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Abstract 

YVO4:Eu3+ is a red emitter phosphor commercially available as micrometric powder due to its 

high luminescence efficiency under electron-beam excitation. Although some published results 

have demonstrated the potential of using this micrometer material in Fiber Optic Dosimetry 

systems, there is no information regarding its use on a nanometric scale. In order to obtain a 

nanometric material with high luminescent efficiency, a simple synthetic combustion method 

was developed and the results were compared with both, those of a commercial material and 

those obtained by a typical coprecipitation synthesis. A single crystalline phase was obtained 

when the combustion route was employed for the preparation meanwhile two crystalline 

phases were obtained via coprecipitation synthesis. The particle size of YVO4:Eu3+ obtained by 

combustion route ranges from 55 up to 200 nm. Fourier Transform Infrared Spectroscopy and 

Thermogravimetric Analysis indicated that annealing at 600°C promote the degradation of the 

impurities that remained adsorbed onto nanoparticles surface after the synthesis. However, to 

improve the Radioluminiscence intensity, an annealing process at 1000 °C was required. The 

method allows obtaining a nanometric material with a scintillation intensity almost twice 

higher than that of the commercial powder. 

 

Keywords: Optical materials, chemical synthesis, crystal structure, luminescence, optical 

spectroscopy  



1. Introduction  

In recent years, phosphor materials have become more and more attractive for several 

applications. They are used from cathode ray tubes and plasma display panels to biological 

labels and luminescence immunoassay, including other fields. Dosimetry in radiotherapy 

treatments is another possible application of phosphors. Fiber Optic Dosimetry (FOD) is a 

technique known as an alternative to traditional dosimetry systems. FOD allows in vivo 

measurements of dose rate, using a small scintillator attached to the end of an optical fiber. 

The scintillator could be either an organic or inorganic phosphor. When the scintillator is 

irradiated with high energy beams, the Radioluminescence (RL) emitted is in general 

proportional to the dose rate absorbed by the phosphor [1].  

Despite the particular application, phosphor materials have the singular characteristic of acting 

as optical transducers: they convert ionizing radiation into visible radiation [2]. When a 

phosphor material returns to ground state after being excited, it emits radiation with a 

characteristic wavelength that is related with the identity of the chemical structure. In 

particular, Rare Earth (RE) elements can work as efficient optical activators of this process. 

They are used as dopants in different hosts. A RE widely employed as optical activator is 

Europium, which has a red emission at about 620 nm after excitation if present as Eu3+cation 

[3]. 

Vanadates, tungstates, molybdates and other complex oxides are ideal hosts for RE dopants 

[4]. Among them, Yttrium vanadate, YVO4, is the typical host for Europium. YVO4 have a 

tetragonal zircon type crystalline structure [5]. The atoms are arranged like two distorted 

tetrahedral, where Yttrium atoms are coordinated by eight Oxygen atoms and Vanadium ones 

are surrounded by four Oxygen atoms. Doping with Europium generates a substitution 

process, where Eu3+ occupies Y3+ sites [2]. Sevic, Rabasovic, Krizan, Savic-Sevic, Mitric, Gilic, 

Hadzic and Romcevic [6] have reported that doping YVO4 with Eu3+ does not change the 

crystalline structure of the material, but according to Kumari, Baitha and Manam [4] it might 

generate changes in the interplanar spacing because Eu3+ ionic radius is bigger than Y3+ radius. 

Since 1964 YVO4:Eu3+ is a red emitter phosphor commercially available as micrometric powder 

due to its high luminescence efficiency under electron-beam excitation [7]. For this reason, it 

has been widely employed by industry as red emitter for CRT screens. The feasibility of using 

YVO4:Eu3+ as FOD detector has been demonstrated by Martínez, Rucci, Marcazzó, Molina, 

Santiago and Cravero [1], who employed micrometric YVO4:Eu3+ powder to fabricate efficient 



scintillators having a volume of 1-3 mm3. However, no analogous studies for nanometric 

particles have been carried out so far.  

Several reports point out that employing nanometric powder enhances overall scintillation 

yield by reducing optical scattering losses [8, 9]. Also, enhancement of the scintillation yield of 

nanometric size phosphors -with respect to micrometric ones- has been reported [10, 11] . The 

mentioned results make the development of YVO4:Eu3+ based nanoparticle scintillators an issue 

of interest in the framework of the application of this material to scintillation technology.  

The synthesis of YVO4:Eu3+ as nanometric powder has been widely studied by several routes. 

Uitert, Linares, Soden and Ballman [12] synthesized YVO4:Eu3+ via a solid state reaction. This 

method has some limitations, such as the lack of homogeneity of the product, the requirement 

of high annealing temperatures, formation of large particles that have to be milled by 

mechanical treatments, long times of heat treatments, etc. 

In contrast, wet chemical methods are a suitable option for nanoparticle synthesis of YVO4:Eu3+ 

[2]. Yanhong and Guangyan [13] have reported this synthesis by a traditional coprecipitation 

method. Huignard, Gacoin and Boilot [14] have studied the same route for colloidal YVO4:Eu3+ 

nanophosphors. Riwotzki and Haase [15] and Rafiaei and Shokouhimehr [16] synthesized YVO4 

nanoparticles doped with different phosphors by hydrothermal methods. In addition, Ansari 

and Labis [17] reported the synthesis of nanofibers of YVO4:Eu3+ via an hydrothermal route. 

