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Abstract 48 

Background: Several prognostic models have been developed trying to estimate the risk of 49 

mortality after surgery for active infective endocarditis (IE). However, these models 50 

incorporate different predictors and their performance is uncertain.  51 

Objective: We aimed to systematically review and critically appraise all available prediction 52 

models of post-operative mortality in patients with IE, and to synthesize them into a meta-53 

model. 54 

Data sources: We searched Medline and EMBASE databases from inception to June 2020 to 55 

identify post-operative prognostic models.  56 

Study eligibility criteria: We included studies that developed or updated a prognostic model 57 

of post-operative mortality in patient with IE.  58 

Methods: We assessed the risk of bias of the models using PROBAST (Prediction model Risk 59 

Of Bias ASsessment Tool) and we synthesized them into an aggregate meta-model based on 60 

stacked regressions and optimized it for a nationwide registry of IE patients. The meta-model 61 

performance was assessed using bootstrap validation methods and adjusted for optimism.  62 

Results: We identified 9 studies reporting the development of 11 prognostic models for post-63 

operative mortality. Eight models were rated as high risk of bias. The meta-model included 64 

weighted predictors from the remaining three models (i.e. EndoSCORE, specific ES-I and 65 

specific ES-II), which were not rated as high risk of bias and provided full model equation. 66 

Additionally, two variables (i.e. age and infectious agent) which had been modelized 67 

differently across studies, were estimated from scratch based on the nationwide registry. The 68 

meta-model performance was better than that of initial three models, with the corresponding 69 

performance measures: C-statistics 0.79 (95% CI 0.76 to 0.82), calibration slope 0.98 (95% 70 

CI 0.86 to 1.13) and calibration-in-the-large -0.05 (95% CI -0.20 to 0.11).  71 



Conclusions: The meta-model outperformed published models and showed a robust predictive 72 

capacity for predicting the individualized risk of post-operative mortality in patients with IE.  73 

Protocol Registration: PROSPERO (registration number CRD42020192602) 74 

Key words: Prognostic models, systematic review, meta-model, aggregation, validation, 75 

infective endocarditis. 76 

  77 



Background 78 

Infective endocarditis (IE) is an uncommon but severe disease with a high mortality rate. Its 79 

current estimated incidence is 3-10 episodes per 100.000 person-years, while its in-hospital 80 

mortality rate ranges between 15% and 40% (1,2). Management of IE is often complex and, 81 

although indications for surgery are established in current guidelines (3), the decision whether 82 

to perform surgery remains a challenge because of the high mortality rate associated with the 83 

procedure. For that reason, it is estimated than less than half of the patients with surgical 84 

indication finally undergo cardiac surgery (4)leading to a significant decreased chance of 85 

survival (5). In this context, there has been a great interest on modeling prognosis of patients 86 

with IE to accurately estimate the risk of mortality and to help in the decision-making processes.  87 

In the last decade, several IE prognostic models using preoperative patient´s-related and IE-88 

specific factors, have been proposed (6). Unfortunately, these models have not been 89 

implemented in guidelines or applied in clinical practice. In fact, clinicians seldomly trust these 90 

models because they have usually been built in relatively small cohorts and have not been 91 

externally validated. Consequently, researchers carry on developing new models from their own 92 

data without considering prior knowledge, which leads to an scenario with multiple prognostic 93 

models of dubious validity. Therefore, we aimed to systematically review and critically 94 

appraise all available prediction models for post-operative mortality in patients with IE, and to 95 

synthesize them into a meta-model based on stacked regressions.  96 

  97 
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Methods 98 

The protocol for this study was registered on PROSPERO (registration number 99 

CRD42020192602). We designed this systematic review according to the recent guidance by 100 

Debray et al.(7,8),  and reported its results following PRISMA (Preferred Reporting Items for 101 

Systematic Reviews and Meta-Analyses) (9) and TRIPOD (Transparent Reporting of a 102 

Multivariable Prediction Model for Individual Prognosis or Diagnosis) (10,11) 103 

recommendations.  104 

Literature search 105 

We searched Medline through Ovid and Embase through Elsevier from inception to 106 

01/06/2020. We conducted a literature search to identify all potential studies for inclusion. We 107 

applied no restriction considering language or publication dates. We used the methodologic 108 

filter developed by Geersing et al. for prediction models research in MEDLINE (12), which 109 

was adapted for EMBASE. We added terms related to cardiac surgery and 110 

endocarditis. We further searched bibliographic references of included articles to 111 

identify other potential eligible studies. Complete search strings are shown in 112 

