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Abstract

Wemodel a learning dynamic in which players imitate and innovate.
Of interest is to question whether Nash equilibrium play emerges, and
if so, the role that imitation plays in this emergence. Our main result
provides a general class of coordination game for which approximate
Nash equilibrium play does emerge. Important conditions include that
players imitate ‘similar’ individuals. The role of imitation in learning
is discussed in the context of two examples where it is shown that
imitation can lead to Pareto superior outcomes.

∗This paper is an outgrowth of Chapter 3 of the PhD Thesis ‘Learning, bounded
rationality and conformity in games with many players’ completed at the University of
Warwick.
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1 Introduction

It is widely accepted that individuals have a tendency to imitate or conform
to the actions of others.1 This behavior may result from ‘social influences’,
such as desires for popularity and acceptance (Jones 1984 and Bernheim
1994). Alternatively, in the presence of imperfect information and bounded
rationality, imitation may be a way of drawing on the experiences of others
(Kandori, Mailath and Rob 1993, Schlag 1998). Does it follow, however,
that imitation is consistent with individual rationality? The current pa-
per addresses this issue by modelling a learning dynamic in which players
imitate and innovate and by questioning whether Nash equilibrium play
emerges in the long run. Our main results provide a family of games for
which the learning dynamic will indeed converge to an approximate Nash
equilibrium. These results suggest that imitation can be consistent with
individual rationality.

A key aspect of our model will be that players use interchangeably two
different behavioral heuristics. In particular players are assumed to use
interchangeably an imitation heuristic and an innovation heuristic. When
imitating a player refers to a subset of the population — his reference group —
and imitates the strategy of the most successful player in that group. When
innovating a player selects a strategy that will, ceteris paribus, increase his
payoff. Both of these heuristics have close parallels in the prior literature:
In particular, the imitation heuristic is similar to the imitative behavior
modelled by Selten and Ostmann (2000) (see Section 2.2) and nests as special
cases the behavior modelled by Vega-Redondo (1997) and Alos-Ferrer, Ania
and Schenk-Hoppe (2000). The innovation heuristic gives rise to, what is
commonly called, ‘a better reply dynamic’ as modelled, for example, by
Ritzberger andWeibull (1995) (see Section 2.3). The approach of the current
paper, however, is distinguished from this prior literature by allowing players
to use both heuristics.

Different learning heuristics will naturally have different advantages and
disadvantages for the players who use them. That players will mix and match
different heuristics is thus to be expected (Gigerenzer and Todd 1999). As
noted above the prior literature, in treating imitation, has frequently as-
sumed that players solely imitate, with some experimentation or error (e.g.

1Experimental evidence of social influence and imitation in the economic literature is
provided by, amongst others, Selten and Apesteguia (2002) and Offerman, Potters and
Sonnemans (forthcoming). The importance of conformity and imitation has long been
recognized in psychology and sociology (see, for example Asch 1952, Deutsch and Gerard
1955 and for a more modern discussion Gross 1996).
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Vega-Redondo 1997, Alos-Ferrer, Ania and Schenk-Hoppe 2000, Selten and
Ostmann 2000). This research has led to results demonstrating that imi-
tation leads to the emergence of non-Nash equilibrium states (e.g. Vega-
Redondo 1997 and Selten and Ostmann 2002). These results suggest that
imitation need not be consistent with individual rationality. Experimental
studies provide, however, evidence to question this conclusion. Selten and
Apesteguia (2002) and Offerman, Potters and Sonnemans (2002), for exam-
ple, while finding evidence that individuals imitate, find that imitation is not
all they do, and importantly, as a consequence, play may fail to converge on
the outcomes predicted by imitative dynamics. Reflecting on this we feel it
is crucial, as we do in the current paper, to model learning dynamics where
imitation is only one of the heuristics that players use.2

We shall focus for the most part on ‘games with many players’; that is,
games where no one individual or small group of individuals can significantly
alter the payoff of anyone but themselves. Our motivation for focussing on
this type of game stems from a belief that imitation is most likely to occur
in these games.3 To formally model ‘games with many players’ we make
use of a pregame framework introduced by Wooders, Cartwright and Sel-
ten (2003). By imposing a ‘large game property’ we are able to model a
family of games satisfying the desired properties. The pregame framework
also has the advantage that each player is characterized by an attribute; the
attributes of players provide a natural metric with which to gauge the simi-
larity of players. One interesting consequence is that we can model imitation
in populations where everyone is different. By contrast, the prior literature
typically restricts attention to symmetric games (e.g. Vega-Redondo 1997
and Gale and Rosenthal 1999). We are not restricted to symmetric games
but our main results do require, as an assumption, that each player imi-
tates similar individuals. Thus, instead of imposing symmetry we find that
(approximate) symmetry emerges as a necessary condition.

Our first result treats an imitation dynamic and provides conditions for
convergence to an imitation equilibrium; an imitation equilibrium need not
be a Nash equilibrium.4 Our main result, Theorem 2, provides sufficient

2Other authors who take this approach are Levine and Pesendorfer (2000, 2001) and
Gale and Rosenthal (1999); we discuss these papers in more detail below.

3These are potentially complex games: predicting the actions of others may be difficult
if not impossible and there appears little to be gained from trying to do so. There are,
however, many players whom one can observe and learn from.

4 If players value equality or ‘fairness’ then an imitation equilibrium may be an intu-
itively appealing concept of equilibrium. There is evidence that equality and ‘fairness’ are
important to individuals (e.g. Clark and Oswald 1996 or Chapter 4 of Kagel and Roth
1995).
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conditions for convergence of the imitation with innovation dynamic to an
approximate Nash, imitation equilibrium. One condition is that the game
be a coordination game with bound L and that each player refer to at least
L players. A coordination game of bound L has the property that when
L or more players change strategy and each of these L players achieves
a payoff increase then the average payoff of the population also increases.
A complementary Theorem 3 is presented where, unlike in Theorem 2, we
require no upper bound on the size of reference groups.

Our results, given that approximate Nash equilibrium play emerges, sug-
gest that imitation (in combination with innovation) can be consistent with
individual rationality. Similar results were obtained by Gale and Rosenthal
(1999) in the context of interaction in a Cournot like model.5 An appealing
aspect of our research is the generality of game modelled. For instance, the
previous literature on learning has typically focussed on games where the
existence of a Nash equilibrium is trivial (e.g. Vega-Redondo 1997, Levine
and Pesendorfer 2000, 2001 and Gale and Rosenthal 1999) but this is not the
case in the game we model.6 Complementary results are also due to Wood-
ers, Cartwright and Selten (2003) who demonstrate that, in large games,
there exists approximate Nash equilibria in which ‘similar players play sim-
ilar strategies’. Note, however, that the question of whether players learn
to play one of these equilibria is not addressed by Wooders et. al.; for a
less general class of game, our Theorems 2 and 3 demonstrate that such an
equilibrium will indeed emerge.

