Q-spectral and L-spectral radius of subgroup graphs of dihedral group

To cite this article: Abdussakir et al 2018 J. Phys.: Conf. Ser. 1114012110

View the article online for updates and enhancements.

IOP ebooks"

Bringing you innovative digital publishing with leading voices to create your essential collection of books in STEM research. Start exploring the collection - download the first chapter of every title for free.

Q-spectral and L-spectral radius of subgroup graphs of dihedral group

Abdussakir ${ }^{1}$, D A Akhadiyah ${ }^{2}$, A Layali ${ }^{2}$ and A T Putra ${ }^{2}$
${ }^{1}$ Department of Mathematics Education, Graduate Program, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Jl. Gajayana 50, Malang 65144, Indonesia
${ }^{2}$ Department of Mathematics, Faculty of Science and Technology, Universitas Islam
Negeri Maulana Malik Ibrahim Malang, Jl. Gajayana 50, Malang 65144, Indonesia

sakir@mat.uin-malang.ac.id

Abstract

Research on Q-spectral and L-spectral radius of graph has been attracted many attentions. In other hand, several graphs associated with group have been introduced. Based on the absence of research on Q-spectral and L-spectral radius of subgroup graph of dihedral group, we do this research. We compute Q-spectral and L-spectral radius of subgroup graph of dihedral group and their complement, for several normal subgroups. Q-spectrum and L spectrum of these graphs are also observed and we conclude that all graphs we discussed in this paper are Q-integral dan L-integral.

1. Introduction

For finite simple graph G of order p, its signless Laplacian matrix is defined by $Q(G)=D(G)+A(G)$ and its Laplacian matrix is defined by $L(G)=D(G)-A(G)$, where $D(G)$ is the vertex degree of G and $A(G)$ is adjacency matrix of G. The Q-polynomial of $Q(G)$ is $p_{Q}(q)=\operatorname{det}(Q(G)-q I)$ and the L polynomial of $L(G)$ is $p_{L}(\lambda)=\operatorname{det}(L(G)-\lambda I)$, where I is identity matrix of dimension p. The largest eigenvalue of $Q(G)$ and $L(G)$ are named Q-spectral and L-spectral radius of G, respectively. The set of all distinct Q-eigenvalues with their multiplicities is called Q-spectrum and the set of all distinct L-eigenvalues with their multiplicities is called L-spectrum.
Q-spectral and L-spectral radius have received a great deal of attention and several researches have been reported. Some researches on Q-spectral radius and its sharp bound for various graphs can be seen in [1-4]. Sharp bound of L-spectral radius of graphs has also been studied, such as in [5-12]

Graphs associated with a finite group have been introduced, for example commuting graph [13], non-commuting graph [14], conjugate graph [15] and inverse graph [16], and seem to be an interesting area of research. Researches on signless Laplacian and Laplacian spectra of graphs associated with group have been conducted, such as [17-19]. In [20], Anderson et al. introduced the concept of subgroup graph of given subgroup H of a group G as a directed graph and denoted by $\Gamma_{H}(G)$. When the subgroup H is normal in G, then $\Gamma_{H}(G)$ is an undirected simple graph [21].

We are interested in doing research on Q-spectral and L-spectral radius of graph associated with group. This paper is aimed to determine Q-spectral and L-spectral radius of subgroup graphs of dihedral group and their complements. The Q-spectrum and L-spectrum of these subgroup graphs are also observed.

2. Literature Review

A graph G contained a finite non-empty set $V(G)$ of vertices together with a possibly empty set $E(G)$ of edges. The cardinality of $V(G)$ is called the order of G, while the cardinality of $E(G)$ is called the size of G. An empty graph is a graph of size 0 . Two vertices u and v in G are adjacent if $u v \in E(G)$. The degree of vertex u in G is defined as the number of vertices that adjacent with u and denoted by $\operatorname{deg}(u)$.

