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ABSTRACT
Analytic gradients are important for efficient calculations of stationary points on potential energy surfaces, for interpreting spectro-
scopic observations, and for efficient direct dynamics simulations. For excited electronic states, as are involved in UV–Vis spectroscopy
and photochemistry, analytic gradients are readily available and often affordable for calculations using a state-averaged complete active
space self-consistent-field (SA-CASSCF) wave function. However, in most cases, a post-SA-CASSCF step is necessary for quantita-
tive accuracy, and such calculations are often too expensive if carried out by perturbation theory or configuration interaction. In
this work, we present the analytic gradients for multiconfiguration pair-density functional theory based on SA-CASSCF wave func-
tions, which is a more affordable alternative. A test set of molecules has been studied with this method, and the stationary geome-
tries and energetics are compared to values in the literature as obtained by other methods. Excited-state geometries computed with
state-averaged pair-density functional theory have similar accuracy to those from complete active space perturbation theory at the
second-order.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0007040., s

I. INTRODUCTION

The accurate characterization of electronically excited states
is a key element for understanding many chemical processes, with
just a few examples being UV damage of DNA,1–3 in vivo imag-
ing of cancer in mice,4 improving solar cells,5,6 and photochem-
ical reactions.7,8 Chemistry involving electronically excited states
is also important in many interdisciplinary applications, and it
is valuable to use quantum mechanical computations9,10 to aug-
ment what can be learned experimentally about the properties of
excited states. Since excited states are usually strongly multicon-
figurational, the best results are often obtained by starting with
a multiconfigurational reference wave function, such as the wave
function obtained by the complete active space self-consistent-field
(CASSCF) method.11,12 CASSCF provides only part of the electron
correlation energy, and one must perform further calculations13

to obtain accurate properties such as equilibrium geometries and
excitation energies. Adding additional correlation energy by excita-
tion into virtual orbitals is usually expensive, but multiconfiguration
pair-density functional theory14,15 (MC-PDFT) avoids this cost by
using a density functional instead of including such excitations.

MC-PDFT combines the advantages of Kohn–Sham density
functional theory (KS-DFT) and wave function theory. The MC-
PDFT method uses an on-top pair-density functional to compute the
electronic energy at a reduced cost compared to other approaches
yielding energies of similar accuracy to those obtained by second-
order complete active space perturbation theory (CASPT2).16 Stud-
ies have shown that both single-state MC-PDFT (SS-PDFT) and
state-averaged MC-PDFT (SA-PDFT) almost always have better
accuracy than CASSCF or SA-CASSCF, have generally similar accu-
racy as CASPT2 and sometimes outperform both KS-DFT and
CASPT2.17,18
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Here, we expand the capabilities of SA-PDFT by deriving and
implementing analytic gradients of the energy that can be used to
determine stationary points on excited-state potential energy sur-
faces (PESs) or to carry out efficient direct dynamics simulations.
Analytic gradients are more efficient than numerical gradients for
medium-sized and large molecules (e.g., nucleobases). Additionally,
there is no finite difference error when the gradient is computed
analytically.

The present work builds on recent work in which SS-PDFT19

gradients were derived and implemented in OpenMolcas.20 Here,
we extend that work to SA-PDFT, and we implement analytic SA-
PDFT gradients in both OpenMolcas and mrh,21 which is an add-on
to PYSCF.22 First, the theory and a formal cost scaling analysis of the
SA-PDFT gradients are presented. Then, the correctness of the ana-
lytic gradients is validated through a comparison to numerical gra-
dients across the potential energy curve for lithium hydride. Finally,
the excitation energies and optimized equilibrium geometries for
formaldehyde, trans-butadiene, and cytosine are reported.

II. THEORY
In the following text, the indices p, q, r, s, t, . . . refer to gen-

eral molecular orbitals (MOs), and κ, λ, μ, ν, . . . refer to one-electron
basis functions, taken here as primitive or contracted Gaussians. The
indices I, J, K, . . . refer to the states included in the average of the
SA-CASSCF calculations (this set of states is referred to below as
averaged states), and R, S, T, . . . refer to eigenstates of the Hamil-
tonian in the complementary part of the active space, referred to
as the unaveraged space. The index Λ refers to configuration state
functions (CSFs), and the index A is used for atoms. In practice, it
is necessary to partition the MOs into inactive, active, and virtual
sets for efficient implementation, but this distinction (and the asso-
ciated computationally efficient but notationally complex versions of
the programmable expressions) is omitted in this section for brevity.
Einstein summation notation is used throughout.

A. SA-PDFT energy
The MC-PDFT energy is

EMC-PDFT = Vn + hp
qDp

q +
1
2

gpr
qs Dp

qDr
s + EOT[ρ, ρ′,Π,Π′], (1)

where Vn, hp
q, and gpr

qs are the zero-, one-, and two-body Hamiltonian
matrix elements; Dp

q refers to the one-body reduced density matrix
for orbitals p and q, and EOT, which is expressed as a functional of
the electronic density, ρ, the on-top pair density, Π, and their deriva-
tives, is called the on-top energy. The definitions of the electronic
density, on-top pair density, and their derivatives are

ρ = ϕpDp
qϕq, (2)

ρ′ = ϕ′pDp
qϕq + ϕpDp

qϕ
′

q, (3)

Π =
1
2
ϕpϕqdpr

qsϕrϕs, (4)

Π′ =
1
2
(ϕ′pϕqdpr

qsϕrϕs + ϕpϕ′qdpr
qsϕrϕs

+ϕpϕqdpr
qsϕ
′

rϕs + ϕpϕqdpr
qsϕrϕ′s), (5)

where ρ, Π, and ϕp, ϕq are all functions of one three-dimensional
real-space coordinate, r, and ϕp is the pth molecular orbital. MC-
PDFT does not suffer from the “symmetry dilemma”23,24 of KS-DFT
and other single-determinantal methods, in which one must choose
between physically realistic spin densities and accurate total ener-
gies, because it always involves a reference wave function that is an
eigenfunction of Ŝ2, where Ŝ is the total electron spin operator.

