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Abstract: Craniofacial neuropathic pain affects millions of people worldwide and is often difficult
to treat. Two key mechanisms underlying this condition are a loss of the negative control exerted
by inhibitory interneurons and an early microglial reaction. Basic features of these mechanisms,
however, are still poorly understood. Using the chronic constriction injury of the infraorbital nerve
(CCI-IoN) model of neuropathic pain in mice, we have examined the changes in the expression of
GAD, the synthetic enzyme of GABA, and GlyT2, the membrane transporter of glycine, as well as
the microgliosis that occur at early (5 days) and late (21 days) stages post-CCI in the medullary and
upper spinal dorsal horn. Our results show that CCI-IoN induces a down-regulation of GAD at both
postinjury survival times, uniformly across the superficial laminae. The expression of GlyT2 showed
a more discrete and heterogeneous reduction due to the basal presence in lamina III of “patches’
of higher expression, interspersed within a less immunoreactive ‘matrix’, which showed a more
substantial reduction in the expression of GlyT2. These patches coincided with foci lacking any
perceptible microglial reaction, which stood out against a more diffuse area of strong microgliosis.
These findings may provide clues to better understand the neural mechanisms underlying allodynia
in neuropathic pain syndromes.

Keywords: chronic pain; allodynia; trigeminocervical complex; glycine transporters

1. Introduction

Neuropathic pain in the craniofacial territory is associated with different patholo-
gies, including trigeminal neuralgia, nerve entrapments and chemical, tumoral or viral
neuropathies, which most often cause chronic and debilitating painful conditions that
affect millions of people worldwide and are difficult to treat (International Classification
of Headache Disorders 2018). Although still far from complete, the understanding of its
complex pathophysiology has significantly advanced in recent years thanks to an effective
dialogue between basic and clinical efforts, which is being instrumental to develop new and
more effective therapies. As well as for other body regions, two key mechanisms underlie
this kind of pain. Firstly, it is accompanied by a loss of the negative control that inhibitory
interneurons normally exert on the transmission of nociceptive and non-nociceptive signals
toward ascending pathways [1-3]. Consistently, the pharmacological blockade of this inhi-
bition results in symptoms that resemble those present in neuropathic pain patients [4,5],
whereas the administration of GABA-enhancing drugs or vectors, or GABA or Glycine
transporter inhibitors reverse or block nerve injury-induced pain behavior [6-10]. And
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secondly, nerve injury provokes a swift microglial reaction in the terminal fields of pri-
mary afferents in the superficial laminae of the dorsal horn [11]. This reactive microglia
releases BDNE, activating its high-affinity receptor TrkB, which enhances pain transmission
by projection neurons in the superficial laminae of the dorsal horn through a variety of
mechanisms [12-17].

Among the animal models that mimic chronic pain in the orofacial region, the
chronic constriction injury of the infraorbital nerve (CCI-IoN) is probably the most widely
used [18,19]. Neuropathic pain mechanisms in the trigeminal territory resemble those in
spinal territories, but only to a degree, because of differences in the cellular composition
and circuitries, cellular genomic signatures, the range of painful conditions specific to the
face and head, and differential sensitivities to some pharmacological treatments [20-24].
Also, the few studies that report on the microgliosis that follows CCI-IoN, provide evidence
of some differences between reactive microglia in trigeminal and spinal territories [25,26].
All in all, many cellular and molecular features of these mechanisms, however, are still
incompletely defined. The present report was therefore aimed at further clarifying what
spatial and temporal correlations, if any, exist between the reactive microgliosis and the
expression of key molecules involved in the inhibitory regulation of neural transmission in
the medullary dorsal horn in a model of trigeminal neuropathic pain.

