of the connections between neurons in ANNs).

Outputh11 ¼ max 0; Inputh11ð Þ ð2Þ
The graphical representation of the activation function

(ReLU) is shown in Figure 6.
For the network training process, the weights are

adjusted by using different learning algorithms and the
objective is the minimisation of prediction errors. Two
algorithms, RPROP+ and GRPROP, were utilised in this
study.

According to [23] and [24], RPROP+ is the adapta-
tion of the resilient backpropagation (RPROP) algo-
rithm. Basically, the update weight of RPROP is
dependent on the sign of the partial derivative of error
function as shown in equation (3). If the sign of
derivative is positive, the updated weight will decrease.
However, the update weight will increase when the sign
of derivative is negative. The process of weight update
stops when ∂E

∂wjk
¼ 0. The calculation of update-value Djk

follows the adaptation rule in equation (4) indicating
how the update-value changes according to the sign of
product of two partial derivatives. If the product is
positive (signs of two consecutive partial derivatives do
not change), the update value will increase with the
factor h+. On the other hand, if the signs of two partial
derivatives change (negative product implying that the
weight skips the optimal value), the update-value will
decrease with the factor h�.

w
ðtÞ
jk ¼ w

ðt�1Þ
jk � D

ðt�1Þ
jk ⋅sign

∂Eðt�1Þ

∂wðt�1Þ
jk

 !
ð3Þ

D
ðt�1Þ
jk ¼

hþDðt�2Þ
jk ;

∂Eðt�2Þ

∂wðt�2Þ
jk

� ∂Eðt�1Þ

∂wðt�1Þ
jk

> 0

h�Dðt�2Þ
jk ;

∂Eðt�2Þ

∂wðt�2Þ
jk

� ∂Eðt�1Þ

∂wðt�1Þ
jk

< 0

D
ðt�2Þ
jk ; else

8>>>>>>>>><
>>>>>>>>>:

ð4Þ

where wjk is the weight connecting neuron j to k; Djk is the
update-value, h+ and h� are the increase and decrease
factors and 0 < h� < 1 < h+, ∂E

ðt�1Þ

∂wðt�1Þ
jk

is the partial derivative

of the error function with respect to wjk at the (t� 1)th

iteration.
However, for RPROP+, when the product of two

partial derivatives is negative (indicating that the optimal
weight is skipped), the step of weight backtracking is added
to the RPROP algorithm to revert the weight-update.
GRPROP is another modified version of RPROP and its
objective is to improve the convergence of the optimal
weight [25]. At each step, the descent direction is identified
by utilizing RPROP algorithm to calculate the individual
direction component of each weight dimension [26] as
direction components (h1,…, hi, ...,hn). For this study, the
search directionwas calculated by using RPROPalgorithm
except the last search component (hi) satisfying the
condition

P
n;n≠ ih

ðtÞ
n

∂EðtÞ

∂wðtÞ
n

þ h
ðtÞ
i

∂EðtÞ

∂wðtÞ
i

¼ �d, where d is the

small positive number and 0 < d << ∞. Therefore, the
replacement of the last search component (hi) follows



Table 4. ANOVA of bottom surface roughness.

Source SS df MS F p-value

Block 0.7582 4 0.1896 0.1071 0.98
Model 145.66 5 29.13 9.64 <0.0001
A-Bed Temperature 2.74 1 2.74 0.9049 0.3447
B-Printing Speed 20.19 1 20.19 6.68 0.0118
C-Layer Thickness 42.72 1 42.72 14.13 0.0003
AB 13.25 1 13.25 4.38 0.0399
B2 66.76 1 66.76 22.09 <0.0001
Residual 211.59 70 3.02
Lack of Fit 185.09 55 3.37 1.91 0.0844
Pure Error 26.5 15 1.77
Cor Total 358.01 79
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equation (5).

h
ðtÞ
i ¼ �

P
n;n≠ ih

ðtÞ
n

∂EðtÞ

∂wðtÞ
n

þ d

∂EðtÞ

∂wðtÞ
i

ð5Þ

6.3 Analysis results

The surface analysis is divided into two cases: bottom and
top surface roughness, For the Box–Behnken analysis, a
DOE software (Design Expert version 12) was used to
analyse the results, while the programming in Rwas applied
to determine the ANN structures for both responses.

