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Abstract. We consider a large family of branching-selection particle systems. The branching rate
of each particle depends on its rank and is given by a function b defined on the unit interval. There
is also a killing measure D supported on the unit interval as well. At branching times, a particle is
chosen among all particles to the left of the branching one by sampling its rank according to D. The
measure D is allowed to have total mass less than one, which corresponds to a positive probability of
no killing. Between branching times, particles perform independent Brownian Motions in the real line.
This setting includes several well known models like Branching Brownian Motion (BBM), N -BBM,
rank dependent BBM, and many others. We conjecture a scaling limit for this class of processes and
prove such a limit for a related class of branching-selection particle system. This family is rich enough
to allow us to use the behavior of solutions of the limiting equation to prove the asymptotic velocity of
the rightmost particle under minimal conditions on b and D. The behavior turns out to be universal
and depends only on b(1) and the total mass of D. If the total mass is one, the number of particles in

the system N is conserved and the velocities vN converge to
√

2b(1). When the total mass of D is less
than one, the number of particles in the system grows up in time exponentially fast and the asymptotic
velocity of the rightmost one is

√
2b(1) independently of the number of initial particles.

1. Introduction

Branching-selection particle systems have been widely studied for a long time. They are useful to
model the evolution of a population under selection mechanisms but also in chemistry, physics and
other branches of biology since they are good microscopic versions for phenomena that at a large scale
show the propagation of a front between a stable and an unstable state. This is a common situation
in all these disciplines and many others.

Since the seminal paper by Brunet and Derrida [13], many models have been introduced to de-
scribe and understand the differences between microscopic and macroscopic models through heuristic
arguments, numerical simulations and rigorous proofs [8, 13, 14, 15, 16, 18, 22, 30, 31, 33].

Several properties of the system at the microscopic level have been conjectured -and sometimes
also proved- to be universal among theses models, like the shift in the velocity of the front and the
asymptotic expansion of the rate of convergence of the microscopic velocities to the macroscopic one.

In this article we introduce a family of models that can be considered to belong to the Brunet-
Derrida class and contain some well known models as particular instances. We prove the existence of
an asymptotic velocity for all of them and the convergence of these velocities to the universal constant√

2 as the number of particles increases to infinity. The main tool is a rigorous proof of the scaling
limit of suitable processes to an F-KPP type equation. The strategy of using the hydrodynamic limit
to get information about the particle system have been widely used in different contexts to understand
random walks and particle systems [1, 12, 25, 27].

The novelty here is that although we are not able to prove the scaling limit for all the instances
of the model, the class of processes for which we are able to prove it is rich enough to allow us to
show the convergence of the velocities in all the cases. In addition, we provide heuristic arguments to
conjecture the hydrodynamic equation for any choice of b and D. The hydrodynamic limit equation
encodes both F-KPP type equations as well as free-boundary problems like the ones in [8, 18, 27] as
particular cases, but also many others, including the possibility of non local terms.

1.1. (b,D)-Branching Brownian Motion. We first describe the model in words. The parameters
are a birth function b : [0, 1] → [0,∞) and a death probability measure supported on I := {−∞} ∪
[0, 1) defined through its cumulative distribution function D : R → [0, 1]. For simplicity, we assume
b(1) = 1. The evolution is given by a continuous-time Markov process that performs independent
Brownian Motions on the real line except at branching times, at which particles can branch into
two (reproduction) and can also be eliminated from the system (selection mechanism). At time
t = 0 we start with a deterministic number of particles N whose positions in the line may be given
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by any distribution on RN . Let Nt be the number of particles in the system at time t. We use
XN
t (1), . . . , XN

t (Nt) to denote their positions at that time. For j = 1, . . . , Nt, the particle with quantile

j branches into two particles at rate b
( j−1
Nt−1

)
. Hereafter we abuse a little bit and use the word quantile

as a synonym for order statistic. At the time a particle with quantile j branches, the particle with
quantile i ∈ {1, . . . , j− 1} is killed with probability D( i

j−1−)−D( i−1
j−1−). Observe that the number of

particles Nt is constant if D(−∞) = 0, but there is a positive probability of no killing at a branching
time if D(−∞) > 0. In that case the number of particles in the system increases exponentially fast.
The notations D(x−) and D(−∞) stand for limy↗xD(y) and limy→−∞D(y) respectively. A graphical
construction of the (b,D)-BBM is provided in the course of the proof of Proposition 4.2.

We will first discuss the relevance of this model and we will compare it with well known processes
in the Brunet-Derrida class that have been previously studied, some of which can be obtained as
particular instances for adequate choices of b and D. Then, we review the main properties of the
(b,D)-BBM when the number of particles is conserved, D(−∞) = 0. This is in the spirit of [21, 22, 27]
and there is no new ideas here. The important fact is that the process as seen from the tip is ergodic
and that this implies the existence of an asymptotic velocity vN > 0 for the cloud of particles,

lim
t→∞

t−1 max
1≤i≤N

XN
t (i) = vN .

Afterwards we study the scaling limit of the process as the number of initial particles N goes to
infinity. As a byproduct, we obtain the convergence of the velocities.

A proof of the scaling limit for general b and D is out of the scope of this paper. To get an idea of the
level of difficulty of the problem, it is worth to note that while for absolutely continuous (with respect
to Lebesgue) measures D we expect a nice reaction-diffusion equation, as in [27], while a free-boundary
is expected to be involved in the formulation of the hydrodynamic equation when D has an atom at
zero, as in N -BBM [8, 18]. The main obstacle is the lack of a proof of propagation of chaos for such
general b and D, but we will see that we can obtain nice bounds for the two-particle correlations for a
large class of processes that are related to any (b,D)-BBM. Once this is obtained, the control of the
variance of the empirical measures follows readily and with the help of proper comparison principles,
we can get our result.

This leads us to the following result.

Theorem 1.1. Let XN = {XN
t : t ≥ 0} be the (b,D)-BBM with arbitrary random initial condition

XN
0 ∈ RN . Suppose that there exists k ∈ N such that xk ≤ b(x) ≤ 1 and xk ≤ D(x) for every x ∈ [0, 1].

(1) If D(−∞) = 0, XN has a deterministic asymptotic velocity that depends only on the number
of particles N . There exists vN > 0 such that

lim
t→∞

t−1 max
1≤i≤N

XN
t (i) = vN a.s and in L1.

Furthermore,

lim
N→∞

vN =
√

2.

(2) If D(−∞) > 0, the asymptotic velocity of XN is
√

2 for every N ,

lim
t→∞

t−1 max
1≤i≤N

XN
t (i) =

√
2 a.s and in L1.

Remark 1.2. Since limk→∞ x
k = 0 for x ∈ [0, 1), the existence of such and integer k is a mild

requirement. The assumption b(1) = 1 is imposed just to normalize and can easily be removed. In

that case we need to assume b(1)xk ≤ b(x) instead and we get the asymptotic velocity
√

2b(1).

2. Relevance of the Model and Related Work

The (b,D)-BBM is a natural model for the evolution of a genetic trait in the presence of selection
and similar phenomena. In fact, it certainly fits in the spirit of all the models introduced by Brunet,
Derrida and coauthors in their seminal papers [13, 14, 15, 16]. We will see now that several models
that have been studied in the literature can be obtained as particular cases of the (b,D)-BBM for
adequate choices of b and D.

Before going into that, it is worth mentioning that systems of diffusing particles interacting through
their ranks have also attracted the attention of scientists in probability, finances and many other areas
[17, 19, 20, 28], and it is known that several common features appear in this type of systems.
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Also, branching-selection particle systems in which the rates depend on a fitness function have
been studied [5, 9], and precise information on their behavior have been proved. In these models
the fitness function depends on the absolute position of the particles rather than its relative one.
In [5] a branching rate depending on the position and the empirical measure is considered and the
hydrodynamic limit is obtained, but that setting is different to ours and also the technique. Finally,
the Brownian Bees model have been considered recently in [2, 7]. In this model particles perform
independent Brownian Motions in Rd and branch at rate one. At branching events the particle which
is the furthest away from the origin is removed. In [2] in fact the killed particle is the one which
is furthest from the barycenter instead of the origin and an invariance principle is obtained as the
number of particles goes to infinity, while in [7] the hydrodynamic limit is obtained for i.i.d. initial
conditions and, remarkably, also for the cloud of particles in equilibrium.