Let K_{n} denoted a complete graph with n vertices and $K_{m, n}$ denoted a complete bipartite graph with partition sets V_{1} and V_{2} where $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$. Then, $K_{m, n}$ has order $m+n$ and size $m n$ [22]. For more general, a complete multipartite graph with k partition sets $V_{1}, V_{2}, \ldots, V_{k}(k>1)$ where $\left|V_{i}\right|=n_{i}$ for $1 \leq i \leq k$ is denoted by $K_{n_{1}, n_{2}, . ., n_{k}}$. Graph $K_{n_{1}, n_{2}, \ldots, n_{k}}$ has order $n=\sum_{i=1}^{k} n_{i}$. The union $G=G_{1} \cup G_{2}$ of two graphs G_{1} and G_{2} with $V\left(G_{1}\right) \cup V\left(G_{2}\right)=\varnothing$ is a graph that $V(G)=V\left(G_{1}\right) \cup$ $V\left(G_{2}\right)$ and $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$ [23]. The graph $\overline{K_{n}}$ is the empty graph of order n [24]. The graph $\overline{K_{m, n}}$ is $K_{m} \cup K_{n}$. Since $\overline{\bar{G}}=G[22]$ then $\overline{K_{m} \cup K_{n}}=K_{m, n}$.

Let G is a graph of order p. Let the adjacency matrix of G is $A(G)$ and the degree matrix of G is $D(G)$. Then the matrix $Q(G)=D(G)+A(G)$ is named the signless Laplacian matrix of $G[25,26]$ and $L(G)=D(G)-A(G)$ is named the Laplacian matrix of G [27]. The Q-polynomial of $Q(G)$ is $p_{Q}(q)=$ $\operatorname{det}(Q(G)-q I)$ [28] and the L-polynomial of $L(G)$ is $p_{L}(\lambda)=\operatorname{det}(L(G)-\lambda I)$, where I is identity matrix of dimension p [2]. The roots of characteristics equation associated with a matrix are called eigenvalues [29]. The eigenvalues of $Q(G)$ are called Q-eigenvalues of G and the eigenvalues of $L(G)$ are called L-eigenvalues of G. Since $Q(G)$ and $L(G)$ are real and symmetric matrices then their eigenvalues are real and nonnegative [10,30] and can be arranged as $q_{p} \geq q_{p-1} \geq \cdots \geq q_{2} \geq q_{1}$ and $\lambda_{p} \geq \lambda_{p-1} \geq \cdots \geq \lambda_{2} \geq \lambda_{1}$, respectively. The largest eigenvalue q_{p} of $Q(G)$ is called Q-spectral radius of G [31] and the largest eigenvalue λ_{p} of $L(G)$ is called L-spectral radius of G [5].

Let $q_{t}>q_{t-1}>\cdots>q_{2}>q_{1}$ are t distinct Q-eigenvalues with the corresponding multiplicities $m_{t}, m_{t-1}, \ldots, m_{2}, m_{1}$. Then, Q-spectrum of G is defined by

$$
\operatorname{spec}_{Q}(G)=\left[\begin{array}{ccccc}
q_{t} & q_{t-1} & \cdots & q_{2} & q_{1} \\
m_{t} & m_{t-1} & \cdots & m_{2} & m_{1}
\end{array}\right]
$$

If every Q-eigenvalues of G are integer then G is called Q-integral [28]. L-spectrum of G is defined in similar manner, and if every L-eigenvalues of G are integer then G is called L-integral [32].

The following are the results of previous research that will be used in this paper.
Result 1 [2]. Q-polynomial of complete multipartite graph $K_{n_{1}, n_{2}, . ., n_{k}}$ of order n is

$$
p_{Q}(q)=(-1)^{n}\left(\sum_{i=1}^{k} \frac{n_{i}}{n-2 n_{i}-q}+1\right) \prod_{i=1}^{k}\left(n-2 n_{i}-q\right)\left(n-n_{i}-q\right)^{\left(n_{i}-1\right)}
$$

Q-polynomial in Result 1 can be expressed as

$$
p_{Q}(q)=\prod_{i=1}^{k}\left(q-n+n_{i}\right)^{\left(n_{i}-1\right)} \prod_{i=1}^{k}\left(q-n+2 n_{i}\right)\left(1-\sum_{i=1}^{k} \frac{n_{i}}{q-n+2 n_{i}}\right)[28,33]
$$

Result 2 [34]. Q-eigenvalues of K_{n} are $2(n-1)$ and $n-2$ with their multiplicities are 1 and $n-1$, respectively.
Result 3 [35]. Q-polynomial of bipartite graphs is equal to L-polynomial.
Result 4 [36]. L-eigenvalues of complete graph K_{n} are n and 0 with multiplicities $n-1$ and 1, respectively.
Result 5 [37]. Let $C=\left[\begin{array}{ll}A & B \\ B & A\end{array}\right]$ is a block symmetric matrix of order 2 . The eigenvalues of C are those of $A+B$ together with those of $A-B$.