There is a large literature, not mentioned above, on the convergence of
learning dynamics to Nash equilibrium play (Fudenberg and Levine 1998).
Our results clearly add to this literature. One interesting issue is whether
imitation can enable convergence where ‘more rational’ learning algorithms
do not. It has long been recognized that adaptive learning dynamics (such
as an innovation dynamic) need not converge to Nash equilibrium. Hart and
Mas-Colell (2003) go further by demonstrating that there are no uncoupled
dynamics that are guaranteed to converge to Nash equilibrium. Uncoupled
dynamics, however, have the property that a player is not influenced by the
payoffs of others. Imitation does not, therefore, give rise to an uncoupled
dynamic. The question of the extent to which imitation can enable conver-
gence to Nash equilibrium play remains therefore an interesting and open
question. In a final section we provide two examples to discuss this issue and

5Other results in which variants of imitative learning lead to ‘optimal actions’ are due
to Schlag (1998) and Ellison and Fudenberg (1993, 1995).

6This is assuming that players use pure strategies.
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suggest why imitation can potentially ‘help’ play to converge to ‘optimal’
outcomes.

We proceed as follows; in Section 2 we outline the model and introduce
the imitation and innovation heuristics. In Section 3 we analyze a dynamic
in which players only use imitation. In Section 4 we add innovation be-
fore looking at learning in large games in Section 5. Section 6 provides a
discussion on imitation and Section 7 concludes.

2 The model

Let N = {1, ..., n} denote a finite player set and let S = {1, ....,K} denote a
finite strategy set. A strategy vector is given by s = (s1, ..., sn) ∈ SN where
si is interpreted as the strategy of player i. Throughout it will be assumed
that players do not play mixed strategies. Let Σ denote the set of strategy
vectors. A stage game is given by a tuple (N,S, {ui}ni=1) consisting of a
finite player set N , finite strategy set S and a payoff function ui : Σ → R
for each player i ∈ N .

Given a stage game Γ, play is assumed to evolve over discrete time
periods, indexed, t = 0, 1, 2, .... In each period t the stage game Γ is played.
Every player i ∈ N is assumed to choose a strategy for period t conditional
on the strategy vector of the previous period t− 1. The evolution of play is
therefore modelled as a discrete time homogenous Markov chain {s(t)}t≥0 on
state space Σ. The transition matrix of the Markov chain will be denoted by
P . The value Psm is interpreted as the probability of state m immediately
following state s.

We model the behavior of players using an imitation with innovation
dynamic. This dynamic postulates that players use a combination of imi-
tation and innovation in choosing a strategy to play. If a player decides to
imitate then he uses an imitation heuristic while if he decides to innovate
he uses an innovation heuristic. A player’s probability of innovation details
the likelihood that he will innovate. In using the imitation heuristic players
make use of a reference network. These concepts are formalized below.

2.1 Reference network

Given a player set N a reference matrix R is an N × N Boolean matrix
R = [rij ]. If element rij = 1 we say that player i refers to player j while
if rij = 0 we say that player i does not refer to player j. We set rii = 1
for all i ∈ N . That is, a player is assumed to refer to themselves. We do
not assume that R is symmetric. The matrix R will also be referred to as
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a reference network. Given a reference network R, for each player i ∈ N ,
let R(i) be the subset of N such that j ∈ R(i) if and only if rij = 1. We
refer to R(i) as the reference group of player i. Thus, player j belongs to
the reference group of player i if and only if player i refers to player j.7

Note that in the current paper we take a reference network as given and
assume that this network does not change as play evolves. An alternative
approach, whereby a player may change his reference group over time, is
considered by Cartwright (2003).

2.2 Imitation heuristic

The imitation heuristic represents a procedure that a player i can use to
choose a strategy for current period t conditioning on the strategy vector
of the previous period t − 1. This heuristic closely resembles an imitation
dynamic introduced by Selten and Ostmann (2000). The heuristic can be
summarized under an imitation probability function pi : Σ → ∆(S) where
the value pi(k|s) is interpreted as the probability that a player i would select
strategy k if strategy vector s was played in the previous period. When using
the imitation heuristic a player can be seen to progress through three stages.

1. Identify costrategists: the set of costrategists of player i, denoted Ci(s),
are those players l ∈ R(i) such that sl = si.

2. Identify success examples: a success example of player i is a player
j ∈ R(i) such that

uj(s) = max
l∈R(i)

ul(s)

3. Choose strategy: player i chooses strategy k ∈ S with probability
pi(k|s) where (a) if there is a success example j of player i where
sj = k then pi(k|s) > 0, and (b) if every success example of player i is
a costrategist of player i then pi(si|s) = 1.

In identifying a set of costrategists player i identifies those players to
whom she refers and who play the same strategy as herself. Note that player
i must belong to the set of costrategists of player i. A success example of
player i is any player j who earns the highest payoff of any player referred to
by i. Note that player i may be a success example for player i. In choosing a
strategy player i may choose the same strategy as a success example. That

7Given the reference matrix R the reference group R(i) of player i could be thought of
as the i’th row of R.
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is, she may imitate a success example. If every success example of player
i is also a costrategist then player i will play the same strategy as in the
previous period.

The imitation heuristic permits a good deal of flexibility in agent be-
haviour. In particular, it may be that pi(k|s) > 0 even if there is no success
example of player i playing strategy k. Thus, player i need not imitate a
success example but may experiment, make a mistake or simply keep to the
strategy of a previous period. This latter possibility means that our results
apply to dynamics, common in the literature (e.g. Young 1993 and Vega-
Redondo 1997), where players are assumed to change strategies sequentially,
i.e. one person per period, or have some positive probability of not chang-
ing strategy. Importantly, however, the imitation heuristic may be such that
pi(k|s) = 0 for any strategy k that is not played by a success example; that
is a player may always imitate success examples. Thus, while experimenta-
tion and inertia are permitted in our model they are not necessary to derive
our results.

