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ABSTRACT

Reconstructing the flow of a dynamical system from experimental data has been a key tool in the study of nonlinear problems. It allows one
to discover the equations ruling the dynamics of a system as well as to quantify its complexity. In this work, we study the topology of the
flow reconstructed by autoencoders, a dimensionality reduction method based on deep neural networks that has recently proved to be a very
powerful tool for this task. We show that, although in many cases proper embeddings can be obtained with this method, it is not always the
case that the topological structure of the flow is preserved.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0013714

One of the main objectives in science and engineering is to pro-

pose interpretable mathematical models capable of explaining

sequences of experimental observations. These models are usually

expressed as a set of differential equations. The explosive increase

of computing power and data availability in recent years has

boosted the development of machine learning algorithms capa-

ble of finding these equations directly from the data.1–7 This is

especially relevant when we do not know the elemental mecha-

nisms that govern the evolution of the system or when the nature

of the observations does not allow a direct analytical approach.

Recent work shows that this data-driven methodology for discov-

ering governing equations can greatly benefit from deep neural

networks.8–11 These powerful models can be used to transform

the experimental data into a new set of coordinates in which the

dynamics can be easily expressed. This process is known as embed-

ding. In this paper, we study reconstructed flows using autoen-

coders, a neural network architecture widely used for dimension-

ality reduction in machine learning. For most cases, this model

is capable of learning proper embeddings of chaotic data. How-

ever, remarkably, there are cases where this model does not learn

a topologically correct representation of the data, even when

its reconstruction error is low. Autoencoders have the potential

to drastically improve equation discovery methods, but a warn-

ing should be raised since it is not possible to find a correct

model if topological invariants computed from the data are not

preserved.

INTRODUCTION

In all areas of physics, we need to build and validate models
involving more variables than those available for the measurement.
Some 40 years ago, Takens12 presented a theorem that described the
conditions under which a flow can be reconstructed from a temporal
sequence of observations of a system’s state. Moreover, he presented
two ways to create a multi-valued sequence of points, which could
be mapped into the original flow by means of a smooth and invert-
ible change of coordinates. That reconstruction was used to compute
the system’s effective dimension and to reconstruct the equations
driving its dynamics, and it was even successful in preserving, for
a chaotic flow, the topological organization of the unstable orbits
coexisting with the attractor.13 This is particularly useful, since a
model proposed to explain an experiment can be discarded if it is
uncapable of reproducing the flow’s topology.14

Due to the increase in data availability and computing power,
data-driven algorithms for discovering interpretable dynamical
models have become highly relevant in the last decade. Model dis-
covery algorithms can be very useful in systems where the governing
equations are unknown, or only partially known, but rich time series
data are available. This is the case for many problems in biological
and social sciences or many control and stabilization tasks in fluid
dynamics.15,16 Many research efforts have been developed to investi-
gate effective algorithms capable of finding parsimonious, nonlinear
governing equations from temporal data series.1–7 Before applying
these algorithms, an embedding procedure is usually necessary to
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transform the high-dimensional input data to the low-dimensional
coordinate space of the equation system. The standard procedure is
to use some kind of mode decomposition procedure.3,17,18

Recently, the use of deep autoencoders for discovering non-
linear coordinate transformation has proved to be a very success-
ful approach to make embedding.8–11 Such a novel scheme takes
advantage of the well-known power of neural networks to effi-
ciently discover complex patterns in large amounts of data.19,20 This
method has the potential to provide qualitative improvements in
our understanding of a variety of complex systems, whose equa-
tions are difficult to derive from first principles. Yet, a key question
in this program is whether these reconstructed variables will reflect
the topological structure of the original flow, as the reconstructions
proposed by Takens do.

Let us assume that we are interested in unveiling the struc-
ture of a flow, whose measurement gives rise to a time series
data {x1, x2, . . . , xN}. The underlying hypothesis is that N1 �

N elements of the time series {xk, xk+1, . . . , xN1+k−1} contain
enough information to define its future, i.e., the next segment
{xk+1, xk+2, . . . , xN1+k}. Determinism will require that there is a
unique value xN1+k for any existing segment. In this way, we can
represent the points {xi} in the time series by points in RN1 . Hence,
the time series will be restricted to a submanifold of RN1 : an embed-
ded manifold. This embedding is neither optimal nor unique. In fact,
Taken’s theorem provides a subsampling that guarantees global met-
ric embedding between original and reconstructed state spaces, and
it follows from it that if the manifold holding the flow is of dimen-
sion d, under general conditions a subsampled set of 2d + 1 points
of the N1 segments suffices to generate an embedding. This is how
dynamics typically deals with the reconstruction of flows from data.