MC-PDFT uses on-top functionals Eot translated from KS
exchange–correlation functionals Exc

14 such that

EOT[ρ,Π, ρ′] = EXC[ρ̃α, ρ̃β, ρ̃′α, ρ̃′β], (6)

where the translation involves fictitious nonphysical spin densities
and their derivatives,

ρ̃α =
⎧⎪⎪
⎨
⎪⎪⎩

ρ
2(1 +

√
1 − R), R ≤ 1

ρ
2 , R > 1,

(7)

ρ̃β =
⎧⎪⎪
⎨
⎪⎪⎩

ρ
2(1 −

√
1 − R), R ≤ 1

ρ
2 , R > 1,

(8)

ρ̃′α =
⎧⎪⎪
⎨
⎪⎪⎩

ρ′

2 (1 +
√

1 − R), R ≤ 1
ρ′

2 , R > 1,
(9)

ρ̃′β =
⎧⎪⎪
⎨
⎪⎪⎩

ρ′

2 (1 −
√

1 − R), R ≤ 1
ρ′

2 , R > 1,
(10)

where R is also a function of the three-dimensional real-space
coordinate r and is given by

R =
4Π
ρ2 . (11)

Functionals defined as above are called translated and have a prefix
“t.” We also use “fully translated” on-top functionals25 in which the
translated densities also depend on the derivatives of Π. These func-
tionals have a prefix “ft” and are not discussed in this work, although
the analytic gradients are implemented for both translated and fully
translated functionals.

B. Lagrangian
The Hellmann–Feynman theorem26,27 implies that if an energy

E is stationary with respect to all parameters defining an underlying
wave function, then

∂E
∂λ
= ⟨Ψ∣

∂Ĥ
∂λ
∣Ψ⟩, (12)

where Ψ is the electronic wave function depending on electron
coordinates and parametrically on geometric coordinates, Ĥ is the
Hamiltonian operator, and λ is a geometric coordinate; this allows
one to avoid evaluating the response of the wave function to the
coordinate change. MC-PDFT is nonvariational, so this cannot be
applied, but one can avoid solving for the wave function response to
the coordinate change by using Lagrange’s method of undetermined
multipliers. The Lagrangian in the SS-PDFT case is

LMC-PDFT = EMC-PDFT + z⃗ ⋅ ∇Ψ⃗ECASSCF

= EMC-PDFT + z⃗orb ⋅ ∇κ⃗ECASSCF + z⃗CI ⋅ ∇P⃗ECASSCF, (13)
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where∇Ψ⃗ECASSCF is the gradient of the CASSCF energy with respect
to the orbital rotations (∇κ⃗) and state transfer operators (∇P⃗). The
parameterization of the CASSCF energy that allows the evaluation
of these derivatives is

ECASSCF = ⟨CAS∣H̄∣CAS⟩, (14)

where |CAS⟩ is the CASSCF wave function and H̄ is defined as

H̄ = e−P̂e−κ̂Ĥeκ̂eP̂, (15)

κ̂ = ∑
p<q

κp
q(Ê

p
q − Êq

p), (16)

P̂ = ∑
Λ

PΛ(∣Λ⟩⟨CAS∣ − ∣CAS⟩⟨Λ∣), (17)

where κp
q and PΛ are operator amplitudes and Êp

q is the spin-summed
excitation operator from the qth to the pth orbital. Note that the sum
in Eq. (17) is over all CSFs in the active space. Since the CASSCF
energy is stationary with respect to the parameters κp

q and PΛ, the
value of the Lagrangian, LMC-PDFT, is equal to the SS-PDFT energy
regardless of the value of the Lagrange multipliers, z⃗. Therefore, one
can choose these multipliers such that the Lagrangian is stationary
with respect to all wave function parameters by solving [using, for
example, the preconditioned conjugate gradient (PCG) method28]

∇Ψ⃗LMC-PDFT = ∇Ψ⃗EMC-PDFT + HECAS

Ψ⃗ ⋅ z⃗ = 0⃗, (18)

whereupon the Hellman–Feynman theorem applies to LMC-PDFT
and yields the same gradient as full differentiation of EMC-PDFT.
The gradient vector of the SS-PDFT energy with respect to wave
function parameters is ∇Ψ⃗EMC-PDFT; it will be called the energy
response, and it is discussed in Sec. II C. The term HECAS

Ψ⃗
is the Hes-

sian matrix for the CASSCF energy with respect to wave function
parameters.

The generalization of this procedure to the SA-PDFT case is
discussed next. In general, the Lagrangian must contain multipli-
ers associated with every parameter that may respond to a change
in molecular geometry but with respect to which the energy is not
stationary, and these multipliers must have cofactors that accurately
represent the conditions determining the values of those parameters.
This means that for SA-PDFT, there must be two classes of configu-
ration interaction (CI) transfer parameters that solve different sets of
equations. Therefore, we distinguish two kinds of terms in Eq. (17),

P̂ = ∑
J,R

PJR(∣R⟩⟨J∣ − ∣J⟩⟨R∣) +∑
J≠I

PIJ(∣J⟩⟨I∣ − ∣I⟩⟨J∣), (19)

where I indexes the root for which the molecular gradient is sought
(and is not summed in the second term), |J⟩ is an active-space
state that appears in the state average, and |R⟩ is an active-space
state that does not appear in the state average (as mentioned at the
beginning of Sec. II, these states are called unaveraged states). The
orbital parameters (κp

q) and the CI parameters (PJR) minimize the
SA-CASSCF energy,

ESA
CASSCF =

nSA

∑
J
ωJ⟨J∣H̄∣J⟩, (20)

where ωJ is the weight of the Jth root in the state average, and in
this work, we assume equal weights in all cases. The SA-CASSCF

energy is insensitive to the CI parameters (PIJ) of the averaged states
because with the assumption of equal weights it is the trace of a Her-
mitian matrix under unitary transformation. Instead, PIJ are chosen
to diagonalize the Hamiltonian in the state-averaged space,

⟨I∣H̄∣J⟩ = δIJE(I)CASSCF ∀ J. (21)

Comparison of Eqs. (15), (19), and (21) reveals that this is equivalent
to a stationarity condition for the Ith root,

∂E(I)CASSCF

∂PIJ
= ⟨I∣H̄∣J⟩ + ⟨J∣H̄∣I⟩ = 0 ∀ J ≠ I. (22)

Therefore, for the Ith root in SA-PDFT, the Lagrangian is

L
(I)