The heuristics used by Kandori, Mailath and Rob (1993), Vega-Redondo
(1997) and Alos-Ferrer, Ania and Schenk-Hoppe (2000) can be seen as a
special case of the imitation heuristic for which R(i) = N for all i ∈ N .8 In
comparing our imitation heuristic with that of Selten and Ostmann (2000)
we note that our imitation heuristic allows the possibility that a player
i may imitate a non-costrategist who is earning the same payoff as one
of her costrategists. This implies, in particular, that she may imitate a
non-costrategist who is earning the same payoff as herself. The imitation
dynamic of Selten and Ostmann (2000) differs in that a player j can only be
a success example of i if she is earning strictly more than the costrategists of
i.9 Cartwright (2003) also considers this form of imitation and demonstrates
that analogues of the main theorems of the current paper hold.10

8All these dynamics assume a player has the option to choose the same strategy as in
the previous period.

9Formally, this heuristic is identical to that of the imitation heuristic with one modifi-
cation: a player j can be a success example of player i when sj 6= si if and only if

uj(s) = max
l∈R(i)

ul(s) > max
k∈Ci(s)

uk(s).

10Less closely related models of imitation are due to, amongst others, Kirman (1993),
Ellison and Fudenberg (1993, 1995), Levine and Pesendorfer (2000, 2001) and Gale and
Rosenthal (2001). The principal difference between our approach and those taken in these
papers is who people choose to imitate. Kirman (1993), Levine and Pesendorfer (2000,
2001) and Gale and Rosenthal (2001), for example, assume that an imitator is more likely
to choose the strategy being played by the most people - irrespective of payoffs.
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2.3 Innovation heuristic

In a similar way to the imitation heuristic, the innovation heuristic can be
summarized by an innovation probability function mi : Σ → ∆(S). The
value mi(k|s) is interpreted as the probability that a player i would select
strategy k if strategy vector s was played in the previous period. Let ε ≥ 0
be a real number referred to as an inertia parameter.

1. Identify innovation opportunities: an innovation opportunity for player
i is a strategy k ∈ S such that

ui(k, s−i) > ui(s−i, si) + ε.

2. Choose strategies: player i chooses strategy k ∈ S with probability
mi(k|s) where (a) if there are no innovation opportunities for player
i then mi(si|s) = 1, and, (b) if there is an innovation opportunity for
player i then mi(k|s) > 0 for some strategy k that is an innovation
opportunity.

If a player could have improved upon her payoff by more than ε in the
previous period then she has an innovation opportunity. If she has no in-
novation opportunities then she uses the same strategy as in the previous
period. If, however, a player does have an innovation opportunity then there
must be a positive probability that she plays at least one of her innovation
opportunities. The possibility for mistakes, experimentation and inertia
exist in the innovation heuristic to the same extent as it does in the imi-
tation heuristic. The innovation heuristic clearly suggests a ‘best response’
or ‘myopia’ dynamic as much studied in the literature (e.g. Young 1993,
Blume 1993, 1995). Note, however, that mi(k|s) can be zero even if k is an
innovation opportunity. Thus, a player need not, necessarily, choose the in-
novation opportunity that would have maximized her payoff in the previous
period.11 The innovation heuristic is thus a ‘better response’ dynamic (see,
for example, Ritzberger and Weibull 1995).

2.4 The imitation with innovation dynamic

It remains to combine the imitation and innovation heuristics to form the
imitation with innovation dynamic. The final element we introduce is the

11This contrasts with the imitation heuristic where it is assumed that every success
example is imitated with some positive probability.
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vector of innovation probabilities λ ∈ RN where λi ∈ [0, 1] is referred to as
the innovation probability of player i. The value λi is the probability with
which player i uses the innovation heuristic with the imitation heuristic used
otherwise. Thus, if λi = 0 player i always uses the imitation heuristic. We
say that λ = 0 if λi = 0 for all i ∈ N and say that λ 6= 0, 1 if λi ∈ (0, 1) for
all i ∈ N .12

Given a set of imitation probability functions {pi}ni=1, a set of innovation
probability functions {mi}ni=1 and vector of innovation probabilities λ we can
derive the transition matrix P of the Markov chain. The resulting stochas-
tic process is referred to as the imitation with innovation dynamic which
we indicate as I(p;m;λ). If λ = 0 then we refer to an imitation dynamic.
It proves more convenient to characterize the imitation with innovation dy-
namic according to the inertia parameter ε, innovation probabilities λ and
reference matrix R. We thus denote by I(ε;λ;R) any imitation with inno-
vation dynamic that is consistent with the three characteristics indicated.13

As with any Markov process the state space Σ can be partitioned into a
set of transient states T and a set of recurrent states Ψ. The probability of
observing a state s ∈ T converges to zero over time. Set Ψ can be further
partitioned into communication classes Ψ1, ...,ΨC . A communication class
Ψc has the property that

P
m∈Ψc

psm = 1 for all s ∈ Ψc. Thus, if some
strategy vector s ∈ Ψc is played in period t then in every subsequent period
a strategy vector belonging to the set Ψc will be played. If Ψc = {s} then
we refer to strategy vector s as an absorbing state. If Ψc = Σ (i.e. the set
of strategy vectors) then we say the dynamic is irreducible. As will become
clear, without being more specific about the game and reference network, we
cannot know the nature of the innovation with imitation dynamic; for some
games and reference networks it many, for example, be irreducible while for
others it may have only singleton communication classes. We note that in
the current paper we will look for and provide conditions under which there
exist only singleton communication classes.14

12The value of λi could be made conditional on the strategy vector and our results still
apply. That is, the probability a player innovates could depend on the strategy vector of
the previous period.
13The value of ε and a reference network R are insufficient to identify the set of functions

p and m. Note, however, that the set of funtions p and m may be consistent with a unique
value for ε and a unique reference matrix R.
14A motivation for this type of approach is suggested in the introduction of Fudenberg

and Levine (1998).
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3 The dynamics of imitation

We begin our analysis of the imitation with innovation dynamic by assuming
that λ = 0. That is, by assuming an imitation dynamic. We define a static
equilibrium concept.15

Imitation equilibrium: The strategy vector m is an imitation equilibrium
relative to reference network R if:

max
l∈R(i)/Ci(m)

ul(m) < max
l∈Ci(m)

ul(m)

for all i ∈ N , where we recall that Ci(m) denotes the set of costrategists of
player i for strategy vector m.

If the state of the system is an imitation equilibrium then no player
i ∈ N has a success example who is not a costrategist and thus no player
will wish to change strategy. This immediately suggests Lemma 1, which
we state without proof.

