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Abstract. Study of graph from a group has become an interesting topic until now. One of the 

topics is spectra of a graph from finite group. Spectrum of a finite graph is defined as 

collection of all distinct eigenvalues and their algebraic multiplicity of its matrix. The most 

related topic in the study of spectrum of finite graph is energy. Energy of a finite graph is 

defined as sum of absolute value of all its eigenvalues. In this paper, we study the spectrum and 

energy of detour matrix of conjugate graph complement of dihedral group. The main result is 

presented as theorems with complete proof. 

1.  Introduction 

Several graphs from some group have been studied by researchers, such as Cayley graph [1,2], 

Schreier coset graph [3], identity graph [4], commuting [5,6] and non-commuting graph[7-9], 

subgroup graph [10,11], power graph [12], inverse graph [13,14] and conjugate graph [15] of a group. 

For non-abelian finite group G, two elements x and y in G are said to be conjugate to each other if 

there exists an element z in G that satisfies 𝑥 =  𝑧𝑦𝑧−1. Let  𝑒 ,  𝑥1 ,  𝑥2 , … ,  𝑥𝑝  are all conjugacy 

classes of 𝐺. The conjugate graph of group 𝐺 contains all elements of 𝐺 as its vertex set and two 

distinct vertices will be adjacent if they are representatives of the same conjugacy class [15]. So, the 

vertex 𝑦 will be adjacent to 𝑥𝑖  if 𝑦 ∈  𝑥𝑖 . In this paper, conjugate graph of a group 𝐺 will be denoted 

by 𝐶(𝐺) and the complement of 𝐶(𝐺) will be denoted by 𝐶(𝐺)       . Two distinct vertices of 𝐶(𝐺)        are 

adjacent if and only if they are not adjacent in 𝐶(𝐺). The cardinality of the vertex set of 𝐶(𝐺)        and the 

edge set of 𝐶(𝐺)        will be denoted by 𝑝(𝐶 𝐺        ) and 𝑞 𝐶 𝐺         , respectively. For a graph 𝐺, p(G) is called 

the order of 𝐺 and 𝑞(𝐺) is called the size of 𝐺 [16]. 

Detour matrix of graph 𝐺 of order 𝑝 that denoted by 𝐷𝐷(𝐺) is a (𝑝 × 𝑝)-matrix 𝐷𝐷(𝐺)  =  (𝐷𝑖𝑗 ) 

where 𝐷𝑖𝑗   is the length of the longest path 𝑣𝑖 − 𝑣𝑗  in 𝐺 [17]. Since 𝐷𝐷(𝐺) is a symmetric matrix, all 

of its eigenvalues 𝜆𝑖  (i = 1, 2, ..., p) are real and can be labeled as 1 ≥ 2 ≥  3 ⋯ ≥  𝑝 . Let 

𝜆𝑖1
>  𝜆𝑖2

>  𝜆𝑖3
>  ⋯ >  𝜆𝑖𝑛  are the distinct eigenvalues of 𝐷𝐷(𝐺), then the spectrum of 𝐷𝐷(𝐺) can 

be written as 

𝑠𝑝𝑒𝑐𝐷𝐷 (𝐺) =  
𝜆𝑖1

𝜆𝑖2

𝑚 𝜆𝑖1
 𝑚 𝜆𝑖2

 

… 𝜆𝑖𝑛

… 𝑚 𝜆𝑖𝑛  
 , 
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where 𝑚  𝜆𝑖𝑗   is the algebraic multiplicity of the eigenvalue 𝜆𝑖𝑗 . The energy of 𝐷𝐷(𝐺) will be 

denoted by 𝐸𝐷𝐷(𝐺) and be defined as 𝐸𝐷𝐷(𝐺) =   𝜆𝑖 
𝑝
𝑖=1  [17,18]. 

