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Abstract—Non-negative latent factor (NLF) models can
efficiently acquire useful knowledge from high-dimensional and
sparse (HiDS) matrices filled with non-negative data. Single latent
factor-dependent, non-negative and multiplicative update
(SLF-NMU) is an efficient algorithm for building an NLF model
on an HiDS matrix, yet it suffers slow convergence. A momentum
method is frequently adopted to accelerate a learning algorithm,
but it is incompatible with those implicitly adopting gradients like
SLF-NMU. To build a fast NLF model, we propose a generalized
momentum method compatible with SLF-NMU. With it, we
further propose a single latent factor-dependent, non-negative,
multiplicative and momentum-incorporated update (SLF-NM>U)
algorithm, thereby achieving a fast non-negative latent factor
(FNLF) model. Empirical studies on six HiDS matrices from
industrial application indicate that an FNLF model outperforms
an NLF model in terms of both convergence rate and prediction
accuracy for missing data. Hence, compared with an NLF model,
an FNLF model is more practical in industrial applications.

Index Terms—Big Data, Latent Factor Analysis, Non-negative
Latent Factor Model, High-dimensional and Sparse Matrix,
Recommender System, Missing Data Estimation.

I. INTRODUCTION

BIG DATA-RELATED application commonly involves a
huge amount of entities, e.g., millions of users are
involved in a social network service system [1-3]. In such an
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application, interactions among numerous entities result in
high-dimensional relationships. Moreover, since each entity
cannot establish complete interactions with the others, e.g., a
user cannot touch all items in a recommender system [4-6],
such high dimensional relationships can be very sparse.
High-dimensional and sparse (HiDS) matrices, where
numerous entries are unknown rather than zeroes, are
frequently adopted to describe such relationships [1-10].

Although an HiDS matrix can be extremely sparse, it
contains plenty of knowledge describing various patterns. For
instance, a user-item rating matrix from a recommender system
implicitly reflects users’ preferences on items [4-6], which are
highly useful for important knowledge acquisition tasks like
community detection [43-49]. Great efforts have been made to
extract such useful knowledge from an HiDS matrix, resulting
in various big-data analysis models [1-10]. Among them, latent
factor (LF) models are highly efficient [11-17, 50].

An LF model works by extracting LFs from observed data of
an HiDS matrix. It maps the involved entities into a unique
low-dimensional LF space, builds a cost function based on the
target matrix’s known entries and desired LFs, and then
minimizes this cost function with regard to these LFs. The
obtained LFs are treated as the entity features hidden in the
observed part of an HiDS matrix, and can be applied to various
data analysis tasks. For instance, in a recommender system,
they form the low-rank approximation to an HiDS matrix for
estimating its missing data, thereby predicting users’ potential
preferences [11-17, 50].

As shown in prior research [11-17, 50], current LF models
are highly efficient in both computation and storage when
addressing an HiDS matrix. However, most of them do not
fulfill the non-negativity constraints. Note that industrial data
like rating data in a recommender system [4-6] and interaction
weights in protein interactome mapping [7-9] are commonly
defined to be non-negative. When addressing a non-negative
HiDS matrix, it is significant to constrain desired LFs to be
non-negative for describing its non-negative data more
precisely [18-20]. Moreover, non-negative LFs can precisely
describe hidden patterns like community tendency and user
preferences [1, 3, 19, 20]. Hence, it is vital to develop LF
models which fulfill the non-negativity constraints.

Given a complete matrix, non-negative matrix factorization
(NMF) models can acquire non-negative LFs from it [18-26].
Paatero and Tappe [22] adopt alternating least squares (ALS) to
build an NMF model. It truncates negative LFs to be zeroes
during the ALS-based training process to maintain their
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non-negativity. Lee and Seung [18, 21] derive the non-negative
and multiplicative update (NMU) algorithm, which keeps the
negativity of desired LFs if they are initially non-negative. Lin
[23] proposes projected gradient decent to implement an NMF
model. It also works by truncating negative LFs to be zeroes
during the training process, but adopts the gradient descent as
the learning algorithm. These models and their extensions
[21-28] well analyze a complete matrix, but cannot address an
HiDS one with numerous missing data.

For adapting existing NMF techniques to HiDS matrices,
Zhang et al. propose a weighted NMF (WNMF) [19] model. It
constructs an intermediate matrix by filling the unknown
entries of the target matrix with zeroes, and then applies the
NMU algorithm to it to obtain non-negative LFs. Xu et al. [20]
propose a non-negative matrix completion (NMC) model,
which adopts a full approximation to the target matrix and then
applies projected ALS to it for non-negative LFs. These models
can address an HiDS matrix [21-28], but are defined on its full
approximation. As a consequence, they suffer unacceptably
high computational and storage costs. For example, the
MovieLens 20M matrix [42] has 20,000,263 instances
scattering in 138,493 rows and 26,744 columns. Its data density
is 0.54% only, but its entry count (including the unknown ones)
is more than 3.7 billion. To manipulate its full approximation
with so many entries is extremely expensive in both
computation and storage. Moreover, with careful model design,
such burden can be greatly alleviated [20, 30].

For performing non-negative latent factor analysis on HiDS
matrices efficiently, Luo et al. [20, 30] propose the single latent
factor-dependent, non-negative and multiplicative update
(SLF-NMU) algorithm. It relies on an HiDS matrix’s known
data only, thereby alleviating the computational and storage
burden greatly. Based on this algorithm, they further propose a
non-negative latent factor (NLF) model. Given an HiDS matrix,
NLEF’s computational cost is linear with its known entry count
only, and its storage cost is linear with the sum of its user and
item counts only [20, 30].

In spite of its low cost in both computation and storage,
SLF-NMU makes an NLF model suffer low-tail convergence
[20, 30], i.e., it takes many iterations to make the model
converge. In industrial applications, a model’s convergence
rate is vital. Hence, how to further accelerate an NLF model
becomes an emerging issue.

As unveiled by prior work [31, 32], a gradient descent
(GD)-based algorithm’s convergence rate can be significantly
improved by a momentum method. A momentum method
works by recording the update of involved parameters in each
iteration, and deciding their next update by linearly combining
the current gradient and previous update [12, 31, 32]. However,
it is designed for algorithms explicitly depending on gradients.
In contrast, an SLF-NMU algorithm trains non-negative LFs
multiplicatively for keeping their non-negativity. It depends on
gradients implicitly. Therefore, an SLF-NMU algorithm is
incompatible with a standard momentum method.

Is it possible to accelerate an SLF-NMU algorithm by
incorporating momentum effects into it, thereby achieving a
fast non-negative latent factor (FNLF) model? To answer this

question, this work proposes a generalized momentum method,
which keeps the principle of a standard momentum method but
implicitly depends on gradients. Based on this generalized
momentum method, we propose a single latent
factor-dependent, non-negative, multiplicative and
momentum-incorporated update (SLF-NM?”U) algorithm. With
it, we further achieve an FNLF model for HiDS matrices. The
main contributions of this paper include:

a) A generalized momentum method which is compatible with
learning algorithms implicitly depending on gradients;

b) An FNLF model, which applies a generalized momentum
method with an NLF model to achieve better performance; and
c¢) Algorithm design and analysis for an FNLF model.