We list below the announced particular cases of the (b,D)-BBM:

(1) Taking b ≡ 1 and D = δ−∞, we get the BBM.
(2) The case b = 1(0,1] and D = δ0 resuts in the N -BBM [18, 30, 31].
(3) Taking b(s) = s andD = Unif([0, 1]), we recover the model introduced in [27], in which particles

diffuse as independent Brownian Motions. In addition every pair of particles is chosen at a
constant rate 1

N−1 and the leftmost one (among the chosen particles) jumps on top of the

rightmost one. In fact, the j-th quantile belongs to (j − 1) pairs in which a particle will

jump on top of it, so it branches at rate b
( j−1
N−1

)
= j−1

N−1 . On the other hand, conditioning on
the event that a particle with quantile j branches, the probability of a particle with quantile
i < j being part of the pair is uniform over the set {1, . . . , j − 1}. Namely, the probability is

D
( j
i−1

)
−D

( j−1
i−1

)
= 1

i−1 .

(4) b(s) ≡ 1 and D = Unif([0, ε]) leads to interesting models as well. On the one hand they can be
seen as smooth approximations of N -BBM, in the sense that the hydrodynamic equation has
no free-boundaries and is just an F-KPP type equation. On the other hand, if we allow ε to
be random (which is not considered in this article), we get slight modifications of the very well
known models of BBM with absorption [3, 10, 23, 33] by taking ε equal to the proportion of
particles below some barrier, and we get a variant of the L-BBM model considered in [15, 32]
for ε equal to the proportion of particles whose distance to the rightmost one is larger than L.

(5) b ≡ 1 and D(s) = 1−ks(1−s)k−1−(1−s)k for 0 ≤ s ≤ 1 gives another smooth approximation
of N -BBM as k → ∞. These approximations have been considered in [8] at the level of
the hydrodynamic equation to prove the existence of solution of the free-boundary problem
obtained as the scaling limit of N -BBM.

(6) If we take b(s) = 1{s > 1
2}, or any other piecewise constant function, and any choice for D, we

recover the model proposed in [5] replacing the mean by the median. Motivated by this model
the author studies the hydrodynamic limit of a related BBM with branching rates depending
on the position of the particle and the empirical measure in a specific way.

Let FN be the distribution function of the empirical measure of the particles XN
t (1), . . . , XN

t (Nt),
normalized by N ,

FN (t, x) =
1

N

Nt∑
i=1

1{XN
t (i) ≤ x}.

For t > 0 fixed, and assuming the convergence of the initial conditions, FN (t, ·) is expected to converge,
as N → ∞, to a cumulative distribution function U(t, ·) with density u(t, ·) and tail distribution
V (t, ·) = 1−U(t, ·). We describe below these scaling limits in some of the situations already mentioned.

In case (1), we get the heat equation with a source

∂tu =
1

2
∂xxu+ u,

and, by linearity, the same equation for U .
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In case (2), a free-boundary problem is obtained: find (u, L) such that

∂tu =
1

2
∂xxu+ u, t > 0, x ∈ (Lt,∞)

u(t, x) = 0, t > 0, x ∈ (−∞, Lt)ˆ ∞
Lt

u(t, x) dx = 1, t > 0,

see [8, 18, 22, 26, 29]. Equivalently, integrating with respect to the spatial variable, the following
equation was obtaind in [8] for the tail distribution: find (V,L) such that

∂tV =
1

2
∂xxV + V, t > 0, x ∈ (Lt,+∞)

V (t, x) = 1, t > 0, x ∈ (−∞, Lt), (2.1)

∂xV (t, Lt) = 0, t > 0.

For the case (3), in [27] the F-KPP was obtained for U :

∂tU =
1

2
∂xxU − U(1− U).

Differentiating with respect to the spatial variable readily gives the equation for the density u.
For the (b,D)-BBM —that contains all these cases— we expect, when D has density d, the hydro-

dynamic equation to have the form

∂tu =
1

2
∂xxu+ b(U)u− u

[ˆ 1

U
b(r)

1

r
d

(
U

r

)
dr

]
, t > 0, x ∈ R.

Here both u and U are evaluated at (t, x). This equation has the following interpretation in terms
of the rate at which particles are being created/eliminated at each position x ∈ R: the first term
corresponds to the diffusion of the particles; the second one follows since a particle at position x
branches at rate b(U(x)); finally, to explain the third one, we observe that for a particle at position
x being eliminated we need, on the one hand, a particle to its right (higher quantile) to branch and,
on the other hand, the involved particle to be chosen to die, this last choice being made through the
measure D rescaled to [0, r] when the branching particle is the r−th quantile. By changing variables,
we obtain the following formulation that does not require D to have a density:

∂tu =
1

2
∂xxu+ b(U)u− u

[ˆ 1

U
b

(
U

r

)
1

r
D(dr)

]
, t > 0, x ∈ R.

Integrating on both sides with respect to the spatial variable we get the equation

∂tV =
1

2
∂xxV +B(V )−G(V ), t > 0, x ∈ R

for the tail distribution V = 1− U . Here B(z) =
´ 1

1−z b(s) ds and G(z) =
´ 1

1−z
´ 1
s b
(
s
r

)
1
rD(dr) ds.

Taking b = 1(0,1] and D = δ0 we get G(z) = 1{z = 1}, resulting in

∂tV =
1

2
∂xxV + V − 1{V = 1}, t > 0, x ∈ R.

One can easily see that this equation has the same weak formulation than equations (2.1). Also in [8],
the authors obtain the solution to that problem as the limit as k →∞ of the solutions to problem

∂tVk =
1

2
∂xxVk + V − V k

k , for x ∈ R and t > 0,

which corresponds to taking b ≡ 1 and D′(x) = d(x) = dk(x) = k(k − 1)x(1 − x)k−2 for x ∈ [0, 1].
Then, the family of (b,D)-BBMs also contains a sequence of processes with parameters (1, Dk) that
converge to N -BBM not only at the level of the hydrodynamic equations but also at the level of
processes (i.e: Dk → δ0 as k →∞).
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3. Scaling Limit

As mentioned before, we are not able to prove the scaling limit of the (b,D)-BBM for general
(b,D); nevertheless, we can do it for a class of processes that is large enough to bound from below the
asymptotic velocities in the general case. This class has nonempty intersection with the (b,D)-BBM
family but non of them is contained in the other one. We think this result is of independent interest.

We introduce a process for which the number of particles N is conserved. Between branching
times, the particles diffuse as independent Brownian Motions. At rate λN , a subset of k elements
{`1, . . . , `k} ⊂ {1, . . . , N} is chosen uniformly at random. We suppose without loss of generality that
`1 < . . . < `k. Instantaneously, with probability p(i, j) the particle with quantile `i jumps on top of
the one with quantile `j . Here p is a probability on {(i, j) : 1 ≤ i < j ≤ k}. For technical reasons, we
allow particles to be located at −∞. We call (N, p)-BBM a process with this ditribution.

For a particle configuration ζ ∈ [−∞,∞)N , we consider the distribution function of the empirical

measure, Fζ(x) = 1
N

∑N
i=1 1{ζ(i) ≤ x}, x ∈ R. Let hp : [0, 1]→ R be the function defined by

hp(v) = λ
k−1∑
r=1

p̂(r)

(
k

r

)
vr(1− v)k−r,

where p̂(r) =
∑

i≤r
∑

j>r p(i, j). The coefficient p̂(r) represents the probability of a particle with
quantile smaller or equal than r jumping on top of a particle with quantile strictly larger than r. We
have the following hydrodynamic limit.

Theorem 3.1. Fix k ≥ 2, λ > 0 and a probability p = (p(i, j))1≤i<j≤k. For every N ≥ k, let

{Y N
t : t ≥ 0} be the (N, p)-BBM with parameters λ > 0 and p. Suppose that the initial distributions

satisfy

lim
N→∞

‖FY N
0
− U0‖∞ = 0 in probability,

being U0 the distribution function of a probability on [−∞,∞). Then, for every t > 0,

lim
N→∞

‖FY N
t
− U(t, ·)‖∞ = 0 in probability, (3.1)

where U is the unique bounded solution of the F-KPP equation

∂tU = 1
2∂xxU − hp(U), (3.2)

U(0, ·) = U0.

We list below some interesting particular cases of the (N, p)-BBM and their hydrodynamic equa-
tions.

(1) The particle with quantile k − 1 deterministically jumps on top of the one with quantile k.
This corresponds to p(i, j) = 1{i = k − 1}1{j = k}, leading to p̂(r) = 1{r = k − 1} and
hp(v) = λkvk−1(1− v). If we take λ = 1

k , (3.2) reads

∂tU = 1
2∂xxU − U

k−1(1− U).