MC-PDFT = E(I)MC-PDFT + z⃗orb ⋅ ∇κ⃗ESA
CASSCF

+
nSA

∑
J
ωJzJR

∂E(J)CASSCF

∂PJR
+

nSA

∑
J≠I

ωIzIJ
∂E(I)CASSCF

∂PIJ

= E(I)MC-PDFT + z⃗orb ⋅ ∇κ⃗ESA
CASSCF +

nSA

∑
J
ωJ z⃗(J)CI ⋅ ∇P⃗J

E(J)CASSCF,

(23)

where in the second equality there has been a transformation from
the eigenstate to the CSF basis in the second index of PIJ and PJR, and
the elements of z⃗(J)CI are

zJΛ =

⎧⎪⎪
⎨
⎪⎪⎩

∑R zJR⟨R∣Λ⟩ +∑nSA
K zIK⟨K∣Λ⟩, J = I

∑R zJR⟨R∣Λ⟩, otherwise.
(24)

Because the coefficient matrix generated by differentiation of
Eq. (23) is not symmetric, one cannot apply the PCG method to solve
for the values of all Lagrange multipliers in one step. Instead, the
linear equations ∇Ψ⃗L

(I)
MC-PDFT = 0⃗ are solved in two steps. First, the

insensitivity of the SA energy to PIJ is exploited to solve analytically
for the CI Lagrange multipliers corresponding to averaged states,

zIJ = −(E(J)CASSCF − E(I)CASSCF)
−1 1

2ωI

∂E(I)MC-PDFT

∂PIJ
, (25)

which is possible because the eigenstate basis renders the relevant
Hessian matrix diagonal. Second, all other Lagrange multipliers are
solved for using the PCG method in the CSF basis,

∇Ψ⃗L
(I)

MC-PDFT = Pext ⋅ ∇Ψ⃗E(I)MC-PDFT +
nSA

∑
J
ωJPextH

E(J)
CAS

Ψ⃗
⋅ z⃗(J) = 0⃗, (26)

where HE(J)
CAS

Ψ⃗
is the CASSCF Hessian matrix for the Jth root and z⃗(J)

includes both z⃗(J)CI and the orbital Lagrange multipliers common to
all roots, z⃗orb. The projector matrix, Pext, eliminates all components
of CI transfers between states in the average manifold,

{Pext}JΛ,JΛ′ = 1 −
nSA

∑
K
∣Λ⟩⟨Λ∣K⟩⟨K∣Λ′⟩⟨Λ′∣, (27)

thus fixing the zIJ components at the analytically determined val-
ues and preventing any spurious components rotating two averaged
roots other than I (zJK ) from emerging. Note that the Hessian is
projected on only one side so that the response of the orbital and
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unaveraged CI degrees of freedom to zIJ is included. In practice, if
an implementation of an SA-CASSCF “Hessian” matrix is available,
it may not be necessary to include Pext explicitly, but care must be
taken to ensure that this matrix is nonsymmetric in the specific way
that reproduces Eq. (26) precisely.

C. Energy response
The Hessian matrix of the CASSCF energy of the Jth root,

HE(J)
CAS

Ψ⃗
, is already implemented in many quantum chemistry packages

and is not further discussed here. It remains to discuss the PDFT
energy response,∇Ψ⃗E(I)MC-PDFT. The formulas for this response in the
SA-PDFT and SS-PDFT cases are essentially the same, and we note
that all densities and density matrices that appear in this section in
the SA case correspond to the Ith root (not the state average). The
overall formulas for the elements of the response (in the CSF basis
where applicable) are

∂EMC-PDFT

∂κp
q

= Fp
q − Fq

p , (28)

∂EMC-PDFT

∂PIΛ
= ⟨I∣ĤpsQ̂I ∣Λ⟩ + ⟨Λ∣Q̂IĤps∣I⟩, (29)

∂EMC-PDFT

∂PJΛ
= 0 ∀ J ≠ I (30)

with
Fp

q = (h
p
r + gps

rt Ds
t + Vp

r )D
q
r + v

ps
rt dqs

rt , (31)

Ĥps = (hp
q + gpr

qs Dr
s + Vp

q)Ê
p
q +

1
2
v

pr
qs êpr

qs , (32)

Q̂I = 1 − ∣I⟩⟨I∣, (33)

where V and v are one- and two-body effective potentials, respec-
tively, and êpr

qs is the spin-summed two-electron excitation from
orbitals q, s to p, r. Note that Eq. (29) spans both the averaged and
unaveraged spaces [i.e., it contributes to both Eqs. (25) and (26)].

The effective potentials account for the differentiation of the
on-top energy. They are

Vp
q = ∫

∂ϵOT

∂ρ
ϕpϕq +

∂ϵOT

∂ρ′
(ϕ′pϕq + ϕpϕ′q)dr, (34)

v
pr
qs = ∫

∂ϵOT

∂Π
ϕpϕqϕrϕsdr, (35)

where ϵOT is the integrand of the on-top energy with respect to a
real-space coordinate,

EOT = ∫ ϵOT(r)dr. (36)

As discussed earlier, the on-top functional is a translation of a Kohn–
Sham density functional. Therefore, the derivatives of the integrand
ϵOT (collectively∇ρ⃗ϵOT) are obtained via the chain rule,

∇ρ⃗ ϵOT = ∇⃗̃ρ ϵXC ⋅ J
⃗̃ρ
ρ⃗, (37)

where

∇⃗̃ρ ϵXC =

⎧⎪⎪
⎨
⎪⎪⎩

∂ϵXC

∂ρ̃α
,
∂ϵXC

∂ρ̃β
,
∂ϵXC

∂ρ̃′α
,
∂ϵXC

∂ρ̃′β

⎫⎪⎪
⎬
⎪⎪⎭

, (38)

and the Jacobian matrix, J
⃗̃ρ
ρ⃗, is

J
⃗̃ρ
ρ⃗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ̃α
∂ρ

∂ρ̃α
∂ρ′

∂ρ̃α
∂Π

∂ρ̃β
∂ρ

∂ρ̃β
∂ρ′

∂ρ̃β
∂Π

∂ρ̃′α
∂ρ

∂ρ̃′α
∂ρ′

∂ρ̃′α
∂Π

∂ρ̃′β
∂ρ

∂ρ̃′β
∂ρ′

∂ρ̃′β
∂Π

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (39)

The quantities in Eq. (38) can be obtained in standard KS-DFT
implementations. Those in Eq. (39) are obtained by applying the
chain rule to Eqs. (7)–(11) and are tabulated in the supplementary
material.

