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Abstract. The researches on topological indices are initially related to graphs obtained from 
biological activities or chemical structures and reactivity. Recently, the research on this topic has 
evolved on graphs in general and even on graphs obtained from algebraic structures, such as groups, 
rings or modules. This paper will present various topological index concepts, various graph concepts 
obtained from a commutative ring and some previous studies that are relevant to those two concepts. 
Based on the various concepts presented, research topics related to topological indices of a graph 
associated with a commutative ring can be found and carried out. 

1. Introduction 
Topological index is still a topic of interest to researchers. When a researcher conducts research related to 
a concept of topological index, new topological index concepts continue to be developed and introduced by 
other researchers. Thus, the research on this topic is endless. Although topological indices were originally 
developed for graphs obtained from representations of chemical structures, researches of topological indices 
are not limited to them. Some topological index studies on graphs in general have also been carried out, for 
example on connected graphs [1], bridge graphs [2], thorn graphs [3], trees [4–6], unicyclic graphs [7], 
bipartite graphs [8], composite graphs [9], windmill graph [10], Sierpinski graph [11] and graphs obtained 
from certain graph operations [12]. 

On the other hand, new types of graphs were also developed and introduced. The researchers began to 
introduce the concept of graphs related to algebraic structures. The graphs were developed from the group, 
for example commuting [13] and non-commuting graph [14], inverse graphs [15], identity graphs [16], 
conjugate graphs [17] and subgroup graphs [18]. Several studies on topological indices of graphs obtained 
from a group have been reported, for example studies on non-commuting graphs of a finite group [19–24], 
subgroup graph of dihedral group [25,26] and identity graph of cyclic group [27]. However, researches on 
topological indices of graphs associated with a ring is still rarely done.  

This paper presents the concepts of topological indices and the concepts of graph associated with a ring, 
especially a commutative ring. Previous researches relevant to these concepts are also presented. This paper 
is expected to help researchers who are interested in conducting research related to the topological indices 
of graphs obtained from a commutative ring. 

mailto:sakir@mat.uin-malang.ac.id
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2. Topological Indices of a Graph  
Throughout this paper, graph 퐺 = (푉(퐺),퐸(퐺)) is simple and finite. Let 푚 = |푉(퐺)| and 푛 = |퐸(퐺)| are 
the order and the size of 퐺, respectively. Let 푁(푥) denoted the open neighborhood of a vertex 푥 in 퐺. Then, 
the degree of 푥 is deg(푥) =  |푁(푥)| and the closed neighborhood of 푥 is 푁[푥] = 푁(푥) ∪ {푥}. The number 
of distinct edges that incident to any vertex in 푁[푥] is defined as the 푣푒-degree of 푥 and is denoted by 
deg (푥). The distance between any two vertices 푥 and 푦 in 퐺 is denoted by 푑(푥, 푦). The eccentricity of a 
vertex 푥 in 퐺 is denoted by 푒(푥) and is defined as the largest 푑(푥, 푦) for any 푦 in 퐺. For any vertex 푥 of 퐺, 
the total distance of 푥 is defined as 퐷(푥) = ∑ 푑(푥,푦)∈ ( ) . The diameter of 퐺 is denoted by diam(퐺) and 
is defined as the greatest distance between any two vertices in 퐺. 

The topological index of a graph is a number that invariant under graph automorphism [28]. Topological 
index also called as molecular structure descriptor [29] or graph-theoretical descriptor [30–32]. The degree-
based, distance-based and eccentricity-based topological indices are three major classifications. Following 
are some definitions of topological indices. However, it is possible that there are still other definitions that 
are not covered in this paper. 

The first and second Zagreb indices are defined as [33,34] 
푀 (퐺) =  ∑ deg(푥)∈ ( ) = ∑ [deg(푥) + deg(푦)]∈ ( )   

and 
푀 (퐺) =  ∑ deg(푥) deg(푦)∈ ( ) . 