For validating the performance of an FNLF model, we have
conducted empirical studies on six HiDS matrices generated by
real applications. To the authors’ best knowledge, such efforts
have been never seen in any previous work.

The rest of this paper is organized as follows. Section II gives
the preliminaries. Section III presents our methods. Section IV
gives the experimental results. Section V discusses some
related issues. Finally, Section VI concludes this paper.

II. PRELIMINARIES

A. Problem Formulation

An HiDS matrix describes certain relationships among
entities involved in big data-related application, which is
defined as follows:

Definition 1: Let M and N be two large entity sets; R be a
matrix whose entry #,, describes certain relationship between
m€EM and n€N; A and I be known and unknown entry sets of R;
R is an HiDS matrix if |A|<<|T|.

An LF model tries to build a low-rank approximation to an
HiDS matrix. Given R, it is defined as follows:

Definition 2. Given R and A, an LF model builds R’s rank-d
approximation R=PQ", where P"** and 0" are LF matrices
and d<<min{|M|, |N]}.

Note that P and Q are defined as the LF matrices reflecting
characteristics of M and N represented by A, and d is the
dimension of the LF space. To obtain P and Q, an objective
function is designed to measure the difference between R and R
with respect to A only. With the Euclidean distance, such an
objective function is formulated by [20, 30]:

. I : 2
argmlné;“(P,Q):_ Z (rm,n _zpm,kqn,kj H (1)
P.0 2 =

where 7, ,, pni and g, denote specified entries in R, P and Q,
respectively.

d
Let 7,,=> p,.q,. » we extend objective (1) into the

k=1
following form for correctly describing non-negative data:

. 1 g i
argming(P,0)=— T — mknk | >
Fanelho) 22[ 27 q] &)
s.t. Vm EM,”! EN,ke{laza""d} :pm,k 207 qn,k 20

Meanwhile, LF analysis on an HiDS matrix is ill-posed [11-17,
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20], calling for regularization design. So we regularize (2) as:

) 1 .
argmin(P.0) =1 3 ((r .. <4+ o)

Tinn €

1 R dﬂ d
:5 z{\((nn,n _rm,n )2 +1P2:_l,p31,k +2’Q;q3,k j’ (3)

T

>0,

st. VYmeM,neN,ke{l,2,...d}:p,, >
where ||| computes the Frobenius norm of an enclosed matrix,
and Ap and Ay are the regularization coefficients for P and O,

respectively.

G 2 0;

B. Non-negative Latent Factor Model

For extracting non-negative LFs from A, NLF adopts the
SLF-NMU algorithm to minimize objective (3). It firstly
applies the additive gradient descent (AGD) to each desired LF,

resulting in the following update rule:
AGD
argmine(P,0) =
PO

Pus € Pui=Mi 2 (AeDui=00i (s =700))0 (@)

ne/\(m)

Qo < Do~ Z (ﬂQqn,k ~ Pk (rm,n _;m,n ))

mEA(n)

where A(m) and A(n) denote the subsets of A related to m and n,

Nmi and 77, denote the learning rates corresponding to p,,, and

qn» respectively. With (4), p,,.. and g, , can be negative due to

Mk z (qn,k’cm,n + ﬂppm,k) and -7, Z(: )(pm,k’;m,n +/1Qqn,k) >
ne(m) meA(n

which are negative terms in the AGD-based learning rules. For

cancelling them, SLF-NMU manipulates #,,; and 7, as:

Mg = pm,k/( Z Guilon tAp |A(m)| pm,kj’

neA(m)

Mo =q,,,,/ [ Z(l )pm,kfm,n + Ao A (n) q,1,k]-
meA(n

By instituting (5) into (4), the learning rules for p,,, and g, 4

are reformulated as follows [20]:
SLF -NMU
argming(P,Q0) =
P,0

)

Z GilntAp |A(m)| pm,kj’

neA(m)

pm,k <_ljm,k z qn,krm,n//(

neA(m)

qn,k (_qn,k z pm,krm,n/( z pm,kfm,n +ﬂ’Q|A(n) qn,k}'
mEA(n) me/\(ﬂ)

(6)
With (6), the original NLF model is achieved, which is
frequently adopted in various data analysis tasks [33-36].

C. Momentum Method

Gradient descent (GD) is a widely-adopted optimization
algorithm [31, 32]. Given the decision parameter 6 of the
objective J(0), a standard GD algorithm updates 6 as follows:

‘9[ :6:71 - 77V9J(6) (7)

where 6, and 6., denote the states of 6 at the 7th and (z1)th
iterations, # denotes the learning rate, respectively. As
indicated by prior work [11-17], GD is also frequently adopted
by LF models.

However, for a complex model built on large-scale data,
adopting GD can usually result in slow convergence [31, 32].
This is because GD can be easily trapped by ravines scattering
around local optima, where the surface curves in one dimension
are far steeper than those in another [31, 32]. When
encountering such a ravine, GD makes a model oscillate across
its slopes [31, 32], resulting in slow convergence as in Fig. 1.

(a) Without momentum

(b) With momentum

Fig. 1. Training process by GD with/without momentum.

y of the previous
gradient

Previous gradient

B \ = *ic

A

Actual updating
Starting point

direction of B

Current gradient

Fig. 2. Illustration of the fundamentals of momentum.

For accelerating a GD algorithm, prior researchers propose
the momentum method [31, 32], whose principle is depicted in
Fig. 2. With it, a GD algorithm records the update of the latest
iteration, and determines the update of the current iteration as a
linear combination of the current gradient and the latest update.
Formally, given the decision parameter € of objective J(6), a
momentum-incorporated GD algorithm updates it as follows:

v, =0,
Vi ="V +77V.9J('9H )’ (3
Ht = Ht—l V-

In (8), vo denotes the initial state of the update velocity and is
set at 0, v, and v, denote the update velocity vectors of the t#th
and (#-1)th iterations, and y denotes the constant balancing the
effects of the previous update velocity vector and current
gradient, respectively. Therefore, a momentum-incorporated
GD algorithm updates the desired parameters along the
direction between the actual gradient and the latest update
velocity vector, thereby dampening oscillations to achieve fast
convergence as depicted in Fig. 2.
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An NLF model extracts non-negative LFs from an HiDS
matrix via SLF-NMU, which is actually implemented by
manipulating the learning rates in a GD algorithm to obtain the
multiplicative update rules (6). On the other hand, a momentum
method combines the current gradient and latest update
velocity vector to accelerate a GD algorithm. Intuitively, we
expect to accelerate an NLF model’s training process via
incorporating the momentum method into an SLF-NMU
algorithm. Nonetheless, as shown in (6), the SLF-NMU-based
learning rules in an NLF model depend on gradients implicitly,
while momentum-incorporated learning rules (8) explicitly rely
on the gradients of decision parameters in each iteration. Hence,
we need to generalize the standard momentum method, making
it depend on the decision parameters’ update increments rather
than their gradients, thus compatible with an NLF model. Next
we present our method.