The concept of spectrum was introduced by Bigg [19], the concept of detour matrix was introduced 

by Harary [20] and the concept of energy was introduced by Gutman [21]. The researches about 

detour spectrum of graphs have been conducted, such as detour spectrum of several graphs [17] and of 

commuting and non-commuting graphs of dihedral group [22]. Several kinds of energy of graph has 

been studied, for instance in [18,23-33]. Finally, the survey about kinds of energy of graph can be seen 

in Meenakshi and Lavanya [34]. Since the study of detour spectrum and energy of conjugate graph 

complement of dihedral group has not been done yet, we do this study. 

2.  Result 

First, we show some properties of conjugate graph complements of dihedral group. 

THEOREM 1: Let 𝐶(𝐷2𝑛) be conjugate graph of dihedral group 𝐷2𝑛  of order 2𝑛, where 𝑛 ≥ 3 and 𝑛 

is positive integer. The number of edge in complement of conjugate graph of 𝐷2𝑛  is  

(i) 𝑞(𝐶(𝐷2𝑛 )         ) =  
3𝑛2−2𝑛+1

2
 for odd n. 

(ii) 𝑞(𝐶(𝐷2𝑛 )         ) =  
3𝑛2−2𝑛+2

2
 for even n. 

PROOF: (i) For odd n, all of conjugacy classes of dihedral group 𝐷2𝑛  are [1] = {1}, [r] = {r, r
n-1

}, [r
2
] 

= {r
2
, r

n-2
}, ...,  𝑟(𝑛−1)/2 =   𝑟(𝑛−1)/2, 𝑟(𝑛−1)/2+1  and [s] = { 𝑠, 𝑠𝑟, 𝑠𝑟2 , 𝑠𝑟3 , … , 𝑠𝑟𝑛−1}. According to 

definition of conjugate graph, 𝐶(𝐷2𝑛) will contains a complete graph K1, (n - 1)/2 complete graphs K2 

and a complete graph Kn. Thus, 𝑞(𝐶 𝐷2𝑛 ) = (𝑛2 − 1)/2. Then, we have  

𝑞(𝐶(𝐷2𝑛)         ) =  
2𝑛(2𝑛−1)

2
− 

𝑛2−1

2
=

3𝑛2−2𝑛+1

2
. 

(iii) For even 𝑛, all of conjugacy classes of dihedral group 𝐷2𝑛  are [1] = {1},  𝑟𝑛/2 =  𝑟𝑛/2 ,  [r] = 

{r, r
n-1

}, [r
2
] = {r

2
, r

n-2
}, ..., [𝑟𝑛/2−1] = {𝑟𝑛/2−1 , 𝑟𝑛/2+1}, [s] = {s, sr

2
, sr

4
, …, 𝑠𝑟𝑛−2} and [sr] = {sr, 

sr
3
, sr

5
, …, 𝑠𝑟𝑛−1}. According to definition of conjugate graph, 𝐶(𝐷2𝑛) will contains two complete 

graphs K1, (n - 2)/2 complete graphs K2 and two complete graphs Kn/2.   Thus, 𝑞(𝐶 𝐷2𝑛 ) =  (𝑛2 −
4)/4. Then, we have  

𝑞(𝐶(𝐷2𝑛)         ) =  
2𝑛(2𝑛−1)

2
− 

𝑛2−4

4
=

7𝑛2−4𝑛+4

4
 . ∎ 

THEOREM 2: Detour matrix of complement of conjugate graph of dihedral group 𝐷2𝑛  for odd 𝑛 is 

(2𝑛 × 2𝑛)-matrix 

𝐷𝐷 𝐶(𝐷2𝑛)          =   
𝐴 𝐵
𝐵 𝐶

 ,  

where   

A =  𝑎𝑖𝑗   is an (𝑛 × 𝑛)-matrix with 𝑎𝑖𝑗 = 2𝑛 –  2 if 𝑖 ≠ 𝑗 and 𝑎𝑖𝑗 = 0 elsewhere,  

𝐵 =  𝑏𝑖𝑗   is an (𝑛 × 𝑛)-matrix with 𝑏𝑖𝑗  = 2𝑛 –  1 for all i and j, and 

𝐶 =  𝑐𝑖𝑗   is an (𝑛 × 𝑛)-matrix with 𝑐𝑖𝑗 = 2𝑛 –  1 if 𝑖 ≠ 𝑗 and 𝑐𝑖𝑗 = 0 elsewhere. 