In a more general form, the first general Zagreb index is defined as [35] 
푀 (퐺) =  ∑ deg(푥)∈ ( ) = ∑ [deg(푥) + deg(푦) ]∈ ( )   

for any 훼 ∈ ℝ. For 훼 = 3, it is called as the forgotten topological index or F-index and is written as [36,37]  
퐹(퐺) =  ∑ deg(푥)∈ ( ) = ∑ [deg(푥) + deg(푦) ]∈ ( ) . 

The first and second Zagreb co-indices are defined as [4,35] 
푀 (퐺) =  ∑ [deg(푥) + deg(푦)]∉ ( )  and  푀 (퐺) =  ∑ deg(푥) deg(푦)∉ ( )  

The first and second 푣푒-degree Zagreb indices are defined as [38] 
푀 (퐺) =  ∑ [deg (푥) + deg (푦)]∈ ( )  and 푀 (퐺) =  ∑ deg (푥) deg (푦)∈ ( )  

The 퐹-푣푒-degree index is defined as [38] 
퐹 (퐺) =  ∑ deg (푥)∈ ( ) = ∑ [deg (푥) + deg (푦) ]∈ ( ) . 

The reduced second Zagreb index is defined as [25] 
푅푀 (퐺) =  ∑ [deg(푥)− 1][ deg(푦)− 1]∈ ( )   

and the Narumi-Katayama index is defined as [39] 
푁퐾(퐺) = ∏ deg(푥)∈ ( ) . 

In addition, the first multiplicative Zagreb index is defined as [25] 
훱 (퐺) = ∏ deg(푥)∈ ( ) = ∏ (deg(푥) + deg(푦))∈ ( )   

and it implies that 훱 (퐺) = 푁퐾(퐺) . The second multiplicative Zagreb index is defined as [25] 
훱 (퐺) = ∏ deg(푥) deg(푦)∈ ( ) . 

There are two definitions of Randic index [40], namely  
푅(퐺) =  ∑

( ) ( )∈ ( ) = ∑ (deg(푥) deg(푦))∈ ( )   
and 

푅(퐺) =  ∑
( ) ( )

= ∑ (deg(푥) deg(푦))∈ ( )∈ ( ) . 
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The Randic index is also well known as branching index or connectivity index or product connectivity index. 
From Randic index, some definitions are introduced. The reciprocal Randic index, reduced reciprocal 
Randic Index and the general Randic index are defined as the following. 

푅푅(퐺) =  ∑ deg(푥) deg(푦)∈ ( ) , 
푅푅푅(퐺) =  ∑ [deg(푥) − 1][deg(푦)− 1]∈ ( ) , and 

푅 (퐺) =  ∑ (deg(푥) deg(푦))∈ ( )   
for an arbitrary 훼 ∈ ℝ. Therefore, 푅 (퐺) = 푀 (퐺). The general Randic co-index is defined as  

푅 (퐺) =  (deg(푥) deg(푦))
∉ ( )

 

for an arbitrary 훼 ∈ ℝ. It is also called the general product connectivity index. 
The ABC-index or Atom-Bond-Connectivity index is defined as [41] 

퐴퐵퐶(퐺) =  ∑ ( ) ( )
( ) ( )∈ ( )   

The harmonic index is defined as [42–45] 
퐻(퐺) =  ∑ ( ) ( )∈ ( )   

The augmented Zagreb index is defined as [46] 

퐴푍퐼(퐺) =  ∑ ( )  ( )
( ) ( )∈ ( )   

The first geometric-arithmetic index or geometric-arithmetic index is defined as [47] 

퐺퐴(퐺) =  ∑ ( ) ( )
( ( ) ( )) = ∑ ( ) ( )

( ) ( )∈ ( )∈ ( )   

The sum-connectivity and general sum-connectivity indices are defined as [48,49] 
푆퐶퐼(퐺) =  ∑

( ) ( )
=∈ ( ) ∑ (deg(푥) + deg(푦))∈ ( )   

and  

푆퐶퐼 (퐺) =  (deg(푥) + deg(푦))
∈ ( )