This case is important because we are going to bound any (b,D)-BBM by one of this processes
by choosing k large enough. Observe that for k = 2 the standard F-KPP equation is obtained.
This scaling limit has been proved in [27].

(2) The particle with smallest position jumps on top of the one with largest position, i.e. p(i, j) =
1{i = 1}1{j = k}. This results in p̂(r) = 1 for every 1 ≤ r ≤ k − 1, and hp(v) = λ(1 − vk −
(1− v)k). Taking λ = 1 we obtain the equation

∂tU = 1
2∂xxU − (1− Uk − (1− U)k).

In the limit as k →∞ we get the free-boundary problem

∂tU = 1
2∂xxU − 1{0 < U < 1}.

(3) The particle with smallest position jumps on top of a uniformly chosen one. This is p(i, j) =
1

k−1 1{i = 1}, giving p̂(r) = (k − r)/(k − 1). Taking λ = 1, we obtain

∂tU = 1
2∂xxU − (1− U − (1− U)k).

As already mentioned, this equation has been used in [8] as a smooth approximation to prove
the existence of solution of the concerned free-boundary problem. Observe that if we take
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k = N (allowing k to depend on N , which is not covered in out theorem), we obtain the
N -BBM.

(4) Fix a continuous function h : [0, 1] → [0,∞) satisfying h(0) = h(1) = 0 and h(v) > 0 for
v ∈ (0, 1). For every ε > 0 there exists k ∈ N such that the k-th Bernstein’s polynomial

hk(u) =
k−1∑
r=1

h
( r
k

)(k
r

)
ur(1− u)k−r

satisfies ‖h−hk‖∞ < ε. Taking λ =
∑k−1

r=1 h( rk ) and p(i, j) = λ−11{j = i+1}h( ik ), 1 ≤ i ≤ k−1,
we obtain a particle system whose hydrodynamic limit approximates as well as desired the F-
KPP equation

∂tU =
1

2
∂xxU − h(U).

That is, the family of sources hp produced by this model is dense in the set of continuous functions
from [0, 1] to R≥0 that vanishes at the boundary.

Once the hydrodynamic limit is established, we follow a strategy previously used in [12] to bound
from below the asymptotic velocities vN in terms of the minimal velocity of the limiting equation.
The details are given in sections 5 and 6. The upper bound is obtained straightforwardly by means
of a standard BBM.
Graphical Construction. We end this section with a graphical construction of the (N, p)-BBM. Fix
k ∈ N, λ > 0 and p = (p(i, j))1≤i<j≤k as in Section 3. For every N ≥ k, we introduce the following
three elements:

i. a random initial configuration Y N
0 ∈ [−∞,∞)N ,

ii. an N -dimensional Brownian Motion BN = (BN
t (1), . . . , BN

t (N))t≥0,
iii. a marked Poisson process (TN , SN , RN ) = {(TNn , SNn , RNn ) : n ∈ N}.

These random objects are assumed to be defined in the same probability space and for fixed N are
assumed to be independent. The marks TN1 < TN2 < . . . are given by a Poisson point process of
intensity λN in [0,∞) and represent the jumping times. The second coordinates SN1 , S

N
2 . . . are k-

tuples of the set of quantiles {1, . . . , N} chosen at random uniformly. Finally, RNn is a random pair
(i, j) with 1 ≤ i < j ≤ k chosen with law p. The (N, p)-BBM Y N = {Y N

t : t ≥ 0} is constructed
as a deterministic function of the triple i -iii. Inductively, suppose Y N has been defined in the time
interval [0, TNn−1] for n ≥ 1 (we use the convention TN0 = 0), and set Y N

t = Y N
TN
n−1

+ BN
t − BN

TN
n−1

for

TNn−1 < t < TNn , and Y N
Tn

= ΓSN
n (RN

n )(Y
N
Tn
−). Here we are using the notation Γij defined in (4.1) and

the following convention: if SNn = {`1, . . . , `k} with `1 < . . . < `k, then SNn (i, j) = (`i, `j).

4. Mass-transport Comparison

In this section we consider an extension of the (b,D)-BBM, that we call the (b,D)-BBM. The
difference is that, instead of a sole probability D, the (b,D)-BBM is constructed in terms of a sequence
of probabilities D = (Dj)j∈N. Also particles are allowed to be located at −∞. All the processes
appearing in this paper are (b,D)-BBMs. Proposition 4.2, that gives conditions under which two
(b,D)-BBMs are comparable in the mass-transport sense, allows us to dominate any (b,D)-BBM
satisfying the hypotheses of Theorem 1.1 from below and above by treatable processes.

We start with some basic facts about deterministic particle configurations. For a configuration
ζ = (ζ(1), . . . , ζ(N)) ∈ [−∞,∞)N , we use σζ to denote the permutation on the labels that sorts the
particles, using the labels to break ties, i.e. σζ(i) denotes the label of the i-th quantile of ζ, and is
defined as the only one satisfying the following conditions,

i. ζ(σζ(i)) ≤ ζ(σζ(j)) if i < j;
ii. σζ(i) < σζ(j) if ζ(σζ(i)) = ζ(σζ(j)) and i < j.

We simplify the notation by writing ζ[i] instead of ζ(σζ(i)). For 1 ≤ i, j ≤ N , let Γij(ζ) be the
configuration obtained from ζ by putting the particle with quantile i on top of the one with quantile
j,

Γij(ζ) = η, with η(σζ(i)) = ζ[j] and η(`) = ζ(`), ` 6= σζ(i). (4.1)
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For x ∈ [−∞,∞), let Ax(ζ) = (ζ(1), . . . , ζ(N), x) be the append operator. If N ≥ 2, for j ∈
{1, . . . , N}, let Tj(ζ) = (ζ(1), . . . , ζ(σζ(j) − 1), ζ(σζ(j) + 1), . . . , ζ(N)) ∈ [−∞,∞)N−1 be the trim
operator that removes the label corresponding to the j-th quantile.

For particle configurations ζ ∈ [−∞,∞)N and ζ ′ ∈ [−∞,∞)N
′
, we say that ζ is dominated by ζ ′

in the mass-transport sense, and write ζ 4 ζ ′, if

N∑
i=1

1{ζ(i) > x} ≤
N ′∑
i=1

1{ζ ′(i) > x} ∀x ∈ [−∞,∞).

We present the following lemma without proof.

Lemma 4.1. Fix ζ ∈ [−∞,∞)N and ζ ′ ∈ [−∞,∞)N
′
.

(1) The following conditions are equivalent:
(a) ζ 4 ζ ′;
(b) N ≤ N ′ and ζ[i] ≤ ζ ′[i+N ′ −N ] for every i ∈ {1, . . . , N};
(c) N ≤ N ′ and there exists κ : {1, . . . , N} → {1, . . . , N ′} injective such that ζ(i) ≤ ζ ′(κ(i))

for every i ∈ {1, . . . , N}.
(2) ζ 4 Ax(ζ) for every x ∈ [−∞,∞).
(3) For 1 ≤ i < j ≤ N , ζ 4 Γij(ζ).
(4) If ζ 4 ζ ′, the following properties hold:

(a) Ax(ζ) 4 Ax′(ζ ′) for every −∞ ≤ x ≤ x′ <∞;
(b) Ti(ζ) 4 Ti+N ′−N (ζ ′) for every i ∈ {1, . . . , N};
(c) if for i, j ∈ {1, . . . , N} we call i′ = i+N ′−N and j′ = j+N ′−N , then Γij(ζ) 4 Γi′j′(ζ

′).

The first statement says that ζ 4 ζ ′ if and only if ζ can be embedded into ζ ′ by a transformation
that moves each particle to the right. Items 2 and 3 mean that the particle configuration increases if
a particle is added or if a particle jumps to the right. Item 4 says that the order is preserved if we
add a particle, if we remove one particle, or if a particle jumps on top of another one, provided the
involved particles are properly chosen.