Lemma 1: A state m is an absorbing state of the imitation dynamic
I(ε;λ = 0;R) if and only if it is an imitation equilibrium relative to R.

Any strategy vector m in which every player i ∈ N plays the same
strategy is an imitation equilibrium.16 Thus, there are many absorbing
states of the innovation dynamic. In general there may also exist non-
singleton communication classes as a very simple example illustrates.

Example 1: There are 3 players and 2 strategies, labelled A and B. The
reference network is such that R(1) = {1, 2}, R(2) = {1, 2, 3} and R(3) =
{2, 3}. Two strategy vectors are of interest.

strategy vector payoff vector
A,B,B 4, 0, 2
A,A,B 2, 0, 4

15An imitation equilibrium as defined in this paper is essentially equivalent to a des-
tination as defined by Selten and Ostmann (2000). Selten and Ostmann (2000) require
that an imitation equilibrium also be robust to possible deviations by success leaders.
16We note that an imitation equilibrium need not be such that every player plays the

same strategy. Indeed a player need not play the same strategy as those he refers to.
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There exists a communication class in which we see constant repetition of
the strategy vectors (A,B,B) and (A,A,B). Basically, players 1 and 3 do
not change strategy while player 2, by contrast, switches between strategies
B and A, motivated by observing others earning a payoff of 4.¨

We suggest that the cycle of play observed in Example 1 results for
two reasons. First, player 2 is referring to, and imitating, players that
are not ‘similar’ to himself. Second, the reference network is not sufficiently
clustered. We shall have more to say on the first point in subsequent sections;
here we pursue the second point. One important characteristic of a network
is its clustering coefficient - a measure of the cliquishness of the network.17

Clustering coefficient: We say that a reference network R has a clustering
coefficient of one when:

1. for any three distinct players i, j, k ∈ N if j, k ∈ R(i) then k ∈ R(j)
and j ∈ R(k).18

2. |Ri| ≥ 3 for every player i ∈ N .19

Thus, if a player i ∈ N refers to both players j and k and the network R
has a clustering coefficient of one then player j must refer to player k and
player k refer to player j. We note that the reference network in Example 1
does not have a clustering coefficient of one; player 2 refers to players 1 and
3 but player 3 does not refer to player 1, nor player 1 refer to player 3. This
lack of clustering allows the cycle of Example 1 to emerge, as demonstrated
by our first result.

Theorem 1: For any stage game Γ and any reference network R that has
a clustering coefficient of one the imitation dynamic I(ε;λ = 0;R) almost
surely converges on an imitation equilibrium.20

17The clustering coefficient ranges between a value of 0 and 1. If the clustering coefficient
is zero there is no clustering and if the clustering coefficient is one then there is much
clustering. See D. Watts (1999) and references there in for a full definition and further
discussion.
18Given that i ∈ Ri it may appear that this condition implies symmetry of the network

R whereby if j ∈ Ri it must be the case that i ∈ Rj . The fact, however, that players i, j, k
must be distinct means that the network need not be symmetric.
19The requirement that |Ri| ≥ 3 is a minor assumption to rule out problems in defining

the clustering coefficient if |Ri| < 3. We recall that i ∈ Ri.
20Given that a reference network has a clustering coefficient of one is sufficient to guar-

antee convergence on an imitation equilibrium we may ask whether or not it is necessary.
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Proof: Given an arbitrary state s we demonstrate that there exists states,
indexed, s(2), ..., s(T ) where Pss(2) > 0, Ps(t)s(t+1) > 0 for all T − 1 ≥ t ≥ 2
and where s(T ) is an imitation equilibrium. Assume that every player i ∈ N
in every period always chooses the same strategy as a success example.
Furthermore, assume that there is an ordering to strategies (the same for all
players) whereby if a player i has more than one success example he selects
the strategy of the success example playing the ‘smallest’ strategy. This
behavior is consistent with a deterministic process that occurs with positive
probability under the imitation with innovation dynamic.

Consider an arbitrary player i ∈ N for whom there exists a player j ∈
R(i), j 6= i such that i ∈ R(j). For any player l ∈ N such that l ∈ R(i),
given that the reference network R has a clustering coefficient of one, it must
be the case that l ∈ R(j) and j ∈ R(l). This, in turn, implies that i ∈ R(l).
Similarly, if there exists a player h ∈ R(j) then h ∈ R(i) and i, j ∈ R(h).
Thus, R(j) = R(i) for all j ∈ R(i). We refer to the set R(i) as a clique; every
player within a clique refers to, and only to, all other players in the clique.
Given the behavior assumed of players, in state s(2) there must exist some
k ∈ S such that sj = k for all j ∈ R(i). That is, all players in the clique play
the same strategy. This implies that no player j ∈ R(i) can have a success
example in states s(2), s(3), ... who is not a costrategist. Thus, no player i
belonging to a clique can change strategy between states s(2), s(3), ....

Consider an arbitrary player i ∈ N for whom there does not exist a player
j ∈ R(i), j 6= i such that i ∈ R(j). Suppose that there exists a player l ∈ N
such that i ∈ R(l). Given that the network R has a clustering coefficient of
one there must exist a player j 6= i such that j ∈ R(l). Further, if i, j ∈ R(l)
this implies that i ∈ R(j) and j ∈ R(i). This is a contradiction. Thus,
i /∈ R(k) for all k ∈ N\{i}. We say that player i does not belong to a clique.
Player i does, however, refer to a subset of a clique. This is immediate from
the analysis of the previous paragraph and the fact that i refers to at least
two distinct players j, l who must refer to each other. Given that player i
refers to a subset of a clique in states s(2), s(3), ... every player referred to
by player i (with the possible exception of themselves) must be playing the
same strategy. Thus, if there is a success example of player i who is not a
costrategist in some state s(ti) there cannot be a success example of player
i in any subsequent state unless they are costrategists of i. Given that the
player set is finite there must exist some ti such that for every state s(t),

Example 1 demonstrates that for any reference network R in which there are three players
i, j, k where j ∈ R(i) and k ∈ R(i) but k /∈ R(j) or j /∈ R(k), a game Γ can be constructed
for which the imitation with innovation dynamic has a non-singleton communication class.
As shown by Cartwright (2003) we cannot go any further than this.
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t ≥ ti, player i does not have a success example who is not a costrategist.
This completes the proof.¥

We conclude this section with a discussion of the likelihood that economic
and social networks have a clustering coefficient of one. An illustration
of a familiar economic network may be useful - consider firms competing
in a market. Many markets, such as food retail, are composed of a small
number of large, ‘dominate’ firms and a large number of small, ‘fringe’ firms.
Firms can be expected to refer to the actions of competitors in order to
gauge variables such as prices and marketing strategy. The following type
of reference network seems plausible - (a) the large firms refer to each other,
ignoring the small firms, while (b) the small firms refer solely to a subset of
the large firms. This network would have a clustering coefficient of one.