6.3.1 Box–Behnken analysis of bottom surface

The Box–Behnken analysis of bottom surface roughness is
illustrated in the analysis of variance (ANOVA), as shown
in Table 4.

The ANOVA indicates that the main sources of
variation combine a quadratic effect from printing speed
(B2) and the interaction between bed temperature and
printing speed (AB). The main effect from printing speed
(B) and layer thickness (C) is also included in the model. It
is interesting to note that the bed temperature (A) is
not excluded from the model because of the hierarchical
effect, although the main effect of A is not significant
(p-value=0.3447). The measuring position or block does
not seem to have a significant effect on the surface
roughness, since the p-value is high. The Box-Behnken
design also separates the residual into the lack-of-fit and
pure error terms. The lack-of-fit is the variability that the
Ra ¼ 29:7915� 0:3779 � BedTemperature

þ6:89 � LayerThicknessþ 0:00407 �
�0:001142 � Printing Speed2
prediction model cannot explain. On the other hand, the
pure error represents the variability that is random and it is
obtained from the replicated runs. Since the result derived
from the ANOVA indicates that the lack-of-fit is not
significant (p-value=0.0844), the prediction model is
capable of explaining the bottom surface roughness. The
prediction model for bottom surface roughness is expressed
in equation (6).

See equation (6) below.

The normal probability plot (Fig. 7) illustrates that the
points follow the pattern of a straight-line, so the residual is
normally distributed. Therefore, the surface roughness can
be explained by the proposed model.

The main effect of layer thickness (see Fig. 8) indicates
that the surface roughness at a layer thickness of 0.1mm is
significantly lower than surface roughness at a layer
thickness of 0.4mm.

The interaction plot shown in Figure 9 illustrates that
the surface roughness could be minimised in two scenarios:
low bed temperature and high printing speed or high bed
temperature and low printing speed. After the analysis
was carried out, a workpiece was fabricated for validation
purposes as indicated in Table 5. The bottom surface
roughness was measured (Ra=4.13) and compared to the
Ra predicted by the proposed equation (3.9775). The
results prove that measured Ra and predicted Ra are not
significantly different.

6.3.2 ANN analysis of bottom surface

At the beginning, the whole data set was normalised and
the min-max method was chosen to scale the data in the
interval between 0 and 1. After this, the data was randomly
� 0:181013 � Printing Speed

BedTemperature � Printing Speed ð6Þ
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split into two groups: training and testing. The next step
was to fit the neural network to the training data. The
number of hidden layers and neurons as well as the
activation function (ReLU) were identified at this stage. In
Fig. 7. Normal probability plot of residuals (bottom surface
roughness).

Fig. 8. Main effect plot
this study, the number of hidden layers was set at two while
the number of neurons in the first layer was between 3 and
5. The number of neurons in the second layer was between 2
and 4. The algorithm of neural network training was coded
and run in R, version 3.5.1. The system used has the
following specifications: the processor speed of 1.66GHz
and 4 GB RAM. The training algorithms used were
RPROP+ and GRPROP. The stopping criteria (based on
the threshold of the partial derivatives of the error
function) was set at 0.01. The number of neurons in each
hidden layer was determined by varying the number of
neurons for different ANN structures. After the appropri-
ate neural network was fit to the training data, the
prediction error, in the form of mean squared error (MSE)
based on the testing data,

MSE ¼
Pn

i¼1 ŷ i � yið Þ2
n

ð7Þ

where ŷi is the predicted values for test data; yi is the actual
values for test data; n is the total number of test data. The
MSE was calculated and is shown in Tables 6 and 7,
depending on the algorithms utilised.

According to Tables 6 and 7, the first columns show a
set (S), which contains the number of inputs, the number of
neurons in the first hidden layer, the number of neurons in
the second layer, and the number of outputs. When the
RPROP+ was used as the training algorithm, the lowest
MSE (0.2094) was achieved with S={3, 5, 3, 1}. On the
other hand, the lowest MSE (0.1598) was obtained when
the GRPROP algorithm was utilised with S={3, 5, 4, 1}.
of layer thickness (C).