III. FAST NON-NEGATIVE LATENT FACTOR MODEL

A. Generalized Momentum Method

A standard momentum method is designed for a GD
algorithm [31, 32] which adopts gradients explicitly as in (8).
However, from (8) we see that the parameter update in a
momentum-incorporated GD algorithm naturally consists of
the following components:

a) Initial state of decision parameters, i.e., 6, in (8);

b) Update increment by the adopted algorithm. In (8), the
update increment by GD is #V4J(6); and

¢) Velocity momentum by the latest velocity, i.e., yv.; in (8).

Actually, in an algorithm implicitly depending on gradients,
we can also calculate the update increment by the adopted
algorithm. Let ', denote the expected state of the decision
parameter on the adopted algorithm after the rth iteration, then
we calculate the update increment as follows:

A =6-86. )
By replacing the gradient-dependent term in (8) with the
parameter update (9), we obtain a generalized form of the
update velocity vector in the #th iteration:
Vt:yvr—l_At:7‘}:—1_(0;_@—1)' (10)
For verifying (10), with GD as the optimization algorithm we
have the following inferences:
g'=0_, —T]VQJ(QH )’

= At = ‘9;_‘9:-1 = _ﬂvg‘](et—l )9
=V, =, —A = +1V,J(6);

(11)

where we see the equivalence of the velocity update rules in (8)
and (10). Thus, by combining (8) and (10), we achieve a
generalized momentum method:

v, =0,
Vi :7/":71_(9;,_9#1)7 (12)
Ht :et—l_vt'

By comparing (12) and (8), we see the main difference
between a generalized momentum method and a standard one: a
standard momentum method explicitly adopt the gradient of the

objective function with respect to the decision parameter, while
a generalized momentum method relies on the latest status of
the decision parameter and the expected state of the decision
parameter relying on an adopted learning algorithm. Hence, a
generalized momentum method is compatible with an NLF
model in the following aspects:

a) As shown in (6), NLF adopts SLF-NMU as the learning
algorithm, which depends on gradients implicitly. With it, the
update increment of decision parameters can still be achieved.
Hence, we can deduce the expression for the velocity update in
(12) based on SLF-NMU, making the generalized momentum
method compatible with an NLF model; and

b) As shown in (6), SLF-NMU is also a gradient-dependent
learning algorithm: it adopts carefully-chosen learning rates to
achieve the multiplicative update. Consequently, it still suffers
ravine traps. By applying the generalized momentum method to
it, we can probably improve its convergence rate and prediction
accuracy for missing data by adjusting its learning direction
during the optimization process, following the principle of a
momentum method given in Section II(C).

B. SLF-NM*U Algorithm

By combining Sections II(A-B), we design the SLF-NM*U
algorithm. Let P, and Q,| denote the status of P and Q after the
(-1)th iteration, and P’, and Q’, denote the status after the tth
iteration with SLF-NMU, respectively. Thus, we write the

training process of the tth iteration as follows,
SLF-NMU

(E,’Qtr)=argprélin5(PH,QH). (13)
Then the update caused by SLF-NMU is computed as:
B R,
A== (14)
Qt Qt—l

On the other hand, based on (10) and (12), we calculate vy, i.e.,
the update velocity vector for the first iteration as:

s={gls)
VW=V ==~ , >
4 oo,

where Py and Q, denote the initial state of P and Q. As shown in
prior work [20, 30], Py and Q, are random and non-negative
initial guesses for P and Q, which are generated before the first
iteration. By combining (12) and (15), we achieve the
expression of the update rule for P, and Q;:

AR AlEIAT

By substituting (16) into (15), we see that

o) ala]
v=—| |+ =— + ,
Ql QO Ql QO
which is consistent with the third equation in (12). Afterwards,
considering the second iteration, we have:
. SLF-NMU Pz’ P
(P,0;)=argmine(PR,0 )= A, =| _ |- , (18)
P.0 O] 19
where P’ and Q' denote the states of P and Q after the second

iteration with SLF-NMU. By combining (12), (16) and (18), we
achieve the update velocity vector v, for the second iteration:

(15)

)
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s LHEEME
AR

By analogy, the update rules for the third~zth iterations with

SLF-NM?U is similar to (19). Hence, with (16) and (18), we
arrive at the following training scheme:

0
A

Note that with SLF-NMU, the parameter update should be

taken with respect to each LF. Thus, by combining (6) and (20),
we obtain the following update rule:

(19)

(20)

. SLF-NM*U
argming(P,0) =
7.0

Z Gk Tnn

neA(m) 0

Z an mn+ﬂ' ‘A

neA(m)
z Pm & Vo

meA(n)

Pmk (*Pmk >
m/<

G <, ;
R Y pmAnmx+ﬂ@\A qu (1)
me(n) 0
z quk mn
t1e/\ m —
+ , c ol
I ,,,,,w A(m)p,. 7[[]3" ’?fz‘)
= l

VIEA m -1

Z P T

me. \(n) -1

an<_an Z Pmk » ﬂQ‘A(

meA(n) -1 -1

+y [qn,k Gk ];
") Dk -1 2
t-1

Velocity terms 7(pm’k—pm’kj and 7[qn,k—qnka in (21) can

t-1 -2 t-1 -2
become negative since we cannot guarantee that each LF is
non-decreasing during the training process. For keeping
resultant LFs non-negative, we truncate these velocity terms to
zeroes once they become negative, resulting in the following
training scheme:

. SLF-NM*U
argming(P,0) =
PO

z quk o

ne/\ m

Z qM m”+/1 ‘A

nA(m)
Z P T

me ’\(n) 0

an(_qm Z Pusf, ﬂQ‘A(n)

meN(n) 0 0

Z Dk Y

neA(m) -1

5
mk

Pm k Pm k

5
Dk
0

+ max {V(Pm,k — Pk J , 0} ,
ml\ -1 -2

PmA pmk
Qo Tt Ap [N (m
(2 ﬂe/\zm P ‘ -1
z P Tnn
q q mE/\ -1 + max 7 q 7(1 0
”k ”k z Pk ”mu'*';’v ‘A qu,k /le LTZk ’
-1

meA(n) -1 -1

(22)
Based on (22), we achieve the SLF-NM?U algorithm.

C. Incorporation of Linear Biases

As indicated in prior research [30], to incorporate linear
biases into an NLF model can make it achieve a stable training
process as well as high prediction accuracy for missing data of
an HiDS matrix [30]. Considering objective (3), with linear
biases BM for M and C for N, we reformulate it as follows:

argmine(B,C,P,Q)

B.C.P.Q
:—Z(( —rm”) + Ab. + Aol + A, mek iqik}
N pam

s.t. VmeM,neN,ke{l,Z,...,d}:
b,20,¢,20p,,>0, q,,20;

(23)
where the approximation 7, , to each r,,, € A is given by:
d
;;n,n = bm +Cn +zpm,kqn,k‘ (24)
k=1
Based on the inferences shown in (13)~(20), we achieve the
momentum-incorporated raining scheme for B, C, P and Q as:

Bl Bl’
t=1: G = G s
R B
ol L9
) 25)
Bl Bt Bt—l Bt72
122: e C’: +y G| G
Bl A B | B
Q[ Qt’ Ql—l Qz—Z

Then based on (6), (22) and (25), we achieve the SLF-NM*U
algorithm for a fast and biased non-negative latent factor
(FBNLF) model. Its update rules are highly close to that of an
FNLF given in (22), but is expanded with the update rules for
linear biases in B and C.

