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ABSTRACT 

This research paper makes an empirical analysis based on long memory to understand the 

historical behavior of initial unemployment claims (ICSA) in the United States (U.S.) 

during all the recession periods and epidemic diseases such as Severe Acute Respiratory 

Syndrome (SARS), Middle East Respiratory Syndrome (MERS) and COVID-19 since 

1967 applying statistical methods based on long range dependence and fractional 

differentiation. Using unit root/stationarity tests (ADF, PP and KPSS) we discover that 

the original time series is stationary I(0) and the subsamples are non-stationary I(1). 

Finally, to analyze the original time series as well as the several periods corresponding to 

the recessions that occurred in U.S. and the three epidemic diseases, we use AIC and BIC 

criterion to fit the best ARFIMA model. We conclude that the results display long 

memory with a degree of integration strictly below 1 (d < 1) for the COVID-19 episode 

and for the rest of the subsamples, except for the original time series and the 2nd 

subsample. Thus we can conclude that the impacts will be transient and with long lasting 

effects of shocks and expecting to disappear on their own in long term. Finally, we use a 

methodology proposed by Bai and Perron to estimate structural breaks not being 

necessary to know the time of the breaks in advance. The results are similar to those 

obtained previously. 
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1. Introduction 

Humanity has always lived with microorganisms around it. Some of these 

microorganisms, controlled and monitored by the health authorities, can cause diseases 

more or less harmful to health. Following the argue done by Potter (2001) who says that 

in the past 300 years 10 pandemics are identified. Also, the researcher not reject the 

hypothesis about other pandemics appear or new medical disasters. This is because Potter 

(2001) states that these pandemics follow a recurrent but not regular periodic pattern. 

Kilbourne (2005) states that in the 20th century the world was hit by the Spanish influenza 

in 1918 that was the most severe killing at least 40 million people worldwide and 675.000 

in the U.S. (Brainerd and Siegler, 2002), the Asian influenza in 1957 and the Hong Kong 

influenza in 1968. In more recent years we have suffered from other major diseases such 

as SARS and HIV/AIDS (Jonung and Roeger, 2006) 

The last virus to appear is the one called SARS-CoV-2, of the Coronaviridae family, and 

which causes the COVID-19 disease. According to Hui et al. (2020) and World Health 

Organization (WHO)1, this infectious disease was identified in Wuhan City, China, in 

December 2019.  

Since then, there has been an unprecedented major public health crisis, and not only 

because of the emergence of a new pathogen affecting humans, but also because health 

authorities have failed to respond to its spread and expansion. 

Many virus containments measures (see Lee et al. 2020; Chen et al. 2020; among others) 

have been carried out around the world, causing significant economic consequences (see 

Keogh-Brown et al. 2010). According to OECD (2020), the virus will cause a negative 

supply shock to the world economy, by forcing factories to shut down and disrupting 

 
1 https://www.who.int/news-room/q-a-detail/q-a-coronaviruses 
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global supply chains. If we compare it with the SARS crisis, Beutels et al. (2009) carried 

out a research study for the case of Beijing, using time series of daily and monthly SARS 

cases and deaths and volume of public train, airplane and cargo transport, tourism, 

household consumption patterns and gross domestic product growth, where they 

concluded that much of this consumption was merely postponed. However, the 

irrecoverable losses related to the tourism was about USD 1.4billion, or 300 times the 

cost of treatment for SARS cases in Beijing. 

Another important mechanism by which a disease has an adverse impact on the long-term 

growth of the economy is the destruction of human capital. Following the statement done 

by Barro and Sala-I-Martin (1995), the stock of knowledge embodied in the population 

is determinant for the long-term growth. 

Labor productivity is also affected due to the movement limitation of labor across regions 

within a country as well as across countries where it is most productive (see for example 

the analysis of Haacker 2002). 

Although various studies have been attempted on the impact of pandemics on 

macroeconomic variables (in terms of loss of growth and production), there is little 

consensus in the literature, since the results depend fundamentally on the models used 

and the availability of data (see Bell and Lewis, 2004). 