2. Results
2.1. Behavior

Mice in the CCI-IoN group developed significant allodynia to mechanical stimulation
with Von Frey filaments of either strength or air pulses by 14 postoperative days (dpo), and
this increased at 21 dpo (Figure 1). On the contralateral side the response score increased
in a few cases, without reaching statistical differences with controls (data not shown).
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Figure 1. Behavioral responses following CCI-IoN to stimulation of the whisker pad with 0.008 g or 0.07 g Von Frey

filaments, or 10 psi air-puff pulses. The response score before surgery (PRE) represents the average of three consecutive

testing days. At 14 and 21 postoperative days the response score differed significantly between operated (1 = 6, right side,

magenta circles) and control (1 = 5, blue squares) cases. The latter included responses from both sides, because there were no

left-right differences in these cases. Data represent means + SEM. Significance is represented by *, ** and ***, corresponding
top <0.05, p < 0.01 and p < 0.001, respectively (two-tailed Mann-Whitney test).

2.2. GAD-6 and GlyT2 Immunostaining

In controls, GAD-6 was strongly expressed as a homogeneous band in laminae I-II,
and more moderately in laminae III-IV. GlyT2, in contrast, predominated in the inner part
of lamina II and in irregular ‘patches” within lamina III. The outer part of lamina II and
laminae III and IV outside the “patches’ exhibited lower and more variable expression
of this transporter (Figure 2). Neither GAD-6 nor GlyT2 significantly labeled cell bodies,
confirming their affinity for axons and terminals [27,28].
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Figure 2. Coronal sections through the right Sp5C caudal to the obex showing immunofluorescence for GAD-6 (gray, top
panels), and GlyT2 (red, bottom panels). GAD-6 expression fades in all laminae at 5 days post-operation (dpo; 5d), and
decreases even further at 21 dpo, when the loss is more marked in the ventral 1/2 of the nucleus. Less obvious, but still
noticeable is a heterogeneous decrease in GlyT2 expression, which affects mostly lamina II and, irregularly, lamina III in the
ventral 1/2 of the nucleus (where afferents from the IoN dominate). Arrows point to some “patches’ with strong expression
of GlyT2 in laminae III-IV, which persist after CCI-IoN. In control sections (C) short, white bars indicate the approximate
boundaries between the trigeminal tract, laminae I-II, lamina III and lamina IV. These sections were among those used for
densitometric measures. A Nissl-stained section (lower right corner) shows approximately the same level of Sp5C, with
interlaminar boundaries marked by dashed lines. T, trigeminal tract. Scale bar = 500 pm.

Following CCI-IoN, GAD-6 expression significantly decreased in all laminae of the
ipsilateral side by 5 dpo, and this decline continued at least until 21 dpo (Figures 2 and
3). A parallel, but minor decrease was also observed in lamina III of the contralateral
side compared to controls (Figure 3A). The frequency distribution curves of pixel inten-
sities showed global reductions of immunofluorescence intensity (Figure 3A), and these
reductions reached statistical significance, particularly at 21 dpo (Figure 4). The expression
of GlyT-2 was also affected by CCI-IoN, but in a more complex manner (Figure 3B): at
5 dpo, GlyT-2 expression decreased only in lamina III, compared to controls and to the side
contralateral to CCI-IoN; at 21 dpo, however, this reduction was significant in all laminae.
The frequency distribution curves of pixel intensities, however, overlapped substantially,
resulting in no statistical differences. Also, as will be described below, changes in GlyT2
expression varied in different domains of the spinal trigeminal nucleus (Sp5C).
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Figure 3. Comparisons of densitometric measurements for GAD-6 (A) and GlyT2 (B) in laminae I-II (top panels) and
III (bottom panels). Values for each molecule are represented as means £ SD of the normalized fluorescence intensity
(histograms), and as the relative distribution of pixels in a grayscale between 0 (darkest) and 255 (brightest). Histograms
show values for the contralateral (left, L) and ipsilateral (right, R) sides with respect to the CCI-IoN. Curves show values only
for the right side in operated cases, and averages for R and L sides in control cases. C, controls; CCI 5d, operated animals, at
5 dpo; CCI 21d, operated animals, at 21 dpo. In histograms, * indicates statistical significance (p < 0.05) between groups,
using hemispheres as sampling units (Mann-Whitney test, n = 4 in C and n = 6 in CCI-IoN cases). Differences between sides

in each group were assessed by the Wilcoxon signed rank test using individual sections for pairwise comparisons (n = 12 in