PROOF: According to the proof (i) of Theorem 1, the conjugacy classes of dihedral group are 

 1 =  1 ,  𝑟 =   𝑟, 𝑟𝑛−1 ,  𝑟2 =   𝑟2, 𝑟𝑛−2 , … ,  𝑟(𝑛−1)/2 =   𝑟(𝑛−1)/2, 𝑟(𝑛−1)/2+1   and 

[𝑠]  = {𝑠, 𝑠𝑟, 𝑠𝑟2 , … , 𝑠𝑟𝑛−1}. They will be a complete graph in 𝐶(𝐷2𝑛), respectively. Therefore, in 

𝐶(𝐷2𝑛 )         , vertex 1 is adjacent to 𝑟𝑖  and 𝑠𝑟𝑖  (𝑖 = 1, 2, … , 𝑛 − 1), vertex 𝑟𝑖  is adjacent to 𝑠𝑟𝑗  (𝑖 =
1, 2, … , 𝑛 − 1 and  𝑗 = 0, 1, 2, … , 𝑛 − 1) and vertex 𝑠𝑟𝑖  is not adjacent to 𝑠𝑟𝑗  (𝑖, 𝑗 = 0, 1, 2, … , 𝑛 − 1). 

Then we can establish the longest path between two distinct vertices in 𝐶(𝐷2𝑛 )          as follow. 

(i) For 𝑟𝑖  and 𝑟𝑗 , 1 ≤ 𝑖 < 𝑗 ≤  𝑛, we can construct a path P: r
i
, sr

i
, r

i+1
, sr

i+1
, ..., r

j-1
, sr

j-1
, r

j+1
, sr

j+1
, 

r
j+2

, sr
j+2

, ..., r
n
, sr

n
, r

i-1
, sr

i-1
, r

i-2
, sr

i-2
..., r

2
, sr

2
, r, sr, r

j
. This path 𝑃 contains all element of 𝐷2𝑛  

except 𝑠𝑟𝑗 . Hence, the length of 𝑃 is 2𝑛 –  2. 
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(ii) For 𝑟𝑖  and 𝑠𝑟𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛, we can construct a path P: r
i
, sr

i
, r

i+1
, sr

i+1
, ..., r

j-1
, sr

j-1
, r

j+1
, sr

j+1
, r

j+2
, 

sr
j+2

, ..., r
n
, sr

n
, r

i-1
, sr

i-1
, r

i-2
, sr

i-2
..., r

2
, sr

2
, r, sr, r

j
, sr

j
. Thus, path 𝑃 contains all element of 𝐷2𝑛 . 

Hence, the length of 𝑃 is 2𝑛 –  1. 

(iii) For 𝑠𝑟𝑖  and 𝑠𝑟𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, we can construct a path P: sr
i
, r

i
, r

i+1
, sr

i+1
, ..., r

j-1
, sr

j-1
, r

j+1
, sr

j+1
, 

r
j+2

, sr
j+2

, ..., r
n
, sr

n
, r

i-1
, sr

i-1
, r

i-2
, sr

i-2
..., r

2
, sr

2
, r, sr, r

j
, sr

j
. Thus, path P contains all element of 

𝐷2𝑛 . Hence, the length of 𝑃 is 2𝑛 –  1. 

From (i)-(iii), giving label to the rows and the columns of 𝐷𝐷 𝐶(𝐷2𝑛)           in appropriate way, we will 

reach the desired proof. ∎ 

For any two distinct vertices in 𝐶(𝐷2𝑛)          for even n, the longest path has the length 2𝑛 –  1. It is 

stated as the following theorem.  