The autoencoder embedding method reconstructs the flow
from the activity of the artificial neurons in the middle layer of a
deep autoencoder, known as latent space. The term autoencoder
refers to a feedforward neural network that learns to copy its input
to its output.20–23 Usually, it consists of a set of layers of nonlinear
units, where the number of units in each layer is

N1, N2, . . . ,Nk . . . ,N2, N1 with N1 > N2 > · · · > Nk.

When the number of hidden layers is greater than one, these neu-
ral networks are usually referred to as stacked or deep autoencoders.
What makes the network interesting is that Nk is chosen as small
as possible, i.e., as the minimum number of units that prevents the
loss of information by the network, leading to a compression of the
information of the original data. We can train the network with
subsets of the time series,

{x1, x2, . . . , xN1}, {x2, x3, . . . , xN1+1}, . . . , {xN−N1 , xN−N1+1, . . . , xN}.

If N1 is large enough so that determinism is guaranteed, the
next question is how small can Nk be so that the compression does
not affect the network’s capacity to recover the input information in
the last layer. Once that value for Nk is obtained, the middle layer,
with Nk units, can be used to define a compressed multi-valued
environment for each input element,

(xi
1, x

i
2, . . . , xi

N1
) → Y

i = (yi
1, y

i
2, . . . , yi

Nk
), i = 1, . . . , N − N1.

The question that we address now is whether this multi-valued,
compressed set of vectors constitutes an embedding of the scalar

time series. Specifically, if the scalar values of the time series cor-
responding to flow measurements, processed by an autoencoder,
give rise to a multi-valued environment preserving the topology of
the flow. Notice that the input needs not to be a scalar time series.
It could be a tensor, where at each time step a frame is coded. In
this way, an embedding of the dynamics of phenomena recorded in
a movie could be automatically reconstructed, without the need of
computing empirical modes and projecting the spatiotemporal data
onto them.

In order to address this question, we will study strange attrac-
tors: non-trivial invariant sets whose topology can be very precisely
quantified through the study of unstable periodic orbits coexisting
with it.24 Strange attractors can be classified by the topological orga-
nization of those periodic orbits. For attractors in three dimensions,
this organization can be characterized by how the orbits are knotted,
and how they link around each other.13,14 The later topological fea-
ture can be described by an index called the linking number. Given
two orbits in a three-dimensional space, this index can be computed
algorithmically from the crossings observed in a two-dimensional
projection of the orbits.14 At each crossing point, tangent vectors are
drawn to the upper and lower curve segments in the direction of
the flow. The crossing is labeled + (−) if the tangent vectors form a
right- (left-) handed coordinate system in the projection plane (see
Fig. 1). The linking number of these two orbits is the integer result-
ing from the sum over all crossings, where each crossing contributes

+1/2 or −1/2, depending on its sign.
Remarkably, flows reconstructed through time delay embed-

dings as proposed by Takens preserve the topological structure of
time series segments, which are good approximations of the unsta-
ble periodic orbits.13,14 Analogously, we used the variables in the
latent space of an autoencoder to construct a flow and test whether
this methodology also preserves the topological organization of the
unstable periodic orbits.

METHODS

To generate our dataset, we integrate a Rössler system of
equations,

dx

dt
= −y − z,

dy

dt
= x + ay,

dz

dt
= b + z(x − c),

with a = b = 0.1 and c = 14, generating a time series data of
15 000 scalar values corresponding to consecutive values of x [see
Fig. 2(a)]. We partitioned the time series in segments of N1 = 256
points, corresponding to 10.26 integration units, as shown in
Fig. 2(b): {x1, x2, . . . , xN1}, {x2, x3, . . . , xN1+1}, . . . , {xN−N1 , xN−N1+1,
. . . , xN}. This time window was chosen in a way consistent with
Taken’s criterium. A typical time delay would be about one third
of the shortest characteristic recurrence, and the system was not
expected to need more than five dimensions for its reconstruction.
That led us to consider a temporal window of at least 4/3 of the dura-
tion of the time series segment approximating the period one orbit.
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FIG. 1. Linking number computation between two three-di-
mensional oriented curves. (a) The four possible types of inter-
sections in the two-dimensional projected curves. The color of
the circle at the intersection indicates which is the upper curve,
while the sign indicates whether the intersection contributes

+1/2 or −1/2 to the linking number. (b) Examples of two pairs
of curves, one with linking number −1 and the other with +2.

This process resulted in 374 488 elements that we used to train and
test an autoencoder. The first 70% of the data was used to train the
network, and the last 30% was used to test it.