Speaking more generally, it is unlikely that a network should have a
clustering coefficient of one. It is, however, not unlikely that economic and
social networks should have clustering coefficients that are ‘near to one’
(D. Watts 1999 and references therein) or have ‘a tendency to converge to
one’ (Granovetter 1973). While definitive results seem unlikely, Theorem 1
is suggestive that play will converge to an imitation equilibrium when the
reference network has a clustering coefficient that is close to one. Future
work hopes to address this issue.

4 Adding Innovation

It should be apparent that an imitation equilibrium need not be a Nash
equilibrium. Indeed a player may be able to significantly improve her pay-
off by selecting a different strategy than that consistent with an imitation
equilibrium. Given that our principal interest is in imitation we move im-
mediately to modelling the imitation with innovation dynamic. We begin
with a definition.

Nash ε-equilibrium: Strategy vector m is a Nash ε-equilibrium if:

ui(mi,m−i) ≥ ui(k,m−i)− ε

for all i ∈ N and for all k ∈ S.

We refer to a Nash 0-equilibrium as a Nash equilibrium and informally
a Nash ε-equilibrium (for ε > 0) as an approximate Nash equilibrium. We
refer to a state m that is both an Nash ε-equilibrium and an imitation
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equilibrium as a Nash, imitation ε-equilibrium or informally an approximate
Nash, imitation equilibrium. The following result is stated without proof:

Lemma 2: A state m is an absorbing state of the imitation with innovation
dynamic I(ε;λ 6= 0, 1;R) if and only if it is a Nash, imitation ε-equilibrium.

The principal implication of Lemma 2 is that if an imitation with in-
novation dynamic converges to an absorbing state then that state must be
an approximate Nash equilibrium. Generally, however, the imitation with
innovation dynamic will have non-singleton communication classes. There
are two basic reasons for this. First, the dynamic may have no absorbing
states; this follows from the principle that games need not have an approxi-
mate Nash equilibrium (in pure strategies); this issue is treated in detail by
Wooders, Cartwright and Selten (2003) and Cartwright andWooders (2003).
Second, the dynamic may have absorbing states but also non-singleton com-
munication classes giving rise to ‘cyclical dynamics’; this possibility should
be familiar from Example 1. Simple examples of both of these possibilities
can easily be derived (Cartwright 2003). Clearly, therefore, to guarantee
convergence to an approximate Nash equilibrium conditions will be required
on the game and reference network. We provide such conditions in the
following section.

5 Games with Many Players

We draw on a pregame framework used by Wooders, Cartwright and Selten
(2003). This framework enables us to model a family of games that can
all be seen to share a common structure of strategic interaction. A further
advantage of the framework is that it permits us to compare the similarity
of players - which proves important in looking at imitation.

Take as given a compact metric space of player attributes Ω and a finite
set of strategies S. An attribute is interpreted as a complete description
of a players characteristics and payoff function. Let W denote the set of
functions mapping Ω×S into Z+. A member of w is called a weight function.
A universal payoff function h maps Ω × S ×W into R+. In interpretation
h(ω, k, w) is the payoff of a player of attribute ω from playing strategy k
when the strategies of the complementary player set are summarized by w.
A pregame is given by the triple (Ω, S, h).

Let N be a finite set and let α be a mapping from N to Ω, called
an attribute function. The pair (N,α) is a population. As we shall formal
explain, a population induces through the pregame a stage game Γ(N,α).

14



We recall that a stage game is given by a tuple (N,S, {uαi }ni=1). The player
set N and strategy set S are clearly given; it remains, therefore, to define
the payoff functions {uαi }ni=1 where uαi maps from the set of strategy vectors
SN into R+. Given a population (N,α) and a strategy vector m we say that
weight function wα,m is relative to strategy vector m if and only if:

wα,m(ω, k) = |{i ∈ N : α(i) = ω and mi = k}|
for all ω ∈ Ω and k ∈ S. Thus, wα,m(ω, k) denotes the number of players of
attribute ω who are playing strategy k. For each i ∈ N payoff functions are
defined to satisfy:

uαi (si, s−i) ≡ h(ω, k, wα,s)

for all s ∈ SN .
Different populations may clearly induce different games. Thus, the

pregame framework allows us to model a family of games. Very little struc-
ture is, however, imposed on the games that may be induced - we merely
require that players of the same attribute be ‘identical’ both in terms of
their payoff functions and how they influence others.

5.1 Large games

Following Wooders, Cartwright and Selten (2003) we make two assumptions
on pregames. The first is a relatively mild assumption requiring players with
‘similar’ attributes to be ‘similar’. Formally, it can be stated:

Continuity in attributes: The pregame G = (Ω, S, h) satisfies continuity
in attributes when: for any ε > 0 and any two populations (N,α) and (N,α),
if,

dist(α(i), α(i)) < ε

for any i ∈ N then for any strategy vector m it holds that,¯̄
uαi (mi,m−i)− uαi (mi,m−i)

¯̄
< ε

for any i ∈ N .

An important point to note is that the assumption of continuity in at-
tributes treats a change in the attributes of players while the strategies they
play are held constant. For this reason it appears mild.

Our second assumption is reflective of the type of game we wish to con-
sider - namely games with many players where no one player has a significant
influence on the payoffs of others.

15



Large game property: The pregame G = (Ω, S, h) satisfies the large
game property when: for any ε > 0, any game Γ(N,α) and any two strategy
vectors s and m if:

1

|N |
X
k∈S

X
ω∈α(N)

|wα,s(ω, k)− wα,m(ω, k)| < ε

then:
|uαi (k,m−i)− uαi (k, s−i)| < ε (1)

for all i ∈ N and all k ∈ S.

The large game property dictates that a player achieves approximately
the same payoff given any two strategy vectors where the proportions of
players of each attribute playing each strategy are approximately the same.
This means that no one player or small group of players can have a large
influence on the payoff of anybody but themselves. As discussed in the intro-
duction we feel that imitation with innovation is most likely to be observed
in these types of games.