C and n = 18 in CCI-IoN cases; ## = p < 0.01). For statistical comparisons of pixel distributions, see Figure 4.
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Figure 4. Results of the statistical comparisons (Kolmogorov-Smirnov D test, p-values) of densitomet-
ric curves for GAD-6 shown in Figure 2. Similar comparisons for GlyT2 did not show any significant
difference between groups. N.S., not significant.

2.3. Microglia

Iba-1 immunolabeled microglial cells distributed homogeneously, with relatively low
density, across all layers of Sp5C in controls. Morphologically, these cells fit the description
of ‘resting’ or ‘surveying’ microglia (Figure 5A,D; see [29]). Five days after CCI, a strong
microgliosis was observed, consisting of a notable increase in cell number and intricacy of
microglial processes. This reaction was more prominent in laminae I-1I, and more moderate
in laminae III-IV, and persisted, although in a diminished form, at 21 dpo (Figure 5B,C,E).
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Figure 5. Confocal images of coronal sections of the trigeminocervical complex (TCC) at a caudal level of Sp5C immunola-
beled for Iba-1. In controls (A,D) microglial cells showed a homogeneous distribution, relative low density, and a typical
morphology of a ‘resting’ or ‘surveying” state. CCI-IoN induced a potent microgliosis at 5 dpo (B), which decreased but still
persisted at 21 dpo (C). Activated microglia (E) was typically characterized by an increase in the number of cells, which
exhibit heterogeneous shapes and sizes, predominating those with larger and irregular somata, and an increased number of
processes, including thicker protoplasmic expansions. Scale bars = 500 um (A-C) and 10 pm (D,E).

Densitometric measurements showed that the increased expression of Iba-1 in the
side ipsilateral to the CCI differed significantly from both the contralateral side of the same
cases, and the control cases. This difference decreased, but remained significant, at 21dpo
(Figure 6).

2.4. Microgliosis and GlyT2 Expression

The microgliosis induced in the Sp5C by the CCI-IoN did not occur homogeneously
across the nucleus. Rather, there was an unexpected spatial restriction of the reactive
microglia to the sectors of the nucleus where the expression of GlyT2 was weaker, thus
sparing the “patches’ that displayed a stronger immunofluorescence for the transporter
(Figure 7). This phenomenon was consistently observed in the three cases where it was
investigated (Figure 8).
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Figure 6. Comparisons of densitometric measurements for Iba-1 (A) in laminae I-II (top panels) and
III (bottom panels). In histograms, * indicate statistical significance (p < 0.05) between groups, using
hemispheres as sampling units (Mann-Whitney test, n =4 in C and n = 6 in CCI-IoN cases). Differences
between sides in each group were assessed by the Wilcoxon signed rank test using individual sections

por pairwise comparisons (1 = 12 in C and n = 18 in CCI-IoN cases; ## = p < 0.01). For statistical
comparisons of pixel distributions, see Figure 4. The statistical comparisons (Kolmogorov-Smirnov
D test) of densitometric curves are shown in (B).

Figure 7. Spatial correlation of microglial reaction to CCI-IoN with GlyT2 expression. The marked ipsilateral microgliosis
at 5dpo (not shown) and 21dpo (right side, middle panel) was practically restricted to the zones of Sp5C exhibiting low
expression of GlyT2, sparing the GlyT2-intense ‘patches’ in lamina III (arrows). Scale bar = 300 pm.
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Figure 8. Dot plot of the immunofluorescence of Iba-1 (green) and GlyT2 (magenta) in lamina III
of Sp5C from three CCI-IoN animals. Data represent mean values of 3 sections per case, separately
for the GlyT2-strong ‘patches” and the more moderately immunoreactive ‘non-patch’ zones. Scales
are taken from grayscale densitometries with Image] (NIH, Bethesda, MD, USA). The diagram
shows different combined effects of the nerve injury on each zone: in ‘patches’ the change in Iba-1
immunofluorescence in the side ipsilateral to the CCI is practically nil with respect to the contralateral
side, while in ‘non-patch’ or ‘matrix’ zones a pronounced increase is observed. GlyT2, on the other
hand, decreases in both zones, apparently more noticeably so in the ‘non-patch’ zones.

