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Abstract: We study the lower tail behavior of the least singular value of an n×n random
matrix Mn := M +Nn, where M is a fixed complex matrix with operator norm at most
exp(nc) and Nn is a random matrix, each of whose entries is an independent copy of a
complex random variable with mean 0 and variance 1. Motivated by applications, our focus
is on obtaining bounds which hold with extremely high probability, rather than on the least
singular value of a typical such matrix.

This setting has previously been considered in a series of influential works by Tao and
Vu, most notably in connection with the strong circular law, and the smoothed analysis of
the condition number, and our results improve upon theirs in two ways:

• We are able to handle ‖M‖ = O(exp(nc)), whereas the results of Tao and Vu are
applicable only for M = O(poly(n)).

• Even for M =O(poly(n)), we are able to extract more refined information – for instance,
our results show that for such M, the probability that Mn is singular is O(exp(−nc)),
whereas even in the case when ξ is a Bernoulli random variable, the results of Tao and
Vu only give a bound of the form OC(n−C) for any constant C > 0.

As opposed to all previous works obtaining such bounds with error rate better than n−1, our
proof makes no use either of the inverse Littlewood–Offord theorems, or of any sophisti-
cated net constructions. Instead, we show how to reduce the problem from the (complex)
sphere to (Gaussian) integer vectors, where it is solved directly by utilizing and extending a
combinatorial approach to the singularity problem for random discrete matrices, recently
developed by Ferber, Luh, Samotij, and the author.

In particular, during the course of our proof, we extend the solution of the so-called
‘counting problem in inverse Littlewood-Offord theory’ from Rademacher variables (es-
tablished in the aforementioned work of Ferber, Luh, Samotij, and the author) to general
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complex random variables. This significantly improves on estimates for this problem ob-
tained using the optimal inverse Littlewood-Offord theorem of Nguyen and Vu, and may be
of independent interest.

Key words and phrases: smoothed analysis, least singular value, inverse Littlewood–Offord problem.

1 Introduction

Let Mn be an n×n complex matrix. Its singular values, denoted by sk(Mn) for k ∈ [n], are the eigenvalues
of
√

M†
n Mn arranged in non-increasing order. Of particular interest are the largest and smallest singular

values, which admit the following variational characterizations:

s1(Mn) := sup
xxx∈S2n−1

‖Mnxxx‖2;

sn(Mn) := inf
xxx∈S2n−1

‖Mnxxx‖2,

where ‖ · ‖2 denotes the usual Euclidean norm on Cn, and S2n−1 denotes the set of unit vectors in Cn.
In this paper, we will be concerned with the following problem: for an n×n random matrix Mn and a
non-negative real number η , bound the probability Pr(sn(Mn)≤ η) from above. This general problem
captures, as special cases, many interesting and well-studied problems.

At one extreme, when η = 0, the problem asks for an upper bound on the probability that Mn is
singular. Even in the case when the entries of Mn are independent copies of a Rademacher random
variable (i.e. a random variable which takes on the values ±1 with probability 1/2 each), this is highly
non-trivial. Considering the event that two rows or two columns of Mn are equal (up to a sign) shows that

Pr(sn(Mn) = 0)≥ (1+on(1))n221−n,

and it has been conjectured since the 1950s that this lower bound is tight. Despite this, even showing that
Pr(sn(Mn) = 0) = on(1) was only accomplished in 1967 by Komlós [16], who used the Erdős-Littlewood-
Offord anti-concentration inequality to show that Pr(sn(Mn) = 0). n−1/2.

A bound of the form
Pr(sn(Mn) = 0)≤ (c+on(1))n,

for some c ∈ (0,1), was obtained much later in 1995 by Kahn, Komlós, and Szemerédi [13], who proved
such an estimate with c = 0.999. Subsequently, using deep ideas from additive combinatorics, Tao and
Vu [34] obtained such an estimate with c = 0.75, and by refining their ideas, Bourgain, Vu, and Wood
[1] were able to lower this constant to c = 1/

√
2. Recently, in a breakthrough work, Tikhomirov [41]

(building on the geometric approach to non-asymptotic random matrix theory pioneered by Rudelson and
Vershynin [26]) showed that Pr(sn(Mn) = 0)≤ (1/2+on(1))n, thereby settling the singularity conjecture
for random Rademacher matrices up to lower order terms.

At the other extreme, one may ask for the order of sn(Mn) for a ‘typical’ realization of Mn; in
our setup, this corresponds to the largest value of η for which one can obtain a bound of the form
Pr(sn(Mn) ≤ η) ≤ 0.01 (say). For instance, confirming (in a very strong form) a conjecture of Smale,
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and a speculation of von Neumann and Goldstine, Edelman [2] showed that for Mn whose entries are
independent copies of the standard Gaussian,

Pr(sn(Mn)≤ η)≤
√

nη ;

this implies, in particular, that for i.i.d. standard Gaussian random matrices, sn(Mn) is typically Ω(n−1/2).
Edelman’s proof relied on special properties of the Gaussian distribution – for general distributions,
especially those which are allowed to have atoms, this question is much more challenging.

In this case, building on intermediate work by Rudelson [25], and essentially confirming a conjecture
of Spielman and Teng, Rudelson and Vershynin [26] showed in a landmark work that for a real random
matrix Mn with i.i.d. centered subgaussian entries of variance 1,

Pr(sn(Mn)≤ η).
√

nη + cn,

which is optimal up to the constant c ∈ (0,1) and the overall implicit constant. In recent years, much work
has gone into establishing similar tail bounds under weaker assumptions: Rebrova and Tikhomirov [24]
established the same estimate as Rudelson and Vershynin for i.i.d centered random variables of variance
1 (in particular, not assuming the existence of any moments higher than the second moment), and very
recently (in fact, after the first version of the current paper appeared on the arXiv), Livshyts, Tikhomirov,
and Vershynin [19] obtained such an estimate for real random matrices Mn whose entries are independent
random variables satisfying a uniform anti-concentration estimate, and such that the expected sum of the
squares of the entries is O(n2). Both of these works build upon the geometric framework of Rudelson
and Vershynin.

For many applications, one would like to study random matrices whose entries have non-zero means.
Whereas the results mentioned in the previous paragraph allow non-centered entries to some extent, they
are unable to handle means larger than some threshold, due to their reliance on controlling various norms
of the matrix. For instance, even the case when the mean of every entry is allowed to be in [−n,n] has
thus far remained out of reach of the geometric methods. Hence, the geometric methods fail to provide
sufficiently powerful bounds in the important setting of smoothed analysis, which we now discuss.

1.1 Smoothed analysis of the least singular value

In their work on the smoothed analysis of algorithms [31, 30] in numerical linear algebra, Spielman
and Teng considered random matrices of the form Mn := M+Nn, where M is a fixed (possibly ‘large’)
complex matrix, and Nn is a complex random matrix with i.i.d. (centered) entries of variance 1. Their
motivation for studying this distribution on matrices was based on the following insight – even if the
desired input to an algorithmic problem is a fixed matrix M, it is likely that a computer will actually
work with a perturbation M+Nn, where Nn is a random matrix representing the effect of ‘noise’ in the
system. Sankar, Spielman, and Teng [28] dealt with the case when the noise matrix Nn has i.i.d. standard
Gaussian entries, and found that such noise has a regularizing effect i.e. with high probability, the least
singular value of Mn is sufficiently large, even if this is not the case for M itself. More precisely, they
showed that for an arbitrary n×n matrix M,

Pr(sn(Mn)≤ η)≤ 2.35
√

nη ,
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which is optimal up to the constant 2.35. The proof of Sankar, Spielman, and Teng relied on special
properties of the Gaussian distribution. Recently, using significantly different techniques, Tikhomirov
[40] obtained such a result for all Nn with independent rows satisfying a technical assumption (this
assumption is general enough to include isotropic log-concave distributions).

Motivated by more realistic noise models, especially those in which the noise distribution is allowed
to have atoms (for instance, this is always the case with computers, see also the discussion in [38]),
Tao and Vu [33, 38] investigated the lower tail behavior of sn(Mn) for very general noise matrices Nn.
Using the so-called inverse Littlewood-Offord theory from additive combinatorics (see the discussion in
Section 1.3), they showed that for any complex random variable ξ with mean 0 and variance 1, and for
any constants A,C > 0, there exists a constant B > 0 (depending on A,C,ξ ; this is in general necessary,
see [38, Theorem 3.1]) such that for any complex matrix M with ‖M‖ := s1(M)≤ nC, if Nn is a complex
random matrix whose entries are i.i.d. copies of ξ , then

Pr
(
sn(Mn)≤ n−B)≤ n−A. (1)

Explicit dependence of B on A,C,ξ was given in [35] and subsequently sharpened (but not optimally) in
[38], although, for known applications of Equation (1) in the literature, the exact dependence of B on
A,C,ξ is not important for the analysis to go through (see the discussion in [38]).

However, in applications, it is crucial that one can allow A to be any positive constant – this allows
one to obtain estimates on sn(Mn) which can survive even a polynomial-sized (in n) union bound. As
an example, in Tao and Vu’s celebrated proof of the strong circular law [35, 39], it is essential to have
an estimate of the form Equation (1) for some A > 1. Proving estimates of the form Equation (1) with
A > 1 is significantly more involved than proving such estimates for some A > 0, and involves a much
deeper understanding of the anti-concentration properties of vectors – in particular, a decomposition of
the sphere into just ‘compressible’ and ‘incompressible’ vectors, as is done in [25, 9], is insufficient for
this purpose.

We also emphasize that the estimate in Equation (1) holds for any complex random variable with
mean 0 and variance 1. Working with complex random variables of this generality provides significant
additional challenges for the geometric methods, owing to the fact that the metric entropy of the unit
sphere in Cn is twice that of the unit sphere in Rn (see the discussion in [27]). Consequently, works based
on the geometric method have thus far imposed further conditions on the dependence between the real
and imaginary parts of the complex random variable, most commonly requiring the real and imaginary
parts to be independent (see, e.g. [27, 20]) in order to deduce bounds comparable to Equation (1).

1.2 Our results

We introduce a new framework for providing estimates on the lower tail of sn(Mn) in the general setting of
smoothed analysis, with a particular focus on values of η ‘close’ to 0 (as opposed to obtaining the correct
order of magnitude for ‘99 percent’ of such matrices) . Our approach differs both from the geometric
methods of Rudelson and Vershynin, as well as the additive combinatorial methods of Tao and Vu. Before
discussing this further, we record our main result.

Theorem 1.1. Let ξ be an arbitrary complex random variable with mean 0 and variance 1. Let M be
an n×n complex matrix with ‖M‖ ≤ 2n0.001

and let Mn = M+Nn, where Nn is a random matrix, each of
whose entries is an independent copy of ξ .

DISCRETE ANALYSIS, 2021:10, 40pp. 4

http://dx.doi.org/10.19086/da


QUANTITATIVE INVERTIBILITY OF RANDOM MATRICES: A COMBINATORIAL PERSPECTIVE

Then, for all α ≥ 2−n0.001
and for all η ≤ (C1.1(‖M‖+

√
n)α−1n2)−300log(α−1)/ logn,

Pr(sn(Mn)≤ η)≤C1.1α,

where C1.1 is a constant depending only on ξ .

Remark 1.2. (1) When ‖M‖ ≥
√

n, the conclusion of Theorem 1.1 shows that for all t ∈ (0,1),

Pr(sn(Mn)≤ t)≤C max
{

t
c logn

log‖M‖ ,n−c
√
− log t

logn

}
+C ·2−nc′

,

where c′ is an absolute constant and C,c are constants possibly depending on ξ .
(2) The choice of the upper bound 2n0.001

on ‖M‖ and α−1 is arbitrary and can certainly be improved,
although we have made no attempt to do so.

(3) When α = n−A and ‖M‖ ≤ nC, Theorem 1.1 shows that Pr(sn(Mn)≤ n−B) = O(n−A) for some B
depending on A and C, thereby recovering the result of Tao and Vu (up to the specific dependence of B on
A and C, which, as noted earlier, is typically not important for applications).

Discussion: The main advantage of Theorem 1.1 over Equation (1) is that it is valid for α−1,‖M‖≤ 2n0.001
,

whereas Equation (1) (recast in the form of Theorem 1.1) would provide a similar conclusion only for
α−1,‖M‖ ≤O(poly(n)). In particular, even in the case when ‖M‖ is polynomially bounded in n and ξ is
a Rademacher random variable, Theorem 1.1 shows that Mn is singular with probability at most 2−n0.001

,
as compared to Equation (1), which only gives an inverse polynomial bound.

As mentioned earlier, our goal is to provide bounds in which one can take α to be very small (for
instance, this is the case of interest in the singularity problem), and not so much on the exact relationship
between η and α,‖M‖. However, we note that the main source of degradation in the relationship between
η and α,‖M‖ in Theorem 1.1 comes from a pigeonholing argument, introduced in [35]. In [38], a better
relationship between η and α,‖M‖ is obtained using a more involved pigeonholing scheme. By using this
more involved scheme, the relationship between η and α,‖M‖ in Theorem 1.1 can be made comparable
to the current best known one in [38], although we have not attempted to do so in order to keep the
exposition simple and transparent.