3. Main Results

Based on Anderson et al. [20] and Kakeri and Erfanian [21], if G is a group and H is its normal subgroup then the subgroup graph $\Gamma_{H}(G)$ of G and its complement $\overline{\Gamma_{H}(G)}$ are undirected simple graphs. So, we focus on the normal subgroup of dihedral group along this paper.

The dihedral group $D_{2 n}(n \geq 3)$ has $2 n$ elements that consist of n rotations $1, r, r^{2}, r^{3}, \ldots, r^{n-1}$ and n reflection $s, s r, s r^{2}, s r^{3}, \ldots, s r^{n-1}$. The order of r is $n(|r|=n)$ and the order of $s r^{i}$ is $2\left(\left|s r^{i}\right|=2\right)$ for $i=1,2, \ldots, n$ by using its generator, we can write $D_{2 n}=\langle r, s\rangle=\left\{1, r, r^{2}, \ldots, r^{n-1}, s, s r, s r^{2}, \ldots, s r^{n-1}\right\}$. It is well known that $s r \neq r s$ and $s r^{i}=r^{-i} s$. Hence, composition of two reflections is a rotation. For odd n, all normal subgroups of $D_{2 n}$ are $\langle 1\rangle$, $\left\langle r^{d}\right\rangle$ for all d dividing n and $D_{2 n}$ itself. For even n, all normal subgroups of $D_{2 n}$ are $\langle 1\rangle,\left\langle r^{d}\right\rangle$ for all d dividing $n,\left\langle r^{2}, s\right\rangle,\left\langle r^{2}, r s\right\rangle$ and $D_{2 n}$ itself.

By definition of subgroup graph, we have $\Gamma_{D_{2 n}}\left(D_{2 n}\right)$ is complete graph of order $2 n$, for $n \geq 3$. So, $\overline{\Gamma_{D_{2 n}}\left(D_{2 n}\right)}$ is empty graph of order $2 n$. The fact leads us to our first result.

Theorem 1.

(a) Q-spectral radius of $\Gamma_{D_{2 n}}\left(D_{2 n}\right)$ is $4 n-2$ and L-spectral radius of $\Gamma_{D_{2 n}}\left(D_{2 n}\right)$ is $2 n$.
(b) $\operatorname{Spec}_{Q}\left(\Gamma_{D_{2 n}}\left(D_{2 n}\right)\right)=\left[\begin{array}{cc}4 n-2 & 2 n-2 \\ 1 & 2 n-1\end{array}\right]$ and $\operatorname{spec}_{L}\left(\Gamma_{D_{2 n}}\left(D_{2 n}\right)\right)=\left[\begin{array}{cc}2 n & 0 \\ 2 n-1 & 1\end{array}\right]$.
(c) Q-spectral and L-spectral radius of $\overline{\Gamma_{D_{2 n}}\left(D_{2 n}\right)}$ are 0 .

Proof. It is straightforward from Result 2 and then Result 4.
The normal subgroup $\langle 1\rangle$ has only identity element of $D_{2 n}$. Therefore, $x y \in\langle 1\rangle$ if and only if $y=x^{-1}$ in $D_{2 n}$. We know that $\left(r^{i}\right)^{-1}=r^{n-i}$ and $\left(s r^{i}\right)^{-1}=s r^{i}$ for odd and even n, and in addition $\left(r^{n / 2}\right)^{-1}=r^{n / 2}$ for even n. Because graph in this paper is simple graph, then $s r^{i}$ and $r^{n / 2}$ are not adjacent to themselves in $\Gamma_{\langle 1\rangle}\left(D_{2 n}\right)$. Hence, only r^{i} and r^{n-i} are adjacent in $\Gamma_{\langle 1\rangle}\left(D_{2 n}\right)$ for $i \neq n / 2$. Now, we have the following results on subgroup graph $\Gamma_{\langle 1\rangle}\left(D_{2 n}\right)$, for $n \geq 3$.