3. Discussion

The general aim of the present study was to investigate well-defined molecular and
cellular events underlying the general process of disinhibition that results from partial
peripheral nerve injury, in a model of facial neuropathic pain. Applying CCI-IoN on mice,
this study examines the evolution of the changes in expression of GAD, as a marker of
GABAergic cells, GlyT2, as a marker of glycinergic axon terminals, and microglia, the glial
cells that more rapidly respond to the nerve injury. The following major findings emerged:
(1) Our results confirm that the constriction of the IoN reduces the expression of GAD and
GlyT2, key markers of GABAergic and Glycinergic inhibitory mechanisms respectively, in
the medullary dorsal horn. (2) Both markers differ in their laminar distribution pattern and
temporal course of change after nerve injury. GAD expression predominates in laminae I-II,
being relatively uniform across each lamina, decreases markedly 5 days after CCI-IoN, and
decreases further by 21 days. GlyT2 expression, on the other hand, predominates in lamina
III where it shows irregular “patches’ of strong expression within a ‘matrix’ of weaker
expression. After CCI-IoN, GlyT2 decreases more markedly at 21 days postinjury, and in
the GlyT2-poorer ‘matrix’. (3) CCI-Ion induces a dramatic microgliosis 5 days after lesion,
which recedes substantially by 21 days, but still maintaining significantly higher levels
against the contralateral side or naive controls. (4) The simultaneous analysis of GlyT2
expression and microglial activation documents an unexpected spatial restriction of the
reactive microglia to the sectors of the nucleus where the expression of GlyT2 was weaker,
a heretofore undescribed relationship between these key elements of neuropathic pain.

3.1. Inhibitory Transmitters in Sp5C Are Affected by the CCI-IoN

Synaptic inhibition in the spinal or medullary dorsal horn has long been postu-
lated [30] and eventually shown [31-36] to control the transmission of nociceptive im-
pulses to higher brain centers. Key players in this inhibition are the local GABAergic and
Glycinergic interneurons, which constitute one-third of all neurons in laminae I-IV of the
Sp5C [37]. Peripheral nerve injury drives a loss of GABA and Glycinergic inhibition in
both the spinal [1,4,5,31,35,38-41] and the medullary [2,42,43] dorsal horn.

Early reports suggested that the number of GABA-immunoreactive cells in the spinal
dorsal horn started to decline by 2 weeks after a nerve transection and continued to reach
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a 30% loss by 4 weeks postsurgery [38]. GABA- or Glycine-immunoreactive neuron loss
was later ruled out, at least 2 weeks after CCI of the sciatic nerve [44], therefore pointing to
other mechanisms as more probable explanations of the nerve injury-induced neuropathic
pain, such as decreased transmitter release or activity of these neurons, reduced capacity of
GABA and glycine to generate inhibition [1,45,46], or potentiation of nearby postsynaptic
NMDA receptors by ‘spillover” of unrecaptured glycine at the synapse [47]. Our results
support that CCI-IoN is followed by decreased GABAergic and Glycinergic neurotransmis-
sion, as revealed by reductions in the expression of GAD and GlyT2 respectively, which
display singular spatial and temporal features.