While Theorem 1.1 significantly increases the range of validity of estimates like Equation (1), we feel
that what is of greater interest are the proof techniques. Unlike the geometric methods, we make no use of
net arguments (except very superficially). We also do not make any use of the inverse Littlewood–Offord
theory of Tao and Vu. Instead, we utilize and extend an elementary combinatorial approach to the
so-called ‘counting problem in inverse Littlewood–Offord theory’ (see the next subsection), recently
developed by Ferber, Luh, Samotij, and the author [8] – this part of our paper may be of independent
interest.

The benefit of this combinatorial approach to the counting problem is that it provides much better
estimates than those that can be obtained from the inverse Littlewood–Offord theorems of Tao and Vu
[37], and Nguyen and Vu [22] – this is, in part, because our approach is not hampered by the black-box
application of heavy machinery from additive combinatorics. However, in contrast to the ‘continuous
inverse Littlewood-Offord theorems’ ([35, 22]), we do not have a genuinely ‘continuous version’ of our
counting results. This necessitates the need for additional arguments to reduce the quantitative invertibility
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problem to a situation where the ‘discrete counting theorem’ we do have may directly be applied. Such
an argument first appears in [12], where the author was able to use certain ‘rounding’ arguments to
avoid the need for a continuous version of the counting theorem; however, these arguments still relied
on various norms of the random matrix not being too large, which is not true in the setting of smoothed
analysis. Hence, the main technical challenge in the present work is to execute a version of these rounding
arguments, even in the presence of large norms and heavy-tailed random variables.

At a high level, our work shows that for the purpose of controlling the smallest singular value
of a random matrix, even in the general setting of smoothed analysis, a good solution to the discrete
counting version of the inverse Littlewood–Offord problem (which, as we will see, is significantly easier
to establish) is already sufficient. Note that a quantitatively weaker solution to this problem first appeared
in the original breakthrough work of Tao and Vu on inverse Littlewood–Offord theory [36]. However, in
that work, the authors made use not just of the counting estimate, but also of the additive combinatorial
structural information coming from the inverse Littlewood–Offord theorems in order to study the smallest
singular value.

1.3 The counting problem in inverse Littlewood-Offord theory

In its simplest form, the so-called Littlewood-Offord problem, first raised by Littlewood and Offord in
[17] asks the following question. Let aaa := (a1, . . . ,an)∈ (Z\{0})n and let ε1, . . . ,εn be i.i.d. Rademacher
random variables. Estimate the largest atom probability ρ(aaa), which is defined by

ρ(aaa) := supx∈Z Pr(ε1a1 + · · ·+ εnan = x) .

Littlewood and Offord showed that ρ(aaa) = O
(
n−1/2 logn

)
. Soon after, Erdős [4] gave an elegant

combinatorial proof of the refinement ρ(aaa)≤
( n
bn/2c

)
/2n = O(n−1/2), which is tight, as is readily seen by

taking aaa to be the all ones vector. These classic results of Littlewood-Offord and Erdős generated a lot of
activity around this problem in various directions: higher-dimensional generalizations e.g. [14, 15]; better
upper bounds on ρ(aaa) given additional hypotheses on aaa e.g. [5, 10, 29]; and obtaining similar results
with the Rademacher distribution replaced by more general distributions e.g. [6, 10].

A new view was brought to the Littlewood-Offord problem by Tao and Vu [36, 35] who, guided by
inverse theorems from additive combinatorics, tried to find the underlying reason why ρ(aaa) could be
large. They used deep Freiman-type results from additive combinatorics to show that, roughly speaking,
the only reason for a vector aaa to have ρ(aaa) only polynomially small is that most coordinates of aaa belong
to a generalized arithmetic progression (GAP) of ‘small rank’ and ‘small volume’. Their results were
subsequently sharpened by Nguyen and Vu [22], who proved an ‘optimal inverse Littlewood–Offord
theorem’. We refer the reader to the survey [23] and the textbook [32] for complete definitions and
statements, and much more on both forward and inverse Littlewood-Offord theory.

Recently, motivated by applications, especially those in random matrix theory such as the ones
considered in the present work, the following counting variant of the inverse Littlewood–Offord problem
was isolated in work [8] of Ferber, Luh, Samotij, and the author: for how many vectors aaa in a given
collection A⊆ Zn is the largest atom probability ρ(aaa) greater than some prescribed value? The utility of
such results is that they enable various union bound arguments, as one can control the number of terms
in the relevant union/sum. One of the main contributions of [8] was to show that one may obtain useful
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bounds for the counting variant of the inverse Littlewood-Offord problem directly, without providing a
precise structural characterization like Tao and Vu. Not only does this approach make certain arguments
considerably simpler, it also provides better quantitative bounds for the counting problem, since it
is not hampered by losses coming from the black-box application of various theorems from additive
combinatorics. In [8, 7, 12], this work was utilized to provide quantitative improvements for several
problems in combinatorial random matrix theory.

A natural question left open by this line of work is whether one can adapt the strategy of [8] to study
the counting problem in inverse Littlewood-Offord theory with respect to general random variables as
well. We note that the inverse Littlewood-Offord theorems in [22, 35] are indeed applicable to these
more general settings. However, since the proofs in [8] proceed by viewing (bounded) integer-valued
random variables as random variables valued in Fp (for sufficiently large p), it is not clear whether the
combinatorial techniques there can be extended. Here, we show (Theorem 1.3), that the combinatorial
arguments of [8] can be used in combination with (the dual of) the Fourier-analytic arguments in [35, 22]
to prove a counting result for very general distributions. The statement of the the following theorem uses
Definition 2.1 and Definition 2.6.

Theorem 1.3. Let ξ be a Cξ -good random variable. For ρ ∈ (0,1) (possibly depending on n), let

VVV ρ :=
{

vvv ∈ (Z+ iZ)n : ρ1,ξ (vvv)≥ ρ
}
.

There exists a constant C1.3 ≥ 1, depending only on Cξ , for which the following holds. Let n,s,k ∈ N
with 1000Cξ ≤ k ≤

√
s ≤ s ≤ n/ logn. If ρ ≥C1.3 max

{
e−s/k,s−k/4

}
and p is an odd prime such that

2n/s ≥ p≥C1.3ρ−1, then ∣∣ϕp(VVV ρ)
∣∣≤ (5np2

s

)s

+

(
C1.3ρ−1√

s/k

)n

,

where ϕp denotes the natural map from (Z+ iZ)n→ (Fp + iFp)
n.

Remark 1.4. The inverse Littlewood-Offord theorems may be used to deduce similar statements, provided
we further assume that ρ ≥ n−C for some constant C > 0. The freedom of taking ρ to be much smaller is
the source of the quantitative improvements in Theorem 1.1.

Organization: The rest of this paper is organized as follows. In Section 2, we collect some preliminary
results on anti-concentration; the main result of this section is Proposition 2.8. In Section 3, as a warm-up
(included in lieu of an informal sketch of the proof), we provide a proof of Theorem 1.1 under the
additional assumption that the random variable ξ is subgaussian. In Section 4, we provide a proof of
Theorem 1.1; this follows essentially the same outline as in the subgaussian case, with the main difference
being Proposition 4.16 (and the supporting results required to prove it). Finally, in Section 5, we prove
Theorem 1.3.

Notation: Throughout the paper, we will omit floors and ceilings when they make no essential difference.
For convenience, we will also say ‘let p = x be a prime’, to mean that p is a prime between x and 2x;
again, this makes no difference to our arguments. We will use S2n−1 to denote the set of unit vectors in
Cn, B(x,r) to denote the ball of radius r centered at x, and ℜ(vvv),ℑ(vvv) to denote the real and imaginary
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parts of a complex vector vvv ∈ Cn. As is standard, we will use [n] to denote the discrete interval {1, . . . ,n}.
We will also use the asymptotic notation .,&,�,� to denote O(·),Ω(·),o(·),ω(·) respectively. For
a matrix M, we will use ‖M‖ to denote its standard `2→ `2 operator norm. All logarithms are natural
unless noted otherwise.

2 Preliminaries

In this section, we collect some tools and auxiliary results that will be used throughout the rest of this
paper.

Definition 2.1 (Lévy concentration function). Let n ∈ Z≥1, let ξξξ := (ξ1, . . . ,ξn)∈Cn be a random vector,
and let vvv := (v1, . . . ,vn) ∈ Cn. We define the Lévy concentration function of vvv at radius r ∈ R≥0 with
respect to ξξξ by

ρr,ξξξ (vvv) := sup
x∈C

Pr(v1ξ1 + · · ·+ vnξn ∈ B(x,r)) .

Remark 2.2. (1) For lightness of notation, we have chosen to omit the ambient dimension n from ρr,ξξξ (vvv).
This should not create any confusion since the dimension of vvv or ξξξ will always be clear from context.

(2) Note that when n = 1 and ξ is a random variable taking values in C, we have that ρr,ξ (1) =
supx∈C Pr(ξ ∈ B(x,r)). We will use this notation repeatedly.

(3) Moreover, when the components of ξξξ are i.i.d. copies of some random variable ξ , we will
sometimes abuse notation by using ρr,ξ (vvv) to denote ρr,ξξξ (vvv).

(4) If ξ̃ξξ is a random vector whose distribution coincides with that of a random vector ξξξ conditioned
on some event E, then we will often denote ρr,ξ̃ξξ (vvv) by ρr,ξξξ |E(vvv).

The next lemma shows that weighted sums of random variables which are not close to being a constant
are also not close to being a constant.

Lemma 2.3. (see, e.g., Lemma 6.3 in [38]) Let ξ be a complex random variable with finite non-zero
variance. Then, there exists a constant c2.3 ∈ (0,1), depending only on ξ , such that

sup
vvv∈S2n−1

ρc2.3,ξ (vvv)≤ 1− c2.3.

Combining this with the so-called tensorization lemma (see Lemma 2.2 in [26]), we get the following
estimate for ‘invertibility with respect to a single vector’.

Lemma 2.4. Let ξ be a complex random variable with finite non-zero variance. Let M be an arbitrary
n×n matrix and let Nn be a random matrix each of whose entries is an independent copy of ξ . Then, for
any fixed vvv ∈ S2n−1,

Pr
(
‖(M+Nn)vvv‖2 ≤ c2.4

√
n
)
≤ (1− c2.4)

n,

where c2.4 ∈ (0,1) is a constant depending only on ξ .

We will also need the following simple fact, which compares the Lévy concentration function with
respect to a random vector to the Lévy concentration function with respect to a conditioned version of the
random vector.
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Lemma 2.5. Let ξξξ := (ξ1, . . . ,ξn) be a complex random vector, let G be an event depending on ξξξ , and
let ξ̃ξξ denote a random vector distributed as ξξξ conditioned on G. Then, for any vvv ∈ Cn and for any r ≥ 0,

ρr,ξξξ (vvv)≥ ρr,ξ̃ξξ (vvv)Pr(G).

Proof. Fix ε > 0 and let x ∈ C be such that

Pr(v1ξ1 + · · ·+ vnξn ∈ B(x,r) | G)≥ ρr,ξ̃ξξ (vvv)− ε.

Then, we have

Pr(v1ξ1 + · · ·+ vnξn ∈ B(x,r))≥ Pr(v1ξ1 + · · ·+ vnξn ∈ B(x,r)∩G)
= Pr(v1ξ1 + · · ·+ vnξn ∈ B(x,r) | G)Pr(G)

≥ ρr,ξ̃ξξ (vvv)Pr(G)− ε.

Taking the supremum of the left hand side over the choice of x ∈ C, and then taking the limit of the right
hand side as ε → 0 completes the proof.

In order to state the main assertion of this subsection (Proposition 2.8), we need the following
definition.

Definition 2.6. We say that a random variable ξ is C-good if

Pr(C−1 ≤ |ξ1−ξ2| ≤C)≥C−1, (2)

where ξ1 and ξ2 denote independent copies of ξ . The smallest C ≥ 1 with respect to which ξ is C-good
will be denoted by Cξ .

The following lemma shows that the general random variables with which we are concerned in this
paper (i.e. complex random variables with finite non-zero variance) are indeed C-good for some finite C,
so that there is no loss of generality for us in imposing this additional restriction.

Lemma 2.7. Let ξ be a complex random variable with variance 1. Then, ξ is Cξ -good for some Cξ ≥ 1.

Proof. Since Var(ξ ) = 1, there must exist some uξ ,vξ ∈ (0,1) such that ρvξ ,ξ
(1)≤ uξ . Therefore, letting

ξ ′ denote an independent copy of ξ , we have

Pr
(
|ξ −ξ

′| ≤
vξ

2

)
≤ ρvξ ,ξ−ξ ′(1)≤ ρvξ ,ξ

(1)≤ uξ .

Moreover, since E[|ξ −ξ ′|2] = Var(ξ −ξ ′) = Var(ξ )+Var(ξ ′) = 2, it follows from Markov’s inequality
that

Pr
(
|ξ −ξ

′| ≥ 2(1−uξ )
−1/2

)
≤

1−uξ

2
.

Combining these two bounds, we see that

Pr
(vξ

2
≤ |ξ −ξ

′| ≤ 2(1−uξ )
−1/2

)
≥

1−uξ

2
,

which gives the desired conclusion.
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We conclude this subsection with the following proposition, which roughly states that the Lévy
concentration function of a vector with no suitable multiple sufficiently close to a Gaussian integer vector
must be small. This will prove crucial in our replacement of applications of the continuous inverse
Littlewood-Offord theorem by Theorem 1.3.