An example in Cartwright (2003) illustrates that play may fail to con-
verge on an absorbing state in games induced from a pregame satisfying
continuity in attributes and the large game property.

5.2 Coordination Games

We provide a definition of a coordination game. For any two strategy profiles
m and s let X(m, s) ⊂ N be those players j ∈ N such that mj 6= sj .

Coordination game: Game Γ(N,α) is a coordination game with bound L
when: for any two strategy profiles m and s where |X(m, s)| > L if:

uαi (mi,m−i) > uαi (si, s−i)

for all i ∈ X(m, s) then,X
i∈N

uαi (mi,m−i) >
X
i∈N

uαi (si, s−i). (2)

Let CG(L) denote the set of coordination games with bound L that can
be induced from pregame G. A coordination game with bound L has the
property that when more than L players change strategy and each player
who changes strategy gets a payoff increase then the ‘total payoff of the pop-
ulation’ increases. We note that any game Γ(N,α) belongs to set CG(|N |).
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5.3 Large Game Reference Networks

We briefly turn our attention to reference networks. Given population (N,α)
and player i ∈ N we denote by Bi(δ)α the subset of player set N such that
player j ∈ Bi(δ)α if and only if dist(α(i), α(j)) ≤ δ. That is, if we draw a
ball in attribute space around α(i) of diameter δ then Bi(δ)α is those players
within the ball.

Large game reference networks: We say that reference network R is a
large game reference network with bounds L,U and δ if:

1. R is symmetric21 and has a clustering coefficient of one,

2. R(i) ⊂ Bi(δ)α for all i ∈ N , and,

3. L ≤ |R(i)| ≤ U for all i ∈ N .

We denote by LR(L,U, δ) the set of large game reference networks with
bounds L,U and δ.

Behind the concept of a large game reference network are basically two
refinements on reference networks studied in Section 3. First, R is assumed
to be symmetric. As discussed by Cartwright (2003) this is not necessary for
our results - it does, however, significantly simplify the analysis. Symmetry
is also a common simplifying assumption in modelling social networks (e.g.
D. Watts 1999). The second, and most important refinement, is that players
are assumed to only refer to those with ‘similar’ attributes as themselves.
This proves crucial to deriving our main results.22

5.4 Main result

We have now introduced all the necessary concepts to state our second result.
This result provides conditions under which the imitation with innovation
dynamic converges to an absorbing state.

Theorem 2: Let G be any pregame satisfying continuity in attributes and
the large game property. Given ε > 0 and positive integer U there exists real
number η2(ε, U) such that for any population (N,α) where |N | > η2(ε, U) if

21That is, if i ∈ Rj then j ∈ Ri for all i, j ∈ N .
22Note that the bound L on the minimum size of reference group is not independent of

the value δ on similarity of players in the same reference group. The smaller is δ then the
smaller may have to be L.
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Γ(N,α) ∈ CG(L) and R ∈ LR ¡L,U, ε3¢, for some L, then the imitation with
innovation dynamic I(ε;λ 6= 0, 1;R) almost surely converges on a Nash,
imitation ε-equilibrium.23

Proof: Suppose that the statement of the Theorem is false. Then there
exists some ε > 0 and some U such that, for each integer ν there is a pop-
ulation (Nν , αν) where |Nν | > ν, where Γ(Nν , αν) ∈ CG(Lν) and Rν ∈
LR ¡Lν , U, ε3

¢
for some Lν , and for which there exists a non-singleton com-

munication class of the imitation with innovation dynamic (λ 6= 0, 1).
From the proof of Theorem 1 it is immediate that the population (Nν , αν),

for any ν, can be partitioned into a set of cliques. That is, the player set Nν

can be partitioned into subsets cν1, ..., c
ν
Qν with the property, for all i ∈ Nν ,

that if i ∈ cνq then Rν(i) = cνq .
For any game Γ(Nν , αν) and any initial state sν suppose that play evolves

according to the following process,

1. all players i ∈ Nν use the imitation heuristic, and imitate any success
example, until the process evolves to an imitation equilibrium.

2. in the following period a unique player i ∈ Nν uses the innovation
heuristic and chooses an innovation opportunity. All other players use
the imitation heuristic.

3. the process returns to stage 1 and repeats.

Fix a value for ν and consider the evolution of play. By Theorem 1
play will, almost surely, converge to an imitation equilibrium s during the
first stage of the process. For each clique cq there must exist some strategy
kq ∈ S such that sj = kq for all j ∈ cq. That is, any two players in the same
clique play the same strategy.

If a contradiction is to be avoided there must exist some player i ∈ Nν

who has an innovation opportunity given strategy vector s. Suppose, that
in stage 2 of the process player i chooses an innovation opportunity. This
implies that strategy vector s is observed in the next period (say period t)
where sj = sj for all j ∈ Nν\{iν} and

uα
ν

i (si, s−i) > uα
ν

i (si, s−i) + ε. (3)

Let δ ≡ ε
3 . In period t + 1, all players use the imitation heuristic. We

note that if i ∈ cq then no player l ∈ cq where cq 6= cq can have a success

23 It is apparent from the proof that the statement of the Theorem can be relaxed to
LR (L,U, ∗) where ∗ > ε

2
is arbitrarily close to ε

2
.
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example who is not a costrategist. Thus, if strategy vector s is observed in
period t + 1 then sl = sl for all l ∈ Nν\cq. Given continuity in attributes
for any j ∈ cq we have:¯̄

uα
ν

i (si, s−i)− uα
ν

j (sj , s−j)
¯̄
< δ. (4)

By the large game property, if ν is chosen sufficiently large, for any player
j 6= i we have: ¯̄

uα
ν

j (sj , s−j)− uα
ν

j (sj , s−j)
¯̄
< δ. (5)

By (3), (4) and (5) it holds that:

uα
ν

i (si, s−i) > uα
ν

j (sj , s−j).

for all j ∈ cq\{i}. This implies that player i is the unique success example
for those players j ∈ cq\{i}. Note that player i will be their own and only
success example. Thus, sj = si for all j ∈ cq.