Focusing on unemployment, in the literature there are several unemployment theories like 

NAIRU (Friedman 1968 and Phelps 1967, 1968), hysteresis models (see Blanchard and 

Summers 1986, 1987 and Barro 1988) and structuralist models (Phelps 1994, Pissarides 

1990, Blanchard 1999, Phelps 1999, Nickell 1998 y Nickell el al. 2000) that have been 

statistically analyzed in the literature following  the standard unit root tests like Blanchard 

and Summers (1986) and Alogoskoufis and Manning (1988). Other researchers such as 

Gordon (1989), Lopez et al. (1996) and Wilkinson (1997) analyzed the statistical 
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properties of the hysteresis hypothesis. Others like Mitchell (1993), Bianchi and Zoega 

(1998) and Papell et al. (2000) studied these properties allowing structural breaks. 

Amable and Mayhew (2011), Fosten and Ghoshray (2011), Holl and Kunst (2011), King 

and Morley (2007), Srinivasan and Mitra (2012), among others reported mixed evidence 

in the more recent literature. 

Unit root tests have very low power if the data is fractionally integrated (see Diebold and 

Rudebush, 1991; Hassler and Wolters, 1994; Lee and Schmidt, 1996), for this reason, and 

following the research done by Tschernig and Zimmermann (1992), Crato and Rothman 

(1996), Gil-Alana (2001, 2002), Caporale and Gil- Alana (2007, 2008), Lahiani and 

Scaillet (2009) among others, our goal is to do a statistical analysis using a fractional 

integrated (ARFIMA) model from the point of view of supply effects, related to the loss 

in hours worked. To be more precisely, we examine the time series properties of the 

weekly initial jobless claims in U.S. over the period January 1, 1967 to March 21, 2020. 

The contribution of the paper is to analyze the seven periods of recession since 1967, 

including the Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory 

Syndrome (MERS) and COVID-19 crisis. For this purpose, we use methodologies based 

on the concepts of long-run dependence and long memory using fractional integration 

techniques. Using these techniques, we can determine if the effect of the shocks is going 

to be transitory or permanent, and this is important for policy makers and for the 

implementation of policy measures. 

The rest of the paper is structured as follows. Section 2 presents the methodology applied 

in the paper. Section 3 describes the data and Section 5 presents the main empirical 

results, while Section 6 concludes the paper. 
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2. Methods 

2.1. Unit roots methods 

There exist many different ways of testing for unit-roots. The most common ones are 

those of Fuller (1976) and Dickey and Fuller (1979), the ADF tests. They are 

asymptotically optimal when the data are stationary. However, in the unit root case there 

are many other tests available that have greater power. Phillips (1987) and Phillips and 

Perron (1988) consider tests that employ a non-parametric estimate of the spectral density 

of 𝑢𝑡 at the zero frequency, for example, a weighted autocovariance estimate. On the 

other hand, to test a null hypothesis that an observable time series is stationary around a 

deterministic trend (i.e. trend-stationary) against the alternative of a unit root, we use the 

methodology carried out by Kwiatkowski et al. (1992). 

 

2.2. ARFIMA (p, d, q) model 

To carry out this research based on also fractional integration analysis, we employ long 

memory methods where the number of differences required to render a series I(0) 

stationary is fractional. 

Following a mathematical notation, given a time series 𝑥𝑡 , 𝑤ℎ𝑒𝑟𝑒 𝑡 = 1, 2, … is said to 

follow an integrated of order d process (and denoted as 𝑥𝑡 ≈ 𝐼(𝑑)) if 

(1 − 𝐿)𝑑𝑥𝑡 = 𝑢𝑡 ,        𝑡 = 1, 2, …,                          (1) 

Where 𝑑 can be any real value, 𝐿 is the lag-operator (𝐿𝑥𝑡 = 𝑥𝑡−1) and 𝑢𝑡 is I(0), defined 

as a covariance stationary process with a spectral density function that is positive and 

finite at the zero frequency. Thus, 𝑢𝑡 may display some type of time dependence of the 

weak form, i.e., the type of an Autoregressive Moving Average (ARMA) form such that, 

for example, if 𝑢𝑡 is ARMA (p, q), x t is said to be ARFIMA (p, d, q). 
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Depending on the value of the parameter d, several specifications based on (1) can be 

observed. 