D. Derivative of the Lagrangian
Given a set of Lagrange multipliers that solve Eqs. (25) and

(26), the molecular gradient for the Ith root MC-PDFT energy in
SA-PDFT is obtained by differentiating Eq. (23) with respect to
nuclear displacements. The chain rule for this operation generates
terms involving the derivatives of the Hamiltonian matrix elements,
atomic orbital (AO) overlap integrals in a finite AO basis, the on-
top energy (including grid coordinates and grid weights in a finite
quadrature grid), and density matrices. The last of these are dropped
because they are indirect derivatives of wave function parameters,
which are constrained to sum to zero by Lagrange’s method of
undetermined multipliers.

The derivatives of the Hamiltonian and overlap matrix ele-
ments are obtained in the AO basis as

hκ̃
λ ≡ ∫ (

1
2
ϕκ∇R⃗A

ĥcoreϕλ − PAκϕ′κĥcoreϕλ)dr, (40)

g κ̃μλν ≡ −PAκ ∫ ϕ′κ(r1)ϕλ(r1)r−1
12 ϕμ(r2)ϕν(r2)dr1dr2, (41)

sκ̃λ ≡ PAκ ∫ ϕ′κϕλdr. (42)

These equations are essentially first derivatives of the Hamiltonian
and overlap matrix elements with respect to the three components
of the Ath atomic nucleus’s coordinate, RA. The term PAκ is 1 if κ is
an atomic orbital centered on atom A and 0 otherwise.

The derivatives of the on-top energy can be evaluated in more
than one way because they involve tensor products that can be car-
ried out in various orders. Here, we present these derivatives as
they are evaluated in our OpenMolcas implementation. We generate
3Natom atomic-coordinate derivatives of the translated densities and
their electron-coordinate derivatives (collectively denoted as ∇λ⃗

⃗̃ρ)
by using the Jacobian given by Eq. (39) and the atomic-coordinate
derivatives of the true density and density derivatives (used in many
standard DFT codes) and on-top pair density,

∇λ⃗
⃗̃ρ = J

⃗̃ρ
ρ⃗ ⋅ ∇λ⃗ρ⃗ (43)

with
∇λ⃗
⃗̃ρ = {∇λ⃗ρ̃α,∇λ⃗ρ̃β,∇λ⃗ρ̃

′

α,∇λ⃗ρ̃
′

β}, (44)
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∇λ⃗ρ⃗ = {∇λ⃗ρ,∇λ⃗ρ
′,∇λ⃗Π}, (45)

∇λ⃗A
ρ = −2PAκϕ′κDκ

λϕλ + PArρ′, (46)

∇λ⃗A
ρ′ = −2PAκ(ϕ′′κ Dκ

λϕλ + ϕ′κDκ
λϕ
′

λ) + PArρ′′, (47)

∇λ⃗A
Π = −2PAκϕ′κϕλdκμ

λνϕμϕν + PArΠ′, (48)

where PAr is 1 if r is evaluated at a grid point associated with the Ath
atom and 0 otherwise, and the symbol∇λ⃗A

in Eqs. (46)–(48) refers to
the components of ∇λ⃗ρ, ∇λ⃗ρ

′, and ∇λ⃗Π, respectively, which involve
the Ath atom. The contribution to the molecular gradient is then
evaluated with a standard KS-DFT analytic gradient code,

∇λ⃗EOT = ∫ (∇λ⃗
⃗̃ρ ⋅ ∇⃗̃ρ ϵXC)dr + ϵOT(r⃗) ⋅ Jw⃗λ⃗ , (49)

where the last term accounts for the response of the quadrature
weights of the numerical integration (not to be confused with the
state-averaged weights of various roots) and corresponds simply to
the quadrature evaluation of Eq. (36) with 3Natom sets of derivatives
of quadrature weights in place of the weights themselves.

The details of our PYSCF implementation are not presented
in detail, but that implementation rearranges the intermediates of
Eqs. (43)–(49) to generate derivatives of V and v analogous to hκ̃

λ
and g κ̃λμν .

The full expression for the molecular gradient, including
the differentiated Hamiltonian, overlap, and on-top contributions,
including all finite-grid and finite-basis corrections, is

∇λ⃗EMC-PDFT = 2[hp̃
q + g p̃r

qs Dr
s]D

p
q +∇λ⃗EOT

+ 2(hp̃
qD̆p

q + g p̃r
qs d̆

pr
qs) − [s

p̃
q + sq̃

p](F
p
q + F̆p

q), (50)

where Fp
q is from Eq. (31) and

F̆p
q = hp

r D̆q
r + gps

rt d̆
sq
tr . (51)

The effective density matrices, D̆ and d̆, contain the Lagrange multi-
pliers as follows:

D̆p
q = ∑

s
({DSA}

s
qzp

s − {DSA}
p
s zs

q)

+∑
J,Λ

wJzJΛ(⟨Λ∣Êp
q∣J⟩ + ⟨J∣Êp

q∣Λ⟩), (52)

d̆
pr
qs = ∑

t
({dSA}

tr
qsz

p
t − {dSA}

pr
ts zt

q + {dSA}
pt
qsz

r
t − {dSA}

pr
qt zt

s)

+∑
J,Λ

wJzJΛ(⟨Λ∣êpr
qs ∣J⟩ + ⟨J∣êpr

qs ∣Λ⟩), (53)

where DSA and dSA are the state-averaged one- and two-body den-
sity matrices, respectively. All other density matrices appearing in
Eq. (50) arise from the differentiation of E(I)MC-PDFT and are specific to
the Ith root.

E. Operation cost, storage cost, and timing
Previous work has reported the attractive timing and low mem-

ory requirements of MC-PDFT energycomputations as compared to

those of CASPT2.18,29–33 Here, we discuss additional considerations
related to timing and memory requirements when one calculates
gradients.

The intermediate arrays and tensors that appear above have the
same dimensions and sizes as comparable quantities utilized in the
evaluation of SA-CASSCF or KS-DFT analytic gradients. The calcu-
lations of the two-body effective potential terms (v) dominate the
overall cost of the SA-PDFT gradient steps, and for these as well as
the on-top pair density (Π) and its various derivatives, we exploit
the partition of the MO indices into those for inactive, active, and
virtual orbitals. The largest segment of the effective potential or 2-
RDM required at any step in the evaluation of SA-PDFT analytic
gradients is that which appears in Eq. (31). Here, the block-diagonal
structure of the 2-RDM is exploited so that only two-body effec-
tive potential elements with at least three indices restricted to the
active space are explicitly calculated (this also applies to derivatives
of v alluded to in Sec. II D). This leads to operation and storage
costs of O(M1M3

CASngrid) and O(M1M3
CAS), respectively, associated

with the two-body effective potentials, where M, MCAS, and ngrid are
the numbers of AOs, active orbitals, and quadrature grid points,
respectively. This should be compared to O(M4M1

CAS) operation
and O(M3M1

CAS) storage costs for the leading step of the integral
transformations required in CASSCF without density fitting.