Also, the synthesis of Europium doped Yttrium Vanadate using sol-gel methods was studied 

[18, 19] and novel techniques were reported for the synthesis of this material [20, 21]. 

However, there are some disadvantages associated with the synthetic techniques mentioned 

above. For example, coprecipitation method requires high annealing temperature to reach 

crystallinity in the final product and hydrothermal method demands conditions of high 

pressures, requiring autoclave reactor.  

Combustion route is a simple wet chemical method that requires fuels and oxidizers. It takes 

place when the mixture of precursors and fuels reaches the auto ignition temperature. Auto 

ignition temperature is the minimum required temperature at which a fuel in contact with air 

burns spontaneously. An exothermic reaction is carried out during this process, which under 

certain conditions could produce a flame. 

The required amount of fuels is given by the relationship between oxidizing and reducing 

components. According to Jain, Adiga and Pai Verneker [22] φe is defined as the ratio between 

total amounts of oxidizing elements and reducing elements in the mixture. The combustion 

could be complete, fuel-rich or lean-rich depending on φe value. If φe=1, the reaction is 



stoichiometrically balanced and the combustion is complete. In order to minimize damages on 

environment and avoid production of toxic gases the most suitable option is to work in 

complete combustion conditions.  

Combustion route is a feasible method for the synthesis of luminescent materials, especially 

for RE doped ones due to its low temperature conditions and short reaction times [2, 23-27]. 

There are few reports that studied the synthesis of YVO4:Eu3+ via a combustion route. 

Ekambaram and Patil [28] reported the synthesis of different vanadates doped with Europium 

(including Yttrium) using ammonium nitrate and 3-methylpyrazole-5-one as fuels. However, 

they did not report the particle size neither the study of any luminescent property. Kumari, 

Baitha and Manam [4] studied the synthesis of YVO4:Eu3+ via a combustion route using urea as 

fuel but they also found a phase of Y2O3 in formation. Shokouhimehr and Rafiaei [29] and 

Rafiaei, Kim and Shokouhimehr [30] compared the effect of different fuels and different 

solvents in photoluminescence properties and phosphor nanostructure and Rafiaei and 

Shokouhimehr [31] studied the impact of alumina crucible dimensions in luminescence 

properties of YVO4:Eu3+. Sevic, Rabasovic, Krizan, Savic-Sevic, Mitric, Gilic, Hadzic and Romcevic 

[6] reported the formation of YVO4:Eu3+ pure nanoparticles (from 37 to 71 nm) via a 

combustion route using urea and ammonium nitrate as fuels, but the selected amounts of 

reagents do not match with those conditions for complete combustion requirements [22].  

Recent works have shown efficient cathodoluminescence of sub-micrometer-sized YVO4:Eu3+ 

samples fabricated by hydrothermal synthesis, which points out the possibility of using 

YVO4:Eu3+ nanoparticles for ionizing radiation detection [32]. 

In this work, with the aim of developing a scintillator based on YVO4:Eu3+ nanoparticles suitable 

for FOD, YVO4:Eu3+ nanoparticles were synthesized employing a combustion method. The 

reported strategy involves the comparison of the structural and the luminescent properties of 

YVO4:Eu3+ nanoparticles obtained by the traditional coprecipitation method and combustion 

route using urea and ammonium nitrate as fuels. The response of the YVO4:Eu3+ nanoparticles 

to electron irradiation was also evaluated in order to assess the feasibility of using these 

compounds as detector of ionizing radiation. 

2. Material and methods 

2.1 Synthesis  

YVO4 nanoparticles were synthesized by two different methods: coprecipitation and 

combustion route. In both cases, the effect of Eu3+ as dopant was studied, so the samples were 



synthesized undoped and doped with 5% mol of Eu3+. This concentration has shown to render 

the most efficient emission of Eu3+doped into this host [33]. 

Coprecipitation method was reproduced as reported by Yanhong and Guangyan [13]. The 

starting chemicals were Y(NO3)3.6H2O (Sigma-Aldrich 99,8%), Eu(NO3)3.5H2O (Sigma-Aldrich 

99,9%), NH4VO3 (Biopack>99%) and NaOH (Anedra 99,3%). For the undoped sample, 40 mL of a 

NH4VO3 solution 0.05 M was adjusted to pH 12.5 with a NaOH solution. 40 mL of a Y(NO3)3 

solution 0.05 M was added dropwise. The mixture was then heated at 60˚ C under magnetic 

stirring for 1 h. The white opalescent colloid resulting was filtered, washed, dried at 60˚ C and 

annealed for 2.5 h at 1000˚ C if required. The procedure for the doped sample was analogous, 

except that instead of using 40 mL of Y(NO3)3 solution 0.05 M as before, 38 mL of Y(NO3)3 

solution plus 2 mL of Eu(NO3)3 solution 0.05 M were employed. The chemical reaction involved 

is shown in (1). 

 �1 − ������	�	 + ������	�	 +����	 → ���������� (1) 

where x=0 for the undoped sample and x=0.05 for the doped sample. 