The process would be short memory or I(0) when 𝑑 = 0 in (1). This occur because 𝑥𝑡 =

𝑢𝑡. The high degree of association between observations which are far distant in time 

receive the name of long memory process and occur when 𝑑 > 0. Within this last 

assumption, the process is still covariance stationary if 𝑑 < 0.5 because the 

autocorrelations decay hyperbolically fast. 

The reading that we can do on the results obtained from the fractional d is as follows: we 

consider a process of reversion which means that the shocks disappear in the long run 

when d is smaller than 1. In contrast to the above, the shocks are expected to be permanent 

when 𝑑 ≥ 1. 

Although there are several procedures to estimate the degree of long- memory and 

fractional integration (see Geweke & Porter-Hudak, 1983; Phillips, 1999, 2007; Sowell, 

1992). We base our results on the maximum likelihood procedure (see Sowell, 1992) and 

we use Akaike information criterion (AIC, Akaike, 1973) and Bayesian information 

criterion (BIC; Akaike, 1979) to select the right ARFIMA model. 

 

2.3. Structural breaks 

Finally, we have followed the methodology proposed by Bai and Perron (1998, 2003) that 

permit the modeler to endogenously estimate structural breaks and it is not necessary to 

know the time of the breaks in advance. 

Using this methodology, we assume that 𝑡 = 1, 2, 3, … 𝑇, 𝑚 unknown breaks and the 

partitioned time series for 𝑚 + 1. 
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Some of the coefficients contained in 𝜌 matrix are invariable across all partitions. Others 

represent the estimated coefficient for each partition 1 to 𝑚 + 1 and are located in a series 

of 𝜙 matrices. The following equation shows this: 

(𝑌 − 𝑋𝜌 − 𝐷̅𝜙)′ (𝑌 − 𝑋𝜌 − 𝐷̅𝜙) = ∑ ∑ (𝑦𝑡 − 𝑥𝑡
′𝜌 −

𝑇𝑖
𝑖−1+1

𝑚+1
𝑖=1 𝑡=𝑇 𝑑𝑡

′𝜙𝑖)2  (1) 

 

Least square is the method used to calculate the coefficients in 𝜌 and 𝜙, that are the 

parameters and matrices, respectively, used to minimize the number of square errors. 

Where the sum of squared residuals is calculated first across all time points in a given 

segment 1 to 𝑚 + 1. Also, 𝑆𝑡(𝑇1, 𝑇2, … , 𝑇𝑚) represent the sum of squared residuals in 

𝑚 −partition and (𝑇1, 𝑇2, … , 𝑇𝑚) are specific to the break dates. 

 

3. Data 

In this paper we used seasonally adjusted weekly initial claims in U.S. over the period 

January 1, 1967 to June 4, 2020. The data were obtained from the Federal Reserve Bank 

of St. Louis2 and it is shown in figure 1.  

To consider the several U.S. recessions we have taken into account the dates provided 

from Federal Reserve Bank of St. Louis3.  

Also, we have considered the others disease outbreaks like Severe Acute Respiratory 

Syndrome (SARS) that according to WHO, began in November 2002 and ended in May 

20044, Middle East Respiratory Syndrome (MERS) began in September 2012 and it is 

actually activated, and finally we analyze the COVID-19. To consider the coronavirus 

crisis (10th recession period), we have taken the start date indicated by Hui et al. (2020) 

and World Health Organization (WHO) up to the current available data. 