D. Algorithm Design and Analysis

From the previous sections, we design the Algorithm FNLF.
As shown in Algorithm FNLF, we adopt several auxiliary
matrices for a) caching the training increment, and b) caching
the intermediate results for computing the momentum effects.
For instance, we adopt four auxiliary matrices, i.e., PU, PD, PO
and PT for P. Among them, a) PU and PD cache the learning
increment on each instance r,,, € A, making the algorithm able
to record the training increments on all involved LFs within a
single traverse on A; and b) PO and PT cache the intermediate
states of P in the (z-1)th and (#-2)th iterations, for helping the
algorithm computing the momentum effects correctly. Similar
settings are applied to B, C and Q. Hence, the storage cost of
Algorithm FNLF relies on A, M, N, B, C, P and Q, along with
the auxiliary arrays. Their costs sum up to:

Senar =|A|+5%(|M|+|N|)xd +6x(M|+|N|).  (26)
From (26), we see that the storage cost of FNLF is linear with
the known entry count in R and number of involved entities. For

industrial applications, such storage burden is easy to resolve.
Based on Algorithm FNLF, we summarize FNLF’s
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computational cost as follows,

Tonar :@(n-(|M|+|N|)~d+n-|A|~d>%@<n~|A|-d). 27

Algorithm FNLF
Input: M, N, A, f, 7,
Operation Cost
initialize P/, py 4 ppM=d poM*—ppiMi=i=p ;. @(|M|xd)
initialize 0™/, QUM oD QON=QTN=Q, }o  O(|N| *d)
initialize ¢ = 0, Max-training-round = n 0(1)
if biased then -
initialize B, BU" BD™, BOM=BT"=B, }, (M)
initialize C"", CUM, cDM, cON=CTN=C, A¢ O(|N)
end if -
while not converge and /<n do Xt
reset PU=0, PD=0, QU=0, OD=0 O((|M|+|N]) xd)
if biased then -
reset BU=0, BD=0, CU=0, CD=0 O(|M|+|N)
end if -
/-Recording train increment-/
for each r,,,in A x|A|
d
’:m,n = lzpm,kqn.k O(d)
k=1
if biased then -
Fuw = Funth, +c, (1)
end if -
for k=1 to d xd
Pl = Py T 40ilnn o(1)
prd,, =prd,;+ qn,k’:m,n + Ap Do o(1)
qUhy g = GUy o+ Pyl o(1)
qdﬂ,A = qdﬂ,k + DosFn + /‘qumk o(1)
end for -
if biased then -
bu, =bu, +r,, o(1)
bd, =bd, +F,, + Ab, (1)
cu, =cu, +r,, @(1)
cd,=cd, +7,, +Acc, o(1)
end if -
end for -
/-Updating-/
formeM x|U|
if biased then -
b, =b, (bu,/bd,,)+max{0, y-(bo,-bt,)} 0(1)
end if -
for k=1 to d xf
gDk QU /P )t max {0, y (PO s-plns) } o(1)
end for -
end for -
forneEN x|
if biased then -
¢, =cy (cuy/cd,)tmax{0, y-(co,~ct,)} o(1)
end if -
for =1 to d xf
GG (Giin il qdy 0 max {0, 7 (§0ui-qtui)} (1)
end for -
end for -

/-Recording state of current LFs for momentum-/

PT= PO, PO=P, QT=00, 00=0 O((|M|+{N]) xd)
if biased then -
BT= BO, BO=B, CT=CO, CO=C O((|M[+N])
end if -
t=t+1 o(1)
end while -
Output P, O for FNLF

B, C, P, Q for FBNLF

Note that (27) adopts the condition |A|>max{|M],|N]} to drop
the lower-order-terms, which is constantly fulfilled in industrial
applications. Since both » and d are positive constants in
practice, the computational cost of FNLF is linear with |A].

Based on the above inferences, we see that Algorithm FNLF
is highly efficient in both computation and storage. Next we
validate the performance of FNLF and FBNLF on HiDS
matrices generated by industrial applications.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. General Settings

Evaluation Protocol. For industrial applications, one major
motivation to analyze an HiDS matrix is for missing data
estimation, owing to the great desire for discovering the full
connections among involved entities [1-9]. Hence, we adopt it
as the evaluation protocol, where a tested model’s prediction
accuracy for missing data of an HiDS matrix is concerned. It
can be measured by root mean squared error (RMSE) [11-17,
20, 30, 371:

RMSE= | |3 (r, —#.) [/TL, (28)
7, €L
where I' denotes the validation set and is disjoint with A, 7,
denotes the estimated value generated by the tested model
corresponding to the instance r,,€I, and |-| calculates the
cardinality of a given set, respectively

Meanwhile, we are also interested in the computational cost
of each tested model. We have recorded their converging
iteration count and time cost per iteration. All experiments are
conducted on a Tablet witha 2.6 GHz 17 CPU and 16 GB RAM,
and implemented in JAVA SE 7U60.

Datasets. Six HiDS matrices are adopted in our experiments.
Note that for validating the feasibility of the FNLF model in
addressing big data from real applications, all of them are real
datasets collected by industrial companies. Their details are
summarized in Table I.

TABLE 1

DETAILS OF EXPERIMENTAL DATASETS
No. Name AT M| |N] Source
DI ML20M 20,000,263 138,493 26,744 MovieLens [42]
D2  Flixter 8,196,077 147,612 48,794 Flixter [38]
D3 Douban 16,830,839 129,490 58,541 Douban [40]
D4 EM 2,811,718 72,916 1,628 EachMovie
D5  Dating 17,359,346 135,359 168,791  LibimSeTi [41]
D6  NetFlix 54,782,019 478,350 10,000 NetFlix [11-13]

As shown in Table I, all datasets are a) high-dimensional, b)
extremely sparse, and c) collected by industrial applications in
use. Hence, results on them are highly representative.

The known entry set of each HiDS matrix is randomly split
into five equally-sized, disjoint subsets. In all experiments, we
adopt the 80%-20% train-test settings and five-fold
cross-validations, i.e., each time we select four subsets as the
training set A to train a model predicting the remaining one
subset as the testing set I'. This process is sequentially repeated
for five times to obtain the final results. The training process of
a tested model terminates if a) the number of consumed
iterations reaches a preset threshold, i.e., 1000, and b) the
model converges, i.e., the error difference between two
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consecutive iterations is smaller than 107,
Model Settings. Four models are involved
experiments, whose details are given in Table II.

in our

TABLE II
COMPARED MODELS IN OUR EXPERIMENTS

No. Name Description

Original NLF model relying on
ML NLE SLF_NMU proposed in [20].

Fast NLF model relying on SLF NM?*U
M2 FNLF proposed in Section III(B).
M3  BNLF Biased NITF model relying on SLF_ NMU

proposed in [30].

. . )

M4  FBNLF Biased NLF model relying on SLF_ NM"U

proposed in Section I1I(C).