Theorem 2.

(a) Q-spectral and L-spectral radius of $\Gamma_{\langle 1\rangle}\left(D_{2 n}\right)$ are 2 .
(b) $\operatorname{Spec}_{Q}\left(\Gamma_{\langle 1\rangle}\left(D_{2 n}\right)\right)=\operatorname{Spec}_{L}\left(\Gamma_{\langle 1\rangle}\left(D_{2 n}\right)\right)=\left[\begin{array}{cc}2 & 0 \\ (n-1) / 2 & (3 n+1) / 2\end{array}\right]$ for odd n and $\operatorname{Spec}_{Q}\left(\Gamma_{\langle 1\rangle}\left(D_{2 n}\right)\right)=\operatorname{Spec}_{L}\left(\Gamma_{\langle 1\rangle}\left(D_{2 n}\right)\right)=\left[\begin{array}{cc}2 & 0 \\ (n-2) / 2 & (3 n+2) / 2\end{array}\right]$ for even n.
(c) L-spectral radius of $\overline{\Gamma_{\langle 1\rangle}\left(D_{2 n)}\right)}$ are $2 n$.
(d) $\operatorname{Spec}_{L}\left(\overline{\Gamma_{\langle 1\rangle}\left(D_{2 n}\right)}\right)=\left[\begin{array}{ccc}2 n & 2(n-1) & 0 \\ (3 n-1) / 2 & (n-1) / 2 & 1\end{array}\right]$ for odd n and $\operatorname{Spec}_{L}\left(\overline{\Gamma_{\langle 1\rangle}\left(D_{2 n}\right)}\right)=\left[\begin{array}{ccc}2 n & 2(n-1) & 0 \\ 3 n / 2 & (n-2) / 2 & 1\end{array}\right]$ for even n.
The next results are for subgroup graph $\Gamma_{\langle r\rangle}\left(D_{2 n}\right)$ of dihedral group $D_{2 n}$, where $n \geq 3$.

Theorem 3.

(a) Q-spectral radius of $\Gamma_{\langle r\rangle}\left(D_{2 n}\right)$ is $2(n-1)$ and L-spectral radius of $\Gamma_{\langle r\rangle}\left(D_{2 n}\right)$ is n.
(b) $\operatorname{Spec}_{Q}\left(\Gamma_{\langle r\rangle}\left(D_{2 n}\right)\right)=\left[\begin{array}{cc}2(n-1) & n-2 \\ 2 & 2(n-1)\end{array}\right]$ and $\operatorname{spec}_{L}\left(\Gamma_{\langle r\rangle}\left(D_{2 n}\right)\right)=\left[\begin{array}{cc}n & 0 \\ 2(n-1) & 2\end{array}\right]$.
(c) Q-spectral and L-spectral radius of $\overline{\Gamma_{\langle r\rangle}\left(D_{2 n}\right)}$ are $2 n$.
(d) $\operatorname{spec}_{Q}\left(\overline{\Gamma_{\langle r\rangle}\left(D_{2 n}\right)}\right)=\operatorname{spec}_{L}\left(\overline{\bar{\Gamma}_{\langle r\rangle}\left(D_{2 n}\right)}\right)=\left[\begin{array}{ccc}2 n & n & 0 \\ 1 & 2(n-1) & 1\end{array}\right]$.

Proof.