The dates that we have used for our analysis are collected in the following table: 

 
2 https://fred.stlouisfed.org/categories/32240 
3 https://fredhelp.stlouisfed.org/fred/data/understanding-the-data/recession-bars/ 
4 https://www.who.int/csr/don/2004_05_18a/en/ 



 8 

 

Table 1: U.S. Recessions 

1st period December 1969 November 1970 

2nd period November 1973 March 1975 

3rd period January 1980 July 1980 

4th period July 1981 November 1982 

5th period July 1990 March 1991 

6th period March 2001 November 2001 

7th period December 2007 June 2009 

Source: Federal Reserve Bank of St. Louis (https://fredhelp.stlouisfed.org/fred/data/understanding-the-data/recession-bars/) 

Pandemic, epidemic diseases 

8th period November 2002 May 2004 

9th period September 2012 August 2020 

10th period December 2019 August 2020 

Source: World Health Organization 

Structural breaks using Bai and Perron (1998, 2003) 

1st structural break January 18, 1975 

2nd structural break October 29, 1983 

3rd structural break July 19, 2008 

4th structural break October 29, 2011 

5th structural break December 9, 2017 

 

Also, we have also represented in Figure 1 the time series that includes each of these 

periods in recession and structural breaks. 

 

 

 

 

 

 

 



 9 

 
 

 

 

 

 

 

 

 

 

 

Figure 1. Seasonally adjusted weekly initial claims in U.S. over the period January 1, 1967 to April 4, 2020. (including U.S. 

Recession periods and Structural Changes according to Bai and Perron (2003) methodology. 

 

 

4. Results 

We start the analysis by performing the three standard unit root tests outlined in Section 

3. We select the Augmented Dickey-Fuller test (ADF), the Phillips Perron test (PP) and 

the Kwiatkowski-Phillips-Schmidt-Shin test (KPSS) to examine the statistical properties 

of the original series of weekly initial jobless claims in U.S. and to obtain robust results. 

Table 1 displays the results, which suggest that the original data are stationary I(0). The 

subsamples analyzed in this paper are non-stationary I(1) except the subsample related to 

MERS pandemic that is stationary I(0). 
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 ADF PP KPSS 

 (i) (ii) (iii) (ii) (iii) (ii) (iii) 

 
Weekly Initial Jobless Claims in U.S. (ICSA) 

Original Data -9.649 -17.41 -17.537 -10.711 -10.798 0.489119 0.208989 

 U.S. Recessions 

1st period 0.6682 -2.1386 -2.849 -2.3543 -3.0899 0.9054 0.1421 

2nd period 1.6875 -0.1008 -1.9283 -0.2943 -0.2943 1.6708 0.4072 

3rd period 0.9027 -1.2256 -0.8547 -1.307 -1.137 0.9061 0.1536 

4th period 0.8687 -1.7233 -2.7205 -1.5984 -4.8178 1.7167 0.1206 

5th period 1.817 -0.8598 -2.9942 -0.8979 -3.3645 1.0167 0.0771 

6th period 0.6092 -1.3839 -2.9097 -1.2609 -2.6522 0.7153 0.1375 

7th period 1.4095 -0.8612 -1.9777 -0.7466 -2.2193 2.0585 0.2331 

 Pandemic, epidemic diseases 

8th period -0.7024 -1.2748 -3.0866 -1.2024 -3.2173 1.6783 0.3668 

9th period -4.2247 -16.7232 -18.5172 4.1882 4.618 0.176 0.1738 

10th period -1.8222 -2.7509 -2.7238 -1.8683 -1.7552 0.242 0.1614 

 Structural breaks using Bai and Perron (1998, 2003) 

1st structural break 1.3426 0.402 -0.7363 0.5046 -1.0609 2.9807 0.3475 

2nd structural break -0.875 -2.4773 -2.9779 -2.6598 -3.2258 2.4732 0.7175 

3rd structural break -0.6336 -5.164 -5.2057 -4.9012 -4.9603 1.062 0.3863 
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4th structural break -0.3232 -1.1853 -2.9725 -1.2803 -3.3254 2.1071 0.3099 

5th structural break -1.1917 -2.0509 -7.9014 -1.7223 -9.2197 5.3117 0.5835 

Table 2. Unit roots tests. (i) Refers to the model with no deterministic components; (ii) with an intercept, and (iii) with 

a linear time trend. I reflect t-statistic with test critical value at 5%. 