Combustion route was carried out for an oxidizer/fuel ratio equal to 1 [2]. The starting 

chemicals were Y(NO3)3.6H2O (Sigma-Aldrich 99,8%), Eu(NO3)3.5H2O (Sigma-Aldrich 99,9%), 

NH4VO3 (Biopack>99%); (NH2)2CO (Anedra 99%) and NH4NO3 (Stanton 99%) as fuels, all of them 

in analytical grade. The chemical reaction can be symbolized as follows, analogous to that 

reported by Foka K. E. [34]: 

�1 − ������	�	 + ������	�	 +����	 + 3������� + 3����	 → ���������� +

14�� + 8�� + 3��� (2) 

where x= 0 for the undoped sample and 0.05 for the doped sample. 

For instance, 3.03 g of Y(NO3)3.6H2O, 0.18 g of Eu(NO3)3.5H2O, 0.97 g of NH4VO3, 1.50 g of 

(NH2)2CO and 2.00 g of NH4NO3 were separately dissolved in distilled water. Each solution was 

slowly added to the Y(NO3)3 solution. The resulting yellow solution was then concentrated by 

heating at 70 ˚C under magnetic stirring until free water evaporated. Then, the as-prepared 

red gel was heated at 200˚C in a heating mantle for 2 h until the combustion was completed. A 

foamy orange powder was obtained and certain fractions were annealed at 600, 800 or 1000 

˚C for 2.5 h. For the undoped sample the proceeding was analogous, all amounts were the 

same except that of Y(NO3)3.6H2O, which was 3.19 g.  

2.2 Characterization techniques 



X-Ray Diffraction (XRD) analysis of the samples were carried out on a Philips 3020 

diffractometer with CuKα radiation (λ = 1,54 Å) and Ni filter at 34 kV and 40 mA. All patterns 

were recorded in the 2θ range from 15˚ to 70˚ with a step size of Δ2θ= 0,04˚. 

Fourier Transform Infrared Spectroscopy (FTIR) data were obtained on a Nicolet Magna 550 

spectrometer with Nernst filament source, Germanium film with ICs beamsplitter and DTGS 

pyroelectric detector. The patterns were obtained from 400 cm-1 to 4000 cm-1 at a resolution 

of 4 cm-1 after making pellets of the samples diluted in KBr via hydraulic press machine.  

TEM images were taken in a transmission electron microscope Jeol JEM 2100 with B6La 

filament at 200 kV. These images were processed using Image J software and the histograms 

for particle sizes were carried out in Origin Pro 8. 

Thermogravimetric Analysis (TGA) of the nanoparticles were performed in a Q500 TA 

Instrument thermogravimetric analyzer. Tests were carried out at a heating rate of 10 °C/min 

from 30 to 900 °C in air atmosphere. The samples were about 10 mg in all cases. 

The excitation and emission spectra were obtained in a Varian Cary Eclipse fluorescence 

spectrophotometer. Measurements were recorded at a scan rate of 600 nm/min and with a 

spectral resolution of 5 nm. The Decay times of the luminescence signals were also 

investigated. The samples were excited with UV pulses (266 nm) from the fourth harmonic of a 

Continuum Surelite II Nd:YAG pulsed laser. The light coming from the sample was filtered to 

get rid of spectral components having wavelength shorter than 520 nm. Luminescence was 

detected by means of a Hamamatsu-H7360-03 photon counting head. The emission light was 

recorded for 60 seconds at a pulse frequency of 10 Hz. Pulses were averaged and fitted with a 

two-component exponential decay function to obtain characteristic lifetimes (τ1 and τ2) of the 

UV-excited emission. 

Radioluminescence (RL) measurements were carried out to assess the scintillation yield of 

each sample. The results were compared with those from a commercial sample of YVO4:Eu3+ 

kindly provided by Phosphor Technology Ltd. (United Kingdom). Commercial powder has an 

average particle size of 5 μm (according to the manufacturer specifications). Samples were 

irradiated at room temperature by resorting to a 10 mCi ophthalmic 90Sr beta-source 

rendering a dose rate of 0.022 Gy/min at the sample position. The intensity of the scintillation 

light was recorded with a Hamamatsu H7360-03 photon counting head. This light detector has 

a spectral window ranging from 300 up to 850 nm. 

3. Results and discussion 



3.1 Structure characterization 

XRD measurements were performed on the nanoparticles to extract information about their 

crystalline structure. 

Figure 1 shows the diffraction profiles recorded for the undoped nanoparticles synthesized by 

coprecipitation method and combustion route. For both cases, patterns corresponding to the 

as-synthesized nanoparticles and after annealing at 1000˚C are shown. As can be seen, the as-

synthesized nanoparticles show broad diffraction peaks and weak signals, typical of low 

crystallinity nanoparticles. In contrast, the annealed nanoparticles exhibit narrow and more 

intense diffraction peaks, indicating an improvement in crystallinity due to the annealing. For 

identification purpose, these patterns were compared with those reported in the 

Crystallography Open Database (COD). A single crystalline phase is identified in combustion 

nanoparticles which corresponds to YVO4 (9009764 COD). Instead, two crystalline phases were 

identified in coprecipitation nanoparticles, Y2O3 and YVO4. The crystalline phase corresponding 

to Y2O3 was identified by the diffraction peak at 2θ = 29.2˚ assigned to the reflections from the 

(222) plane of the Y2O3 crystal lattice (1009015 COD). Semiquantitative analysis results are 95% 

YVO4 and 5% Y2O3. 