(a) Subgroup graph $\Gamma_{\langle r\rangle}\left(D_{2 n}\right)$ is disconnected with two components and each component is a complete graph of order n. Hence, $\operatorname{deg}(v)=n-1$, for all $v \in \Gamma_{\langle r\rangle}\left(D_{2 n}\right)$. Therefore, $Q\left(\Gamma_{\langle r\rangle}\left(D_{2 n}\right)\right)=\left[\begin{array}{ll}A & O \\ O & A\end{array}\right]$, where $A=\left[a_{i j}\right]$ is matrix of order n with $a_{i j}=n-1$ for $i=j$ and $a_{i j}=$ 1 otherwise and O is zero matrix of order n. Using Result 5 on $\left[\begin{array}{ll}A & O \\ O & A\end{array}\right]$ and then Result 2 on A $+O$ and $O-A$, we have the Q-eigenvalues are $2(n-1)$ and $n-2$ with their multiplicities are 2 and $2(n-1)$, respectively. In other hand, $L\left(\Gamma_{\langle r\rangle}\left(D_{2 n}\right)\right)=\left[\begin{array}{ll}B & O \\ O & B\end{array}\right]$, where $B=\left[b_{i j}\right]$ is matrix of
order n with $b_{i j}=n-1$ for $i=j$ and $b_{i j}=-1$ otherwise and O is zero matrix of order n. With similar fashion, we have the L-eigenvalues are n and 0 with their multiplicities are $2(n-1)$ and 2, respectively. It completes the proof.
(b) From the proof of (a), Q-polynomial and L-polynomial of $\Gamma_{\langle r\rangle}\left(D_{2 n}\right)$ are $p_{Q}(q)=(q-(2 n-2))^{2}(q-(n-2))^{2 n-2}$ and $p_{L}(\lambda)=(\lambda-n)^{2} \lambda^{2 n-2}$. So, we have the desired proof.
(c) Since $\Gamma_{\langle r\rangle}\left(D_{2 n}\right)=K_{n} \cup K_{n}$, then $\overline{\Gamma_{\langle r\rangle}\left(D_{2 n}\right)}=K_{n, n}$. By Result $1, p_{Q}(q)=(q-2 n)(q-$ $n)^{2 n-2} q$. Because $\overline{\Gamma_{\langle r\rangle}\left(D_{2 n}\right)}$ is complete bipartite graph, by Result 3 we have $p_{L}(\lambda)=$ $(\lambda-2 n)(\lambda-n)^{2 n-2} \lambda$. So, $2 n$ is the largest eigenvalue and the poof is complete.
(d) It is clear from (c).

Normal subgroup $\left\langle r^{2}\right\rangle$ of dihedral group $D_{2 n}$, where $n \geq 4$ and n is even, is $\left\langle r^{2}\right\rangle=\left\{1, r^{2}, r^{4}, \ldots, r^{n-2}\right\}$ and $r^{i} r^{j}, s r^{i} s r^{j} \in\left\langle r^{2}\right\rangle$ if and only if i and j both even or both odd, for $1 \leq$ $i, j \leq n-2$. Therefore, subgroup graph $\Gamma_{\left\langle r^{2}\right\rangle}\left(D_{2 n}\right)$ has four components and each component is complete graph $K_{n / 2}$. So, we have the following results.

Theorem 4.

(a) Q-spectral radius of $\Gamma_{\left\langle r^{2}\right\rangle}\left(D_{2 n}\right)$ is $n-2$ and L-spectral radius of $\Gamma_{\left\langle r^{2}\right\rangle}\left(D_{2 n}\right)$ is $n / 2$, for even n and $n \geq 4$.
(b) $\operatorname{spec}_{Q}\left(\Gamma_{\left\langle r^{2}\right\rangle}\left(D_{2 n}\right)\right)=\left[\begin{array}{cc}n-2 & \frac{n-4}{2} \\ 4 & 2(n-2)\end{array}\right]$ and $\operatorname{spec}_{L}\left(\Gamma_{\left\langle r^{2}\right\rangle}\left(D_{2 n}\right)\right)=\left[\begin{array}{cc}\frac{n}{2} & 0 \\ 2(n-2) & 4\end{array}\right]$.
(c) Q-spectral radius of $\overline{\Gamma_{\left\langle r^{2}\right\rangle}\left(D_{2 n}\right)}$ is $3 n$ and L-spectral radius of $\overline{\Gamma_{\left\langle r^{2}\right\rangle}\left(D_{2 n}\right)}$ is $2 n$, where n is even and $n \geq 4$.
(d) $\operatorname{spec}_{Q}\left(\overline{\Gamma_{\left\langle r^{2}\right\rangle}\left(D_{2 n}\right)}\right)=\left[\begin{array}{ccc}3 n & \frac{3 n}{2} & n \\ 1 & 2(n-2) & 3\end{array}\right]$ and $\operatorname{spec}_{L}\left(\overline{\Gamma_{\left\langle r^{2}\right\rangle}\left(D_{2 n}\right)}\right)=\left[\begin{array}{ccc}2 n & \frac{3 n}{2} & 0 \\ 3 & 2(n-2) & 1\end{array}\right]$.