Unlike the (b,D)-BBM, the (b,D)-BBM that we define now allows the killing probability to depend
on the quantile of the branching particle. Between jumping times, particles move as independent
Brownian Motions, and the quantile j of the branching particle is determined in terms of b as before.
If j = 1, the quantile of the particle that is going to be killed is chosen to be i = −∞ (no killing).
If otherwise j > 1, we have i = −∞ with probability Dj−1(−∞) and for 1 ≤ i′ < j, i = i′ with

probability Dj−1

(
i′

j−1 −
)
−Dj−1

(
i′−1
j−1 −

)
. Of course the (b,D)-BBM is a (b,D)-BBM with Dj = D

for every j ∈ N.
Let X and X

′
be a (b,D)-BBM and a (b′,D′)-BBM respectively. We omit writing the superscripts

indicating the initial number of particles when no confusion can arise. We say that (the initial

condition) X0 is stochastically dominated by X
′
0, and write X0 ≤st X

′
0, if they can be coupled in

such a way that X0 4 X
′
0 almost surely. We say that the process X is stochastically dominated by

X
′
, and write X ≤st X

′
, if they can be coupled in such a way that almost surely Xt 4 X

′
t for every

t ≥ 0.

Proposition 4.2. Suppose that b and b′ satisfy b(x) ≤ b′(x′) if x ≤ x′. Suppose further that D =

(Dj)j∈N and D′ = (D′j)j∈N are such that, for every j, j′ ∈ N, Dj ≤ D′j′ pointwise. Let X and X
′

be

a (b,D)-BBM and a (b′,D′)-BBM respectively with random initial conditions satisfying X0 ≤st X
′
0.

Then X ≤st X
′
.

Observe that the hypotheses over b and b′ are satisfied if any of the following two conditions hold:

i. b is non-decreasing and b ≤ b′ pointwise.
ii. supx∈[0,1] b(x) ≤ infx∈[0,1] b

′(x).

Proof. Let N,N ′ be total number of particles in X0, X
′
0 respectively. Lemma 4.1 implies N ≤ N ′.

For every j ∈ {1, . . . , N}, call j′ = j + N ′ − N . Consider exponential random variables {W` : ` ∈
{1, . . . , N}} and {W′` : ` ∈ {1, . . . , N ′}} such that W` has rate b( `−1

N−1) for every ` ∈ {1, . . . , N} and

W′` has rate b′( `−1
N ′−1) for every ` ∈ {1, . . . , N ′}. Since b( j−1

N−1) ≤ b′( j
′−1

N ′−1) for every j ∈ {1, . . . , N},
we can couple them in such a way that, for every j ∈ {1, . . . , N}, Wj ≥ W′j′ . To be precise, let

X1, . . . ,XN ′ be independent two-dimensional Poisson point process of intensity 1, and define W′` =
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inf{z > 0 :
(
[0, z] × [0, b′( `−1

N ′−1)]
)
∩ X` 6= ∅} for 1 ≤ ` ≤ N ′ − N , and Wj = inf{z > 0 :

(
[0, z] ×

[0, b( j−1
N−1)]

)
∩ Xj′ 6= ∅} and W′j′ = inf{z > 0 :

(
[0, z] × [0, b′( j

′−1
N ′−1)]

)
∩ Xj′ 6= ∅} for j ∈ {1, . . . , N}.

Call τ ′ = min`∈{1,...,N ′}W
′
`. In the time interval [0, τ ′), we couple the Brownian displacements in such

a way that Xt(σX0(j)) − X ′t(σX′0(j′)) = X0[j] − X ′0[j′] for every j ∈ {1, . . . , N} and every t ∈ [0, τ ′)

(we are coupling the trajectories of the N labels that are at the rightmost positions at time t = 0).
Item (1) of Lemma 4.1 readily implies Xt 4 X ′t for every t ∈ [0, τ ′).

The particle configurations Xτ ′ and X ′τ ′ will be constructed from a case-dependent modification of
Xτ ′− and X ′τ ′−. By an iterative argument, we can conclude once we have proven that Xτ ′ 4 X ′τ ′ . Let
l′ = arg min{W′` : ` ∈ {1, . . . , N ′}}. We split into cases:

(1) If l′ ≤ N ′ −N , we set Xτ ′ = Xτ ′−, and use D′l′−1 to obtain X ′τ ′ from X ′τ ′−. Items 2 and 3 of
Lemma 4.1 guarantee that X ′τ ′− 4 X

′
τ ′ , implying Xτ ′ 4 X ′τ ′ .

(2) If l′ > N ′ −N , we split again into two subcases:
(i) If Wl >W′l′ (l = l′ − (N ′ −N)) we proceed as before. We set Xτ ′ = Xτ ′−, and use D′l′−1

to modify X ′τ ′− and obtain X ′τ ′ with Xτ ′ 4 X ′τ ′ .

(ii) If Wl = W′l′ , call η = Xτ ′− and η′ = X ′τ ′−. Let ξ ∈ [−∞,∞)l−1 (resp. ξ′ ∈ [−∞,∞)l
′−1)

be the particle configuration obtained from η (resp. from η′) after removing the N −
(l − 1)(= N ′ − (l′ − 1)) right-most particles. We are removing the particles η[l], . . . , η[N ]
(resp. η′[l′], . . . , η′[N ′]). We proceed to couple the quantiles of the particles that are going
to be killed. For a distribution function D on [−∞,∞), consider the generalized inverse
D−1 : [0, 1]→ [−∞,∞) defined by

D−1(y) = inf{x ∈ R : D(x) ≥ y}.

If U is a random variable uniformly distributed in [0, 1], then the (extended) random
variable D−1(U) has law D. The quantiles m and m′ are defined by

m =−∞ · 1{D−1
l−1(U) = −∞}

+

l−1∑
i=1

i · 1
{
i−1
l−1 ≤ D

−1
l−1(U) < i

l−1

}
m′ =−∞ · 1{(D′l′−1)−1(U) = −∞}

+
l′−1∑
i=1

i · 1
{
i−1
l′−1 ≤ (D′l′−1)−1(U) < i

l′−1

}
,

with the convention −∞ · 0 = 0. Next we prove that m′ ≤ m + N ′ − N . If m = −∞
then D−1

l−1(U) = −∞, that implies (D′l′−1)−1(U) = −∞ since Dl−1 ≤ D′l′−1 pointwise. So

m′ = −∞ and the desired inequality holds. If m 6= −∞, we have

D−1
l−1(U) <

m

l − 1
≤ m+ (l′ − l)
l − 1 + (l′ − l)

=
m+ l′ − l
l′ − 1

,

implying (D′l′−1)−1(U) < m+l′−l
l′−1 (again because Dl−1 ≤ D′l′−1 pointwise). So m′ ≤

m+ l′− l = m+N ′−N . Let θ and θ′ be the particle configurations obtained respectively
from ξ and ξ′ after removing the quantiles m and m′. Item (4) in Lemma 4.1 implies the
dominance θ 4 θ′. Finally, let γ (resp. γ′) be the configuration obtained from θ (resp. θ′)
after (a) adding the N − (l − 1) particles that have been removed in the transformation
from η to ξ (resp. from η′ to ξ′), and (b) adding an extra particle at position η[l] (resp.
η′[l′]). Again item (4) in Lemma 4.1 implies γ 4 γ′. Since γ = Xτ ′ and γ′ = X ′τ ′ .

The proof is now complete. �

A Lower Bound. We end this section showing that under minimal assumptions on b and D, the
(b,D)-BBM can be bounded from below by an (N, p)-BBM with and adequately chosen p.

Proposition 4.3. Assume D(x) ≥ xk−1 and b(x) ≥ xk−1 for all 0 ≤ x ≤ 1. Let XN be a (b,D)-
BBM and Y N an (N, p)-BBM with p(i, j) = 1{i = k − 1, j = k} and λ = 1/k. If Y N

0 ≤st XN
0 then

Y N ≤st XN .



BRUNET-DERRIDA PARTICLE SYSTEMS 9

Proof. The key observation is that Y N can be thought as a (b̂, D̂)-BBM with the proper choice of b̂

and D̂. Observe that in the (N, p)-BBM, all the quantiles with j ≤ k − 1 do not branch. If j ≥ k, in
order to have a branch at quantile j we need to choose a k-tuple such that j is the largest quantile in
it. Hence its branching rate is given by

N

k

(
j−1
k−1

)(
N
k

) =
j − 1

N − 1

j − 2

N − 2
. . .

j − (k − 1)

N − (k − 1)
=: λj .

Given the event that quantile j ≥ k has a branch, the probability of a quantile smaller or equal
than i ∈ {k − 1, . . . , j − 1} being killed is(

i
k−1

)(
j−1
k−1

) =
i

j − 1

i− 1

j − 2
. . .

i− (k − 2)

j − (k − 1)
=: qij ,

and zero if i < k − 1. Define

b̂(x) = λN 1{x = 1}+

N−1∑
j=k

λj 1{ j
N−1 ≤ x <

j+1
N−1}

and

D̂j−1(x) =

j−1∑
i=k−2

qij 1{ i
j−1 ≤ x <

i+1
j−1}+ 1{x ≥ 1}.