 

for any 훼 ∈ ℝ. The general sum-connectivity co-index is defined as 

푆퐶퐼 (퐺) =  (deg(푥) + deg(푦))
∉ ( )

 

where  is real number [35].  
All topological indices described above are the degree-based topological indices of a graph. The 

following is the distance-based topological indices of a graph. The first is the Wiener index which is defined 
as [50] 

푊(퐺) =  ∑ 푑(푥,푦){ , } ⊆ ( ) . 
The Wiener polarity index is defined as [51] 

푊 (퐺) = 푑(퐺, 3) 
where 푑(퐺, 3) denote the number of vertex pairs in 퐺 that has the distance 3. The terminal Wiener index is 
defined as  

푇푊(퐺) =  ∑ 푑(푥,푦){ , } ⊆ ( )   
where 푉 (퐺)  is the set of end vertices in 퐺 [52]. The hyper Wiener index is defined as [19] 
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푊푊(퐺) =  ∑ [푑(푥, 푦) + 푑(푥, 푦) ]{ , } ⊆ ( )   
and the reciprocal complementary Wiener index is defined as [53] 

푅퐶푊(퐺) =  ∑
( ) ( , ){ , } ⊆ ( ) . 

The old Harary index is defined as [54] 
퐻 (퐺) =  ∑ ( , ){ , } ⊆ ( )   

while the Harary index is defined as [55,56] 
퐻(퐺) =  ∑

( , ){ , } ⊆ ( ) . 
Next, the eccentricity-based topological indices of a graph G are presented. The first, total eccentricity 

of 퐺 is defined as [57,58] 
휉(퐺) =  ∑ 푒(푥)∈ ( ) . 

The first and second Zagreb eccentricity indices are defined as [25] 
퐸 (퐺) =  ∑ (푒(푥))∈ ( )  and 퐸 (퐺) =  ∑ 푒(푥)푒(푦)∈ ( )  

The eccentric connectivity is  
휉 (퐺) =  ∑ 푒(푥)deg(푥)∈ ( )   

and connective eccentricity index is 
and 퐶 (퐺) =  ∑ ( )

( )∈ ( )   [25] 

The eccentric distance sum index is defined as [25,26] 
휉 (퐺) =  ∑ 푒(푥)퐷(푥)∈ ( )  or 휉 (퐺) = ∑ [푒(푥) + 푒(푦)]푑(푥, 푦){ , } ⊆ ( ) . 

while the adjacent eccentric distance sum index is defined as [25,26] 
휉 (퐺) =  ∑ ( ) ( )

( )∈ ( ) . 
The Schultz index or degree distance index is defined as [59] 

퐷퐷(퐺) =  ∑ (deg(푥) + deg(푦))푑(푥, 푦)  
and Gutman index is defined as [60,61] 

Gut(퐺) =  ∑ deg(푥) deg(푦)푑(푥, 푦). 
The additively weighted Harary index or reciprocal degree distance index is defined as [62] 

퐻 (퐺) =  ∑ ( ( ) ( ))
( , )

  
while multiplicatively weighted Harary index is defined as [63–65] 

퐻 (퐺) =  ∑ ( ( ) ( ))
( , )

. 
After knowing the various concepts of the topological index, then the next is knowing the concepts of 

graphs related to a commutative ring. With this knowledge, it is possible for a researcher to conduct research 
on topological indices of a graph associated with a commutative ring.  

3. Graphs Associated with a Commutative Ring 
Let 푅 be a commutative ring with unity 1  0. Let 푍(푅) denotes the set of zero divisors, 푍(푅)\{0} denotes 
the set of non-zero zero divisors and 푈(푅) denotes the set of units in 푅. The annihilator of an element 푟 is 
the set 퐴푛푛(푟) = {푠 ∈ 푅  푟푠 = 0}. A non-zero divisor element in 푅 is called regular element. An element 
푟 is called a nilpotent in 푅 if 푟 = 0 for some positive integer n.  