 

Once we have analyzed the original data and the subsamples, we have verified that we 

must not use the first differences so that our data is stationary I (0) for the original data,  

for the time series related to MERS pandemic (9th period) and for the 3rd structural break. 

For the rest, we must use first differences. Due to the low power of the unit root methods 

under fractional alternatives5 presented in table 2, now we are going to use an ARFIMA 

(p, d, q) model to study the persistence of the original series as the subsamples 

corresponding to the different periods of recession experienced in the US since 1967. 

Also, using the methodology proposed by Bai and Perron (1998, 2003) we have identified 

unknown break periods from a specified number of observations, 𝑇 and 𝑚 possible breaks 

that have been analyzed using the ARFIMA model, that we have identified in Table 1. 

To select the right ARFIMA model, we present a methodology based on information 

criteria such as Akaike information criterion (AIC; Akaike, 1973) and Bayesian 

information criterion (BIC; Akaike, 1979). Using these criteria for each time series, we 

show in the following table the correct model that we have chosen: 

Information Criteria 

Data analyzed Model Selected AIC BIC 

Original time series ARFIMA (1, d, 2) 63009,4 63039,1 

1st period ARFIMA (2, d, 1) 1011,44 1023,04 

2nd period ARFIMA (2, d, 2) 1489,55 1505,58 

3rd period ARFIMA (2, d, 1) 603,585 611,789 

 
5 See Diebold and Rudebusch (1991), Hassler and Wolters (1994) and Lee and Schmidt (1996) 
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4th period ARFIMA (0, d, 1) 1490,86 1500,02 

5th period ARFIMA (0, d, 2) 722,535 730,723 

6th period ARFIMA (2, d, 1) 764,654 774,48 

7th period ARFIMA (1, d, 2) 1629,73 1644,17 

8th period ARFIMA (2, d, 2) 1564,29 1581,14 

9th period ARFIMA (0, d, 1) 10135,9 10152,1 

10th period ARFIMA (0, d, 0) 985,84 990,59 

Structural breaks using Bai and Perron (2003) 

1st structural break ARFIMA (0, d, 0) 8256,53 8268,64 

2nd structural break ARFIMA (2, d, 2) 9187,58 9216,47 

3rd structural break ARFIMA (1, d, 0) 24836,1 24856,8 

4th structural break ARFIMA (2, d, 2) 3348,44 3370,43 

5th structural break ARFIMA (2, d, 2) 5980,36 6006,71 

Table 3. Akaike information criterion (AIC) and Bayesian information criterion to choose the right ARFIMA model 

 

Table 3 shows the results of AIC and BIC information criterion and the different 

parameterizations of the ARFIMA (p, d, q) model that we have chosen. The 

configurations that we have made of the ARFIMA model have been "(0, d, 0)", "(1, d, 

0)", "(2, d, 0)", "(0, d, 1)", "(0, d, 2)", "(1, d, 1)", "(1, d, 2)", "(2, d, 1)", "(2, d, 2)". 

Once the various configurations were calculated for ARFIMA models and following the 

selection criteria mentioned above, we are left with those value that have been greater in 

the AIC and BIC. These models are collected in the table 3. 

Taking into consideration that the AR and MA terms capture short-term influences over 

the ARFIMA (0, d, 0) baseline model and according to the selection criterion explained 

above, we can observe that for each time series we have several configurations. 
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Long memory test on seasonally adjusted weekly initial claims in U.S. 