As previously reported, GAD expression is strong in laminae I and II, and more
moderate in deeper layers, without major irregularities across the mediolateral extent of
each lamina [48-50]. The reduction of GAD (or GABA) expression triggered by partial
peripheral nerve injuries is, accordingly, more pronounced in superficial laminae, and
remains confined to the mediolateral sector innervated by the affected nerve [2,48,50].
Compared with our previous data [2] present results show a larger mediolateral extent
of GAD reduction, which may be due to the slanted projection of the IoN on the caudal
trigeminal nuclei, which invades more medial sectors at rostral levels of Sp5C, and recedes
towards more lateral sectors at more caudal levels and upper cervical segments [51]. A
similar topography was found at the same levels for GlyT2. The contralateral reduction of
GAD in lamina III is compatible with the existence of a small contingent of crossed primary
trigeminal afferents terminating in laminae III-V [52].

In contrast with the well agreed upon distribution of GAD and GABA in the spinal
and medullary dorsal horn, the irregularities we observed in the expression of GlyT2 have
not been reported before. Since the patch/matrix arrangement of this marker occurs both in
naive and in operated animals, it seems to reflect a constitutive property in the distribution
of this transporter. Moreover, the antibody used against GlyT2 specifically stains synaptic
boutons, and only weakly cell bodies and axons [28], which suggests that glycinergic
innervation displays preferential domains on a ‘background’ of sparser, particularly in
lamina IIL Irregularities in GlyT2 distribution in the same lamina may be present as well
in the spinal cord (see Figure 7 in [53]). It would be worth testing whether these domains
match others of different cellular or molecular composition. Although most reports of
the distribution and the expression of different molecules and cell populations fail to
show obvious heterogeneities across each dorsal horn lamina, some exceptions may be
found, such as the irregular grouping of the largely inhibitory parvalbumin-expressing
interneurons [54] or of glycine receptors and gephyrin, a major scaffolding protein at
inhibitory synapses [55,56].

3.2. Microglia Activation and Its Relationship with the Expression of Inhibitory Molecules

A strong association between reactive microglia and the GABA and Glycine inhibitory
mechanisms is now established beyond doubt. CCI, as any other peripheral nerve in-
jury, induces a rapid activation of microglia in the spinal or brain stem territories that
received the affected primary afferents [43,57-61]. Although some authors proposed that
neuropathic pain was primarily due to the downregulation of inhibitory transmission,
with microglia activation being just a secondary phenomenon [40], other studies hold that
nerve injury initiates a cascade of events involved in the development and maintenance
of neuropathic pain [12,62,63]. Summarily (see [17,64], for recent reviews), microglia is
activated by cytokines and chemokines released by injured peripheral nerve fibers, which
increases the synthesis and membrane insertion of several purinergic receptors of the P2X
ion-channel family. ATP released from primary afferents, the microglia itself, and local
interneurons activates P2X4 receptors, resulting in the release within minutes of BDNF [65]
which binds to its high-affinity receptor trkB. This occurs on lamina I nociceptive projection
neurons, where it produces the downregulation of the neuronal potassium-chloride co-
transporter KCC2, increasing the intracellular C1™ and causing a reversal in the equilibrium
potential of CI™. The subsequent reduction of the inhibition mediated by GABAA receptors
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has been involved in both the induction and the maintenance of neuropathic pain [66].
Together with this postsynaptic effect, BDNF also acts presynaptically on peptidergic pri-
mary afferents of laminae I and II and, when combined with nerve injury and sustained
KCC2-dependent disinhibition, changes the subunit composition of presynaptic NMDA
receptors, potentiating transmission from these afferents [67-70].