Supplementary Material: S1.  113 

Eligibility criteria 114 

We included original studies that developed prognostic models, with or without external 115 

validation, to predict the risk of post-operative mortality after cardiac surgery in patient with 116 

IE, as well as studies that updated previously published models. We accepted the authors` 117 

definition of post-operative mortality (either 30 days and/or in-hospital mortality), but excluded 118 

models that predicted mortality as part of a composite adverse outcome. Titles, abstracts, and 119 

full texts were screened for eligibility in pairs by three reviewers 120 

independently (BMFF, LVB, ACP) using EPPI-Reviewer 4 (13). Discrepancies were 121 

resolved by consensus.  122 
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Data extraction 123 

Data extraction of included articles was done by three reviewers independently 124 

(pairs from BMFF, LVB, ACP). Reviewers used a standardized data extraction form based on 125 

CHARMS (CHecklist for critical Appraisal and data extraction for systematic Reviews of 126 

prediction Modelling Studies) (8), and discrepancies were solved by consensus. We extracted 127 

data on the following items: general information of the study, source of data, participants´ 128 

characteristics, outcome definition and time of occurrence, candidate predictors, and analysis 129 

methods. (Supplementary Material: S2). When the completed model equation or relevant data 130 

were not provided, we contacted the correspondence authors to require this information. 131 

Risk of bias assessment 132 

We used a standardized form based on PROBAST (PRediction model risk of Bias ASsessment 133 

Tool) (14,15) to evaluate risk of bias (RoB) and applicability. We defined the presence of RoB 134 

as the existence of deficiencies in the study design or analysis that may have led to 135 

systematically distorted estimates of the model performance or its composition. Concerns 136 

regarding the applicability of a primary study would arise when the population, predictors, or 137 

outcomes of the study differed from those specified in our review question. RoB and 138 

applicability were assessed by two independent reviewers (pairs from BMFF, LVB, ACP). We 139 

evaluated the relevant items on the following domains: Participants, predictors, outcome and 140 

analysis. Each domain was rated according to our review question as having a high, low or 141 

unclear RoB, and as providing high, low or unclear concerns regarding applicability. Any 142 

discrepancies were discussed between reviewers and resolved through discussion. The 143 

supplementary material provides details on critical appraisal and applicability (Supplementary 144 

Material: S3). 145 
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GAMES registry 146 

We used the infective endocarditis nationwide Spanish registry (GAMES) 147 

as the validation dataset, to 148 

estimate existing model` weights for the meta-model development and its validation, and to 149 

externally validate the previously published models. Since January 2008, all consecutive 150 

episodes of IE in 34 Spanish hospitals were prospectively registered in GAMES 151 

using a standardized form. 152 

Regional and local ethics committees approved the study, and patients gave their informed 153 

consent in each center. For the present study, we selected all the infective episodes (n=1,453) 154 

registered in the GAMES cohort involving adult patients (aged ≥18 years) who had undergone 155 

cardiac surgery with preoperative diagnosis of active IE. From these, 354 (24.4%) died after 156 

surgery (273 in the first 30 days and the remaining 81 during hospitalization). Supplementary 157 

Material: Table S1 shows the main descriptive characteristic of patients in the validation 158 

nationwide registry.  159 

Statistical analyses 160 

The validation dataset was depurated for the outcomes and predictors included in the prognostic 161 

models included in the systematic review. 162 

Model aggregation was based on stacked regressions (16), which allows the synthesis of 163 

literature models in a meta-model using the prior evidence optimized for the validation dataset 164 

(17,18). Only the models that reported the full model equation and were not flagged as high 165 

risk of bias were considered for aggregation. Stacked regressions used the linear predictor of 166 

each model as a co-variable in the meta-model, and subsequently created a linear combination 167 

of model predictions. That is, the original coefficients of each model are weighted by an 168 

independent parameter estimated in the meta-model, so that the models with worse performance 169 

in the validation dataset are penalized more. When aggregation of the coefficients was not 170 
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possible, either because the definition of the predictor from primary studies was too 171 

heterogeneous or because predictors had been modeled differently in the published models (for 172 

instance, a numerical variable treated as a continuous predictor in one model and being 173 

categorized at different cut-points in the others), these predictors were dropped, and were 174 

included in the meta-model as independent covariables to re-estimate their coefficients entirely 175 

from scratch based on the validation dataset. Non-linear relationships for continuous predictors 176 

were tested using fractional polynomials (19). 177 

Predictors with missing data in the validation dataset were imputed under the missing at random 178 

assumption using multiple imputation with chained equations (20). We included all predictors 179 

and the outcome in the imputation models to ensure compatibility. (Supplementary Material: 180 