The following are definitions of some graphs obtained from R. 
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The zero divisor graph of 푅 is the graph with its vertex set is the set 푍(푅) ∗ and two different vertices 푟 
and 푠 are joined by an edge if and only if 푟푠 = 0[66]. 

The total graph of 푅 is the graph with its vertex set is 푅 and two different vertices 푟 and 푠 are joined by 
an edge if and only if 푟 + 푠 ∈ 푍(푅) [67].  

The total zero divisor graph of 푅 is the graph with its vertex set is the set 푍(푅)∗, and two different vertices 
푟 and 푠 are joined by an edge if and only if 푟푠 = 0 and 푟 +  푠 ∈  푍(푅) [68]. 

The co-zero divisor graph of 푅 is the graph with its vertex set is the set of all non-zero and non-unit 
elements in 푅 and two different vertices 푟 and 푠 are adjacent if and only if 푟 ∉ 푅푠 and 푠 ∉ 푅푟 [69]. 

The unit graph of R is the graph with its vertex set is 푅 and two different vertices 푟 and 푠 are adjacent if 
and only if 푟 + 푠 ∈ 푈(푅) [67]. 

The identity graph of 푅 is the graph with its vertex set is 푈(푅) and two different vertices 푟 and 푠 are 
joined by an edge if and only if 푟푠 = 1 [27]. 

Let 푆 be a subset of 푅 that is closed to multiplication operations. The generalized total graph of 푅 is the 
graph with its vertex set is 푅 and two different vertices 푟 and 푠 are joined by an edge if and only if 푟 + 푠 ∈
푆. If 푆 = 푍(푅) then this is the total graph of 푅. If 푆 = 푈(푅) then this is the unit graph of 푅 [70]. 

The nilradical graph of 푅 is the graph with its vertex set is the set of non-zero nilpotents of 푅 and two 
distinct vertices 푟 and 푠 are joined by an edge if and only if 푟푠 = 0. The non-nilradical graph of 푅 is the 
graph with its vertex set is the set of non-nilpotent zero-divisors of 푅 and two different vertices 푟 and 푠 are 
joined by an edge if and only if 푟푠 = 0 [71]. 

The annihilator graph of 푅 is the graph with its vertex set is 푍(푅) ∗ and two distinct vertices 푟 and 푠 are 
joined by an edge if and only if 퐴푛푛(푟) ∪ 퐴푛푛(푠) ≠ 퐴푛푛(푟푠)[72]. 

The maximal graph of 푅 is the graph with its vertex set is 푅 and two distinct vertices 푟 and 푠 are adjacent 
if and only if 푟 and 푠 are elements of a maximal ideal 푀 of 푅[73]. The co-maximal graph of 푅 is the graph 
with the vertex set 푅 and two distinct vertices 푟 and 푠 are joined by an edge if and only if 푟푅 + 푠푅 = 푅[74]. 

The containment graph of 푅 is the graph with its vertex set is the set of the ideals in 푅 and two distinct 
vertices 퐼 and 퐽 are joined by an edge if and only if 퐼 ⊂ 퐽. The intersection graph of ideals of 푅 is the graph 
with its vertex set is the set of the non-trivial proper ideals and two distinct vertices 퐼 and 퐽 are joined by an 
edge if and only if 퐼 ≠ 퐽 and 퐼 ∩ 퐽 ≠ {0} [75]. 

4. Topological Indices of a Graph Associated with a Commutative Ring 
The research on topological indices of a graph obtained from a commutative ring is still infrequent. One 
study that has examined this topic is done by Abdussakir et al [27]. They determined the eccentric 
connectivity index of the identity graph of a commutative ring. As an example, several topological indices 
of the identity graph of ring of integer modulo 푝 will be determined in this paper, where 푝 is a prime number.  

For any prime number 푝, let (푍 , +,∙) is the ring of integer modulo 푝. Then 푍  is a field and all the non-
zero elements of 푍  are units. Based on the definition of identity graph, 퐼(푍 ) is a trivial graph and 퐼(푍 ) is 
a path of order 2. For 푝 > 3, 퐼(푍 ) as the following [27]. 