Proposition 2.8. Let ξ1, . . . ,ξn be independent copies of a Cξ -good complex random variable ξ . Let
vvv := (v1, . . . ,vn) ∈ Cn \{000}. Suppose the following holds: there exists some f (n) ∈ (0,1), g(n) ∈ (1,∞)
and α > 0 such that

dist(ηvvv,(Z+ iZ)n)≥ α ∀η ∈ C such that |η | ∈ [ f (n),g(n)] .

Then, for any r ≥ 0,

ρr,ξ (vvv)≤C2.8 exp(πr2)
(
exp
(
−c2.8g(n)2)+ exp

(
−c2.8α

2)+ f (n)
)
,

where C2.8 ≥ 1 and c2.8 > 0 are constants depending only on Cξ .

The proof of this proposition requires the following preliminary definition and short Fourier-analytic
lemmas from [35], along with a ‘doubling trick’ appearing in [11].

Definition 2.9. Let ξ be an arbitrary complex random variable. For any w ∈ C, we define

‖w‖2
ξ

:= E‖ℜ{w(ξ1−ξ2)}‖2
R/Z,

where ξ1,ξ2 denote i.i.d. copies of z and ‖ · ‖R/Z denotes the distance to the nearest integer.

Lemma 2.10 (Lemma 5.2 in [35]). Let vvv := (v1, . . . ,vn) ∈ Cn and let ξ be an arbitrary complex random
variable. Then,

ρr,ξ (vvv)≤ eπr2
Pξ (vvv)≤ eπr2

∫
C

exp

(
−

n

∑
i=1
‖viz‖2

ξ
/2−π|z|2

)
dz.

Here,
Pξ (vvv) := Ex1,...,xn exp(−π|v1x1 + · · ·+ vnxn|2),

where x1, . . . ,xn are i.i.d. copies of (ξ1−ξ2) ·Ber(1/2), with ξ1,ξ2 distributed as ξ , and Ber(1/2),ξ1,ξ2
mutually independent.

Lemma 2.11 (Lemma 4.5 (iii) in [35]). For vvv,www ∈ Cn, let vvvwww ∈ C2n denote the vector whose first n
coordinates coincide with vvv and last n coordinates coincide with www. Then,

Pξ (vvv)Pξ (www)≤ 2Pξ (vvvwww).

Proof of Proposition 2.8. Let www ∈ C2n denote the vector whose first n components are vvv and last n
components are ivvv. Then, we have

ρr,ξ (vvv)
2 = ρr,ξ (vvv)ρr,ξ (ivvv)

≤ exp(2πr2)Pξ (vvv)Pξ (ivvv)

≤ 2exp(2πr2)Pξ (www)

≤ 2exp(2πr2)
∫
C

exp

(
−

n

∑
j=1

(
‖v jz‖2

ξ
+‖iv jz‖2

ξ

)
/2−π|z|2

)
dz,
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where the first line uses ρr,ξ (vvv) = ρr,ξ (ivvv), the second line is due to Lemma 2.10, the third line follows
from Lemma 2.11, and the last line is again due to Lemma 2.10.

Next, note that
n

∑
j=1

(
‖v jz‖2

ξ
+‖iv jz‖2

ξ

)
= E

n

∑
j=1

(
‖ℜ{v jz(ξ1−ξ2)}‖2

R/Z+‖ℜ{iv jz(ξ1−ξ2)}‖2
R/Z

)
= E

n

∑
j=1

(
‖ℜ{v jz(ξ1−ξ2)}‖2

R/Z+‖ℑ{v jz(ξ1−ξ2)}‖2
R/Z

)
= E

[
dist2 (vvvz(ξ1−ξ2),(Z+ iZ)n)

]
≥ E

[
dist2 (vvvz(ξ1−ξ2),(Z+ iZ)n)

∣∣∣∣|ξ1−ξ2| ∈ [C−1
ξ

,Cξ ]

]
C−1

ξ
,

where the final inequality follows from the Cξ -goodness of ξ . Therefore, from Jensen’s inequality, we get
that

ρr,ξ (vvv)
2 ≤ 2e2πr2

E
[∫

C
exp(−C−1

ξ
dist2 (vvvz(ξ1−ξ2),(Z+ iZ)n)/2−π|z|2)dz

∣∣∣∣|ξ1−ξ2| ∈ [C−1
ξ

,Cξ ]

]
≤ 2exp(2πr2) sup

|y|∈[C−1
ξ

,Cξ ]

∫
C

exp(−C−1
ξ

dist2 (vvvzy,(Z+ iZ)n)/2−π|z|2)dz

≤ 2exp(2πr2) sup
|y|∈[C−1

ξ
,Cξ ]

∫
C

exp(−C−1
ξ

dist2 (vvvz,(Z+ iZ)n)/2−π|z/y|2)dz
y
. (3)

Let A1 := {z ∈C | dist(zvvv,(Z+ iZ)n)≥ α}, let A2 := {z ∈C | |z| ∈ [0,g(n)]}\A1, and let A3 := {z ∈
C : |z| ∈ (g(n),∞)}\A1. Then, we can bound the integral on the right hand side in Equation (3) from
above by

sup
|y|∈[C−1

ξ
,Cξ ]

∫
A1

+ sup
|y|∈[C−1

ξ
,Cξ ]

∫
A2

+ sup
|y|∈[C−1

ξ
,Cξ ]

∫
A3

.

Let us, in turn, bound each of these three terms separately.

• For the first term, we have the estimate

sup
|y|∈[C−1

ξ
,Cξ ]

∫
A1

≤ exp
(
−C−1

ξ
α

2/2
)

sup
|y|∈[C−1

ξ
,Cξ ]

∫
C

exp
(
−π
|z|2

|y|2

)
dz
y

≤ 100exp
(
−C−1

ξ
α

2/2
)
.

• For the second term, we begin by noting that since {z ∈ C | |z| ∈ [ f (n),g(n)]} ⊆ A1 by assumption,
it follows that A2 = {z ∈ C | |z| ∈ [0, f (n)]}\A1. Therefore, we have the trivial estimate

sup
|y|∈[C−1

ξ
,Cξ ]

∫
A2

≤ sup
|y|∈[C−1

ξ
,Cξ ]

∫
C∩B(0, f (n))

exp
(
−π
|z|2

|y|2

)
dz
y

≤ 10C2
ξ

f (n)2.
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• For the third term, we have the estimate

sup
|y|∈[C−1

ξ
,Cξ ]

∫
A3

≤ sup
|y|∈[C−1

ξ
,Cξ ]

∫
C\B(0,g(n))

exp
(
−π
|z|2

|y|2

)
dz
y

≤ 100exp

(
−

C−2
ξ

g(n)2

20

)
.

Finally, summing the estimates in the previous three bullet points and taking the square root gives the
desired conclusion.

3 Warm-up: proof of Theorem 1.1 in the subgaussian case

In this section, we will discuss the proof of Theorem 1.1 in the special case when the entries are further
assumed to be i.i.d. subgaussian. This will allow the reader to see many of the key ideas and calculations
in a simpler, less technical, setting. Our general reduction and outline follows Tao and Vu [35, 38]; as
mentioned in the introduction, the main difference is the replacement of the crucial continuous inverse
Littlewood-Offord theorem.

Definition 3.1. A complex random variable ξ is said to be C-subgaussian if, for all t > 0,

Pr(|ξ |> t)≤ 2exp
(
− t2

C2

)
.

For the remainder of this section, we fix a centered C̃ξ -subgaussian complex random variable ξ with
variance 1. Our goal in this section is to prove the following subgaussian version of Theorem 1.1.

Theorem 3.2. Let ξ be a centered C̃ξ -subgaussian complex random variable with variance 1. Let M be
an n×n complex matrix with ‖M‖ ≤ 2n0.001

and let Mn = M+Nn, where Nn is a random matrix, each of
whose entries is an independent copy of ξ .

Then, for all α ≥ 2−n0.001
and for all η ≤ (C3.2(‖M‖+

√
n)α−1n2)−300log(α−1)/ logn,

Pr(sn(Mn)≤ η)≤C3.2α,

where C3.2 ≥ 1 is a constant depending only on ξ .

3.1 Properties of subgaussian random variables

A basic and important fact about subgaussian random variables is the so-called subgaussian concentration
inequality.

Lemma 3.3 (see, e.g., Proposition 5.10 in [42]). Let ξ1, . . . ,ξn be independent centered C̃ξ -subgaussian
complex random variables. Then, for every vvv := (v1, . . . ,vn) ∈ Cn and for every t ≥ 0, we have

Pr

(∣∣∣∣∣ n

∑
i=1

viξi

∣∣∣∣∣≥ t

)
≤ 3exp

(
−c3.3t2

‖vvv‖2
2

)
,

where c3.3 > 0 is a constant depending only on C̃ξ .
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The subgaussian concentration inequality allows us to show that if aaa,bbb ∈ Cn are close in Euclidean
distance, then the Lévy concentration functions of aaa and bbb are close in a suitable sense as well. More
precisely:

Proposition 3.4. Let ξξξ := (ξ1, . . . ,ξn) be a complex random vector whose entries are independent
centered C̃ξ -subgaussian complex random variables. Then, for every aaa := (a1, . . . ,an),bbb := (b1, . . . ,bn)∈
Cn, and for every r1,r2 ≥ 0, we have

ρr1+r2,ξξξ (bbb)≥ ρr1,ξξξ (aaa)−3exp
(
− c3.3r2

2

‖aaa−bbb‖2
2

)
.

Proof. For r2 ≥ 0, let Er2 denote the event that |∑n
i=1(ai−bi)ξi|< r2. By Lemma 3.3,

Pr
(
Ec

r2

)
≤ 3exp

(
− c3.3r2

2

‖aaa−bbb‖2
2

)
.

Fix ε > 0, and let x ∈ C be such that

Pr(a1ξ1 + · · ·+anξn ∈ B(x,r1))≥ ρr1,ξξξ (aaa)− ε.

Then,

Pr(b1ξ1 + · · ·+bnξn ∈ B(x,r1 + r2))≥ Pr(b1ξ1 + · · ·+bnξn ∈ B(x,r1 + r2)∩Er2)

≥ Pr(a1ξ1 + · · ·+anξn ∈ B(x,r1)∩Er2)

≥ Pr(a1ξ1 + · · ·+anξn ∈ B(x,r1))−Pr(Ec
r2
)

≥ ρr1,ξξξ (aaa)− ε−Pr(Ec
r2
),

where the second line follows from the triangle inequality.
Taking the supremum of the left hand side over the choice of x ∈ C, and then taking the limit on the

right hand side as ε → 0 gives the desired conclusion.

Remark 3.5. As will be seen later, the key technical challenge in extending the proof of Theorem 1.1
from the subgaussian case to the general case is the unavailability of Proposition 3.4.

Finally, we need the following well-known estimate on the operator norm of a random matrix with
i.i.d. subgaussian entries, which may be proved by combining the subgaussian concentration inequality
with a standard epsilon-net argument.

Lemma 3.6 (see, e.g., Lemma 2.4 in [26]). Let Nn be an n×n random matrix whose entries are i.i.d.
centered C̃ξ -subgaussian complex random variables. Then,

Pr
(
‖Nn‖ ≥C3.6

√
n
)
≤ 2exp(−n),

where C3.6 ≥ 1 depends only on C̃ξ .

DISCRETE ANALYSIS, 2021:10, 40pp. 13

http://dx.doi.org/10.19086/da


VISHESH JAIN

3.2 Rich and poor vectors

For the remainder of this section, we fix an n×n complex matrix M and parameters α,η ∈ (0,1) satisfying
the restrictions of the statement of Theorem 3.2. Also, let

β :=
α

n
, f (β ) :=

β

100C2.8
∈ (0,1), J(β ,n) :=

100log(β−1)

logn
.

We may assume without loss of generality that ‖M‖ ≥ 2C3.6
√

n as otherwise, an improved version of
Theorem 1.1 already follows from the main result in [11]. We may also assume that η ≥ 2−n0.01

, since the
statement of Theorem 3.2 for smaller values of η follows from the result for η = 2−n0.01

. Following Tao
and Vu [35], we call a unit vector vvv ∈ Cn poor if we have

ρ2η
√

n,ξξξ (vvv)≤ β

and rich otherwise. We use PPP(β ) and RRR(β ) to denote, respectively, the set of poor and rich vectors.
Accordingly, we have

Pr(sn(Mn)≤ η)≤ Pr(∃vvv ∈ PPP(β ) : ‖Mnvvv‖2 ≤ η)+Pr(∃vvv ∈ RRR(β ) : ‖Mnvvv‖2 ≤ η) .

Therefore, Theorem 3.2 is a consequence of the following two propositions and the union bound.

Proposition 3.7. Pr(∃vvv ∈ PPP(β ) : ‖Mnvvv‖2 ≤ η)≤ nβ .

Proposition 3.8. Pr(∃vvv ∈ RRR(β ) : ‖Mnvvv‖2 ≤ η) ≤ C3.8 exp(−c3.8n), where C3.8 ≥ 1 and c3.8 > 0 are
constants depending only on ξ .

The proof of Proposition 3.7 is relatively simple, and follows from a conditioning argument developed
in [18] (see, e.g., the proof of Lemma 11.3 in [35]). We omit the details here, since later in Proposition 4.7,
we will prove a similar (but more complicated, and with a slightly different conclusion) statement.

The proof of Proposition 3.8 will occupy the remainder of this section. We begin with some
preliminary results about the structure of rich vectors.