Fig. 9. Interaction plot between bed temperature (A) and printing speed (B).

Table 5. Validation result for bottom surface roughness.

Bed temperature Print speed Layer thickness Ra Predicted Ra SE predicted

80 100 0.2 4.13 3.9775 1.79182

Table 6. ANN Algorithm: RPROP+.

S MSE S MSE S MSE

{3, 5, 4, 1} 0.3125 {3, 4, 4, 1} 0.3452 {3, 3, 3, 1} 0.3653
{3, 5, 3, 1} 0.2094 {3, 4, 3, 1} 0.2997 {3, 3, 2, 1} 0.519
{3, 5, 2, 1} 0.3452 {3, 4, 2, 1} 0.3848

Table 7. ANN algorithm: GRPROP.

S MSE S MSE S MSE

{3, 5, 4, 1} 0.1598 {3, 4, 4, 1} 0.3773 {3, 3, 3, 1} 0.3915
{3, 5, 3, 1} 0.3024 {3, 4, 3, 1} 0.353 {3, 3, 2, 1} 0.4526
{3, 5, 2, 1} 0.3353 {3, 4, 2, 1} 0.2703
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Fig. 10. Neural network: GRPROP, S={3, 5, 4, 1}.

Table 8. ANOVA of top surface roughness.

Source SS df MS F p-value

Block 0.2171 4 0.0543 0.0703 0.99
Model 388.01 7 55.43 40.88 <0.0001
A-Bed temperature 48.84 1 48.84 36.02 <0.0001
B-Printing speed 5.03 1 5.03 3.71 0.0582
C-Layer thickness 147.19 1 147.19 108.55 <0.0001
AC 6.58 1 6.58 4.85 0.031
BC 27.19 1 27.19 20.05 <0.0001
A2 88.16 1 88.16 65.02 <0.0001
B2 65.02 1 65.02 47.95 <0.0001
Residual 92.2 68 1.36
Lack of fit 80.62 53 1.52 1.97 0.0745
Pure error 11.58 15 0.7722
Cor total 480.43 79

Fig. 11. Normal probability plot of residuals (top surface
roughness).
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Its neural network is shown in Figure 10. This training
process required 3728 steps until all absolute partial
derivatives were smaller than 0.01. The error of training
process is 0.1447.

6.3.3 Box–Behnken analysis of top surface

The ANOVA of the top surface roughness is shown in
Table 8 and it indicates that there are two quadratic terms
(A2 and B2) in the prediction model. This result implies
Ra ¼ �591:16008þ 14:24677 � BedTemp
þ62:23833 � LayerThickness� 0:764667
þ0:19433 � Printing Speed � LayerThic
þ0:001127 � Printing Speed2
that the bed temperature and printing speed have a
quadratic effect on the top surface roughness. Moreover,
there are two pairs of interactions: AC and BC. Although
the p-value of B is insignificant (0.0582), B is included in
the model because of the hierarchical effect. The lack-of-fit
check shows that the lack-of-fit term is not significant
(p-value=0.0745). Moreover, there is no block effect
from the position where the measurement was carried out.
Therefore, the prediction equation is sufficient for
predicting the top surface roughness.
erature� 0:237752 � Printing Speed
� BedTemperature � LayerThickness
kness� 0:08398 � BedTemperature2

ð8Þ



Fig. 12. Interaction plot between bed temperature (A) and layer thickness (C).

Fig. 13. Interaction plot between printing speed (B) and layer thickness (C).
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Table 9. Validation result for top surface roughness.

Bed temperature Print speed Layer thickness Ra Predicted Ra SE Predicted

80 100 0.2 2.07 2.7024 1.204

Table 10. ANN Algorithm: RPROP+.