Given the large game property and the fact that U is independent of ν,
for ν sufficiently large:¯̄

uα
ν

i (si, s−i)− uα
ν

i (si, s−i)
¯̄
< δ. (6)

This implies that by (3) that:

uα
ν

i (si, s−i) > uα
ν

i (si, s−i) + 2δ. (7)

Continuity in attributes implies:¯̄
uα

ν

i (si, s−i)− uα
ν

j (sj , s−j)
¯̄
< δ (8)

for all j ∈ cq. Thus, by (4), (7) and (8) we have:

uα
ν

j (sj , s−j) > uα
ν

j (sj , s−j) (9)

for all j ∈ cq.
Compare strategy vectors s and s. We note that X(s, s) = cq. It

is immediate from (7) and (9), given that Γ(Nν , αν) ∈ CG(Lν) and R ∈
LR ¡Lν , U, ε3

¢
, that, for sufficiently large ν:X

j∈Nν

uα
ν

j (sj , s−j) >
X
j∈Nν

uα
ν

j (sj , s−j).

Also note that s is an imitation equilibrium. Thus, as play evolves repeatedly
as above the total payoff of the population increases and never decreases.
Given that the state space is finite this gives the desired contradiction.¥
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A corollary of Theorem 2 (and of Theorem 3 to follow) is that, given
the appropriate conditions, there must exist an approximate Nash equilib-
rium and imitation equilibrium.24 This complements results due to Wood-
ers, Cartwright and Selten (2003) and Cartwright and Wooders (2003) in
providing sufficient conditions for the existence of an approximate Nash
equilibrium ‘consistent with conformity’.

5.5 Large reference groups

We offer a complementary result to that of Theorem 2 in which we place no
upper bound on the maximum reference group size. In doing so we place a
third assumption on the pregame.25

Coordination property: The pregame G = (Ω, S, h) satisfies the coor-
dination property when: for any induced game Γ(N,α), any two strategy
vectors m and s and any player i such that α(i) = ω and mi = si = k if:

wα,m(ω, k) > wα,s(ω, k) and

wα,m(ω, k) = wα,s(ω, k) for all ω 6= ω and k ∈ S

then:
uαi (mi,m−i) ≥ uαi (si, s−i).

If a pregame satisfies the coordination property then, ceteris paribus,
a player’s payoff cannot decrease if the number of players with the same
attribute as himself playing the same strategy as himself increases.

We state our third result.

Theorem 3: Consider pregame G that satisfies the large game property,
continuity in attributes and the coordination property. Given ε > 0 there
exists real number η3(ε) such that for any population (N,α) where |N | >
η3(ε) if Γ(N,α) ∈ CG (L) and RN(α) ∈ LR ¡L, |N | , ε4¢, for some L, then the
24Note that a Nash equilibrium need not exist in coordination games even for large

populations. Consider, for example a population of players matched to play a ‘two strategy,
off diagonal coordination game’. The unique Nash equilibrium is ‘half the population play
one strategy and the other half play the other strategy’. There can only exist a Nash
equilibrium when there are an even number of players.
25 It is clear that further assumptions are required than used in Theorem 2. Consider

for example the case where every player has the same attribute and refers to all players
in the population. Also suppose that any approximate Nash equilibrium has the property
that half the population play one strategy and the other play another strategy.
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imitation with innovation dynamic I(ε;λ 6= 0, 1;R) almost surely converges
to a Nash, imitation ε-equilibrium..

Proof: A proof proceeds in an almost identical fashion to that of Theorem 2.
It is only with respect to (6) that we observe any significant difference. Thus,
using the notation of the proof of Theorem 2, we will merely demonstrate
an analogue of (6) in the new context of Theorem 3. Set δ ≡ ε

4 . Informally,
our objective is to demonstrate that the payoff of player i falls by at most δ
when the players in the clique cq imitate player i and play strategy si.

Given the population (Nν , αν) consider the population (Nν , αν) where
αν(j) = αν(i) for all j ∈ cq and where αν(j) = αν(j) for any other j ∈ Nν .
By continuity in attributes:¯̄

uα
ν

i (si, s−i)− uα
ν

i (si, s−i)
¯̄
< δ

and ¯̄
uα

ν

i (si, s−i)− uα
ν

i (si, s−i)
¯̄
< δ.

By the continuity property:

uα
ν

i (si, s−i) ≥ uα
ν

i (si, s−i).

Thus, we obtain: ¯̄
uα

ν

i (si, s−i)− uα
ν

i (si, s−i)
¯̄
< 2δ. (10)

Substituting (10) for (6) and recognizing the change in the value of δ a proof
of Theorem 3 should now be apparent from that of Theorem 2.¥

Theorem 3 complements Theorem 2 in providing a convergence result
when no player is bounded in the number of players he refers to. Indeed, it
may be the reference network has the property that every player refers to
every other player in the population; if all ‘players are sufficiently similar’
then Theorem 3 could be applied to show the existence of an approximate
Nash equilibrium where every player in the population plays the same strat-
egy. We also note that the large game property is much less important in
the proof of Theorem 3 than in the proof of Theorem 2: in the proof of
Theorem 3 it is merely required that the actions of one player have only a
limited effect on the payoffs of others.
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6 Imitation and Rationality

A principal motivation for the current paper was to address whether imita-
tion can be consistent with ‘rational play’. Theorems 2 and 3 suggest that,
within our framework, imitation can be consistent with individual rational-
ity; this follows from the fact that players imitate and yet play converges to
an approximate Nash equilibrium.26

A further possibility is that imitation is not only consistent with individ-
ually rational play but actually enables or ‘helps’ boundedly rational players
to behave optimally. This may happen, for example, because convergence
to a Nash equilibrium is only observed when there is imitation. Alterna-
tively, it may be that in the presence of imitation play converges on Pareto
superior outcomes. Both of these possibilities can indeed occur within the
types of games considered in this paper. To illustrate we pursue through
two examples the second possibility given above.27

Before considering the two examples we briefly question why it may
be that imitation ‘enables learning’. We offer three reasons: (1) Imitation
may ‘speed up’ the learning process in that imitation is easy and quicker
than innovation (Levine and Pesendorfer 2000, 2001). This is surely the
case but not of issue in the current paper given our focus on the long run
properties of play and not rates of convergence. (2) By observing the actions
of others a player may become aware of a strategy that he would not have
realized was possible otherwise. This occurs to some extent in Example A.
(3) Imitation has the potential to create a sense of ‘collective action’ in a
way that unilateral behaviour, such as innovation, does not. We see this
occurring in both examples but particularly in Example B.

We now turn to our two examples. Both examples could be thought of in
terms of technological or scientific evolution where strategy B is a superior
technology or technique to A etc.

