

Effects of a Post Activation Potentiation Stimulus Coupled with Plyometric Training Program on the Swimming Start Performan of Collegiate Swimmers

Brady Fields

Exercise Science, Gardner-Webb University, Boiling Springs, NC 28017

Abstract

- ❖ 30 collegiate swimmers from Division 1 universities in the south east United States took part in this study
- Testing group completed plyometric training coupled with post-activation potentiation (PAP) stimulus as well as structured aquatic training
- Control group completed only structured aquatic training
- Pre and post program data was gathered from both groups to compare the effects of the training
- Both groups were assessed on vertical jump height, swim start velocity, time to the 15m marker, and peak horizontal force
- After the training program concluded and the resulting data from the two groups was compared

Introduction & Review of Literature

- Swimming start directly correlated to swimming performance
- ❖ Up to 26.1% of total time in 50m race (Karpiński et al., 2020)
- Sprint swimmers need to take advantage of start to increase performance
- Studies have shown plyometric training can increase swim start performance related factors (Bishop et al., 2009; Potdevin et al., 2011; Rebutini et al., 2016; Sammoud et al., 2019)
- ❖ Studies also show that PAP stimulus can increase swim start performance in the same way (Killduff et al., 2011)
- Several division 1 universities agreed to incorporate plyometric training coupled with a PAP stimulus into their training to test their effectiveness

Purpose

- The purpose of this study was to determine the effects of a postactivation potentiation stimulus coupled with a plyometric training program on swim start performance
- ❖ It was hypothesized that the addition of both a PAP stimulus and a plyometric training program will significantly improve swim start performance in terms of velocity coming off the blocks as well as time to 15m

Figure 1

Methods

- Informed consent was gathered from all participants
- Both a testing and a control group were used (N = 30)

Participants

• Ethics consent was granted through each of the Universities ethics committees

Intervention

- Testing group implemented plyometric training with a PAP stimulus
- Control group completed regular aquatic training
- Pre- and post-training program data was collected
- Plyometric training program shown in Table 1
- A Vertec was used to measure vertical jump height
- Cameras were placed at the 5m and 15m markers to measure velocity and time to 15m
- A force plate was used to measure peak horizontal force
- All aquatic testing used the Omega OSB-11 starting block (Figure 1)

Data Analysis

Instruments

Independent sample t-tests were usedPre and post program assessment data

- Pre and post program assessment data was compared
- Significant differences between groups aid in the identification of benefits

Table 1

Plyometric Training Program (recovery in secs)								
Exercise	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8
Two-foot ankle hops	2 x 5 (60)	2 x 5 (60)	2 x 5 (60)	2 x 5 (60)	3 x 5 (60)	3 x 5 (60)	3 x 5 (60)	3 x 5 (60)
Back Squat (80% of 1RM)	1 x 3	2 x 3	3 x 3	3 x 3	4 x 3	4 x 3	5 x 3	5 x 3
Squat Jumps	1 x 4 (60)	2 x 4 (60)	3 x 4 (60)	3 x 4 (60)	4 x 4 (60)	4 x 4 (60)	5 x 4 (60)	5 x 4 (60)
Power Clean Pulls (70% of 1RM)	1 x 2	2 x 2	3 x 2	3 x 2	4 x 2	4 x 2	5 x 2	5 x 2
Standing Long Jumps		2 x 1 (60)	3 x 1 (60)	3 x 1 (60)	4 x 1 (60)	4 x 1 (60)	5 x 1 (60)	5 x 1 (60)
Squat Jumps (50% of 1RM)	1 x 3	2 x 3	3 x 3	3 x 3	4 x 3	4 x 3	5 x 3	3 x 3
Hurdle Hops	1 x 4	2 x 4	2 x 4	2 x 4	3 x 4	3 x 4	3 x 4	3 x 4
RFE Split Squats (30% of 1RM)	1 x 3	2 x 3 each side						3 x 3 each side
Split Squat Jumps	1 x 3 each side (60)	2 x 3 each side (60)		2 x 3 each side (60)		3 x 3 each side (60)	3 x 3 each side (60)	3 x 3 each side (60)

*All non-resistance exercises are completed 15seconds prior to the completion of the resistance exercises

*RFE Split Squats completed with dumbbell at 30% of 1RM

Operational Definitions

- Plyometrics: exercises which increase power output through stretch followed by contraction
- Swim Start: a full body movement with the goal of getting off the block and into the water in a quick and powerful manner
- Post-Activation Potentiation (PAP): mode of training involving a heavy resistance exercise followed by a high velocity movement
- Vertical Jump: a movement involving jumping perpendicular to the ground

Conclusion

- Limitations included swimming start technique variations, length of training program, and small sample size
- Assumed that the aquatic training was of similar intensity across universities, and both males and females would respond similarly
- Further research should examine difference between gender adaptation among collegiate swimmers

Acknowledgements

❖ I am very grateful to Dr. Hartman for providing me with the knowledge as well as the resources to complete this research proposal. Furthermore, I would also like to thank my writing fellow Weslyn Almond, and peer reviewer, Ryan Eads for providing me with feedback in order to improve this research proposal.

References

Bishop, D. C., Smith, R. J., Smith, M. F., & Rigby, H. E. (2009). Effect of Plyometric Training on Swimming Block Start Performance in Adolescents. *Journal of Strength and Conditioning Research*, 23(7), 2137-2143. http://doi.org/10.1519/JSC.0b013e3181b866d0

Karpiński J, Rejdych W, Brzozowska D, Gołaś A, Sadowski W, Swinarew AS, et al. (2020). The effects of a 6-week core exercises on swimming performance of national level swimmers. *Plos One, 15*(8), e0227394. https://doi.org/10.1371/journal.pone.0227394

Potdevin, F. J., Alberty, M. E., Chevutschi, A., Pelayo, P., & Sidney, M. C. (2011). Effects of a 6-week plyometric training program on performances in pubescent swimmers. *Journal of Strength and Conditioning Research*, *25*(1), 80-86. http://doi.org/10.1519/JSC.0b013e3181fef720

Rebutini, V. Z., Pereira, G., Bohrer, R. D., Ugrinowitsch, C., & Rodacki, A. F. (2016). Plyometric long jump training with progressive loading improves kinetic and kinematic swimming start parameters. *Journal of Strength and Conditioning Research*, 30(9), 2392-2398. http://doi.org/10.1519/JSC.00000000000000000

Sammoud, S., Negra, Y., Chaabene, H., Bouguezzi, R., Moran, J., & Granacher, U. (2019). The effects of plyometric jump training on jump and swimming performances in prepubertal male swimmers. *Journal of Sports Science & Medicine, 18*(4), 805-811. Retrieved from https://www.jssm.org/