Under these definitions, it is easy to check that Y N is a (b̂, D̂)-BBM with D̂ = (D̂j)j∈N. Since

λj ≤ ( j−1
N−1)k−1 and qij ≤ ( i

j−1)k−1, we get b̂(x) ≤ xk−1 ≤ b(x) and D̂i(x) ≤ xk−1 ≤ D(x) for

0 ≤ x ≤ 1. We can apply Proposition 4.2 to conclude. �

5. Hydrodynamics for the (N, p)-BBM

We now prove Theorem 3.1. We stress that the time t > 0 is fixed during all the proof. In this
section we use FN for,

FN (t, x) =
1

N

N∑
i=1

1{Y N
t (i) ≤ x}.

Since U(t, ·) is continuous, convergence (3.1) is equivalent to

lim
N→∞

FN (t, x) = U(t, x) in probability,

for every x ∈ R. For ε > 0, we have

P(|FN (t, x)− U(t, x)| > ε) =

ˆ
νN (dζ)Pζ(|FN (t, x)− U(t, x)| > ε), (5.1)

where νN is the distribution of Y N
0 on [−∞,∞)N and Pζ(·) = P(·|Y N

0 = ζ). For every ζ ∈ [−∞,∞)N ,
let Uζ be the unique bounded solution to

∂tUζ = 1
2∂xxUζ − hp(Uζ),

Uζ(0, ·) = Fζ .

Splitting into the cases |Uζ(t, x)−U(t, x)| > ε
2 and |Uζ(t, x)−U(t, x)| ≤ ε

2 , (5.1) can be bounded from
above by ˆ

νN (dζ)Pζ(|FN (t, x)− Uζ(t, x)| > ε
2)

+

ˆ
νN (dζ) 1{|Uζ(t, x)− U(t, x)| > ε

2}. (5.2)

The second term in (5.2) vanishes due to our assumptions and Theorem A.3. For (s, y) ∈ [0,∞)× R,
let UNζ (s, y) = Eζ(FN (s, y)), being Eζ the expectation with respect to Pζ . Splitting into the cases
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|FN (t, x)− UNζ (t, x)| > ε
4 and |FN (t, x)− UNζ (t, x)| ≤ ε

4 , and using Tchebyshev’s inequality, the first

term in (5.2) can be bounded by

16
ε2

ˆ
νN (dζ) [Eζ(FN (t, x)2)− UNζ (t, x)2]

+

ˆ
νN (dζ) 1{|UNζ (t, x)− Uζ(t, x)| > ε

4}. (5.3)

The first term in this expression vanishes due to the next result and the dominated convergence
theorem.

Lemma 5.1 (Propagation of Chaos). For every t ≥ 0 and ` ∈ N there is a constant C > 0 such that,

sup
ζ∈[−∞,∞)N

sup
(s,x)∈[0,t]×R

|Eζ(FN (s, x)`)− UNζ (s, x)`| ≤ C

N
.

We now turn to control the second term in (5.3).

Lemma 5.2. Let hNp : [0, 1]→ R be the function defined by

hNp (u) = λ

k−1∑
r=1

p̂(r)

(
k

r

)
wNr (u),

with

wNr (u) =

[
r−1∏
`=0

(u− `
N )

](k−r)−1∏
`=0

(1− u− `
N )

[k−1∏
`=0

N
N−`

]
.

Then, for every ζ ∈ [−∞,∞)N , UNζ verifies

∂tU
N
ζ = 1

2∂xxU
N
ζ − Eζ [hNp (FN )], (5.4)

UNζ (0, ·) = Fζ .

Equation (5.4) can be written as

∂tU
N
ζ = 1

2∂xxU
N
ζ − hp(UNζ ) + EN1,ζ + EN2,ζ

with the errors defined as

EN1,ζ = hp(U
N
ζ )− Eζ(hp(FN ))

EN2,ζ = Eζ(hp(FN ))− Eζ(hNp (FN )).

The comparison principle Theorem A.3 allows us to conclude once we prove that

lim
N→∞

sup
(s,y)∈[0,t]×R

|EN`,ζ(s, y)| = 0, ` = 1, 2.

The case ` = 1 follows by Lemma 5.1, while for ` = 2 the limit holds since

lim
N→∞

‖hNp − hp‖∞ = 0.

To see why this is true observe that it is enough to prove uniform convergence of each wNr , which
is a consequence of the uniform convergence of each factor. Heuristically, we are approximating the
sampling of k particles without replacement hNp , by sampling with replacement hp, which certainly
holds in the limit N →∞.

Proof of Lemma 5.2. Fix s ∈ (0, t] and, for ` ∈ {1, . . . , N}, call

q`(s, x) = Pζ [Y N
s (`) ≤ x].

We consider the cases TN1 > s and TN1 ≤ s (recall the graphical construction of Section 3) to get

q`(s, x) = e−λNs
ˆ ∞
−∞

Φ(s, x− y)1{y ≥ ζ(`)}dy

+ Eζ
[
1{Y N

s (`) ≤ x}1{TN1 ≤ s}
]
. (5.5)
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Here Φ is the Gaussian kernel

Φ(s, z) =
1√
2πs

e−
z2

2s . (5.6)

Let TN∗ be the last jump before s. Conditioning first on TN∗ , which has law λNe−λN(s−r)1{r < s} dr,
and then on x− [BN

s (`)−BN
TN
∗

(`)], which has law (given TN∗ = r) Φ(s− r, x− y) dy, the second term

in the right-hand side of(5.5) can be written asˆ s

0
λNe−λNrg(r) dr, (5.7)

where g(r) is defined by formulaˆ ∞
−∞

Φ(s− r, x− y)Pζ(Y N
s (`) ≤ x|TN∗ = r,BN

s (`)−BN
r (`) = x− y) dy.

Observe that

Eζ(Y N
s (`) ≤ x|TN∗ = r,BN

s (`)−BN
r (`) = x− y)

=

ˆ
dS

∑
1≤i<j≤k

p(i, j)Pζ [ΓS(i,j)(Y
N
r )(`) ≤ y] =: g`(r, y),

where dS is the law of a k-tuple uniformly chosen at random (for a k-tuple S, recall the definition of
S(i, j) given in Section 3). Plugging-in (5.7), we obtain

q`(s, x) =

ˆ ∞
−∞

G(s, x− y)1{y ≥ ζ(`)}dy

+

ˆ s

0

ˆ ∞
−∞

G(s− r, x− y)λNg`(r, y) dy dr,

where G(r, z) = e−λNrΦ(r, z) is the Green kernel associated to equation

∂tV = 1
2∂xxV − λNV.

Since s ∈ (0, t] is arbitrary, we conclude (see Appendix A) that q` solves

∂tq` = 1
2∂xxq` − λN(q` − g`),

q`(0, x) = 1{x ≥ ζ(`)}.

Summing over ` ∈ {1, . . . , N} and dividing by N , we get

∂tU
N
ζ = 1

2∂xxU
N
ζ − λN

(
UNζ −

1

N

N∑
`=1

g`

)
, (5.8)

UNζ (0, ·) = Fζ .

Observe that

1

N

N∑
`=1

g`(s, x) =

ˆ
dS

∑
1≤i<j≤k

p(i, j)Eζ [FΓS(i,j)(Y
N
s )(x)].

For fixed S, (i, j) and writing Fij(x) for FΓS(i,j)(Y
N
s )(x), we have

Eζ [Fij(x)] =

N∑
m=0

Eζ [Fij(x)|FN (s, x) = m
N ]Pζ [FN (s, x) = m

N ].

On the event FN (s, x) = m
N , we have Fij(x) = m−1

N if a particle jumps over x, and Fij(x) = m
N

otherwise. Then ˆ
dS

∑
1≤i<j≤k

p(i, j)Eζ [FΓS(i,j)(Y
N
s )(x)|FN (s, x) = m

N ]

=
m− 1

N
pN,m +

m

N
(1− pN,m) =

m

N
−
pN,m
N

,
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where

pN,m =
k∑
r=0

(
m
r

)(
N−m
k−r

)(
N
k

) p̂(r)

is the probability of such a jump (
(
a
b

)
is assumed to be zero for a < b). Then

1

N

N∑
`=1

g`(s, x) =

N∑
m=0

m

N
Pζ [FN (s, x) = m

N ]−
N∑
m=0

pN,m
N

Pζ [FN (s, x) = m
N ]

= UNζ (s, x)−
N∑
m=0

pN,j
N

Pζ [FN (s, x) = m
N ].