The first result is a simple observation due to Tao and Vu [35] showing that for every rich vector, there
exists a sufficiently large interval such that the Lévy concentration function of the vector is ‘approximately
constant’ at any radius in this interval.

Lemma 3.9. For any vvv ∈ RRR(β ), there exists some j ∈ {0,1, . . . ,J(β ,n)} such that

ρ2η
√

n(2‖M‖ f (β )−1) j+1,ξ (vvv)≤ n1/100
ρ2η
√

n(2‖M‖ f (β )−1) j,ξ (vvv).

Remark 3.10. Compared to the trivial covering bound:

ρ2η
√

n(2‖M‖ f (β )−1) j+1,ξ (vvv). (2‖M‖ f (β )−1)2
ρ2η
√

n(2‖M‖ f (β )−1) j,ξ (vvv),

the above lemma represents a tremendous saving, which will be crucial for our arguments. The factor
n1/100 in the lemma can be replaced by n1/2−ε at the expense of choosing different parameters in the rest
of this section.
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Proof. For j ∈ {0,1, . . . ,J(β ,n)}, note that the quantities

ρ2η
√

n(2‖M‖ f (β )−1) j,ξ (vvv)

are increasing in j, and range between β and 1. Therefore, the pigeonhole principle gives the required
conclusion.

To each vvv ∈ RRR(β ), assign such an index j arbitrarily, and denote the set of all vectors in RRR(β ) indexed
j by RRR j(β ). This leads to the partition

RRR(β ) = tJ(β ,n)
j=0 RRR j(β ).

We further refine this partition, as in Tao and Vu [35].

Definition 3.11. For j ∈ {0,1, . . . ,J(β ,n)} and ` ∈ {0,1, . . . , log(β−1)}, we define

RRR j,`(β ) := {vvv ∈ RRR j(β ) | ρ2η
√

n(2‖M‖ f (β )−1) j,ξ (vvv) ∈ (2−`−1,2−`]}.

In particular, since there are at most 200log(β−1)2 choices of the pair ( j, `), the following suffices (by
the union bound) to prove Proposition 3.8.

Proposition 3.12. For any j ∈ {0,1, . . . ,J(β ,n)} and ` ∈ {0,1, . . . , log(β−1)},

Pr
(
∃aaa ∈ RRR j,`(β ) : ‖Mnaaa‖2 ≤ η

)
≤C3.12 exp(−c3.12n),

where C3.12 ≥ 1 and c3.12 > 0 are constants depending only on ξ .

The next structural result, which is an immediate corollary of Proposition 2.8, shows that every rich
vector has a scale at which it can efficiently approximated by a Gaussian integer vector.

Lemma 3.13. Let aaa ∈ RRR j,`(β ). Then, there exists some D ∈ C with |D| ∈ [ f (β ),n1/20] and some vvv′′′ ∈
(Z+ iZ)n such that

‖vvv− vvv′′′‖2 ≤ n1/20,

where vvv := (2η
√

n)−1(2‖M‖ f (β )−1)− jDaaa.

Proof. Let
g(n) = n1/20, www := (2η

√
n)−1(2‖M‖ f (β )−1)− jaaa.

Suppose for contradiction that the desired conclusion does not hold. Then, for all t ∈ C such that
|t| ∈ [ f (β ),g(n)],

dist(twww,Zn)≥ n1/20.

Hence, by Proposition 2.8,

ρ1,ξ (www)≤C2.8 exp(π)
(

2exp(−c2.8n1/10)+ f (β )
)

≤ 3C2.8 exp(π) f (β )≤ β ,

so that

ρ2η
√

n,ξ (aaa)≤ ρ2η
√

n(2‖M‖ f (β )−1) j,ξ (aaa) = ρ1,ξ (www)≤ β ,

which contradicts that aaa ∈ RRR(β ).
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The utility of the previous lemma is that it allows us to reduce Proposition 3.12 to a statement about
Gaussian integer vectors, which we then prove via a union bound. Indeed, let O be the event that the
operator norm of Nn is at most C3.6

√
n. By Lemma 3.6,

Pr
(
∃aaa ∈ RRR j,`(β ) : ‖Mnaaa‖2 ≤ η

)
≤ Pr

(
{∃aaa ∈ RRR j,`(β ) : ‖Mnaaa‖2 ≤ η}∩O

)
+2exp(−n).

Suppose the event in the first term on the right occurs. Let aaa ∈ RRR j,`(β ) be such that ‖Mnaaa‖2 ≤ η , and
let D ∈ C with |D| ∈ [ f (β ),n1/20], vvv′′′ ∈ (Z+ iZ)n be such that the conclusion of Lemma 3.13 holds for
aaa,D,vvv′′′. Let

vvv = (2η
√

n)−1(2‖M‖ f (β )−1)− jDaaa.

Then, by the triangle inequality, we have

‖Mnvvv′′′‖2 ≤ ‖Mnvvv‖2 +‖Mn‖‖vvv− vvv′′′‖2

≤ (2η
√

n)−1(2‖M‖ f (β )−1)− j|D|η +
(
‖M‖+C3.6

√
n
)

n1/20

≤ |D|n−1/2 +
(
‖M‖+C3.6

√
n
)

n1/20

≤ 2
(
‖M‖+C3.6

√
n
)

n1/20

≤ 3‖M‖n1/20,

where the fourth line holds since |D|n−1/2 ≤ n1/20n−1/2 ≤ 1, and the last line holds because of the
assumption that ‖M‖ ≥ 2C3.6

√
n.

Hence, letting Xi denote the ith row of Mn, it follows from Markov’s inequality that there are at least
n′ := n−n0.1 coordinates i ∈ [n] for which

|Xi · vvv′′′| ≤ 3‖M‖.

It follows that
Pr
(
‖Mnvvv′′′‖2 ≤ 3‖M‖n1/10

)
≤ ρ3‖M‖,ξ (vvv

′′′)n−n0.1
.

To summarize, setting

R̃RR j,`(β ) : =

{vvv′′′ ∈ (Z+ iZ)n | ∃aaa ∈ RRR j,`(β ),D ∈ C s.t. |D| ∈ [ f (β ),n1/20],‖(2η
√

n)−1(2‖M‖ f (β )−1)− jDaaa− vvv′′′‖2 ≤ n1/20},

we have proved

Proposition 3.14. Pr
(
∃aaa ∈ RRR j,`(β ) : ‖Mnaaa‖2 ≤ η

)
≤ ∑vvv′′′∈R̃RR j,`(β )

ρ3‖M‖,ξ (vvv′
′′)n−n0.1

+2exp(−n).

3.3 Counting Gaussian integer vectors approximating scaled rich vectors

In this subsection, we will control the size of R̃RR j,`(β ). This is essentially the only place in the argument
where we use the subgaussianity of the random variable ξ (via the application of Proposition 3.4).
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Proposition 3.15. For every j ∈ {0,1, . . . ,J(β ,n)} and ` ∈ {0,1, . . . , log(β−1)},∣∣∣R̃RR j,`(β )
∣∣∣≤C3.15

(
2n0.99

+

(
64C1.32`

n0.10

)n)
,

where C3.15 ≥ 1 is an absolute constant.

Remark 3.16. The crucial part of this upper bound is the appearance of a factor of the form n−εn in the
second term.

Proof. We will obtain a good lower bound on ρ1,ξ (vvv′
′′) and then appeal to Theorem 1.3 for a suitable choice

of parameters. For the lower bound, let vvv′′′ ∈ R̃RR j,`(β ) and let aaa ∈ RRR j,`(β ), D ∈ C with |D| ∈ [ f (β ),n1/20]
be such that ‖vvv− vvv′′′‖2 ≤ n1/20, where

vvv := (2η
√

n)−1(2‖M‖ f (β )−1)− jDaaa.

Then,

ρ2n0.15,ξ (vvv
′′′)≥ ρn0.15,ξ (vvv)−3exp

(
−c3.3n0.30

n0.10

)
≥ ρ2η

√
n(2‖M‖ f (β )−1) j|D|−1n0.15,ξ (aaa)−3exp

(
−c3.3n0.20)

≥ ρ2η
√

n(2‖M‖ f (β )−1) j,ξ (aaa)−3exp
(
−c3.3n0.20)

≥
ρ2η
√

n(2‖M‖ f (β )−1) j,ξ (aaa)

2
,

where the first inequality follows from Proposition 3.4, the third inequality follows since |D|−1n0.15 ≥
n−1/20n0.15 ≥ 1, and the last inequality follows from ρ2η

√
n,ξ (aaa) ≥ β � exp(−n0.1). Hence, by the

pigeonhole principle, we must have

ρ1,ξ (vvv
′′′)≥

ρ2n0.15,ξ (vvv
′′′)

(4n0.15)2 ≥
ρ2η
√

n(2‖M‖ f (β )−1) j,ξ (aaa)

32n0.30 ≥ 2−`

64n0.30 ,

where the final inequality holds since aaa ∈ RRR j,`(β ). To summarize, using notation as in Theorem 1.3, we
have shown that

R̃RR j,`(β )⊆VVV 2−`/64n0.30 .

Applying Theorem 1.3 with the parameters s = n0.9, k = n0.1, and p = 2n0.04
, we find that

|ϕp(VVV ρ)| ≤
(
5np2)n0.9

+

(
C1.3ρ−1

n0.4

)n

,

for all ρ ≥C−1
1.32−n0.04/4. In particular, since

2−`/64n0.30 ≥ β/64n0.30� 2−n0.01
,
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it follows that ∣∣∣ϕp

(
VVV 2−`/64n0.30

)∣∣∣. 2n0.99
+

(
64C1.32`

n0.10

)n

.

Finally, since
‖vvv′′′‖∞ ≤ ‖vvv′′′‖2 ≤ (2η

√
n)−1|D|+n1/4� 2n0.04

,

we see that the map ϕp is an injection on R̃RR j,`(β )⊆VVV 2−`/64n0.30 , which completes the proof.

3.4 Proof of Proposition 3.12

Since we already have control on the size of R̃RR j,`(β ), in order to prove Proposition 3.12 via Proposi-
tion 3.14, it suffices to have good control over ρ3‖M‖,ξ (vvv′

′′). This is provided by the following lemma.

Lemma 3.17. For any vvv′′′ ∈ R̃RR j,`(β ),

ρ3‖M‖,ξ (vvv
′′′)≤min

{
1− u2.4

2
,2n1/1002−`

}
.

Proof. Since 4η
√

n(2‖M‖ f (β )−1)J(β ,n)+1 ≤ v2.4, it follows from Proposition 3.4 that (with notation as
in the proof of Proposition 3.15)

ρ3‖M‖,ξ (vvv
′′′)≤ ρ4‖M‖,ξ (vvv)+3exp

(
−c3.3‖M‖2

n0.10

)
≤ ρ(4η

√
n)(2‖M‖ f (β )−1) j(4‖M‖|D|−1),ξ (aaa)+3exp

(
−c3.3n0.90)

≤ ρ2η
√

n(2‖M‖ f (β )−1)J(β ,n)+1,ξ (aaa)+3exp
(
−c3.3n0.90)

≤ ρv2.4,ξ (aaa)+3exp
(
−c3.3n0.90)

≤ 1− u2.4

2
,

for all n sufficiently large, where the third line follows from 8‖M‖|D|−1� 2‖M‖ f (β )−1. We also have

ρ3‖M‖,ξ (vvv
′′′)≤ ρ4‖M‖,ξ (vvv)+3exp

(
−c3.3n0.90)

≤ ρ(2η
√

n)(2‖M‖ f (β )−1) j(4‖M‖|D|−1),ξ (aaa)+3exp
(
−c3.3n0.90)

≤ ρ2η
√

n(2‖M‖ f (β )−1) j+1,ξ (aaa)+3exp
(
−c3.3n0.90)

≤ n1/100
ρ2η
√

n(2‖M‖ f (β )−1) j,ξ (aaa)+3exp
(
−c3.3n0.90)

≤ n1/1002−`+3exp
(
−c3.3n0.90)

≤ 2n1/1002−`,

where the fourth line follows from Lemma 3.9, the fifth line follows since aaa ∈ RRR j,`(β ), and the last line
follows since 2−` ≥ β � exp(−n0.2).

The proof of Proposition 3.12 is now immediate.
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Proof of Proposition 3.12. We have

Pr
(
∃aaa ∈ RRR j,`(β ) : ‖Mnaaa‖2 ≤ η

)
≤ ∑

vvv′′′∈R̃RR j,`(β )

ρ3‖M‖,ξ (vvv
′′′)n−n0.10

+2exp(−n)

≤ |R̃RR j,`(β )|
(

min
{

1− u2.4

2
,2n1/1002−`

})n−n0.10

+2exp(−n)

≤C3.15

(
2n0.99

+

(
64C1.32`

n0.10

)n)(
min

{
1− u2.4

2
,2n1/1002−`

})n−n0.10

+2exp(−n)

≤ O(exp(−Ω(n))),

where the first line follows from Proposition 3.14, the second line follows from Lemma 3.17, the third
line follows from Proposition 3.15, and the last line follows since 2` ≤ β−1� 2n0.02

.

4 Proof of Theorem 1.1

4.1 Lévy concentration functions of `∞-close vectors

As mentioned earlier, the key technical difficulty in the proof of Theorem 1.1 compared to the proof of
Theorem 3.2 is the unavailability of Proposition 3.4. Instead, we have the following substitute.