In practice, one usually has ngrid≫M, so the two-body effective
potential evaluation is often the slowest part of SA-PDFT gradient
calculations, including the preceding CASSCF energy calculation. It
should also be noted that available memory is used to vectorize the
effective potential calculations, so actual memory consumption will
often be higher than the minimal “cost” discussed here. Additionally,
this analysis ignores the O(eMCAS) operation and storage cost associ-
ated with manipulating the active-space CI vector, which dominates
the overall cost of the method in the limit of large MCAS.

III. COMPUTATIONAL METHODS
All SA-PDFT calculations were performed using local versions

of OpenMolcas20 and the PYSCF
22 add-on package mrh21 using the

tPBE on-top functional. Geometry optimizations using energies and
gradients computed by PYSCF and mrh were carried out by the exter-
nal program geomeTRIC.34 All SA-PDFT computations were per-
formed with the aug-cc-pVTZ basis set and an ultrafine grid size.
The CASPT2 geometry optimizations were performed using the
same local version of OpenMolcas and the 6-311G+(2df) basis set
for cytosine. Numerical gradients were computed for CASPT2 since
analytic gradients are not yet implemented in OpenMolcas or PYSCF.
The CASPT2 computations were performed with a state-averaged
reference wave function, but the PT2 corrections and the PDFT
energies were computed independently, and the states were not
allowed to interact. For the CASPT2 calculations, the default IPEA
shift value, 0.25 Eh, was used, and the default number of frozen deep
core orbitals was used for each system studied here. For the numer-
ical gradient in OpenMolcas, a Δ value of 0.06 was used, and con-
vergence criteria for the orbital rotation matrix and energy gradient
were set to 1.0 × 10−5.

A set of four molecules (shown in Fig. 1) was used to assess the
correctness of the analytic gradients and the accuracies of geometries
and excitation energies computed with SA-PDFT. All states studied
are singlet states.
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FIG. 1. Systems studied in this work.

The active space used for lithium hydride contains one σ and
one σ∗ orbital. The active space of formaldehyde is composed of
pairs of bonding/antibonding σ (C-H), σ (C=O), and π (C=O)
orbitals, oxygen lone pairs, and two second-shell oxygen lone pair
orbitals. Two π and two π∗ orbitals and the associated electrons are
included in the active space for trans-butadiene. The active space
for cytosine includes the entire occupied π space and lone pair
orbitals with three correlating π∗ orbitals. Active space sizes, sym-
metry constraints, number of configurations, and the states included
in the average for all molecules studied with SA-PDFT are shown in
Table I.

IV. RESULTS
We will consider lithium hydride, formaldehyde, and trans-

butadiene to test the correctness of the analytic gradient implemen-
tation, and then, we will consider formaldehyde, trans-butadiene,
and cytosine to test the accuracy of geometries predicted by SA-
PDFT with the newly implemented analytic gradients.

A. Correctness of analytic gradients
Gradients were first computed for the ground and first-excited

singlet states of LiH to show the agreement between the numeri-
cal and analytic gradients. Two low-lying singlet states, namely, the
X1Σ+ and A1Σ+ states, were considered; we can label the states as S0
and S1. Gradients were computed for both states at 0.1 Å intervals
from 0.5 Å to 5.5 Å, and they are shown in Fig. 2 along with the

potential energy curves. The numerical and analytic gradients agree
at all distances.

The experimentally determined equilibrium bond distances35

for the X1Σ+ and A1Σ+ states are 1.60 Å and 2.60 Å, respectively.
The calculated values are 1.62 Å and 2.91 Å, respectively; the latter
does not agree well with experiment. This disagreement is a con-
sequence of the notoriously flat shape of the A state potential well
(which is “anomalous” with “a long history”35) that arises from an
avoided crossing and from severe configuration mixing of valence
bond states with ionic, covalent Li 2s, and covalent Li 2p charac-
ters;36,37 the flatness means that a small shift in the energies can
be associated with a large shift in the equilibrium distance. To get
quantitative results, one should treat the curve crossing region with
state-interaction methods including at least three states.36,37 We note
though that the two-state treatment of LiH is not presented here as
an attempt to treat this molecule accurately but rather to demon-
strate the correctness of the implementation of analytic gradients on
a simple case.

The mean unsigned deviation (MUD) for the SA-PDFT ana-
lytic gradients compared to the numerical gradients is 4 × 10−5

hartree bohrs−1. The same analysis was performed with SA-
CASSCF, and the MUD between the analytic and numerical gra-
dients was 2 × 10−5 hartree bohrs−1. The analysis for SA-CASSCF
is shown in Fig. S1 of the supplementary material. This shows that
the SA-PDFT numerical and analytic gradients agree as do the SA-
CASSCF analytic and numerical gradients. Further checks involv-
ing the SA-PDFT numeric gradients from formaldehyde and trans-
butadiene are presented in Table S1 of the supplementary material.

B. Formaldehyde
Here, optimized geometries for the ground and first-excited

singlet states of formaldehyde are compared to experiment and to
theoretical structural parameters reported in the work of Budzák,
Scalmani, and Jacquemin9 and references therein. The benchmark
dataset includes geometries determined at ADC(2), CC2, CCSD,
CCSDR(3), and CC3 levels of theory. Note that the geometries of
both the ground and first-excited electronic states are predicted from
SA-PDFT calculations based on the same SA-CASSCF active space.

Table II shows that all methods included in this work pro-
duce results in good agreement with experiment for the ground-state
geometries, and SA-PDFT is the best performing method for the
ground state of formaldehyde. In the following text, experimental
values are considered as the reference, but it should be noted that
a comparison to experiment tests not just SA-PDFT but also other

TABLE I. The active spaces, symmetry constraints, number of configuration state functions (CSFs), and number of included
states in the state-averaged framework for all systems included in the benchmark study.

System Active space Symmetry States averaged CSFs

Lithium hydride (2e, 2o) None enforced 2 3
Formaldehyde (12e, 12o) None enforced 2 226 512
Trans-butadiene (4e, 4o) C2h 2 (1Ag) 12
Cytosine (14e, 10o) Cs 3 (1Ag) 2 598
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FIG. 2. Potential energy surface (PES) scan of lithium hydride from a bond distance
of 0.5 Å–5 Å. The numerical and analytic gradients and energies for SA-PDFT are
shown at each point on the PES for both the ground, S0, and excited, S1, states.

factors such as basis set dependence. The geometries optimized
with SS-PDFT are also included in this table, but little difference
is observed between the SA- and SS-PDFT ground-state geometric
parameters.