Proof.

(a) The Q-polynomial of $\Gamma_{\left\langle r^{2}\right\rangle}\left(D_{2 n}\right)$ is

$$
p_{Q}(q)=(-1)^{\frac{n}{2}}(q-(n-2))^{4}\left(q-\left(\frac{n-4}{2}\right)\right)^{2(n-2)}
$$

and L--polynomial of $\Gamma_{\left\langle r^{2}\right\rangle}\left(D_{2 n}\right)$ is
$p_{L}(\lambda)=(-1)^{\frac{n}{2}}\left(\lambda-\frac{n}{2}\right)^{2(n-2)} \lambda^{4}$.
(b) It is clear from (a).
(c) Complement of subgroup graph $\overline{\Gamma_{\left\langle r^{2}\right\rangle}\left(D_{2 n}\right)}$ is complete multipartite $K_{n / 2, n / 2, n / 2, n / 2}$ of order $2 n$. By using Result 1, then Q-polynomial of $\overline{\Gamma_{\left\langle r^{2}\right\rangle}\left(D_{2 n}\right)}$ is

$$
p_{Q}(\lambda)=(\lambda-3 n)\left(\lambda-\frac{3 n}{2}\right)^{2(n-2)}(\lambda-n)^{3}
$$

And we have L-polynomial of $\overline{\Gamma_{\left\langle r^{2}\right\rangle}\left(D_{2 n}\right)}$ is

$$
p(\lambda)=(\lambda-2 n)^{3}\left(\lambda-\frac{3 n}{2}\right)^{2(n-2)} \lambda
$$

(d) It is clear from (c).

The normal subgroup $\left\langle r^{2}, s\right\rangle$ of $D_{2 n}$ for even n and $n \geq 4$ is $\left\langle r^{2}, s\right\rangle=\left\{1, r^{2}, r^{4}, \ldots, r^{n-2}, s, s r^{2}, s r^{4}, \ldots, s r^{n-2}\right\}$ and $\left(s^{k} r^{i}\right)\left(s^{k} r^{j}\right) \in\left\langle r^{2}, s\right\rangle$ if and only if i and j both even or both odd, for $1 \leq i, j \leq n-2$ and $k=0,1$. Therefore, subgroup graph $\Gamma_{\left\langle r^{2}, s\right\rangle}\left(D_{2 n}\right)$ has two components and each component is complete graph K_{n} of order n. Then, subgroup graph $\Gamma_{\left\langle r^{2}, s\right\rangle}\left(D_{2 n}\right)$ is isomorphic to $\Gamma_{\langle r\rangle}\left(D_{2 n}\right)$. The following results are obvious.

Theorem 5.

(a) Q-spectral radius of $\Gamma_{\left\langle r^{2}, s\right\rangle}\left(D_{2 n}\right)$ is $2(n-1)$ and L-spectral radius of $\Gamma_{\left\langle r^{2}, s\right\rangle}\left(D_{2 n}\right)$ is n.
(b) $\operatorname{spec}_{Q}\left(\Gamma_{\left\langle r^{2}, s\right\rangle}\left(D_{2 n}\right)\right)=\left[\begin{array}{cc}2(n-1) & n-2 \\ 2 & 2(n-1)\end{array}\right]$ and $\operatorname{spec}_{L}\left(\Gamma_{\left\langle r^{2}, s\right\rangle}\left(D_{2 n}\right)\right)=\left[\begin{array}{cc}n & 0 \\ 2(n-1) & 2\end{array}\right]$.
(c) Q-spectral and L-spectral radius of $\overline{\Gamma_{\left\langle r^{2}, s\right\rangle}\left(D_{2 n}\right)}$ are $2 n$.
(d) $\operatorname{spec}_{Q}\left(\overline{\Gamma_{\left\langle r^{2}, s\right\rangle}\left(D_{2 n}\right)}\right)=\operatorname{spec}_{L}\left(\overline{\Gamma_{\left\langle r^{2}, s\right\rangle}\left(D_{2 n}\right)}\right)=\left[\begin{array}{ccc}2 n & n & 0 \\ 1 & 2(n-1) & 1\end{array}\right]$.