Then the second term in the right-hand side of (5.8) can be written as

λ
N∑
m=0

pN,mPζ [FN (s, x) = m
N ].

We conclude by observing that λpN,m = hNp (mN ). �

6. Limiting velocity for (N, p)-BBM

Take k ≥ 2, λ > 0 and p = (p(i, j))1≤i<j≤k as before, and let

i0 = min{i : p(i, j) > 0 for some j} − 1.

We will construct an auxiliary Markov process ZN = {ZNt : t ≥ 0} with state-space RN−i0 as a
function of the (N, p)-BBM and the initial condition ZN0 . Consider the (N, p)-BBM Y N with initial
condition

Y N
0 (i) =

{
−∞ if 1 ≤ i ≤ i0
ZN0 (i− i0) if i0 < i ≤ N

,

and set

ZNt = (Y N
t (i0 + 1), . . . , Y N

t (N))

for t > 0. That is, ZN is the projection of Y N over the N − i0 right-most particles, those that really
play a role. The Markovian property of ZN follows because, in the process Y N , a particle located at
−∞ is never involved in a jump. Particles with label smaller or equal than i0 in Y N remain at −∞
for every time. Observe that if there exists j for which p(1, j) > 0 then ZN is simply Y N . For fixed
N , the process ZN has a well defined velocity:

Proposition 6.1. For every N , there exists wN ∈ R such that, for every random initial distribution
ZN0 ∈ RN−i0, the limits

lim
t→∞

1

t
ZNt [1] = lim

t→∞

1

t
ZNt [N − i0] = lim

t→∞

1

t
Y N
t [N ] = wN

hold a.s. and in L1.

Proof. The result is a consequence of Liggett’s subadditive ergodic theorem. Since it is standard, we
omit its proof and refer to [6, 22, 27] for details. The key requirement is that, if we run the process
until the m-th jumping time Tm, restart it with the N − i0 particles at the position of the rightmost
one at that time, and run it until we have another n extra jumps, then the resulting configuration
dominates the configuration we would get by running the process until the (m+ n)-th jumping time.
We only point out that this requirement follows as an immediate consequence of Theorem 4.2 and the
fact that the (N, p)-BBM is a (b,D)-BBM. �

We now prove the lower bound for the velocities.

Proposition 6.2. The limiting velocity wN of the right-most particle of the (N, p)-BBM satisfies

lim inf
N→∞

wN ≥ c∗. (6.1)

Here c∗ > 0 is the minimal velocity of equation (3.2), see Appendix A.
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Remark 6.3. It is well known that c∗ ≥
√
−2h′p(1). Since −h′p(1) = λkp̂(k − 1), where p̂(k − 1) is

the probability of having a particle jumping on top of the rightmost one in th k−tuple at a branching-
selection event, this bound has a natural interpretation in terms of the parameters of the model.
Observe that it is not sharp in many cases, for example when p̂(k − 1) = 0. But it is good enough in
several situations as we will see.

To prove Proposition 6.2 we follow a strategy recently used in [27]. Let ẐN = {ẐNt : t ≥ 0} be the
process ZN as seen from its leftmost particle,

ẐNt (i) = ZNt [i+ 1]− ZNt [1], i ∈ {1, . . . , N − i0 − 1}, t ≥ 0.

We will make use of its stationary distribution.

Proposition 6.4. The process ẐN has a unique stationary distribution ν̂N .

Proof. The result follows by showing that the process is Harris recurrent. The proof is very similar to
the one of [27, Theorem 2.3] for the special case k = 2, so we omit it. �

Let νN := δ0 ⊗ ν̂N and for t ≥ 0 let

MN
t :=

1

N − i0

N−i0∑
i=1

ZNt (i),

be the empirical mean of ZNt . The following result gives a formula for the velocity in term of the
empirical mean.

Proposition 6.5 ([27, Theorem 2.3]). For every t > 0,

wN =
d

dt
EνN [MN

t ].

Since for every particle configuration ζ ∈ RN−i0 we have

1

N − i0

N−i0∑
i=1

ζ(i) =

ˆ ∞
0

1− Fζ(x) dx−
ˆ 0

−∞
Fζ(x) dx,

if we call GN the distribution function of the empirical law of ZN , we have

EνN [MN
t ] =

ˆ ∞
0

EνN [1−GN (t, x)] dx−
ˆ 0

−∞
EνN [GN (t, x)] dx.

We can take derivatives with respect to t to get

d

dt
EνN [MN

t ] = −
ˆ ∞
−∞

∂tEνN [GN (t, x)] dx.

Using that

GN (t, x) =
N

N − i0
FN (t, x)− i0

N − i0
,

where FN is the distribution function associated to the empirical law of Y N , we have proven that

wN = − N

N − i0

ˆ ∞
−∞

∂tEµN [FN (t, x)] dx (6.2)

for every t > 0, where µN is the distribution in [−∞,∞)N obtained by fixing the first i0 labels at −∞
and drawing the remaining N − i0 ones with νN .

Before continuing, we need the following monotonicity result, whose proof is also in [27].

Proposition 6.6 ([27, Lemma 4.1]). If Y and Y ′ are (N, p)-BBMs satisfying

Y0[i+ 1]− Y0[i] ≤st Y ′0 [i+ 1]− Y ′0 [i]

for every i ∈ {1, . . . , N − 1}, then

Yt[i+ 1]− Yt[i] ≤st Y ′0 [i+ 1]− Y ′0 [i]

for every i ∈ {1, . . . , N − 1} and every t > 0.
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For every nonnegative function g : [0, 1]→ [0,∞),

Eζ
(ˆ ∞
−∞

g(FN (t, x)) dx
)

=

N−1∑
i=i0

g
(
i
N

)
Eζ(Y N

t [i+ 1]− Y N
t [i])

holds for any ζ ∈ [−∞,∞)N , so

Eζ′
[ˆ ∞
−∞

g(FN (t, x)) dx
]
≥ Eζ

[ ˆ ∞
−∞

g(FN (t, x)) dx
]

if ζ ′ < ζ. We use this fact with g = hNp and Lemma 5.2 to get

−
ˆ ∞
−∞

∂tEµN [FN (t, x)] dx = −
ˆ ˆ ∞

−∞
∂tEζ [FN (t, x)] dxµN (dζ)

=

ˆ
Eζ
[ ˆ ∞
−∞

hNp (FN (t, x))
]

dxµN (dζ)

≥ Eζ0
[ˆ ∞
−∞

hNp (FN (t, x)) dx
]

for ζ0 defined as

ζ0(i) =

{
−∞ if i ≤ i0
0 if i > i0.

This inequality and (6.2) reduces (6.1) to proving that

lim inf
N→∞

Eζ0
[ ˆ ∞
−∞

hNp (FN (t0, x)) dx
]
≥ c∗ (6.3)

holds for some t0 > 0. Let U0 be the solution to the F-KPP equation (3.2) with initial condition given
by the heavyside function 1[0,∞), let Mt be the median of U0(·, t), and let Wc∗ be the minimal velocity
wavefront. From (A.3) and (A.4) it follows that, given ε > 0, we can fix t0 > 0 and R > 0 such thatˆ Mt0+R

Mt0−R
hp(U

0(t0, x)) dx ≥ c∗ − ε.

Under this choice, the expectation on the l.h.s. of (6.3) is bounded from below by

Eζ0
( ˆ Mt0+R

Mt0−R
hNp (FN (t, x)) dx

)
−
ˆ Mt0+R

Mt0−R
hp(U

0(t0, x)) dx+ c∗ − ε.

The difference between the first two terms is less or equal thanˆ Mt0+R

Mt0−R
Eζ0(|hNp (FN (t0, x))− hp(FN (t0, x))|) dx

+

ˆ Mt0+R

Mt0−R
Eζ0(|hp(FN (t0, x))− hp(U0(t0, x))|) dx.

The first term vanishes due to the uniform convergence hNp → hp. Since hp is Lipschitz continuous,
the second term is less or equal than

2CREζ0(‖FN (t0, ·)− U0(t0, ·)‖∞),

for some C > 0, which vanishes due to Theorem 3.1.