Proposition 4.1. Let ξξξ := (ξ1, . . . ,ξn) ∈ Cn be a complex random vector whose entries are independent
copies of a complex random variable ξ with mean 0 and variance 1. For ε ∈ (0,1/2), let Gε denote the
event that ∑

n
i=1 |ξi|2≤ n1+2ε and |∑n

i=1 ξi| ≤ n(1/2)+ε . Then, for every aaa :=(a1, . . . ,an),bbb :=(b1, . . . ,bn)∈
Cn, and for every r1, t ≥ 0, we have

ρr1+r2,ξξξ |Gε
(bbb)≥ ρr1,ξξξ |Gε

(aaa)−4exp
(
− r2

2
256n1+2ε‖aaa−bbb‖2

∞

)
,

where r2 := 2t‖aaa−bbb‖∞.

In order to prove this proposition, we will need some facts about concentration on the symmetric
group. The following appears as Lemma 3.9 in [24], and is a direct application of Theorem 7.8 in [21].

Lemma 4.2 (Lemma 3.9 in [24]). Let yyy := (y1, . . . ,yn) be a non-zero complex vector and let vvv ∈ [−1,1]n.
Consider the function h : Sn→ C defined by

h(π) :=
n

∑
j=1

vπ( j)y j.

Then, for all t > 0,

Pr(|h(π)−Eh| ≥ t)≤ 4exp
(
− t2

128‖yyy‖2
2

)
,

where the probability is with respect to the uniform measure on Sn.
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Remark 4.3. In [24], the above lemma is stated for vvv ∈ {±1}n, but exactly the same proof shows that
the conclusion also holds for any vvv ∈ [−1,1]n. Also, it is stated and proved (with better constants) for real
vectors yyy. However, the version above for complex vectors immediately follows from this by separately
considering the real and imaginary parts of h and using the union bound.

We will use this lemma via the following immediate corollary.

Lemma 4.4. Let vvv := (v1, . . . ,vn),www := (w1, . . . ,wn) ∈ Cn \ {000}, and let π be a random permutation
uniformly distributed on Sn. Consider the function h : Sn→ C defined by

h(π) :=
n

∑
i=1

vπ(i)wi.

Then, for all t ≥ |w1 + · · ·+wn|,

Pr(|h(π)| ≥ 2t‖vvv‖∞)≤ 4exp
(
− t2

128‖www‖2
2

)
.

Proof. First, note that

|E[h(π)]|=

∣∣∣∣∣ n

∑
i=1

viE
[
wπ(i)

]∣∣∣∣∣
=

∣∣∣∣∣ n

∑
i=1

vi
(w1 + · · ·+wn)

n

∣∣∣∣∣
=

∣∣∣∣(v1 + · · ·+ vn)(w1 + · · ·+wn)

n

∣∣∣∣
≤ ‖vvv‖∞|w1 + · · ·+wn|.

Next, let vvv′′′ := ‖vvv‖−1
∞ vvv. Then, vvv′′′ ∈ [−1,1]n and h(π) = ‖vvv‖∞g(π), where g(π) := ∑

n
i=1 v′π(i)wi. Therefore,

by Lemma 4.2, for all t > 0,

Pr(|g(π)−Eg| ≥ t)≤ 4exp
(
− t2

128‖www‖2
2

)
,

so that

Pr(|h(π)−Eh| ≥ t‖vvv‖∞)≤ 4exp
(
− t2

128‖www‖2
2

)
.

The desired statement now follows from the triangle inequality and the estimate on Eh.

We can now prove Proposition 4.1.

Proof of Proposition 4.1. Consider the random variable X := ∑
n
i=1(ai− bi)ξi. We claim that for any

t ≥ n(1/2)+ε ,

Pr(|X | ≥ 2t‖aaa−bbb‖∞ | Gε)≤ 4exp
(
− t2

128n1+2ε

)
.
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Indeed, since the distribution of the random vector ξξξ , even after conditioning on the event Gε , is invariant
under permuting its coordinates, it suffices to show (by the law of total probability) that for any fixed
vector www := (w1, . . . ,wn) such that ∑

n
i=1 |wi|2 ≤ n1+2ε and |∑n

i=1 wi| ≤ n(1/2)+ε , and for any t ≥ n(1/2)+ε

Pr
π S̃n

(∣∣∣∣∣ n

∑
i=1

(ai−bi)wπ(i)

∣∣∣∣∣≥ 2t‖aaa−bbb‖∞

)
≤ 2exp

(
− t2

64n1+2ε

)
.

Since ∑
n
i=1(ai−bi)wπ(i) has the same distribution as ∑

n
i=1(a−b)π(i)wi, this follows immediately from

Lemma 4.4.
Next, fix δ > 0, and let x ∈ C be such that

Pr(a1ξ1 + · · ·+anξn ∈ B(x,r1) | Gε)≥ ρr1,ξξξ |Gε
(aaa)−δ .

Then, for any t ≥ n(1/2)+ε , setting r2 := 2t‖aaa−bbb‖∞, we have

Pr(b1ξ1 + · · ·+bnξn ∈ B(x,r1 + r2) | Gε)≥ Pr(b1ξ1 + · · ·+bnξn ∈ B(x,r1 + r2)∩{|X | ≤ r2} | Gε)

≥ Pr(a1ξ1 + · · ·+anξn ∈ B(x,r1)∩{|X | ≤ r2} | Gε)

≥ Pr(a1ξ1 + · · ·+anξn ∈ B(x,r1) | Gε)−Pr(|X | ≥ r2 | Gε)

≥ ρr1,ξξξ |Gε
(aaa)−δ −4exp

(
− r2

2
512n1+2ε‖aaa−bbb‖2

∞

)
.

Taking the supremum of the left hand side over the choice of x ∈ C, and then taking the limit on the right
hand side as δ → 0 gives the desired conclusion.

4.2 Regularization of Nn

In order to make use of the results of the previous subsection, we need that, with high probability, almost
all of the rows of Nn satisfy the event Gε . This follows using a straightforward application of the standard
Chernoff bound.

Lemma 4.5 (Lemma 5.3 in [11]). Let Nn := (ai j) be an n×n complex random matrix with i.i.d. entries,
each with mean 0 and variance 1. For ε ∈ (0,1/2), let I ⊆ [n] denote the (random) subset of coordinates
such that for each i ∈ I, (

n

∑
j=1
|ai j|2 ≤ n1+2ε

)∧(∣∣∣∣∣ n

∑
j=1

ai j

∣∣∣∣∣≤ n(1/2)+ε

)
. (4)

Let Rε denote the event that |Ic| ≤ 2n1−ε . Then,

Pr(Rc
ε)≤ 2exp

(
−n1−ε

4

)
.

We will also need the following (trival) bound on the probability that the operator norm of Nn is too
large.
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Lemma 4.6. Let Nn := (ai j) be an n×n complex random matrix with independent entries, each with
mean 0 and variance 1. Then, for any L≥ 1,

Pr
(
‖Nn‖ ≥

√
Ln
)
≤ L−1

Proof. By Markov’s inequality, Pr
(
∑i j |ai j|2 ≥ Ln2

)
≤ L−1. Since ‖Nn‖2 ≤ ‖Nn‖2

F := ∑i j |ai j|2, the
desired conclusion follows.

Henceforth, let Oβ denote the event that ‖Nn‖ ≤ β−1/2n; by the above lemma, this occurs except with
probability at most β . Moreover, let S(β ) := ‖M‖+β−1/2n.

4.3 Rich and poor vectors

For the remainder of this section, we fix an n×n complex matrix M and parameters α,η ∈ (0,1) satisfying
the restrictions of the statement of Theorem 1.1. Also, let

β :=
α

2n+1
, f (β ) :=

β

200C2.8
∈ (0,1), J(β ,n) :=

100log(β−1)

logn
, ε = 0.025.

We may further assume that η ≥ 2−n0.01
, since the statement of Theorem 1.1 for smaller values of η

follows from the statement for η = 2−n0.01
.

We call a unit vector vvv ∈ Cn poor if we have

ρ2ηS(β )
√

n,ξξξ |Gε
(vvv)≤ β

and rich otherwise. We use PPP(β ) and RRR(β ) to denote, respectively, the set of poor and rich vectors. As
before, Theorem 1.1 follows from the following two propositions and the union bound.

Proposition 4.7. Pr(∃vvv ∈ PPP(β ) : ‖Mnvvv‖2 ≤ η)≤ 2nβ +C4.7 exp(−c4.7n2/3), where C4.7≥ 1 and c4.7 > 0
are constants depending only on ξ .

Proposition 4.8. Pr(∃vvv ∈ RRR(β ) : ‖Mnvvv‖2 ≤ η)≤ β +C4.8 exp(−c4.8n2/3), where C4.8 ≥ 1 and c4.8 > 0
are constants depending only on ξ .

4.4 Eliminating poor vectors

Compared to Proposition 3.7, the proof of Proposition 4.7 requires more work, since we need to work
with ρr,ξξξ |Gε

(vvv) instead of ρr,ξξξ (vvv). In order to do this, we start by first eliminating ‘compressible’ vectors.

Definition 4.9 (Definition 3.2 in [26]). Let δ1 ∈ [0,n],δ2 ∈ (0,1/2).
(1) A vector xxx ∈ Cn is called sparse if |supp(xxx)| ≤ δ1.
(2) A vector xxx ∈ S2n−1 is called compressible if xxx is within Euclidean distance δ2 from the set of all

sparse vectors.
(3) A vector x ∈ S2n−1 is called incompressible if it is not compressible.
The sparse, compressible and incompressible vectors will be denoted respectively by Sparse(δ1),

Comp(δ1,δ2), and Incomp(δ1,δ2).
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Remark 4.10. In particular, note that for any x ∈ Incomp(δ1,δ2) and for any I ⊆ [n] with |I| ≤ δ1n, there
exists some j ∈ Ic such that |x j| ≥ δ2/

√
n.

Remark 4.11. We have used the terminology of ‘compressible’ and ‘incompressible’ vectors mostly
for convenience, and our use of these notions is rather different from that in the work of Rudelson and
Vershynin. In particular, the only property of incompressible vectors we use is captured in the above
remark, which is much weaker than what is used by the geometric methods.

Lemma 4.12. Let Cε,β denote the event that there exists some vvv ∈ Comp(2n1−ε ,S(β )−1) for which
‖vvvT Mn‖ ≤ η . Then,

Pr
(
Cε,β

)
≤ β +C4.12 exp(−c4.12n),

where C4.12 ≥ 1 and c4.12 > 0 are constants depending only on ξ .

Proof. By losing an additive error term which is at most β , it suffices to bound Pr(Cε,β ∩Oβ ). Let
NNN denote an S(β )−1-net of Sparse(2n1−ε)∩S2n−1 of minimum cardinality; by a standard volumetric
argument,

|NNN| ≤
(

n
2n1−ε

)
(100S(β ))4n1−ε

.

Suppose that Cε,β ∩Oβ occurs. Then, by the definition of Comp(2n1−ε ,S(β )−1), there exist vvv,vvv′′′ ∈
S2n−1 such that ‖vvvT Mn‖2 ≤ η , ‖vvv− vvv′′′‖2 ≤ S(β )−1, and vvv′′′ is supported on at most 2n1−ε coordinates.
Moreover, by the definition of NNN, there exists some vvv′′′′′′ ∈NNN such that ‖vvv′′′′′′−vvv′′′‖2 ≤ S(β )−1. By the triangle
inequality, we see that

‖vvv′′′′′′T Mn‖2 ≤ η +‖MT
n ‖‖vvv− vvv′′′′′′‖2

= η +‖Mn‖‖vvv− vvv′′′′′′‖2

≤ η +2‖Mn‖S(β )−1

≤ 2+η .

On the other hand, by Lemma 2.4, we see that for any fixed vvv′′′′′′ ∈ S2n−1,

Pr
(
‖vvv′′′′′′T Mn‖2 ≤ c2.4

√
n
)
≤ (1− c2.4)

n.

Therefore, taking the union bound over all vvv′′′′′′ ∈ NNN, it follows that Cε,β ∩Oβ occurs with probability at
most (

n
2n1−ε

)
(100S(β ))4n1−ε

(1− c2.4)
n ≤ exp(−Ω(n)),

where the final inequality follows since S(β )n1−ε

= O(exp(o(n)).

Proof of Proposition 4.7. By Lemma 4.5 and Lemma 4.12, after losing an additive error term of β +
O(exp(−n1−ε/4)), it suffices to bound the probability of the event intersected with Cc

ε,β ∩Rε . Moreover,
since

Rε = tI⊆[n],|I|≥n−2n1−εRε,I,
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where Rε,I denotes the event that the rows of Nn satisfying Equation (4) are exactly those indexed by the
subset I, it suffices (by the law of total probability) to show that for any I ⊆ [n], |I| ≥ n−2n1−ε ,

Pr
(
{∃vvv ∈ PPP(β ) : ‖Mnvvv‖2 ≤ η}∩Cc

ε,β | Rε,I

)
≤ nβ .

For the remainder of the proof, fix such an I. By reindexing the coordinates, we may further assume that
I = [|I|].