The temporal course of these events offers clues to better understand the mechanisms
underlying neuropathic pain. Early reports of a disinhibition of neurons in the sensory cor-
tex, attributable to a loss of local GABAergic control, could indicate a different time-course
of events. Such disinhibition happened immediately after peripheral nerve injuries, leading
to an expansion of receptive fields in the cerebral cortex [71-73]. A similar effect was also
found in the dorsal column nuclei after applying local anesthesia to a digit or toe [74,75].
Should a likewise rapid phenomenon take place following pain-inducing nerve lesions, our
findings could suggest that changes in GABA are the earliest mechanistic explanation of
the disinhibition observed. However, while disinhibition rapidly affecting the structure of
receptive fields has been mostly attributed to a loss of lateral GABAergic inhibition [76], the
implication of GABA in deafferentation-driven disinhibition leading to pain involves other
mechanisms. These include GABA becoming less hyperpolarizing (or even depolarizing)
because of a shift in the chloride equilibrium potential of some nociceptive dorsal horn
neurons [13,53], and the disinhibition of a chain of excitatory feed-forward connections
throughout superficial dorsal horn laminae towards nociceptive-projection neurons [77].
From our results, however, and in contrast with GAD, the expression of GlyT2 is only
moderately decreased at 7 days post CCI-IoN, and this reduction grows in the following
weeks. The relatively delayed downregulation of GlyT2 notwithstanding, glycine neu-
rotransmission is a necessary condition for pain to appear, since this fails to occur when
glycinergic cells are molecularly silenced without preventing microglial activation [40,78].

It seems, then, that microglia is better positioned to play a key role in the events
that take place shortly after nerve injury. These cells already show morphological signs
of activation 12 h after spinal nerve ligation, and proliferate between 32 h and 7 days
postsurgery [79]. Moreover, they probably migrate soon to the affected region, strongly
attracted by ATP and other chemoattractans that are promptly released by injured terminals
in the dorsal horn [80]. By 24 h after the same manipulation or CCI of a peripheral nerve
(before allodynia is detected), microglia activation was observed, as identified by Iba-1 or
OX-42 increased immunoreactivity [26,81-83]. A prominent early effect of nerve ligation
is the increase of BDNF in the dorsal horn, that reaches significance by 12 h after lesion,
peaks one day later, and progressively disappears at 14 (as determined by immunohis-
tochemistry) or 28 days (determined by ELISA; [67]). BDNF was then proposed to be
associated only with the initiation of neuropathic pain, while the persistence of pain at later
stages (beyond the second day postinjury) would depend on the activation of presynaptic
NMDA receptors, particularly in primary afferents. In neuropathic, but not naive rats,
these receptors quickly change their composition to express the 2B subunit and upon
activation stimulate glutamate release from those fibers [67,68,84]. The identification of
early and late molecular responders in the pathophysiological mechanisms of neuropathic
pain is also consistent with the existence of an early-responding microglia, which would be
activated only within the first few days after injury, and a late-responding microglia, which
would be more prevalent between the first and the fourth postinjury weeks. Although both
populations would be morphologically indistinguishable, they showed markedly divergent
transcriptomic profiles, with hundreds of genes being differentially regulated [85,86]. A
cross-talk between microglia and astrocytes, whereby the chemokine CCL2 is positively
regulated in astrocytes [87] contributes to the maintenance of microglial activation, which
is particularly relevant for the chronification of neuropathic pain.

Early studies suggested that microglia activation did not last more than 2—4 weeks,
reverting then to a ‘resting’ phenotype. Our results also indicate that the strong microgliosis
found 7 days post CCI-IoN persists, but to a much milder degree, by 21 days postinjury.
More recently, however, activated microglia has been demonstrated up to 98 days after
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irreversible and more damaging spinal or peripheral nerve pain-provoking injuries [88-91].
Interestingly, the time course of microglia activation parallels that of changes in the expres-
sion of key molecules involved in the signalling and regulation through activated microglia,
such as BDNF, KCC2, GABA, GAD65 (but not GAD67), p38 mitogen-activated protein ki-
nase, or transcription factors involved in the production of P2X4 receptors [1,17,67,92-95].

Finally, the intriguing finding of the patches of low microglial activation and high
GlyT2 expression is difficult to explain. It is possible, nevertheless, that a variable topog-
raphy and irregular degree of damage to the different fascicles of the IoN by the ligature
result in uneven patterns of innervation by damaged afferents in the medullary dorsal
horn. If so, foci of less affected innervation coinciding with areas of pre-existing stronger
glycinergic innervation (the “patches’ in lamina III) would fail to create a sufficiently ‘attrac-
tive’ environment for microglia migration and activation. In any case, this is an unclarified
line of investigation that would be worth pursuing.