S MSE S MSE S MSE

{3, 5, 4, 1} 0.163 {3, 4, 4, 1} 0.3314 {3, 3, 3, 1} 0.2881
{3, 5, 3, 1} 0.2076 {3, 4, 3, 1} 0.3667 {3, 3, 2, 1} 0.3402
{3, 5, 2, 1} 0.1973 {3, 4, 2, 1} 0.2437

Table 11. ANN Algorithm: GRPROP.

S MSE S MSE S MSE

{3, 5, 4, 1} 0.1495 {3, 4, 4, 1} 0.1596 {3, 3, 3, 1} 0.2523
{3, 5, 3, 1} 0.147 {3, 4, 3, 1} 0.1753 {3, 3, 2, 1} 0.3051
{3, 5, 2, 1} 0.1881 {3, 4, 2, 1} 0.1885

Fig. 14. Neural network: GRPROP, S={3, 5, 3, 1}.
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The prediction equation for top surface roughness is
shown in equation (8).

See equation (8) above.

The normal probability plot in Figure 11 signifies that
the residual from the prediction model is normally
distributed and the above model can be efficiently used
to predict the response.

According to Figure 12, there is an interaction between
bed temperature (A) and layer thickness (C). The
interaction plot shows that the layer thickness should be
set at the lowest level (0.1mm), so the top surface
roughness would be minimised.

The interaction plot (Fig. 13) between printing speed
(B) and layer thickness (C) indicates that the printing
speed should be higher than 70mm/s and the layer
thickness should be as low as possible, so the top surface
roughness could be minimised.

A workpiece was fabricated at a different condition,
according to Table 9. The result shows that the top surface
roughness measured for this piece was not significantly
different from those determined from the prediction
equation. As a result, the proposed models are capable
of predicting the top surface roughness of the workpieces.



Table 12. MSE comparison for different methods.

Method

Box–Behnken ANN

RPROP+ GRPROP

Bottom Ra 3.02 0.2094, S = {3, 5, 3, 1} 0.1598, S = {3, 5, 4, 1}
Top Ra 1.36 0.163, S = {3, 5, 4, 1} 0.147, S = {3, 5, 3, 1}
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6.3.4 ANN analysis of top surface

Neural networks with different numbers of neurons in each
layer were fitted to the data. Their prediction errors were
calculated and are shown in Tables 10 and 11.

According to Table 10, the application of the
RPROP+ algorithm led to the lowest MSE (0.163) while
S= {3, 5, 4, 1}. When the GRPROP algorithm was
applied with S={3, 5, 3, 1}, the lowest MSE was equal to
0.147. The ANN structure is illustrated in Figure 14. For
the training process, 1600 steps were required before the
partial derivatives of error functions was below the threshold
value (0.01). The error of training process is 0.106.
7 Conclusions

The surface quality of workpieces fabricated from the FFF
system is the primary focus of this study. The prediction
models of surface roughness were determined from two
different methods, a response surface method (Box–
Behnken design) and machine learning (ANN). The
experiment is based on the design matrix retrieved from
the Box-Behnken design. Since there are three inputs and a
response, there are sixteen treatments with four centre
points. Each run consists of five blocks, so there is a total of
80 runs. The measurement positions are the bottom and
top surface. One important research question is the
performance capability of the Box–Behnken and ANN
method. Another question to be investigated is the
prediction performance of ANN, based on different
attributes, training algorithms (RPROP+ or GRPROP)
and the number of neurons in the hidden layers. The
performance index used comprises the prediction errors, in
terms of MSE.

According to Table 12, the prediction errors of each
method (Box–Behnken and ANN) were recapped and
compared, and the results show that the prediction
capability of ANN outperforms the Box–Behnken method,
although the number of data is limited to only 80 for both
bottom and top surface roughness. When further analysis
was conducted, the results showed that GRPROP delivers
a promising result and has a better performance than
RPROP+ (bottom Ra: 0.1598 VS 0.2094, top Ra: 0.147 VS
0.163). The number of neurons in the first hidden layer
should be set at 5 and the number of neurons in the second
layer are between 3 and 4. Based on these findings, both
hobbyists and industrial users will be able to use the
fabricating solutions so they can operate the FFF system to
achieve the best surface finish. The application of ANN to
accurately predict the surface roughness is also recom-
mended in this study.
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