Since M†
n and Mn have the same singular values, it follows that a necessary condition for a ma-

trix Mn to satisfy the above event is that there exists a unit vector aaa′′′ = (a′1, . . . ,a
′
n) such that aaa′′′ ∈

Incomp(2n1−ε ,S(β )−1) and ‖aaa′′′T Mn‖2 ≤ η . To every matrix Mn, associate such a vector aaa′′′ arbitrarily (if
one exists) and denote it by aaa′′′Mn

; this leads to a partition of the space of all matrices with least singular value
at most η . By Remark 4.10, since |Ic| ≤ 2n1−ε , there must exist i ∈ I such that |(aaa′′′Mn

)i| ≥ S(β )−1/
√

n.
To every aaa′′′Mn

, associate such an index i ∈ I arbitrarily, and denote it by i(Mn). Then, by taking a union
bound over the choice of i ∈ I, it suffices to show the following.

Pr
(
{∃vvv ∈ PPP(β ) : ‖Mnvvv‖2 ≤ η}∩ i(Mn) = 1 | Rε,[|I|]

)
≤ β (5)

To this end, we expose the last n−1 rows X2, . . . ,Xn of Mn. Note that if there is some vvv ∈ PPP(β ) satisfying
‖Mnvvv‖2 ≤ η , then there must exist a vector yyy ∈ PPP(β ), depending only on the last n−1 rows X2, . . . ,Xn,
such that (

n

∑
i=2
|Xi · yyy|2

)1/2

≤ η .

In other words, once we expose the last n−1 rows of the matrix, either the matrix cannot be extended to
one satisfying the event in Equation (5), or there is some unit vector yyy ∈ PPP(β ), which can be chosen after
looking only at the last n−1 rows, and which satisfies the equation above. For the rest of the proof, we
condition on the last n−1 rows X2, . . . ,Xn (and hence, a choice of yyy).

For any vector www′′′ ∈ S2n−1 with w′1 6= 0, we can write

X1 =
1

w′1

(
uuu−

n

∑
i=2

w′iXi

)
,

where uuu := www′′′T Mn. Thus, restricted to the event {sn(Mn)≤ η}∩{i(Mn) = 1}, we have

|X1 · yyy|= inf
www′′′∈Sn−1,w′1 6=0

1
|w′n|

∣∣∣∣∣uuu · yyy− n

∑
i=2

w′iXi · yyy

∣∣∣∣∣
≤ 1
|a′1|

‖aaa′′′Mn

T Mn‖2‖yyy‖2 +‖aaa′′′Mn
‖2

(
n

∑
i=2
|Xi · yyy|2

)1/2


≤ S(β )η
√

n
(
‖yyy‖2 +‖aaa′′′Mn

‖2
)
≤ 2S(β )η

√
n,

where the second line is due to the Cauchy-Schwarz inequality and the particular choice www′′′ = aaa′′′Mn
.

Since, conditioned on Rε,[|I|], the first row of Nn is distributed as ξξξ |Gε , it follows that the probability
in Equation (5) is bounded by

ρ2ηS(β )
√

n,ξξξ |Gε
(yyy)≤ β ,

which completes the proof.
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4.5 Eliminating rich vectors

Up to losing an overall additive error term of β , it suffices to bound Pr
(
{∃vvv ∈ RRR(β ) : ‖Mnvvv‖2 ≤ η}∩Oβ

)
.

Exactly as in the proof of Theorem 3.2, we obtain the decomposition

RRR(β ) = t j,`RRR j,`(β ),

where j ∈ {0,1, . . . ,J(β ,n)}, ` ∈ {0,1, . . . , log(β−1)}, and

RRR j,`(β ) := {vvv ∈ RRR j(β ) | ρ2ηS(β )
√

n(2S(β ) f (β )−1) j(vvv) ∈ (2−`−1,2−`]}.

Recall that if vvv ∈ RRR j(β ), then

ρ2ηS(β )
√

n(2S(β ) f (β )−1) j+1,ξ (vvv)≤ n1/100
ρ2ηS(β )

√
n(2S(β ) f (β )−1) j,ξ (vvv).

Since there are at most (J(β ,n)+ 1)(log(β−1)+ 1) choices for the pair ( j, `), by the union bound, it
suffices to prove the following analogue of Proposition 3.12 in order to prove Proposition 4.8

Proposition 4.13. For any j ∈ {0,1, . . . ,J(β ,n)} and ` ∈ {0,1, . . . , log(β−1)},

Pr
(
{∃aaa ∈ RRR j,`(β ) : ‖Mnaaa‖2 ≤ η}∩Oβ

)
≤C3.12 exp(−c4.13n2/3),

where C4.13 ≥ 1 and c4.13 > 0 are constants depending only on ξ .

We begin with the following analogue of Lemma 3.13

Lemma 4.14. Let aaa ∈ RRR j,`(β ). Then, there exists some D ∈ C with |D| ∈ [ f (β ),n1/20] and some vvv′′′ ∈
(Z+ iZ)n such that

‖vvv− vvv′′′‖2 ≤ n1/20,

where vvv := (2ηS(β )
√

n)−1(2S(β ) f (β )−1)− jDaaa.

Proof. Let g(n) = n1/20 and www := (2ηS(β )
√

n)−1(2S(β ) f (β )−1)− jaaa. Suppose for contradiction that the
desired conclusion does not hold. Then, the same computation as in the proof of Lemma 3.13 shows that

ρ2ηS(β )
√

n,ξ (aaa)≤ ρ2ηS(β )
√

n(2S(β ) f (β )−1) j,ξ (aaa) = ρ1,ξ (www)≤ β/2.

Finally, since Pr(Gε)> 1/2 by Markov’s inequality, it follows from Lemma 2.5 that

ρ2ηS(β )
√

n,ξξξ |Gε
(aaa)< 2ρ2ηS(β )

√
n,ξξξ (aaa)< β ,

which contradicts that aaa ∈ RRR(β ).

Define

R̃RR j,`(β ) :=

{vvv′′′ ∈ (Z+ iZ)n | ∃aaa ∈ RRR j,`(β ),D ∈ C s.t.|D| ∈ [ f (β ),n1/20],‖(2ηS(β )
√

n)−1(2S(β ) f (β )−1)− jDaaa− vvv′′′‖2 ≤ n1/20}.
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Then, the same computation as in the subgaussian case shows that if the event in the statement of
Proposition 4.13 occurs, then there must exist some vvv′′′ ∈ R̃RR j,`(β ) for which

‖Mnvvv′′′‖2 ≤ 3S(β )n1/20.

Hence, letting Xi denote the ith row of Mn, it follows from Markov’s inequality that, given any I ⊆ [n]
with |Ic| ≤ 2n1−ε , there are at least n−3n1−ε coordinates i ∈ I for which

|Xi · vvv′′′| ≤ 3S(β ).

Thus, we see that for any such I,

Pr
(
{∃aaa ∈ RRR j,`(β ) : ‖Mnaaa‖2 ≤ η}∩Oβ | Rε,I

)
≤ ∑

vvv′′′∈R̃RR j,`(β )

ρ3S(β ),ξξξ |Gε
(vvv′′′)n−3n1−ε

,

so that

Pr
(
{∃aaa ∈ RRR j,`(β ) : ‖Mnaaa‖2 ≤ η}∩Oβ

)
≤ ∑

vvv′′′∈R̃RR j,`(β )

ρ3S(β ),ξξξ |Gε
(vvv′′′)n−3n1−ε

+2exp(−n1−ε/4). (6)

As in Lemma 3.17, we have

Lemma 4.15. For any vvv′′′ ∈ R̃RR j,`(β ),

ρ3S(β ),ξξξ |Gε
(vvv′′′)≤min

{
1− u2.4

2
,4n1/1002−`

}
.

Proof. Since 4S(β )η
√

n(2S(β ) f (β )−1)J(β ,n)+1≤ v2.4, it follows from Proposition 4.1 that (with notation
as in the proof of Lemma 3.17)

ρ3S(β ),ξξξ |Gε
(vvv′′′)≤ ρ4S(β ),ξξξ |Gε

(vvv)+4exp
(
− S(β )2

256n1+2εn1/10

)
≤ ρ(2ηS(β )

√
n)(2S(β ) f (β )−1) j(4S(β )|D|−1),ξξξ |Gε

(aaa)+4exp
(
−n1/3/256

)
≤ ρ4ηS(β )

√
n(2S(β ) f (β )−1)J(β ,n)+1,ξξξ |Gε

(aaa)+4exp
(
−n1/3/256

)
≤ ρv2.4,ξξξ |Gε

(aaa)+4exp
(
−n1/3/256

)
≤ Pr(Gε)

−1
ρv2.4,ξξξ (aaa)+4exp

(
−n1/3/256

)
≤ (1−2n−2ε)−1

ρv2.4,ξξξ (aaa)+4exp
(
−n1/3/256

)
≤ 1− u2.4

2
,
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for all n sufficiently large, where the second line follows from S(β )|D|−1 ≤ S(β ) f (β )−1 and the third to
last line follows from Lemma 2.5. We also have

ρ3S(β ),ξξξ |Gε
(vvv′′′)≤ ρ4S(β ),ξξξ |Gε

(vvv)+4exp
(
−n1/3/256

)
≤ ρ(2ηS(β )

√
n)(2S(β ) f (β )−1) j(4S(β )|D|−1),ξξξ |Gε

(aaa)+4
(
−n1/3/256

)
≤ ρ4ηS(β )

√
n(2S(β ) f (β )−1) j+1,ξξξ |Gε

(aaa)+4exp
(
−n1/3/256

)
≤ 2n1/100

ρ2ηS(β )
√

n(2S(β ) f (β )−1) j,ξξξ |Gε
(aaa)+4exp

(
−n1/3/256

)
≤ 2n1/1002−`+4exp

(
−n1/3/256

)
≤ 4n1/1002−`,

which completes the proof.

Given the previous lemma and Equation (6), the same calculation as in the proof of Proposition 3.8
shows that the following suffices to prove Proposition 4.13.

Proposition 4.16. For every j ∈ {0,1, . . . ,J(β ,n)} and ` ∈ {0,1, . . . , log(β−1)},∣∣∣R̃RR j,`(β )
∣∣∣≤C4.16

(
22n0.99

+

(
128C1.32`

n0.10

)n)
,

where C4.16 ≥ 1 is an absolute constant.

4.6 Proof of Proposition 4.16

Proof of Proposition 4.16. Let vvv′′′ ∈ R̃RR j,`(β ) and let aaa ∈ RRR j,`(β ), D ∈ C with |D| ∈ [ f (β ),n1/20] be such
that ‖vvv− vvv′′′‖2 ≤ n1/20, where vvv := (2S(β )η

√
n)−1(2S(β ) f (β )−1)− jDaaa. Then, there must exist a subset

T ⊆ [n] with |T c| ≤ n0.95 such that |vt − v′t | ≤ n−0.4 for all t ∈ T .
Let vvv′′′′′′ be the vector which agrees with vvv′′′ on T and with vvv on T c. Then, ‖vvv′′′′′′− vvv‖∞ ≤ n−0.4 so that

ρ2n0.15,ξξξ |Gε
(vvv′′′′′′)≥ ρn0.15,ξξξ |Gε

(vvv)−4exp
(
− n0.30

256n1+2ε ·n−0.8

)
≥ ρ2ηS(β )

√
n(2S(β ) f (β )−1) j|D|−1n0.15,ξξξ |Gε

(aaa)−4exp
(
−n0.10−2ε/256

)
≥ ρ2ηS(β )

√
n(2S(β ) f (β )−1) j,ξξξ |Gε

(aaa)−4exp
(
−n0.10−2ε/256

)
≥

ρ2ηS(β )
√

n(2S(β ) f (β )−1) j,ξξξ |Gε
(aaa)

2
,

where the first inequality follows from Proposition 4.1, the third inequality follows since |D|−1n0.15 ≥
n−1/20n0.15 ≥ 1, and the last inequality follows from ρ2ηS(β )

√
n,ξ (aaa)≥ β � exp(−n0.01). Hence, by the

pigeonhole principle and by Lemma 2.5, we must have

ρ1,ξ (vvv
′′′′′′)≥

ρ1,ξξξ |Gε
(vvv′′′′′′)

2
≥

ρ2n0.15,ξξξ |Gε
(vvv′′′′′′)

64n0.30 ≥ 2−`

128n0.30 ,
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where the final inequality holds since aaa ∈ RRR j,`(β ). Let vvv′′′′′′′′′ denote the integer vector which agrees with vvv′′′′′′

(and hence, vvv′′′) on T and is 0 on T c. Then,

ρ1,ξ (vvv
′′′′′′′′′)≥ ρ1,ξ (vvv

′′′′′′)≥ 2−`

128n0.30 .

To summarize, using notation as in Theorem 1.3, we have shown that for every vector vvv′′′ ∈ R̃RR j,`(β ),
there exists some T ⊆ [n] with |T c| ≤ n0.95 such that vvv′′′ agrees with some element of VVV 2−`/128n0.30 on T .
Since each coordinate of vvv′′′′′′ is an integer with absolute value at most ‖vvv′′′′′′‖2 ≤ (2ηS(β )

√
n)−1D+n1/4�

2n0.01
, it follows that ∣∣∣R̃RR j,`(β )

∣∣∣≤ n
(

n
n0.95

)(
2n0.01

)2n0.95 ∣∣∣VVV 2−`/128n0.30

∣∣∣ .
Finally, the calculation in the proof of Proposition 3.15 shows that∣∣∣VVV 2−`/128n0.30

∣∣∣. 2n0.99
+

(
128C`

1.3
n0.10

)n

,

which, together with the previous equation, completes the proof.