THEOREM 3: Detour matrix of conjugate graph complement of dihedral group D2n for even n is 

(2𝑛 × 2𝑛)-matrix 𝐷𝐷 𝐶(𝐷2𝑛)          =  𝐷𝑖𝑗   where 𝐷𝑖𝑗 = 2𝑛 − 1 if 𝑖 ≠ 𝑗 and 𝐷𝑖𝑗 = 0 elsewhere. 

PROOF: All of conjugacy class of dihedral group D2n for even n are [1] = {1},  𝑟𝑛/2 =  𝑟𝑛/2 ,  [r] = 

{r, r
n-1

}, [r
2
] = {r

2
, r

n-2
}, ..., [𝑟𝑛/2−1] = {𝑟𝑛/2−1 , 𝑟𝑛/2+1}, [s] = {s, sr

2
, sr

4
, …, 𝑠𝑟𝑛−2} and [sr] = {sr, 

sr
3
, sr

5
, …, 𝑠𝑟𝑛−1}. Each conjugacy class will be a complete graph. So, in 𝐶(𝐷2𝑛)         , it will be a 

complete 5-partite graph where V1 = {1, 𝑟𝑛/2}, V2 =  𝑟, 𝑟2 , … , 𝑟𝑛/2−1 , V3 =  𝑟𝑛−1 , 𝑟𝑛−2 , … , 𝑟𝑛/2+1 , 

V4 =   𝑠, 𝑠𝑟2, 𝑠𝑟4 , … , 𝑠𝑟𝑛−2  and V5 =  𝑠𝑟, 𝑠𝑟3 , … , 𝑠𝑟𝑛−1    are its partition sets with  𝑉1 = 2,  𝑉2 =
  𝑉3 =  𝑛/2 − 1 and  𝑉4 =  𝑉5 =  𝑛/2. Cycle W: 1, s, r, sr

2
, r

2
, sr

4
, ..., 𝑟𝑛/2−1, 𝑠𝑟𝑛−2, 𝑟𝑛/2, sr, 𝑟𝑛−1 , 

sr
3
, r

n-2
, ..., 𝑟𝑛/2+1, 𝑠𝑟𝑛−1, 1 is one of the Hamiltonian cycles in 𝐶 𝐷2𝑛          . Hence, 𝐶(𝐷2𝑛)          is a 

Hamiltonian graph. And for every two distinct vertices in 𝐶(𝐷2𝑛)          for even n, we can always find its 

Hamiltonian path. Consequently, the longest path between two distinct vertices in complement of 

conjugate graph of dihedral group 𝐷2𝑛  for even 𝑛 has the length 2𝑛 –  1. ∎ 

Based on Theorem 2 and Theorem 3, we can determine the characteristics polynomial of detour 

matrix 𝐷𝐷 𝐶(𝐷2𝑛 )          . The characteristics polynomial of detour matrix 𝐷𝐷 𝐶(𝐷2𝑛)           is defined by 

𝜌 𝜆 = det( 𝐷𝐷 𝐶 𝐷2𝑛           − 𝜆𝐼), where 𝐼 is identity matrix of order (2𝑛 × 2𝑛) [35]. To compute 

det( 𝐷𝐷 𝐶 𝐷2𝑛           − 𝜆𝐼), we can eliminate matrix 𝐷𝐷 𝐶 𝐷2𝑛           − 𝜆𝐼 using Gaussian elimination 

method to get an upper triangular matrix 𝑈. Then, det( 𝐷𝐷 𝐶 𝐷2𝑛           − 𝜆𝐼) is equal to the product of 

all entry in the main diagonal of 𝑈. We present the following lemma for odd and even 𝑛. The lemma 

will be very useful in determining detour spectrum and energy of 𝐶(𝐷2𝑛)         .  