Data analyzed 

Sample size 

(weeks) 

Model Selected d Std. Error Interval I(d) 

Original time series 2798 ARFIMA (2, d, 0) 1,06212 0,0169529 [-0.01, 0.04] I(0) 

1st period 52 ARFIMA (2, d, 1) 0,5411632 0,6232175 [-0.68, 1.36] I(0), I(1) 

2nd period 74 ARFIMA (2, d, 2) 1,1106023 0,2756084 [-0.14, 0.76] I(0) 

3rd period 30 ARFIMA (2, d, 1) 0,427549 0,614085 [-0.74, 1,27] I(0), I(1) 

4th period 74 ARFIMA (0, d, 1) 0,663221 0,298764 [-0,29, 0.69] I(0) 

5th period 39 ARFIMA (0, d, 2) 0,095406 0,319374 [-0.49, 0.55] I(0) 

6th period 39 ARFIMA (2, d, 1) 0,237487 0,868447 [-1.22, 1.63] I(0), I(1) 

7th period 83 ARFIMA (1, d, 2) 0,9834455 0,3569314 [-0.23, 0.93] I(0) 

8th period 83 ARFIMA (2, d, 2) 0,9196082 0,3224903 [-0.23, 0.82] I(0) 

9th period 397 ARFIMA (0, d, 1) 0,502221 0,0021881 [-0.00, 0.00] I(0) 

10th period 37 ARFIMA (0, d, 0) 0,690702 0,165045 [-0.15, 0.38] I(0) 

Structural breaks using Bai and Perron (2003) 

1st structural break 420 ARFIMA (0, d, 0) 0,7378417 0,0353695 [-0.03, 0.08] I(0) 

2nd structural break 549 ARFIMA (2, d, 2) 1,0482130 0,1296148 [-0.07, 0.35] I(0) 

3rd structural break 1291 ARFIMA (1, d, 0) 0,6822554 0,0273752 [-0.02, 0.06] I(0) 

4th structural break 172 ARFIMA (2, d, 2) 1,2973907 0,1903681 [-0.06, 0,56] I(0) 

5th structural break 320 ARFIMA (2, d, 2) 0,62906 0,175784 [-0.18, 0.40] I(0) 

Table 4. Results of long memory tests. 

 

Table 4 display the fractional parameter d and the AR and MA terms obtained using 

Sowell's (1992) maximum likelihood estimator of various ARFIMA (p, d, q) 

specifications with all combinations of (p, q) with p, q ≤ 2, for seasonally adjusted weekly 
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initial claims in U.S. and for each recession subperiods in U.S. localized by Federal 

Reserve Bank of St. Louis, including coronavirus crisis that started in December 2019. 

Assuming the explanation done in the Methodology where the process would be short 

memory or I(0) when 𝑑 = 0. So, we consider a mean reversion process (the shocks 

disappear in the long run) when 𝑑 < 1. On the opposite side, the shock is expected to be 

permanent when 𝑑 ≥ 1. So, we can see that for the subperiods 1st, 3rd, 4th,5th,6th ,7th, 9th 

and 10th, where this last one period corresponds to COVID19 episode, the value of 𝑑 < 1 

implying transitory shocks through with long lasting effects and a low persistence. Mean 

reversion (𝑑 < 1) implies transitory shocks and thus, in the event of an exogenous shock 

if the series is 𝐼(𝑑, 𝑑 < 1) the series will return to its original time trend in the future. For 

the case of the 3rd, 5th and 6th subperiod, the parameter d is lower than 0.5 meaning that 

the time series analyzed is covariance stationary. We observe mean reversion for these 

periods where the shock is transitory, and the recovery will take place in a short period 

of time. 

The original time series and the 2nd period the fractional parameter presents a result 𝑑 ≥

1, concluding that in these periods are not mean reversion and the shock is expected to 

be permanent (e.g. lasting forever), causing a change in trend. So, it requires strong 

measures by the authorities to recover the original trends. 