5 Proof of Theorem 1.3

The proof of Theorem 1.3 consists of six steps. The first three steps are modelled after the proof of
the optimal inverse Littlewood-Offord theorem of Nguyen and Vu [22], whereas the last three steps are
modelled after Halász’s proof of his anti-concentration inequality [10].

Step 1: Extracting a large sublevel set. For each integer 1≤ m≤M, where M := 2s/k, we define

Sm :=

{
ξ ∈ C :

n

∑
i=1
‖viξ‖2

z + |ξ |2 ≤ m

}
.

Since ∫
C

exp

(
−

n

∑
i=1
‖viξ‖2

z/2−π|ξ |2
)

dξ . ∑
1≤m≤M

µ(Sm)exp(−m/2)+ exp(−M/2),

it follows from Lemma 2.10 that

ρ1,z(vvv). ∑
1≤m≤M

µ(Sm)exp(−m/2)+ exp(−M/2).

In particular, since it is assumed that ρ1,z(vvv) ≥ C1.3 exp(−s/k) = C1.3 exp(−M/2), it follows that for
sufficiently large C1.3 ≥ 1,

ρ1,z(vvv). ∑
1≤m≤M

µ(Sm)exp(−m/2)

= ∑
1≤m≤M

µ(Sm)exp(−m/4)exp(−m/4)

. ∑
1≤m≤M

µ(Sm)exp(−m/4)cm,
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where

cm :=
e−m/4

∑
M
m=1 e−m/4

.

Note that in the last line, we have used the fact that ∑
∞
m=1 e−m/4 = O(1). Therefore, by averaging with

respect to the probability measure {cm}M
m=1, it follows that there must exist some non-zero integer

m0 ∈ [1,M] for which
µ(Sm0)& ρ1,z(vvv)exp(m0/4).

Step 2: Eliminating the z-norm. From here on, all implicit constants will be allowed to depend on Cz.
Since Sm0 ⊂ B(0,

√
m0), it follows (by averaging) that there must exist some B(x,1/16Cz)⊂ B(0,

√
m0)

for which
µ(Sm0 ∩B(x,1/16Cz))& ρ exp(m0/4)m−1

0 & ρ exp(m0/8).

Moreover, for ξ1,ξ2 ∈ B(x,1/16Cz)∩Sm0 , we have that

• ξ1−ξ2 ∈ B(0,1/8Cz), and

• ∑
n
i=1 ‖vi(ξ1−ξ2)‖2

z ≤ ∑
n
i=1 (‖viξ1‖z +‖viξ2‖z)

2 ≤ 2∑
n
i=1
(
‖viξ1‖2

z +‖viξ2‖2
z
)
≤ 4m0.

Since for any A⊆ C, µ(A−A)≥ µ(A), it follows that setting

Tm0 :=

{
ξ ∈ B(0,1/8Cz) :

n

∑
i=1
‖viξ‖2

z ≤ 4m0

}
,

we have that
µ(Tm0)& ρ exp(m0/8).

Next, let y := z1− z2, where z1,z2 are i.i.d. copies of z. Since

Ey

∫
C

n

∑
i=1
‖ℜ{viyξ}‖2

R/Z111Tm0
(ξ )dξ ≤ 4m0µ(Tm0),

it follows that there exists some y0 ∈ C satisfying C−1
z ≤ |y0| ≤Cz such that∫

C

n

∑
i=1
‖ℜ{viy0ξ}‖2

R/Z111Tm0
(ξ )dξ ≤ 4m0µ(Tm0)Pr

(
C−1

z ≤ |y| ≤Cz
)−1 ≤ 4Czm0µ(Tm0),

where the final inequality follows from the Cz-goodness of z. Hence, by Markov’s inequality,

µ

({
ξ ∈ Tm0 :

n

∑
i=1
‖ℜ{viy0ξ}‖2

R/Z ≤ 8Czm0

})
≥ µ(Tm0)

2
& ρ exp(m0/8).

Since Tm0 ⊂ B(0,1/8Cz), this shows that

µ

({
ξ ∈ B(0,1/8Cz) :

n

∑
i=1
‖ℜ{viy0ξ}‖2

R/Z ≤ 8Czm0

})
& ρ exp(m0/8).
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Finally, after replacing ξ by y0ξ , and noting that the change of measure factor lies in [C−1
z ,Cz], it follows

that

T ′m0
:=

{
ξ ∈ B(0,1/8) :

n

∑
i=1
‖ℜ{viξ}‖2

R/Z ≤ 8Czm0

}
satisfies

µ(T ′m0
)& ρ exp(m0/8).

Step 3: Discretization of ξ . For p a prime as in the statement of the theorem, let

B0 :=
{

r1

p
+ i

r2

p
: r1,r2 ∈ Z,− p

8
≤ r1,r2 ≤

p
8

}
,

and consider the random set x+B0, where x ∈ [0,1/p]+ i[0,1/p] is a uniformly distributed random point.
Then, by linearity of expectation, we have

Ex∈[0,1/p]+i[0,1/p]
[∣∣(x+B0)∩T ′m0

∣∣]& µ(T ′m0
)p2,

so there exists some x0 ∈ [0,1/p]+ i[0,1/p] for which

|(x0 +B0)∩T ′m0
|& µ(T ′m0

)p2 & ρ exp(m0/8)p2.

Let us now ‘recenter’ this shifted lattice. Note that for a fixed ξ0 ∈ (x0 +B0)∩T ′m0
, we have for any

ξ ∈ (x0 +B0)∩T ′m0
that

n

∑
i=1
‖ℜ{vi(ξ −ξ0)}‖2

R/Z ≤ 2
n

∑
i=1

(
‖ℜ{viξ}‖2

R/Z+‖ℜ{viξ0}‖2
R/Z

)
≤ 32Czm0.

Note also that ξ0−ξ ∈ B1 := B0−B0 = {(r1/p)+ i(r2/p) : r1,r2 ∈ Z,−p/4≤ r1,r2 ≤ p/4}. Hence, for
a fixed ξ0 ∈ (x0 +B0)∩T ′m0

, setting

Pm0 :=
{

ξ0−ξ : ξ ∈ (x0 +B0)∩T ′m0

}
gives a subset Pm0 ⊂ B1 such that

|Pm0 |& ρ exp(m0/8)p2,

and for all ξ ∈ Pm0 ,
n

∑
i=1
‖ℜ{viξ}‖2

R/Z ≤ 32Czm0.

Step 4: Embedding Pm0 into Fp and the Halász trick. Let V := supp(ϕp(vvv)). If |V |< s, we proceed
directly to Step 6. Otherwise, for I ⊆V such that |I| ≥ s, we define the sets

P′m(I) :=

{
r := r1 + ir2 ∈ Fp + iFp : ∑

i∈I

∥∥∥∥ℜ{vir}
p

∥∥∥∥2

R/Z
≤ 32Czm

}
,
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Note that since vi ∈ Z+ iZ, the map

r 7→
∥∥∥∥ℜ{vir}

p

∥∥∥∥
R/Z

is indeed well-defined as a map from Fp + iFp to [0,1]. Note also that, since Pm0 ⊂ B1, the size of P′m0
(I)

(as a subset of Fp + iFp) is atleast the size of Pm0 (as a subset of 1
p · (Z+ iZ)) i.e. the way we have defined

various objects ensures that there are no wrap-around issues. We claim that for all integers t ≥ 1,

tP′m(I)⊆ P′t2m(I). (7)

Indeed, for r1, . . . ,rt ∈ P′m(I)⊆ Fp + iFp, we have

∑
i∈I

∥∥∥∥ℜ

{
vi
(r1 + · · ·+ rt)

p

}∥∥∥∥2

R/Z
= ∑

i∈I

∥∥∥∥ℜ{vir1}
p

+ · · ·+ ℜ{virt}
p

∥∥∥∥2

R/Z

≤∑
i∈I

(
t

∑
j=1

∥∥∥∥ℜ{vir j}
p

∥∥∥∥
R/Z

)2

≤∑
i∈I

t
t

∑
j=1

∥∥∥∥ℜ{vir j}
p

∥∥∥∥2

R/Z

≤ t
t

∑
j=1

∑
i∈I

∥∥ℜ{vir j/p}
∥∥2
R/Z

≤ 32Czt2m,

which gives the desired inclusion.
We now use the Cauchy-Davenport theorem for Fp + iFp ' F2

p (see, e.g., [3]), which states that every
pair of nonempty A,B⊆ Fp + iFp satisfies

|A+B| ≥min{p2, |A|+ |B|− p}.

It follows that for all integers t ≥ 1,

|tP′m(I)| ≥min{p2, t|P′m(I)|− t p}.

Hence, by Equation (7), we have

|P′t2m(I)| ≥min{p2, t|P′m(I)|− t p}. (8)

We also claim that |P′m(I)| < p2 as long as m ≤ |I|/500Cz. Indeed, since the map Fp + iFp 3 r(=
r1 + ir2) 7→ℜ{ar}= a1r1−a2r2 ∈ Fp is a p-to-1 surjection for every non-zero a := a1 + ia2 ∈ Fp + iFp,
we have

∑
r∈Fp+iFp

∑
i∈I
‖ℜ{vir}/p‖2

R/Z = |I|p ∑
r∈Fp

‖r/p‖2
R/Z

≥ |I|p ·
(p−1)/2

∑
r′=1

(r′/p)2

>
|I| · p2

15
.
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On the other hand, from the definition of P′m(I),

∑
r∈Fp+iFp

∑
i∈I
‖ℜ{vir}/p‖2

R/Z ≤ |P
′
m(I)| ·32Czm+

(
p2−|P′m(I)|

)
· |I|.

Comparing these two bounds proves the claim. Combining this claim with Equation (8) along with the
assumption that k ≥ 1000Cz shows that

|P′M(I)|&
√

M
m0

(
|P′m0

(I)|− p
)

&

√
M
m0
|P′m0

(I)|

&

√
M
m0

ρ exp(m0/8)p2

&
√

Mρ exp(m0/16)p2,

where the second line follows since |P′m0
(I)| ≥ |P′m0

|& ρ p2 ≥C1.3 p by assumption.

Remark 5.1. Whereas we have related the size of P′m(I) to the size of P′t2m(I), [22] uses a similar
computation to deduce information about the size of iterated sumsets of {v1, . . . ,vn}. This information is
then combined with Freiman-type inverse theorems to provide structural information about {v1, . . . ,vn}.
Thus, we see that by ‘dualizing’ the argument in [22], one is able to bypass the need for Freiman-type
theorems, as far as the counting variant of the inverse Littlewood-Offord problem is concerned.

Step 5: Passing to Rk(vvv). Since cos(2πx)≥ 1−20‖x‖2
R/Z for all x ∈ R, it follows that

P′M(I)⊆ P′′M(I) :=

{
r ∈ Fp + iFp : ∑

i∈I
cos(2πℜ{vir}/p)≥ |I|−2000CzM

}
.

By considering the random variable r 3 Fp + iFp 7→ ∑i∈I cos(2πℜ{vir}/p), we have for any k ∈ N that

|P′′M(I)|(|I|−2000CzM)2k ≤ ∑
r∈Fp+iFp

∣∣∣∣∣∑j∈I
cos(2πℜ{v jr}/p)

∣∣∣∣∣
2k

=
1

22k ∑
r∈Fp+iFp

(
∑
j∈I

e2πiℜ{v jr}/p + e−2πiℜ{v jr}/p

)2k

=
1

22k ∑
r∈Fp+iFp

∑
ε1,...,ε2k∈{±1}

∑
j1,..., j2k∈I

e2πiℜ{(ε1v j1+···+ε2kv j2k )r}/p

=
1

22k ∑
r1∈Fp

∑
r2∈Fp

∑
ε1,...,ε2k∈{±1}

∑
j1,..., j2k∈I

e2πi(ε1ℜ{v j1}+···+ε2kℜ{v j2k})r1/pe−2πi(ε1ℑ{v j1}+···+ε2kℑ{v j2k})r2/p

=
1

22k ∑
ε1,...,ε2k∈{±1}

∑
j1,..., j2k∈I

p2 ·δ0(ε1ℜ{v j1}+ · · ·+ ε2kℜ{v j2k}) ·δ0(ε1ℑ{v j1}+ · · ·+ ε2kℑ{v j2k})

=
1

22k ∑
ε1,...,ε2k∈{±1}

∑
j1,..., j2k∈I

p2 ·δ0(ε1v j1 + · · ·+ ε2kv j2k), (9)
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where the second last line follows again using the integrality of ℜ{v1},ℑ{v1} . . . ,ℜ{vn},ℑ{vn}.
From here on, we will use a slight modification of the results of [8] to finish the proof. We begin with

the following key definition.

Definition 5.2. Suppose that vvv ∈ (Fp + iFp)
n for an integer n and a prime p, and let k ∈ N. For every

α ∈ [−1,1], we define Rα
k (vvv) to be the number of solutions to

±vi1±·· ·± vi2k = 0

that satisfy |{i1, . . . , i2k}| ≥ (1+α)k.

The following elementary lemma from [8] shows that for ‘small’ positive α , Rα
k (vvv) is not much

smaller than R−1
k (vvv).

Lemma 5.3 (Lemma 1.6 in [8]). For all integers k,n with k ≤ n/2, any prime p, vector vvv ∈ (Fp + iFp)
n,

and α ∈ [0,1],
R−1

k (vvv)≤ Rα
k (vvv)+(40k1−αn1+α)k.