LEMMA 1: Let  𝐶(𝐷2𝑛)          be a complement of conjugate graph of dihedral group 𝐷2𝑛  for positive 

integer 𝑛 and 𝑛 ≥ 3. The characteristics polynomial 𝜌 𝜆  of detour matrix 𝐷𝐷 𝐶(𝐷2𝑛)           is  

(i) 𝜌 𝜆 =   𝜆2 − 𝐴𝜆 −  𝐴/2 2 − 𝐵  𝜆 +  2𝑛 − 2  
𝑛−1

 𝜆 +  2𝑛 − 1  
𝑛−1

 where A = (4𝑛2 − 7𝑛 + 3) 

and 𝐵 =  4𝑛4 − 4𝑛3 + (5𝑛2 − 2𝑛 + 1)/4  for odd n, and  

(ii) 𝜌 𝜆 =  𝜆 −  2𝑛 − 1 2  𝜆 +  2𝑛 − 1  
2𝑛−1

 for even n. 

PROOF: (i) If 𝑛 is odd, we determine the characteristics polynomial 𝜌 𝜆  of 𝐷𝐷 𝐶 𝐷2𝑛            in Theorem 

2 by eliminating 𝐷𝐷 𝐶 𝐷2𝑛           − 𝜆𝐼 using Gaussian elimination method to an upper triangular matrix 

𝑈. It follows that 𝜌 𝜆  is a product along main diagonal of 𝑈.  (ii) If 𝑛 is even, then 𝐷𝐷 𝐶 𝐷2𝑛           =
 2𝑛 − 1 (𝐽 − 𝐼), where 𝐽 is all one square and 𝐼 is identity matrix whose order is the same as the order 

of 𝐷𝐷 𝐶 𝐷2𝑛           . Hence, the characteristics polynomial 𝜌 𝜆  of 𝐷𝐷 𝐶(𝐷2𝑛)           is 𝜌 𝜆 =  𝜆 −

 2𝑛 − 1 2  𝜆 +  2𝑛 − 1  
2𝑛−1

. ∎ 

THEOREM 4: The spectrum of detour matrix of conjugate graph complement of dihedral group 𝐷2𝑛  

for odd positive integer 𝑛 and 𝑛 ≥ 3 is  
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𝑠𝑝𝑒𝑐𝐷𝐷 𝐶(𝐷2𝑛 )          =   
𝐴

2
+

1

2
 2𝐴2 + 4𝐵

1

− 2𝑛 − 1 − 2𝑛 − 2 
𝐴

2
−

1

2
 2𝐴2 + 4𝐵

𝑛 − 1 𝑛 − 1 1
 , 

where 𝐴 = (4𝑛2 − 7𝑛 + 3) and 𝐵 = (4𝑛4 − 4𝑛3 + (5𝑛2 − 2𝑛 + 1)/4). 

PROOF: Let 𝑛 be odd, letting 𝜌 𝜆 = 0 for Lemma 1(i), we have its eigenvalues are 𝜆1 = (𝐴 +

 2𝐴2 + 4𝐵)/2, 𝜆2 = − 2𝑛 − 1 , 𝜆3 = − 2𝑛 − 2  and 𝜆4 = (𝐴 −  2𝐴2 + 4𝐵)/2. From Lemma 1(i) 

we also have 𝑚 𝜆1 = 𝑚 𝜆4 = 1 and 𝑚 𝜆2 = 𝑚 𝜆3 = 𝑛 − 1.  It completes the proof. ∎ 

THEOREM 5: The spectrum of detour matrix of conjugate graph complement of dihedral group 𝐷2𝑛  

for even positive integer 𝑛 and 𝑛 ≥ 3 is 

𝑠𝑝𝑒𝑐𝐷𝐷 𝐶(𝐷2𝑛)          =   2𝑛 − 1 2

1
− 2𝑛 − 1 

2𝑛 − 1
  

PROOF: From Lemma 1(ii), it is clear that the eigenvalues of 𝐷𝐷 𝐶 𝐷2𝑛            are 𝜆1 =  2𝑛 − 1 2 and 