Figure 2 compares the XRD patterns of doped and undoped samples synthesized by 

coprecipitation method after annealing at 1000 ˚C. The doped nanoparticles show three 

crystalline phases identified as YVO4, Y2O3 and Eu2O3 according to reported in COD. In addition, 

the highest intensity peak corresponds to Y2O3, indicating that this is the crystalline phase that 

is present in the highest proportion (semiquantitative analysis results are 52% Y2O3, 26% Eu2O3 

and 22% YVO4). Attending that the main objective of this work is the synthesis of doped YVO4 

due to its subsequent technological application as scintillator nanoparticles suitable for FOD, 

the focus will be centered on the nanoparticles obtained by combustion synthesis. 

Figure 3 shows XRD patterns of doped nanoparticles synthesized by combustion route (as-

synthesized and annealed at 1000˚C) and, as reference, the pattern corresponding to the 

undoped nanoparticles annealed at 1000˚C. All diffraction peaks are in good agreement to 

those reported in COD for YVO4 structure. No additional peaks that could suggest the presence 

of another crystalline phase in doped samples are observed. This is strong evidence that can 

justify the substitution of Y3+ by Eu3+ into YVO4 structure [6].  It can be observed that peak 

positions in doped samples are slightly shifted towards lower 2θ values. According to Kumari, 

Baitha and Manam [4], it could be due to the higher ionic radius of Eu3+ with respect to Y3+. It 



would increase crystalline network size and consequently the crystallite size, D, whose value 

can be calculated using Scherrer equation [35]: 

� =
��

��� !
 (3) 

where K is a factor related to crystallite shape (0,9 is generally a good approximation), B the 

width of the X-ray diffraction peak in radians, λ the X-ray wavelength (0,15405 nm) and θ de 

diffraction angle. According to maximum intensity peak, the estimated crystallite sizes are 

listed in Table 1. The increment in the values of “D” also highlights the effect of annealing on 

crystallinity. 

Sample  Annealing temperature D (nm)  

YVO4 - 24 

YVO4 1000˚ C 43 

Y0,95Eu0,05VO4 - 31 

Y0,95Eu0,05VO4 1000˚ C 54 

Table 1.Crystallite size (D) estimated by Scherrer equation. 

3.2 Morphological characterization 

Figure 4 shows TEM images of the nanoparticles synthesized by combustion route. In all of 

them, it can be clearly seen that nanoparticles are agglomerated. In as-synthesized samples a) 

and c), the nanoparticles present low crystallinity (attending to XRD data previously shown) 

but have an apparently homogenous morphology. In annealed samples b) and d), the 

nanoparticles are bigger, with an improved crystallinity but with a more heterogeneous 

morphology. These images put on evidence that the annealing promotes coalescence and 

aggregation processes that increase nanoparticle size and result in more polyhedral shapes. 

Figure 5 shows histograms of the nanoparticle size calculated by TEM image analysis. Starting 

with the undoped samples, 96% of as-synthesized nanoparticles (histogram (a)) have particle 

sizes below 14 nm, 52% of them are in the range of 6-10 nm. In the case of the annealed 

nanoparticles (histogram (b)), 95% of the nanoparticles have particle sizes lower than 250 nm 

with a 51% of them comprised between 100-150 nm. The analysis clearly shows the effect of 

heat treatment on increasing particle size.  

Analogously for doped samples, 95% of as-synthesized nanoparticles (histogram (c)) have 

particle sizes lower than 14 nm with a 52% of them comprised between 6-10 nm. According to 



histogram (d), after the annealing, 79% of the nanoparticles have particle sizes lower than 250 

nm while 55% of them are in the range of 50-200 nm.  

From the comparison between annealed nanoparticles (doped and undoped), it is noted that 

the maximum particle size registered for the undoped nanoparticles was around 400 nm 

meanwhile for the doped nanoparticles (synthesized under the same conditions) it was 

significantly higher, around 550 nm. 

The differences observed between the values obtained for the crystallite size (D, Table 1) and 

for the particle size (calculated from TEM images) can be justified based on the dislocations 

and defects present in the structures of the nanoparticles. These two parameters would have 

the same value in the ideal case in which the grains were simple perfect crystals. In the present 

case, TEM images show agglomeration and several defects that interrupt the periodicity of the 

crystalline structure. Therefore, an individual particle may contain a number of crystallites 

defined as coherently diffracting regions [36, 37]. 

3.3 Surface Characterization  

FTIR spectra for YVO4:Eu3+ nanoparticles synthesized by coprecipitation and combustion 

methods after annealing are shown in Figure 6. Combustion sample presents two 

characteristic bands. The intense band observed around 812 cm-1 is characteristic of V-O bond 

vibration, particularly of VO4
3- group. Another band with lower intensity is located around 453 

cm-1. It is associated with the vibration of the Y-O bond [4, 38]. There are no evidences that 

suggest that the sample could have any impurity adsorbed on the surface. Considering XRD 

data shown previously, it can be concluded that YVO4:Eu3+ nanoparticles obtained by 

combustion route after annealing correspond to a pure compound. 

On the other hand, FTIR spectrum of coprecipitation nanoparticles shows at least four 

characteristic bands. The two located around 839 and 476 cm-1 are characteristic of V-O and Y-

O bond vibrations, respectively. There is another band near 766 cm-1 that can be attributed to 

N-O bond vibration corresponding to some precursor that could have been adsorbed on the 

surface [39]. As XRD data showed, this sample has three crystalline phases: YVO4, Y2O3 and 

Eu2O3 with yttrium oxide in majority. In FTIR spectrum of coprecipitation sample, the most 

intense band is the one located in 476 cm-1 (in combustion sample is the one located in 812 cm-

1). It could indicate that there are more Y-O bonds that increase the intensity of the band, due 

to the presence of Y2O3 crystalline phase. However, FTIR analysis does not show any evidence 



of Eu2O3 formation, probably because Eu-O bonds have characteristic vibrations that appear at 

frequencies lower than 400 cm-1[40]. 