S4). Imputation checks were completed by looking at the distributions of imputed values to 181 

ensure plausibility. We generated 10 multiple imputed datasets and all primary analyses were 182 

performed in each imputed dataset. Pooled parameters were estimated both in the aggregation 183 

and validation processes using Rubin’s rules (21). 184 

The model validation was assessed in terms of discrimination (i.e. through the use of the C-185 

statistic, with values from 1 indicating perfect discrimination to 0.5 no discrimination) and 186 

calibration (i.e. through the calibration slope and calibration-in-the-large [CITL], with 1 and 0 187 

as ideal values, respectively; as well as with calibration plots). Calibration plots represent the 188 

average predicted probability for risk groups categorized using deciles of predicted probability 189 

against observed proportion in each group, and fitting a less smoother to show calibration 190 

across the entire range of predicted probabilities at the individual-level (22,23). For the 191 

calibration plots we used the average predicted probabilities for individuals by pooling the 192 

imputed datasets using Rubin’s rules (21). Because the meta-model was optimized to the 193 

validation dataset, we assessed its optimism-corrected performance measures by applying 194 

bootstrap validation with 500 replicates. As sensitivity analyses, we tested all model 195 
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performance regardless of their critical appraisal. In addition, the meta-model performance was 196 

assessed only for 30-days mortality to investigate the meta-model robustness. 197 

All analyses were performed using Stata software version 16 (24). 198 

  199 
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Results 200 

Literature search and study selection 201 

We retrieved 4,862 titles through our systematic search combining Medline and Embase. From 202 

these, 684 duplicate references were identified. Of 4,178 titles assessed by title and abstract, 34 203 

studies were retained for full text screening, and 2 additional studies were detected in the 204 

bibliographic references of these articles. Nine studies describing 11 prediction models met the 205 

inclusion criteria (Figure 1 and Supplementary Table S2).  206 

Source of data and participants 207 

All prognostic model development studies were carried out in the last decade. Six used data 208 

from a study cohort (three of them from a single center (25–27) and three from multiple centers 209 

(28–30)); two studies used data from multicenter registries (6,31); and one study used data 210 

from both a multicenter cohort and a local clinical registry (32). Eight studies used data from 211 

patients in Europe (Spain, Italy, France or Portugal) and one from patients in North America. 212 

Participants were recruited between 1980 and 2015. (Supplementary Table S3).  213 

Outcomes 214 

Three models were developed to predict any death occurring before discharge or within 30 days 215 

of surgery (6,25,27), five models were built to predict any death occurring before discharge  216 

(26,30–32), and the remaining three models predicted death within 30 days of surgery (28, 217 

29). The incidence of deaths varied between 8.2% and 29.2% (Table 1).  218 

Predictors 219 

The number of candidate predictors considered in the models varied from 15 to 57 and included 220 

patient-, clinical-, surgery- and IE-related factors. The number of parameters retained in the 221 

final models ranged from 2 to 15 (Table 1): The most common factors were critical 222 

preoperative state (n=9), renal failure (n = 7), age (n = 6), New York Heart Association (NYHA) 223 
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classification (n = 6), paravalvular complications (n = 6) and infection etiology (n = 5). The 224 

predictor definitions and the models’ composition are shown in the Supplementary Table S4 225 

and Table S5. 226 

Model development and presentation 227 

Sample sizes for models’ development varied between 128 and 13,617 patients, and the 228 

number of events ranged from 21 and 1,117. Only two models from the same study adequately 229 

informed the handling of missing data (29), and these used complete data analyses. Logistic 230 

regression analysis was the most common modelling technique (n = 9), while logistic mixed 231 

effects (28) and logistic GEE (Generalized Estimating Equation) models (6) were only used in 232 

one model development each. Nine models used univariable analyses to select the candidate 233 

predictors. In nine out of eleven models the number of events per parameter (EPP) assessed for 234 

inclusion in the final model were lower than the minimum required for development of a 235 

new prediction model, based on the sample size estimation proposed by Riley et al.(33,34) 236 

(Supplementary Table S6). The method of predictors selection during multivariable modelling 237 

was backward selection in three models (26,32), stepwise selection in two models (30,31), and 238 

an automatic algorithm based on Akaike information criteria in multiple bootstrap samples in 239 

the other two models, with predictors selected in at least 70% of the bootstrapped samples being 240 

included in the final model (29). Four models did not inform about the method used to select 241 

predictors. (Table 1) 242 

In seven out of 11 models the authors did not inform the complete model equation, and five of 243 

them did not respond when were asked for further details 244 

(Supplementary Table S7). Nine models were presented as a scoring system, and two of them 245 

included nomograms.  246 
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Model performance 247 