Example A: There exists a unique attribute. There are five strategies

26Under the dynamics used in the proof of Theorem 2 a player who imitates always
increases his payoff. This clearly helps explain why imitation is consistent with individual
rationality. It also suggests that we could equate imitation with innovation. This is,
however, not the case because a player through imitation can realize individual gains of
less than ε - which is not possible through innovation. This, in turn, suggests that we
could just set ε = 0. If, however, ε = 0 there need not exist a Nash ε-equilibrium.
27The first possibility is clearly also of interest and considered by Cartwright (2003).

Examples necessarily, however, have to be more complex than the examples used here
with a consequent loss of intuition. A greater understanding of the convergence properties
of the innovation dynamic would also be useful to fully treat this issue.
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S = {A,B,C,D,E}. Denote by ws(k) the proportion of the population
playing strategy k given a strategy vector s. For population (N,α) and any
i ∈ N the payoff function is given by:28

uαi (A, s−i) = 1;

uαi (B, s−i) = 1 + ws(B) + ws(C)

uαi (C, s−i) = 1 + ws(B) + ws(C);

uαi (D, s−i) = 3(ws(B) + ws(D));

uαi (E, s−i) = 3(ws(C) + ws(E))

It is simple to see that this pregame satisfies the large game property and
coordination property.29 We note that the payoff from strategies B and
C are identical. We also note that ‘everybody play D’ and ‘everybody
play E’ are the Pareto optima giving a payoff of 3. Suppose that R(i) =
N for all i ∈ N and let ε = 0. Consider a game Γ(N,α) and let the
initial state be ‘everybody play A’. Strategies B and C represent innovation
opportunities. Suppose that play evolves to a state s whereby half of the
population are playing B and half C. State s is a Nash equilibrium and
thus an absorbing state of the innovation dynamic. Players would receive
a payoff of 2. State s is not, however, an imitation equilibrium. Given an
imitation with innovation dynamic play would converge to a Pareto optima
whereby each play earned a payoff of 3.¨

In Example A we see that innovation may fail to converge to the Pareto
optima because some players choose strategy B and some strategy C. Ini-
tially this divergence appears to come at no loss to payoffs. Ultimately,
however, to realize the gains from playing strategy D or E it is necessary
that a significant majority of the population is playing either B or C. With
imitation such problems do not arise because the divergence in strategy
choice between B and C would not persist.

Example B: The strategy space is given by S = {A,B} and the attribute
space by Ω = [0, 2]. Given a population (N,α) and strategy vector s let
ws(k) be the proportion of the population playing strategy k. Given popu-
lation (N,α) the payoff function of player i ∈ N is defined:

uαi (A, s−i) = ws(A); uαi (B, s−i) = ωws(A) + 2ws(B)

28 If both Example A and Example B we use the following notational convention: when
we write, for example, uαi (B, s−i) = 1 + ws(B) + ws(C) the strategy vector s is taken to
be the strategy vector (B, s−i) or in other words we set si = B.
29Given a suitable rescaling of payoffs.
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for all k ∈ S where α(i) = ω. Thus, if all players play A they each receive a
payoff of 1 and if they all play B they each receive a payoff of 2. If a player
plays strategy B when all others are playing strategy A then his payoff will
depend on ω. It is easily checked that this pregame satisfies the large game
property, continuity in attributes and the coordination property.30 Consider
population (N,α) where α(1) = 2 and α(i) = 0 for all other i ∈ N . Suppose
that the reference network has the property that R(i) = N for all i ∈ N and
let ε = 0. Given an initial state ‘everybody play A’, player 1 is the unique
player with an innovation opportunity. Thus, play will evolve to strategy
vector s where player 1 plays B and everybody else A; player 1 receives a
payoff of 2 and all others a payoff of approximately 1. Strategy vector s is
a Nash equilibrium and thus an absorbing state of the innovation dynamic.
It is clearly, however, not an imitation equilibrium. The imitation with
innovation dynamic would converge to the Pareto optimal state ‘everybody
play B’.¨

In Example B the ‘group action’ that is created by imitation enables
gains that would not be achievable by unilateral action. In particular given
the Nash equilibrium strategy vector s it is not in any players interests to
change to strategy B. It is, however, in everyone’s interest that all play-
ers should change to strategy B. Imitation enables this ‘group shift’ from
strategy A to strategy B.

7 Conclusion

This paper has consider a dynamic model of agent learning through imitation
with innovation. Sufficient conditions were provided for play to converge
to an approximate Nash, imitation equilibrium. The principal focus was
on games with many players reflecting our belief that imitation is most
likely to be observed in such games. Our results suggest that imitation
can be consistent with individually rational behavior. Through example
we demonstrate that imitation may even enable learning of ‘more efficient’
strategy vectors (than innovation alone).

Two potential applications of our results appear to be in modelling tech-
nological or scientific evolution or in modelling market interaction. In terms
of technological and scientific evolution the notion of learning through imita-
tion and innovation is a natural one (see, for example Kuhn 1996 and Ziman
2000). Models of learning in ‘Cournot like’ market interaction games have

30Given a suitable metric on Ω and rescaling on payoffs.
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been the subject of a number of related papers (e.g. Vega-Redondo 1997,
Alos-Ferrer, Ania and Schenk-Hoppe 2000, Selten and Ostmann 2000, Sel-
ten and Apesteguia 2002). To apply the imitation with innovation dynamic
in studying such learning processes remains a goal for future research.

Other avenues for future research include the possibility that imitation
can increase the rate of convergence to an absorbing state - something this
paper did not address given our focus on long run dynamics. Also of inter-
est, given its importance to the learning dynamic, would be to study the
possible evolution of the reference network. A related literature concerns
network formation (Dutta, B. and M. Jackson 2003). This literature treats
the network as the game in the sense that a players payoff is directly de-
pendent upon the links that he has in the network. In the model of this
paper the network is merely a medium through which the game is played
and so the effect of the network on a player’s payoffs is indirect. It may
be interesting to apply the ideas from the network formation literature in
modelling the evolution of an endogenised interaction network.

As a final remark we note that any interpretation of our results must
take into account the realism of our model of learning. One way to test
this is through experimental work. There has been some experimental work
on imitation and the importance of social learning (e.g. Offerman, Potters
and Sonnemans 2002 and Selten and Apesteguia 2002). There has also
been experimental work on learning in ‘large games’ (e.g. Van Huyck 1997,
Rapoport, Seale and Winter 2001). A particular interesting question that
arises from this paper is whether players do indeed imitate and only imitate
players that are similar to themselves.
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