To obtain objective results, we adopt the following settings:

a) For all models, we make Ap = 1p = A3 = A¢c = 4, following the
instructions in [20, 30];

b) We initialize B, C, P and @ with the same
randomly-generated and non-negative arrays for all involved
models to eliminate the impact caused by random initial
guesses as discussed in [11-17, 20, 30]; and

¢) We repeat each set of experiments for 10 times and take the
average of the outputs as the final results.

B. Parameter Sensitivity Tests

As discussed in Section I1I, FNLF and FBNLF rely on the
regularization coefficient A and momentum coefficient y. Hence,
we firstly conduct the model sensitivity tests with respect to
them. Note that both M2 and M4 rely on SLF-NM?U, so we
present the results for M4 on all six datasets for a concise report.
However, similar situations can be found for M2. The tested
scale for A is (0.01, 0.10), and for y is (0.4, 1.4), respectively.
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Fig. 3. Relationship among RMSE, 4 and y in M4.

Fig. 3 depicts the relationship among RMSE, 4 and y in M4;
Fig. 4 depicts M4’s training process with optimal 4 as y varies;

Table III summarizes optimal A and y for M4. From them, we
have the following findings:
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Fig. 4. M4’s training process with optimal value of 1 as y varies.

a) With SLU-NM?U as the learning algorithm, M4’s RMSE is
sensitive to both 4 and y. As shown in Fig. 3, with optimal 4
and y, M4 achieves low RMSE. On the other hand,
inappropriate A and y result in accuracy loss. As shown in Fig.
3(b), by setting y=1, M4’s RMSE with 4=0.002, 0.004, 0.006,
0.008 and 0.010 is 0.8957, 0.8826, 0.8812, 0.8864 and
0.8947, respectively. The lowest RMSE is 0.8812 with
4=0.006, and the highest is 0.8957 with 1=0.002. The gap
between the highest RMSE and lowest RMSE, i.e., the ratio
calculated by (RMSEj;ghes-RMSE pye50) RMSE highess, 1s 1.62%,
which is obvious. Similar situations can be found on the
other datasets, as shown in Figs. 3(b)-(f).

b) Small y eliminates the momentum effects, while large y
makes a learning algorithm overshoot a local optimum. This
assertion is supported by the training process of M4, as
shown in Fig. 4. On D1, by setting y=0.4, M4 converges after
867 iterations, achieving the RMSE at 0.7834. In contrast,
with the optimal y=0.8 on D1, M4 consumes 654 iterations to
achieve the RMSE at 0.7823. Compared with the case of
y=0.4, the converging iteration count decreases at 24.6%
while the prediction accuracy increases at 0.14%.
Nonetheless, as y grows too large, M4 suffers overshooting,
which results in accuracy loss. For instance, as shown in Fig.
4(b), with y=1.2, M4 suffers fluctuations during the training
process, and converges with the RMSE at 0.8887. Compared
with the RMSE at 0.8812 caused by the optimal y=1.0, the
prediction accuracy decreases at 0.84%.
c¢) For an FNLF/FBNLF model, the optimal values for 4 and
y are data dependent. As summarized in Table III, for M4, the
optimal A and y keep changing on different datasets. For y,
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the optimal value is around 1.0 and may increase/decrease
slightly in our experiments. For 4, its optimal value changes
vastly on different datasets. However, on the same dataset,
the optimal value of 4 is not model-dependent. For instance,
Fig. 5 depicts the optimal 4 on D1 and D2 for M1-M4. From
it, we see that on D1 the optimal 4 is consistently 0.04 for
M1-M4. Similarly, the optimal 4 on D2 is 0.06 for M1-M4.
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Fig. 5. Optimal value of 2 on D1 and D2 for M1-M4.

TABLE 11T
OPTIMAL VALUES OF 1 AND y FOR M4 ON D1-D6.
Dataset.  Density A y Lowest RMSE
D1 0.54%  0.040 0.80 0.7823
D2 0.11%  0.060 1.00 0.8812
D3 0.22%  0.060 1.00 0.7084
D4 2.37%  0.015 1.20 0.2278
D5 0.076%  0.100 1.20 1.8311
D6 1.14%  0.020 1.00 0.8344

d) From these results, we see that FNLF and FBNLEF’s
performance is closely connected with A and y, whose
optimal values are data-dependent. y balances the training
direction between the intuitive update by the adopted
learning algorithm and momentum effects describing the
latest update. Inappropriate y makes the model converge
slow, or overshoot a local optimum. In our experiments, the
optimal y is around 1.0, as shown in Table III. Considering 4,
it controls the regularization effects. Although its optimal
value varies significantly on different dataset, it keeps
consistent for M1-M4 on the same dataset.

C. Comparison with NLF models

In this part, we compare the proposed models with the NLF
models proposed in [20, 30]. Fig. 6 depicts the training process
of M1-M4; Tables IV and V summarize the lowest RMSE and
time cost of M1-M4; Fig. 7 depicts LF distributions of M1-M4
on D2. From them, we have the following findings:

a) Owing to the generalized momentum method, an
FNLF/FBNLF model converges faster than an NLF/BNLF
model does. For instance, as shown in Fig. 6(a), M2 and M4
respectively take 677 and 654 iterations to converge on D1.
In contrast, both M1 and M3 take 1,000 iterations. These
outcomes indicate that by adopting the generalized
momentum method, an SLF-NM?U algorithm incorporates
the momentum effects correctly into it, thereby accelerating
the training process of an FNLF/FBNLF model.

b) Owing to the momentum effects, an FNLF/FBNLF model
achieves higher prediction accuracy than an NLF/BNLF
model does. For instance, on D1, M2’s RMSE is 0.7808,
about 0.15% lower than M1°s RMSE at 0.7820. M4’s RMSE
is 0.7823, about 0.31% lower than M3’s RMSE at 0.7847.
Similar situations can be found on D2-D6, as depicted in Fig.
6 and Table IV. In general, an NLF/BNLF model is
constantly outperformed by an FNLF/FBNLF model in
terms of prediction accuracy.
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Fig. 7. LF Distributions of M1-M4 on D2.

¢) With SLF-NM?U, an FNLF/FBNLF model’s time cost per

iteration is a bit higher than that of an NLF/BNLF model.
From Table V we see that the time cost per iteration on D1 by
M1, M2, M3 and M4 is 1,701, 1,804, 1,892 and 1,987
milliseconds, respectively. M2’s time cost per iteration is
about 6.06% higher than that of M1, and M4’s time cost per
iteration is about 5.02% higher than that of M3. Similar
situations are also encountered on D2-D6. By comparing
Algorithm FNLF with the Algorithm NLF/BNLF proposed
in [20, 30], we see that the former consumes more constant
time in addressing the momentum term than the latter. Hence,
it is reasonable that FNLF/FBNLF’s time cost per iteration is
slightly higher than that of NLF/BNLF.

d) LFs extracted by FNLF/BNLF are constantly non-negative.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TSMC.2018.2875452, IEEE Transactions on Systems, Man, and Cybernetics: Systems

SMCA-18-02-0222.R1

As shown in Fig. 7, all LFs extracted by M1-M4 on D2 are
scattering in the non-negative real field. Hence, SLE-NM?U
guarantees the non-negativity of output LFs.