The model performance was assessed in terms of discrimination in all models through the C-248 

statistic. Nevertheless calibration was often wrongly assessed using the Hosmer-Lemeshow test 249 

(37) in six models. Only three models (27,29) used calibration slopes and CITL. Eight models 250 

were internally validated: three models were evaluated by bootstrapping with correction for 251 

optimism (28,29), one was assessed through the 0.632 bootstrap method (26), two used 252 

temporal split samples (32) and two used random split samples (6,30). Three models only 253 

estimated the apparent performance (25,27,31). Three models were externally validated in the 254 

same development study using very small sample sizes, with only 18 events in the Olmos’ 255 

model (30) and 21 in the Gatti’s model (32).  Clinical utility of the models was never assessed. 256 

Risk of bias 257 

The RoB was high in eight models, unclear in one (28) and low in the remaining two (29) 258 

(Table 1, Supplementary Table S8 and Figure S1). Two of the eight models with high RoB 259 

scored at “high risk” in the participants domain. Eight models scored at “high risk” in the 260 

analysis domain. Most of the models had small sample sizes and the number of EPP was 261 

close to 1 in several models, increasing the risk of overfitting (34). Many studies decided model 262 

predictors based on univariable analysis, three reported only the apparent performance and two 263 

used random splitting validation. The calibration was sub-optimally assessed in all models 264 

classified as high risk of bias, with most of them using the Hosmer-Lemeshow test.   265 

Derivation of the Meta-model 266 

The eight models with high RoB were excluded from the statistical synthesis so that only the 267 

EndoScore, Specifics EuroSCORE-I (Specific ES-I and EuroSCORE-II (Specific ES-II) 268 

models were aggregated in the meta-model. The model developed by Di Mauro (EndoSCORE) 269 

(28) included 15 parameters, while the other two (Specific ES-I and Specific ES-II) developed 270 

by Fernández-Hidalgo (29), presented 10 and 9 parameters respectively, from the EuroSCORE 271 
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models predictors (35, 36) and IE-related factors (Table 2 and Supplementary Table S7). The 272 

dependent variable for the meta-model was mortality (either 30-days or in-hospital).  273 

To construct the meta-model, we first calculated the linear predictors (LP) from EndoSCORE, 274 

Specific ES-I and Specific ES-II for each observation in the validation dataset, after dropping 275 

the parameters for age and infection etiology because these variables were modelized 276 

differently in the different studies. Subsequently, we adjusted the meta-model using a logistic 277 

regression model, which incorporated the LPs as co-variables, to estimate the models’ weights 278 

for aggregation, as well as the predictors for age (treated as continuous) and infection etiology 279 

(categorized into three groups: Staphylococcus spp, fungi and other microorganisms) to re-280 

estimate the coefficients from scratch. The meta-model included 18 parameters from the 281 

predictors included in at least one of the three original models (Table 2). 282 

Validation of the models 283 

The three prediction models considered for aggregation and the meta-model were validated in 284 

the GAMES registry. The C-statistics and their 95% confidence intervals (95%CI) for the 285 

published models were: 0.76 (95% CI 0.73 to 0.79) for EndoSCORE, 0.76 (95% CI 0.73 to 286 

0.79) for Specific ES-I, and 0.73 (95% CI 0.73 to 0.79) for Specific ES-II. The optimism 287 

adjusted C-statistic for the meta-model was 0.79 (95% CI 0.76 to 0.82) (Figure 2). Calibration 288 

slopes were < 1 for all published models: 0.80 (95% CI 0.69 to 0.92) for EndoScore, 0.82 (95% 289 

CI 0.70 to 0.94) for Specific ES-I, and 0.76 (95% CI 0.65 to 0.87) for Specific ES-II. CITL was 290 

0.58 (95% CI 0.44 to 0.71) for EndoSCORE and 0.62 (95% CI 0.48 to 0.76) for Specific ES-291 

II, and -0.02 (95% CI -0.16 to 0.11) for Specific ES-I. Optimism adjusted calibration measures 292 

for the meta-model were 0.98 (95% CI 0.86 to 1.13) for the slope and -0.05 (95% CI -0.20 to 293 

0.11) for CITL (Figure 2). The calibration plots for the three previously published models and 294 

the meta-model are shown in Figure 3.  295 
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Sensitivity analysis showed that the meta-model had better overall performance than all 296 

published models regardless of their quality assessment (Supplementary Figure S2). 297 

Moreover, even though the meta-model was not fitted for the 30-days mortality outcome, it 298 

outperformed the three models used for model aggregation. (Supplementary Figure S3) 299 