Proof. By definition, R−1
k (vvv) is equal to Rα

k (vvv) plus the number of solutions to±vi1±vi2 · · ·±vi2k = 0 that
satisfy |{i1, . . . , i2k}|< (1+α)k. The latter quantity is bounded from above by the number of sequences
(i1, . . . , i2k) ∈ [n]2k with at most (1+α)k distinct entries times 22k, the number of choices for the ± signs.
Thus

R−1
k (vvv)≤ Rα

k (vvv)+
(

n
(1+α)k

)(
(1+α)k

)2k22k ≤ Rα
k (vvv)+

(
4e1+αk1−αn1+α

)k
,

where the final inequality follows from the well-known bound
(a

b

)
≤ (ea/b)b. Finally, noting that

4e1+α ≤ 4e2 ≤ 40 completes the proof.

Let vvvI denote the |I|-dimensional vector obtained by restricting vvv to the coordinates corresponding to
I. Recognizing the right hand side of Equation (9) as

p2R−1
k (vvvI)

22k ,

it follows from Equation (9) and the above lemma that for any k ≤
√
|I| and α ∈ [0,1/8],

Rα
k (vvvI)& (|I|−2000CzM)2k22k

ρ
√

M− (40k1−α |I|1+α)k

& |I|2k22k
ρ
√

M− (40k1−α |I|1+α)k

& |I|2k22k
ρ
√

M− (40|I|(3/2)+α)k

& |I|(3/2)k
(

22k
√
|I|

k
ρ
√

M− (40)k|I|αk
)

& |I|(3/2)k
(

22k
√
|I|

k
ρ
√

M
)

& |I|2k22k
ρ
√

M,

where the second line follows from the assumption that Mk ≤ 2s ≤ 2|I|, the third line follows from
the assumption that k ≤

√
s ≤

√
|I|, and the fifth line follows from the assumption that ρ > s−k/4 ≥
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s−(k/2)+2αk ≥ |I|−(k/2)+2αk.

Step 6: Applying the counting lemma. Let us summarize where we stand. We have proved that for
any complex random variable z satisfying Equation (2), there exists an absolute constant C :=C(Cz)≥ 1
for which the following holds. If vvv ∈ (Z+ iZ)n satisfies ρ1,z(vvv) := ρ ≥C1.3 max{e−s/k,s−k/4} for some
1000Cz ≤ k ≤

√
s≤ s≤ n/ logn and sufficiently large C1.3, and if α ∈ [0,1/8], then either

1. |V |< s (where V := supp(ϕp(vvv))), or

2. for all I ⊆V with |I| ≥ s,

Rα
k (vvvI)≥

|I|2k22kρ
√

M
C

.

Hence, it follows that

ϕp
(
VVV ρ

)
⊆ XXX s +

n⋃
m=s

YYY α
k,s,ρ(m), (10)

where
XXX s := {aaa ∈ (Fp + iFp)

n : |supp(aaa)|< s} ,

and

YYY α
k,s,ρ(m) :=

{
aaa ∈ (Fp + iFp)

n : |supp(aaa)|= m and Rα
k (aaaI)≥

22k|I|2kρ
√

M
C

∀I ⊆ supp(aaa) with |I| ≥ s

}
.

We will bound the size of each of these pieces separately. For |XXX s|, the following simple bound suffices:

|XXX s| ≤
s−1

∑
`=0

(
n
`

)
(p2)` ≤ s

(
n
s

)
p2s ≤ s

(
enp2

s

)s

≤
(

5np2

s

)s

. (11)

On the other hand, the desired bound on YYY α
k,s,ρ(m) follows easily from a slight modification of the work

in [8].

Theorem 5.4. Let p be a prime, let k,n ∈ N, s ∈ [n], t ∈ [p], and let α ∈ (0,1). Denoting

BBBα
k,s,≥t(n) :=

{
vvv ∈ (Fp + iFp)

n : Rα
k (vvvI)≥ t · 2

2k · |I|2k

p
for every I ⊆ [n] with |I| ≥ s

}
,

we have
|BBBα

k,s,≥t(n)| ≤ (αt)s−n pn+s.

The proof of this theorem follows easily from a slight modification of the proof of Theorem 1.7 in [8].
For the reader’s convenience, we provide complete details in Appendix A.

Corollary 5.5. For our choice of parameters, |YYY α
k,s,ρ(m)| ≤

(
16C

ρ
√

M

)n
.
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Proof. After paying an overall factor of
(n

m

)
, it suffices to count only those aaa ∈ YYY α

k,s,ρ(m) for which
supp(aaa) = [m]. The key point is that, by definition, for any such aaa, we have

aaa|[m] ∈ BBBα
k,s,≥t(m),

for t = bpρ
√

M/Cc. Therefore, by Theorem 5.4, it easily follows that

|YYY α
k,s,ρ(m)| ≤

(
n
m

)
(αt p)s

( p
t

)m

≤ 2n(t p)s
( p

t

)n

≤ 2n
(

p2
√

M
)s
(

2Cp
pρ
√

M

)n

≤ (p2
√

M)s
(

4C
ρ
√

M

)n

≤
(

16C
ρ
√

M

)n

,

as desired.

From Equations (10) and (11) and Corollary 5.5, and noting that M = 2s/k, it follows that

|ϕp(VVV ρ)| ≤
(

5np2

s

)s

+n ·

(
16Cρ−1√

s/k

)n

≤
(

5np2

s

)s

+

(
32Cρ−1√

s/k

)n

≤
(

5np2

s

)s

+

(
C1.3ρ−1√

s/k

)n

,

where the final inequality follows since we can take C1.3 larger than 32C. This completes the proof of
Theorem 1.3.

Appendix

A Proof of Theorem 5.4

In this section, we prove Theorem 5.4 using an elementary double counting argument appearing in [8].

Proof. Let Z be the set of all triples(
I,(is+1, . . . , in) ,

(
Fj,εεε

j)n
j=s+1

)
,

where
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1. I ⊆ [n] and |I|= s,

2. (is+1, . . . , in) ∈ [n]n−s is a permutation of [n]\ I,

3. each Fj := (` j,1, . . . , ` j,2k) is a sequence of 2k elements of [n], and

4. εεε j ∈ {±1}2k for each j,

that satisfy the following conditions for each j:

a. ` j,2k = i j and

b. (` j,1, . . . , ` j,2k−1) ∈
(
I∪{is+1, . . . , i j−1}

)2k−1.

Claim A.1. The number of triples in Z is at most (s/n)2k−1 ·
(
2n−sn!/s!

)2k.

Proof. One can construct any such triple as follows. First, choose an s-element subset of [n] to serve as I.
Second, considering all j ∈ {s+1, . . . ,n} one by one in increasing order, choose: one of the n− j+1
remaining elements of [n] \ I to serve as i j; one of the 22k possible sign patterns to serve as εεε j; and
one of the ( j−1)2k−1 sequences of 2k−1 elements of I∪{is+1, . . . , i j−1} to serve as (` j,1, . . . , ` j,2k−1).
Therefore,

|Z| ≤
(

n
s

)
·

n

∏
j=s+1

(
(n− j+1) ·22k · ( j−1)2k−1

)
=

n!
s!(n− s)!

· (n− s)! ·22k(n−s) ·
(
(n−1)!
(s−1)!

)2k−1

=
( s

n

)2k−1
·
(

2n−s · n!
s!

)2k

.

We call aaa = (a1, . . . ,an) ∈ (Fp+ iFp)
n compatible with a triple from Z if for every j ∈ {s+1, . . . ,n},

2k

∑
i=1

εεε
j
i a` j,i = 0. (12)

Claim A.2. Each triple from Z is compatible with at most p2s sequences aaa ∈ (Fp + iFp)
n.

Proof. Using a, we may rewrite Equation (12) as

εεε
j
2kai j =−

2k−1

∑
i=1

εεε
j
i a` j,i .

It follows from b that once a triple from Z is fixed, the right-hand side above depends only on those
coordinates of the vector aaa that are indexed by i ∈ I ∪{is+1, . . . , i j−1}. In particular, for each of the
p2s possible values of (ai)i∈I , there is exactly one way to extend it to a sequence aaa ∈ (Fp + iFp)

n that
satisfies Equation (12) for every j.
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Claim A.3. Each sequence aaa ∈ BBBα
k,s,≥t is compatible with at least(

2n−sn!
s!

)2k

·
(

αt
p

)n−s

triples from Z.

Proof. Given any such aaa, we may construct a compatible triple from Z as follows. Considering all
j ∈ {n, . . . ,s+1} one by one in decreasing order, we do the following. First, we find an arbitrary solution
to

±a`1±a`2±·· ·±a`2k = 0 (13)

such that `1, . . . , `2k ∈ [n]\{in, . . . , i j+1} and such that `2k is a non-repeated index (i.e., such that `2k 6= `i

for all i ∈ [2k−1]). Given any such solution, we let `2k serve as i j, we let the sequence (`1, . . . , `2k) serve
as Fj, and we let εεε j be the corresponding sequence of signs (so that Equation (12) holds). The assumption

that aaa ∈ BBBα
k,s,≥t(n) guarantees that there are at least t · 22k·(n− j+1)2k

p many solutions to Equation (13), each
of which has at least 2αk nonrepeated indices. Since the set of all such solutions is closed under every
permutation of the `is (and the respective signs), `2k is a non-repeated index in at least an α-proportion
of them. Finally, we let I = [n]\{in, . . . , is+1}. Since different sequences of solutions lead to different
triples, it follows that the number Z of compatible triples satisfies

Z ≥
n

∏
j=s+1

(
αt · 2

2k · (n− j+1)2k

p

)
=

(
2n−sn!

s!

)2k

·
(

αt
p

)n−s

.

Counting the number P of pairs of aaa ∈ BBBα
k,s,≥t(n) and a compatible triple from Z, we have

|BBBα
k,s,≥t(n)| ·

(
2n−sn!

s!

)2k

·
(

αt
p

)n−s

≤ P≤ |Z| · p2s ≤
( s

n

)2k−1
·
(

2n−sn!
s!

)2k

· p2s,

which yields the desired upper bound on |BBBα
k,s,≥t(n)|.
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205–208. MR 0182619 6

[30] Daniel A Spielman and Shang-Hua Teng, Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time, Journal of the ACM (JACM) 51 (2004), no. 3, 385–463. 3

[31] , Smoothed analysis: an attempt to explain the behavior of algorithms in practice, Commu-
nications of the ACM 52 (2009), no. 10, 76–84. 3

[32] Terence Tao and Van H. Vu, Additive combinatorics, vol. 105, Cambridge University Press, 2006. 6

DISCRETE ANALYSIS, 2021:10, 40pp. 39

http://dx.doi.org/10.19086/da


VISHESH JAIN

[33] , The condition number of a randomly perturbed matrix, Proceedings of the 39th Annual
ACM Symposium on Theory of Computing, 2007, pp. 248–255. 4

[34] , On the singularity probability of random Bernoulli matrices, Journal of the American
Mathematical Society 20 (2007), no. 3, 603–628. 2

[35] , Random matrices: the circular law, Communications in Contemporary Mathematics 10
(2008), no. 02, 261–307. 4, 5, 6, 7, 10, 12, 14, 15

[36] , Inverse Littlewood-Offord theorems and the condition number of random discrete matrices,
Annals of Mathematics (2009), 595–632. 6

[37] , A sharp inverse Littlewood-Offord theorem, Random Structures Algorithms 37 (2010),
no. 4, 525–539. MR 2760363 5

[38] , Smooth analysis of the condition number and the least singular value, Mathematics of
computation 79 (2010), no. 272, 2333–2352. 4, 5, 8, 12

[39] Terence Tao, Van H. Vu, and Manjunath Krishnapur, Random matrices: Universality of ESDs and
the circular law, The Annals of Probability 38 (2010), no. 5, 2023–2065. 4

[40] Konstantin Tikhomirov, Invertibility via distance for noncentered random matrices with continuous
distributions, Random Structures & Algorithms 57 (2020), no. 2, 526–562. 4

[41] , Singularity of random Bernoulli matrices, Annals of Mathematics 191 (2020), no. 2,
593–634. 2

[42] Roman Vershynin, Introduction to the non-asymptotic analysis of random matrices, p. 210–268,
Cambridge University Press, 2012. 12

AUTHOR

Vishesh Jain
Stanford University
Stanford, CA, USA
visheshj stanford edu
https://jainvishesh.github.io/

DISCRETE ANALYSIS, 2021:10, 40pp. 40

https://jainvishesh.github.io/
http://dx.doi.org/10.19086/da

	1 Introduction
	1.1 Smoothed analysis of the least singular value
	1.2 Our results
	1.3 The counting problem in inverse Littlewood-Offord theory

	2 Preliminaries
	3 Warm-up: proof of thm:main-smoothed-analysis in the subgaussian case
	3.1 Properties of subgaussian random variables
	3.2 Rich and poor vectors
	3.3 Counting Gaussian integer vectors approximating scaled rich vectors
	3.4 Proof of prop:jl-subgaussian

	4 Proof of thm:main-smoothed-analysis
	4.1 Lévy concentration functions of -close vectors
	4.2 Regularization of Nn
	4.3 Rich and poor vectors
	4.4 Eliminating poor vectors
	4.5 Eliminating rich vectors
	4.6 Proof of prop:counting

	5 Proof of thm:counting-continuous
	A Proof of thm:counting-lemma