In order to include both the excited state and the ground state
in the same state-averaged manifold in OpenMolcas, no spatial sym-
metry was enforced in the SA-PDFT and SA-CASSCF calculations.
However, the geometries computed with CASPT2(12e, 10o) and the
single reference methods in Table III [CC2, CCSD, ADC(2), and
CC3] imposed C2v symmetry. Therefore, the energies and geome-
tries were determined using a set of orbitals that are variational with
respect to that state’s energy and not an average energy. It should be
noted that these results are taken from the work by Jacquemin,13 and
it was observed that CC3 and CASPT2 with a large active space and
diffuse basis set give geometries close to experiment.13

TABLE II. Ground-electronic-state equilibrium geometries of formaldehyde with
the first row being experiment and the other rows being the difference from the
experiment. Bond distances are reported in Å, and angles are reported in degrees.

C=O C-H ∠H-C-H η

Expt.40 1.208 1.116 116.3 0
SA-PDFT(12e, 12o) 0.002 −0.002 −0.2 0
SS-PDFT(12e, 12o) 0.001 −0.016 0.1 0
CASPT2(12e, 10o)13 0.001 −0.014 −0.1 0
SA-CASSCF 0.006 −0.013 1.0 0
ADC(2)13 0.002 −0.020 0.2 0
CC213 0.009 −0.018 0.1 0
CCSD13 −0.007 −0.019 0.1 0
CC3 0.000 −0.017 0.2 0

TABLE III. Excited-electronic-state equilibrium geometries of formaldehyde with
the first row being experiment and the other rows being the difference from the
experiment. Bond distances are reported in Å, and angles are reported in degrees.

C=O C-H ∠H-C-H η

Expt.39 1.323 1.098 118.4 34
SA-PDFT(12e, 12o) 0.000 0.004 −0.8 −6
CASPT2(12e, 10o)13 0.003 −0.008 −0.3 4
SA-CASSCF(12e, 12o) 0.033 −0.019 −0.3 −2
ADC(2)13 0.057 −0.017 5.4 −15
CC213 0.030 −0.013 2.9 −5
CCSD13 −0.023 −0.011 0.5 −3
CC313 −0.003 −0.009 −0.2 3

The lowest-lying n → π∗ state of formaldehyde is known to
deviate from a planar structure and to have a significantly length-
ened carbonyl bond, and experimental values for the out-of-plane
angle, η, vary from 20.5○38 to 34.0○.39–41 Here, 34○ is taken as the ref-
erence value based on both experimental40,41 and theoretical13 work.
The results computed with SA-PDFT have the second largest error
for the puckering angle, η. The carbonyl bond distance for this state
is 1.323 Å ± 0.002 Å,38–40 which is much longer than the ground
state carbonyl bond length of 1.208 Å ± 0.001 Å.40,42 Table III shows
that SA-PDFT gives results in agreement with experiment for bond
distances and ∠H-C-H for the lowest-lying excited singlet state of
formaldehyde.

In Table IV, the adiabatic and vertical energetic gaps are
reported for SA-PDFT, CASPT2, and SA-CASSCF. Vertical gaps are
computed as the energy difference between the ground and excited
states at the optimized ground-state geometry for that method. The
adiabatic gaps correspond to the difference in energy computed at
the optimized structures for both the excited and ground states for
that method. The reference (i.e., the best available estimate that we
use for comparison) for the adiabatic gap is CC313 and the reference
for the vertical gap is experiment.43 Compared to CC3, the SA-PDFT
adiabatic gap is 0.03 eV larger, and the CASPT2 one is 0.02 eV
smaller, and SA-CASSCF is 0.01 eV larger. All methods shown here
overestimate the experimental vertical gap by more than 0.10 eV;
however, SA-PDFT and SA-CASSCF differ from the more expensive
CASPT2 by only 0.06 eV.

Formaldehyde was studied in order to compare SA-PDFT
geometries and energetics to other methods from the literature, but

TABLE IV. The excitation energies between the ground state and lowest-lying excited
states with 1n→ π∗ character in formaldehyde.

ΔE (eV)

Method Adiabatic Vertical absorption

Expt.43 3.79
CC313,44 3.55 3.97
SA-PDFT(12e, 12o) 3.58 3.92
CASPT2(12e, 10o)13 3.53 3.98
SA-CASSCF(12e, 12o) 3.56 4.04
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both the ground and first-excited singlet states have single-reference
character, and thus, it is not essential to use a multireference method.
Next, we consider trans-butadiene, which has considerable multiref-
erence character.

C. Trans -butadiene
To show the performance of SA-PDFT on a system with a mul-

tireference ground state, trans-butadiene was studied and compared
to results by Watson and Chan.45 Both the ground state and the 21Ag
state of trans-butadiene are known to have strong multireference
character based on their M diagnostics.46

The best estimate for the vertical gap has been reported as 6.39
± 0.07 eV.45 Multi-state CASPT2 (MS-CASPT2) at the experimen-
tal equilibrium geometry predicts the vertical gap to be 6.69 eV.46

CASPT2 computed for a SA-CASSCF reference wave function with
no state interaction is also an interesting comparison to SA-PDFT
because SA-PDFT does not include state-interaction effects; there-
fore, we compare to CASPT2 results as well as MS-CASPT2. The adi-
abatic, vertical absorption, and vertical de-excitation gaps are shown
in Table V.

SA-CASSCF predicts a vertical absorption gap closest to the
best estimate, but all methods overestimate the gap by more than
0.15 eV. SA-PDFT is the furthest from this value with a difference
of 0.52 eV. For the adiabatic gap, SA-PDFT is 0.09 eV different
from the CASPT2 value, while SA-CASSCF differs by 0.26 eV. The
vertical de-excitation energy computed with SA-PDFT is 0.08 eV
different from CASPT2, and SA-CASSCF is 0.33 eV different from
CASPT2. The geometries predicted by these three methods for
the ground and excited 1Ag states of trans-butadiene are shown
in Table VI.