𝜆2 = − 2𝑛 − 1  and we have their algebraic multiplicity are 𝑚 𝜆1 = 1 and 𝑚 𝜆2 = 2𝑛 − 1, 

respectively. ∎ 

COROLLARY 1: The energy of detour matrix of conjugate graph complement of dihedral group 𝐷2𝑛  

for odd positive integer 𝑛 and 𝑛 ≥ 3 is 𝐸𝐷𝐷 𝐶(𝐷2𝑛 )          ≥  2 𝑛 − 1  4𝑛 − 3  

PROOF: Based on Theorem 4, we have  

𝐸𝐷𝐷 𝐶(𝐷2𝑛)          =   
𝐴

2
+

1

2
 2𝐴2 + 4𝐵 +  𝑛 − 1  2𝑛 − 1 +  𝑛 − 1  2𝑛 − 2 +   

𝐴

2
−

1

2
 2𝐴2 + 4𝐵  

  𝑛 − 1  4𝑛 − 3 +   
𝐴

2
+

1

2
 2𝐴2 + 4𝐵 +

𝐴

2
−

1

2
 2𝐴2 + 4𝐵  

=  𝑛 − 1  4𝑛 − 3 +  𝐴  
=  𝑛 − 1  4𝑛 − 3 + (4𝑛2 − 7𝑛 + 3)  

= 2 𝑛 − 1  4𝑛 − 3 . ∎ 

COROLLARY 2: The energy of detour matrix of conjugate graph complement of dihedral group 𝐷2𝑛  

for even positive integer 𝑛 and 𝑛 ≥ 3 is 𝐸𝐷𝐷 𝐶(𝐷2𝑛)          =  2(2𝑛 − 1)2. 

PROOF: According to definition of energy, it is clear from Theorem 5 that 𝐸𝐷𝐷 𝐶(𝐷2𝑛 )          =

 2(2𝑛 − 1)2. ∎ 

3.  Conclusion 

In this paper, we have discussed the detour spectra and detour energy of conjugate graph complement 

of dihedral group 𝐷2𝑛 . Given that the kinds of energy of a graph are so numerous, further research 

may be undertaken to determine the other energies of the conjugate graph complement of dihedral 

group 𝐷2𝑛 . 

References 

 

[1] Lubotzky, A. 1995. Cayley graphs: eigenvalues, expanders and random walks. London Math. 

Soc. Lect. Note Ser, 155–90.  

[2] Kelarev, A. V., & Praeger, C. E. 2003. On transitive Cayley graphs of groups and semigroups. 

Eur. J. Comb., 24, 59–72.  

[3] Conder M. 1992. Schreier coset graphs and their applications (Groups and Combinatorics). 

数理解析研究所講究録, 794, 164-75. 

[4] Kandasamy, W. B. V., & Smarandache, F. 2009. Groups as graphs. Romania: Editura CuArt. 

[5] Vahidi, J., & Talebi, A. A. 2010. The commuting graphs on groups D2n and Qn. J. Math. 

Comput. Sci. 1, 123–7. 

[6] Woodcock, T. 2015. The commuting graph of the symmetric group Sn. Int. J. Contemp. Math. 

Sci,. 10, 287–309.  

[7] Abdollahi, A., Akbari, S. & Maimani, H. R. 2006. Non-commuting graph of a group. J. 

Algebra, 298, 468–92.  

[8] Raza, Z., & Faizi, S. 2013. Non-commuting graph of a finitely presented group. Sci. 



5

1234567890 ‘’“”

2nd International Conference on Statistics, Mathematics, Teaching, and Research IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1028 (2018) 012111  doi :10.1088/1742-6596/1028/1/012111

 

 

 

 

 

 

Int.(Lahore), 25, 883–5.  

[9] Moghaddamfar, A. R, Shi, W. J., Zhou, W., & Zokayi, A. R. 2005. On the noncommuting graph 

associated with a finite group. Sib. Math. J, 46, 325–32.  

[10] Anderson, D. F., Fasteen, J., & Lagrange., J. D. 2012. The subgroup graph of a group. Arab J. 

Math., 1, 17–27.  

[11] Kakeri, F., & Erfanian. A. 2015. The complement of subgroup graph of a group. J. Prime Res. 

Math., 11, 55–60.  