For even n and $n \geq 4$, we also can observe that subgroup graph $\Gamma_{\left\langle r^{2}, r s\right\rangle}\left(D_{2 n}\right)$ is isomorphic to $\Gamma_{\left\langle r^{2}, s\right\rangle}\left(D_{2 n}\right)$ and the following result is obvius.

Theorem 6.

(a) Q-spectral radius of $\Gamma_{\left\langle r^{2}, r s\right\rangle}\left(D_{2 n}\right)$ is $2(n-1)$ and L-spectral radius of $\Gamma_{\left\langle r^{2}, r s\right\rangle}\left(D_{2 n}\right)$ is n.
(b) $\operatorname{spec}_{Q}\left(\Gamma_{\left\langle r^{2}, r s\right\rangle}\left(D_{2 n}\right)\right)=\left[\begin{array}{cc}2(n-1) & n-2 \\ 2 & 2(n-1)\end{array}\right]$ and $\operatorname{spec}_{L}\left(\Gamma_{\left\langle r^{2}, r s\right\rangle}\left(D_{2 n}\right)\right)=\left[\begin{array}{cc}n & 0 \\ 2(n-1) & 2\end{array}\right]$.
(c) Q-spectral and L-spectral radius of $\overline{\Gamma_{\left\langle r^{2}, r s\right\rangle}\left(D_{2 n}\right)}$ are $2 n$.
(d) $\operatorname{spec}_{Q}\left(\overline{\Gamma_{\left\langle r^{2}, r s\right\rangle}\left(D_{2 n}\right)}\right)=\operatorname{spec}_{L}\left(\overline{\bar{\Gamma}_{\left\langle r^{2}, r s\right\rangle}\left(D_{2 n}\right)}\right)=\left[\begin{array}{ccc}2 n & n & 0 \\ 1 & 2(n-1) & 1\end{array}\right]$.

4. Conclusion

We have computed Q-spectral and L-spectral radius of subgroup graphs of dihedral group $D_{2 n}$ and their complement. According to our results, we can conclude that $\Gamma_{D_{2 n}}\left(D_{2 n}\right)$ and $\Gamma_{\langle r\rangle}\left(D_{2 n}\right)$ and their complement are Q-integral and L-integral, for all n and $n \geq 3$. For even n and $n \geq 4$, the subgroup graphs $\Gamma_{\left\langle r^{2}\right\rangle}\left(D_{2 n}\right), \Gamma_{\left\langle r^{2}, s\right\rangle}\left(D_{2 n}\right), \Gamma_{\left\langle r^{2}, r s\right\rangle}\left(D_{2 n}\right)$ and their complement also Q-integral and L-integral.

References

[1] Feng L and Yu G. 2009. The Signless Laplacian Spectral Radius of Unicyclic Graphs with Graph Constraints. Kyungpook Math. J. 49 123-31
[2] Yu G, Wu Y and Shu J. 2011. Signless Laplacian spectral radii of graphs with given chromatic number. Linear Algebra Appl. 435 1813-22.
[3] Yu G, Wu Y and Shu J. 2011. Sharp bounds on the signless Laplacian spectral radii of graphs 6•I. Linear Algebra Appl. 434 683-7
[4] Cui SY, Tian GX and Guo JJ. 2013. A sharp upper bound on the signless Laplacian spectral radius of graphs. Linear Algebra Appl. 439 2442-7
[5] Liu H, Lu M and Tian F. 2004. On the Laplacian spectral radius of a graph. Linear Algebra Appl. 376 135-41
[6] Guo JM. 2003. On the Laplacian spectral radius of a tree. Linear Algebra Appl. 368 379-85
[7] Yu A and Lu M. 2008. Laplacian spectral radius of trees with given maximum degree. Linear Algebra Appl. 429 1962-9
[8] Zhang XD. 2008. The Laplacian spectral radii of trees with degree sequences. Discrete Math. 308 3143-50
[9] Yuan X-Y, Shan H-Y and Liu Y. 2009. On the Laplacian spectral radii of trees. Discrete Math. 309 4241-6
[10] Lu M, Liu H and Tian F. 2005. Bounds of Laplacian spectrum of graphs based on the domination number. Linear Algebra Appl. 402 390-6
[11] Guo JM, Li J and Shiu WC. 2013. A note on the upper bounds for the Laplacian spectral radius of graphs. Linear Algebra Appl. 439 1657-61
[12] Liu MH, Wei PY and Liu B. 2014. On the Laplacian spectral radii of tricyclic graphs. Ars Comb. 114 129-43
[13] Vahidi J and Talebi AA. 2010. The commuting graphs on groups D2n and Qn. J. Math. Comput. Sci. 1 123-7
[14] Abdollahi A, Akbari S and Maimani HR. 2006. Non-commuting graph of a group. J. Algebr. 298 468-92
[15] Erfanian A and Tolue B. 2012. Conjugate graphs of finite groups. Discret. Math. Algorithms