Figure 7 shows FTIR spectra of YVO4 nanoparticles obtained by combustion route. There are 

five characteristic bands in the as-synthesized sample. The two located around 812 y 453 cm-1 

are attributed to V-O and Y-O bond vibration respectively. The broad peak near 3410 cm-1 

could be assigned to O-H stretching vibrations and the one located around 1640 cm-1 to O-H 

bending vibrations [38]. The band near 1380 cm-1 is characteristic of C-O bending vibrations 

[4]. There could be another peak not well defined around 1310 cm-1 associated with the 

presence of NO3
- group vibration [41]. Therefore, there are impurities associated with 

precursors that might be adsorbed on nanoparticle surface. Figure 7 also shows the spectra 

corresponding to the annealed samples at two different temperatures (600 and 1000 °C) in 

order to evaluate the effect of annealing temperature on the nanoparticles composition. As 

can be seen, impurity bands almost disappear in FTIR spectra as the annealing temperature 

increases, likely due to temperature-activated surface degradation processes. Furthermore, 

there are no significant differences between doped and undoped FTIR spectra after annealing 

at 1000 ˚C. It could indicate that the presence of Eu3+ does not change the composition of the 

nanoparticles surface. 

3.4 Thermal Characterization 

In order to contrast the data obtained through FTIR spectra, a Thermogravimetric Analysis 

(TGA) of the as-synthesized YVO4:Eu3+ nanoparticles obtained by combustion route was carried 

out (Figure 8). As can be seen, the mass loss takes place in two consecutive steps. The first 

occurs between 100-200 ˚C, showing a 5% mass loss. It is immediately followed by the second 

step comprised between 250-550˚C, which has a lower slope. About 10% of initial mass is lost 

between these two steps. After that, it seems to be only slight changes in the nanoparticles 

mass.  

Considering also FTIR data, the mass loss shown by TGA data could be due to superficial 

changes, in particular, to the degradation of impurities that remained adsorbed on surface 

immediately after reaction. 

3.5 Luminescence properties  

Figure 9 shows the emission spectra (λex=271 nm) of YVO4:Eu3+ corresponding to the 

commercial sample (red line) and the combustion sample annealed at 1000°C (black line) 

normalized with respect to sample weight. The shapes of both spectra fairly match. The 



observed emission peaks can be assigned to characteristic transitions of Eu3+ cation. In 

particular, peaks located at 590, 618, 652 and 699 nm are characteristic of 5D0 →
7FJ (J=1, 2, 3, 

4) transitions. Luminescence from higher excited states of Eu3+ can also be identified, namely, 

peaks at 555 and 595 nm corresponding to 5D1 →
7F2  and 5D1 →

7F3 transitions, respectively [4, 

11]. The prominence of the emission corresponding to the 5D0 →
7F2 transition with respect to 

the intensity of the peak assigned to the 5D0 →7F1 transition demonstrates that Eu3+ cations 

occupy sites having low inversion [19]. The presence of 5D1 emission peaks can be possible by 

taking into account that the vibration energy of VO4
3- groups is not high enough to depopulate 

the 5D1 states through the 5D0 level [19]. It is also apparent from Figure 9 that YVO4:Eu3+ 

nanoparticles emit more efficiently than micrometric powder under UV excitation. This effect 

has been also observed in many other phosphors and could be related to the confinement of 

the longer lifetime excitation of Eu3+ within the nanoparticles [11, 42, 43]. Indeed, the decay 

lifetimes of the YVO4:Eu3+combustion nanoparticles annealed at 1000°C are slightly higher than 

those corresponding to the commercial sample, as can be seen from Table 2. As can be seen 

from the table, two exponential decaying signals had to be assumed to consistently fit the 

experimental data. The values obtained are fairly similar to previous reports, which 

demonstrates efficient synthesis of YVO4:Eu3+ nanoparticles [32]. 

Sample τ1 (s) τ2 (s) 

Commercial YVO4:Eu3+ 0.0117 ± 0.0002 0.0633 ± 0.0001 

Combustion 
YVO4:Eu3+(1000°C) 

0.0128 ± 0.0001  0.0707 ± 0.0002 

Table 2: Decay lifetimes of the photoluminescence signal of the commercial sample and of YVO4:Eu3+ nanoparticles 

synthesized by the combustion method after annealing at 1000°C. 

The dependence of the scintillation yield of the YVO4:Eu3+ combustion sample as function of 

the annealing temperature is shown in Figure 10. The RL signal has been normalized to the RL 

emission of the commercial sample. Maximum relative scintillation is attained after annealing 

the sample at 1000°C, being the scintillation intensity of this sample almost twice higher than 

that of the commercial powder. The scintillation signal of the most efficient YVO4:Eu3+ 

combustion sample, namely, the sample annealed at 1000°C is compared to that from the 

commercial sample (Figure 11). Both signals have shown to be stable and repetitive along the 

irradiation time.  The enhancement of the luminescence as the sample is annealed at higher 

temperature is probably related to the better crystallinity and phase purity achieved by the 

thermal treatment [32, 44].  