TABLE IV
LOWEST RMSE OF M1-M4 ON D1-D6
Dataset. M1 M2 M3 M4
D1 0.7820 0.7808 0.7847 0.7823
D2 0.9058 0.9044 0.8827 0.8812
D3 0.7151 0.7139 0.7102  0.7084
D4 0.2271  0.2267 0.2298 0.2278
D5 1.878 1.853 1.841 1.831
D6 0.8333 0.8314 0.8366 0.8344
TABLE V
TIME COST PER ITERATION OF M1-M4 ON D1-D6 (MILLISECONDS)
Dataset. M1 M2 M3 M4
D1 1,701 1,804 1,892 1,987
D2 657 782 772 826
D3 1,597 1,741 1,679 1,855
D4 226 237 257 269
D5 3,127 3,285 3,879 4,115
D6 94,107 99,261 108,009 113,035

D. Summary

Based on the experimental results, we summarize that by
incorporating the momentum effects into the training process,
an FNLF/FBNLF model outperforms an NLF/BNLF model in
both convergence rate and prediction accuracy for missing data
of an HiDS matrix. However, their performance relies on hyper
parameters A and y, which should be chosen with care. In
general, the optimal values of y on different datasets scatter
around 1.0, which is quite stable. So we can adopt such
empirical values in practice. However, like in an NLF/BNLF
model, optimal value of 4 in an FNLF/FBNLF model varies
significantly on different datasets. How to make 4 self-adaptive
remains an open issue. We plan to address it in the future.

V. DISCUSSIONS

A generalized momentum method. A standard momentum
method is initially designed for a learning algorithm explicitly
depending on gradients. It is inapplicable to learning algorithms
implicitly depending on gradients, like an SLF-NMU algorithm
for NLF models. In contrast, the proposed generalized
momentum method calculates the components of ‘current
update’ in an iteration via subtracting the initial state of the
parameters from their expected state by the adopted algorithm.
With it, we successfully integrate the momentum effects into
SLF-NMU. In this work we empirically validated the effects by
a generalized momentum method in non-negative LF analysis
on HiDS matrices. However, it would be highly significantly to
show its soundness by rigorously theoretical study. We plan to
investigate this issue in the future.

Effects of momentum terms in FNLF/FBNLF. As shown
in Section IV, the momentum effects in an FNLF/FBNLF
model are significant. Compared with the original NLF/BNLF
model, an FNLF/FBNLF model converges much faster with
higher prediction accuracy for missing data of an HiDS matrix.
Note that the momentum method works by making the
searching process navigate across ravines, as shown in Fig. 1.
Hence, it turns out that the original SLF-NMU algorithm can be

easily affected by encountered ravines, but an SLF-NM?U
algorithm is less sensitive to them. It makes an FNLF/FBNLF
model achieve better local optima with much higher
convergence rate.

As indicated by prior research, LBs in an LF model can be
extended in various aspects [51, 52]. Deep learning-based
approaches [53, 54] are also becoming increasingly attractive in
LF analysis. Moreover, Hessian-free optimization based LF
analysis is also highly efficient [6]. It would be interesting to
validate the compatibility between the principle of this work
and these recent techniques.

VI. CONCLUSIONS

A non-negative latent factor (NLF) model adopts the single
latent factor-dependent, non-negative and multiplicative update
(SLF-NMU) as the learning algorithm. It suffers slow
convergence on high-dimensional and sparse (HiDS) matrices.
Meanwhile, due to its implicit dependence on gradients, it is
incompatible with a standard momentum method, which proves
to be highly effective in accelerating a learning algorithm
explicitly depending on gradients.

We firstly design a generalized momentum method
compatible with learning algorithms implicitly depending on
gradients. We subsequently apply it to the SLF-NMU algorithm,
thereby achieving a single latent factor-dependent,
non-negative, multiplicative and momentum-incorporated
update (SLF-NM”U) algorithm. With it, we further propose the
fast non-negative latent factor (FNLF) model and its biased
version, along with careful algorithm design and analysis.
Empirical studies show that an FNLF model outperforms an
NLF model in terms of both convergence rate and prediction
accuracy for missing data. Hence, it is highly useful for
industrial applications desiring highly efficient, accurate and
non-negative latent factor analysis.

REFERENCES

[11 L. Yang, X.-C. Cao, D. Jin, X. Wang, and D. Meng, “A Unified
Semi-Supervised Community Detection Framework Using Latent Space
Graph Regularization,” IEEE Trans. on Cybernetics, vol. 45, no. 11, pp.
2585-2598, 2015.

[21 Z. Ghahramani, ‘“Probabilistic machine learning and
intelligence,” Nature, vol. 521, no. 7553, pp. 452-459, 2015.

[3] D.He,D.Jin, Z. Chen, and W. Zhang, “Identification of hybrid node and
link communities in complex networks,” Scientific Reports, vol. 5, pp.
8638, 2015.

[4] G. Adomavicius, and A. Tuzhilin, “Toward the Next Generation of
Recommender Systems: A Survey of the State-of-the-Art and Possible
Extensions,” IEEE Trans. on Knowledge and Data Engineering, vol. 17,
no. 6, pp. 734-749, 2005.

[5] Y.Li B. Cao, L. Xu, J. Yin, S. Deng, Y. Yin, and Z. Wu, “An Efficient
Recommendation Method for Improving Business Process Modeling,”
IEEE Trans. on Industrial Informatics, vol. 10, no. 1, pp. 502-513, 2014.

[6] X. Luo, M.-C. Zhou, S. Li, Z.-H. You, Y.-N. Xia, Q.-S. Zhu, and H.
Leung, “An Efficient Second-order Approach to Factorizing Sparse
Matrices in Recommender Systems,” [EEE Trans. on Industrial
Informatics, vol. 11, no. 4, pp. 946 - 956, Aug., 2015.

[71 Z.-H. You, Y.-K. Lei, J. Gui, D.-S. Huang, and X.-B. Zhou, “Using
manifold embedding for assessing and predicting protein interactions
from high-throughput experimental data,” Bioinformatics, vol. 26, no. 21,
pp. 2744-2751, Nov, 2010.

[8] M. Hoftree, J. P. Shen, H. Carter, A. Gross, and T. Ideker, “Network-based
stratification of tumor mutations,” Nature Methods, vol. 10, no. 11, pp.
1108-1115,2013.

artificial



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TSMC.2018.2875452, IEEE Transactions on Systems, Man, and Cybernetics: Systems

SMCA-18-02-0222.R1

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller, J.
Huerta-Cepas, M. Simonovic, A. Roth, A. Santos, K. P. Tsafou, M. Kuhn,
P. Bork, L. J. Jensen, and C. v. Mering, “STRING v10: protein—protein
interaction networks, integrated over the tree of life,” Nucleic Acids
Research, vol. 43, no. 1, pp. D447-D452, 2015.

C.-X. Ou, and R.-M. Davison, “Technical opinion: Why eBay lost to
TaoBao in China: the Glocal advantage,” Communications of the ACM,
vol. 52, no. 1, pp. 145-148, 2009.

Y. Koren, R. Bell, and C. Volinsky, “Matrix Factorization Techniques for
Recommender Systems,” I[EEE Computer, vol. 42, no. 8, pp. 30-37, Aug.,
2009.