  

 

 

 

Figure 1. Identity graph of 푍   
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Then, deg(1) = 푝 − 2, deg(푝 − 1) = 1 and deg(푣) = 2 for 푣 ≠ 1 or 푣 ≠ 푝 − 1. It will be easily observed 
that 푒(1) = 1 and 푒(푣) = 2 for 푣 ≠ 1. It also obtained that 퐷(1) = 푝 − 2, 퐷(푝 − 1) = 2푝 − 5 and 퐷(푣) =
2푝 − 6 for 푣 ≠ 1 or 푣 ≠ 푝 − 1. According to these facts, the following results are obtained.  
 
Theorem 4.1  

(a) 푀 (퐼(푍 )) = 0 and 푀 (퐼(푍 )) = 2 
(b) 푀 퐼(푍 ) =  푝 − 5, for 푝 > 3 
(c) 푀 (퐼(푍 )) = 0 and 푀 (퐼(푍 )) = 1 
(d) 푀 퐼(푍 ) =  3푝 − 8, for 푝 > 3 
(e) 퐹(퐼(푍 )) = 0 and 퐹(퐼(푍 )) = 2 
(f) 퐹 퐼(푍 ) =  푝 − 6푝 + 20푝 − 31, for 푝 > 3 
(g) 푁퐾(퐼(푍 )) = 0 and 푀 (퐼(푍 )) = 1 
(h) 푁퐾 퐼(푍 ) =  2 (푝 − 2), for 푝 > 3 
(i) 훱 (퐼(푍 )) = 0 and 훱 (퐼(푍 )) = 2 
(j) 훱 퐼(푍 ) =  푝 − 5, for 푝 > 3 
(k) 휉(퐼(푍 )) = 0 and 휉(퐼(푍 )) = 2 
(l) 휉 퐼(푍 ) =  2푝 − 3, for 푝 > 3 
(m) 휉 (퐼(푍 )) = 0 and 휉 (퐼(푍 )) = 2 
(n) 휉 퐼(푍 ) =  2 = 5푝 − 12, for 푝 > 3 

Proof. For 푝 = 2 and 푝 = 3, the proofs are obvious. For 푝 > 3, then  
(b) 푀 퐼(푍 ) =  ∑ deg(푢)∈ ( ( )) = deg(1) + deg(푝 − 1) + ∑ deg(푢) = (푝 − 2) +

1 + (푝 − 3)2 = 푝 − 5. 
(d) 푀 (퐺) =  ∑ deg(푢) deg(푣)∈ ( ) = ∑ deg(1) deg(푣) + ∑ deg(푢) deg(푣)∈ ( )

,
∈ ( ) =

1 ∙ 1 + (1 ∙ 2) + (2 ∙ 2) = 3푝 − 8.  

(f)  퐹(퐺) =  ∑ deg(푢)∈ ( ) = deg(1) + deg(푝 − 1) +∑ deg(푢) = (푝 − 2) + 1 +

(푝 − 3)2 = (푝 − 2) + 8푝 − 23 =  푝 − 6푝 + 20푝 − 31. 
(h) 푁퐾(퐺) = ∏ deg (푣)∈ ( ) = deg(1) deg (푝 − 1)∏ deg(푢) = (푝 − 2) ∙ 1 ∙ 2 =

2 (푝 − 2). 
(j) 훱 (퐺) = ∏ deg(푣)∈ ( ) = deg(1) deg (푝 − 1) ∏ deg(푢) = (푝 − 2) ∙ 1 ∙ 2 ( ) =

2 ( )(푝 − 2) . 
The proof of (l) and (n) can be seen in [27]. 

5. Conclusion 
This paper presented various definitions of topological indices and graphs obtained from a commutative 
ring. Of course, there are still topological indices and graphs obtained from the ring that have not been 
presented in this paper. Nevertheless, the presence of this paper can help researchers to conduct research on 
the topic of topological indices of graphs related to a commutative ring. 
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