According to FTIR and TGA data, there are impurities adsorbed on nanoparticles surface that 

remain after combustion synthesis. These impurities could provide non-radiative paths to 

relaxation. These compounds are eliminated when annealing temperature increases, as 

confirmed by TGA analysis. At the same time higher crystallinity is attained, so improving the 

scintillation efficiency.  

From emission spectra it is possible to calculate the chromaticity coordinate values of CIE 1931 

Diagram. YVO4:Eu3+ is a red-emitting phosphor so their coordinates are around this region of 

CIE Diagram. As seen in Figure 12, both commercial and combustion samples have almost the 

same coordinates (x=0,63 and y=0,37), which are similar to those previously reported [4, 6]. 

The particles synthesized by the combustion method have high crystallinity, an homogenous 

morphological distribution and nanometric particle sizes. In turn, the synthesis method is 

simple, fast and does not require sophisticated equipment. The luminescent behavior is 

promising for its application as a scintillator in the technological design of new composite 

materials for FOD. In a next stage the development of a composite material will be carried out 

to be used as a sensor at the ends of an optical fiber. 

4. Conclusions 

In order to synthesize YVO4:Eu3+ nanoparticles a thorough analysis of two different preparation 

methods, namely, coprecipitation and combustion routes, was carried out. Nominally pure and 

Europium doped samples were obtained in order to evaluate crystalline structural changes 

when Eu3+ replaces Y3+cation into the YVO4 host.  

In the sample prepared by coprecipitation, two different crystalline phases were obtained 

(yttrium oxide and yttrium vanadate). Probably due to the coexistence of multiple phases and 

related quenching effects of radiation-induced luminescence, the RL intensity of this sample 

was almost undetectable. 

In contrast, a unique crystalline phase was obtained when the combustion route was 

employed for the preparation. In this case, particle size ranges from 55 up to 200 nm. FTIR and 

TGA analysis indicated that annealing at 600°C promote the degradation of the impurities that 

remain adsorbed on nanoparticles surface after synthesis. However, to improve the RL 

intensity, it was necessary to anneal the nanocrystalline powder at 1000°C. After this thermal 

treatment, RL intensity of this sample was almost twice higher than that of the commercial 

microcrystalline sample. Emission spectra under UV excitation are characteristic of f-f 



electronic transitions of Eu3+cation. CIE 1931 Diagram indicates that combustion sample have 

the same coordinates than commercial YVO4:Eu3+. 

Combustion route is a technically simple and inexpensive synthesis method to obtain 

YVO4:Eu3+ nanoparticles, which could be employed to develop suitable scintillators for Fiber 

Optic Dosimetry due to their good structural and optical properties. 

Acknowledgement 

The authors would also like to acknowledge the assistance by the technical expertise provided 

by Dr. Marcelo Ceolín (INIFTA – Argentine). 

I.A.Z., M.S., and G.B. are members of the Carrera del Investigador Cientifico y Tecnológico, 

CONICET, Argentine. L.M and N.M. are research fellows of CONICET, Argentine. 

This work was supported by Agencia Nacional de Promoción Científica y Tecnológica (PICT 

2015-1555); Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 2015-800 and PIP 

2015-844) and Universidad Nacional del Centro de la Provincia de Buenos Aires (PIO-30C). 

References 

[1] N. Martínez, A. Rucci, J. Marcazzó, P. Molina, M. Santiago, W. Cravero, Characterization of 
YVO4:Eu3+ scintillator as detector for Fiber Optic Dosimetry, Radiation Measurements, 106 
(2017) 650-656. 
[2] S. Ekambaram, K.C. Patil, M. Maaza, Synthesis of lamp phosphors: facile combustion 
approach, Journal of Alloys and Compounds, 393 (2005) 81-92. 
[3] Y.W.M. Shionoya Shigeo, Yamamoto Hajime, Phosphor Handbook, 2nd ed., CRC Press, 
2006. 
[4] P. Kumari, P.K. Baitha, J. Manam, Structural and photoluminescence properties of red-light 
emitting YVO4:Eu3+ phosphor synthesized by combustion and solid-state reaction techniques: 
a comparative study, Indian Journal of Physics, 89 (2015) 1297-1306. 
[5] J.A. Baglio, G. Gashurov, A refinement of the crystal structure of yttrium vanadate, Acta 
Crystallographica Section B, 24 (1968) 292-293. 
[6] D. Sevic, M.S. Rabasovic, J. Krizan, S. Savic-Sevic, M. Mitric, M. Gilic, B. Hadzic, N. Romcevic, 
Characterization and luminescence kinetics of Eu3+ doped YVO4 nanopowders, Materials 
Research Bulletin, 88 (2017) 121-126. 
[7] N. Vu, T. Chi, D. Nguyen, Combustion synthesis and characterization of Er3+-doped and 
Er3+, Yb3+-codoped YVO4 nanophosphors oriented for luminescent biolabeling applications, 
2011. 
[8] Z. Kang, M. Barta, J. Nadler, B. Wagner, R. Rosson, B. Kahn, Synthesis of BaF2:Ce 
nanophosphor and epoxy encapsulated transparent nanocomposite, Journal of Luminescence, 
131 (2011) 2140-2143. 
[9] T.J. Hajagos, C. Liu, N.J. Cherepy, Q. Pei, High-Z Sensitized Plastic Scintillators: A Review, 
Advanced Materials, 30 (2018) 1706956. 
[10] Y. Iso, S. Takeshita, T. Isobe, Fabrication and characterization of transparent monolithic 
nanocomposites between YVO4:Bi3+,Eu3+ nanophosphor and TMAS-derived silica, Optical 
Materials, 36 (2014) 717-722. 