The network was implemented on Keras version 2.3.1, back-
ened by Tensorflow 1.15.2. Each neuron was modeled as a ReLU
unit, except for the neurons in the middle and last layers which
were modeled as linear units.25 The minimization of the Mean
Square Error (MSE) between the entry and exit layers was used to
train the network, through an Adam algorithm with learning rate
lr = 0.001, β1 = 0.9, and β2 = 0.999.26 The batch size was 32
samples, and a Glorot uniform initializer was used for weight
initialization.27 Autoencoders were trained for 91 epochs, this stop-
ping criterion was chosen to guarantee that the average percentage
change of the test MSE was lower than 1%. We did not perform a
systematic search in the hyperparameter space to optimize the MSE
on the test set.

The values of the variables representing the three neurons of
the middle layer were used as a multi-valued environment: our
prospective new embedding. In this particular case, we already know
that the minimum number of dimensions in which we can express
the underlying dynamical system is 3. In a general situation, one can
choose the dimension of the latent space by studying the reconstruc-
tion MSE. For example, in our case, evaluating networks with 2, 3,
4, and 5 shows that a qualitative improvement occurs when we use
three units or more: the MSE for two units is one order of magnitude
larger than the MSE obtained with three units. In other words, two
units in the middle layer do not allow a proper reconstruction of the
flow, since the loss of information is too large [see Fig. 2(d)].

To numerically compute the linking number between two
three-dimensional oriented curves, as explained in the previous
section (see Fig. 1), we programmed a function in Python language,
and the source code is available on a public repository.28 To estimate
the Lyapunov exponents, we used the numerical methodology pro-
posed by Eckmann and Ruelle.29,30 We implemented the algorithm
in Python, based on the code taken from the nonlinear measures for
dynamical system library.31

RESULTS

Out of the numerical simulations of our dynamical sys-
tem [see Fig. 3(a)], we singled out three segments that were
good approximations of unstable periodic orbits coexisting with

the chaotic solution obtained in our numerical experiment [see
Fig. 3(b)]. We defined a Poincaré section {y = 0}, and first, we
looked for a segment of the original flow where the distance
between two consecutive intersections of the flow with the section
was a minimum (period 1, solution P1). We repeated the pro-
cedure for an orbit crossing the section twice (period 2, solu-
tion P2) and three times (a period 3, solution P3, which is one
of the two solutions of period three that can be found in the
Rössler system). We numerically computed the linking numbers
between these approximations of periodic orbits in the Rössler sys-
tem, obtaining Linking (P1, P2) = −1, Linking (P1, P3) = −1, and
Linking (P2, P3) = −2.

We compared this organization of the segments in the origi-
nal phase space, with the organization of the segments in the latent
space (i.e., the multi-valued environment where the coordinates are
the activities of the neurons in the middle layer of the autoencoder).
In Fig. 3(d), we display this multi-valued environment for the whole
time series for one of the 60 trained networks, and in Fig. 3(e),
we display the reconstruction for the three segments approximating
periodic solutions in the original flow. In this example, the autoen-
coder training leads to a correct embedding: the periodic orbits in
the latent space have a topological organization identical to that of
the original orbits [see Fig. 3(e)].

It is interesting to explore how the neural network achieves this
embedding of the time series. We inspected the topological struc-
ture of the orbits, reconstructed from the variables of the latent
space at different epochs during the training procedure, for 60 dif-
ferent autoencoders. In the first epoch, the 60 autoencoders gave
rise to wrong topologies [see Fig. 4(a)]. At successive epochs, the
mean square errors (MSEs), which indicate the difference between
the input and output layers, typically decrease, and the percentage of
networks leading to a correct topology increases. After 90 epochs, 53
models lead to the right topological organization between the recon-
structed orbits, whereas seven do not. To ensure that we were not
cutting the training too soon, we continued training models with
an incorrect topology for 90 more epochs. None of them changed
its topology during this process. In Fig. 4(b), we show the evolution
of the MSE during the training procedure for the 60 models seg-
regated by the topological structure. Notice that the MSE typically
reaches a plateau after 90 epochs. In Fig. 4(c), we show the link-
ing numbers between the three orbits for different epochs. In this
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FIG. 2. Autoencoders generate embeddings. (a) We simulated a strange attractor using a Rössler dynamical system. (b) Fragments of 256 points were used to train a neural
network. (c) The architecture of our nine level layer. The cost function being minimized is the mean square error between the input and output layers. (d) The dimensionality
of the middle layer was chosen as the minimum one that guarantees a qualitative gain in terms of MSE reduction. With a layer of two units, the MSE is an order of magnitude
larger than with Nmiddle ≥ 2.
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FIG. 3. Comparison between the original flow and the one constructed with the autoencoder. In the first column, we show the original attractor and the reconstructed one. In
the second column, we display the approximations of the periodic orbits in the original flow and in the reconstructed ones. The third column displays the computation of the
linking numbers for the cases of periods 1 and 2. Both for the original and the reconstructed flows, Linking (P1, P2) = −1

particular numerical experiment, the autoencoder leads to a proper
reconstruction of the topology after 29 epochs.