4. Materials and Methods
4.1. Experimental Subjects

Fifteen young adult (2-3 months old) male C57BL/6 mice were used. They were
group housed (4-6 animals/cage) in a 12 h light/dark cycle with access to food and
water ad libitum. All protocols for animal procedures were approved in advance by the
Ethical Committee of the Auténoma University of Madrid, in accordance with European
Community’s Council Directive 2010/63/UE. The experimental design (Figure 9) was
planned to minimize the suffering of the animals, and to keep their number to the minimum
that was expected to provide reliable results.

Preop Beve Postop
-4 -3-2-10 5 14 21
I~ I~
TTT T T T
I Baseline I I
Habituation  CCl-loN Perfusion

Figure 9. Schematic diagram of the experimental protocol. T, behavioral testing; CCI-IoN, constriction
of the IoN.

4.2. Surgery and IoN Constriction

An infraorbital nerve constriction (CCI-IoN) was performed on the right side to
induce a moderately painful condition resembling trigeminal neuralgia [18,96]). Under
im. injection of Ketamine (Ketolar, 55 mg/kg, Pfizer; New York, NY, USA), Xylazine
(Rompun, 15 mg/kg, Bayer; Leverkusen, Germany) and Atropine (0.2 g/kg), the IoN was
exposed under the vibrissal pad and a single polypropylene monofilament (Surgipro 6.0,
Covidien; Dublin, Ireland) ligature was loosely tied around the distal part of the nerve. As
shown in rats, this procedure alters little, if at all, the circulation through the superficial
epineural vasculature [2,97]). The skin wound was closed with interrupted silk sutures.
Age-matched control mice were not operated. After recovery from surgery the operated
animals” motor, grooming or eating behavior did not differ from the controls. Because our
previous experience in rats [2,43] and mice [29,96] showed no differences in mechanical
responses to facial stimulation and microglial phenotype in the Sp5C between controls and
sham-operated animals with simple facial skin incisions, no sham group was included.

4.3. Behavioral Testing

Testing for behavioral responses to mechanical stimulation of the whisker pad was
performed according to the procedure described by Krzyzanowska et al. [96]. In short,
the animals were habituated to the environment (a quiet room with red lighting) and the
experimenter during 1 h daily. The experiments started the next day for three consecutive
days before IoN surgery, to establish the baseline response score, and on postoperative days
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5 and 21. The animals were partially restrained in a home-made device [96] that allowed
them to expose and move freely the head and forelimbs, so that testing and response
recording could easily be made, while producing low stress levels.

Testing started using, in this order, 0.008 g and 0.07 g von Frey hairs (North Coast
Medical, Inc. Morgan Hill, CA, USA). Each hair was applied to the vibrissal pad until bent
in 3 series of 5 pokes, starting randomly on the left or right sides, and changing sides after
each series. The scores given to the responses followed previous description [96], ranging
from 0.25 points to clear and brisk face withdrawal or aggression/biting of the probe to
1.5 points to repeated scratching of the face. For each animal, an overall “response score”
was obtained by adding up the points separately for each testing time point. Following Von
Frey testing, air-puff testing was done by delivering 20 ms pulses of air at 10 psi and 1 Hz
through an 18 gauge metal tube with its tip perpendicular to, and about 1 cm distant from
the whisker pad. Pulses were controlled by a pneumatic pump (Pico Spritzer II, General
Valve Co., Fairfield, NJ, USA) activated by a pulse generator (Cibertec, Madrid, Spain). The
same scoring criteria as in Von Frey testing were assigned to the responses observed in
the animal.

4.4. Tissue Processing and Immunostaining

On the day after the last testing, the mice were deeply anesthetized (Dolethal, 50 mg/kg
i.p., Vétoquinol; Madrid, Spain) and perfused through the ascending aorta with 0.9% NaCl
(50 mL, 2 min), followed by 4% paraformaldehyde in 0.1 M phosphate buffer (PB; pH 7.4,
200 mL, 10 min, 10-12 °C). The brain stem was extracted and a block containing at least
the rostral 2/3 of the Sp5C nucleus (including the first cervical spinal segment and the
medulla up to the obex; [98]) was removed, postfixed in the same fixative overnight, and
subsequently cryoprotected for 2 days in 30% sucrose in PB. Control animals were likewise
treated in parallel.