[11] W.-T. Hsu, W.-H. Wu, C.-H. Lu, Synthesis and luminescent properties of nano-sized 
Y3Al5O12:Eu3+ phosphors, Materials Science and Engineering: B, 104 (2003) 40-44. 
[12] L.G.V. Uitert, R.C. Linares, R.R. Soden, A.A. Ballman, Role of f-Orbital Electron Wave 
Function Mixing in the Concentration Quenching of Eu3+, The Journal of Chemical Physics, 36 
(1962) 702-705. 
[13] L. Yanhong, H. Guangyan, Synthesis and luminescence properties of nanocrystalline 
YVO4:Eu3+, Journal of Solid State Chemistry, 178 (2005) 645-649. 
[14] A. Huignard, T. Gacoin, J.-P. Boilot, Synthesis and Luminescence Properties of Colloidal 
YVO4:Eu Phosphors, Chemistry of Materials, 12 (2000) 1090-1094. 
[15] K. Riwotzki, M. Haase, Wet-Chemical Synthesis of Doped Colloidal Nanoparticles:  YVO4:Ln 
(Ln = Eu, Sm, Dy), The Journal of Physical Chemistry B, 102 (1998) 10129-10135. 
[16] S.M. Rafiaei, M. Shokouhimehr, Synthesis and luminescence properties of transparent 
YVO4: Eu3+ phosphors, Materials Research Express, 5 (2018) 116208. 
[17] A.A. Ansari, J.P. Labis, Preparation and photoluminescence properties of hydrothermally 
synthesized YVO4:Eu3+ nanofibers, Materials Letters, 88 (2012) 152-155. 
[18] A. Luo, G. Du, H. Lai, W. Shi, Photoluminescence of europium-doped and 
europium/strontium-codoped sol–gel-prepared yttrium vanadate nanoparticles, Materials 
Science in Semiconductor Processing, 23 (2014) 20-26. 
[19] S.M. Rafiaei, T.D. Isfahani, H. Afshari, M. Shokouhimehr, Improved optical properties of 
YVO4:Eu3+ nano–layers on silica spheres, Materials Chemistry and Physics, 203 (2018) 274-
279. 
[20] K. Uematsu, K. Toda, M. Sato, Preparation of YVO4:Eu3+ phosphor using microwave 
heating method, Journal of Alloys and Compounds, 389 (2005) 209-214. 
[21] H. Yu, Y. Song, Y. Li, Y. Wu, B. Chen, P. Li, C. Sheng, Preparation and luminescent 
properties of one-dimensional YVO4:Eu nanocrystals, Journal of Materials Science: Materials in 
Electronics, 27 (2016) 2608-2613. 
[22] S.R. Jain, K.C. Adiga, V.R. Pai Verneker, A new approach to thermochemical calculations of 
condensed fuel-oxidizer mixtures, Combustion and Flame, 40 (1981) 71-79. 
[23] S. Rafiaei, A. Kim, M. Shokouhimehr, Enhanced luminescence Properties of Combustion 
Synthesized Y2O3:Gd Nanostructure, Current Nanoscience, 11 (2015). 
[24] M. Venugopal, H.P. Kumar, R. Satheesh, R. Jayakrishnan, Effect of annealing temperature 
in the emission properties of nanocrystalline CaZr0.9SmxDy0.1−xO3 systems prepared via self-
propagating combustion synthesis, Physics Letters A, (2020) 126280. 
[25] S. Shi, Y. Yang, P. Guo, J. Wang, L. Geng, L. Fu, Improved morphology and optimized 
luminescence of Eu3+-doped La2Ce2O7 composite nanopowders by surfactant-assisted 
solution combustion synthesis, Journal of Luminescence, 206 (2019) 91-96. 
[26] R.K. Tamrakar, D.P. Bisen, K. Upadhyay, N. Bramhe, Down-conversion luminescence 
property of Er3+ and Yb3+ co-doped Gd2O3 crystals prepared by combustion synthesis and 
solid state reaction method, Superlattices and Microstructures, 81 (2015) 34-48. 
[27] S.M. Rafiaei, M. Shokouhimehr, Effect of fuels on nanostructure and luminescence 
properties of combustion synthesized MgAl2O4:Eu3+ phosphors, Journal of Molecular 
Structure, 1193 (2019) 274-279. 
[28] S. Ekambaram, K.C. Patil, Rapid synthesis and properties of FeVO4, AlVO4, YVO4 and Eu3+-
doped YVO4, Journal of Alloys and Compounds, 217 (1995) 104-107. 
[29] M. Shokouhimehr, S.M. Rafiaei, Combustion synthesized YVO4:Eu3+ phosphors: Effect of 
fuels on nanostructure and luminescence properties, Ceramics International, 43 (2017) 11469-
11473. 
[30] S. Rafiaei, A. Kim, M. Shokouhimehr, Effect of Solvent on Nanostructure and 
Luminescence Properties of Combustion Synthesized Eu3+ Doped Yttria, Nanoscience and 
Nanotechnology Letters, 6 (2014) 692. 