Appl. 04 :1-8
[16] Alfuraidan MR and Zakariya YF. 2017. Inverse graphs associated with finite groups. Electron. J. Graph Theory Appl. 5 142-54
[17] Elvierayani RR and Abdussakir. 2013. Spectrum of the Laplacian matrix of non-commuting graph of dihedral group D2n. Proceeding of International Conference The 4th Green Technology. 321-3
[18] Abdussakir, Elvierayani RR and Nafisah M. 2017. On the spectra of commuting and non commuting graph on dihedral group. Cauchy-Jurnal Mat. Murni dan Apl. 4 176-82
[19] Abdussakir. 2017. Spektrum Graf Konjugasi dan Komplemen Graf Konjugasi dari Grup Dihedral. Prosiding Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI) 670-4
[20] Anderson DF, Fasteen J and Lagrange JD. 2012. The subgroup graph of a group. Arab J. Math. 1 17-27
[21] Kakeri F and Erfanian A. 2015. The complement of subgroup graph of a group. J. Prime Res. Math. 11 55-60
[22] Chartrand G, Lesniak L and Zhang P. 2016. Graphs and digraphs. 6th ed. Florida: CRC Press
[23] Harary F. 1969. Graph theory. California: Addison-Wesley Publishing Company
[24] Abreu N, Cardoso DM, Gutman I, Martins EA and Robbiano M. 2011. Bounds for the signless laplacian energy. Linear Algebra Appl. 435 2365-74
[25] Yu G-D, Fan Y-Z and Ye M-L. 2017. The least signless Laplacian eignvalue of the complements of unicyclic graphs. Appl. Math. Comput. 306 13-21
[26] Bhat PG and D'Souza S. 2017. Color signless Laplacian energy of graphs. AKCE Int. J. Graphs Comb. 14 142-8
[27] Cui S-Y and Tian G-X. 2017. The spectra and the signless Laplacian spectra of graphs with pockets. Appl. Math. Comput. 315 363-71
[28] Zhao G, Wang L and Li K. 2013. Q-integral complete r-partite graphs. Linear Algebra Appl. 438 1067-77
[29] Jog SR and Kotambari R. 2016. On the adjacency , Laplacian , and signless Laplacian spectrum of coalescence of complete graphs. J. Math. 2016 1-11
[30] Fan Y-Z, Wang Y and Guo H. 2013. The least eigenvalues of the signless Laplacian of nonbipartite graphs with pendant vertices. Discrete Math. 313 903-9
[31] Guo G and Wang G. 2013. On the (signless) Laplacian spectral characterization of the line graphs of lollipop graphs. Linear Algebra Appl. 438 4595-605
[32] Stanic Z. 2007. There are exactly 172 connected Q-integral graphs up to 10 vertices. Novi Sad J. Math. 37 193-205
[33] Pokorný M, Híc P and Stevanović D. 2013. Remarks on Q-integral complete multipartite. Linear Algebra Appl. 439 2029-37
[34] Ashraf F, Omidi GR and Tayfeh-Rezaie B. 2013. On the sum of signless Laplacian eigenvalues of a graph. Linear Algebra Appl. 438 4539-46
[35] Cvetkovic D, Rowlinson P and Simic SK. 2007. Signless Laplacians of finite graphs. Linear Algebra Appl. 423 155-71
[36] Kelner J. 2009. 18.409 Topics in Theoretical Computer Science: An Algorithmist's Toolkit. 2009 1-11
[37] Ayyaswamy SK and Balachandran S. 2010. On detour spectra of some graphs. Int. J. Math. Comput. Phys. Electr. Comput. Eng. 4 1038-40