The blocks selected were frozen and serially cut at 40 mm in the coronal plane using a
sliding microtome (Leica SM2400, Leica Biosystems, Nussloch). All sections were processed
free-floating. Sections were incubated for one night at 4 °C with a combination of three
primary antibodies, rabbit anti-Ibal (1:500; Wako, Richmond, VA, USA), mouse anti-GAD6
(1:50; Hybridoma Bank; Iowa City, IA, USA) and rat anti-GlyT2 (1:100; [99]). After several
washes with saline PB (PBS), the sections were incubated for 2 h in the dark in a mixture of
secondary antibodies: AlexaFluor 488 donkey-anti-rabbit (green), AlexaFluor 647 goat-anti-
mouse (far-red) and AlexaFluor 546 goat-anti-rat (red). In addition, all nuclei were labeled
with Bisbenzimide (Hoescht, Thermo Fisher Scientific; Waltham, MA, USA). Sections were
then mounted on glass slides, dehydrated, defatted, and coverslipped with Fluoromount-G
(Thermo Fisher Scientific, Waltham, MA, USA).

4.5. Densitometry of Immunofluorescence

Confocal images covering the rostrocaudal extension of the TCC in both sides were
acquired at 1024 x 1024 pixels from 5 sections of each animal with a TCS SP5 Spectral Leica
confocal microscope (Leica; Wetzlar, Germany) using a 20 x dry objective. Image stacks
and merged channel panels were obtained with Leica LAS AF software (Leica; Wetzlar,
Germany). The images obtained were collapsed to create TIFF files with the projections
of maximum intensity using the same final thickness of tissue analyzed for all series
(5 microns). These images were converted to 8-bit grayscale using Image] image analysis
software for Windows (Microsoft; Alburquerque, NM, USA). The image processing was
identical for all of them, limiting itself to small adjustments in the grayscale and brightness
to improve the visualization. Four regions of interest were delineated as broad as possible
on the images that selected, respectively, the exterior of the tissue, the white matter forming
the outer component of the spinal and medullary dorsal horn, laminae I-II, and lamina III
In each of them, a densitometric analysis of the immunoreactivity of GAD-6, GlyT2 and
Iba-1 was performed, obtaining various optical density measurements using the Image]
‘Set Measurement’ routine. The data corresponding to the distribution of pixels in the gray
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scale were also obtained for each of the measurements. The gray values were taken to an
Excel sheet where the histograms and corresponding curves were composed. These data
were also used for further statistical analysis.

4.6. Statistical Analysis

Descriptive statistics (means and SEM or SD) were obtained using the Excel program
(Microsoft Office Professional Plus 2010 for Windows 10). For statistical tests, SPSS software
(v. 15; IBM, Armonk, North Castle, NY, USA) and GraphPad Prism software (v. 8.0; San
Diego, CA, USA) were used. Histograms and graphs were generated with GraphPad
Prism software (San Diego, CA, USA) and were retouched to improve image quality using
CorelDraw X3 software (Corel; Ottawa, ON, Canada).

The mean densitometric data were analyzed and compared between sides using the
Wilcoxon signed rank test using individual sections por pairwise comparisons. Intergroup,
sidewise comparisons were assessed by the Mann-Whitney test, using hemispheres as
sampling units. The distribution curves of pixels according to their luminance in the 8-bit
gray scale were compared with the Kolmogorov-Smirnov two-sample D test [100]. In all
cases the statistical significance was established at a p-value < 0.05 and was represented in
the Figures by asterisks, for intergroup comparisons, or hash symbols, for between-side
comparisons (¥, #: p < 0.05; **, ##: p < 0.01).
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