  300 



Discussion 301 

Summary of findings 302 

In this systematic review of prediction models for post-operative mortality in patients with 303 

infective endocarditis, we identified and critically appraised 11 models developed in 9 studies. 304 

The predicted outcome varied between studies (in-hospital, 30-days or both in-hospital or 30-305 

days mortality). Of the eleven prognostic models, only two had low RoB and one 306 

unclear, the remained eight models had high RoB mainly owing to poor 307 

statistical methods used, which suggests that their predictive performance when used in practice 308 

is probably lower than that reported. The sample sizes used to develop the models were limited 309 

and this is a well-known problem that leads to inaccurate predictions and consequently incorrect 310 

healthcare decisions in practice (34). 311 

Four out of the 11 published models reported the full model equation required for a models’ 312 

aggregation and a complete independent external validation as recommended by reporting 313 

guidelines (10,11). Two models’ equations were recovered asking correspondence authors. 314 

Three models that were not flagged as high RoB could be used to create the meta-model.  315 

Our meta-model showed better performance than the existing models. We investigated the 316 

internal validity of the meta-model using bootstrap validation, and the results indicate there was 317 

no substantial over-optimism and that the validation sample was sufficiently large to combine 318 

and update the published models. Therefore, the meta-model is likely less prone to over-319 

optimism and more generalizable to new patient populations or settings, because it was built 320 

from the evidence of several patient cohorts and optimized to a nationwide registry. 321 

Strengths and limitations 322 

To our knowledge, this is the first systematic review of prediction models of post-operative 323 

mortality in patients with infective endocarditis with a complete external validation. We only 324 



combined the published prediction models with low or unclear RoB and adjusted them to a new 325 

patient population. We used multiple imputation of predictors to avoid loss of useful 326 

information. The resulting meta-model incorporated prior knowledge optimally and 327 

outperformed previously published models. 328 

Our study has some limitations. The outcome definition in the validation dataset was either 30-329 

days or in-hospital post-operative mortality, and the outcome definition in the three models 330 

used for aggregation was 30-days mortality. Despite this difference a sensitivity analysis 331 

showed that the meta-model outperformed all published models when we explored its 332 

performance for the 30-days mortality. The meta-model did not include some predictors that 333 

were associated with post-operative mortality from the models with high RoB. 334 

Nevertheless, except type-of-valve which was included in several models (27,30,31), the 335 

remaining predictors were each only included in one model. Unfortunately, although we 336 

identified 11 prediction models in our systematic review, we were only able to validate the 337 

models that published the complete model equation. Although the definition of predictors in 338 

GAMES registry was standardized, these could differ from definitions of published studies. 339 

Comparison to existing studies 340 

Most studies to develop new prediction models are based on small sample sizes and the 341 

modelling strategies are excessively driven by available data without considering the previous 342 

knowledge, leading to inefficient models. Other authors carried out external validation studies 343 

but none of them made a critical appraisal (38–41). In a previous study, Varela et. al. developed 344 

a prognostic meta-model based on a systematic review of pre-operative factors related to in-345 

hospital mortality, however, it was built using multiple univariate meta-analyses of the crude 346 

associations, without considering possible covariable correlations (42,43). 347 
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Implications for practice  348 

The decision whether to perform surgery in IE remains a challenge in clinical practice and it 349 

should come after a careful balance between the procedural risk and its estimated benefit. 350 

Although risk scores in predicting mortality do not offer help in terms of establishing the 351 

burdens of surgical futility, they apport a great value helping endocarditis teams to manage that 352 

complex disease. 353 

Although in the 2015 IE guidelines the score created by De Feo-Cotrufo et al for native IE is 354 

the only one recommended, it would be expected to change with the creation of several new 355 

IE specific scores and the generation of a meta-model that outperformed existing models. 356 

Challenges and opportunities 357 

Further external validation studies are necessary to confirm the improvement in predictive 358 

ability of the meta-model. We will develop an online calculator to allow a simple and effective 359 

use of the meta-model. Given the low incidence of infective endocarditis, available sufficient 360 

sample sizes for the adequate development of new predictive models are difficult to come by. 361 

We encourage authors to make their data available in order to allow building models based on 362 

available data (44). 363 

Conclusions 364 

The meta-model we built is a robust prognostic model to calculate the individualized risk of 365 

post-operative mortality in patients with infective endocarditis. It was developed based on the 366 

previous evidence using aggregation methods of the existing models identified from a 367 

systematic review and after critical being appraised. This meta-model outperformed existing 368 

models; therefore, this preoperative tool can help guide individually tailored choices made by 369 

patients and clinicians. 370 

  371 
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