[31] S.M. Rafiaei, M. Shokouhimehr, Impact of process parameters on luminescence properties 
and nanostructure of YVO4:Eu phosphor, Materials Chemistry and Physics, 229 (2019) 431-
436. 
[32] F. He, P. Yang, N. Niu, W. Wang, S. Gai, D. Wang, J. Lin, Hydrothermal synthesis and 
luminescent properties of YVO4:Ln3+ (Ln=Eu, Dy, and Sm) microspheres, Journal of Colloid and 
Interface Science, 343 (2010) 71-78. 
[33] A. Huignard, V. Buissette, A.-C. Franville, T. Gacoin, J.-P. Boilot, Emission Processes in 
YVO4:Eu Nanoparticles, The Journal of Physical Chemistry B, 107 (2003) 6754-6759. 
[34] D.B.F. Foka K. E., Swart H. C., Combustion Synthesis of Dy3+ –doped YVO4 phosphor, in:  
Proceedings of SAIP2014, University of Johannesburg, Johannesburg, 2014, pp. 34-40. 
[35] U. Holzwarth, N. Gibson, The Scherrer equation versus the &#39;Debye-Scherrer 
equation&#39, Nature Nanotechnology, 6 (2011) 534. 
[36] S.H. Chamola Arun, Naithani U.C., Study Of Pb(Zr0.65Ti0.35)O3(PZT(65/35) Doping On 
Structural, Dielectric And Conductivity Properties Of BaTiO3(BT) Ceramics, Advanced Materials 
Letters, 2 (2011) 5. 
[37] P. Goel, K.L. Yadav, Substitution site effect on structural and dielectric properties of La–Bi 
modified PZT, Journal of Materials Science, 42 (2007) 3928-3935. 
[38] M.N. Luwang, R.S. Ningthoujam, S.K. Srivastava, R.K. Vatsa, Preparation of white light 
emitting YVO4: Ln3+ and silica-coated YVO4:Ln3+ (Ln3+ = Eu3+, Dy3+, Tm3+) nanoparticles by 
CTAB/n-butanol/hexane/water microemulsion route: Energy transfer and site symmetry 
studies, Journal of Materials Chemistry, 21 (2011) 5326-5337. 
[39] R. Srinivasan, N.R. Yogamalar, J. Elanchezhiyan, R.J. Joseyphus, A.C. Bose, Structural and 
optical properties of europium doped yttrium oxide nanoparticles for phosphor applications, 
Journal of Alloys and Compounds, 496 (2010) 472-477. 
[40] J.-C. Bünzli, E. Moret, J.R. Yersin, Vibrational Spectra of Anhydrous Lanthanum, Europium, 
Gadolinium, and Dysprosium Nitrates and Oxinitrates, 1978. 
[41] H. Zhang, X. Fu, S. Niu, Q. Xin, Synthesis and luminescent properties of nanosized YVO4:Ln 
(Ln=Sm, Dy), Journal of Alloys and Compounds, 457 (2008) 61-65. 
[42] G. Wakefield, H.A. Keron, P.J. Dobson, J.L. Hutchison, Synthesis and Properties of Sub-50-
nm Europium Oxide Nanoparticles, Journal of Colloid and Interface Science, 215 (1999) 179-
182. 
[43] Y.-S. Chang, F.-M. Huang, Y.-Y. Tsai, L.-G. Teoh, Synthesis and photoluminescent properties 
of YVO4:Eu3+ nano-crystal phosphor prepared by Pechini process, Journal of Luminescence, 
129 (2009) 1181-1185. 
[44] G.S. Ningombam, T.S. David, N.R. Singh, Enhancement of Eu3+ Emission in YVO4:Eu3+ 
Nanocrystals by Li+ Codoping: An Oxidant-Resistant Dispersion and Polymer Film, ACS Omega, 
4 (2019) 13762-13771. 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure Captions 

Figure 1. XRD patterns of undoped samples synthesized via coprecipitation method and combustion route. 

Figure 2. XRD patterns of coprecipitation YVO4 samples. 

Figure 3. XRD patterns of combustion YVO4 samples. 

Figure 4. TEM images of YVO4 samples. a) undoped, as-synthesized b) undoped, annealed at 1000˚C c) doped, as-

synthesized d) doped, annealed at 1000˚C 

Figure 5.Size histograms for YVO4 samples. a) undoped, as-synthesized b) undoped, annealed at 1000˚C c) doped, , 

as-synthesized d) doped, annealed at 1000˚C 

Figure 6. FTIR analysis for YVO4:Eu3+ samples. 

Figure 7. FTIR spectra of YVO4:Eu3+ combustion samples. 

Figure 8.Thermogravimetric Analysis for YVO4:Eu3+ combustion sample. 

Figure 9.Emission spectra of YVO4:Eu3+ samples excited at 271 nm 

Figure 10. RL intensity of YVO4:Eu3+sample synthesized by combustion route at different annealing temperatures, 
normalized to the RL of the commercial sample. 

Figure 11. Radioluminescence signal from the YVO4:Eu3+ sample annealed at 1000°C and the commercial sample. 

Figure 12. CIE 1931 Diagram 

 

 

 



























Highlights 

Combustion route is a simple synthesis method to obtain YVO4:Eu
3+ 

nanoparticles. 

Radioluminescence  intensity is twice higher than that of microcrystalline sample. 

YVO4:Eu
3+ 

synthesized are suitable scintillators for Fiber Optic Dosimetry.  
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