G. Takacs, 1. Pilaszy, Bottyan Németh, and D. Tikky, “Scalable
Collaborative Filtering Approaches for Large Recommender Systems,”
Journal of Machine Learning Research, vol. 10, pp. 623-656, Mar., 2009.
R. Salakhutdinov, and A. Mnih, “Probabilistic matrix factorization,”
Advances in Neural Information Processing Systems, vol. 20, pp.
1257-1264, 2008.

J. Wu, L. Chen, Y.-P. Feng, Z.-B. Zheng, M.-C. Zhou, and Z.-H. Wu,
“Predicting Quality of Service for Selection by Neighborhood-Based
Collaborative Filtering,” IEEE Trans. on Systems, Man, and Cybernetics:
Systems, vol. 43, no. 2, pp. 428-439, 2013.

X. Luo, M.-C. Zhou, H. Leung, Y.-N. Xia, Q.-S. Zhu, Z.-H. You, and S.
Li, “An Incremental-and-Static-Combined Scheme for
Matrix-Factorization-Based Collaborative Filtering,” IEEE Trans. on
Automation Science and Engineering, vol. 13, no. 1, pp. 333-343, Jan.,
2016.

J.-J. Pan, S.-J. Pan, Y. Jie, L.-M. Ni, and Y. Qiang, “Tracking Mobile
Users in Wireless Networks via Semi-Supervised Colocalization,” /EEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 34, no. 3, pp.
587-600, 2012.

M.-F. Weng, and Y.-Y. Chuang, “Collaborative video reindexing via
matrix factorization,” ACM Trans. Multimedia Comput. Commun. Appl.,
vol. 8, no. 2, pp. 1-20, 2012.

D.-D. Lee, and S.-H. Seung, “Learning the parts of objects by
non-negative matrix factorization,” Nature, vol. 401, pp. 788-791, 1999.
S.Zhang, W. Wang, J. Ford, and F. Makedon, “Learning from Incomplete
Ratings Using Non-negative Matrix Factorization,” in Proc. of the SIAM
Int. Conf. on Data Mining, Bethesda, USA, 2006, pp. 549-553.

X. Luo, M.-C. Zhou, Y.-N. Xia, and Q.-S. Zhu, “An Efficient
Non-Negative Matrix-Factorization-Based Approach to Collaborative
Filtering for Recommender Systems,” IEEE Trans. on Industrial
Informatics, vol. 10, no. 2, pp. 1273 - 1284, May., 2014.

D.-D. Lee, and S.-H. Seung, “Algorithms for Non-negative Matrix
Factorization,” Advances in Neural Information Processing Systems, vol.
13, no. 2000, pp. 556-562, 2000.

P. Paatero, and U. Tapper, “Positive matrix factorization: a non-negative
factor model with optimal utilization of error estimates of data values,”
Environmetrics, vol. 5, no. 2, pp. 111-126, 1994.

C.-J. Lin, “Projected gradient methods for nonnegative matrix
factorization,” Neural Computation, vol. 19, no. 10, pp. 2756-2779, 2007.
P. Hoyer, “Non-negative matrix factorization with sparseness constraints,”
Journal of Machine Learning Research, vol. 5, pp. 1457-1469, 2004.

H. Kim, and H. Park, “Sparse non-negative matrix factorizations via
alternating non-negativity-constrained least squares for microarray data
analysis,” Bioinformatics, vol. 23, no. 12, pp. 1495-1502, 2007.

W.-W. Wang, A. Cichocki, and J. A. Chambers, “A multiplicative
algorithm for convolutive non-negative matrix factorization based on
squared euclidean distance,” IEEE Trans. on Signal Processing, vol. 57,
no. 7, pp. 2858-2864, 2009.

D. Rafailidis, and A. Nanopoulos, “Modeling Users Preference Dynamics
and Side Information in Recommender Systems,” [EEE Trans. on
Systems, Man, and Cybernetics: Systems, vol. 46, no. 6, pp. 782-792,
2016.

I. Meganem, Y. Deville, S. Hosseini, P. Deliot, and X. Briottet,
“Linear-Quadratic Blind Source Separation Using NMF to Unmix Urban
Hyperspectral Images,” IEEE Trans. on Signal Processing, vol. 62, no. 7,
pp. 1822-1833, 2014.

Y. Xu, W. Yin, Z. Wen, and Y. Zhang, “An alternating direction
algorithm for matrix completion with nonnegative factors,” Frontiers of
Mathematics in China, vol. 7, no. 2, pp. 365-384, 2012.

X. Luo, M.-C. Zhou, Y.-N. Xia, Q.-S. Zhu, A. C. Ammari, and A.
Alabdulwahab, “Generating Highly Accurate Predictions for Missing
QoS Data via Aggregating Nonnegative Latent Factor Models,” IEEE
Trans. on Neural Networks and Learning Systems, vol. 27, no. 3, pp.
524-537,2016.

(311

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

10

D.-E. Rumelhart, G.-E. Hinton, and R.-J. Williams, “Learning
representations by back-propagating errors,” Nature, vol. 323, pp. 533,
1986.

S. Boyd, and L. Vandenberghe, Convex Optimization, Cambridge:
Cambridge University Press, 2009.

A. Che, P. Wu, F. Chu, and M. Zhou, “Improved Quantum-Inspired
Evolutionary Algorithm for Large-Size Lane Reservation,” IEEE Trans.
on Systems, Man, and Cybernetics: Systems, vol. 45, no. 12, pp.
1535-1548, 2015.

Q. Kang, J. Wang, M. Zhou, and A.-C. Ammari, “Centralized Charging
Strategy and Scheduling Algorithm for Electric Vehicles Under a Battery
Swapping Scenario,” [EEE Trans. on Intelligent Transportation Systems,
vol. 17, no. 3, pp. 659-669, 2015.

P. Wu, A. Che, F. Chu, and M. Zhou, “An Improved Exact e-Constraint
and Cut-and-Solve Combined Method for Biobjective Robust Lane
Reservation,” IEEE Trans. on Intelligent Transportation Systems, vol. 16,
no. 3, pp. 1479-1492, 2015.

L. Feng, and B. Bhanu, “Semantic Concept Co-Occurrence Patterns for
Image Annotation and Retrieval,” I[EEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 38, no. 4, pp. 785-799, 2016.

J. Herlocker, J. Konstan, L. Terveen, and J. Riedl, “Evaluating
collaborative filtering recommender systems,” ACM Trans. on
Information Systems, vol. 22, no. 1, pp. 5-53, 2004.

J. Mohsen, and E. Martin, “A matrix factorization technique with trust
propagation for recommendation in social networks,” in Proc. of the
Fourth ACM Conf. on Recommender Systems, Barcelona, Spain, 2010, pp.
135-142.

P. Massa, and P. Avesani, “Trust-aware recommender systems,” in Proc.
of the First ACM Conf. on Recommender Systems, Minneapolis, MN,
USA, 2007, pp. 17-24.

H. Ma, 1. King, and M.-R. Lyu, “Leaming to recommend with social trust
ensemble,” in Proc. of the 32nd Int. ACM SIGIR Conf. on Research and

Development in Information Retrieval, Boston, MA, USA, 2009, pp. 203-210.