For the ground state, all three methods predict geometric
parameters that are similar to the reference values. The method with
the largest deviation from the experimental value for the C-C bond
length is CASPT2, for the ∠C-C=C angle is SA-CASSCF, and for
the C=C bond lengths is SA-PDFT. In the excited state, CASPT2,
SA-PDFT, and SA-CASSCF are in excellent agreement.

D. Cytosine
In this section, we report the optimization of the geometries of

the ground and excited states of cytosine; we compare the results to
CCSD and MS-CASPT2 computations reported by Fogarasi48 and

TABLE V. The excitation energy (in eV) of the 21Ag states in trans-butadiene.

ΔE (eV)

Vertical Vertical
Method Adiabatic absorption de-excitationa

Best estimate45 6.39
MS-CASPT2 6.69
CASPT2 5.68 6.68 −4.80
SA-PDFT 5.77 6.91 −4.72
SA-CASSCF 5.42 6.57 −4.47

aDifference between the ground and 21Ag states at the 21Ag equilibrium geometry.

TABLE VI. Bond lengths and geometries of the 11Ag and 21Ag states of trans-
butadiene with the first set of values being the reference values and the other
sets being differences from the reference values. The bond lengths are reported in
angstroms (Å), and bond angles are reported in degrees.

11Ag 21Ag

Method C=C C-C ∠C-C=C C-C C=C ∠C-C=C

Expt.47 1.349 1.465 123.8
CASPT2 −0.007 −0.011 −0.2 1.488 1.394 122.1
SA-PDFT −0.013 0.005 0.3 0.008 0.003 2.0
SA-CASSCF −0.004 −0.009 0.5 0.001 0.019 1.1

Nakayama et al.,49 respectively. Cytosine shows the efficiency of SA-
PDFT compared with CASPT2 in handling conjugated systems with
midsize active spaces. The geometry was optimized with the (14e,
10o) active space, which contains the occupied π space, two lone
pair orbitals, and three correlating π∗ orbitals and has shown to be
accurate in previous work.50–52 In the SA-PDFT and CCSD/TZP48

geometry optimizations, Cs symmetry was used, and the three low-
est 1A′ states were considered. For direct comparison with the SA-
PDFT results, cytosine was also optimized with SA(3)-CASSCF(14e,
10o) and CASPT2(14e, 10o), with the same state-averaged reference
wave function as used for the SA-PDFT computation. Atomic labels
on cytosine are shown in Fig. 3 for use in tabulating and discussing
the results (Tables VII–IX).

In Tables VII and VIII, the ground-state geometries of cytosine
computed with SA(3)-CASSCF, SA(3)-PDFT, CASPT2(14e, 10o),
and CCSD are compared to experiment. The computational entries
in these tables are reported as differences with respect to the exper-
imental reference geometry. The SA-PDFT method reproduces the
experimental geometry to within 0.06 Å. In some instances, namely,
the C1-N2 and N2-C3 bond lengths, SA(3)-PDFT performs slightly

FIG. 3. The ground-state geometry of cytosine as optimized by SA(3)-PDFT.
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TABLE VII. Experimental bond distances (first row in Å) of the ground state of cytosine and differences of theoretical values from experiment.

Method C1-N2 N2-C3 C3-C4 C4-C5 C5-N7 C5-N6 N6-C1 C1-O8 MUD

Expt.53 1.374 1.357 1.342 1.424 1.330 1.337 1.364 1.234 . . .
SA(3)-CASSCF(14e, 10o) 0.017 −0.003 0.004 0.022 0.020 −0.046 0.027 −0.038 0.02
CCSD48 0.042 0.003 0.011 0.022 0.027 −0.024 0.015 −0.020 0.02
CASPT2(14e, 10o) 0.046 0.005 0.015 0.019 0.030 −0.017 0.014 −0.012 0.02
SA(3)-PDFT(14e, 10o) 0.066 −0.017 0.016 0.012 0.021 −0.011 0.000 −0.019 0.02

TABLE VIII. Experimental bond angles (first row in degrees) of the ground state of cytosine and differences of theoretical values from experiment.

Method ∠6-1-2 ∠5-6-1 ∠4-5-6 ∠3-2-1 ∠3-4-5 ∠4-3-2 ∠8-1-2 ∠8-1-6 ∠7-5-6 ∠7-5-4 MUD

Expt.53 118.1 119.9 122.0 122.7 117.3 120.1 119.8 122.2 118.2 119.9
SA(3)-CASSCF(14e, 10o) −1.2 0.6 1.4 0.4 −1.1 −0.2 −0.2 1.4 0.2 −1.8 0.9
CCSD48 −1.6 −0.2 2.5 0.8 −1.5 −0.1 −1.1 2.6 −1.0 −1.6 1.3
CASPT2(14e, 10o) −1.8 −0.2 2.7 1.0 −1.6 −0.2 −1.1 2.8 −1.3 −1.5 1.4
SA(3)-PDFT(14e, 10o) −2.3 0.6 2.0 0.7 −1.6 −0.5 −2.3 4.5 −1.8 −0.4 1.6

worse than CCSD and CASPT2(14e, 10o). The C1-N2 bond length
predicted by SA(3)-PDFT is 0.02 Å longer than the one predicted
by CCSD and CASPT2(14e, 10o), 0.049 Å longer than the SA(3)-
CASSCF result, and a total of 0.066 Å longer than experiment. For
the N2-C3 bond length, SA-PDFT predicts this parameter to be
0.02 Å shorter than experiment, whereas the CCSD and CASPT2(14e,
10o) values are approximately 0.01 Å longer than experiment. The
SA(3)-CASSCF results also predict a slightly shorter N2-C3 bond
distance than experiment. For other carbon–nitrogen bonds, SA(3)-
PDFT gives results similar or closer to experiment than the other
methods, as reported in Table VII. The C5-N6 and C5-N7 bonds
computed with SA(3)-PDFT have an error 50% smaller compared
to CCSD and CASPT2(14e, 10o). The N6-C1 bond length computed
with SA(3)-PDFT correctly reproduces the experimental length by
up to three decimal places. The SA(3)-CASSCF and SA(3)-PDFT
results over- or underestimate the experimental geometry for each
bond distance for cytosine, which results in the same sign of error
in each case in Table VII. The computed ground state cytosine
bond lengths are very similar to the experimental values; each
method reported in Table VII [SA(3)-CASSCF(14e, 10o), CCSD,
CASPT2(14e, 10o), and SA(3)-PDFT] has a MUD of 0.02 Å.