Remarkably, the majority of the autoencoders provide the right
topological organization between the reconstructed orbits. How-
ever, it is also important to notice that more than 10% of them do
not, even after their MSE has reached a plateau, a benchmark com-
monly used to end the training procedure. Moreover, models that
do not constitute a proper embedding can present a much lower
MSE than that of others that lead to a correct one [see error bars
in Fig. 4(b)].

It is interesting to analyze what happens in the reconstruc-
tions that lead to an incorrect topology. To this end, we explored
whether the vectors describing the flow at nearby points in the
reconstructed space were mostly parallel.32 We computed the cosine
of the angle formed by directions of the flow in neighboring tra-
jectories for 25 000 points in the test set. For the majority of the
points, this value is very close to 1, indicating almost parallel direc-
tions (i.e., nearby points share similar futures). However, if we look
at the 50 points with the lowest values in each autoencoder, there is a

significant difference between those with the correct topology, 0.93
(0.88–0.96), and those with an incorrect one 0.79 (0.46–0.87). Val-
ues are reported as median (interquartile range). This result suggests
that there are regions in the latent space where autoencoders leading
to wrong topologies present self-intersections in the reconstructed
trajectories, since points in a small box of the phase space display
qualitatively different futures.32 This does not happen in those that
lead to a correct topology.

Strange attractors can also be characterized by the Lyapunov
exponents,30 which describe the sensitivity of the flow to different
initial conditions and allow to reconstruct metric properties as the
flow’s dimension. In Table I, we present the values of the first Lya-
punov exponent for the Rössler attractor in the original space and
in the latent space. Unlike linking numbers, the values of the Lya-
punov exponents change for different system’s parameters (a, b,
and c). We trained 20 autoencoders with data coming from systems
with two other sets of parameters, and the results are also shown in
Table I. These show that the reconstructed attractors with correct
topology present values close to the one computed for the original
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FIG. 4. The results of training 60 autoencoders. (a) Proportion of reconstructed attractors with the right topological organization, for different epochs of training. (b) Evolution
of the mean square error during training, discriminated by their topological structure. The points indicate the mean MSE and the bars indicate their standard deviation. (c)
Example of a training process. At the top, we show the evolution of the MSE for the training and test sets. At the bottom, the linking numbers of the orbits in the reconstructed
flow. Red indicates a topological organization different from that of the original flow. The green cells correspond to topological indexes as in the original flow.

attractor, while those with incorrect topology present significantly
higher values.

A natural question is whether these results hold for time
series with noise. To explore this issue, we trained 20 autoen-
coders using the same methodology detailed in methods, but
adding noise to the input time series x of the Rössler equations.
The noise was Gaussian white noise, with zero mean, and a

standard deviation equivalent to 5% of the standard deviation of
x. When analyzing the topology of the reconstructed attractors,
we found that 17 autoencoders (85%) gave rise to right topol-
ogy, a ratio very similar to the one obtained with non-noisy time
series data. Although this subject requires further investigation, the
autoencoder embedding methodology seems to be robust under
noise.
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TABLE I. Values of the first Lyapunov exponent for the original and reconstructed attractors of Rössler systems with different sets of parameters. Values are reported as median

(interquartile range).

First Lyapunov exponent

Parameters Number of autoencoders Latent space

A b c
Correct
topology

Incorrect
topology

Original
System

Correct
topology

Incorrect
topology

0.1 0.1 14 53 7 0.072 0.076 (0.072–0.094) 0.09 (0.081–0.208)
0.12 0.12 9 17 3 0.068 0.069 (0.067–0.084) 0.074 (0.073–0.087)
0.11 0.11 13 16 4 0.086 0.093 (0.088–0.121) 0.248 (0.22–0.302)

DISCUSSION

Takens’ embedding theorem has been a breakthrough in
our understanding of nonlinear systems. Reconstructed attractors
through Takens’ embeddings were used to compute fractal dimen-
sions in experimental data, to identify the geometric operations in
phase space behind the data, as well as to characterize the topological
organization of the orbits, with its applications to model validation.
Recently, very successful computational methods have been devel-
oped to reconstruct nonlinear dynamical systems from data,1–7 and
autoencoder networks were proposed as a novel way to make an
embedding of the data into a reduced space where the dynamics
may be simply represented.8–11 Given the enormous success of deep
neural networks in finding intricate structures in large datasets, we
anticipate that autoencoder related methods will become the new
standard in the field.19,20 Yet, these should be used with care. In this
paper, we studied the flow reconstructed by autoencoders from time
series data generated by a chaotic system. We found that even if this
promising technique has the potential to generate embeddings of
data, some of the flows reconstructed by neural networks trained
with standard learning algorithms and metrics present the wrong
topology. This raises a warning on the use of latent spaces as proper
embeddings.
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