In the case of the subperiods of the structural breaks that we get using the methodology 

proposed by Bai and Perron (1998, 2003), we can observe that the parameter d is lower 

than 1 in the 1st, 3rd and 5th structural break periods. Also, for the 2nd and 4th period 𝑑 >

1, but according to the confidence interval we cannot reject the hypothesis of I(0) in each 

of the structural changes found. 

To conclude and observing the confidence intervals, the I(0) hypothesis cannot be 

rejected in all subsamples assuming that the effect of a shock disappear in the short term. 
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In the case of the 1st, 3rd and 6th periods we cannot reject the hypothesis of I(1), where 

the effect of shock persists indefinitely, due to the confidence intervals are very wide 

(clearly due to the small sample sizes in some of the periods examined).  

 

5. Conclusions 

In this paper we have examined eleven time series corresponding to the original time 

series which is seasonally adjusted weekly initial claims in U.S. and the eight sub-

periods corresponding to each one of the recessions located in time by the Federal 

Reserve Bank of St. Louis. Also, we have considered the others disease outbreaks like 

Severe Acute Respiratory Syndrome (SARS) that according to WHO, began in 

November 2002 and ended in May 2004, Middle East Respiratory Syndrome (MERS) 

began in September 2012 and it is actually activated, and finally we analyze the 

COVID-19 that start in December 2019.  

Our first focus has been to analyze the statistical properties of these time series using unit 

roots and fractional integration methods to understand the behavior of the unemployment 

in the U.S. 

We have started to perform several unit root methods, ADF, PP, KPSS. The results 

suggest that the original time series is stationary I(0) and the subperiods are nonstationary 

I(1). 

On the other hand, we have also estimated the differencing parameter d in terms of 

fractional model using ARFIMA (p, d, q). To select the right model, we have combine all 

the possible cases ["(0, d, 0)", "(1, d, 0)", "(2, d, 0)", "(0, d, 1)", "(0, d, 2)", "(1, d, 1)", 

"(1, d, 2)", "(2, d, 1)", "(2, d, 2)"] to find the best selection criteria following the models 

proposed by Akaike (1973) and Akaike (1979), which are AIC and BIC respectively. 
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Once we have selected the specific ARFIMA model, which as we see for the time series 

and the respective sub-periods are different, we obtain that for the subperiods 1st, 3rd, 

4th,5th,6th ,7th, 9th and 10th  the value of 𝑑 < 1 implying transitory shocks through with 

long lasting effects. For the case of the 3rd, 5th and 6th subperiod, the parameter d is lower 

than 0.5 meaning that the time series analyzed is covariance stationary. We observe mean 

reversion for these periods where the shock is transitory, and the recovery will take place 

in a short period of time. 

The original time series and the 2nd period the fractional parameter presents a result 𝑑 ≥

1, concluding that in these periods are not mean reversion and the shock is expected to 

be permanent (e.g. lasting forever), causing a change in trend. So, it requires strong 

measures by the authorities to recover the original trends. 

In the case of the subperiods of the structural breaks that we get using the methodology 

proposed by Bai and Perron (1998, 2003), we can observe that the parameter d is lower 

than 1 in the 1st, 3rd and 5th structural break periods. Also, for the 2nd and 4th period 𝑑 >

1, but according to the confidence interval we cannot reject the hypothesis of I(0) in each 

of the structural changes found. 

To conclude and observing the confidence intervals, the I(0) hypothesis cannot be 

rejected in all subsamples assuming that the effect of a shock disappear in the short term. 

In the case of the 1st, 3rd and 6th periods we cannot reject the hypothesis of I(1), where 

the effect of shock persists indefinitely, due to the confidence intervals are very wide 

(clearly due to the small sample sizes in some of the periods examined).  

The results presented in this research paper may help to a better understanding of the 

dynamics of unemployment by policy makers and economic analysts during and after the 

coronavirus crisis, comparing previous economic and financial crises with the case of the 

last sub-periods corresponding to a pandemic. 
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