Table VIII reports the SA(3)-CASSCF, CCSD, CASPT2(14e,
10o), and SA(3)-PDFT bond angle deviations with respect to the

experimental values. All methods have a similar magnitude of error,
except for a few angles with larger error from SA(3)-PDFT results.
The MUD for SA(3)-CASSCF is 0.9○, CCSD is 1.3○, CASPT2(14e,
10o) is 1.4○, and SA(3)-PDFT is 1.6○. Along with the bond distance
analysis above, these data show that SA(3)-PDFT provides a similar
accuracy for ground state geometry optimization as CASPT2(14e,
10o) and CCSD.

The geometry of the first-singlet excited state of cytosine was
optimized with SA(3)-CASSCF, SA(3)-PDFT, and CASPT2(14e,
10o). The reference CASPT2(14e, 10o) computation used the same
active space and number of roots as the SA(3)-PDFT computa-
tion. A previous study on the excited states of cytosine provided
a MS(2)-CASPT2(8e, 7o) optimized geometry, which is used here
as another set of structural parameters to compare to.49 The active
space used was (8e, 7o) and was composed of only π and π∗
orbitals. Only two roots were considered in the geometry optimiza-
tion, and the DZP basis set was used. Each excited state geometry
reported in Table IX is of 1ππ∗ character with a final electronic state
of 1A′.

The excited state optimized structure is very similar across
all methods. The deviations from CASPT2(14e, 10o) of MS(2)-
CASPT2(8e, 7o) and SA(3)-PDFT are of similar magnitude. How-
ever, the SA(3)-PDFT geometries deviate slightly in some cases.

TABLE IX. CASPT2(14e, 10o) computed bond distances (first row in Å) of the first-singlet excited state of cytosine and differences of subsequent theoretical values from
CASPT2(14e, 10o).

Method C1-N2 N2-C3 C3-C4 C4-C5 C5-N7 C5-N6 N6-C1 C1-O8 MUD

CASPT2(14e, 10o) 1.453 1.301 1.394 1.444 1.350 1.320 1.374 1.210
SA(3)-CASSCF(14e, 10o) −0.095 0.080 0.030 −0.079 0.022 0.097 −0.100 0.118 0.08
MS(2)-CASPT2(8e, 7o)49 −0.043 0.075 0.036 −0.053 0.047 0.031 −0.049 0.066 0.05
SA(3)-PDFT(14e, 10o) −0.024 0.081 0.022 −0.059 0.019 0.096 −0.032 0.026 0.04
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The SA(3)-CASSCF geometries have the same error or deviate
more with respect to the reference geometry than that of SA(3)-
PDFT. This shows that SA(3)-PDFT improves the first-excited state
geometry of cytosine as compared to SA-CASSCF and ultimately
results in a structure closer to that of CASPT2. The MUD from the
CASPT2(14e, 10o) excited structure is 0.04 Å for the SA(3)-PDFT
results, which is smaller than that of MS(2)-CASPT2(8e, 7o) at
0.05 Å and SA(3)-CASSCF at 0.08 Å.

V. CONCLUSION
In this work, SA-PDFT analytic gradients were derived and

implemented using a Lagrangian framework. This is a generalization
of the SS-PDFT analytic gradients previously available in OpenMol-
cas. A test set of four molecules was studied in order to assess the
correctness and accuracy of the SA-PDFT gradients, excitation and
emission energies, and geometries.

Comparison to numerical gradients for the potential energy
curve of LiH and additional comparisons for formaldehyde and
trans-butadiene showed that SA-PDFT analytic gradients closely
agree with numerical SA-PDFT gradients in both the ground state
and the first-singlet excited state.

The geometries computed with SA-PDFT are comparable to
those computed with CC2, CCSD, CC3, and CASPT2. Analytic gra-
dients for SA-PDFT provide an avenue for the study of excited
geometries and excitation energies in systems that are prohibitively
expensive when using other post-CASSCF methods. The results pre-
sented in this and previous work clearly show that SA-PDFT gives
results with similar accuracy to CASPT2 for ground and excited state
properties of small organic molecules at an attractive computational
cost. In future studies, in order to efficiently optimize geometries of
larger molecules, the SA-PDFT gradient expressions will be modi-
fied to make use of the density fitting54,55 approximation to speed up
the two-electron integrals.

SUPPLEMENTARY MATERIAL

See the supplementary material for the explicit Jacobian matrix
elements for the evaluation of the SA-PDFT gradients, analytic and
numerical gradients at 0.5 Å intervals on the potential energy curve
of LiH using SA-CASSCF, and total energies for the optimized struc-
tures using the analytic gradients, and the bond lengths and angles
computed using the numerical gradients.
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APPENDIX: ERRORS IN REF. 19

We note two misprints and one omission in the derivation
of the SS-PDFT gradient reported in Ref. 19. These misprints and
omission do not correspond to any errors in the previous code; the
previous code was correct.

First, the on-top pair density, Π, defined here by Eq. (4), is
incorrectly presented in Eq. (9) of Ref. 19 as

Π = ϕpϕqdpr
qsϕrϕs, (A1)

using the notation of this work. The error is the omission of a factor
of 1/2 from Eq. (4).

Second, the programmable equation for the gradient, reported
here in Eq. (50), is incorrectly presented in Eq. (68) of Ref. 19 as

∇λ⃗EMC-PDFT = 2(hp̃
qDp

q + g p̃r
qs dpr

qs) +∇λ⃗EOT

+ 2(hp̃
qD̆p

q + g p̃r
qs d̆

pr
qs) − [s

p̃
q + sq̃

p](F
p
q + F̆p

q), (A2)

again using this work’s notation and conventions. The error is that
the product Dp

qDr
s in the second term within the first pair of brack-

ets on the right-hand side of Eq. (50) is replaced with the 2-RDM,
dpr

qs , which is incorrect because g p̃r
qs (d

pr
qs − Dp

qDr
s) corresponds to the

derivative of the non-Coulomb contribution to the CASSCF two-
electron interaction energy and should not be included in a PDFT
gradient expression.

The omission is that the content of Eqs. (43)–(49) is not pre-
sented at all in Ref. 19. Instead, Ref. 19 states that ∇λ⃗EOT “is eval-
uated using standard DFT techniques using the translated densities
in the evaluation of the derivative of the KS-DFT functional.” This
statement is true in that 3Natom derivatives of the translated densities
and density derivatives (i.e.,∇λ⃗

⃗̃ρ) are computed, but Ref. 19 does not
present those derivatives or their programmable equations.
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