7. Proof of Theorem 1.1

We now prove the asymptotic behavior of the velocities for arbitrary b and D, Theorem 1.1. The
upper bound is easily obtained in terms of a (rate 1) BBM. If X̃N is a BBM and XN is a (b,D)-

BBM satisfying the hypotheses of Theorem 1.1 and XN
0 ≤st X̃N

0 , then XN ≤st X̃N . In fact, observe

that X̃N is a (b̃, D̃)-BBM with b̃ ≡ 1 and D̃j = δ−∞ for every j ∈ N. Hence this is an immediate

consequence of Theorem 4.2. Since the rightmost particle of X̃N has velocity
√

2, this readily implies

lim sup
t→∞

1

t
XN
t [Nt] ≤

√
2 a.s.
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To prove the lower bound, we first deal with case (1), D(−∞) = 0. Let Y N be an (N, p)-BBM with
parameters p(i, j) = 1{i = k − 1, j = k}, λ = 1/k, and initial distribution Y N

0 =XN
0 . Proposition 4.3

implies that for k large enough Y N ≤st XN , so

vN = lim
t→∞

1

t
XN
t [N ] ≥ lim

t→∞

1

t
Y N
t [N ] = wN a.s.,

the existence of the first limit following as in the proof of Proposition 6.1. Observe that in this case
we have h′p(v) ≥ h′p(1) = −1 for every v ∈ (0, 1), so the minimal velocity of the F-KPP equation with

source hp is c∗ =
√

2 (see Section A). It only remains to let N → ∞ and use Proposition 6.2 to get
the result.

For case (2), D(−∞) > 0, for any N̂ ∈ N, we define the stopping time τ by

τ = inf{t ≥ 0 : Nt = N̂},

which is finite almost surely. Let X̂N̂ be a (b,D)-BBM with random initial distribution X̂N̂
0

d
= XN

τ .
The strong Markov property guarantees

lim inf
t→∞

1

t
XN
t [Nt] = lim inf

t→∞

1

t
X̂N̂
t [N̂t] a.s. (7.1)

Let Y N̂ be an (N̂, p)-BBM as before (but with N̂ particles intead of N), and initial distribution

Y N̂
0

d
= X̂N̂

0 . The right-hand side of (7.1) is bounded from below by

lim
t→∞

1

t
Y N̂
t [N̂ ] = wN̂ .

Since N̂ is arbitrary, Proposition 6.2 gives the desired bound.

Appendix A. F-KPP equation

The results presented here are standard in the theory of non-linear parabolic equations; see for
example [11, 24, 34].

Definition A.1. Let t > 0, and let V0, h : R → R and g : (0, t] × R → R be arbitrary functions. A
(classical) solution to the differential equation

∂tV = 1
2∂xxV − h(V ) + g (A.1)

V (0, ·) = V0 (A.2)

in the time interval [0, t] is a function V : [0, t]× R→ R that satisfies the following conditions:

(1) V |{0}×R = V0;

(2) V |(0,t]×R ∈ C1,2((0, t]× R) and (A.1) is satisfied for every (s, x) ∈ (0, t]× R;
(3) lims↓0 V (s, x) = V0(x) for every x ∈ R continuity point of V0.

In the previous definition, condition V |(0,t]×R ∈ C1,2((0, t]× R) means that there exist an open set

A ⊂ R2 containing (0, t]× R and an extension V̄ ∈ C1,2(A) of V |(0,t]×R.

Theorem A.2. Let t > 0. Assume h : [0, 1] → R is continuous with h(0) = h(1) = 0. If V0 is
a distribution function and g : (0, t] × R → R is continuous and bounded, the differential equation
(A.1,A.2) has a unique bounded solution V in the time interval [0, t].

In the case h(v) = λNv, the solution given in Theorem A.2 is characterized by the integral repre-
sentation

V (s, x) =

ˆ ∞
−∞

H(s, x− y)V0(y) dy +

ˆ s

0

ˆ ∞
−∞

H(s− s′, x− y)g(s′, y) dy ds′,

being H the Green kernel associated to operator ∂t − 1
2∂xx + λN , that is

H(s, x) = Φ(s, x) e−λNs.

The function Φ is defined in (5.6). Next we state a result that controls the stability of the solution
under perturbations of the initial condition and the function g.
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Theorem A.3. Let t > 0 and assume h : [0, 1] → R is continuous with h(0) = h(1) = 0. For every
M > 0 there exists a constant C = C(t,M) > 0 such that

‖V (t)− Ṽ (t)‖∞ ≤ C
(
‖V0 − Ṽ0‖∞ + ‖g − g̃‖∞

)
for every V0, Ṽ0 distribution functions and every g, g̃ ∈ C((0, t]× R) such that 0 ≤ g, g̃ ≤ M . Here V

[resp. Ṽ ] is the unique bounded solution to equation (A.1-A.2) in the time interval [0, t] associated to

V0 and g (resp. Ṽ0 and g̃).

Suppose during the rest of the section that g ≡ 0, and that h ∈ C1([0, 1]) satisfies h(u) > 0 for
every u ∈ (0, 1). A traveling wave with speed c ∈ R is a solution to equation (A.1) of the form
U(t, x) = Wc(x− ct) with Wc ∈ C2(R) non-decreasing and satisfying Wc(−∞) = 0, Wc(∞) = 1. The
function Wc is called a wavefront and is characterized by satisfying the ODE

1

2
W ′′c + cW ′c − h(Wc) = 0.

The following facts are well known:

(1) There exists a minimal speed c∗ > 0. More precisely, for each c ≥ c∗ there is a (unique)
wavefront Wc with speed c, and there are no wavefronts for c < c∗.

(2) For each c ≥ c∗ we have,

c =

ˆ ∞
−∞

h(Wc) dx. (A.3)

(3) c∗ ≥
√
−2h′(1) and identity holds if h′(1) < 0 and h′(u) ≥ h′(1) for every u ∈ [0, 1].

(4) If U0 is the unique bounded solution to equation (A.1) with initial value the heavyside function
1[0,∞), and Mt is the median of U0(t, ·), then

lim
t→∞
‖U0(t, ·+Mt)−Wc∗‖∞ = 0. (A.4)

Appendix B. Propagation of chaos in the (N, p)-BBM

We prove here Lemma 5.1. The key tool is the construction and control of the clans of ancestors.
With that in mind, we introduce an alternative graphical construction of the (N, p)-BBM. We first
describe it in words. Every index i ∈ {1, . . . , N} rings at rate λk. When it rings, a (k − 1)-tuple of
indices {i1, . . . , ik−1} ⊂ {1, . . . , N}\{i} and a pair (a, b) ∈ {(i, j) : 1 ≤ i < j ≤ k} are chosen, the
first one uniformly at random and the second one according to p. Let j1 < . . . < jk be the ordered k-
tuple {i1, . . . , ik−1, i}. If Y N [ja] = Y N (i), the operation Γja,jb is applied; otherwise, nothing happens.
Between time marks, the particles diffuse as independent Brownian Motions.

An important observation about this new approach, that will be used later, is that a necessary
condition for the i-th particle to jump is that the i-th Poissonian clock has rang.

The process is then constructed as a deterministic function of an N -dimensional Brownian Motion
B = (B(1), . . . , B(N)) and a marked Poisson Process C = ∪i∈{1,...,N}Ci. Here Ci = {(T im, Sim, (aim, bim), i) :

m ∈ N}. For every i, {T im : m ∈ N} is a Poisson Process in [0,∞) with intensity λk; for every m,
Sim ⊂ {1, . . . , N}\{i} is a (k− 1)-tuple uniformly chosen at random and (aim, b

i
m) a random pair with

distribution p.
For each index j ∈ {1, . . . , N} we construct, as a deterministic function of C, an auxiliary process

{ϕt(j) : t ≥ 0} that we call the forward clan of ancestors. This process is Markovian and its state
space is the family of subsets of {1, . . . , N}. Let {Tu : u ∈ N} = ∪i∈{1,...,N}{T im : m ∈ N} be the
superposition of the Poissonian times. For s ∈ [0, T1), define ϕs(j) = {j}. Suppose we have defined
ϕs(j) for s ∈ [0, Tu), and let Tu = T im. If i /∈ ϕTu−(j), do nothing: ϕs(j) = ϕTu−(j) for every
s ∈ [Tu, Tu+1). If instead i ∈ ϕTu−(j), define ϕs(j) = ϕTu−(j) ∪ Sim for every s ∈ [Tu, Tu+1).