[12] Cameron, P. J., & Ghosh, S. 2011. The power graph of a finite group. Discrete Math,. 311, 

1220–2.  

[13] Alfuraidan, M. R., & Zakariya, Y. F. 2017. Inverse graphs associated with finite groups. 

Electron. J. Graph Theory Appl., 5, 142–54.  

[14] Paterson, A. L. T. 2002. Graph inverse semigroups, groupoids and their C*-algebras. J. Oper. 

Theory, 48, 645–62.  

[15] Erfanian, A., & Tolue, B. 2012. Conjugate graphs of finite groups. Discret. Math. Algorithms 

Appl., 4, 1–8. 

[16] Chartrand, G., Lesniak, L., & Zhang, P. 2015. Graphs and digraphs. 6th ed. Florida: Chapman 

and Hall.  

[17] Ayyaswamy, S. K., & Balachandran, S. 2010. On detour spectra of some graphs. Int. J. Math. 

Comput. Phys. Electr. Comput. Eng., 4, 1038–40.  

[18] Gutman, I., Robbiano, M., Andrade, E., Cardoso, D. M., Medina, L., & Rojo, O. 2010. Energy 

of line graphs. Linear Algebra Appl., 433, 1312–23.  

[19] Biggs, N. 1993. Algebraic graph theory. New York: Cambridge University Press. 

[20] Harary, F. 1969. Graph theory. California: Addison-Wesley Publishing Company.  

[21] Gutman, I. 1978. The energy of a graph. Ber. Math-Statist. Sekt. Fors. Graz, 103, 1–22.  

[22] Abdussakir, Elvierayani, R. R., & Nafisah, M. 2017. On the spectra of commuting and non 

commuting graph on dihedral group. Cauchy-Jurnal Mat. Murni dan Apl., 4, 176–82.  

[23] Zhou, B., & Gutman, I. 2007. On Laplacian energy of graphs. MATCH Commun. Math. 

Comput. Chem., 57, 211–20.  

[24] Lazić, M. 2006. On the Laplacian energy of a graph. Czechoslov. Math. J., 56, 1207–13.  

[25] Adiga, C., & Smitha, M. 2009. On maximum degree energy of a graph. Int. J. Contemp. Math. 

Sci, 4, 385–96.  

[26] Gutman, I., & Wagner, S. 2012. The matching energy of a graph. Discret. Appl. Math., 160, 

2177–87.  

[27] Das, K. C., Güngör, A. D., & Cevik, A. S. 2012. On Kirchhoff index and resistance-distance 

energy of a graph. MATCH Commun. Math. Comput. Chem., 67, 541-566.  

[28] Gutman, I. 2008. On graphs whose energy exceeds the number of vertices. Linear Algebra 

Appl., 429, 2670–7.  

[29] Gutman, I., Kiani, D., Mirzakhah, M., & Zhou, B. 2009. On incidence energy of a graph. Linear 

Algebra Appl., 431, 1223–33. 

[30] Ramane, H., S., Revankar, D., S., Gutman, I., Rao, S., B., Acharya, B., D., & Walikar, H., B. 

2008. Bounds for the distance energy of a graph. Kragujev, J. Math., 31, 59–68.  

[31] Pirzada, S., & Ganie, H., A. 2015. On the Laplacian eigenvalues of a graph and Laplacian 

Energy. Linear Algebra Appl,. 486, 454-68. 

[32] Akbari, S., & Ghorbani, E. 2008 Choice number and energy of graphs. Linear Algebra Appl., 

429, 2687–90.  

[33] Güngör, A., D., & Cevik, A., S. 2010. On the Harary energy and Harary Estrada index of a 

graph. MATCH Commun. Math. Comput. Chem, 64, 281–96.  

[34] Meenakshi, S., & Lavanya, S. 2014. A survey on energy of graphs. Ann. Pure Appl. Math., 8, 

183–91.  

[35] Brouwer, A., E., & Haemers, W., H. 2011. Spectra of graphs: Monograph (New York: 

Springer). 