L. Brozovsky, and V. Petricek, "Recommender system for online dating
service," eprint arXiv:cs/0703042, 2007.

J.-A. Konstan, B.-N. Miller, D. Maltz, J.-L. Herlocker, L.-R. Gordon, and
J. Riedl, “Grouplens: applying collaborative filtering to UseNet news,”
Communications of the ACM, vol. 40, no. 3, pp. 77-87, 1997.

J. Cao, Z.-A. Wu, J.-J. Wu, and H. Xiong, “SAIL: Summation-based
incremental learning for information-theoretic text clustering,” IEEE
Trans. on Cybernetics, vol. 43, no. 2, pp. 570-584, 2013.

J. Cao, Z.-A. Wu, and J.-J. Wu, “Scaling up cosine interesting pattern
discovery: A depth-first method,” Information Sciences, vol. 266, pp.
31-46,2014.

J. Cao, B. Wang, and B. Douglas, “Similarity based leaf image retrieval
using multiscale r-angle description,” Information Sciences, vol. 374, pp.
51-64,2016.

J. Cao, Z.-A Wu, J.-J. Wu, and W.-J. Liu, “Towards information-theoretic
K-means clustering for image indexing,” Signal Processing, vol. 93, no. 7,
pp. 2026-2037, 2013.

J. Cao, Z.-A. Wu, Y.-Q. Wang, and Y. Zhuang, “Hybrid Collaborative
Filtering algorithm for bidirectional Web service recommendation,”
Knowledge and information systems, vol. 36, no. 3, pp. 607-627, 2013.

J. Cao, Z.-A. Wu, B. Mao, and Y.-C. Zhang, “Shilling attack detection
utilizing semi-supervised learning method for collaborative recommender
system,” World Wide Web Journal: Internet and Web Information
Systems, vol. 16, no. 5-6, pp. 729-748, 2013.

J. Cao, Z. Bu, G.-L. Gao, and H.-C. Tao, “Weighted modularity
optimization for crisp and fuzzy community detection in large-scale
networks,” Physica A: Statistical Mechanics and its Applications, vol.
462, pp. 386-395, 2016.

W.-J. Luan, G.-J. Liu, C.-J. Jiang, and L. Qi, “Partition-based
Collaborative Tensor Factorization for POI Recommendation,”
IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 3, pp. 442-451,2017.
Y. Yuan, X. Luo, and M.-S. Shang:, “Effects of Preprocessing and
Training Biases in Latent Factor Models for Recommender Systems,”
Neurocomputing, vol. 275, pp. 2019-2030, 2018.

J. Chen, X. Luo, Y. Yuan, M.-S. Shang, Z. Ming, and Z. Xiong:,
“Performance of Latent Factor Models with Extended Linear Biases,”
Knowledge-based Systems, vol. 123, pp. 128-136, 2017.

Q. Li, B. Shen, Z. Wang, T. Huang, and J. Luo, “Synchronization Control
for A Class of Discrete Time-Delay Complex Dynamical Networks: A
Dynamic Event-Triggered Approach,” I[EEE Transactions on
Cybernetics, vol. DOI: 10.1109/TCYB.2018.2818941.


luoxi
高亮


This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final
publication. Citation information: DOI10.1109/TSMC.2018.2875452, IEEE Transactions on Systems, Man, and Cybernetics: Systems

SMCA-18-02-0222.R1

[54] B. Shen, Z. Wang, and H. Qiao, “Event-triggered State Estimation for
Discrete-time Multidelayed Neural Networks with Stochastic Parameters

Xin Luo (M’14-SM’17) received the B.S.
degree in computer science from the
University of Electronic Science and
Technology of China, Chengdu, China, in
2005, and the Ph.D. degree in computer
science from Beihang University, Beijing,
China, in 2011. He joined the Chongqing
Institute of Green and Intelligent
Technology, Chinese Academy of Sciences, Chongqing, China
in 2016, as a professor of computer science and engineering. In
2018, he joined the Dongguan University of Technology,
Dongguan, Guangdong, China, as a distinguished professor of
computer science. His research interests include big data
analysis, artificial intelligence and intelligent control. He has
published more than 90 papers (including 20+ IEEE
Transactions papers) in his related areas.

Zhigang Liu received the B.S. degree in
geographical information system from
Chongqing University of Posts and
Telecommunications, Chongqing, China,
in 2013. He is currently pursuing an M.E.
degree in computer technology at
Chongqing University, Chongqing, China.
His research interests include big data
analysis and algorithm design for large scale data applications.

Shuai Li (M’14-SM’17) received the B.E.
degree  in  Precision = Mechanical
Engineering from Hefei University of
Technology, China in 2005, the M.E.
degree in Automatic Control Engineering
from  University of Science and
Technology of China, China in 2008, and
the Ph.D. degree in Electrical and
Computer Englneermg from Stevens Institute of Technology,
USA in 2014. He is currently with Department of Computing,
The Hong Kong Polytechnic University, Hung Hom, Kowloon,
Hong Kong. His current research interests include dynamic
neural networks, recommender systems, cyber-physical
systems and multi-robotics.

Mingsheng Shang received his B.E.
degree in Management in Sichuan Normal
University in Chengdu, China in 1995, and
Ph.D. degree in Computer Science from
University of Electronic Science and
Technology of China in Chengdu, China in
2007. He is currently a professor at the
Chongqing Institute of Green and
Intelligent Technology, Chinese Academy
of Sciences, Chongqing, China. His research interests are in
complex network analysis and big data applications.

11

and Incomplete Measurements,” IEEE Trans. on Neural Networks and
Learning Systems, vol. 28, no. 5, pp. 1152-1163, 2017.

Zidong Wang (SM'03-F'14) was born in
Jiangsu, China, in 1966. He received the
B.Sc. degree in mathematics from
| Soochow University, Suzhou, China, and
the M.Sc. degree in applied mathematics
and the Ph.D. degree in electrical
engineering from Nanjing University of
| Science and Technology, Nanjing, China,
~ 7 in 1986, 1990, and 1994, respectively.
He is currently a Professor of dynamical systems and
computing in the Department of Information Systems and
Computing, Brunel University London, Middlesex, U.K. From
1990 to 2002, he held teaching and research appointments in
universities in China, Germany, and the U.K. He has published
more than 300 papers in refereed international journals. He is a
holder of the Alexander von Humboldt Research Fellowship of
Germany, the JSPS Research Fellowship of Japan, and the
William Mong Visiting Research Fellowship of Hong Kong.
His research interests include dynamical systems, signal
processing, bioinformatics, and control theory and applications.
Prof. Wang serves (or has served) as the Editor-in-Chief for
Neurocomputing and an Associate Editor for 12 international
journals, including the IEEE TRANSACTIONS ON
AUTOMATIC CONTROL, the IEEE TRANSACTIONS ON
CONTROL SYSTEMS TECHNOLOGY, the IEEE
TRANSACTIONS ON NEURAL NETWORKS, the IEEE
TRANSACTIONS ON SIGNAL PROCESSING, and the IEEE
TRANSACTIONS ON  SYSTEMS, MAN, AND
CYBERNETICS--Part C. He is a Fellow of the Royal
Statistical Society and a member of program committee for
many international conferences.





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