For t ≥ 0 and i ∈ {1, . . . , N}, let Ci(t) = {(T im, Sim, (aim, bim), i) : m ∈ N such that T im ≤ t} be the
projection of Ci on the time interval [0, t]. For every j ∈ {1, . . . , N}, ϕt(j) is a deterministic function
of the Poisson marks C(t) = ∪i∈{1,...,N}Ci(t). We emphasize this by writing ϕt(j) = ϕt(j)[C(t)]. Let
Rt : [0, t]→ [0, t] be the reflection Rts = t− s. Define also

RtC
i(t) = {(Rts, S, (a, b), i) : (s, S, (a, b), i) ∈ Ci(t)}
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and
RtC(t) =

⋃
i∈{1,...,N}

RtC
i(t).

Finally, for every j ∈ {1, . . . , N}, the set of ancestors ψt(j) is defined by

ψt(j) := ϕt(j)[RtC(t)].

The process {ψt(j) : t ≥ 0} is not Markovian, and ψt(j) represents the set of indices of the particles
that could have had influence in Y N

t (j). The clan of ancestors has been used before, for instance in
[4, 27]. We refer to those references for more details on this construction.

We now proceed with the proof of Lemma 5.1.

Proof of Lemma 5.1. Fix N , t, x and `. Expanding the `-th power of FN , we have

FN (t, x)` = N−`
∑

i1,...,il∈{1,...,N}
all different

∏̀
u=1

1{Y N
t (iu) ≤ x}+N−l ·¬,

where ¬ is the sum of all the `-th factors with at least one repeated index. In ¬, there are N ` −
N(N − 1) . . . (N − (`− 1)) terms, each of which is bounded in absolute value by one, so

|N−` ·¬| ≤ 1− N−1
N

N−2
N . . . N−(`−1)

N =: aN,`.

Analogously, for fixed ζ ∈ [−∞,∞)N ,

UNζ (t, x)` = N−`
∑

i1,...,i`∈{1,...,N}
all different

∏̀
u=1

Pζ
(
Y N
t (iu) ≤ x

)
+N−` ·­

with |N−` ·­| ≤ aN,`. Then∣∣Eζ [FN (t, x)`]− UNζ (t, x)`
∣∣ ≤ 2aN,`

+N−`
∑

i1,...,i`∈{1,...,N}
all different

∣∣∣Pζ( ⋂̀
u=1

[Y N
t (iu) ≤ x]

)
−
∏̀
u=1

Pζ{Y N
t (iu) ≤ x}

∣∣∣.
We next prove that, for distinct indices i1, . . . , i`,∣∣∣Pζ( ⋂̀

u=1

[Y N
t (iu) ≤ x]

)
−
∏̀
u=1

Pζ(Y N
t (iu) ≤ x)

∣∣∣ ≤ k2[e2(k−1)t − 1]

N − 1
. (B.1)

The last inequality together with the fact that aN,` vanishes as N →∞ will allow us to conclude.
Define the event

I[i1, . . . , i`] =
⋃

m,n∈{1,...,`}
m 6=n

[ψt(im) ∩ ψt(in) 6= ∅],

namely the complement of I[i1, . . . , i`] occurs when the clans of ancestors are pairwise disjoint. On
the one hand,

Pζ
( ⋂̀
u=1

[Y N
t (iu) ≤ x]

)
= Pζ

[( ⋂̀
u=1

[Y N
t (iu) ≤ x]

)
∩ I(i1, . . . , i`)

]
= +

∗∑
A1,...,A`

Pζ
[ ⋂̀
u=1

[Y N
t (iu) ≤ x, ψt(iu) = Au]

]

= Pζ
[( ⋂̀

u=1

[Y N
t (iu) ≤ x]

)
∩ I(i1, . . . , i`)

]

= +
∗∑

A1,...,A`

∏̀
u=1

Pζ [Y N
t (iu) ≤ x, ψt(iu) = Au]. (B.2)
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The symbol

∗∑
A1,...,A`

means that we are summing over subsets A1, . . . , A` ⊂ {1, . . . , N} that are pairwise

disjoint and such that iu ∈ Au for every u ∈ {1, . . . , `}. In the last identity, we used the factorization
property of the clans of ancestors

Pζ
[ ⋂̀
u=1

[Y N
t (iu) ≤ x, ψt(iu) = Au]

]
=
∏̀
u=1

Pζ [Y N
t (iu) ≤ x, ψt(iu) = Au],

that holds because, for every u ∈ {1, . . . , l}, the event [Y N
t (iu) ≤ x, ψt(iu) = Au] is measurable with

respect to the σ-algebra generated by
⋃
r∈Au

{Cr, B(r)}.

We now work with the second term inside the absolute value in (B.1),

∏̀
u=1

Pζ(Y N
t (iu) ≤ x)

Consider ` independent copies {(B(u), C(u)) : u ∈ {1, . . . , `}} of (B,C), and let Y N,(u) be the process

constructed as a function of (B(u), C(u)), all the copies with initial condition ζ. Similarly, let ψ(u) =

(ψ(u)(1), . . . , ψ(u)(N)) be the process ψ constructed as a function of C(u), and let

I⊗[i1, . . . , i`] =
⋃

m,n∈{1,...,`}
m 6=n

[ψ
(m)
t (im) ∩ ψ(n)

t (in) = ∅].

Then

l∏
u=1

Pζ
(
Y N
t (iu) ≤ x

)
= Pζ

[ ⋂̀
u=1

[Y
N,(u)
t (iu) ≤ x]

]
= Pζ

[( ⋂̀
u=1

[Y
N,(u)
t (iu) ≤ x]

)
∩ I⊗[i1, . . . , i`]

]
(B.3)

= +
∗∑

A1,...,A`

Pζ
[ ⋂̀
u=1

(
Y
N,(u)
t (iu) ≤ x, ψ(u)

t (iu) = Au
)]
.

Since (B.2) and (B.3) coincide, and since

P(I[i1, . . . , i`]) = P(I⊗[i1, . . . , i`])

again by the factorization property of the clans of ancestors, the left-hand side of (B.1) is bounded by
2P(I[i1, . . . , i`]). Inequality (B.1) has been reduced to prove that

P(I[i1, . . . , i`]) ≤
k2(e2(k−1)t − 1)

2(N − 1)
.

Since the growth rate of |ϕs(j)| is bounded from above by (k − 1)|ϕs(j)|, we have

E
(
|ϕs(j)|

)
≤ e(k−1)s,

for every s ≥ 0. We examine now the rate at which the indicator function of the event

Js[i1, . . . , i`] =
⋃

m,n∈{1,...,`}
m 6=n

[ϕs(im) ∩ ϕs(in) = ∅]

jumps from zero to one. If such a jump occurs at time s, ϕs−(i1), . . . , ϕs−(i`) are pairwise disjoint
and there are m,n ∈ {1, . . . , `}, m 6= n, such that an index u ∈ Am rings and the chosen (k− 1)-tuple
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contains some v ∈ An. Under these considerations, we conclude that this rate is bounded above by
∗∑

A1,...,A`

P[ϕs(i1) = A1, . . . , ϕs(i`) = A`]
∑

m,n∈{1,...,`}
m 6=n

∑
u∈Am,v∈An

k − 1

N − 1

=
k − 1

N − 1

∑
m,n∈{1,...,`}

m 6=n

∗∑
A1,...,A`

∑
u∈Am,v∈An

P
(
ϕs(i1) = A1, . . . , ϕs(i`) = A`

)
. (B.4)

Fix a pair m,n ∈ {1, . . . , N}, m 6= n. Without loss of generality, we assume m = 1, n = 2. We have
∗∑

A1,...,A`

∑
u∈A1,v∈A2

P[ϕs(i1) = A1, . . . , ϕs(i`) = A`]

=
∗∑

A1,...,A`

|A1||A2|P[ϕs(i1) = A1, ϕi2(s) = A2] ·®,

where

® =
∗∑

A3,...,A`

P[ϕs(i3) = A3, . . . , ϕs(i`) = A`].

Using that ® ≤ 1, that
∗∑

A1,...,A`

|A1||A2|P[ϕs(i1) = A1, ϕs(i2) = A2] = E
(
|ϕ1(s)|

)2 ≤ e2(k−1)s

and pluggin-in (B.4), we obtain that (B.4) is bounded by k−1
N−1e

2(k−1)sk2. Finally, using that the

distribution of the Poisson point process in [0, t] is invariant under the reflection Rt,

P
(
I[i1, . . . , i`]

)
= P

(
Jt[i1, . . . , i`]

)
=

ˆ t

0

d

ds
E[1{Js[i1, . . . , i`]}] ds

≤
ˆ t

0

k−1
N−1e

2(k−1)sk2 ds =
k2(e2(k−1)t − 1)

2(N − 1)
. �
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